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ABSTRACT 

The 1-V characteristic of a Double Barrier Resonant Tunneling structure is 

a strong peak of resonant current on a background of non-resonant current. 

The DBRT's behavior is explained by a model that describes the coherent 

interaction between 

selfconsistent way. 

emitter, quanturn well, and collector in a 

When B=O, the voltage interval in which resonant current exists coincides 

with the one of resonant charge builcl-up in the well. 

When B;~:o, two changes occur: 

1. The two intervals shift and either broaden or contract. 

2. The resonant current interval is now only a part of the charge 

builcl-up interval. 

When B is increased, the resonant current interval contracts so fast that 

for a finite value of B, the Killing Field, its width is zero: for this 

value of B and higher no resonant current is possible. 

This interesting effect is explained by the transformation of "Resonant 

States" into "Quasi-Bound States", induced by the magnetic field. These 

Quasi-Bound States contribute to the charge builcl-up but nat to the 

resonant current, and are a manifestation of "skipping orbits". 
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INTRODUCTION 

In 1969, research on semiconductor superlattices was initiated by a 

proposal by Tsu and Esaki [1], [2] for a one-dimensional potential 

structure "engineered" with epitaxy of alternating ultrathin layers. In 

anticipation of future technology, two types of superlattices we re 

envisioned: doping and compositional. It is nowadays possible to prepare 

well defined, high purity, semiconductor layers, with a thickness as small 

as one atomie layer. These layers can be put tagether to form a 

heterostructure. The standard techniques available for growing such 

structures are molecular beam epitaxy (MBE) and metal-organic chemica! 

vapor deposition (MOCVD). 

A semiconductor is characterized by a band gap of typically 1.0 eV between 

conduction band and valenee band. This band gap causes the semiconductor 

to behave sametimes as a conductor and sametimes as an insuiator, 

dependent on the temperature and the density of strange elements (doping, 

impurities) in the semiconductor. The origin of this band gap lies in the 

wave character of electrons. For energies in the band gap, the electron 

wave functions interfere destructively with the lattice points of the 

semiconductor crystal. 

The proposal of Tsu and Esaki was to create an additional periodicity for 

the electrans by means of periodically changing the energy gap between the 

lowest valenee band and the lowest conduction band (ultrathin layers of 

different semiconductors). The potential structure thus created resembles 

a Kronig-Penney chain. Therefore they expected additional forbidden zones; 

these additional bands are called minibands. 

The semiconductor compounds Gallium-Arsenide (GaAs) and Gallium-Aluminum 

-Arsenide (AlGaAs) are aften used for this purpose because the difference 

in lattice constant is very small (the interfaces are very neat). However, 

it is still a problem to describe electrans at such an interface, because 

of the change in effective mass (boundary conditions) and local charge 

accumulation. 
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In this report we restriet ourselves to a socalied Double 13arrier Resonant 

Tunneling structure (DI3RT). Decause of the limited pct'iodicity (only two 

layers of AlGaAs in the GaAs), we do nat expect minibands. The DDRT 

structure has some very interestlng properties both in physics 

(fundamental quanturn mechanica! aspects) and electr·onics (as a device that 

could be used as a uitrafast switch). In Figure 1 the potential picture of 

a typical DI3RT structure under bias is shown. 
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Flgure 1 The potentlal pLeture of a typtcal potential structure under 

bias voltage. 

As is shown the potentlal structure is one-dimensional and the two AlGaAs 

layers can be regarcled as harriers whereas the GaAs layer sandwiched 

between the barriers behaves like a potentlal well. As is known from 

quanturn mechanics electrans can tunnel through harriers with a certain 

transmission probability. Decause there is a well with an energy level, 

electroos with the resonance energy will tunnel resonantly through the 

structure, which means that their transmission probability is close to 

one. 
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The operatien of the DBRT is based on the tunability of the resonance 

energy with respect to the Fermi-sea in the emitter: increasing the 

applied voltage brings the resonance level first lnto, then out of the 

Fermi window. When the current-voltage characteristic of a DBRT is 

measured, a region of negative differentlal resistance (NDR) is found, 

sametimes accompanied by an interval of bistahility. Figure 2 shows the 

current-voltage characteristic of an asymmetrie structure (the second 

harrier is more wide than the second harrier). 
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Figure 2 The current voltage characteristic of an asymmetrie DBRT 

structure, at T = 4.2 K, calculated wlth the model of Noteborn and 

Joosten [3]. 

The idea that a DBRT structure can he used as a uitrafast switch is hased 

on the fact that, dependent on the history of the structure (voltage from 

high to low or vice versa), another current exists. Based on the uitrafast 

hehavior of the DBRT structure, the idea arose that it could he used as a 

sensor or a laser in the 400 Gigahertz region. 
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In recent years a lot of experimental work on DBRT structures has been 

carried out, varying from measuring the I-V curves, determining the dweil 

times of electrans in the well and magnetic field dependenee of the 

properties of the structure. 

Concerning the description of the DBRT, two principal approaches have been 

put forward. In the sequentia! approach, advocated by Sheard and Toombs 

[5], and Eaves [4], among others, electrans tunnel resonantly into the 

well and loose their phase by thermalization, thus forming an electron gas 

in the well, that is independent of the emitter equilibrium. A resonance 

level is borrowed from wave mechanics, whereas transmission probabilities 

are calculated with a Fermi's Golden Rule type of argument. Hence, a 

sequentia! "theory" is hybrid by nature. 

In the coherent approach, by Noteborn, Joosten and Lenstra [3], wave 

coherence throughout the complete structure is assumed. Neither elastic 

nor inelastic scattering [6] is taken into account. The pure Schrödinger 

theory allows for the calculation of both resonance level and transmission 

and reflection coefficients. The I-V characteristics calculated with this 

approach show NOR and intrinsic bistability. This model describes the 

truly resonant behavior of the DBRT. 

The intrinsic bistability in the I-V characteristics of Double Barrier 

Structures is in bath models closely related to the charge build-up in the 

well. A magnetic field across the structure appears to be an ideal 

instrument to probe this charging. In fact the application of a magnetic 

field is a souree of information quite generally. There are two basic 

geometries, the magnetic field parallel to the current and perpendicular 

to the current. 

B 11 J geometry. 

The parallel field does not affect the tunneling motion of the electrans 

but quantizes the lateral motion in all layers. The current shows 

Shubnikov - de Haas like oscillations with two fundamental periods. Bath 

the sequentia!- [7) and the coherent- tunneling [8] model are able to 
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explain these oscillations by relating them to the charge in the emitter 

and the well: changing the field strength at fixed bias means shifting the 

Landau levels with respect to the Fermi energy. The resulting oscillations 

in charge and current density are periadie in 1/B, the periodicity 

containing the information about the charge distribution [8]. 

B J. .:!. geometry. 

In the case of a perpendicular field, the magnetic field does affect the 

tunneling motion of the electrons. So called skipping orbits arise, which 

can be compared to the edge current in the Quanturn-Hall regime. 

This report deals about this geometry and uses the model of Noteborn and 

Joosten [3] to describe the current and charge in the well as a function 

of the magnetic field and an applied bias voltage. 

In the first chapter we will briefly describe the model of Noteborn and 

Joosten, based on wave coherence and selfconsistent calculation of charge 

in the well. 

In the second chapter we will consicter the changes a transverse magnetic 

field imposes on Schrödingers equation. The tunnel equation remains 

one-dimensional but is complicated by the fact that it is not only 

dependent on the momenturn in the z-direction, but also on the momenturn in 

the y-direction. It will appear that the description in Landau levels is 

not valid whenever there are interfaces present. To calculate the wave 

function tbraughout the structure we need boundary conditions that also 

are dependent on the magnetic field. 

In the third chapter we discuss the additional approximations we make with 

respect to the magnetic field which enable us to make predictions about 

the current as a function of B and the applied bias voltage. 

In the fourth chapter the results are presented. The differences between 

the results and the predictions of chapter 3 as well as the approximations 

we made with respect to the magnetic field will be discussed in the last 

chapter. We will see that charge build up in the well grows dramatically 

with the magnetic field up to a certain value of the magnetic field, which 

we call the killing field. 
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In three Appendices some additional information can be found on the exact 

solutions of the Schrödinger equation with a transverse magnetic field 

(Appendix A), the transfer matrix method we used to calculate the wave 

function throughout the structure (Appendix B) and an extensive 

calculation of the electron density in the well (Appendix C). 

A publication, that contains the basics of this report is in progress. 
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1. RESONANT TUNNELING IN THE ZERO-FIELD CASE. 

In this chapter we give a thorough outline of the model recently presented 

by Noteborn et al. [3]. The main goal of this model is to elucidate the 

physics of the DBRT -device as much as possible, starting from two basic 

principles, namely wave-coherenee and selfconsistency. In table 1 the 

layered structure of the device we consider is shown. 

500 50 2.5 5.6 5.0 5.6 2.5 50 1000 

barrier well barrier 

GaAs GaAs GaAs AlGaAs GaAs AlGaAs GaAs GaAs GaAs 

2E18 n 2E16 n und. undoped undoped undoped und. 2E16 n 2E18 n 

Table 1: The layered structure of the DBRT with indicated doping 

densities. The thf.ckness of the layers is indicated in nanometers. 

Wave-coherenee means that the electrans obey an effective mass equation 

[9] in which electron-electron and electron-pbonon interactions are 

neglected, resulting in the phase of the electrans being a constant of 

motion. The electrans are only affected by the conduction band minimum 

E ' cO 
which depends on the direction perpendicular on the layers ( the 

z-direction). Thus the effective mass equation reads, with m the effective 

mass of GaAs in the r -minimum: 

(1) 

In Eq. (1), E is the momenturn operator -il'l~ + eA, where A is the vector 

potential that is dependent of the magnetic field by ~ = curiA. The 

quantity IJ! is an envelope function which describes the trends of the true 

electron wave function, but neglects the fast Bloch-oscillations. Eq.(l) 

is a three dimensional equation, but because the conduction band minimum 

depends only on the z-direction and we only consider the A = 0 case in 

this section, it can be written as a one-dimensional equation. 
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The value of the conduction band minimum E will be affected by the 
cO 

charge densities in the structure via Poisson's law (band bending [10]). 

Thus the band minimum is dependent on the envelope functions by: 

2 
V'2E (r) e 

and n(r) [ lllfk(!:_) 1
2 

f FD(E(~)) = - -- n(r) = cO - E E 
(2) 

0 r 
k 

So: 
2 

V'2E (r) = - _e_ L lllfk(r) 12 f (E(k)) 
cO- EE - FD-

(3) 
0 r k 

In Eq. (3) f is the Fermi-Dirac distribution function. When Eq. (1) & (3) 
FD 

are solved simultaneously, the solution is called "self-consistent". 

The doped layers on either sides of the five intrinsic layers serve as 

reservoirs between which conduction is possible. This concept of 

conduction between reservoirs was introduced by Landauer and Büttiker 

[11], [12]. 

One of the aimed features of our model is simplicity, so we make the 

following assumptions: 

We only consicter resonant tunneling and neglect all non-resonant 

contributions. As a consequence, we can neglect contributions to charge 

and current from electrans out of the reservoir on the right hand side of 

the structure (where the potential energy is lowest, when a voltage is 

applied). In the voltage interval of the resonant current, the electrans 

in this reservoir have energies much smaller than the resonance energy and 

do not contribute to the current or charge densities in the well. A 

necessary condition for this neglect is that in the unbiased structure the 

resonant level is well above the Fermi level. 

Also, in our model the Fermi-level is not constant as it would be in a 

metal, but depends on the applied bias voltage. This could be termed a 

"pure-semiconductor" picture. Consequently, no doping dependenee is found 

in our E . 
F 

Further, in order to calculate the current, we consicter the charge 

densities at two sites: in the emitter and in the well. The charge density 

in the well is by itself two-dimensional. The three dimensional charge 
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density in the left reservoir is in the doped regions compensated by the 

donor atoms. Only in the undoped left spaeer a net space charge results, 

that, in the thin spaeer layer, is effectively a sheet density. Via 

Poisson's equation these two "sheet"-densities cause two kinks in the 

potential energy. 

So, an applied bias voltage increases the Fermi-energy, which changes the 

sheet-densities, that affect the conduction band minima. Eq.(4) denotes 

the interdependence of the Fermi-energy and the applied bias voltage: 

V = E + V (E )+ V (E ) 
b F a F w F 

(4) 

In Eq. (4) V is the applied bias over the five intrinsic layers, E the 
b F 

freely tunable Fermi-energy in eV, V the potential energy drop over the 
a 

first harrier and the first half of the well, caused by charge 

accumulation in the left spaeer and V the potential energy drop over the 
w 

secoud half of the well and the second harrier, caused by charge 

accumulation in the left spaeer and the well (see Fig.l). V and V depend 
a w 

on E because the charge densities which cause the kinks depend on E . So, 
F F 

Eq.(4) expresses the dependenee of the Fermi-energy, to be used in Eq.(3), 

on the applied bias voltage. 

We will now look at the effective-mass-equation (1) with more detail. The 

doped regions serve as reservoirs from which an electron with wave number 

k can tunnel coherently through the structure. In the reservoirs the 

envelope functions are plane waves, that interact with the potential 

structure of the DBRT. The whole device can be characterized by a 

reflection- and a transmission- coefficient. These coefficients and the 

envelope function through the whole structure are calculated in the 

transfer matrix approach (TMA) [13). 

At each position where there is a discontinuity in the scalar potential 4> 

or the vector potential A, i.e. at each interface, we have to link the two 

solutions of the Schrödinger equation. This is done by demanding 

conservation of probability and probability current, which yields the 

boundary conditions that enable us to compose an envelope function through 

the structure. In the zero magnetic field case these boundary conditions 

are continuity of wave function and continuity of its gradient. In the 
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next section we will see that a discontinuity in the vector potential 

changes these boundary conditions. 

When the electronic potential is approximated by a piece-wise constant 

potential, the solutions of (1) are simple plane waves. Any potential 

picture can be regarded as a series of (infinitely) small regions with 

constant potential. In our model we choose only three regions, namely the 

two harriers and the well. It can be shown, that by this approximation no 

essential changes are introduced in the current-voltage characteristics of 

a resonant tunneling structure [14 ]. Figure 1 shows the effective 

potential electron energy picture which is obtained with this assumption. 

The resonance shows up as a sharp peak in the transmission coefficient as 

a function of the tunnel momentum. Consictering resonant tunneling only, 

amounts to approximating this sharp peak by a o-function. 

