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ABSTRACT
Due to the advent of nanotechnology, deficiencies and limitations inherent in stimuli-responsive shape 
memory polymeric matrices (SMP), have been effectively mitigated, through the inclusion of a versatile 
range of organic or inorganic nanoparticulates within the confines of SMP matrice/s. This phenomenon 
has resulted in the emergence of shape-memory polymeric nanoarchitectures (SMPNs) possessing 
enhanced and outstanding properties, when compared with the pristine SMP, and this has subse
quently enlarged their scope of applications (civil engineering, biomedical gadgets, aerospace, bionics 
engineering, energy, electronic engineering, household products, and textile engineering). 
Furthermore, SMPNs enhances athermal stimuli-activities including electroactivity, magneto-activity, 
water-activity, and photo-activity, as well as shape memory effect (SME) including multiple-shape 
memory effect (MSME), spatial shape memory effect (SSME), as well as dual-route shape memory effect 
(DRSME). This elucidation is essential and imperative at this time to enlighten the polymeric universe on 
new advancements in fabrication, features and applications of stimuli responsive SMPNs. Therefore, this 
paper, presents, very recently emerging advancements, in construction, characterization, properties and 
multifunctional applications of stimuli-responsive SMPNs with special emphasis on carbon nanotubes 
(CNT), carbon nanofibers (CNF), cellulose nanocrystals, and nanoclay reinforced SMPNs.
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1. Introduction

Stimuli-responsive polymeric matrices remarkably vary 
their attributes including phase separation, shape, 
mechanical behaviors, surface, permeability, optically 
inclined properties, as well as electrical attributes when 
subjected to small changes in environmental parameters 
relative to electric field, temperature, pH, glucose, light, 
electrical field, magnetic field, sonic field, ions, solvent, 
as well as enzymes as depicted in Figure 1.[1–7] 

Shape memory polymers (SMPs) are a class of stimuli 
responsive polymeric matrices, capable of recovering 
their original (or permanent) shape when subjected to 
external stimuli.[8–14] SMPs are capable of versatile uti
lization in varying areas including biomedical gadgets, 
textiles, aerospace, energy, electronic engineering, bio
nics engineering, civil engineering, as well as household 
items. Table 1 summarizes prevalent applications of 
SMPs in biomedicals, while Table 2 presents SMP appli
cations in functional textiles.

SMPs are composed of a permanently fixed and 
temporarily shaped configurations resulting from 
a synergy of molecular chemistry as well as 
a programming outlay.[42] The necessary chemical 
architecture entails a net-point as well as a molecular 
switch sensitive to stimulus. Similarly, SMPs may be 
perceived as copolymeric matrices composed of a hard 
and soft components functioning as a fixed and rever
sible phase, respectively. The fixed phase hinders poly
meric chains flowing on stress application while the 
reversible phase exhibits deformation and molecular 
switching which freezes the temporary shape on stimu
lation while returning to the original configuration on 
stimulation switching. The mechanisms of the molecu
lar disposition of SMPs architecture is elucidated in 

Scheme 1, and capable of being applied to differing 
forms of SMPs.[42] 

Here, SMPs are composed of both net-points as well 
as molecular switches. This fixed phase or net-points are 
garnered through inclusion of inter-locked supra- 
molecularly inclined complexes, crystalline segments, 
chemical cross-linkages, interpenetrating networks, 
and chain entanglements. The switch portions take 
care of shape fixity as well as recovery upon application 
of an external stimulus. Thus, crystalline, liquid crystal
line, amorphous segments, supramolecular substrates, 
light-reversible synergies, along with percolating cellu
lose-whiskers have been incorporated as switching enti
ties in SMPs.[42] The phase of reversibility fixes the 
temporary configuration via crystallization, glass transi
tion, isotropic transition, supramolecular interactions, 
reversible covalence or non-covalent bonding.[42]

