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ABSTRACT

Parameterization of magnetic flux-surfaces is often used for magnetohydrodynamic stability analysis and microturbulence modeling in toka-
maks. Shape parameters for such local parameterization of a (numerical) equilibrium are traditionally computed analytically using geometri-
cally derived quantities. However, often the shape is approximated by the average of values for different sections of the flux-surface contour or
a truncated series, which does not guarantee an optimal fit. Here, instead nonlinear least squares optimization is used to compute these parame-
ters, with a weighted sum of squared error cost function that is robust to outliers. This method results in a lower total absolute error for both
the parameterization of the flux-surface contour and the poloidal magnetic field density than current methods for several parameterizations
based on the well-known “Miller geometry.” Furthermore, rapid convergence of shape parameters is achieved, no approximate geometric mea-
surements of the contour are needed, and the method is applicable to any analytical shape parameterization. Validation with local, linear gyro-
kinetic simulations using these optimized shape parameters showed reduced root mean square errors in both the growth rate and frequency
spectra when compared with simulations based on numerical equilibria. In particular, the popular Turnbull–Miller parameterization benefits
from this approach, extending its usability closer toward the last-closed flux-surface for cases with minor up-down asymmetry.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0145001

I. INTRODUCTION

The magnetic field in a tokamak self-organizes into nested, axi-
symmetric surfaces of constant magnetic pressure, so-called flux-surfa-
ces. Radial transport in tokamak plasmas originates mostly from
instabilities that are aligned with the field on these surfaces. This is
often exploited in the choice of coordinate system for transport simu-
lations to speed up calculations; hence, a local description of the mag-
netic equilibrium suffices.

Mercier and Luc originally developed the local equilibrium method
in the context of MHD stability analysis,1 but it has since also been
widely adopted in neoclassical and microturbulence tokamak transport
calculations. As highlighted by Miller et al.,2 the information required to
solve the Grad–Shafranov equation using the local equilibrium method
consists of (1) the flux-surface shape; (2) the poloidal magnetic field
component along the flux-surface; and (3) the components of the

toroidal current p0 and ff 0, which, in practice, are computed from the
local safety factor q, magnetic shear ŝ, and normalized pressure gradient
a. Although this information can be extracted from numerically gener-
ated equilibria, as done routinely these days, this requires recomputation
of the equilibrium for every change in magnetic geometry. For increased
flexibility in exploring the impact of various geometry changes (and his-
torically because of limited computational power), a number of approxi-
mate analytical flux-surface parameterizations have been developed.2–8

The most popular of these is the so-called Miller geometry, often used
interchangeably to refer to both the original parameterization2 and its
extension by Turnbull et al. with elevation and squareness5 (recently
referred to as Turnbull–Miller8). Even though its inherent up-down
symmetric flux-surface shape limits its accuracy, e.g., near the separatrix,
it has been ubiquitous in microturbulence cross-code validation studies
in the plasma core.9–11
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Both Miller et al.2 and subsequently Luce7 presented analytical,
geometry-based methods of calculating shape parameters from a refer-
ence flux-surface contour. In practice, this contour is typically traced
on a rectangular grid of the poloidal magnetic flux that has a limited
resolution. This means that the required measurements of, e.g., the
flux-surface extrema have to be approximated through interpolation
or in some other manner. Another source of approximation is the fact
that tokamak plasmas are generally not up-down symmetric in the
poloidal plane, e.g., due to shaping near the plasma boundary for
exhaust purposes. Thus, measurements of flux-surface extrema with
respect to its centroid can also differ along its contour, leading to mul-
tiple values for the shape parameters depending on which extrema of
the plasma are used. The definition of plasma shape by Luce,7 which
has since become the standard in the IMAS data dictionary,12 solves
this by allowing for piece-wise parameterization. However, the param-
eterized local equilibrium models used in microturbulence codes allow
only a single value for the shape parameters as input in lieu of the
numerical challenges of implementing all quantities and equations in
piece-wise fashion. Therefore, often the averages of the different values
for different sections of the flux-surface contour are taken as approxi-
mate inputs. This can lead to discrepancies between microturbulence
predictions simulated with parameterized and exact numerical geome-
try in regions of the plasma that are strongly shaped, e.g., L-mode
near-edge or the pedestal region in H-mode. Although more general
parameterizations that mitigate this exist, e.g., Candy’s general Fourier
expansion6 and the Miller eXtended Harmonic (MXH) formulation
by Arbon et al.,8 these are not (yet) utilized widely. Until then, as
full-plasma radius integrated transport modeling with TGLF,13,14 a
quasi-linear turbulent transport model with Turnbull–Miller parame-
terization of the local equilibrium, becomes more commonplace,15,16

accurate shape parameters in these regions are needed.
The method presented here avoids the need for approximations

by using bounded nonlinear least squares optimization to compute the
shape parameters that match the reference flux-surface contour best.
As a demonstration, we apply this methodology to the aforementioned
Turnbull–Miller parameterization. Numerical equilibria of two JET-
ILW discharges with slightly different plasma shapes are used to illus-
trate the benefits of this approach. We then validate the method by
comparing local, linear gyrokinetic simulations with the GENE code17

that use parameterized local equilibrium, with both the averaged

analytic and optimized shape parameters, against such simulations
that use a numerical equilibrium. To show that this method general-
izes to asymmetric shapes and parameterizations, we then apply it to
the aforementioned Fourier andMXH parameterizations.

This paper is structured as follows. A summary of the
Turnbull–Miller parameterization is provided in Sec. II, followed by a
detailed description of the optimization routine in Sec. III. The two
JET-ILW discharges used to demonstrate the routine are introduced
in Sec. IV to examine the accuracy and convergence properties of the
optimization. This is followed by linear gyrokinetic validation using
these discharges in Sec. V. Asymmetry and the generalizability of the
method are discussed in Sec. VI. Finally, the conclusions and discus-
sion follow in Sec. VII.

II. TURNBULL–MILLER PARAMETERIZATION

The Turnbull–Miller flux-surface parameterization5 is given by

Rs ¼ R0 þ r cos ðhþ arcsind sin hÞ;
Zs ¼ Z0 þ rj sin ðhþ f sin 2hÞ;

(1)

where R0 is the plasma major radius, Z0 is the average plasma eleva-
tion, r is the plasma minor radius, j, d, and f are the plasma elonga-
tion, triangularity, and squareness, respectively, and h 2 ½0; 2p� is the
poloidal angle. j, d, and f all have up-down symmetric shaping effects
due to being in phase with (an integer fraction of) the poloidal angle h.
Thus, for this parameterization of a flux-surface, a set of six shape
parameters is required,

x ¼ fR0;Z0; r; j; d; fg; (2)

with generalized bounds l ¼ 0;�1; 0; 0;�1;� 1
2

� �
and u ¼ 1;f

1;1;1; 1; 12g. In practice, these bounds can be reduced to device-
specific limits.