With the results of TMA the electron density at position z in the 

structure is calculated: 

2 

n3(z) = gs L L L I '11(.!:·~) I f FD(E(~)) 
k k k 

x y z 

(5) 

In Eq. (5), kis the wave vector, l'll(r,k)l the appropriately normalized 

wave function and f (E(k)) the Fermi-Dirac distribution. It states that 
FD -

the 3D electron density at position z is determined as follows: calculate 

for all combinations of k , k , k the value of I '11(.!:·~) 1
2

, multiply each 
x y z 

of them with their accupation number and add them. All electrans originate 

from the reservoir on the left of the structure, where they are described 

by plane waves. These plane waves are subject to periadie boundary 

conditions: 

Llk 21t 
Llk 

21t 
Llk 21t (6) = L = L = L x y z 

x y z 

When the lengths L are large enough we can change the summations in 
x,y,z 

Eq.(5) into integrals. The electron density in the left spaeer is 

analytically calculated by transforming the three integrals into one 

integral over the energy and the result is: 
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with (7) 

In Eq. (7) L is the left spaeer length, N is the effective number of 
sp c 

states per unit volume in the conduction band, ïl is a Fermi-Dirac 
1/2 

integral of order 1/2 [8), k is Boltzmann's factor and E is the 
B F 

Fermi -energy. As the electron density in the well is concerned, the 

integrals over k and k 
x y 

can be performed analytically, whereas the 

integral over k is 
z 

quite simple when the non-resonant current is 

neglected by means of rnadeling the energy dependenee of the transmission 

coefficient as a delta function of the energy: T(E) ~ o(E-E ). This 
res 

integral is thoroughly described in Appendix 3, which yields that the two 

dimensional electron density in the well can be written as: 

(1-R )( 1+R ) 
a' = g N2/3 il ({3(E -E )) __ 1 ___ 2_ 

w s c 0 F res 
2( 1-R R ) 

1 2 

In Eq. (6), R is the reflection coefficient 
1 

(8) 

f h .th b . E o t e 1 arr1er, the 
res 

resonance energy measured from the conduction band minimum of the left 

spaeer and ~ a Fermi-Dirac-integral of Oth order [15). 
0 

In the same way the current density J can be determined. Since J is 
z z 

independent of z, we can evaluate it at any position. We take for this 

position the right hand side of the second barrier. With Eq.(S) we can 

calculate what charge density is present at that position. Note that in 

our model, no charge density is considered at that position; we assume 

that at that position no charge accumulates but will flow immediately into 

the right reservoir. The result can be expressed in the charge density in 

the well and the reflection coefficient of the second barrier: 

(1' 1-R r------------~ 
J = e ~ --2 

/ 2(E + V )/m (9) 
z L 1+R res a 

w 2 

Equations (4) and (9), tagether with (7) and (8), are a parametrie 
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description of the selfconsistently determined I-V characteristic, the 

Fermi-energy E being the parameter. When two current density values are 
F 

possible at the same V , we have bistability. Because the set of equations 
b 

farms an iterative problem the help of a computer is needed. Figure 3 

shows somt. examples of numerically solving Schrödinger's and Poisson's 

equation. 

In the next chapter we will see how a transverse magnetic field affects 

the model and its results. 

n Jnu 

• n 1~0 

I___J__,,,_~L-J-..L.L....I 

n •.nn -,---ro-T--r---.----.-....--.--.---.. 

0 IOO 

c I 

VniVI v11 1v1 

Figure 3 The eurrent voltage eharacteristies resulting [rom 

numerieally solving Poisson's and Sehrödinger' s equation 

simultaneously, [or the symmetrie sample (L =L ), at T = 4.2 K (a), at 2 . 1 

T = 77 K (b), and at 300 K (e); and for the asymmetrie sample (L >L ), 
2 1 

at T = 4.2 K (d), at T = 77 K (e), and at T = 300 K (f). 
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2. TRANSVERSE MAGNETIC FIELD; THEORY· 

2.1 Schrödinger•s equation in a transverse magnetic field. 

In this chapter we will first discuss the changes a transverse magnetic 

field imposes on Schrödinger's equation. Let us consider Schrödinger's 

equation when no bias voltage is applied and no layered structure is 

present, so E in Eq. (1) is constant. Let the z-axis be perpendicular to 
cO 

the layers and the magnetic field H constant in the x-direction: H = 
(B,O,O). As is well known from classica! electrodynamics, the Lorentz 

force -ey x H causes an electron to describe a cyclotron orbit with 

cyclotron frequency w = eB/m, with m the appropriate mass of the electron. 
c 

In quanturn mechanics the description in cyclotron orbits is not so obvious 

anymore. This can be related to the fact that the magnetic field H has no 

explicit appearance in the Hamiltonian. Instead, the vector potential h, 

appears in the Hamiltonian: 

1 2 h 
Hop= 2m Eop - e~, with Eop= T ~ + e~ (10) 

Thus the current operator also depends on ~ and ~· The magnetic field _!! 

and the electric field E are related to the vector potential A and the 

scalar potential ~ by _!! =:- curl~ and ~ = - ~t~ - ~~· This means ~hat there 

is an infinite number of (~.~) combinations that yield the same _!! and ~· 

When the gauge-transformation ~~ = ~ + ~f and ~~ = ~ - ~~ is performed, with 

f a non-singular function, ~~ and ~~ yield the same _!! and ~· The charge 

density p and the current density J are not influenced by this 

transformation because it is canonical (gauge-invariance), so we can 

choose a gauge to our own convenience [16]. 

In our example of a non-layered region without bias voltage and with 

constant E the effective mass equation, with A = (0,-Bz,O), reads: 
cO 

(11) 
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When we make the Ansatz \ll(x,y,z) = 

be written as: 

exp(ik x)•exp(ik y)•F(z), Eq.(ll) can 
x y 

- - -2 F(z) + .!.mw z - hk w zF(z) = h 
2 

d
2 

( ) 
2m dz 2 c y c 

E F(z) 
3 

(12) 

where E = E - E - n2k2/2m -
3 cO x 

depend on E , but also on k , i.e. 
3 y 

n2k2 /2m. Solutions of Eq.(12) not only 
y 

an "eigen" function F(z) will have two 

parameters: k and E . Note that putting B = 0 (w = 0) in Eq.(12) removes 
y 3 c 

the k dependent term: In the zero-field case, true separation of 
y 

variables is possible. In the B :f:. 0 case, however, it is the magnetic 

field that introduces a dependenee of tunnel function F(z) on the lateral 

momenturn k . Consequently, we will have to consider each k separately. 
y y 

2.2 Solutions 

Equation (12) can be considered an ordinary Schrödinger problem with a 

quadratic potential. The harmonie oscillator problem is of the same kind, 

so we expect the solutions of Eq. (12) to be equivalent to the ones of the 

harmonie oscillator. In order to write Eq.(12) in a more recognizable farm 

we make it dimensionless by substituting, with tm a magnetic length 

(h/eB)l/2
, i; = zit -k t and E' = E - E - h2k2 /2m: 

m ym cO x 

This is the equation of the harmonie oscillator problem [35], [36]. The 

solutions of a differential equation depend in general on the boundary 

condition(s). In the harmonie oscillator problem, the boundary condition 

is the requirement of normalizability of the wavefunctions (if they are 

nat, they do nat have physical meaning). This boundary condition leads to 

the well known quantization of energies. When the oscillator frequency is 

the cyclotron frequency, these energy-levels are called Landau-levels 

[37]. 
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Note that the existence of these Landau levels solely depends on the 

demand of normalizability. If Eq. (12) is to be solved for a layered 

structure and/or a confined magnetic field, this demand may no longer lead 

to Landau levels in the strict sense of quantization as in the harmonie 

oscillator problem. We will illustrate this by looking for the complete 

set of solutions of Eq. (12). We again start with Eq. (12) and make it 

dimensionless in a similar way; by substituting < = VZ(zli -k i ) and ei = 
2 1 m Y m 

E lhw and i\ = - we get: 
3 c 4 

(13) 

Equation (13) is known as Weber's differential equation [36]. It is a 

special form of the Hypergeometrie Differential Equation, solutions of 

which are known as hypergeometrie functions [17]. In the textbooks, 

several representations are encountered. The solutions of Eq. (13) can be 

expressed in Kummer functions [17], Parabolk cylinder functions [18], 

[19] and confluent hypergeometrie functions [17]. In this report we will 

use the representation in parabalie cylinder functions. In Appendix A some 

properties, expansions and recursion relations are given. By rewriting 
1 2 Eq. (13) with v + - = a , we get: 
2 

d
2 

1 1 2 
dl:2 F(l:) + (v + z - :i< ) F(l:) = 0 V e IR 

From Eq.(14) we see that if D (l:) is a solution, so are: 
V 

D Cil:), 
-v-1 

D (-il:) 
-v-1 

(14) 

(15) 

From these, we can choose D (l:) and D Cil:) as a set of linearly 
v -v-1 

independent solutions to the second order differential equation (14). 
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If v is restricted to positive integer values, the solutions of Eq. (14) 

can be expressed in terms of Hermlte polynomials H (i~): 
n 

2 

D n (i;) =v'Zexp(- ~ ) H n Cv'Zi;) n e {o.t,z, .. -} (16) 

which go to zero for I i; I ~ co, and are therefore acceptable wavefunctions 

for the harmonie oscillator. The accompanylng D Cil:), however, are 
-n-1 

unbounded on the interval -co < i; < co, and, although a regular solution of 

Eq. (14), are not acceptable as wavefunctions, and are therefore rarely 

encountered in textbooks. 

If v is nonintegral, both Dv(i;) and D -v-l(il;) are unbounded on one side 

(see Fig.4). 
4ooo~----------------,-----------------~r 

~u(z) I nu = 9.5 I 
3000· 

.,.. __ Ulbounded 

2000 

1000· 

-1000 ·-------r------~--~~r-----~~--
-10 -6 -2 2 6 10 

1.50 ~---------------r----------------, 

0.90· 

0.30· 

-0.30· 

-0.90· 

-1.50 1-------..------r---'---~------;r-------' 
-10 -6 -2 2 6 10 

Figure 4. A paraboLLe eyLLnder tunetton wLth v nontnteger, whtch ts 

unbounded in i; = - co; and a paraboLLe eyLLnder tunetton wfth v a 

posittve integer, whleh Ls bounded. 
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The fact that they are unbounded does nat mean that they are nat useful as 

wave functions. Only in cases where there are na boundaries in ~. like in 

the harmonie oscillator problem, they can nat be used. 

This means that the Landau levels will be disturbed whenever an interface 

is present, because that allows other energies toa (see e.g. [20], [21]). 

In Appendix Al a presentation of the parabalie cylinder functions is given 

with regard to their use in the transfer matrix formalism. 

2.3 Boundary Condi.tions 

When the magnetic field stretches out to infinity the electrans can only 

be described by bound states (Landau levels), sa na current is possible. 

Therefore it is necessary to confine the magnetic field to some region. 

There are two gauge choices to describe this (see Fig.S). In the first the 

vector potential is chosen continuous, which introduces a region on the 

z-axis where B = 0 but A "'- 0. In the second, we make A = 0 whenever B = 0 

which intro iuces at least one z at which A is discontinuous. 

8=0 8>0 I 
I f 2\ 
l· ...... ::-: . ..:. ....... . 

8=0 

A=O A=O 
I 
I '·0 

...... ~1--"-~/:::..--- A=-BL 
I 

z=O z=L 

Figure 5 The two choices of gauges. Number two leaves the Schrödinger 

equation in the right reservoir unharmed, but has a discontinuity in 

the vectorpotential. 

When the first option is chosen, which does nat imply any discantinuitles 

in the vector potential, the description of electrous in the right 

reservoir is somewhat complicated. Because in the right reservoir there 

now is a nonzero vector potential, the wavefunction contains a phase 

factor, which is dependent of A. This seems unnatural, but we can nat 
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change physics. However, if we choose the second option, this problem is 

avoided. Bel'ause there is now a discontinuity in the vector potential the 

boundary conditions have to be reviewed. 

In Schrödinger's theory the meaning of charge density p and current 

density J is unambiguous, that is independent of gauge. We will therefore 

base our boundary conditions on these two quantities. p and J are related 

to the wave function of an electron in the following way: 

p(r) = e ll{l(r)lz - - (17a) 

+ e.c. } (17b) 

In Eq. (17b) p is the canonical momenturn operator -ih~ + e~.: At an 
-op 

interface the p and J must be both continuous, because we work in the 

time-independent case, so the boundary conditions are continuity of IJI(r) 

and continuity of p l{l(r). 
-op -

Consider an interface at z = z . The wave functions on either sides of the 
0 

interface are given by (with a a constant): 

= exp(ik xix)exp(i(k Yla)y)F k yt (z) 

= exp(ik x)exp(ik y)Fk (z) 
xft yft 

yft 

The four equations then read: 

z < z 
0 

z > z 
0 

exp(ik tx)exp(i(k t+a)y)F k (z ) 
x y yt 0 

= exp(ik x)exp(ik y)F k (z ) 
xft yft 0 

yft 

(-ih:x + eAtx)l{!éx,y,z)lz=z = (-ih~ + eA ) 1{1 (x,y,z) I a x ftx ft 
z=z 

0 0 

(-ih~ + eAt ) l{léx,y,z) I = (-ih~ + eAft )l{lft(x,y,z)l ay 
Y z=z ay 

Y z=z 
0 0 

(-ih~ + eAtz) l{léx,y,z) I z=z = (-ih~ + eA ) 1{1 (x,y,z) I az az ftz ft 
z=z 

0 0 
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In the A = (0,0,0) case, these reduce to: 

k n = k k n = k o:=O 
x<. xlt y<. ylt 

(19f) 

If, however, A = (0,-Bz,O), we find the second condition changed into: 

(20a) 

e 
If we set a = h (Bit -Bi)z

0
, the y-dependent part of the wavefunction is 

continuous. Thus, the discontinuity in A yields a discontinuity in k . 
y 

So, not only because of Schrödinger's equation but also because of the 

boundary conditions it is necessary to consicter each k separately. In the 
y 

next chapter we will describe the changes a transverse magnetic field 

imposes on our model, and discuss the approximations we made with respect 

to the magnetic field. 
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3. MODEL APPROXIMA Tl ONS AND PREDICTIONS 

3.1 Model approximations 

The model we use for the DBRT-structure under bias and a transverse 

magnetic field has its origin in the model for the zero field case 

described in the first chapter. In this section we will discuss the 

approximations we make with respect to the magnetic field, and their 

implications for the electron density in the well and the resonant current 

through the structure. 

