
 Eindhoven University of Technology

MASTER

On line design rule checker

Orbons, L.

Award date:
1984

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ab594556-9f4b-46d9-bf8f-ebfc3c3ba6c7


Supervisors:

On Line Design Rule Checker

by L.Orbons

research group ES

Eindhoven University of Technology

10 - 7 - 1984

Prof. dr.-ing. J.A.G. Jess

Ir. M. v.d. Houde

Ir. A. Bidlot



- 2 -

CONTENTS

SUMMA.RY •••••••••••••••••.•.•••••••••••••• 1

CONTENTS 2

1 INTRODUCTION 4

1.1 'The design cycle 4

1.2 'The environment 6

2 DRC BASED ON DEVICE RECOGNITION 9

2.1 Introduction 9

2.2 'The layout def ined 11

2.3 Design rules 14

3 DRC SYSTEM OVERVIEW 19

3.1 'The on-line approach 19

3.2 Device checking 24

4 CONTOUR ANALySIS 25

4.1 Minimum width checking 25

4.2 Width check algorithm 29

4.3 Minimum spacing checking 32

4.4 Spacing check algorithm 33

5 PROGRAM DESCRIPTION 34

5.1 'The database 34

5.1.1 Rectangle storage 34

5.1.2 Bin structure 35

5.2 Operations on the database 37

5.2.1 Insert operation 37

5.2.2 Delete operation 39

5.2.3 Select operation 40

5.3 The Scanline Algorithm 43

5.3.1 Insert operation 45

5.3.2 Delete operation 50

5.4 'The check routines 52

5.4.1 Width check 52

5.4.2 Spacing check 53



- 3 -

5.5 Comm.ands .....................•..•..•• S5

5.6 Communication with layout editor ..... 57

5. 7 Des iqn rules 58

6 CONCLUSIONS AND FUTURE DEVELOPMENTS 60
7 REFER.EN'CES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



- 4 -

1 INTRODUCTION

In this report an on-line design rule checker for width and

spacing checks on contours is described.

This design rule checker is intended for the interactive

layout editors developed at our research group.

1.1 the design cycle

In this chapter a part of a possible design cycle of a

(V)LSI chip will be described briefly. In this context the

role of the design rule checker and the extractor will be

discussed.

The design of a (V)LSI chip can be split in several stages.

First of all a circuit description is made. Next the circuit

is analysed using a circuit simulator. If necessary

corrections are made in the circuit description, until the

results of the simulation are satisfactory.

After these steps we may commence with the layout design.

After finishing the layout, a design rule checker will

inspect the layout for possib~e design rule violations.

As soon as the design rule checker doesn't report any

violations anymore the layout representation is correct.

Unfortunately correct means only correct for design-rule

violations. It is quite likely that due to parasitic

effects, wrong dimensioned transistors or even completely

forgotten parts of the circuit the behaviour of the realised

circuit is somewhat different ~s desired.

Therefore it is necessary to have an extractor which

generates a circuit description from the layout. This



- 5 -

extracted circuit description is then simulated. The results

of the extracted circuit simulation can be compared with the

results of the original circuit.

The proces described above is repeated until the behaviour

of the extracted circuit is satisfactory.

In figure 1 an overview of this proces is given. For

convenience the steps that lead to the circuit description

and the steps after the construction of the layout are left

out.

This report will deal mainly with the last section in this

part of the design cycle, the design rule checker and the

extractor.

fig. 1 overview of the design cycle

start design1 _
______________ 1 _
1 g!~~~!~_g~~!g~ 1
______________1 _
1 ~!~~~!~_~!~~!~~!2~ 1
______________ 1________________ N
1 ~~~~!~_e~! 1---->----

1 y
-------------- ::::::::::::::::---<------1 ~~ye~~_g~~!g~ 1
______________1 _
1 Q~~!g~_~~!~_~~~~~!~g 1
---- 1________________ y
1 ~~~e~~_! 1---->----
______________ 1_~ _
1 ~~y2~~_~!~~~~~!2~ 1______________1 _
l ~~~~~!~~::_:~_~:~:::~:~ l
______________1________________ N
1 B~~~!~_e~! 1---->----

I Y
further processing



approach is that the designer

errors he made, which may save

- 6 -

Most design-ru1e-checkers and extractors in use today

process the layout, or parts thereof if a hierarchical

method is used, after it has been completed.

This means that the correction of errors in the layout may

cause several significant changes in the layout and also

that we have to go through the whole process of design rule

checking, extraction and simulation once again.

Since the layout generation is often an interactive process,

it would be desirable that design rule checking and

extraction would also work on an on-line basis.

The major advantage of this

immediately gets feedback on

him a lot of time.

Since many basic operations in the design-rule checker and

the extractor are the same (in both cases the devices in the

layout must be analysed) it is attractive to combine both

steps.

In the following the attention will be focussed mainly on

the on-line design rule checking.

1.2 The environment

Our group has two hierarchical interactive layout editors

available. One symbolic and one geometric layout editor

called ISLE (Interactive Symbolic Layout Editor) and CM

(Colour Mask). The next step in the development of a layout

design system is the development of an on-line design rule

checker and extractor.

The design-rule checker and extractor are intended as

programs which run parallel to the layout editors. These

programs should be able to communicate with ISLE and CM.

Since both editors use the same database, this shouldn't

cause severe problems.



- 7 -

For a usefull implementation of a design rule checker or

extractor it is necessary that certain preconditions are

fulfilled .

. For the design rule checker this means the following. First

of all the. set of design rules should be consistent. Next

the design rule checker has to be incremental. So ~~ly the

changes in the layout are evaluated.

A special problem is that, in the process of creating a

device, there may temporarily exist design rule violations

in the layout. The desing rule checker shouldn't report this

kind of errors.

Of course the design rule checker should be able to remember

where what kind of errors occurred.

If the connectivity data is available, it becomes attractive

to check the connectivity also on an on-line basis.