On the other hand, SMPs exhibit intrinsically inferior 
mechanical strength, low shape recovery stress, poor 
stiffness due to low rubbery moduli, elongated time of 
recovery, poor responsivity as a result of inferior ther
mal conductivity, along with electromagnetic un- 
responsivity to stimuli, ascribed to electromagnetic 
insulation of most polymeric matrices, which have 
minimized the scope of SMPs applications. Hence, in 
order to mitigate these challenges, smallish levels of 
nanoreinforcement/nanomaterials/nanofillers or nano
particulates have been embedded within SMPs matrices 
resulting in enhancements in mechanical behavior and 
shape recovery stress of SMPs, and so on, due to the 
formation of shape memory polymeric nanoarchitec
tures (SMPNs). Additionally, due to nanoreinforcement 
effect, SMPNs can improve athermal stimuli-active 

Figure 1. External stimuli affecting SMPs.
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Table 1. Biomedical applications of shape memory 
polymer nanoarchitectures.[8–30]

Biomedical applications Ref

Wound dressing 8
Surgery within living cells 9
Vascular stents 10
Esophageal stenosis treatment 11
Skin-care products 12
Shape memory neuronal probe 13
Post-surgical treatment of mitral insufficiency 14
Reconstruction of pharyngeal mucosa 15
Orthopedics Morphix suture anchor 16
Orthopedic casting 17
Orthodontic 18
Ophthalmic applications 19
Novel McKibben artificial muscles 20
Micro-valves in micro gadgets 21
Medical micro-tweezers 22
Kidney dialysis needles 23
Treatment of hair 24
Manipulation and capturing of cells 25
Mending of cardiac valve 26
Fillers for bone defect 27
Aneurysm occlusion gadgets 28
Clot elimination gadgets 29
Controlled drug release 30
Endoscopic surgery suture 31
Bio-MEMs 32

Table 2. Textiles applications of shape memory polymeric textiles nanoarchitectures.[31–41]

Functional Textiles Applications Ref

Wrinkle free finishing of cotton fabrics 33
Shape memory fibers 34
Shape changing nanofibers 35
Self-peeling dry adhesive 36
Pressure garments 37
Phase change fabrics 38
Memory foam mattress, pillow and insoles 39
Fashion design 40
Deodorant fabrics 41
Damping materials 42
Crease and pattern retention finishing 43
Damping fabrics 44

Scheme 1. General elucidation of the molecular architecture of SMPs composed of switching phases along with net-points[42] .
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effects thereby inculcating novel as well as emerging 
functions as depicted in Figure 2.

From Figure 2, instances of athermal stimuli respon
sivity include electroactivity, magneto-activity, water- 
activity, and photo-activity. Furthermore, novel SMEs 
include multiple-SME, spatially controlled SME, and 
dual route SME. New functionalities include stimuli 
SMEs like magnetic field-ME, and self-repairing effect 
of SMPNs such as thermoplastic nanoparticulates 
embedded SMPs.[42]

Therefore, this paper elucidates recently emerging 
trends in construction, characterization, properties and 
multifunctional applications of SMPNs.

2. SMPNs nanoreinforcements

SMPs exhibit inferior intrinsically poor mechanical 
strength as well as shape recovery stress. These chal
lenges have expansively limited the SMPs applications. 
Reinforcement nanofillers are capable of enhancing the 
mechanical behavior and shape recovery stress of SMPs 
via physically affiliated blending, chemical cross- 
linking, as well as in-situ polymerization.[43–45]

2.1. Carbon nanotubes (CNT) reinforced SMPNs 
and carbon nanofibers (CNFs) SMPNs

A major aim of CNT incorporation within SMP entails 
electroactive SME attainment via Joule heating in intrinsi
cally affiliated thermally-responsive SMPs.[46] Notable 
challenges envisaged in CNT/SMP nanoarchitectures 
involves uniform dispersion of CNTs within the SMP 
matrix. Numerous strategies have been utilized including 
melt mixing,[21] in-situ polymerization, chaotic mixing 