The poloidal magnetic field along the flux-surface is given by2

Bp ¼ jr/�rwj ¼ @rw
Rs
jrrj; (3)

where / is the toroidal angle, and w is the poloidal flux. Using
Mercier–Luc coordinates to calculate jrrj and some algebra,2,6 we
obtain

Bp ¼
@rwR�1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2d þ j2c2f

q
cfj @rR0 þ cos ðhRÞ � sd sin h sin hR½ � þ cd @rZ0 þ jð sj þ 1ð Þsin hZð Þ þ sf sin 2hð Þcos hZð ÞÞ

� � ; (4)

where

cd¼: sin hRð Þ 1þ arcsin dð Þcos hð Þ; (5)

cf¼: cos hZð Þ 1þ 2f cos 2hð Þ
� �

; (6)

hR¼: hþ arcsinðdÞ sin h; (7)

hZ ¼: hþ f sin 2hð Þ; (8)

sj¼:
r@rj
j

; (9)

sd¼:
r@rdffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2
p ; (10)

sf¼: r@rf: (11)

Equation (4) involves derivatives of shape parameters with respect to
the plasma minor radius r. Therefore, a set of five additional shape-
derivative parameters,

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 063906 (2023); doi: 10.1063/5.0145001 30, 063906-2

VC Author(s) 2023

 08 August 2023 09:48:08

pubs.aip.org/aip/php


x̂ ¼ @rR0; @rZ0; sj; sd; sff g; (12)

with the generalized bounds l̂ ¼ f�1g5 and û ¼ f1g5, is required
to complete the parameterization of the local equilibrium. The inclu-
sion of flux-surface elevation Z0 and its radial derivative @rZ0 does
allow for up-down asymmetry of Bp, but this is typically relatively
minor.

The toroidal magnetic field along the flux-surface is given by

Bt ¼
fpðwÞ
Rs

; (13)

where fp is the poloidal current function.

III. OPTIMIZATION ROUTINE

In this section, the implementation of the shape parameter opti-
mization routine is explained. As a starting point, a numerical
Grad–Shafranov equilibrium solution, resulting in a poloidal flux map
wðR;ZÞ on a rectangular R, Z grid, is assumed. To compute shape
parameters that best match a reference flux-surface at a radial location
r from the magnetic axis, such that wðrÞ ¼ wref , the following meth-
odology is used:

• Trace flux-surface: The closed contour fRrðhrÞ;ZrðhrÞ j hr 2
½0; 2p�;wðRr;ZrÞ ¼ wrefg is traced. The contour tracing algo-
rithm developed for this only considers grid lines in a bounding
box fRbb;Zbb jwðRbb;ZbbÞ ¼ wlcfsg centered at the magnetic axis,
where wlcfs is the poloidal flux at the last-closed flux-surface
(LCFS) contour.

• Compute analytic shape parameters: The average analytic R0,
Z0, r, j, d, and f are computed for the reference flux-surface
using the definitions in Miller et al.2 and Luce.7 Flux-surface
extrema coordinates required for this are approximated by com-
puting the position, where the derivative of a fifth-order polyno-
mial fit to a limited number of poloidal points is equal to zero.

• Optimize Rs;Zs fit: Shape parameters that best match the refer-
ence flux-surface are calculated with nonlinear least squares. A
robust least squares solver, as implemented in the open-source
Python package scipy.optimize,18 is used for this. Among
the available options in this package, the utilized implementation
is based on a “trust region interior reflective” (TIR) algorithm19

to minimize a bound-constrained, weighted sum of squared error
cost function,

x ¼ min
x2<n

1
2

XNh�1

i¼0
qðfiðxÞ2Þ : l � x � u

( )
; (14)

where Nh is the total number of poloidal points hi of the reference
flux-surface contour, qðsÞ is the residual function, fiðxÞ is the resid-
ual, and l and u are the lower and upper bounds for x. Averaged
analytical shape parameters are used as the initial condition.
The soft_l1 residual function,18

qðsÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
1þ s
p

� 1
� �

; (15)

is used to make the minimization problem robust to outliers.20

This is similar to the Huber loss,21 a nonlinear, smooth approxi-
mation to the ‘1 loss.We calculate the residual as the weighted
sum of ‘1 and ‘2,

fiðxÞ ¼ Nh ‘1ðx; hiÞ þ ‘2ðx; hiÞð Þ; (16)

where ‘1 and ‘2 are the two-dimensional Manhattan and
Euclidian distances between parameterized and reference coordi-
nates of the flux-surface contour, respectively. The sum of the
distances was found to perform better than using either in isola-
tion, as it combines the speed of using the ‘1 norm, with the
accuracy of using the ‘2 norm.22

Due to the Turnbull–Miller parameterization involving poloidal
modifications in both Rs and Zs, the parameterization h-grid cannot
be calculated directly from the reference hr-grid. Therefore, to com-
pute ‘1 and ‘2, each iteration of the least squares, the reference flux-
surface is resampled by interpolating the discrete data on the basis of
the effective poloidal angle of the parameterization,

hs ¼ arctan
Zs � Z0

Rs � R0

	 

; (17)

where the result of the arctan is shifted such that hs 2 ½0; 2p�. For
parameterizations where a direct relation between h and hr
exists,8 this step is not required.

• Solve x̂ : The set of shape-derivative quantities can be computed
in two ways: (1) self-consistently, by taking the radial derivative
of x for several closely spaced consecutive flux-surfaces or (2)
consider the set additional degrees of freedom also to be opti-
mized with a least squares (see Appendix A for more details).
Only the first option is considered here.

This routine has been implemented in a new open-source
Python package called MEGPy,23 which can be both called as a stand-
alone tool and integrated in other workflows. It currently includes the
Miller,2 Turnbull–Miller,5 general Fourier expansion by Candy6 (both
the original and the GENE implementation), and MXH by Arbon
et al.8 flux-surface parameterizations, and others can easily be added.