On line extraction of a layout also gives rise to several

typical problems. First the extractor has to recognise

devices, lookup the model belonging to that device and

calculate the parameters of the model. Next this model is

added to the extracted circuit description.

The accuracy of the extractor is another point of interest.

The more accurate the description is, the more time is spent

in calculating the model parameters and the simulation after

completing the circuit description will also take much

more time.

Special care is needed for the actions that have to be taken

if a device or a part of a devices is deleted. This goes as

well for the extractor and design rule checker.

Another common problem is the time needed for the checks.

Both the extractor and design rule checker should be fast

and may not delay the designer significantly.

The hierarchy in the design has not been mentioned before



- B -

but it is quite obvious that a

necessary for succesfull on-line

extraction.

hierarchical approach is

design rule checking and



- 9 -

2 DRC BASED ON DEVICE RECOGNITION

2.1 introduction

The architecture of a design rule checker depends heavily on

the way the design rules are described.

Usually design rules are defined in terms of overlap of and

spacing between masks and also by a specification of

devices, using the same kind of description.

In such cases design rule checking consists of applying all

these rules one by one on the whole layout, making it

necessary to scan the layout several times.

Due to time considerations, this is not acceptable for an

on-line design rule checker. A different approach is

necessary.

In this new approach each legal device should be uniquely

specified by describing the relations between the masks

present in the device. In the following sections some of

these relations will be described.

When the design rule checker encounters a part of a layout,

it first locates the devices present in that part. The next

step then consists of checking the devices seperately. These

checks are performed by comparing the device specification

with the actual situation in the layout.

The specification of design rules will be much more

elaborate then before, since all legal devices must be

specified.

If a design rule checker is able to recognise devices, the

step to extraction is not so large anymore. Actually the

design rule checker performs the first step in an extraction



- 10 -

process, the location and recognition of devices.

Another important aspect is that of technology independence.

If our desiqn rule checker is, to a certain extent,

technology independent, it should be possible to adapt the

design rule checker to a change in the technology easily.

In the following paragraphs the subjects mentioned here will

be treated in some more detail.



- 11 -

2.2 The layout defined

In this section a general definition of a layout will be

given. He will start with giving definitions for the basic

elements in a layout.

window:

a window is a rectangle. A window is characterised by its

position and its dimensions. A window can e.g. be the

surrounding box of a compound

Next we define a layer or a mask.

layer

a region having the same dimensions and position as the

window. A unique number and/or name is assigned to a layer.

Thus every window can be accompanied by several different

layers.

contour:

a polygon consisting of one or more connected paraxial

rectangles in one particular layer. Two rectangles are

connected ii·:they have at least one point in common. A

contour is a connected region, which in general may contain

holes. A contour usually doesn't contain all rectangles of

a layer in the window.



say the contours A Band C

AB, AC or BC are, in this

- 12 -

constraints:

two layers have constraints with each other if there are

restrictions concerning overlap and/or spacing between them.

In N-MOS technology e.g. metal and polysilicon have no

constraints with each other.

common area:

A common area is the intersection of two overlapping

polygons A common area is a connected region.

maxset

A maxset is a set of one or more contours, sharing a common

area. All contours in a maxset belong to different layers.

In the common area the number of overlapping or touching

contours reaches a local maximum.

Each contour in a maxset has constraints with at least one

other contour in the maxset.

If the common area is formed by

then only ABC forms a maxset,

case, no maxsets.

From the definition of a maxset it follows that a maxset may

contain one or more common areas.

basic maxset:

A basic maxset is a maxset which contains exactly one common

area.



- 13 -

device kernel

A device kernel is a basic maxset, the common area is

characterised by a number of overlapping or touching layers.

In the common area the layer density reaches a (local)
maximum.
In the following we will restrict ourselves to rectangular

device kernels only.

device perifery :

The device perifery consists of all rectangles touching or

overlapping the device ker:hel.

Provisionally we define a device as follows,

device :

A device consists of one device kernel and a device

perifery.

Note : not all possible kernels form a device.

Now we can define a layout as follows

layout:

a set of devices in a window



- 14 -

2.3 Design rules

He consider the following design rules:

minimum width rules:

each contour should satisfy a minimum width criterion.

Consider a pair of points (Pl,P2) on the border of a

contour, where Pl is a cornerpoint and P2 is an arbitrary

other point of the border.

In this case the border of a contour doesn't belong to the

interior of the contour.

There occurs a width violation in the contour if there

exists such a pair (Pl,P2) for which the following statement

holds:

The shortest path between Pl and P2 lies completely in

the interior of the contour and the length of that path

is less then a minimum length d.

The minimum width d depends on the layer in which the

contour is situated.

minimum spacing rules:

each single contour and each pair of contours must satisfy a

minimum spacing criterion.

Consider a pair of points (Kl,K2) where Kl is a corner in

contour 1 and K2 is an arbitrary point on the border of

contour 2, or contour 1 if only one contour is evaluated.

Here the border of the contour belongs to the interior of

the contour.

There occurs a spacing violation between two contours if



- 15 -

there exists a pair (Kl,K2) for which the following

statement holds:

The shortest path between Kl and K2 lies completely on

the exterior of both contours and has a length which is

less then a minimum lenght s.

If Kl and K2 belong to the same contour, there occurs a

spacing violation if the shortest path between Kl and K2

lies completely on the exterior of the contour and has a

length less then or equal to the minimum length s.

The minimum spacing s depends on the layers involved.

Touching or overlapping is not considered as a spacing

violation.

Note : spacing rules are applied between at most two

contours. This implies that the occurrence of a third

contour in the neighbourhood or perhaps overlapping the two

others, should not influence the required spacing between

the previous two.

When checking a device for correctness, we consider two kind

of area's which have to be analysed.

1 overlap area's

2 common area's

Where the overlap area of contour A on contour B is the area

covered by contour A with the restriction that the common

area('s) of both contours don't belong to the overlap area.

The overlap area of contour B on contour A is the area

covered by contour B with the restriction that the common

area('s) of both contour don't belong to the overlap area.