subsequented by in-situ polymerization, solution mixing 
subsequented by casting, solution mixing facilitated by 
ultrasonic dispersion, as well as CNT chemical functiona
lization subsequented by cross-linking reaction. 
Chemically functionalizing CNT, is an effectual strategy, 
as chemically functionalization has the propensity of 
increasing the compatibility between CNTs and SMP 
matrices.[47] The fabrication of CNT@polymeric 
nanoarchitectures is generally conducted using varying 
strategies (direct, solution and melt-mixing as well as in- 
situ polymerization. Using conventional steps (extruding 
or injection molding, available polymeric matrix is pre
pared into its initial, permanent configuration B. This is 
subsequently followed by a procedure referred as program
ming, where the polymeric material undergoes deforma
tion and fixation into the temporary configuration.[48]

Electrically conducting polymeric nanoarchitectures are 
amongst most investigated SMPNs, and can be fabricated 
through the inclusion of graphene, carbon nanofibers 
(CNFs), carbon black (CB), carbon nano-paper, single- 
walled carbon nanotubes (CNT), multi-wall carbon nano
tubes (MWCNTs), and aligned conducting carbon- 
oriented nanoreinforcements.[49] The major function of 
these nanoreinforcements involves the conversion of elec
trical current into heat via Joule effect, SMPs so-actuating. 
CNT are amongst the most potential reinforcing materials 
for the fabrication of elevated performance multifunctional 
nanoarchitectures.[50] CNTs additionally display elevated 
flexibility in comparison to traditional fiber 
reinforcements.[51] The idea of electrically conducting 
SMPNs composed of MWCNT offer several challenges 
concerning good dispersion of the nanoreinforcement 
within the polymeric matrix, interactivity with the poly
meric chains, establishment of electrically conductive 

Figure 2. Achievements of SMPNs.
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network within nanoarchitectures, and so on. These chal
lenges impact directly on the end mechanical and thermal 
attributes of the materials, thereby inhibiting their applica
tions. In a bid to mitigate these challenges and find pana
cea, numerous strategies have evolved including direct 
combination of MWCNT with the polymeric matrices 
(polyurethanes, polystyrene, and acrylates, epoxy and so 
on), surface functionalization of MWCNT and mixing 
with the polymeric matrix relative to enhancement of the 
interfacial bonding with the polymeric macromolecules, 
cross-linking (ionizing radiation vis-a-viz: electron beam 
or gamma radiation), the MWCNT with the polymeric 
matrices, along with MWCNT alignment with the poly
meric matrices on applied electric/magnetic field or 
MWCNT conversion into nano-paper or film and its sub
sequent inclusion within the polymeric matrix[52–54].

Conventionally, the direct combination strategy of 
MWCNTs with epoxy matrix result in agglomerates 
formation and portray a self-supportive architecture of 
entangled CNTs in an irregular manner which are 
knitted together by Van der Waals interactions at the 
tube-tube junctions. Similar designs are usually utilized 
as fire along with lightning strike protection as well as 
electromagnetic shielding interference (EMI).[55,56]

In a work, an effectual strategy was evolved to enhance 
the interfacial interactivity between MWCNT/epoxy 
matrix.[57] The behavior of heat conductivity as well as 
strength of the epoxy vitrimer were improved through 
inclusion of polydopamine (PDA) coating. PDA is 
a prevalently utilized photo-thermal agent, efficient in 
functionalizing MWCNTs utilized in photo-responsive 
epoxy resin.[57] Vitrimers are a novel set of cross-linked 
polymeric materials, combining the features of both ther
mosets and thermoplastics.[58] Vitrimers are polymeric 
materials exhibiting cross-linking with dynamically 

exchangeable covalent bonding capable of being ther
mally rearranged while sustaining the integrity of the 
cross-linked architecture.[59] Hence, they can undergo 
repeated processing as thermoplastic substrates at 
a temperature beyond the topological-freezing transi
tional temperature (Tv). Figure 3 presents the chemical 
architectures of MWCNTs@PDA@epoxy nanoarchitec
tures in cross-linkage via catechol – metallic co-ordina
tion as well as dynamic transesterification.[59] 