IV. ACCURACY AND CONVERGENCE

Numerical equilibria from the L-mode phase of neutral beam
injection (NBI) heated deuterium JET-ILW discharges #83164 and
#95473 are used to demonstrate the optimization routine. See Table I
for their typical optimized shape and plasma parameters. These two
discharges were selected because they have slightly differing plasma
shapes with limited up-down asymmetry, while their discharge scenar-
ios and line-averaged plasma densities were similar, see Vincenzi
et al.24 for more details. The H-mode power thresholds of these dis-
charges also differ significantly. While a detailed analysis of this is out-
side of the scope of this paper, this represents a pertinent example
where investigating the impact of their shaping on the turbulent trans-
port with the use of well-fitted parameterized local equilibria is of
interest.

To generate numerical equilibria, the fixed-boundary
Grad–Shafranov solver ESCO25 was used. The last-closed flux-surfaces
from previous pressure-constrained, free-boundary EFITþþ26,27 equi-
librium calculations were used as boundary in ESCO. ESCO was run
coupled to the JETTO transport solver25 in current diffusion simula-
tions until the normalized toroidal flux coordinate qtor where q¼ 1
matched the approximate radial position of the sawtooth inversion-
radius qinv, as determined from electron cyclotron emission (ECE)
measurements. Plasma profiles used in JETTO came from Gaussian
process regression fits28 to experimental measurements, time-averaged
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over a window of 200ms during the L-mode phase of the discharges. For
#83164 (15.05–15.25 s), qinv � 0:380, while for #95473 (12.7–12.9 s),
qinv � 0:319. An ESCO grid of 451� 451 points was required to ensure
accurate safety factor and magnetic shear profiles near the boundary.

Flux-surfaces at qtor ¼ 0:85 and qtor ¼ 0:95 were traced on the
two-dimensional poloidal flux maps output by ESCO for both dis-
charges, see the blue dashed lines in Fig. 1. Averaged analytic and opti-
mized fit Turnbull–Miller parameterizations, as shown in Fig. 1 with
thin red and thicker green lines, respectively, were computed with
MEGPy using the routine described in Sec. III. The optimized fit
parameterizations fit the numerical flux-surface contours better, in
particular on the low-field side (right half) and on the top. Contour-
averaged absolute errors in ‘1 and ‘2 for the optimized fits were on
average �1.3� smaller than those of the analytical parameterizations
for the cases shown in Fig. 1. The optimization achieved this mainly
by finding better fitting values for elongation, triangularity, and
squareness.

To further quantify fit quality, we show P2, which replaces the
total sum of squares in the denominator of the coefficient of determi-
nation R2 with the residual sum of squares of the averaged analytical
parameterization. See Appendix B for more details on P2. Positive val-
ues for P2 mean that the optimized fit is that fraction better than the
averaged analytical approximation, with P2 ¼ 1 for a perfect fit, while
negative values indicate that the optimized fit is worse. For all the
examples in Fig. 1, P2 > 0, with significantly smaller average residuals

TABLE I. Overview of discharge specific input values for linear local gyrokinetic sim-
ulations with GENE for JET-ILW discharges #83164 and #95473 for qtor ¼ 0:85 and
qtor ¼ 0:95. R0, Z0, and r are in meters, ne in 10

19 m�3, and T in keV, and the rest
of the values are dimensionless. Shape parameters were optimized with Nh ¼ 7200.

Shot
#83164 #95473

qtor 0.85 0.95 0.85 0.95

R0 2.900 2.891 2.890 2.878
Z0 0.218 0.224 0.245 0.246
r 0.824 0.894 0.839 0.913
j 1.461 1.543 1.432 1.495
d 0.190 0.261 0.129 0.171
f �0.016 �0.019 �0.018 �0.021
@rR0 �0.123 �0.137 �0.144 �0.171
@rZ0 0.092 0.020 0.056 �0.100
sj 0.492 0.948 0.396 0.681
sd 0.711 1.050 0.367 0.718
sf 0.035 �0.201 �0.002 �0.128
q 2.616 3.645 2.910 3.917
ŝ 3.004 5.978 2.756 5.092
a 0.129 0.193 0.122 0.362
ne 1.485 1.091 1.465 0.995
Te 0.555 0.221 0.640 0.296
Ti=Te 1.056 1.685 0.942 1.213
R0=Lne 8.139 18.648 5.410 37.872
R0=LTe 24.349 56.144 19.503 47.797
R0=LTi 14.574 23.573 7.364 48.720

FIG. 1. Flux-surfaces at qtor ¼ 0:85 (inner) and qtor ¼ 0:95 (outer) for JET-ILW dis-
charges (a) #83164 and (b) #95473, with the exact numerical equilibrium from ESCO
(blue dash) and the averaged analytic (red) and optimized fit (green) Turnbull-Miller
parameterizations, respectively. (a) JET-ILW #83164 (15.05–15.25 s). (b) JET-ILW
#95473 (12.7–12.9 s).
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for the optimized fits when compared to the averaged analytical
parameterizations.

Remaining discrepancies in the lower-left quadrant between the
numerical and optimized parameterizations are due to the inherent
up-down symmetry limitations of the Turnbull-Miller formulation.
Overall, it is clear that the optimization routine is capable of fitting
more accurate flux-surface contours.

To be able to take reliable derivatives of the shape parameters
and compute the parameterized poloidal magnetic field Bp, smooth
radial profiles are required. Looking at examples for JET-ILW #83164
in Figs. 2 and 3, the optimization routine also succeeded at this. Radial
profiles of the optimized shape parameters are smooth; thus, the rou-
tine does not appear prone to local overfitting. Significant differences
between the averaged analytical and optimized elongation, triangular-
ity, and squareness start appearing past qtor ¼ 0:75. As a result, the
optimized poloidal magnetic field parameterizations are also signifi-
cantly more accurate, see, e.g., Fig. 3 for Bp for JET-ILW #83164 at
qtor ¼ 0:95, especially on the low-field side. Furthermore, the relative
error D of the contour-average of the overall magnetic field is also
always significantly smaller for the optimized than the averaged ana-
lytical parameterizations, as, e.g., for JET-ILW #83164 can be seen in
Fig. 4. Toward the LCFS, it levels off due to increased average error in
Bt balancing against reduced error in Bp.

For numerical convergence of the obtained shape parameters, the
typical amount of points in the numerical reference flux-surface traces
for our equilibria (Nh � 1500) seemed sufficient. When up-sampling

the number of poloidal points of the reference contours for our cases
up to Nh ¼ 7200 through interpolation, the only parameters that
changed noticeably were the triangularity (<1%) and squareness
(<5%) and their derivatives, with the other parameters being constant.
Moreover, these minor value changes had a negligible impact on the
contour-average relative errors of both the flux-surface contour and
Bp; thus, typically no up-sampling should be required.