In the previous chapter the lD-Schrödinger equation for magneto tunneling 

was derived (Eq.(12)). It contains a potential energy term that depends on 

the lateral momenturn k . The total potential for an electron tunneling 
y 

through a DBRT structure under a bias voltage and with a transverse 

magnetic field reads: 

Uk (z) = h 2 (eBz - k ) 2 + E (z) 
2m h y cO 

y 

(21) 

where E (z) describes the conduction band minimum as a function of z. In 
cO 

the model described in chapter 1, we saw that the conduction band minimum 

is modeled as a piece-wise constant one in order to work with plane waves. 

Confinement 

We can not let the magnetic field stretch out infinitely, because then all 

electrans would be in bound states and no current would be possible. 

Therefore we must confine the magnetic field to a finite region. For 

reasons of simplicity we choose this region only to include the two 

harriers and the well. This does not yield any extra interfaces, so it 

does not complicate calculations with respect to the transfer matrix 

formalism. Experimentally this may be unrealistic to a certain extent, but 

the qualitative results will not change much because of this. 
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Theoretically, a partial justification may be found in the phase-mixing, 

coherence destroying processes active in the reservoir layers, that are to 

be hold responsible for a diminished influence of the magnetic field in 

these parts of the structure. 

A further adhortation is derived from the fact that this choiee of 

confinement is not unusual in literature: Brey, Platero and Tejedor [23], 

[24], as well as Büttiker [25] and Ancilotto [26] also confine the 

magnetic field to the two harriers and the well. Experiments will have to 

determine what region should be taken for the magnetic field, but we will 

come to that in the discussion. 

Piece wise constant potential energy 

From the above discussion it would seem natura! to do TMA calculations 

with parabalie cylinder functions for the central part of the structure, 

and plane waves for the reservoir layers, linked together at the two 

harriers according to the boundary conditions of the previous section 

(Eq. (20a) ). However, computational difficulties in finding a stabie 

algorithm for the parabalie cylinder functions D (~) for all relevant v 
V 

and ~. see Appendix A, have forced us to choose a slightly different 

approach. 

In analogy to the electrastatic potential, the quadratic "magnetie 

potential" is modeled as a piece-wise constant function. We will use the 

simplest (i.e. crudest) intervalling possible, consictering only three 

regions. 

As a consequence, we can work with plane waves also in the structure. The 

mean value of the potential energy in a region stretching from z=z to 
0 

z=z: 
e 

Uk (z ,z ,B) 
0 e 

y 

= ..!.mw
2 

(<z +z )
2

- z z ) - -
2
1
nw k (z +z ) + h 

2 

k
2 

6 c eO eO cyOe 2my 

is used as the constant potential energy value on that interval. 

(22) 

Before we will make some predictions about the current with the help of 

this rnadeling of the poten ti al energy, we describe the calculation of both 
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the current density and the electron density in the well, because their 

calculation is altered by the magnetic field. 

Electron density in the well 

In the above we showed that a transverse magnetic field, represented by 

the gauge A = (0,-Bz,O), forces us to consider the wavefunction for each 

k separately. This means also that in calculating the electron densities 
y 

in front of the first barrier and in the well we cannot perform the 

summatien over k separately from the one over k (See Eq. (5)). 
y z 

In this case we can only perform the summatien over k analytically, which 
x 

results in a Fermi-Dirac integral of order -1/2 depending on the remaining 

wave numbers k and k . Of the numerical summations over k and k , we 
y z y z 

first perf orm the one over k , so 
z 

that we can express the charge density 

as a sum over contributions labeled by k: 
y 

n (z) 
3 

00 00 

g [ mn ]
112 I I [E -E ( k , k )] = - 8 

- dk dk I F(z;k ;k ) 1
2 ~ F k ~ z 

Sn3 2 h 2(3 y z y z -112 
8 

-00 -00 

(23) 

Of course, the charge density in the left spaeer is easier to calculate 

than Eq. (23) implies, as was shown in the section about resonant tunneling 

without magnetic field. Thus we have to concentra te on determining the 

charge density in the well. For the value of IFI2 in Eq.(23) we take the 

average value of the wave function ins i de the well. In chapter 1 we saw 

that consiclering only the resonant contributions to charge and current 

simplifies calculations considerably (o-function approximation of 

transmission [3]). With the transverse magnetic field we can maintain this 

approximation but now for each k separately. The expression for the 
y 

charge density in the well thus becomes similar to Eq. (8), be it that it 

is dependent of k . 
y 

See Appendix 3 for a detailed description of the 

calculation of the electron density in the well. 
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Current density 

Analogously, the current density 

contributions: 

00 

dk j (k ) 
y z y 

-oo 

can be regarcled as the sum of k 
y 

(24) 

However, a complication arises here, that has no analog in the zero-field 

case. Whereas, at B = 0, all resonant electrans that can reach the well, 

also reach the collector, and thus contribute to the current density, now 

at B ::f:. 0 we can have electrans with positive kinetic energy in the well 

but negative kinetic energy in the collector. Hence, these electrans still 

contribute to the the electron density in the well but no langer to J. How 

to distinguish between resonant- (contributing to bath charge and current) 

and quasi-bound- electrans (contributing only to the charge), is outlined 

in Appendix B. This typical magnetic field effect will be outlined in the 

next section. 

The rnadeling of the potential energy as a piece-wise constant one will 

prove to be a big help in determining whether electrans at given values of 

V and B are allowed to participate in the current. In the next sectien we 
b 

will elaborate on this and make some predictions about the current as a 

function of the applied bias voltage and the transverse magnetic field. 
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3.2 Prediction of Start- and End- Voltages 

In analyzing the voltages at which a current starts or ends, we use the 

following picture, using the nomendature of chapter 1 (V is the 
1 

conduction band minimum in the i th region, E is the energy of the level 
0 

in the well measured from the conduction band minimum in the well): 

GaAs 

0 

( 1 ) 

AlGaAs 

(2) 

L 
1 

B > 0 

GaAs AlGaAs GaAs 

L +L L +L +L 
1 w 1 w 2 

(3) (4) (5) 

Fig. 6: The three potential energies whose relative positions 

determine whether an electron can tunnel resonantly in the well and 

can participate in the resonant current. The zero of the energy scale 

is the energy of an electron with k equals zero and with k such that 
z y 

Eq.(22) is zero. 

At zero temperature, electrans can only enter the well when E +V is in 
0 3 

the window of the Fermi sea in the left spacer. In this section, we 

neglect the very small shift of the resonance level due to biasing and 

assume the resonance energy E , measured from the conduction band minimum 
0 

of the well, to be constant. 

We first discuss the B=O case because there the value of k is not 
y 

relevant for determining whether a current is possible. 
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Zero magnetic field 

Reeall that in the zero field case all electrons that tunnel resonantly 

into the well participate in the current, because V is always smaller 
5 

than E +V (independent of k ). A current starts when the resonance 
0 3 y 

channel is in reach of the electrons in the Fermi-sea. The resonance 

channel lies above the Fermi-sea when V equals zero so a current starts 
b 

when: 

E+V=E+V (25) 
F 1 0 3 

Note that the Fermi energy as well as V and V are dependent of the 
1 3 

applied bias voltage. 

Similarly there is a V that lifts the Fermi-sea completely above the 
b 

resonance channel. This happens first when: 

V = E +V (26) 
1 0 3 

We now solve Eq.(25) and (26). Since in both cases there is no charge 

present in the well, so V is simply proportional to V , this yields for 
3 1 

Eq.(25): 

E +V +V = E +V 
F a w 0 w 

L /2 + L 
Substituting that V 

w 1 A E3/2 = 
a L +L +L F , 

1 w 2 

2 
A = (L +L +L )L g .!. ll-

2(2m/h 2)3/2 _e_ 
1 w 2 sp s 6 C C 

0 r 

yields an equation for E : 
F,start 

L /2 + L 
E 

w 1 AE3/2 E + = 
F,start L +L + L F ,start 0 

1 w 2 

that is related to V via V = E + AE3
/2 . 

b,start b,start F,start F ,start 
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(28) 

(29) 



Solving Eq.(29) with Newton's metbod yields for V about 0.13 volts, 
b,start 

in agreement with the I-V curves of Fig.3. In the same way, Equation (26) 

gives the voltage V at which the resonant current disappears: 
b,end 

L /2 + L 
w 1 AE312 = E 

L +L + L F o 
1 w 2 

V ~ 0.31 volts 
b,end 

(30) 

Non-zero field 

As was indicated in the previous chapter, a transverse magnetic field 

complicates the calculation of the special voltages, because of the 

dependenee on k of the potential. 
y 

We first write down the expressions for the three relevant potential 

energies in a symmetrie DBRT structure (L =L ): 
1 2 

2 

V (k ,B) = ~k2 + V + V 
1 y 2my a w 

(31) 

V (k ,B) = Uk (L ,L +L ,B) + V 
3 y 1 1 w w 

(32) 
y 

h
2 

1 2 2 V (k ,B) = -k2 
- hw k (2L +L ) + -

2
mw (2L +L ) 

5 y 2my cy 1 w c 1 w 
(33) 

The k -contribution to the resonant charge build-up in the well will be 
y 

nonzero, only when: 

2 
V (k ,B) < E + V (k ,B) < V (k ,B) +E - ~k2 

1 y o 3 y 1 y F 2m y 
(34a) 

For k to also contribute to the current, a further condition must be 
y 

satisfied: 

E + V (k ,B) > V (k ,B) 
0 3 y 5 y 

(34b) 

At a fixed bias voltage, conditions (34a) and (34b) may be satisfied for 

some k and violated for other k . We now examine systematically 
y y 
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conditions (34a) and (34b). 

First we examine the entering of the resonance channel in the Fermi-sea: 

V + V + E ?! Uk (L ,L +L ,B) + V + E 
a w F 11w w 0 

(35) 
y 

Again we assume no charge in the well (at smaller voltages the resonance 

channel is out of the range of the Fermi-sea) so we can use Eq.(28): 

2 

E + ~AE3/2?! E + ~mw2(L2+ L L + ~L 2 ) - ~bw k (2L + L ) + ~k2 (36) 
F 2 F 0 2 c 1 1 w 3 w 2 c y 1 w 2m y 

Equation (36) leads to a V (k ) for all 
b,start y Ik I y 

< k. 
F 

To find the 

overall V 
b,start 

of the I-V curve we have to minimize V (k ) with 
b,start y 

respect to k . We 
y 

therefore look for the smallest voltage, i.e. the lowest 

Fermi energy, which has: 

2 

E + ~AE3/2 ?! E + ~mw2(L 2 +L L ~L 2 ) - !.bk w (2L +L ) + !:_k2 (37) 
F 2 F 0 2 c 1 1 w 3 w 2 y c 1 w 2m y 

1 The right hand side of (37) is minimal for k = mw (L +-L )lb. When that 
y c 1 2 w 

is greater than k , the right hand side of 
F 

(37) is minimal for k =k . This 
y F 

means that electrans with this k 
y 

are the first ones to tunnel resonantly 

into the well. 

We can thus calculate the bias voltage at which the first electrans enter 

the well as a function of the magnetic field. The results are shown in 

Fig.7. 

We now look for the lowest voltage at which no electrans can enter the 

well. The resonance energy then is smaller than the conduction band 

minimum in the left spacer. We therefore look for the lowest bias voltage, 

so also the lowest Fermi energy, which has: 

2 

'v'kye[-kF,kF]: ~mk; +va+ vw?! uk/L1,L/Lw,B) + vw +EO (39) 
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This can be written as: 

V !.AE312 
ii!:: E + !.mc}(L2+ L L + !.L 2 ) - !.nw k (2L + L ) (40) 

k e[ -k k ]: 2 F o 2 c 1 1 w 3 w 2 c y 1 w 
y F' F 

The right hand side of (40) is maximal when k is minima!, so k =-k . This 
y y F 

means that the electrons with k =-k are the last ones that can tunnel 
y F 

resonantly into the well. We solve: 

!.AE312 
- !.(2L +L )w j 2mE ' = 

2 F 2 w c F 
(41) 

The solutions of Eq.(41), calculated with Newton's method, are shown in 

Fig.7. 

As stated above, it is not sufficient to have V between V and 
b b,start 

V , to find a nonzero current. In contrast to the zero-field case, the 
b,end 

intervals of current and of charge build-up in the well, do not coincide 

now. In order to find the subinterval of (V , V ) where resonant 
b,start b,end 

current is possible, we consider condition (34b) and compare it with the 

previous solutions. 

This third condition is satisfied when the resonance channel lies above 

the conduction band minimum of the right hand side. We again assume that 

there is no charge in the well, although this is not very realistic. 

Calculations will show how the charge in the well, as well as 

selfconsistency affect the inequalities. We will return to this matter in 

the discussion. The condition reads: 

-2E + mw2(3L2+ 3L L + ~L 2 ) - flw k (2L + L ) 
0 c 1 1w 3w cy 1 w 

(42) 

Condition (42) is hard to be violated for small magnetic fields, but for 

higher magnetic fields the right hand side will be positive for 

and could then be the decisive inequality. 

some k 
y 

When condition (42) is satisfied for the V 
b,start 

we found with Eq. (38), 

is the voltage at which the current begins. If (42) is violated V 
b,start 

for that k , the 
y 

voltage is higher 

start voltage will be higher than V . But when the 
b,start 

than V , more electrons than the ones with k = k 
b,start y F 
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will enter the well and it is not obvious to tell what electroos are 

permitted to tunnel through the second barrier and what electroos stay 

behind in the well, because our assumption of no charge in the well does 

not hold anymore so we can not use Eq.(28). 

When condition (42) is satisfied for the V 
b,end 

we found with Eq.(41), 

is the voltage above whlch no current exists. V 
b,end 

When condition (42) 

But then more is violated, the end voltage will be smaller than V . 
b,end 

electroos than the ones with k = -k will enter the well 
Y r 

so Eq. (28) does 

not hold anymore. 
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Figure 7, The predicted values of the start- and end- voltages, 

assuming no charge in the well, for the symmetrie DBRT structure. The 

lLnes stop when for the electrans that just can enter the well, the 

resonance channel lLes below the conductton band mLnLmum of the rLght 

spacer. 
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As is shown in Fig. 7, our analysis is only valid for those magnetic fields 

where no charge is in the well when the current starts or ends. Only 

selfconsistent calculations, that take the charge in the well into 

account, can give a decisive answer about the start and end voltages at 

larger magnetic fields. 