- 16 -

Now the following select operations can be defined:

boolean AND operation

The boolean AND operation is applied on two contours.

AND(contour A,contour B) yields the common area's of contour

A and B.

the SUBTRACT operation

The SUBTRACT operation is also applied

SUBTRACT(contour A,contour B) yields the

contour A on contour B (i.e. the parts of

B) •

fig 2 example

original situation

to two contours.

overlap area of

A not covered by

AND(A,B)

SUBTRACT(A,B) SUBTRACT(B,A)



- 17 -

Now we define:

Select operations:

The boolean AND and the SUBTRACT operation on contours.

Device region:

A device region is a set of polygons, which is created by

applying one of the select operations on two or more

contours belonging to a device.

Each device region must satisfy certain conditions. In our

layout we consider the following region conditions:

1 minimum dimension conditions,e.g. minimum

width and minimum spacing

2 shape conditions, e.g. the shape of a

region must be a rectangle

3 conditions concerning the number of

unconnected polygons in a region (the

cardinality of a region)

Now we define:

SHAPE operation:

The SHAPE operation checks whether

agrees with the defined shape type.

rectangle;

CARDINALITY operation:

the shape of a contour

e.g. SHAPE (contour) =

The CARDINALITY operation calculates the number of



spacing and

are applied

- 18 -

unconnected polygons in a device region. e.g. in fig. 2 the

cardinality of the region created by SUBTRACT(A,B> is 2.

Now we update the definition of a device as follows:

device:

A device consists of a device kernel and a device perifery.

A device can be specified by describing some of the device

regions and the conditions that must be fulfilled in these

regions.

The result of the previous definitions is that there are now

two independant classes of design rules.

The first class of design rules, the minimum

minimum width rules are context independent and

to single contours only.

The second class contains design rules which are related to

the legal devices and are therefore context dependent.

Since all contours satisfy the appropriate minimum spacing

criterion, all devices sastisfy this criterion.

Therefore eventual design rule errors can then only occur

in the devices themselves.



- 19 -

3 DRe SYSTEM OVERVIEW

3.1 The on line approach

The design rule checker which will be described here

processes rectangles. These rectangles are orthogona11 with

respect to the x and y axis.

After inserting or deleting a rectangle we have to inspect

the neighbourhood of the rectangle and select rectangles

which are close to the inserted or deleted rectangle.

Rectangles which overlap or touch the inserted or deleted

rectangle are always selected.

If the distance between the inserted or deleted rectangle

and another rectangle is less then the minimum spacing

allowed between the layers in which they are situated then

that rectangle is also selected.

When design rule violations are detected the program must

issue appropriate error messages and also keep an

administration of the errors found in the layout.

When looking at the design rule checker part in fig. 3 we

see that it consists of three parts.

The first part, the selector, selects a group of rectangles

which overlap, touch or lie within the minimum spacing

area of the inserted or deleted rectangle.

Next the selector groups the rectangles in contours. On

their turn the contours are assigned to basic maxsets of

overlapping contours.

After the selection part, the contours are passed to the



- 20 -

contourchecker where the following checks are performed.

First each contour is checked for minimal width violations.

After that, the contours are checked for minimum clearance

violations.

Finally we will check the basic maxsets.

The first thing that is done by the device checker, is

analysing which masks are present in the maxset. When this

combination correponds with a legal device, several

operations are carried out on the constituing contours to

determine whether there are design rule violations in the

maxset.

When looking at fig. 3 we see that the devices are

specified in the design rule description file.

The design rule compiler processes this file and generates

several tables which serve as reference for the actual

design rule checker.



- 21 -

fig. 3 drc system configuration

selector

_________1 _
contour

checker

device
checker



- 22 -

In pseudo pascal the proces looks as follows:

program design rule checker {rectanqle,mode}

begin

if mode = insert

then insert rectangle in datastructure;

select group of rectangles within minimum

distance of the inserted or deleted rectangle;

assign({group}--) {contours,maxsets})

if mode = delete then

begin

for each maxset do

if maxset in errorlist(s) then delete maxset from

errorlist(s);

delete rectangle from datastructure;

delete rectangle from group;

delete contours;

delete maxsets;

partition({group}--> {contours,maxsets});

end;

checkcontours(rectangle,mode);

if no error detected then

checkdevice(contours,maxsets);

end {on line design rule checker};



- 23 -

procedure checkcontours( inrectangle, mode);

begin

rectanglelist:=list of all rectangles

which overlap the inrectangle;

if mode=insert then

begin

assign {rectanglelist} ---) {contours};

layer:= layerno of inrectangle;

for each contour in layer do

begin

check minwidth of contour;

for mask:=l to nmask do

if (layer and mask have constraints)

and (a contour2 with layerno=mask is present)

and (minimumspacing ) 0)

then check minimum spacing between contours;

end

else {mode=delete}

begin

while rectanglelist (> empty do

begin

take nextrectangle from list;

checkcontours(nextrectangle,insert);

end;

end;

end {checkcontours};



- 24 -

3.2 Device checking

As pointed out before, we can describe devices by using the

WIDTH, SPACING, AND, CARDINALITY, SUBTRACT and SHAPE

operations.

Another important property of a device is that it consists

of a combination of different layers or masks.

Thus it must be feasible to describe each device by

the occurrence of a number of masks, a number of

instructions, and a number of conditions which must be

fulfilled after executing the instructions.

The framework of a program that can carry out these

tasks could be:

procedure checkdevice<contours,maxset>;

begin

if maxset on legal device list

then

begin

carry out instructions;

if unfulfilled conditions

then

begin

put maxset on violation list;

issue error message;

end;

end;

end {checkdevice};



- 25 -

4 CONTOUR ANALYSIS

4.1 Minimum width checking

Each contour must satisfy a minimum width criterion. A

contour is a polygon consisting of paraxial rectangles.

These rectangles satisfy the minimum width criterion.

When analyzing a polygon we will only consider its

border. The border of a polygon is described by a number of

edges.