The scipy implementation of the TIR algorithm used to solve
the least squares converges rapidly and seems to scale O

ffiffiffi
n
p� �

.
Increasing the number of poloidal points Nh included in the least
squares 10� increased the average computational time of the optimi-
zation routine per flux-surface by less than 3�, while the number of
function evaluations required per parameterization optimization

FIG. 3. Poloidal magnetic field as a function of hr for JET-ILW discharge #83164 at
qtor ¼ 0:95, with the exact numerical equilibrium (blue dash) and the averaged
analytical (red) and optimized (green) parameterizations. hr ¼ 0, 2p are on the out-
board side.

FIG. 4. Relative error D of contour-average B2 as a function of qtor 2 ½0:5; 1:0� for
JET-ILW discharge #83164, with red and green the averaged analytical and opti-
mized parameterizations, respectively.

FIG. 2. Radial profiles for JET-ILW discharge #83164 of the shape parameters R0,
j, Z0, d, r, f (from left to right, top to bottom) for qtor 2 ½0:5; 1:0�, with the aver-
aged analytic values in red and the optimized fit values in green.
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varied by less than ten percent. Even at Nh ¼ 7200, the average com-
putational time of the optimization routine per flux-surface was only
less than one second wall time, which is about two orders of magni-
tude larger than for the analytical calculations.

In addition to the TIR algorithm, the commonly used
Levenberg–Marquardt algorithm29 with a linear residual function
qðsÞ ¼ s was also considered. However, this performed worse when
compared in the final cost (at least two orders of magnitude higher),
fit to the reference flux-surface contour (10–20% larger contour-
average absolute errors), and poloidal magnetic field error (�50%
larger contour-average absolute errors).

V. IMPACT ON TURBULENCE SIMULATIONS

Linear, local gyrokinetic simulations of plasma microturbulence
were performed with the GENE code17 to investigate the impact of the
optimized parameterizations of the local equilibrium. Plasma parame-
ters and equilibria from the two JET-ILW discharges (#83164 and
#95473) at the two radial locations used in Sec. IV (qtor ¼ 0:85 and
qtor ¼ 0:95) were used, see Table I for (optimized) input values. Per
radial location simulations were performed with three equilibria: (1) a
numerical equilibrium from ESCO (mapped onto the GENE grid by
TRACER); (2) the averaged analytical parameterization; and (3) the
optimized fit parameterization.

Initial value simulations were setup with two kinetic species, elec-
trons and deuterium ions, with a Landau collision operator.
Electromagnetic effects, including parallel magnetic fluctuations, were
switched on. Plasma rotation was not included in the simulations.
GENE uses field-aligned coordinates fx; y; z; vjj;lg, where x and z are
the radial and field-aligned coordinates, respectively, y is the binormal
coordinate, i.e., orthogonal to both x and z, vjj is the parallel velocity,
and l is the magnetic moment. At qtor ¼ 0:85, ½nx; nz; nvjj ; nl� ¼ ½17;
48; 64; 18� were used as numerical resolutions, while at qtor ¼ 0:95,
½nx; nz; nvjj ; nl� ¼ ½17; 128; 64; 18� were used.

In simulations with the ESCO numerical equilibria, 14 binormal
wavenumbers ky 2 ½0:1; 2:0� were used, while in simulations with
parameterized local equilibria, the corresponding toroidal mode num-
bers ntor were used to allow direct comparison of the linear spectra.
Hyperdiffusion along the z-direction was set to hz¼ 5.

The linear initial value simulations only output the growth rate
and frequency of the fastest growing mode for each wavenumber. In
Fig. 5, the linear spectra for the two JET-ILW discharges at the two dif-
ferent radii are presented, and in blue squares, red triangles, and green
dots, the results from the simulations with numerical equilibria, aver-
aged analytical, and optimized parameterizations are presented,
respectively. In the GENE convention, negative frequencies indicate
modes in the electron diamagnetic drift direction, while positive fre-
quencies correspond to modes in the ion diamagnetic drift direction,
as indicated in the figures. Matching the linear growth rate spectra
from the simulations using numerical equilibria indicates that the tur-
bulence drives are predicted correctly. This is especially important for
instabilities in the low mode number/wavenumber range, where the
characteristic length scales of the turbulence are on the order of ion
gyroradii and most of the transport is generated. Furthermore, getting
the linear spectra correct is also important for accurate predictions by
quasi-linear turbulent transport models, such as TGLF.

The linear spectra for both #83164 and #95473 at qtor ¼ 0:85
show a relative close match for both the averaged analytical and

optimized fit parameterized equilibria, although the P2 values for the
flux-surface contours indicated that the optimized fits were signifi-
cantly closer to the numerical equilibria. The dominant linear mode in
#83164 is a hybrid mode,30 based on the frequency spectrum and
cross-phases between electrostatic potential and density and tempera-
ture fluctuations (not shown here), while #95473 is dominated by
trapped electron modes (TEM). The root mean square error (RMSE)
for the linear growth rates with the optimized parameterizations is
about half those with the averaged analytical for #83164 and about
twice those for #95364. The linear frequencies are also matched better
by optimized fit for #83164, while for #95473, the absolute errors are
about the same.

For the linear spectra at qtor ¼ 0:95, the differences are larger.
Both discharges have similar dominant linear modes, again hybrid
modes based on the frequency spectra and mode cross-phases (not
shown). For #83164 at this radius, there is a minor improvement in the
linear growth rate RMSE. Although the low mode number ion-scale
modes are significantly more accurately captured with the optimized
parameterization, the errors for the smaller scale modes remain similar
to those with averaged analytical parameterization. The trend in the fre-
quencies is also more accurately reflected in the optimized parameteri-
zation simulations. The differences for #95473 at qtor ¼ 0:95 are more
notable. In this case, the averaged analytical parameterizations are signif-
icantly under-predicting the linear growth rates in the low mode num-
ber range, with a RMSE more than three times as big as for the
optimized fit. The simulation with the optimized parameterization
approximates the one with the numerical equilibrium closely for both
the linear growth rate and frequency spectra, as well as getting the tran-
sition in ballooning representation of the modes (not shown here) cor-
rect as well. Although P2 > 0:5 for both discharges, higher P2 values do
not correlate directly with more accurate linear gyrokinetic results. In
addition to the flux-surface geometry, the local equilibrium parameteri-
zation affects i.a. magnetic resonances and all the gradient operators in
the gyrokinetic equations, which P2 does not quantify.