3.3 The KilZing Field 

Figure 7 raises the question whether the voltage range in which current 

exists will grow monotonously with the transverse magnetic field, or 

whether the current will vanish at some value of B. The latter is the case 

when for all values of the bias voltage the propagation of all electrans 

is described by a non-current carrying transfer matrix. We again look at 

the relative positions of the potential energies as shown in Fig.6. When 

we neglect the charge in the well, we can use Eq.(28). The selfconsistent 

calculations will show to what extent this condition is satisfied. When 

the resonance channel has the same potential energy as the conduction band 

minima of both the left and the right spaeer, no electrans can resonantly 

enter the well, let alone participate in a resonant current. Using 

Eq. (28), we solve: 

V (k ,B) = E + V (k ,B) = V (k ,B) 
1 y 0 3 y 5 y 

(43) 

This yields: 

E + V = V ~ AE3
/2 = 2E + mcl(L2+L L ~L 2 ) - hw k (2L +L ) (44) 

0 3 1 F 0 c 1 1w3w cy 1 w 

E + V = V ~ AE3
/2 = -2E + mw2(3L2+3L L +-~ 2 ) - hw k (2L +L (45) 

0 3 5 F 0 c 1 1w3w cy 1 w 
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Equation (45) does not allow electrans to enter the well, independent of 

the bias voltage, as · long as the Fermi level does not become higher than 

the first barrier. Solving Eq.(44) and (45) yields the magnetic field at 

which for aH bias voltages no k can enter the well: 
y 

_ l [ 8mE0 ]1/2 
B--

e L 2 _ ~L 2 
3 w 

(46) 

2 where L = L +L +L is the total structure length. The term L /3 is due to 
1 w 2 w 

averaging the potential energy in the well over L . If L = L/3, then in 

good approximation: 

(8mE )1
/2 

0 
B =---

eL 

w w 

(46a) 

We will eaU this value of B the klllLng fleld, because at higher values 

of B, no resonant current is possible: at bias voltages that allow 

electrans to enter the well, the resonance channel lies below the 

conduction band minimum of the right spacer; at bias voltages that allow 

any present electrans to leave the well into the right spaeer, the 

resonance channel lies below the conduction band minimum of the left 

spaeer so no electrans will be present in the well. For our structure the 

value of the killing field is about 34.2 T. 
__,.. 

~ 
__,.. 

B=O B=O 
e 08 

~ 

~ E ~ 

E==O E==O 

+-L 
Ft gure 8 The elssstcal ptcture of an electron wLth veloctty v, 

and an angle rp,enterLng a regton wtth length L, where a transverse 

magnette [Leld and an electrtc [Leld Ls present. 
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We will now examine, whether there is such a thing as a killing field in 

classica! electrodynamics. We therefore consider the situation shown in 

Fig.8. An electron with mass m moving with a velocity V 
s 

in the 

z-direction in a region where there is neither a magnetic field nor an 

electric field enters a region where there is a constant transverse 

magnetic field and a constant accelerating electric field. This region is 

confined to a length L. In the region z>L again there is no magnetic field 

nor an electric field. The orientation of the axes is denoted in the 

figure. 

Let us write down the Lorentz force acting on the electron: 

F = mv = -eE -e(v x B) = -e (0,0,-E) -e (0, v 8,-v B) 
z y 

(47) 

With w = eB/m the cyclotron frequency, the vector equation Eq.(47) can be 
c 

written as the following differential equations using .! = (v , v , v ): 
x y z 

V = 0 
x 

V = -W V 
y c z 

V = eE/m + W V 
z c y 

V (0) = 0 
x 

v (0) = v cosq> 
y s 

v (0) = v sinq> 
z s 

Taldng the time-derivative of Eq.(48c) yields, together with Eq.(48b): 

.. 2 
v =wv =-wv 

z c y c z 
v (0) = v sinq> 

z s 

The solution of Eq.(49) is dependent on the starting value v : 
s 

v (t) = a sin(w t+S), 
z c 

a sine = v sinq> 
s 

With Eq(50) we get v (t) from Eq.(48c): 
y 

a cosa - E/B = v cosq> 
s 
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It is clear that when both v and E equal zero the electron will not enter 
s 

the region where the transverse magnetic field is present, because then a 

equals zero. With Eq.(48a), (50) and (51) we solve: 

x = 0 x(O) = 0 (52a) 

a cos(w t+e) E y(O) 0 a cose -E/B (52b) y = -8 = = v coscp 
c s 

z = a sin(w t+B) z(O) = 0 a sine = v sincp (52c) 
c s 

These three equations have the following solutions, according to the 

values of the electric field and the starting velocity: 

[ 
;~:~ ] = ~ [ ~in(w c t+8) - sln8 - :!, t ] 

z(t) c cose - cos(w t+B) 
c 

(53) 

We will now determine the magnetic field which does not allow the electron 

to cross the region. We therefore demand that when z equals L, the 

velocity in the z-direction is zero, and that when z = L/2 the velocity in 
• the z-direction is v . This specific velocity will proove to be closely 

related to the resonance in the well. 

V = 0 
z 

~ wt+B=n 
c 

Using Eq. (54) in z = L yields: 

wc = r (1 + cose) 

• In the same way use v = v when z = L/2: 
z 
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Solving Eq. (55) with Eq. (56) yields for the rnagnetic field: 

B = rnv·;4(l+cose)' 
stop eL 3-cose (57) 

• Of course both v and the angle e depend on the electric field. When the 

electron enters the region with angle n/2, this special rnagnetic field is 

the salution of: 

mE 
-2 
eB 

(58) 

We solve Eq.(58) with Newton's rnethod. The results are shown in Fig.9. We 

took for L the length of our structure (the two harriers and the well) 

which is about 164 A. The rnagnetic field at which no current is possible 

is calculated for three values of v , narnely v = 0 which yields Eq.(55), 
s s 

v = v /2, v = v , where v is the velocity according to the energy E , 
s 0 s 0 0 0 

which is the velocity in the z-direction in the well. The electric field 

is given in units volt per L, where L is the length of the structure. 
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Classica! Kllling Field - Electric Fi~lrl 

for three different entrance veloeities 

VIn = 0.5 Vo 

0 
t__ __ _._ ___ _,_ ____ ,__ _____ ., ___ _, 

0.00 0.20 0.40 0.60 0.80 1.00 

Electrlc Field In (VIL) 

Figure 9 The classLcal ktlUng field as a tunetton of the electrLc 

field in the regi.on. The parameters are accounted tor Ln the text. 
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There seems to be no such thing as a killing field in classica! 

electrodynamics: no matter how large the magnetic field, there is always 

an electric field possible which allows current. 

When we consicter our Double Barrier structure, the only allowed velocity 

in the z-direction in the well is according the resonance energy E : 
0 

v* = j 2E /m 
0 

(59) 

Eq.(57) is maximal for 9 = 0. For this value of B, no electron will 

propagate further than z=L. This value of B is: 

1 j . 
B =- 8mE eL o 

(60) 

which is shows excellent agreement with the quanturn mechanica! expression 

of Eq. ( 46a). 
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4. RESULTS 

4.1 Current densi.ty and charge densi.ty i.n the well versus voltage as a 

tunetion of the magnette field. 

As is clear from the previous chapters, it is necessary to use an 

iterative sci\eme to perfarm selfconsistent calculations, because 

Schrödinger's equation and Poisson's equation are coupled. Therefore to 

get J -V and n -V characteristics at various values of the transverse 
z b 3w b 

magnetic field, the help of a computer is indispensable. 

The program has a similar set up as the one used in the zero-field case. 

The only difference is that now we have to treat each k separately and in 
y 

order to calculate the current we have to determine what part of the 

electrans in the well participate in the current. The computer program 

works according to Fig.lO, which is a sort of flow chart of the program. 

[

_. CIIR!lF:N(II,F: ,V ,V 
r • .. 

YES IF: vl <> V 
.. w 

SOI.ITt I ON ( n, V,, J •, n Jw, r, I 

Fi.gure 10 A "fLow chart" of the program that calculates i.n a 

selfconsi.stent way the current densLty and the electron densLty i.n the 

well as a functLon of the bLas voLtage at fLxed vaLues of the magnette 

fLeLd. 
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We start the loop of the magnette field. For each value of the magnetic 

field we start another loop: that of the Fermi energy. For each Ferm i 

energy we seek the selfconsistent solution of Schrödinger's and Poisson's 

equation by means of interval blsection: At fixed E we calculate the 
F 

electron density in the left spacer, and with that we calculate V , the 
a 

potentlal drop across the first harrier. We choose a value for V , which 
w 

is · usually V or the value for V calculated wlth the previous E , and 
a w F 

calculate with the values of (B, T, E , V , V ) by means of a procedure 
F a w 

CHRDEN the electron density in the well n and the current density J . 
~ z 

With n we calculate a new value for V . If thls new value differs less 
3w w 

than 0.01 7. from the old value, the process is stopped. If it differs 

more, a new value for V is chosen by means of interval biseetion and 
w 

start the process starts again. The selfconsistent solution contains this 

set of numbeï~s: 

We calculated 

characteristics 

(E , V , V , n , n , J ). 
F a w 3a 3w z 

for our symmetrie 

for different values of 

structure selfconslstent J -V 
z b 

the magnetic field. Figure 11 

shows the current voltage characteristlcs at T = 77 Kelvin for the 

following values of B: 0, 5, 10, 20, 24, 25 and 26 T. 

30 

2E 

26 

2~ 

22 

20 

18 ,... 
11 

16 c 
~ 
~ ...., 

12 

10 

B 

6 

2 

".4-_...~;;::::;F2::~L-4--~-~-_;....:::s::i:~~--l 
0 0.2 0.4 0.6 0.8 

Flg. 11. Current voltage charactertsttcs of a symmetrtc DBRT structure 

at T = 77 K. Hortzontal V b tn (V 1, verttcal J z tn ( A/m 
21. 
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The ripple on the curves is due to the discretisation that is inevitable 

in numerical integration. Thus it is a manifestation of a numerical and 

not a physical phenomenon. 

The start- and end- voltages, determined from Fig.ll, are plotted in 

Fig.l2, tagether with the predicted values of the previous chapter. It 

shows that our assumption of no charge in the well is only valid for 

magnetic fields smaller than IS T. For higher values of 8, the start- and 

end- voltages deviate from the predicted ones. For 8 is greater than or 

equal to 30 T no current is possible, so apparently the killing field is 

smaller than we predicted in section 3.3. 

....... 
0 
> 

-~ 

.0 
> 

Vb.start and Vb.end vs magnetic field 
Symmetrie DBRT structure 

2.00 .--------------------------, 

1.60 / 
/ 

/ 

1.20 ~--------
/ 

)(')1.)( .... .... 
0.80 "" ~ .... 

"" "" .... )( 

.... ~ 
Vb.start I 

0.40 ...-IC"" 
,_-

/ 'Ir)( 

0.00 
0 8 16 24 32 40 

B in tesla 

Fig.12 The start- and end- voltages, tor a symmetrie DBRT structure at 

T = 77 K. The values determined trom the seltconsistent calculations 

are indicated by x, the predicted values are the solld llnes. 
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Figure 13 shows the magnetic field dependenee of the n versus V 
3w b 

characteristics. When we campare the J -V with the n -V curves, it is 
z b 3w b 

obvious that the charge in the well accumulates dramatically for magnetic 

field greater than 20 T. For a magnetic field greater than IS T, the 

maximum current decreases with B, whereas the electron density in the well 

increases. This explains why our predicted values of the start and end 

voltages deviate from the calculated values. 

For magnetic fields greater than IS T it is not realistic to neglect the 

charge in the well. At about 24 T the start voltage is greater than the 

predicted value, and the end voltage is considerably smaller than the 

predicted value. It is difficult to explain why this happens, because it 

is impossible to tell what the selfconsistent effect of charge in the well 

is on these values. Assuming that this is not an effect of 

selfconsistency, we could explain it by the fact that at 24 T another 

inequality becomes dominant. We will return to this subject in the next 
1 ,---------------------------------~~~----------------, chapter. 

0.9-

"' '1- 0.6 
('I 
w 
0 ... 

0.5 
11 
0 

E 
E. 0.4 

0 0.2 0.4 o.s 0.8 

Figure 13 The electron density in the well, 
-3 

in m , versus bias 

voltage, in V, tor different values of the magnetic field, calculated 

in a selfconsi.stent way, at T = 77 Kelvin. Note that the maximum 

electron densi.ty in the well increases with the magnette field, when B 

becomes larger than 15 T. 

39 



4.2 Current densLty and electron densLty Ln the well as a tunetton of the 

magnetLc fLeld at fLxed bLas voltage. 

As Fig.ll shows, current can flow when B -~:. 0 at voltages that did not have 

current in the B = 0 case. To examine more closely this behavior as well 

as to examine the existence of a killing field, we calculate current 

derisity and electron density in the well as a function of the magnetic 

field at three fixed bias voltages (T=4.2 K): at 0.1 V, which is about the 

start-voltage in the zero field case; at 0.2 V, which is close to the peak 

current in the zero-field case; and at 0.33 V, which Is just below the 

zero-field V . The behavior of the DBRT at these three voltages is 
b,end 

very elucidating with respect to the effect of the magnetic field. 

The algorithm is simHar to the one described in the previous section. 

Instead of the demand of a constant Fermi-energy we now demand a constant 

bias voltage which means that we must vary Er instead of V b' Thus we keep 

the bias voltage flxed and we can vary at each voltage the magnetic field. 

The "flow-chart" of the program is simHar to Fig.lO; only the two loops 

must be switched. 
2e+07 r----------------------------------------------------. 

1e+07 

B [T] 

0 U---------,---------~----~----.---~--~~--------~ 
0 7 14 21 28 35 

Fi~ure 14: SelfconsLstent calculatLon of the current densLty as a [unctLon 

of the magnetLc fLeld tor three fLxed appl!ed bLas voltages, at T = 4.2 K. 
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At a fixed bias voltage of 0.1 V, there is no current at zero magnetic 

field, whereas at higher magnetic fields, a current does exist. The 

current at a fixed bias voltage of 0.2 V decreases monotonously with the 

magnetic field. It appears that the killing field is not completely 

independent of V. However, the varlation with V is very small. No 
b b 

current is found at any value of V for B greater than 28 T, a value of 
b 

the killing field that is somewhat smaller than the predicted 34 T. The 

reason why it is smaller can be found in the electron density in the well 

(see Fig.lS). 

1.2e+24 r-----------------------------------------------------~ 

9.6e+23-

n:Jw 

~ .2 V 

7.2e+23· 

4.8e+23- /0.1 V 

B [T] 
-~ 

O.Oe+OO ~------r-----....c:::;;-r-------------1 
0 10 20 30 ~0 

Fi.gure 15: Selfconsistent calculati.on of the electron densi.ty in the 

well versus the magnetic field, at three fixed appli.ed bias voltages, 

when T = 4.2 Kelvin. Note that the electron densi.ty in the well 

decreases monotonically wtth B when B is greater than some 28 T. 