Since the polygon consists of only paraxial

rectangles, we can describe the polygon by its vertical

edges. There are two kinds of edges. The in-edges and the

out-edges. At an in-edge we find the interior of a polygon

on the right side of the edge, and at an out-edge the

interior lies on the left side of the edge. (see fig. 4.)

fig 4a. polygon representation fig 4b. edge representation

In the following we assume that all contours consist of

paraxial rectangles which satisfy the minimum width

criterion.



- 26 -

From the definition of the minimum width criterion it

follows:

1 An in-edge of a polygon satisfies the minimum width

criterion if the interior of the polygon reaches to at

least a distance d on the right side of the in-edge.

2 An out-edge of a polygon satisfies the minimum width

criterion if the interior of the polygon reaches to at

least a distance d on the left side of the out-edge.

3 A convex corner satisfies the minimum width

criterion if we can place a rectangle with minimal

dimensions in the corner in such a way that the

rectangle is covered completely by the interior of the

contour

4 A concave corner satisfies the minimum width

criterion if we can place a rectangle with minimal

dimensions in that corner in such a way that the

rectangle is always completely covered by the interior

of the contour.

5 A contour satisfies the minimum width criterion if

all concave corners satisfy the minimum width

criterion.

Although only pairs of concave corners may give rise to

violations, not all pairs of concave corners can have width

violations, therefore we will make a distinction between the

corners and their combinations



- 27 -

Definitions

1 A concave in-corner is a concave corner which occurs

at an in-edge

2 A concave out-corner is a concave corner which

occurs at an out-edge.

Since all contours consist of rectangles which satisfy

the minimum width criterion there cannot occur width

violations between concave in-corners~ as well as

between concave out-corners.

fig.Sa configurations where no width violation occurs

! j I ,
., !.. ! f· f·.. J, , ! ., ., ., .

I I ! , !.
I ,., ,

; i . ,, , ., t;;

, -~ ! ! ~ :'.

J , / f· I·, ,. t~

! , ..
! 1 .! ./ ., ,

'~'., ! , ! , I I., , ,t .. , I ~,

. Sb configurations with concave in~- and concave-out corners
with potential width violations.



- 28 -

From this the following theorem follows:

Theorem

A contour satisfies the minimum width criterion if all

concave corners occurring at out-edges are at least a

distance d separated from the nearest concave in-corner on

the left side of the out-corner.



- 29 -

4.2 The width check algorithm

The strategy used to find the minimum width violations is as

follows.

He will sort the vertical edges of the rectangles according

to their x-coordinates in non-descending order. When two

edges have the same x-coordinate, the edges are sorted on

their ymin coordinate, also in non-descending order.

In-edges with the same x-coordinate as an out-edge are

placed before the out-edge.

He will examine the vertical edges of the contour, by using

a scanline algorithm. If we detect a concave corner at an

out-edge, the contour will be examined, at that point, for

width violations.

The scanline is swept accross the contour from left to

right. At each moment a scanline element list is maintained.

It describes a cross section of the contour at a certain

x-position. Each time an edge of a rectangle is encountered,

the scanline is updated.

A scanline is an ordered list of scanline elements see

fig.G. A scanline element represents a rectangular slice of

the contour. Each scanline element contains information of

the border of the contour. A scanline element has an origin,

which gives the x coordinate where the element was created

and the slice begins. Further a scanline element contains

ymin and ymax coordinates, which give the range in which the

element is situated. Finally a scanline element contains a

density field, the density gives the number of overlapping

rectangles between ymin and ymax at the present location of

the scanline.

In the scanline, the scanline elements are ordered according

to their ymin value. Scanline elements do not overlap each



- 30 -

other, but touching is allowed.

----------------------------------------------------_____~ l : ~ l_~~_~ _
D

E

F

contour split in rectangles

XO

A

D

Xl

fig. b.a

B

D

F

X2

c

X3

C, E

E

X4

fig. b.b. scanning the rectangles in the contour



- 31 -

In pseudo pascal this algorithm works as follows:

procedure widthchecker {input1ist};

{input1ist is a list of vertical edges,

lexically sorted according to x, in/out,y}

begin

while edges on input list do

begin

take edge from input1ist;

update scan1ine e1ement1ist;

{a scan1ine element consists of xorigin,

ymin,ymax, density; the scan1ine element

list is sorted according to ymin}

while scan1ine elements with density=O do

begin

delete scan1ine element;

if concave corners detected then

{a concave corner occurs if ymax/ymin of the

deleted scan1. e1em.= ymin/ymax of

the next/previous scan1.e1.J

begin

if concave corner at in-edge within

minimum width

then report width violation;

end;

end;

end;

end {widthcheckerJ;



- 32 -

4.3 Minimum spacing checking

Minimum spacing checks have to be performed each time a

rectangle is inserted or deleted.

We have to check for spacing violations in the contour to

which the new rectangle belongs and also between the other

selected contours and the contour containing the new

rectangle.

In solving this problem we can use a similar scanline

algorithm as for the width checker.

Instead of analysing the scanline when deleting scanline

elements, we will now analyse the scanline when inserting

and deleting scanline elements. This check consists of

"walking" along the scanline and checking the distance

between two scanline elements. If a scanline element is

deleted, we also have to look forward in the x-direction

for possible spacing violations.

A violation occurs in a situation in which the distance

between the two different contours is less then a

predefined minimum. Note that overlap is not a spacing

violation, because overlapping contours may form devices

and the device checking is done at a later stage by the

device checker.

The vertical edges of the rectangles, ordered in the same

way as in the widthchecker, are analysed. When a scanline

element is deleted, we look ahead in the edge list, and

check for edges which ly to close to the deleted scanline

element.