VI. ASYMMETRIC PARAMETERIZATIONS

To demonstrate that the presented method generalizes to any ana-
lytical local equilibrium parameterization, we repeat the previous linear
gyrokinetics validation step for both JET-ILW cases at qtor ¼ 0:95 now
with the aforementioned Fourier expansion (as implemented in GENE)
and MXH parameterizations. For convenience, both are briefly summa-
rized and any differences compared to Turnbull–Miller with respect to
the optimization routine as listed in Sec. III are highlighted.

The general Fourier expansion6 as implemented in the GENE
code, called miller_general, is given by31

Rs ¼ R0 þ rshapeðh; rÞ cos ðhÞ;
Zs ¼ Z0 þ rshapeðh; rÞ sin ðhÞ;

(18)

where

rshape¼:
XN�1
n¼0

cnðrÞ cos nhþ snðrÞ sin nh½ �: (19)

The MXH flux-surface parameterization8 is given by

Rs ¼ R0ðrÞ þ r cos ðhRðh; rÞÞ;
Zs ¼ Z0ðrÞ þ rj sin ðhÞ;

(20)
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where

hR¼
:

hþ c0ðrÞ þ
XN
n¼1

cnðrÞ cos nhþ snðrÞ sin nh½ �: (21)

For both generalized parameterizations, the plasma major and
minor radii R0 and r, average elevation Z0, and elongation j (in the
case of MXH) are calculated from a bounding box on the flux-surface

contour. Given that s0 drops out in the general Fourier case and is not
included in MXH, both parameterizations effectively require a similar
set of shape parameters to be solved,

x ¼ fc0; c1; s1;…; cn; sng: (22)

Thus, a total of nshape ¼ 2þ 2N shape parameters is required for
the Fourier expansion of the flux-surface, while MXH requires

FIG. 5. The normalized linear growth rate
c=ðcs=R0Þ (top) and frequency x=ðcs=
R0Þ (bottom) of the most unstable modes
as a function of toroidal mode number ntor.
The results from local gyrokinetic simula-
tions with GENE for JET-ILW discharges
#83164 [(a) and (c)] and #95473 [(b) and
(d)] at two radial locations each
(qtor ¼ 0:85; qtor ¼ 0:95) for two differ-
ent approaches of calculating the shape
parameters for the local Turnbull-Miller
parameterization (red triangles and green
circles) are compared with simulations
using their respective numerical equilib-
rium solution (blue squares).
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nshape ¼ 5þ 2N shape parameters, of which 1þ 2N are fitted for
both parameterizations. Although tempting, including R0, Z0, r, and j
in the optimization of x tends to result in non-smooth profiles for the
other shaping parameters, this is, therefore, not recommended.

The two parameterizations differ in their sets of shape derivative
parameters, given by

x̂Fourier ¼ f@rc0; @rc1; @rs1;…; @rcn; @rsng (23)

and

x̂MXH ¼ f@rR0; @rZ0; sj; sc0 ; sc1 ; ss1 ;…; scn ; ssng; (24)

where the normalized shape derivatives sc0 are of the same form as sf
in Eq. (11). The Fourier implementation in GENE has a fixed plasma
major radius and elevation for every flux-surface, hence the absence of
@rR0 and @rZ0.

FIG. 6. Flux-surfaces (a) and Bp (b) for qtor ¼ 0:95 JET-ILW #83164 (15.05–15.25
s), with the exact numerical equilibrium solution from ESCO (blue dash) and
Turnbull-Miller (green) and MXH6 (purple) parameterizations, respectively, both cal-
culated with our optimization routine. (a) JET-ILW #83164 flux-surface at
qtor ¼ 0:95. (b) JET-ILW #83164 Bp at qtor ¼ 0:95.

FIG. 7. Relative errors D for (a) contour-average total magnetic field squared hB2i
and (b) contour-average poloidal magnetic field hBpi as a function of the number of
shape parameters nshape included in the contour parameterization for JET-ILW
#83164 at qtor ¼ 0:95. Data shown for averaged analytic Turnbull-Miller (red star,
nshape ¼ 6), optimized Turnbull-Miller (green triangle, nshape ¼ 6), MXH (purple
circles, nshape ¼ 5þ 2N), and general Fourier (orange diamonds, nshape ¼ 2þ 2N)
parameterizations. (a) D hB2i (b) D hBpi.
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As initial condition, all shape parameters are set to zero for MXH
and linearly decreasing between one and zero for the Fourier expan-
sion [or the result of a truncated fast Fourier transform (FFT) can be
used]. For MXH, all the shaping is implemented as phase modifica-
tions to the radial flux-surface coordinate only; thus, there the h-grid
can be calculated directly from the discrete reference flux-surface verti-
cal coordinates and no re-basing on hs is required. Despite these differ-
ences compared with Turnbull–Miller and the larger set of shape
parameters to solve, the optimization routine described in Sec. III
retains similar performance without the need for modifications.

The generalized parameterizations have significantly more shap-
ing parameters than Turnbull–Miller (nshape ¼ 6). This increases the
versatility of such general parameterizations to match complex flux-
surface shapes. See, for example, Fig. 6 where MXH6 (N¼ 6), which
considered a proxy for the exact solution by Arbon et al.,8 is compared
against the optimized Turnbull–Miller result and the numerical equi-
librium solution for JET-ILW #83164 at qtor ¼ 0:95. In contrast to the
optimized Turnbull-Miller solution P2 ¼ 1, although some minor dis-
crepancies in Bp remain. Two more such examples for numerical equi-
libria with more complex shaping (tilting and complex asymmetry)
are shown in Figs. 9 and 10, Appendix C.

While the number of shape parameters is of similar order, the
accuracy of the MXH parameterization converges much faster with
the number of parameters than the general Fourier expansion, as
already highlighted by Arbon et al. As an example of this, see Fig. 7,
where the relative contour-average errors in the total magnetic field
hB2i and poloidal magnetic field component hBpi compared with the
numerical equilibrium solution for JET-ILW #83164 at qtor ¼ 0:95
are shown for all of the parameterizations considered in this work.
Increasing the number of included harmonics in MXH (N¼ 1, 2,
3,…) decreases the errors in the magnetic field rapidly and signifi-
cantly, while for the general Fourier expansion this reduction is much

smaller. It is important to note though that even while contour-
average errors in the poloidal magnetic field can be of similar order of
magnitude, visual inspection of the poloidal profiles showed that for a
similar amount of shape parameters the MXH profiles were signifi-
cantly closer to the numerical equilibrium solution.