Figure 15 shows that for magnetic fields greater than 20 T, the electron 

density in the well increases dramatically with the magnetic field up to 

Bklll. For yet larger magnetic fie1ds the electron density in the well 

decreases again. The ripples are again due to the discretisation in the 

numerical integration over k . 
y 
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Although our predictions are based on neglecting the charge in the well, 

they give much insight in the magnetic field dependent behavior of the 

DBRT. We expected the charge in the well to become very important when the 

magnetic field is such that very few electrans can participate in the 

current (in that case for very few electrans the resonance level lies 

above the conduction band minimum of the right spaeer) whereas a lot of 

electrans enter the well. This is the main difference with the zero-field 

case, because there the charge build up in the well is always balanced by 

a constant out stream in the collector. 

In the next chapter we will evaluate the results and the model, 

specifically the approximations we made regarding the magnetic field. 
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5. DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

In this chapter we discuss the results of the previous chapter and use 

them to discuss the model approximations we made, specifically those 

regarding the magnetic field. Also we compare our results with others, and 

draw some conclusions. 

First we will discuss the model approximations made in the zero field case 

and the additional approximations we made in the non-zero field case: 

Approximations made in the zero-field case. 

1. Only coherent propagation of electrans is considered. This means that 

electrans are described by the solutions of a Schrödinger-like envelope 

equation, in which we use ~ effective mass, namely that of GaAs in the 

r-band minimum. We do not deal with the effective mass problem, because 

our main goal is to develop a simple model which explains the most 

important physics of the DBRT. 

2. We only consider resonant current, so we neglect the electrans that 

tunnel non-resonantly into the well. Consequently, our I-V curves show no 

nonresonant background current and our model is unable to yield a 

peak-to-valley ratio. The profit from the restrietion to resonant 

contributions only is that an integration over k (in current and charge 
z 

densities) is avoided. This simplifies calculations a lot, because the 

resonance is now described by a delta function of the transmission 

coefficient (as a function of the electron energy). 

3. Only tunneling from left to right is considered and the Fermi sea in 

the right spaeer is neglected. In structures for which E » E this 
0 F 

assumption is quite reasonable, because electrans from the collector can 

not traverse resonantly when V is such that emitter electrans can. 
b 

4. We neglect "sequentializing" phenomena such as phonon interaction and 

elastic or inelastic scattering from defects etc. At sufficiently low 

temperature and in structures with clean intrinsic layers, these 
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influences are minimized. 

5. The Fermi level depends heavily on the applied voltage. This reflects 

the semiconductor character of the spaeer layer, but it does not give the 

metal character of the doped reservoir it is due to. This aspect of the 

model yields too small E values at high bias. 
F 

6. The potential drop in both emitter and collector layers is neglected. 

Here, a dependenee of the potential on the doping density can be expected. 

As a consequence, our voltage scale in the 1-V curves can not be taken 

seriously. However, we expect our V to be related to the "true" voltage 
b 

by a smooth and monotonous transformation. 

7. We model the potential energy caused by the band bending by a 

piece-wise constant one: in the two harriers and the well we take its mean 

value. This has the advantage that the electron wave functions are simple 

plane waves. Differences with Airy function calculations [14] are so 

small, that this simplification is well justified. 

Additional approximations with respect to the magnetic field 

1. The magnetic field is confined to the two harriers and the well only. 

This is mainly done to avoid complication of the calculation of the 

electron density in the left spaeer with a larger field region: the wave 

functions would be parabalie cylinder functions, of which no integrals are 

known analytically. As a consequence the field scale in the 1-B curves can 

not be taken seriously. A further consequence is related to the fact that 

in our model the B-region exactly coincides with that of the electric 

field. lf we drop this special choice, the expression for the killing 

field is complicated. Also, its non-dependenee of V disappears. In fact, 
b 

configurations can be devised that have no finite killing field. 

With this approximation we introduce discontinuities in the vector 

potential and its curve. lt would be more realistic to choose bath 

quantities continuous differentiable by "rounding off their profiles". 

2. The second approximation we made with respect to the magnetic field is 

analogous to approximation 7 of the zero field model: we make the 

potential energy caused by the magnetic field piece wise constant, 

although the potential energy is a quadratic function of the magnetic 
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field B. Again we take the mean value of the potential energy in the two 

barrier and the well. 

Confrontation of zero-field and nonzero-field approximations 

The seèond approximation regarding the magnetic field results in working 

with plane wave instead of parabalie cylinder functions, which is a great 

difference in mathematics, whereas the calculated transmissions differ 

about 2%. Therefore this approximation is not the most serious one. 

The first approximation regarding the magnetic field, is more interesting. 

The confinement of the magnetic field to the two barriers and the well 

does not have any physical grounds. We merely confined the magnetic field 

to this limited region because thus the magnetic field does not not affect 

the calculation of the electron density in the left spaeer. It would be 

more realistic to confine the magnetic field to a larger region. 

One of the consequences of a larger region of confinement is that the 

killing field will be smaller than the 28 T we calculated. If Eq. (58) 

still applies, B is inversely proportional to the length of the field 
kUl 

region L. Also, our predicted values for the start- and end- voltages 

would change, but the shape of the curves of Fig. 7 will be the same. 

The analysis of the start- and end- voltages as described in section 3.2 

is hindered by the fact that our Fermi energy changes with V • Therefore 
b 

it is impossible to tell whether the sudden change in behavior of the two 

voltages at B ~ 24 T is due to selfconsistency. The freely tunable Fermi 

level is a way to take the effects of an applied bias voltages into 

account in the zero field model. However, when the Fermi level is taken a 

constant, so the range of k is no langer variable, the equations are much 
y 

simpler to solve. 

It appears that then the predicted values of the start- and end- voltages 

are very close to the ones depicted with "x" in Fig.12 , which would mean 

that the deviation of the voltages from the solid lines in Fig.12 is not 

totally a selfconsistent effect [28]. 
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Finally, we will campare our results with the work of others. 

As the work on resonant tunneling with a transverse magnetic field is 

concerned, we will compare our results with that of Ancilotto [26], Brey, 

Platero and Tejedor [23), and Eaves et al. [7]. 

First we will mention the work on transverse magnetic fields in general to 

see whether the ideas mentioned can help us further. We mention the work 

on transverse magnetic fields and semiconductor structures in general by: 

Guéret, Baratoff and Marclay [29], Hickmott [30], Johnson, MacKinnon and 

Goebel [20], Sheard et al. [4), and Maan et al. [21], [31], [32], and 

Altarelli and Platero [24], [33]. 

References [22], [24], [26] and [33] 

functions (or confluent hypergeometrie 

mention the parabolk cylinder 

functions) as solutions of the 

Schrödinger equation for an electron in a transverse magnetic field. They 

use large computer facilities, [33], to calculate transmission 

characteristics of single harriers, to analyze magnetic hole levels, or to 

describe Landau levels near an ideal interface. They indicate to have had 

some problems in calculating these special functions. 

References [21], [31], and [32], try to explain the physics of tunneling 

in terms of skipping orbits and other classica! terms. Of course these 

kind of considerations can give a lot of insight, but as tunneling is 

regarded, one can not leave out quanturn mechanics. 

References [24] and [29] use a generalized transfer Hamiltonian method to 

describe the magneto tunneling. They solve the Schrödinger equation purely 

numerical, which is not wrong, but dealing with piece wise constant 

potentials (plane wave) will elucidate the physics of tunneling more. 

None of the references deals with the problem of confining the magnetic 

field, all confine the magnetic field to just one barrier (in the case of 

single barrier tunneling [29]) or the two harriers. All refer to Büttiker 

[25], who confined the magnetic field to the harriers. 
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We now try to campare our results to the available theoretica! or 

experimental data on DBRT structures. 

Reference [26] uses parabalie cylinder functions to calculate the 1-V 

characteristics of a structure with harriers 200 A wide and 0.04 eV high 

and a well 30 A wide. The calculations are not selfconsistent and the 

results are that the start and end voltages do not change with the 

magnetic field. The maximum current decreases with the magnetic field. 

When we apply our model on this structure we also find hardly changing 

start- and end- voltages. Therefore we conclude that the model used in 

reference [26] is not wrong with respect to the treatment of the magnetic 

field, but the structure used is not very revealing. 

References [24] and [33] concentrate on oscillations in the current as a 

function of the magnetic field, without calculating selfconsistently. The 

fact that they look at oscillations hints at the existence of more than 

one level in the well, which undermines coherence. 

Reference [23] present magneto tunneling calculations on superlattice­

barrier-superlattice structures, that can, to some extent, be compared 

with our DBRT. The behavior of the first resonance peak in their 1-V 

curves shows good agreement with our calculations of the resonant current. 

Finally we discuss [34] which shows current-voltage characteristics of a 

structure comparable to the one we use (AlGaAs harriers and GaAs well are 

SS A wide). Their maximum current shifts to higher bias voltages with 

increasing magnetic fields, but the curve drowns in the non resonant 

current contribution. 

Unfortunately, no experimental data of configurations as considered, are 

presently available. Eaves et al. [7], have investigated structures with 

wide wells having many resonance levels. Both facts are related to the 

difficulties involved in confining a transverse magnetic field enough to 

still have output. 
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5.2 Conclusions 

The transverse magnetic field 

A transverse magnetic field causes the tunnel problem to become dependent 

on k , in the gauge we took. Related to this choiee of gauge is the fact 
y 

that the wave number k changes discontinuously when the wave function of 
y 

the electron crosses a discontinuity in the vector potential. This means 

that the boundary conditions we encounter in calculating the electron wave 

function throughout the structure are different from the zero field case. 

This also means that the calculation of electron densities is complicated; 

the integral over k can not be performed analytically, as in the zero 
y 

field case, but must be performed numerically. 

The solutions of the Schrödinger equation for an electron in a transverse 

magnetic field are in general parabalie cylinder functions (also known as 

confluent hypergeometrie functions), which only give rise to a 

quantization of energy (Landau levels) when no boundaries are present, 

because boundaries can make all unbounded parabalie cylinder functions 

square integrable. The fact that a lot of these function are unbounded 

makes them difficult to work with. In this report we could avoid them by 

rnadeling the potential energy term, introduced by the magnetic field, as a 

piece-wise constant one. 

Results of the model 

The model, based on wave coherence and selfconsistent calculation of 

charge, explains the intrinsic bistability of a DBRT structure in the zero 

field case, as well as the magneto oscillations in the _!! 11 .:!. case. 

In the B l. J case this model prediets interesting features of the 

magnetic field dependenee of both charge and current: 

The maximum current decreases monotonously with the magnetic field, but 

occurs at higher bias voltages. When the killing field (B ~ 28 T for our 

structure) is reached, no resonant current is possible up to 1.0 V. Due to 

charge build up in the well, a different voltage has a different killing 

field; At a certain (not investigated) voltage the killing field will 
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reach a maximum. This maximum will be greater than the predicted 34.2 T. 

The voltages at which the resonant current starts or ends change with the 

magnetic field. The start voltages decreases monotonously with the 

magnetic field until B ~ 24 T. For larger values of the magnetic field, 

the start voltage increases with the magnetic field. The end voltage 

increases monotonously with B, but for magnetic fields larger than 24 T, 

it decreases in the selfconsistent calculation. 

Contrary to the current density, the charge density in the well increases 

with B, and grows rapidly from 20 T up to the killing field. When the 

magnetic field is larger than the killing field, the charge will slowly 

disappear from the well. 

The merits of the model 

The assumptions made in the zero field case still hold when a transverse 

magnetic field is present. 

The confinement of the magnetic field is a problem yet to be 

investigated. However, we think that a large field region does not 

introduce new elements in the physics. In that case there is also a 

killing field, but it will be smaller than the 34.2 T we predict. The 

magnetic field dependenee of the start- and end- voltages will be the 

same, only the values of the magnetic field will be different. 

Our modeling of the potential energy as a piece-wise constant one enables 

an analysis of the current condition which led to a predietien of the 

start- and end- voltages as well as the killing field, which is solely 

dependent of the parameters of the structure ( with E the resonance energy 
0 

measured from the bottorn of the well, m the effective mass of an electron 

in the r minimum of GaAs, L the width of the first barrier, L the width 
1 2 

of the second barrier, and L the width of the well): 
w 

l [ 4mE 0 ]112 
B = e L (L +L +L /3)+2L L 

w 1 2 w 1 2 
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APPENDIX A: THE PARABOLIC CYLINDER FUNCTIONS 

A.l. Introduetion 

In this Appendix, we will discuss the solutions of the Schrödinger equation 

with gauge ~ = (0,-Bz,O), known as parabalie cylinder functions. One of the 

problems one encounters in dealing with special functions is that they all 

seem to be expressed in each other. Further, in previous work on transverse 

magnetic field, it was merely stated that it is diffieult to calculate 

accurate values of this special function. Exemplary for this is a paper by 

M. Altarelli and G. Platero [33], where it is stated that "the basic 

problem for the numerical calculations is the accurate determination of the 

confluent hypergeometrie functions, whieh can be achieved by a combination 

of integral representations, recursion relations and asymptotic 

expansions". 

In this Appendix we will give a selection of those representations, 

relations and expansions as encountered in various textbooks on special 

functions, because the textbooks are usually so loaded with integral 

expressions, asymptotic expansions and recursion formulas that its 

difficult to see what type of relation one specifically needs. To create 

some order out of this chaos and to find the relations that enable us to 

compose an easy and fast algorithm for calculating the parabalie cylinder 

functions are the main goals we set ourselves in this Appendix. 

We start with a very basic problem, which proves to be an excellent entry 

in the field of the parabalie cylinder functions. After that we will 

mention some representations, recursion relations and asymptotic 

expansions, discussed in Handbook of Mathematieal Funetions, by Abramowitz 

and Stegun, [17], which we will eaU [A&S], The Atlas of Funetions, by 

Spanier and Oldham, [18], to which we will refer as [S&O], Higher 

Transeendental Funetions, by Erdélyi, Magnus, Oberhettinger, and Tricomi, 

[19], whieh we will eaU [EMOT]. Also we will use Quanturn Meehanies, by E. 

Merzbacher, [MB]. 
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A.2. The harmonie oscillator 

We start with a basic but very illustrative problem; that of the harmonie 

oscillator. 
1 2 2 

lts potential energy is V(x) = -mw x . We eaU w loosely the 
2 

(classica!) frequency of the oscillator. Such a parabalie potential is of 

great practical importance because it approximates any arbitrary potential 

in the neighborhood of a stabie equilibrium position. Another reason why 

the linear harmonie oscillator is of great practical importance is the fact 

the behavior of most continuous physical systems, such as the vibrations of 

an elastic medium, or the electromagnetic field in a cavity, can be 

described by the superposition of an infinite number of simple harmonie 

oscillators. In the quantization of any such physical system we are then 

confronted by the quanturn mechanics of many linear harmonie oscillators of 

various frequencies. 