- 33 -

4.3 Spacing check algorithm

spacing violation;ahead in edgelist for

spacing violation

report violation;

In pseudo pascal this looks as follows:

procedure spacingchecker{inputlist};

begin

while edges on inputlist do

begin

take edge from inputlist;

update scanline;

if (a new scanline element is created)

or (a scanline element is deleted)

then

begin

check spacing in scanline;

if spacing violation

then report violation;

end;

if a scanline element is deleted then

begin

look

if

then

end;

end;

end {spacingchecker};



- 34 -

5 PROGRAM DESCRIPTION

5.1 The database

5.1.1 Rectangle storage

The database of the design rule checker consists of a

rectangle list and a bin structure. For the rectangle list

the following format is used:

Type Quartet = array[l. .4J of integer;

linkrect = "surrect;

surrect = record

id :integer;

layer :integer;

contourno :integer;

corners :quartet;

next :linkrect;

end;

var startrect :linkrect;

Here id is a number which uniquely identifies a particular

rectangle, layer contains the number of the layer in which

the rectangle is situated, contourno contains an optional

contourno and the array corners contains information about

the position of the rectangle.

The coordinates are stored in the following way:

Corners[lJ contains xmin, Corners[2J contains xmax,

Corners[3J contains ymin and Corners[4J contains ymax.

The rectangle list is not ordered. The pointer to the first

record in the rectangle list is stored in startrect.



- 35 -

5.1.2 The bin structure

A bin structure is created by dividing the x-axis of the

layout in a number of intervals or bins.

In this case for each bin an administration is kept of the

rectangles which lie within that bin. In the bin structure

used here a rectangle is represented by two vertical edges,

an in,- and an out edge respectively.

For each bin this administration consists of an ordered list

of in-edges of rectangles which cross the bin and an ordered

list of in and out-edges of the rectangles which start or

end in the bin.

canst nbins = 25;

type linkbin ="binel;

binel = record

in :boolean;

idpoint :linkrect;

next :linkbin;

end;

bins = array[l .. nbins] of linkbin;

var transbins, deltabins :bins;

Here nbins stands for the number of bins, binel stands for

bin-element.

The in-field in the bin-element, when true, indicates that

we are dealing with an in or out edge of a rectangle.

Idpoint is the pointer to the rectangle in the rectangle



- 36 -

list.

In each bin we have two linked lists of binel: the transbin

list and the deltabin list.

The transbinlist is an ordered list of bin-elements,

representing the edges of rectangles which cross the bin.

The deltabin-list is a similar ordered list, but now the

edges of the rectangles which start or end in a bin are

stored.

Both list contain bin-elements, or better edges, ordered in

descending order on- their x-coordinate.

When two edges have the same x-coordinate, the out-edge, if

present, is placed before the in-edge. See fig. 7.

---------------------

1 ~ 1
------------------------1 = 1

BIN 1 BIN 2 BIN 3 BIN 4
delta trans delta trans delta trans delta trans

I I I I I
B B B A C
I I I I
A A C A

------------- ------------- ------------- -------------
fig. 7 bin structure



- 37 -

5.2 Operations on the database

We consider three basic operations on the binstructure.

1 The INSERT operation

2 The DELETE operation

3 The SELECT operation

5.2.1 The insert operation

The insert operation is used to insert a rectangle in the

datastructure. The following actions are taken.

1 The rectangle is inserted in the rectangle list

2 The bins in which the rectangle will be stored are

calculated

3 The vertical edges of the rectangle are stored in the bin

structure.

The insert operation is performed by

Procedure Insertrect(id,maskno :integer; xycoor :quartet);

This routine calls a

actual work. Here id

inserted rectangle.

number of other routines which do the

is the identification number of the

Action 1 is performed by

Procedure Placerect( ids, maskno, freefield :inteqer;

xycoor :quartet;

var rectlistpoint, idsurrect

:linkrect);



of the bin in which the edge is

we are dealing with an in

Idsurrect points to the record

the rectangle is stored. Binar

bins, in this program TRANSBINS

- 38 -

Here rectlistpoint is the pointer to the first record of the

list in which the rectangle is inserted. Idsurrect is the

pointer to the record where the information of the inserted

rectangle will be stored.

Action 2 is performed by

Procedure Binrange ( var xycoor:quartet;

var minbin,maxbin, maskrect:integer;

option: rangemode);

After the execution of this routine, the firstbin where the

rectangle falls into is returned in minbin and the last in

maxbin.

Option can be normalrange or extendrange.

In the latter case the rectangle from which the binrange is

calculated is enlarged by the maximum clearance of the layer

with number maskrect.

Action 3 is performed by:

Procedure Inclbin( var binar:bins; binnum:integer;

idsurrect:linkrect;

in:boolean);

Here binnum gives the number

placed. Up indicates whether

(left) or out (right) edge.

in which the information of

may be any variable of type

or DELTABINS is used.

Procedure Inclbin (include in bins) inserts an edge of a

rectangle in the bin with number binnum. This procedure is



- 39 -

also responsible for the ordering of the edges in the bin.

5.2.2 The delete operation

This operation deletes a rectangle from the datstructure.

Actually the ID field in the corresponding rectangle is set

to zero. This implies that it is also necessary to clean-in

the database every now and then.

For the delete operation the following actions are taken:

1 The bins in which the rectangle is stored are calculated

2 In deltabins[minbinJ the bin which points to the deleted

rectangle is located and the ID-field of that rectangle is

set to zero.

3 The edges of the rectangle are removed from the

bin-structure and the rectangle is removed from the

rectangle list.

The delete operation is performed by:

Procedure Deleterect( xycoor :quartet; ids :integer);

This procedure calls a number of other routines which do the

actual work.

Action 1 is performed by procedure binrange, see previous

section for a description of this routine.

Action 2 &3 are performed by:

Procedure Bindelete( outlist :linkbin; ids:integer);

Here outlist is intended as the pointer to the bin in which

the in-edge of the to be deleted rectangle has been stored.



- 40 -

Action 3 is performed by

Procedure Cleaners( var binar, deltabins :bins;

var startrect :linkrect);

This procedure calls two other procedures:

Procedure Dustman( var binar :bins); and

Procedure Rectdustman(var startrect :linkrect);

Dustman deletes all bins in binar which point to a rectangle

with an id-field equal to zero. Binar may be either

transbins or deltabins.