The linear gyrokinetic simulations performed with the
Turnbull–Miller parameterizations at qtor of JET-ILW discharges
#83164 and #95473 were repeated for both the Fourier and MXH
parameterizations. For this, the MXH parameterization was added to
the GENE code. The same GENE settings as for the Turnbull–Miller
parameterizations were used, see Fig. 8 for the results. Initial simula-
tions were performed with MXH6 (not shown here), given the results
by Arbon et al. However, it was found that a significant improvement
for a few hard to match toroidal mode numbers could be achieved by
doubling the amount of shape parameters (MXH12) in the #95473
case. No such further improvement was seen in the #83164 case. For
comparison, simulations with the maximum number of shape param-
eters possible in GENE for the Fourier parameterization (N¼ 32)
were performed. As expected, overall the linear growth rate and fre-
quency spectra of simulations with both generalized parameterizations
are significantly closer to those from simulations with the numerical
equilibria than those for the optimized Turnbull–Miller parameteriza-
tions. The optimized Fourier parameterization simulations were also
compared against ones with shape coefficients determined by trun-
cated fast Fourier transform (not shown) and found to match the
numerical equilibrium solutions similarly or marginally better.
Remaining differences between the linear spectra from simulations
with local parameterization and simulations with the numerical equi-
libria are most likely due to: (1) numerical differences caused by map-
ping and tracing of the rasterized numerical equilibrium input into
GENE; (2) the two geometry options using different radial coordi-
nates, qtor in simulations with the numerical equilibrium vs r in

FIG. 8. The normalized linear growth rate
c=ðcs=R0Þ (top) and frequency x=ðcs=R0Þ
(bottom) of the most unstable modes as a
function of toroidal mode number ntor. The
results from local gyrokinetic simulations with
GENE for JET-ILW discharges #83164 (a)
and #95473 (b) at qtor ¼ 0:95 are com-
pared for two optimized parameterizations,
Fourier (orange diamonds) and MXH12 (pur-
ple circles), with simulations using their
respective numerical equilibrium solution
(blue squares).
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simulations with parameterized geometry, which can lead to further
mapping differences (e.g., increasing the magnetic shear for #95473 at
qtor ¼ 0:95 by less than 5% further reduces some of the discrepancies);
or (3) the locally linearized approximation of the numerical equilib-
rium might not hold exactly this close to the last-closed flux-surface.

VII. CONCLUSIONS AND DISCUSSION

We have developed a fast and accurate method of determining
shape parameters that best fit a reference flux-surface for a given ana-
lytic flux-surface parameterization. The optimization routine was
demonstrated to result in significantly more accurate parameteriza-
tions of the local magnetohydrodynamic equilibrium for the popular
Turnbull–Miller formulation. Flux-surface contour-average errors for
optimized fits were found to be up to thirty percent smaller than those
of the traditional averaged analytical parameterizations. Radial profiles
of optimized shape parameters were found to be smooth, with no signs
of overfitting. Their radial derivatives resulted in significantly more
accurate parameterizations of the poloidal magnetic field component
along the flux-surface contours, especially on the low-field side of the
plasma. Relative errors of the contour-averaged parameterized mag-
netic field were found to always be smaller than those for traditional
analytical parameterizations.

The optimization routine scales O
ffiffiffi
n
p� �

with the number of
poloidal points and converges within less than one second wall time.
Although two orders of magnitude slower than traditional analytic cal-
culations, this is an upper limit as typical numerical equilibria do not
include as many grid points as used in this work. This is fast enough
to be useful for integrated transport modeling of the full plasma vol-
ume inside the last-closed flux-surface, especially if parallelized or only
applied for radii qtor � 0:75.

We have shown that, although Turnbull–Miller only allows for
up-down symmetric flux-surface contours, modest up-down asymme-
try near the plasma boundary does not appear to prevent its use with
optimized fits. Local, linear gyrokinetic simulations of the plasma
microturbulence for two JET-ILW discharges showed that optimized
parameterizations of their local equilibria resulted in more accurate
linear growth rate and frequency spectra, particularly at the crucial
ion-scale, where most transport due to turbulence originates, and most
notably in more strongly shaped regions of the plasma.

Thus, our method extends the usability of the Turnbull-Miller
parameterization, while it can also easily be utilized for generalizations
thereof.
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APPENDIX A: METHODS FOR OPTIMIZATION
OF SHAPE DERIVATIVE QUANTITIES

If one considers the set of shape derivative quantities as more
degrees of freedom to be optimized, there are two possible
approaches: (1) solve the union of x and x̂ with a single optimiza-
tion routine or (2) first solve x using the optimization routine from
Sec. III and subsequently solve x̂ with an additional minimization
problem. As all these options were explored over the course of this
work, but ultimately not used, we list them here for completeness.

Although the all-at-once option seems ideal, as it should pre-
vent solving the parameterization of the local equilibrium for a local
minimum of the contour fit, it was found to be a challenging opti-
mization problem to implement in practice. Nevertheless, the fol-
lowing are three possible approaches to this:

• Extend the optimization routine presented in Sec. III by adding the
‘1 distance for Bp to the residual fi. This simultaneously penalizes
errors in the parameterization of the flux-surface contour and poloi-
dal magnetic field. Unfortunately, we found this approach not trac-
table with the least squares solvers used in this work, as the
algorithms ran out of function evaluations before reaching the
residual thresholds (even when raised orders of magnitude).

• Replace the ‘1 and ‘2 distances for the flux-surface contour with
the ‘1 distance for Bp in the residual fi, as Eq. (4) includes both
the shape and shape derivative parameters. Although this can
result in small errors in the parameterized Bp, for the cases con-
sidered in this work the solver achieved this by forcing shape
parameters inconsistent with the reference flux-surface contour
and it required narrow bounds to get reasonable results. Thus,
this results in an underconstrained problem, and narrow,
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case-specific bounds defeat the purpose of a generalized fitting
algorithm.