The Schrödinger equation: 

(A.l) 

can be transformed into a convenient form by substituting ~ = (mw/h)
1
/2x 

~;2 ~ + (~~ - ~2) ~ = 0 (A.2) 

If a power series salution of this equation is attempted a three-term 

recursion formula is obtained. To get a differential equation where the 

power series salution admits a two-term recursion relation, which is 

simpler to analyze, we substitute ~ = exp( -~2 /2)g(~), which yields for g: 

2 ( ) 
d dg E 1 
-2g-~-+2--- g=O 
d~ d~ hw 2 

(A.3) 

In the harmonie oscillator problem the solutions g(~) have only a physical 

meaning if they are square integrable, which means that they have to be 

bound on the interval ~ e ( -m,m). A direct result of this demand is a 

quantization of energies; only the power series which have E = (n~)hw, 
2 

with n a nonnegative integer, satisfy this condition. The eigen functions 

of the linear harmonie oscillator problem are called Hermite polynomials of 

53 



degree n. 

The complete eigen functions are of the form: 

I/In = C H (~)exp( -~2 /2) 
n n 

(A.4) 

where H denotes a Hermite polynomial of degree n, and C is a 
n n 

normalization constant. The Hermite polynomials are expressed in power 

series AJ. and AJ. : 
1 2 

(C) (-l)n/2 n! (C) 
H n ~ = (n/2)! AJ.1 ~ n is even (A.5a) 

H (~) = ( _ o<n-1}/2 2(n! ) AJ. (~) 
n [ ( n -1) /2]! 2 

n is odd (A.5b) 

where AJ. and AJ. are the power series: 
1 2 

2 3 
1 - ~2 2 n(n-2)~4 _ 2 n(n-2)(n-4)~ó 

AJ. = 2! + 1 4! 6! + (A.6a) 

2(n-1)~3 
2 

AJ. = ~ - + 
2 (n-l)(n-3)~5 

2 3! 5! 
(A.6b) 

Note that the power series (A.6a) and (A.6b) are special cases of the 

complete set of mathematica! solutions of the harmonie oscillator problem. 

For instance, if we no longer demand that the potential is present on an 

infinite interval, but on a finite one, all power series can be ascribed a 

physical meaning, because they all are square integrable on a finite 

interval. 

The complete set of solutions of Eq.(A.3), regardless their behavior on the 

interval ( -oo,oo) is usually called the set of parabolic cylinder functions, 

but are also known as Weber functions or Weber-Hermite functions. In the 

next section we will elaborate on these more general solutions of the 

harmonie oscillator problem. 

54 



A.3. The parabolic cylinder equation 

We are looking for the complete set of solutions of the differential 

equation: 

(A.7) 

With the substitution z 
1/2 = . (2mw/h) x and E = 1 (v+-)hw Eq.(A.7) transfarms 

2 

to: 

d2 ( 2) 
dz2 IJ! + v + ~ - ~ IJ! = 0 (A.8) 

This differential equation is known as Weber's equation [SO]. lts solutions 

are the parabalie cylinder functions: 

D (z), D (-z), D (iz), 
V V -V-1 

D ( -iz) 
-V-1 

(A. Sa) 

If v is not an integer the first two are linearly independent. For all 

values of v, D (z) and D (±iz) are linearly independent. Because in our 
V -V-1 

problem v can be a nonnegative integer (the farmer quantization energies), 

we use <D (z),D (iz)> as linear independent set of solutions. To get an 
V -V-1 

idea, of the behavior of these functions table A.1 gives some facts about 

D (z). 
V 

D (-oo) D ( 0) D (oo) 
V V V 

1 <v<2, 3<v<4, S<v<6, ... +CXI 

O<v<1, 2<v<3, 4<v<S, ... 
(2 vlt) 1/2 

-(X) 
0 

v=O, 1,2,3, ... 0 r (l;v) 

v<O +CXI 
tableA.l 

In table A.1 the functions with v = 0,1,2,3, ... are the ones that are bound 

on the interval -oo < z < oo, the solutions of the harmonie oscillator 

problem: 
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(A. 9) 

The functions D (z) and D (iz) are power series of the kind given by Eq. 
V -V-1 

(A.6a), (A.6b) and are often expressed in a more general class of power 

series, namely Kummer functions, who are the solutions of the so called 

confluent hypergeometrie equation. This Kummer function is often written as 

M(a;c;z), where the variables a and c are termed the numeratorial and 

denominatorial parameter, and z is the argument. The advantage of 

expressing power series in terms of Kummer functions is that the latter are 

very simple power series: 

M(a;c;z) 1 
az a(a+1)z2 a(a+1)(a+2)z3 

= + c + 2!c(c+1) + 3!dc+O(c+2) + ·· 

00 (a) zJ 
=\ j 

L j!(c) 
J 

(A.lO) 

J=O 

This power series is convergent for all arguments and for all parameter 

values except c = 0,1,2, .. The parabalie cylinder function 

expressed in the Kummer function and in the r function by: 

[ 2] [ 2]1 
-v 1 z 1-v 3 z 

2 M(2;2;2 _ M2;2;2 
D (z) (2v )112 ( -z ) 2112z = 1l exp 4 V 

r (1;v) r(-~) 

[ M [l+v.!. -z'l [ 2]1 
v 3 -z 

2 2 '2' 2 M l:[~~i2 (2v )112 ( z ) 21/2 = 1l exp 4 - z 

r(l;v) 

D (z) 
V 

(A.ll) 

is 

Expression (A. 9) may be convergent for all z, but that does not mean that 

its numerically stabie for all z. To avoid numerical instahilities one can 

use the recursion relations given in [A&S], [S&O], [EMOT]. Thus one can 

transform a numerical unfavorable combination of parameters to a better 

one. 

If that does not work, one can try to use asymptotic expansions. However, 

often these asymptotic expansions are only valid under certain conditions 
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and in some cases the cure is worse than the disease.Dealing with all these 

relations one has to keep in mind what specific ranges of arguments are 

needed. For instance, in the context of this report, the value v is a 

function of the total electron energy. The value of z can become very large 

and very small (depends on k and B) but z is always real, so we don't 
y 

discuss the problems of determining D (a+ib). 
V 

In the next section we will discuss some of the recursion relations 

discussed in the aforementioned textbooks. 

A.4. Recurrence relations 

Our basic notation for the parabalie cylinder functions will be the one 

used in [S&O], [EMOT] and [MB]. In [A&S] another notation is used which can 

easily be transformed into the first one. Because the parabalie cylinder 

equation has 2 linearly independent solutions all kinds of linear 

combinations can be used as a basis of solutions. In [A&S] the functions 

U(a,z) and V(a,z) are used and are related to the notation D (z) in the 
V 

following way (z complex): 

U(a,z) = D 1(z) 
-a-

2 

rt
1+a)( 

V(a,z) = simra U(a,z) + U(a,-z)} (A.12) 

The recurrence relations for U(a,z), which are also satisfied by the 

functions f(!._a)V(a,z), are: 
2 

U' (a,z) 1 1 (A.13a) + -zU(a,z) + (a+-)U(a+l,z) = 0 
2 2 

U' (a,z) 1 + U(a-l,z) 0 (A.13b) - -zU(a z) = 2 • 

2U' (a,z) + U(a-l,z) + 
1 . 

0 (A.13c) (a+-)U(a+l,z) = 2 

zU(a,z) - U(a-l,z) + (a+.!.)U(a+l,z) = 0 (A.13d) 
2 

The recurrence relations for V(a,z), which are also satisfied by the 

functions U(a,z)/f(!._a), are: 
2 

V' (a,z) - .!.zv(a z) - (a-.!.)V(a-1 z) = 0 2 • 2 • (A.14a) 
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V' (a,z) + .!.zv(a,z) - V(a+l,z) = 0 
2 

2V' (a,z) - V(a+l,z) - (a-~)V(a-l,z) = 0 

zV(a,z) - V(a+l,z) + (a-~)V(a-l,z) = 0 

(A.14b) 

(A.14c) 

(A.14d) 

Especially Eq.(A.13d) and (A.14d) are useful. When a parabalie cylinder 

function has a toa large order a it can be transformed into a lower order 

with these two equations. The other six relations are useful when needing 

the derivative with respect to z, e.g. when calculating the boundary 

conditions at an interface needed to perfarm a Transfer Matrix Approach. 

In [S&O], no extra information is provided except an argument-addition 

formula: 

D (x+y) 
V 

= [2xy+/] ~ (-y)J D ( ) = 
exp 4 L j! V+Jx 

J=O 
(A.lS) 

Eq.(A.15) does nat make things easier in a numerical way because j grows to 

infinity. 

In [EMOT] we find the following relations which express the relationship 

between the four solutions of Eq.(A.8): 

D (z) 
V 

= f(v+1) [ evni/2D-v-1(iz) + e-vni/20-v-1(-iz) J 
( 2ll) 1/2 

= e-vni/20 (z) (2n) 
112 

-(v+1)ni/2D (' ) 
v + f(-v) e -v-1 tz 

vni/2D ( ) (2ll) 
= e v -z + f( -v) 

(v+1)ni/z_ ( . ) e IJ -tz -v-1 
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and those which can be obtained from these by substituting -z for z. These 

relations shows how the functions in (A.16a) are connected. The Wronskian 

determinants, handy for the Transfer Matrix Approach, of the linearly 

independent solutions D (z) and D (±iz) are: 
V V 

d 
D (z) -d D (-z) 

V Z V 

d 
D (-z) -d D (z) 

V Z V 

(21l) 112 
= "'"'r=-cr---v""""'>-

D (z) dd D 
1
0z) - D 

1
0z) dd D (z) 

v z -v- -v- z v 
. -vni/2 = -1e 

(A.17a) 

(A.17b) 

Here we conclude our summary of properties of the parabalie cylinder 

functions. In the next sectien we continue with the asymptotic expansions 

which may be useful when an algorithm in spite of the maximal use made of 

the properties described above, is numerical instabie at large values of 

lzl. 

A.S. Asymptotic expansions. 

Asymptotic expansions are expressions that describe the asymptotic behavier 

of functions to which they apply. This means that for small values of the 

arguments of the special functions, the asymptotic expansions may diverge. 

In this sectien we describe these expansions as given in a number of 

textbooks. Besides [A&S], [S&O], [EMOT] and [MB] we also use The Confluent 

Hypergeometrie Function, by Buchholz [BH]. 

What are we looking for? We want to obtain algorithms that, without 

numerical instabilities, calculate the values of the parabalie cylinder 

function D (z) and D (iz) for all v and for -oo < z < oo , z real. The 
V -V-l 

expression of the parabalie cylinder function in Kummer functions works 

just fine in calculating for D (z) for v < 50 and z > -15 (See Fig.Al and 
V 

Fig.A2). More problems are encountered when calculating D (iz) with 
-V-l 

Kummer functions: for v = 0. 9 instahilities occur at I z I ~ 8.5 (See 

Fig. A3), which is unacceptable, because v = 0. 9 is not an exotic value. 
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Figures Al, A2, and A3, showing the problems one encounters in 

calculating the parabalie cylinder [unctions in terms of Kummer functions. 
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With the help of the recurrence relations described in the previous section 

most of these problems are solved, but still there are some difficulties 

for very large z and/or very large v, because the repetitive applying of 

the recurrence relation itself becomes numerical instable. The underlying 

reason for this difficulties is the fact that for noninteger v, the 

functions are at least unbound on one side. Apparently for some 

combinations of v and z the power series are convergent but the computer 

has some difficulty in establishing that convergence. In fact when I z I is 

large enough numerical instahilities will occur at any v. Therefore we need 

a good, i.e. numerically stable, asymptotic expansion. 

In search of a useful asymptotic expansion we will now systematically 

discuss the ones provided in the aforementioned textbooks. 

In [S&O) the following expansions are mentioned: 

and: 

(2+V) exp(-z2/4) oo 

Dv(z) = 2 
2 

\ ~! r(j;v) (-zv'i')J 
r(-v) L 

D (z) 
V 

j=O 

00 

( 2/4) \ (Vll+jll) J1.! r(1+
2
j+v) (z-'2~)j exp z L cos - 2- vz 

j=O 

Dv(z) ~ zv exp(-z2/4) 1 - ---- + ---------
{ 

(-v)(1-v) (-v)(1-v)(2-v)(3-v) 

2z2 2!(2z2 ) 2 

( -v) } 
- . . . + _______;;_2j + ... 

j!( -2z2 )J 
z~oo 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

Further, [S&O) gives an algorithm which is said to have a relative accuracy 
-8 of 6x10 or better, which may be degraded near the zeros of D (z) or when 

V 

z and -v are both large and positive. During examining this algorithm it 

proved to be not as good as is claimed, worse, it already is instabie at z 
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~ 8 at v = 4.5. Therefore, this algorithm is not what we are looking for. 

In [A&S] the solutions of the parabalie cylinder functions are the 

aforementioned U(a,z) and V(a,z) (see Eq. (A.12)). Also expressions in power 

series and Kummer functions/ confluent hypergeometrie functions are given. 

Further, asymptotic expansions for large z and a moderate, a large and z 
2 

moderate,and Darwin's expansions for a positive and z +4a large, a 

. negative and z2 +4a large and positive and, a large and negative and x 

moderate. 

We give here the first two types: 

(i) z large and a moderate, when I z I » I a I• 

U(a,z) ~ exp ( -:
2
) 

(z ---7 ro) 
-···} 

(A.22) 

Eq. (A.22) is "valid for complex z with I argz I < ~tr, in the complete sense 

of Watson, although valid for a wider range of I argz I in Poincaré's sense." 

(ii) a large and z moderate; 

(iia) a positive; 

When a » z2, with p = ra, then: 

ra exp( -pz+o\9. ) 
1 

U(a,z) = --------==-
.!.a+2. (3 1 ) 2 4 r -+-a 

2 4 2 

where, 

~(.!.z)3 ( .!.z) 2 

+ 3 2 2 
o\9. o\9. ~ ---

1' 2 
2p (2p)2 

(a ---7 +ro) 

+ 

ra exp ( pz+o\9. ) 
2 

U(a,-z) = ------
.!.a+2. (3 1 ) 2 4 r -+-a 

2 4 2 

1 2 1 5 2(.!.z)4 16 1 3 
-z--(-z) <- -z) -
2 5 2 2 ± 3 2 

+ 
( 2p)3 (2p)4 (2p)5 
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~(~z) 7 
7 2 

(A.24) 



The upper sign in Eq.(A.24) gives the first function, and the lower sign 

gives the second function. 