Rectdustman deletes all rectangles with a zero in the

id-field from the rectangle list. Here startrect points to

the first rectangle in the rectangle list.

5.2.3 The select operation

The select operation is used to select rectangles which

overlap or lie within a certain distance of a rectangular

box. The distance depends on the layers involved.

Input for this operation is a box, the output consists of a

sorted list of edges. These edges belong to rectangles which

lie within a certain distance froD the box. The edges in the

edgelist are sorted in non-descending order on xmin.

In performing this operation the following actions are

carried out:

1 The bins in which the box falls are calculated.

2 Rectangles which lie in these bins are selected.

3 The edges of the selected rectangles which lie within a

minimum distance of the box are placed on the output list.



- 41 -

The select operation is carried out by

Procedure Rectselect( var outlist :linkbin;

xycoor :quartet; maskno :integer)

Here xycoor contains the coordinats of the box, maskno

contains the number of the layer of the box.

After execution of this routine outlist contains the pointer

to the first record of the list of selected edges. These

edges are ordered on xmin in non-descending order.

Rectselect uses the following procedures. For action one

procedure binrange is used with option=extendrange.

Action 2 is performed by:

Procedure Makelist( var rectlist :bins;

minbin,maxbin :integer);

This procedure copies the startpointer of the bins in which

the box lies, to rectlist.

The last action is carried out by

Procedure Sellisty( var rectlist :bins;

var outlist :linkbin;

xycoor :quartet; maskwind :integer);

This procedure scans the bins copied in rectlist and selects

the necessary edges in outlist.



- 42 -

The actual checking is performed by

Procedure Checkrect( point :linkbin; xycoor :quartet;

var outlist :linkbin;

maskwind :integer);

This procedure appends an edge of

to the outlist, if this rectangle

rectangle given by xycoor.

rectangle point".idpoint

lies close enough to the



- 43 -

5.3 The scanline algorithm

A scanline algorithm is used to find contours, to check

spacing and width and to construct maxsets.

A scanline may be considered as an ordered list of scanline

elements. The scanline represents a rectangular slice of a

contour. Each scanline element contains information of the

border of the contour. A scanline element has an origin

which gives the x-coordinate where the element was created

and the slice begins.

Further a scanline element contains ymin and ymax

coordinates which give the range in which the element is

situated.

Finally a scanline element contains a list of rectangles

which are present in the scanline element.

In the scanline, the scanline elements are ordered according

to their ymin value. Scanline elements do not overlap each

other, but touching is allowed.

In pascal this looks as follows:

type linkscanel = "scanel;{pointer to a scanline element}

linkedge = "edge;

scanel = record

ymin

ymax

edgelist

next

end;

:integer;

:integer;

:linkbin;

:linkscanel;



the input list

means that a

taken care of

- 44 -

edge = record

ymin :integer;

ymax :integer;

idpoint :linkrect;

next :linkedge;

end;

var scanline linkscanel;

Roughly the scanline algorithm looks as follows

Procedure Scan( inlist :linkbin;

maskno,masknol :integer;

option :scanoption);

begin

while edges on inlist do

begin

take next edge from inlist;

if edge is an in-edge

then insert edge in scanline

else delete edge from scanline;

end;

end;

The scanline algorithm works with edges, but

consists of elements of type linkbin. This

conversion must take place. This conversion is

by :



- 45 -

Procedure Scanadjust( inbin:1inkbin; var edge:1inkedge);

There are now two operations that can be performed on the

scan1ine, an insert and a delete operation.

5.3.1 The insert operation

For the insertion of an edge in a scan1ine the following

recursive routine is used:

Procedure Scanins(var prepoint,startp,

scan1ine :linkscane1;

var scanout,scanend:1inkbin;

var edgein :linkedge);

begin

determine where and how the input edge

overlaps the scan1ine;

case kind of overlap of

no overlap:

overlap

end (case);

end;

insert edge in scan1ine;

begin

split, if necessary a scan1ine element;

update the sp1itted scan1ine element;

newedge = edgein-(part of edgein which is

already inserted)

(split edgein)

Scanins( scan1ine, newedge);

end



- 46 -

Here startp points to the scanline element under

concideration and prepoint to the scanline element before

startp.

After the insert operation is completed, scanout points to a

list of edges which overlap edgein.

Note: this list may contain edges from different scanline

elements. In order to make a distinction between the edges

of the different scanline elements, the up-field of the

linkbin record is set to mark the beginning of a new group

of edges belonging to the same scanline element.

This algorithm is a simplification of the real situation.

Actually 11 different cases of overlap are considered.



edgein

seanline

edgein

new seanline

split edgein

- 47 -

(----------------)
a

(---------------------)
b

(-----------------)
a

(---------x----------)
b b

(-------x---------)

seanline

a a

(---------x----------)
b b

insert edges

new seanline (-------x---------x----------)
a a,b b

fig. 8. example of the scan algorithm.

In scanins the following routines are used:

Splitting of a scanline element:

Procedure Splitseanle( seanle

edgein

kind

:linkscanel;

:linkedge;

:integer);



- 48 -

This routine creates a new scanline element and inserts it

immediately after the scanline element pointed to by scanle.

The edgelist of the old scanline element is copied to the

new one. The parameter kind influences the borders of the

scanline elements as listed in the following table.

kind old scanel new scanel

ymin ymax ymin ymax

5 no change no change edgein"ymin edgein"ymin

6 no change edgein"ymax edgein"ymax old scanel"ymax

7 no change edgein"ymin edge in "ymin old scanel"ymax

Procedure Splitedge( edgein :linkedge;

scanle :linkscanel;

kind :integer;

var edgeoutl,edgeout2 :linkedge);

This procedure splits the input edge in two other edges,

edgeoutl and edgeout2. The idfield of edgein and thein field

are copied to edgeoutl and edgeout2. The ymin and ymax field

are adjusted. This adjustment depends on kind as follows

from the next table.