• Extend the optimization routine in Sec. III by adding the ‘1 dis-
tances for @rRs; @rZs; @hRs and @hZs to the residual fi. However,
for the Turnbull-Miller parameterization, this is challenging to
implement as it requires knowing r and the hs-grid for multiple
flux-surfaces in order to be able to calculate radial and poloidal
derivatives of the reference flux-surface contour at the radial
position of interest. Nested loops of optimization are then
unavoidable, which increases the complexity and thus slows
down the routine.

The two-stage optimization option turned out to be more
practical. Two possible approaches were implemented in MEGPy,
which are as follows:

• Solve x̂ by minimizing the ‘1 distance for Bp for the radial posi-
tion of interest. This produces shape-derivative parameters that
generally provide a smaller error in the poloidal magnetic field
parameterization than calculating them self-consistently from
radial profiles of the shape parameters, especially on the low-field
side. However, the resulting parameterizations can be inconsis-
tent with the (numerically generated) Grad–Shafranov equilib-
rium solution as minimizing the error in Bp means effectively
minimizing the error in the sum of gradient terms in the
Jacobian of the parameterization. Therefore, when performing
linear gyrokinetic simulations with these parameterizations, the
benefits of the lower error in the poloidal magnetic field can be
negated by the increased errors in the radial derivatives of the
flux-surface shape that cascade through the gradient operators in
the physics equations solved. Thus, we found that sometimes it
can be beneficial, but it is unpredictable beforehand.

• Solve x̂ by minimizing the ‘1 distances for @rRs; @rZs; @hRs and
@hZs for the radial position of interest. This guarantees a parame-
terization consistent with the numerically generated
Grad–Shafranov solution. Nevertheless, the resulting shape-
derivative values were very close to the values calculated from fit-
ting multiple, closely spaced flux-surface contours and taking the
radial derivatives (the “self-consistent” option from Sec. III).
Often, the contour-average error in the poloidal magnetic field
was actually higher. As a result, the linear gyrokinetic spectra
were also very close to the simulations with self-consistent x̂
(<5% difference).

Thus, although it might seem tempting to consider the shape-
derivative parameters as additional degrees of freedom to be opti-
mized, in practice computing the radial derivatives for multiple
closely spaced flux-surfaces self-consistently generally results in the
most accurate linear gyrokinetic spectra and is, therefore, the rec-
ommended approach.

APPENDIX B: QUANTIFYING FIT ACCURACY

To quantify the quality of an optimized fit to a reference
flux-surface contour, we replace the total sum of squares SStot
in the denominator of the coefficient of determination R2

with the residual sum of squares of the averaged analytical
parameterization,

P2 ¼ 1� SSres;o
SSres;a

; (B1)

where the indices o and a indicate the optimized fit and averaged
analytical parameterizations, respectively,

SSres;o ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
r;i þ Z2

r;i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
o;i þ Z2

o;i

q	 
2

; (B2)

SSres;a ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
r;i þ Z2

r;i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
a;i þ Z2

a;i

q	 
2

; (B3)

where the index r indicates the numerical reference flux-surface,
and i is the index of the poloidal sample. This is a more mean-
ingful metric than R2, as that effectively compares the parame-
terizations against a circle with the average minor radius of
the reference flux-surface contour and thus always leads to
R2 � 1.

APPENDIX C: EXAMPLES OF COMPLEX SHAPING

The optimization routine has no problem handling complex
shaping (tilting, asymmetry, etc.). See two more examples of flux-
surfaces at qtor ¼ 0:95 traced on numerical Grad–Shafranov equi-
librium solutions generated with the CHEASE code32 in Figs. 9
and 10.

FIG. 9. Shaped and tilted flux-surface at qtor ¼ 0:95, with the averaged analytical
Turnbull-Miller parameterization (red) and the optimized Turnbull-Miller (green) and
MXH6 (purple) parameterizations, respectively, compared against the exact numeri-
cal equilibrium solution from CHEASE (blue dash).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 063906 (2023); doi: 10.1063/5.0145001 30, 063906-11

VC Author(s) 2023

 08 August 2023 09:48:08

pubs.aip.org/aip/php


REFERENCES
1C. Mercier and H. Luc, Report No. EUR-5127e 140 (Commission of the
European Communities, Brussels, 1974).

2R. L. Miller, M. S. Chu, J. M. Greene, Y. R. Lin-Liu, and R. E. Waltz,
“Noncircular, finite aspect ratio, local equilibrium model,” Phys. Plasmas 5,
973–978 (1998).

3J. Greene and M. Chance, “The second region of stability against ballooning
modes,” Nucl. Fusion 21, 453–464 (1981).

4C. Bishop, P. Kirby, J. Connor, R. Hastie, and J. Taylor, “Ideal MHD ballooning
stability in the vicinity of a separatrix,” Nucl. Fusion 24, 1579–1584 (1984).

5A. D. Turnbull, Y. R. Lin-Liu, R. L. Miller, T. S. Taylor, and T. N. Todd,
“Improved magnetohydrodynamic stability through optimization of higher
order moments in cross-section shape of tokamaks,” Phys. Plasmas 6,
1113–1116 (1999).

6J. Candy, “A unified method for operator evaluation in local Grad–Shafranov
plasma equilibria,” Plasma Phys. Controlled Fusion 51, 105009 (2009).

7T. C. Luce, “A simplified analytic form for generation of axisymmetric plasma
boundaries,” Plasma Phys. Controlled Fusion 59, 042001 (2017).

8R. Arbon, J. Candy, and E. A. Belli, “Rapidly-convergent flux-surface shape
parameterization,” Plasma Phys. Controlled Fusion 63, 012001 (2021).

9R. Bravenec, J. Citrin, J. Candy, P. Mantica, and T. G€orler, “Benchmarking the
GENE and GYRO codes through the relative roles of electromagnetic and EXB
stabilization in JET high-performance discharges,” Plasma Phys. Controlled
Fusion 58, 125018 (2016).

10G. Merlo, O. Sauter, S. Brunner, A. Burckel, Y. Camenen, F. J. Casson, W.
Dorland, E. Fable, T. G€orler, F. Jenko, A. G. Peeters, D. Told, and L. Villard,
“Linear multispecies gyrokinetic flux tube benchmarks in shaped tokamak
plasmas,” Phys. Plasmas 23, 032104 (2016).

11G. Staebler, E. A. Belli, J. Candy, J. Kinsey, H. Dudding, and B. Patel,
“Verification of a quasi-linear model for gyrokinetic turbulent transport,” Nucl.
Fusion 61, 116007 (2021).