(iib) a negative 

When -a » z2, with p = -V-à, then 

U(a,z) + i r(.!. - a) • V( a z) = 2 , 

where 

r(.!. - ~) 
4 2 

1 1 
-a+-

22 4v'Tè 

16(.!.z)3-
3 2 

• ( 1 1 ) . 
lll -+-a 1pz 

4 2 
e e 

u ~-
1 

+ ----------
(2p)5 

e 
(~+i~) 

r i 
(A.25) 

(A.26) 

(A.27) 

Here we conclude our bird's-eye-view of the asymptotic expansions discussed 

in [A&S] and continue with [EMOT]. 

They use the same notation as [S&O] and are more specific about the 

arguments of the complex z in D (z) because that has great influence on the 
V 

type of asymptotic expansion: 

and: 

D (z) 
V 

D (z) 
V 

v (-z2) [ LN (-~v)n(~-~v)n mi 2
1

-N-1 = z exp- + v z -
4 I( 1 2)n n. --z 

l 
n=O 2 

L

N (.!.v) (~+.!.v) 
(21[) 1/

2 
vn1' -v-1 ( 

2
) exp z

4 
2 n 2 2 n 

r( -v) e z n! (.!.z2)n 
n=O 2 
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D (z) 
V 

(2n) 1/2 

f( -v) 

l 
-vni 

e 
-v-1 

z 

N 1 1 1 

L 
(-v) (-+-v) 

2 n 2 2 n 

n! (.!.z2 )n 
n=O 2 

-Sn -n 
4 < argz < 4 (A.30) 

In these the notation (a) = 1, (a) = a(a+1) ... (a+n-1), n = 1,2,3,.. is 
0 n 

used. Note that the last two expansions only differ on one place, indicated 

with arrows. We will compare these expansions with ones discussed in [BH]. 
1 

Because we are interested in argz = 0 and argz = ±-n, we need all three of 
2 

the expansions. Up till now [EMOT] gives the most general asymptotic 

expansions, with respect to the argument of z. To check these expressions 

we use the asymptotic expansions described in [BH] at page 92: 

-v-1 D (±iz) ~ z 
-v-1 

z
2 
_niO+v){ p-1 ( 1) } - + \ v+ i\ e 4 2 L ___ 2_ (21/2zf2i\ +O(z -2p) 

i\ 
i\! 

=0 

< 31t 
4 

(A.31) 

(A.32) 

In Eq. (A.32), the upper sign gives an expansion for - ;n < argz < ~· which 

is useful for argz = - .!.n values of z, whereas the lower sign yields an 
2 

expansion for - ~ < argz < ;n. useful for the options argz equals 0 or ~n. 
Equations (A.31) and (A.32) are in agreement with Eq. (A.28), (A.29), 

(A.30). Our last reference is [MB], in which the parabolic cylinder 

functions emerge when the double oscillator is discussed. However, [MB] 

doesn't give an expansion for the complex z case. The only expansion [MB] 

gives is identical to (A.29). The best expansions to use are (A.31) and 

(A.32). In combination with the recurrence relations it is possible to 

determine the value of the parabolic cylinder function in reasonable ranges 

of z and v. 
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A.6. Finally 

Because it seemed simple to devise an algorithm which could fast and 

accurate determine the wave functions in our DBRT structure, this study has 

been made. However, all kinds of numerical problems emerged, resulting in a 

last attempt which failed dramatically. This last attempt consisted of 

using the fortran77 subroutines DIMACH and DCHU, made by W. Fullerton of 

the Los Alamos Scientific Laboratory. It appeared, after being sent over 

from the U.S.A., that these routines only worked on a very limited interval 

of parameters. Because we had reached by that stage another insight in the 

modeling of the DBRT, we abandoned the parabalie cylinder function. 
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APPENDIX 8: THE TRANSFER MA TRI X FORMALISM. 

B.l. Introduetion 

In this appendix we discuss the Transfer Matrix Formalism, which proves to 

be an excellent tool for dealing with boundary conditions. For instance, we 

know that because of conservation of probability in the B = 0 case, the 

boundary conditions are continuity of wave function and continuity of the 

gradient of the wave function. When the solutions of the Schrödinger 

equations in the different regions (different potential energies) are 

known, the total wave function is composed out of the separate solutions by 

means of the boundary conditions. 

We will first describe the general matrix formalism and then confine 

ourselves to the description of the Matrix Formalism we applied on the DBRT 

structure unper transverse magnetic field. We will discuss the different 

structures of the device matrix which tells us whether the electron is able 

to participate in the current through our DBRT structure, or whether the 

electron is (quasi or truly) caught in the well. 

B.2. General Matrix Formalism. 

Consider two regions separated by an interface at z = Ç. The region on the 

left (z < Ç) will be called region m and the region on the right (z > Ç) 

will be called region m+l. Suppose we have found the complete set of 

solutions of a certain equation in both regions: 

region m: <f ,f ,f , .. > 
1 2 3 

region m+l: 

So, a general salution in region m , respectively m+l can be written as: 

00 00 

IJ! (z) = \ C f (z) 
m L j j 

IJ! (z) = \ D g (z) 
m+l L J J 

C and D constants 
J J 

j=l J=l 
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Suppose, the boundary conditions at z = ~ are continuity of IJl and 

continuity of its gradient: 

()() ()() ()() ()() 

\' C f (~) = \' D g (~) 
L JJ L JJ 

and: \' c f I(~) = \' D g I (~) 
L JJ L JJ 

(B.3) 

j=1 j=1 J=1 j=1 

These two equations can be written as a matrix equation, which connects the 

vector in basis <g > 
j 

to the vector in basis <f > by a matrix which contains 
j 

the values f (~), f 1 (~), g (~), and g 1 (~) in certain combinations. As an 
j j j j 

example, consider the bases left and right of the interface to be 

<f (z),f (z)> and <g (z),g (z)>, so that the conneetion rules are: 
1 2 1 2 

= [ :;::: :~::: H :: l (B.4) 

which we can rewrite as (with f 1 =f 1 (~) and g 1 =g' (~) etc.): 
j j j j 

f g
1 

-f
1 

g l 2 2 2 2 

f 1 g -f g 1 

2 1 2 1 

(B.S) 

Thus we can easily consider n interfaces after each other. The total matrix 

~ transfarms the vector on the outer left to the vector on the outer right: 

2 [ ::: l ~ ···~ ···~ 1 n-1 m 1 ~ 

:.2 left 

(B.6) 
n m+1 

Dependent on the set basis functions, the matrix ~ shows sametimes 

remarkable features. For instance, when dealing with the basis consisting 

of functions that are complex conjugated with respect to each other (such 

as exp(ikz) and exp( -ikz)), the matrix ~ bas the following form: 

(B.7) 
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We call this matrix form current carrying, as will become clear in the next 

section were the general matrix formalism is applied with a basis of plane 

waves on a Double Barrier Resonant Tunneling Structure. 

B.3. The DBRT-structure with a transverse magnetic field. 

In the chapter 3 we saw that in our model the wave functions that are the 

solutions of the Schrödinger equation with gauge ~ = (0,-Bz,O) are modeled 

as plane waves. Further, in our model we only consider tunneling from left 

to right, so that it is handy to perfarm the transfer matrix formalism in 

the opposite way: on the right hand side of the structure we take only an 

outgoing wave, namely exp(ik z). The matrix defined in section A.2 has 
zrlght 

to be inverted to apply on this configuration. This means that in this view 

current carrying matrix has also the form of Eq. (B. 7). 

The only difference with the B=O case lies in the fact that now the 

transmission probability depends not only for each k but also for each k . 
z y 

Further, the boundary conditions are different from Eq. (B.4) because the 

momenturn in the y-direction, k , can change suddenly when passing an 
y 

interface (See section 2.3 of the report). 

This all means that at an interface we have to glue the following wave 

functions according the boundary conditions (left and right of the 

interface respectively): 

111 = exp(ik x + ik y) • (c exp(ik z)+C exp( -ik z)) 
left x yl 1 zl 2 zl 

(8.8) 

111 = exp(ik x + ik y) • (c exp(ik z)+C exp( -ik z>) 
rlght x y2 3 z2 4 z2 

(8.9) 

Suppose the interface lies at z=~. then according to the boundary 

conditions described in the Chapter 2. Suppose the magnetic field is zero 

in the left region and non-zero in the right: 

k = k 
yl y2 

(B.lO) 
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Thus the boundary conditions for the two wave functions (8.8) and (8.9) 

are: 

exp(ik x+i(k - e~h8)y)• (c exp(ik ~)+C exp(-ik ~>) = 
x ~ 1 rl 2 rl 

exp(ik x+ik y)• (c exp(ik ~)+C exp(-ik ~>) 
x ~ 3 d 4 d 

(8.11) 

exp(ik x+i (k - e~h8) y) • (c ik exp(ik ~)-C ik exp( -ik ~>) = 
x y2 1 z1 z1 2 z1 z1 

exp(ik x+ik y) • (c ik exp(ik ~)-C ik exp( -ik ~>) 
x y2 3 z2 z2 4 z2 z2 

(8.12) 

The values of k is not important, they can be real or irnaginary dependent 
zi 

on the fact whether the kinetic energy h 2k
2
/2rn in the z-direction is 

z 
positive or negative. Frorn Eq. (B.ll) and (8.12) we learn that the fact 

that the k changes is no obstruction for perforrning Transfer Matrix 
y 

Forrnalisrn, as long as we keep in rnind what basis of functions we are 

working in. In fact, k changes only when the rnagnetic field changes, which 
y 

is only two tirnes in the whole structure. In fig.8.1 the value of k is 
y 

shown throughout the structure. 

A =0 A =-8z A =0 
y y y 

A A A 

k k k 
y, left y, mi ddle y, r ight 

x 
V V 

I e8L/h 
V 

z=O z=L 

Figure B.l The value of k changes when the vector potential is 
y 

discontinuous. In this example we used the choice of gauge described in 

chapter 2. 
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The fact that we have to deal with changing momenta in the y-direction is 

one of the changes a transverse magnetic field imposes on calculating the 

wave function. 

When a number of interfaces is considered, the total matrix can be 

calculated by a repetitive procedure which led to to the matrix for one 

interface. The wave functions on the right of the first interface serve as 

the incoming waves at the next interface. In [14] this is more elaborately 

described with matrices for the two harriers and a translation matrix for 

the well. 

In the B=O case we saw that whenever an electron had the resonance energy, 

it took part in the resonant current and therefore the total matrix was 

current carrying. In the non-zero field case, this is not always true: when 

an electron has an energy such that it tunnels into the level in the well, 

the second barrier may be impenetrable. We then say that the electron is in 

a quasi-bound state; it can only escape from the well by tunneling back to 

where it came from. 

Another possibility is that the electron is in the well, but it can't 

escape from it. We then say the electron is in a bound state. In our model 

this event doesn't occur because it implies coherence destroying processes: 

the electron will have to lose energy to get below both the band minima on 

the left and the right of the structure. This can happen for instanee when 

a electron tunnels non-resonantly into the well, looses energy by phonon 

interaction and is caught in the well. This is why with a transverse 

magnetic field charge build-up in the well can be very important. 

It is obvious that these three situations have different transfer matrices. 

In the next section we will discuss these three forms briefly. 

B.4. The three device matrix types 

B.4.1 The current carrying type. 

This type has been discussed thoroughly in [14], so here we will keep it 

short. Whenever a matrix is composed which describes the gluing of on one 

side an incoming and reflecting wave and on the other side an outgoing wave 

the matrix will be current carrying, no matter what obscure functions have 

to be used in the region between them. The result will always be (with only 
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an outgoing wave on the right hand side of the structure and with p and 't" 

the complex reflection coefficient and the complex transmission coefficient 

respecti vely: 

1 st b . arr1er well 

= [ 1/"[" p/1:" 

• • • p /"[" 1/'t" 

2 nd b . arrter 

B 
211 

• B 
212 

B 
212 

• B 
211 H: l 

(B.13) 

Eq. (B.13) describes . what combination of incoming/reflecting waves, 
• • exp(ikz) + p Tl't" exp(-ikz), is needed to get an outgoing wave T•exp(ikz). 

A resonant state is characterized by a maximum in the coefficient of the 

outgoing wave, which is equal to 1:". This is maximal when the following 

condition is valid: 

• 
'1 = 2k L 

res w w 

B •B 

( 
112 212 ) 

+ arg • = 
B •B 

111 211 

(N~) 2n 
2 

(B.14) 

Because we only deal with one level, so only one '1 , this equation is 
res 

very handy in calculating the charge density in the well, which will be 

discussed in the next chapter. 

B.4.2 The Quasi-Bound state type. 

This type will be encountered when one of the matrices for the harriers is 

not current carrying. In our model it is logical to confine this to the 

case that the second harrier is impenetrable because the potential energy 

on the right hand side of the structure is larger than the electroos 

kinetic energy. 

Therefore, the total matrix will be composed as follows: 
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(B.lS) 

In Eq. (B.14) it is clear that the last matrix on the right hand side is not 

current carrying; it describes the linking of plane waves in the well to 

exponentially damped functions. When k becomes imaginary the condition for 
z 

current carrying matrices is violated: exp( -Kz) is not the complex 

conjugate of exp(Kz). As a result of this the tot al matrix has the 
+ 

following form (with e- for exp(±ik L )): 
w w 

[ 
+ • - + • 

[ 
0 ::2] B e B +B e B B eB +B eB l 111 211 112 211 111 212 112 212 11 

0 = • • + • • - • + • • B e B +B eB B e B +B e B 0 
112 211 111 211 112 212 111 212 11 12 

(B.16) 

We can compose a condition which expresses at what circumstances we deal 

with maximum probability in the well, similar to Eq.(B.l4). Therefore we 

look at the amplitude of the wave in the well: 

111 c exp(ik z) + rt exp( -ik z) 
well w w 

(B.17) 

In Eq. (B.17) the coefficients c and rt are dependent of the various matrix 

elements via: 

B 
c = 

0
211 exp( -ik (L +L ) ) 

w 1 w 
11 

• B 
rt = 

0
211 exp(ik (L +L )) 

w 1 w 
11 

(B.18) 

In Eq.(B.18) L is the width of the first barrier and L the width of the 
1 w 

well. The amplitude of the wave function in the well is maximal when the 

matrix element 0 is minimaL So the Quasi-Bound-State condition reads: 
11 

'a' QBS 
= 2k L 

w w 

• B •B 

( 
112 211 ) + arg = 

B •B 
111 211 

(N~) 2n 
2 

(B.19) 

Comparing this with Eq.(B.14), we see that the same matrix elements are 
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involved, only with a different name. 