- 49 -

kind edgeoutl edgeout2

ymin ymax ymin ymax

5 edgein"ymin Bcanle"ymin Bcanle"ymin edgein"ymax

others edgein"ymin Bcanle"ymax scanle"ymax edgein"ymax

The updating of a Bcanline element is done by two routines:

Procedure Modify( point:linkscanel; edgein:linkedge);

This routine copies the ymin and ymax values of edgein to

the Bcanline element indicated by point. Also the edge is

inserted in the edgelist of the scanline element.

Procedure Modifysmall(point :linkscanel: edgein:linkedge):

This procedure insert the edge in the edgelist of the

scanline element.

Function Overlap( prepoint,startp, scanline :linkscanel;

edgein :linkedge) :integer;

This routine returns the kind of overlap of the input edge

withthe scanline. Startp points to the first scanline

element that must be evaluated.



- 50 -

5.3.2 The delete operation

When an out or out edge is encountered the scanline must

also be updated. This means that one or both of the

following actions must be carried out.

1 delete the edge from the edgelist from one or more

scanline elements.

2 delte the scanline element(s) which have an empty

edgelist.

This delete operation works as follows

Procedure delete(edge, scanline);

begin

locate the scanline element for which

scanline"ymin= edgein"ymin;

while scanle".ymax <= edgein"ymax do

begin

split edgein

Update the scanline element;

if scanle".edgelist = empty

then delete scanle;

take next scanle;

end;

end;



- 51 -

The delete operation is carried out by:

Procedure Delete( var edge in :linkedge;

var scanline :linkscanel);

The splitting of edgein is done by procedure splitedge (see

before) where kind=6.

The actual opdate and delete is done by

Procedure Demodify(var scanline, scanle, prepoint

:linkscanel; var edgein :linkedge);

Here scanline points to the first scanline element. Scanle

points to the scanline element under consideration and

prepoint points to the scanline element before the one which

is considered. Edgein is the edge which will be deleted from

the scanline.



- 52 -

5.4 The Check routines

The width and spacing checks are integrated in the scanline

algorithm. Each time the contents of the scanline changes,

the width and spacingcheck routines inspect the scanline .

. 5.4.1 The width check routine

The width checking is performed by

Procedure Checkwidth{ xycorners:quartet; maskno:integer);

Here xycorners specifies the area in which a widthcheck is

performed, maskno gives the layerno of the rectangle.

In Checkwidth the following actions are taken (see also the

width check algorithm. First we select the relevant edges

from the bin-structure. Next the edges with layer=maskno are

selected by using

Function Newlist( edgelist:linkbin; var

maskno,maskno2 :integer)

outlist:linkbin;

:boolean;

The edges on edgelist which have as layerno maskno or

maskno2 are selected and inserted in outlist. Function

Newlist returns the value true if the edgelist contains

edges with layer=maskno and edges with layer=maskno2.

Otherwise Newlist=false .

. Next the procedure Scan with option=width is activated.



- 53 -

Option=width causes the following actions to be taken in the

scanline algorithm.

When a scanline element is deleted the corners on each side

of the deleted scanline element are inspected on convexity.

If concave corners are found, these corners are checked for

width violations.

Procedure Convexcorner( var botconvex, topconvex :boolean;

breakmin, breakmax, maskno,

xscan :integer; top :boolean);

Here scanline points to the first element in the scanline.

Breakmin and breakmax give the range around the concave

corner, in which a width violation could occur. Maskno gives

the layerno of the contour which is beeing checked. The

boolean top, when true indicates that we are dealing with a

concave top corner. This is of importance for the error

messages to be issued

Widthcheck tries to find scanline elements in the range

breakmin-breakmax from which the origin lies closer then the

minimum width from the concave corner.

5.4.2 The spacing checks

Because we use a scanline algorithm, two different kind of

checks are necessary. The first check is applied on the

scanline itself each time an edge is inserted or deleted.

This check is performed by:



- 54 -

Procedure Spacingcheck( scanline :linkscanel;

maska, maskb, xmin, xmax :integer);

Here scanline give the beginnin of the scanline. Haska and

maskb indicate between which masks the spacing is checked,

xmin and xmax, indicate between which x-coordinates the

scanline element lies.

The routine checks whether the "gaps" in the scanline are

large enough.

The second check is applied when a scanline element is

deleted. In this case we look forward in the edgelist

whether there is an edge which is to close to the deleted

scanline element. This is done by

Procedure Lookforward( inlist :linkbin; xscan, breakmin,

breakmax, minspac,

maska, maskb :integer;

edgep :linkbin);

Here inlist is the inputlist of edges, xscan gives the

current x-position of the scanlinea, breakmin and breakmax

give the y-coordinates of the area to be inspected and xscan

and xscan+minspac give the x-coordinates of the area to be

inspected. Haska and maskb give the masks between which the

spacing must be checked. Edgep points to the edge to be

deleted.



- 55 -

5.5 Commands

The design rule checker recognizes the following commands:

command

o
1

2

3

4

5

6

7

8

action

end of checking, exit drc

set the window in which the editing

takes place

insert a rectangle in the datastructure

delete a rectangle from the datastructure

analyze the error lists

check group of rectangles

check the complete layout in the window

activate the checker

deactivate the checker

Note: If the checker is activated then the inserted or

deleted rectangle (command 2 or 3) and its neighbourhood is

also checked for design rule violations. If the checker

isn't activated, then these rectangles are placed on a

waitlist, by issuing command 5 the rectangles on the

waitlist are checked for design rule violations.

The commands are carried out by:

Procedure Widthspacecom( icommand,ids,maskno : integer;

xycoor :quartet);

By this procedure the following procedures are called:



- 56 -

Procedure Checkwidth( xycorners:quartet;

maskno: integer);

This procedure checks the neighbourhood of the rectangle

give by xycorners and maskno for width violations.

Procedure Checkspacing(

This procedure checks

given by xycorners and

xycorners:quartet;

maskno :integer);

the neighbourhood of the rectangle

maskno for spacing violations.