12See https://sharepoint.iter.org/departments/POP/CM/IMDesign/Data%20Model/
CI/imas-3.37.0/html_documentation.html for “ITER IMAS data dictionary doc-
umentation,” accessed November 2022, requires ITER access.

13G. M. Staebler, J. E. Kinsey, and R. E. Waltz, “A theory-based transport model
with comprehensive physics,” Phys. Plasmas 14, 055909 (2007).

14G. M. Staebler and J. E. Kinsey, “Electron collisions in the trapped gyro-landau
fluid transport model,” Phys. Plasmas 17, 122309 (2010).

15C. Kiefer, C. Angioni, G. Tardini, N. Bonanomi, B. Geiger, P. Mantica,
T. P€utterich, E. Fable, and P. Schneider, “Validation of quasi-linear tur-
bulent transport models against plasmas with dominant electron heating
for the prediction of ITER PFPO-1 plasmas,” Nucl. Fusion 61, 066035
(2021).

16C. Angioni, N. Bonanomi, E. Fable, P. Schneider, G. Tardini, T. Luda, and G.
Staebler, “The dependence of tokamak L-mode confinement on magnetic field
and plasma size, from a magnetic field scan experiment at ASDEX upgrade to
full-radius integrated modelling and fusion reactor predictions,” Nucl. Fusion
63, 056005 (2023).

17F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, “Electron temper-
ature gradient driven turbulence,” Phys. Plasmas 7, 1904–1910 (2000).

18See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_s-
quares.html for “scipy.optimize.least_squares v1.9.3,” accessed November 2022.

19M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems,”
SIAM J. Sci. Comput. 21, 1–23 (1999).

20B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
Adjustment — A Modern Synthesis” in Vision Algorithms: Theory and
Practice, Lecture Notes in Computer Science edited by B. Triggs, A. Zisserman,
and R. Szeliski (Springer, Berlin, Heidelberg, 2000), pp. 298–372.

21P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Stat. 35,
73–101 (1964).

22H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” J. R. Stat. Soc. Ser. B 67, 301–320 (2005).

23See https://www.github.com/gsnoep/megpy for “MEGPy.”
24P. Vincenzi, E. R. Solano, E. Delabie, C. Bourdelle, G. Snoep, A. Baciero,
G. Birkenmeier, P. Carvalho, M. Cavedon, M. Chernyshova, J. Citrin, J.
M. Fontdecaba, J. C. Hillesheim, A. Huber, C. Maggi, S. Menmuir, and
F. I. Parra, “Power balance analysis at the L-H transition in Jet-ILW
NBI-heated deuterium plasmas,” Plasma Phys. Controlled Fusion 64,
124004 (2022).

25G. Cenacchi and A. Taroni, “JETTO: A free-boundary plasma transport code,”
Technical report (ENEA, Italy, 1988).

26L. Appel and I. Lupelli, “Equilibrium reconstruction in an iron core tokamak
using a deterministic magnetisation model,” Comput. Phys. Commun. 223,
1–17 (2018).

27G. Szepesi, L. Appel, E. de la Luna, L. Frassinetti, P. Gaudio, M. Gelfusa, S.
Gerasimov, N. Hawkes, M. Sertoli, D. Terranova, and JET Contributors,
“Advanced equilibrium reconstruction for JET with EFITþþ,” in 47th EPS
Conference on Plasma Physics (2021), p. 3.1037.

28A. Ho, J. Citrin, F. Auriemma, C. Bourdelle, F. Casson, H.-T. Kim, P. Manas,
G. Szepesi, and H. Weisen, “Application of Gaussian process regression to
plasma turbulent transport model validation via integrated modelling,” Nucl.
Fusion 59, 056007 (2019).

29J. J. Mor�e, “The Levenberg-Marquardt algorithm: Implementation and theory,”
in Numerical Analysis, edited by G. A. Watson (Springer, Berlin, Heidelberg,
1978), pp. 105–116.

30M. Kammerer, F. Merz, and F. Jenko, “Exceptional points in linear gyro-
kinetics,” Phys. Plasmas 15, 052102 (2008).

31See “3.2.7 The geometry namelist” in “The gyrokinetic plasma turbulence code
GENE: User manual” for “miller_general.”

32H. L€utjens, A. Bondeson, and O. Sauter, “The CHEASE code for toroidal MHD
equilibria,” Comput. Phys. Commun. 97, 219–260 (1996).

FIG. 10. Complex asymmetrical flux-surface at qtor ¼ 0:95, with the averaged ana-
lytical Turnbull-Miller parameterization (red) and the optimized Turnbull-Miller
(green) and MXH6 (purple) parameterizations, respectively, compared against the
exact numerical equilibrium solution from CHEASE (blue dash).

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 063906 (2023); doi: 10.1063/5.0145001 30, 063906-12

VC Author(s) 2023

 08 August 2023 09:48:08

https://doi.org/10.1063/1.872666
https://doi.org/10.1088/0029-5515/21/4/002
https://doi.org/10.1088/0029-5515/24/12/006
https://doi.org/10.1063/1.873380
https://doi.org/10.1088/0741-3335/51/10/105009
https://doi.org/10.1088/1361-6587/aa5393
https://doi.org/10.1088/1361-6587/abc63b
https://doi.org/10.1088/0741-3335/58/12/125018
https://doi.org/10.1088/0741-3335/58/12/125018
https://doi.org/10.1063/1.4942539
https://doi.org/10.1088/1741-4326/ac243a
https://doi.org/10.1088/1741-4326/ac243a
https://sharepoint.iter.org/departments/POP/CM/IMDesign/Data%20Model/CI/imas-3.37.0/html_documentation.html
https://sharepoint.iter.org/departments/POP/CM/IMDesign/Data%20Model/CI/imas-3.37.0/html_documentation.html
https://sharepoint.iter.org/departments/POP/CM/IMDesign/Data%20Model/CI/imas-3.37.0/html_documentation.html
https://doi.org/10.1063/1.2436852
https://doi.org/10.1063/1.3505308
https://doi.org/10.1088/1741-4326/abfc9c
https://doi.org/10.1088/1741-4326/acc193
https://doi.org/10.1063/1.874014
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://www.github.com/gsnoep/megpy
https://doi.org/10.1088/1361-6587/ac97c0
https://doi.org/10.1016/j.cpc.2017.09.016
https://doi.org/10.1088/1741-4326/ab065a
https://doi.org/10.1088/1741-4326/ab065a
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1063/1.2909618
https://doi.org/10.1016/0010-4655(96)00046-X
pubs.aip.org/aip/php