B.4.3 The Bound state type. 

The last type we will discuss is the type that one encounters when, for 

some reason, there is charge in the welL When the conduction band minima 

on either sides of the structure lie higher than the energy of the 

electron, the electron is truly bound in the well The "transfer" matrix 

connects two damped functions, one in front of the first barrier and one 

after the second barrier, by means of a standing wave in the welL This 

matrix will look like: 

D = !!,1•~•!!,2 = [ :lll ::11 ]· [ .-ikwLw ik:Lw ]· [ ::11 ::12] 

121 121 0 e 211 212 

= [ BB11.2~11.e~--B~22l1.11·····+····c~-c~-l-····B~1-~e-···B~l-~ .: e.c.] 

+c.c.::.B eB +e.c. 121 212 

(B.20) 

So that: 

(B.21) 

In search of a condition for a bound state we see that D = 0 to keep the 
21 

solutions under controL In terms of arguments of the various matrix 

elements this condition reads: 

2k L 
w w 

- 2arg(B ) - 2arg(B ) 
121 211 

= (N~) 2n 
2 

, N e 7l (B.22) 

We can also look at the amplitude of the wave function in the well and find 

out when that is maximaL It appears to be maximal when D is minima!, 
11 

which yields another condition: 

2k L 
w w 

- 2arg(B ) - 2arg(B ) 
111 211 

= (N~) 2n 
2 
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Camparing the last two conditions leads to the conclusion that apparently 

when the electron is in a bound state the arguments of B and B must 
111 121 

be the same. 

The conditions described in this sectien facilitate the finding of the 

energy level in the well when that is unknown or changing. 

In the next chapter we will thoroughly describe how the charge density in 

the well is calculated with the help of this transfer matrix formalism. 
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APPENDIX C: THE CALCULA TION OF CHARGE- AND CURRENT- DENSITIES. 

C.1 Introduetion 

In this appendix we will describe how the charge densities, specifically 

the one in the well, and the current density are calculated in our 

FORTRAN77 program. It is similar to Joosten's section 7.13 [14] with a few 

differences. 

First of all we will discuss the transition from summation to integral 

which is only possible when periadie boundary conditions are assumed. Then 

we will, with the help of the results of the chapter about the transfer 

matrix formalism, derive an analytica! expression for the integral over the 

kin et ie energy. Finally we will implement these results in an expres si on 

for the current density. 

C.2 The charge density in the left spacer. 

The general way to calculate a charge density is to count all electrans in 

a volume and to divide the result by this volume. Because we are dealing 

with quanturn mechanics we have to take probability and distribution into 

account (where are the electrans and how many are there?). Thus the wave 

function and the Fermi-Dirac distribution function are needed to calculate 

the electron density at position z: 

n3(z) = gs L L L liJ!(~.!:_) 12 
f FD(E(~)) 

k k k 
x y z 

(C.1) 

The wave function IJl must be appropriately normalized. When calculating the 

electron density in the well, the right value of IJl is the mean value of the 

envelope function in the well. When calculating the electron density in the 

left spaeer, the value of IJl at the beginning of the first barrier is an 

underestimation because the wave function penetrates the barrier a little. 

Therefore one has to be careful in choosing the IJl in Eq.(C.l). 

The summations over the wave numbers can be transformed with the help of 

periodie boundary conditions, that demand that the wave numbers k , k and 
x y 
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k are such that: z 

21l 
L

1 
= n k n e IN , i=x,y,z 

l 

(C.2) 

When the dimensions L are large enough we can change the summations into 
l 

integrals with: 

.!__ , ----7 .!.__ I dk 
L L 2n 1 

l k 

(C.3) 

x 

Because in Eq.(C.l) the wave function is appropriately normalized, the 

dimensions L disappear from the equations. 
l 

Befare calculating the charge density in the left spacer, n , we note 
3sp 

that for typical situations the reflection probability R is very near to 
D 

one, even for the resonant channel, so the following approximation will not 

introduce a large error: 

2 

exp(ik x)•exp(ik y)• ( exp(ik z) + R exp(-ik z>) 
x y z D z 

e! 2 (C.4) 

Thus the integral for the charge density in front of the first barrier 

looks like: 

n = g -
1
- I I I dk dk dk •2•f (E(k)) 

3sp s Sn3 x y z FD -
(C.5) 

Because the magnetic field is confined to the barriers and the well, we 

don't have to perfarm the integration over k 
y 

With a change of variables, from dk dk dk to 
x y z 

can be written as a Fermi-Dirac integral 

separate from the other two. 

dE, the integrals in Eq. ( C. 5) 

of order 1/2 [ 15]. These 

Fermi-Dirac integrals are the moments of the Fermi-Dirac distribution: 

{3j + 1 J 1 J 
= r(j+1) dE EJfF0 (E) = =r(r-:j-::+1:-...-) de 1+exp(c-l')) 

1 
{3-kT 

B 

(C.6) 

The result is a simple expression for the charge density in the left 
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spacer: 

n = e g [ m ]312 ~ ((3E ) 
3sp s 2Trh 2(3 112 F 

(C.7) 

In our model this three dimensional density is modeled as a two dimensional 

one in order to get a kink in the poten ti al energy. This is done by 

multiplying Eq.(C.7) by the width of the left spacer, L , which is about 
sp 

28.3 A. The spaeer is the first undoped layer from the structure, so it's 

the first region where the charge of the electrons isn't compensated by the 

donor atoms. In the next section we will describe the procedure for 

calculating the electron density in the well. 

C.3 The charge density in the well 

The calculation of the charge density in the well when a transverse 

magnetic field is present is different from the nonzero field case because 

we cannot perform the integral over 

somewhat different from the calculation 

is not realistic anymore. This is obvious 

in the well: 

k analytically. Further, it is 
y 

of n because approximation (5.4) 
3sp 

when we look at the wave function 

(C.8) 

The complex numbers 1)
11

, 1)
21 

and 0
11 

are complex matrix elements: l)iJ 

represents the matrix of the second barrier and D denotes the total 
ij 

matrix of the structure. The mean value of the wave function in the well is 

calculated by: 
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L +L 
1 w 

~w I dz 

L 
1 

2ik ( L + L ) 2ik L 
w 1 w w w 

• e - e • e 
+ 7l11 7l21 ----::2:-:i-:-k--=-L----- - 1l 11 7l21 

w w 

-2ik (L +L ) 
w 1 w 

2ik L 
w w 

-2ik L l w w 
e (C. 9) 

The factor between brackets is a smooth function of the electron energy; 

the peaked behavior is caused by the term 1/ I D 1
2

• In Eq. (C. 9), L is the 
11 1 

width of the first barrier, L is the width of the well, k is the wave 
w w 

number in the well and 7l and D are the aforementioned matrix elements, 
ij ij 

which are expressed in the different wave numbers of the electron in the 

following way (k is the complex wave number in region i, regions 2 and 4 
i 

are the first and second barrier respectively, regions 1 and 5 are the left 

and right spaeer and region 3 is the well): 

first barrier: (B ) = [ B u B 12] (C.lO) 
iJ B B 

21 22 

ik ik i(k -k )L ik ik i(k +k )L 
4B ( 1 

+ ik:) ( 
1 

+ ik :J 
3 2 1 (1 - i<) (1 - ik:J 

3 2 1 = e + e 
11 

ik ik -i(k +k )L ik ik -i(k -k )L 
4B (1 + i<) (1 - ik:J 

3 2 1 (1 - i<) (1 + ik:J 
3 2 1 = e + e 

12 

ik ik i(k -k )L ik ik i(k +k )L 
4B (1 - i<) (1 + i<) 

3 2 1 

( 1 + i<) ( 1 - i<) 
3 2 1 = e + e 

21 

ik ik -i(k +k )L ik ik -i(k -k )L 
4B (1 - i<) (

1 - ik:J 
3 2 1 ( 1 + i<) ( 1 + i<) 

3 2 1 = e + e 
22 

(C.ll) 

second barrier: (C.12) 
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i(k -k HL +L +L ) i(k -k HL +L ) 
54 lw2 43 lw 

e e + 

i(k +k HL +L +L ) -i(k +k HL +L ) 
54 lw2 43 lw e e 

( 

ik ) ( ik ) -i(k +k HL +L +L ) i(k -k HL +L ) 
4 1 

4
1 

5 541w2 431w 
Tl = + -;--k - -;--k e e + 

12 1 1 

( 
n( ) ( ik

4 
) -i(k -k HL +L +L ) -i(k +k HL +L ) 

1 
4

1 
5 541w2 431w 

+ -Ik +Ik e e 
3 4 

Total Device Matrix: 

_ ik5) 

ik 
ik

4 

- ~) ik 
4 

D =B11 +B11 
11 11 11 12 21 

i(k -k HL +L +L ) i(k +k HL +L ) 
54 1w2 43 1w e e + 

i(k +k HL +L +L ) -i(k -k HL +L ) 
54 1w2 43 1w 

e e 

-i(k +k HL +L +L ) i(k +k )(L +L ) 
54 1w2 43 1w 

e e + 

-i(k -k HL +L +L ) -i(k -k HL +L ) 
54 1w2 43 1w e e 

etc. 

Resonances occur when I D 
11

1
2 

is minima!, that is when: 

1 + R R + 2(R R )1
/

2c0s'1 
1 2 1 2 

----------- is minima!, with R 
1 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

8 is the transmission coefficient of the second harrier, provided that the 
2 

total device matrix is current carrying, otherwise one can not speak of 

transmission. A resonant or quasi-bound state is found when '1 is equal to 
1 

(N+-)n, with N an integer. 
2 
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Thus we have found an integral expression for the electron density in the 

well: 

n 
3w 

00 00 00 

= g -
1 

Jdk Jdk Jdk 
s 8n3 y z x 

-00 -00 -00 

(C.17) 

The integral over k is very simple to perfarm because only the Fermi-Dirac 
x 

distribution function depends on k . The integral over k can be performed 
x z 

analytically because we modeled the wave function as a delta-like function. 

The integral over k can not be performed analytically, because all matrix 
y 

elements are dependent on k . Therefore we will perfarm this integration 
y 

numerically. 

After performing the first integral Eq.(C.17) reads: 

1 
[ 
~ ]

1

/2 Joo dk J

00

dk I~~' 12 
ij ({3(E -E >) 

2 h2{3 Y z w -1/2 yz F 

-oo -oo 

(C.18) n = g 
3w s 4n3 

where E denotes E-h2k2/2m and I~~' 12 expression (5.8). We now concentrate yz x w 
on the integral over k , which contains the resonance: 

z 

00 

s = Jdk I~~' 1
2 

ij ({3(E -E >) z w -1/2 , yz F 

-00 

(C.19) 

Note that k is defined in the reservoir. The integral is separated in a 
z 

resonant and a non-resonant part. The Fermi-Dirac integral with order -1/2 

is a well behaving, smooth function of k . In a small area around the 
z 

resonance value of k it is in good approximation constant. Because in our 
z 

model we neglect the non-resonant current the integral S is written as: 

k +llk 
res 

S = ij ({3(E (k )-E >) I dkz l~~'w(kz) 12 
-1/2 yz res F 

(C.20) 

k -llk 
res 

Expression (C. 9) is a well behaving smooth function of k except the factor 
z 
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11ID
11

1
2
. With the same procedure as between Eq.(C.19) and (C.20), we get 

an integral over k of 111 D 1
2
: 

z 11 

k +llk 
res 

I dk ID 1-2 
z 11 

(C.21) 

k =k k -llk 
z res res 

where ( ( C. 9)) d~:otes the 

expressed I D 
11

1 in the 

integral in Eq.(C.21) reads: 

term between brackets in (C.9). In Eq.(C.16) we 

variables r, R , R , T , and e , so that the 
1 2 1 2 

I I dk TS S = dr _z 1 2 

dr 1 + R R + 2(R R )1/ 2cosr 
1 2 1 2 

(C.22) 

The factor dk /dr is determined numerically by calculating r for two 
z 

values of k close to the resonance value. With the substitution '1 1 =r-n, 
z 

Eq. (C.22) becomes a standard integral, whose salution is found in 
I 

Gradsteyn [GRAD80] (Equation 2.562), so that the integral S equals: 

s = 
2T e 

1 2 

1-R2 
ll, R = RR 

1 2 
(C.23) 

Thus the integration over k is analytically performed. (See also [14] 
z 

section 7.8). 

Summarizing, the electron density is calculated by: 

n =-
3w 

00 

( mn )1/2Idk (cc.9>) •ij (f3<E -E >). dkz. [2T 182] •n 
Zh2{3 y -1/2 yz F dr 1_R2 

k k k 
-oo res res res 

(C.24) 

where the integration over k 
y 

is performed numerically. The subscript k 
res 

means that the appropriate quantity is calculated with k 
z 

equal to k , 
res 

that is in the resonance. 
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C.4 The resonant current density. 

Because we have to consider each k separately to calculate the resonant 
y 

electron density in the well, it is logica! to do the same for the resonant 

current density. For each k we calculate the electron density in the well 
y 

and after that we determine the percentage that has a current carrying 

matrix for transfer matrix. We determine this by checking whether the 

electrons concerned can be described by plane waves on either side of the 

structure. 

Thus we calculate for all k 's considered the resonant current density 
y 

contribution and add them: 

+00 

dk j (k ) 
y z y 

(C.25) 

-00 

The current contributions j (k ) are calculated by the same procedure as in 
z y 

the zero field case; we calculate the non-accuroulating charge density in 

the right spaeer, to filter out the electrons at resonance that have an 

opposite velocity ( -v ). The resonance velocity involved is: 
res 

V 
res = ( 2(E +V +V )/m 

res a w ) 

112 

(C.26) 

In Eq.(C.26), E is the kinetic energy of the electron concerned in the 
res 

yz plane, measured from the conduction band minimum on the left of the 

structure: 

E - h k2 k2 2 ( ) - 2m y + res res 

Thus we get for the k dependent part of the resonant current density: 
y 

= e 
". (k ) 1-R (k ) 

t> w Y 
2 

Y /z(E (k )+V )/m 
L l+R (k ) res y a 

w 2 y 

j (k ) 
z y 

(C.27) 

(C.28) 

where the electron density in the right spaeer is written as a factor 
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r 
dependent of the transmission probability of the second barrier times the 

30 electron density in the well times a factor 1) which is one or zero. It 

is zero when the transfer matrix for the electrans is not current carrying 

which means that the resonance level lies below the conduction band minimum 

of the right spacer. It is one when the transfer matrix is current 

carrying. This factor 1) is the percentage of electrans that participates in 

the current. 
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