Procedure Checkwaitlist( waitlist :linkrect);

This procedure checks the neighbourhood of all rectangles on

the waitlist for width and spacing violations.

Procedure Checkarea( inlist :linkbin;

option :scanoption);

This procedure checks the item indicated by option (width,

spacing or scanl) of all rectangles addressed by the edges

on the inlist.

Procedure Checkerror( option :scanoption;

errorlist :linkrect);

This procedure checks for design rule violations in all

rectangles on the error list.



- 57 -

5.6 Communication with the layout editor

The communication between the design rule checker and the

layout editor takes place by using an eventflag and a buffer

belonging to that flag.

The checker (receiver) clears the eventflag and waits for

the layout editor (transmitter) which sets the flag and

fills the buffer with the command.

After the setting of the flag, the checker will read the

command, execute it and clear the eventflag, thus enabeling

the transmitter to send another command.

For the receiver the following routines are used:

Procedure Clref(var evflag ,status :integer); extern

(fortran);

This is a system routine which clears an eventflag.

Procedure Waitfr(var evflag,status :integer); extern

(fortran);

This system routine waits for the eventflag to be set.

Procedure Accep(var buf :buffer); extern (fortran);

This is a user routine, resident in file Accep.ftn. This

routine reads the contents of the buffer.

Finally we have

Procedure Wsrece1v( var icommand, ids, layer : integer;

xycoor :quartet);

This routine reads the command from the buffer belonging to

eventflag=50.



- 58 -

Here buffer =array[1 .. 15J of integer. The commands are

stored in the following format.

Buffer[lJ= unused, occupied by system

Buffer[2J:= icommand, Buffer[3J:= ids,

Buffer[4J:= layer,

Buffer[5J ... Buffer[8J := xmin, xmax, ymin, ymax.

Apart from the previous routines the transmitter also uses

Procedure Send( var task :taskname;

var buf :buffer2; var evflag :integer);

extern (fortran);

This system routine fills the buffer belonging to the

eventflag and sets the eventflag. Here buffer= array[1 .. 13J

of integer. Buffer[lJ and buffer[2J are used by the system.

5.7 Design rules

For the specification of the design rules the following

arrays are used:

type cstraintar = array[l .. nmask, 1 .. nmaskJ of integer;

minwidthar = array[l .. nmaskJ of integer;

var constar,illoverl :cstraintar;

minwidth :minwidthar;

Where constar[maska,maskbJ and constar[maskb,maskaJ contain

the minimum spacing required between maska and maskb.



a lx7 array of integer;

a 7x7 array of integer.

- 59 -

Illoverl[maska,maskbJ <>0 indicates that overlap between

maska and maskb is illegal.

Minwidth[maskaJ contains the minimum width of a contour in

maska.

These arrays are stored in the file cnstr.nms in the

following format:

First the array constar, which is a now a 7x7 array of

integer;

Then the array minwidth which is

Finally the array illoverl which is

Note a minus sign in the specification of constar indicates

that the involved layers have no constraints with each

other.



- 60 -

6 CONCLUSIONS AND FUTURE DEVELOPMENTS

The design rule checker developed in this project is capable

of executing width and space checks on an on-line basis. For

the width check it is necessary that all rectangles in the

layout satisfy the minimum width criterion.

The checker doesn't check the devices in a layout.

The design rules are stored in the file cnstr.nms. This file

contains several tables in which the minimum spacing and

width values are stored. Note the design-rule compiler has

not yet been developed nor is there a format for the

specification of the devices in the design rule file.

The next step in the completion of this design rule checker

is to develop a format in which all devices can be uniquely

specified.

The next problem that must be solved is the construction of

the design rule compiler and its interface with the design

rule checker.

Finally the device checker can be constructed. Here special

attention for the specification of the devices is required.

Since the design rule checker is capable of recognizing

devices, the step to layout extraction is not so large

anymore.

It becomes attractive to extend the device description with

a device model so that the parameters of this model can be

calculated as well on an on line basis.

Another step further, the design-rule checker could have

information about the connectivity of the layout, making it

possible to verify the circuit description.



- 61 -

7 REFERENCES

Baird H.S.

Fast algorithms for LSI artwork analysis

Journal of Design Automation and Fault

Tolerance Computing
Vo12, no2, may 78

Berkel v. K

Automatic Integrated Circuit Layout

Verification: A literature study
dept. of electrical engineering

University of technology Delft

sept. 80

McCaw C.R.

Unified shapes checker - a checking tool

for LSI

Proceedings on design Aut. Conf. 79

Delhy C.A.C.A.

ISLE an Interactive Symbolic Layout Editor

dept. of electrical engineering University

of technology Eindhoven
oct. 82



- 62 -

Dobes I. and Byrd R.

The automatic recognition of silicon gate

transistor geometries

Proceedings on design Aut. Conf. 76

Haken D.

A geometric design rule checker

Computer Science dept. Carnegie-Mellon

University
jun. 80

Hofmann M. and Lauther U.

HEX: an instruction driven approach to

feature extraction
20th design Aut. Conf. 83

Lauther U.
An O(N log N) algorithm for boolean mask

operations

18th design Aut. Conf. 81

Lyon R.F.

Simplified design rules for VLSI layouts
Lambda first quarter 81



- 63 -

Marek-Sadowska H. and Haly W.

A hierarchical layout description for

artwork analysis of VLSI IC

Theeuwen F.

Design gUide

Dept. of electrical engineering University

of technology Eindhoven
august 83

Whitney T.

A hierarchical Design-rule checking algorithm

Lambda first quarter 81

Wilcox, Rombeek, Caughney
Design rule verification based on one dimensional

scans

Proc. on design aut. conf. 78

Wilmore J.A.
Efficient boolean operations on IC masks

18th design aut. conf. 81


	Voorblad
	Contents
	1 Introduction
	2 DRC based on device recognition
	3 DRC system overview
	4 Contour analysis
	5 Program description
	6 Conclusions and future developments
	7 References