Furthermore, the influence of MWCNTs@PDA on 
thermal conductivity, morphology, strength and stress 
relaxation, of the epoxy architectures were evaluated.[59] 

Additionally, PDA was revealed an effective route of 
mitigating the challenge of interfacial interactions 
between the MWCNTs and epoxy matrix attributed to 
efficient promotion of epoxy crystallization. The level of 
MWCNTs and MWCNT@PDA@epoxy nanoarchitec
tural distribution are presented in Figure 4A. From the 
fractured surfaces SEM images in Figure 4B, pristine 
epoxy displayed a smooth, thin fractured surface, with 
a brittle fractured behavior.[59]

The self-repairing, shape memory and recyclability of 
epoxy vitrimers is caused by stress relaxation induced by 
the dynamic trans-esterification exchange reaction. 
Figure 5A depict the classical epoxy/carboxylic acid 
polymeric architecture, the prevalence of both the free 
hydroxyl functional entities as well as the carboxylic 
ester functional entities.[59] 

Figure 5B present the shape memory behavior of EP- 
M@PDA-1.0% using strip, spiral, and u-type specimens. 
The original specimens were strip specimens, config
ured at 200 C for 2 h on exposure to external force. 
Here, the strip specimens underwent deformation to 
a permanent spiral configuration at 70 C, beyond the 
glass transition temperature, with cooling to room 

Figure 3. Chemical architectures of MWCNTs@PDA@epoxy nanoarchitectures in cross-linking by dynamical trans-esterification as well 
as metallic–catechol co-ordination.[59]
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temperature. Post heating at 70 C, the configuration of 
the permanent spiral configuration recovered back to 
a strip configuration.[59]

Similar to CNT, CNFs exhibit outstanding electrical 
(106 S/m) and thermal conductivity (1000 W/mK).[60] 

Generally, to achieve improved interfacial bonding, they 
undergo oxidization and inclusion within the polymeric 
material through direct blending in form of a nanopaper 
or hybrid nanoreinforcement of CNF.[61] This facilitate 
the electrical actuation of SMPNs, presenting improved 
mechanical behavior.[62] Enhanced CNFs distribution 
can be attained via high-powered sonication or via 
in situ polymerization and subsequent lamination of 
the CNF papers upon styrene-oriented SMPs activated 
by an electric voltage.[63]

A work investigated feasibility of utilizing in situ 
generated hybrid polymer-polymer nanoarchitectures 
as polymeric materials exhibiting triple shape memory 
(TSM), which, unlike conventional polymeric blends 
with TSM, are characterized by completely separated 
segments transitional temperatures with strongest 
bonding between the polymeric blends segment inter
faces which are imperative to shape fixation as well as 
recovery.[64] This was actualized utilizing three- 
component structured polylactide@polybutylene adipa
teterephthalate@cellulose nanofibers 
(PLA@PBAT@CNFs).[64] The function of in situ gar
nered PBAT nanofibers and CNFs during formation of 
effective physically affiliated cross-linkage at 
PLA@PBAT, PLA@CNF and PBAT@CNF interfaces 
and the influence of CNFs on PBAT fibrillation and 
crystallization procedures were examined.[64] Here, the 

in situ garnered SMPNs exhibited drastically elevated 
parameters of strain recovery ratios, strain fixity ratios, 
faster recovery rate and enhanced mechanical attributes 
in comparison with the pristine blend.[64]

The morphological behavior of PLA@PBAT blends 
as well as in situ achieved nanoarchitectures filled with 
CNFs was examined using SEM evaluation. The SEM 
images of the PLA/PBAT cryo-fractured surface of the 
blends and composites filled with 3 and 7 wt.% CNFs 
are presented in Figure 6. It is observed that the blends 
are characterized by a matrix-droplet architecture 
(Figure 6 a, b), while in situ achieved nanoarchitectures 
exhibit a fibril-matrix morphological architecture 
(Figure 6 c, d).[64] 

Hence, in a work, CNTs@PDA nanoarchitectures 
were constructed via a nil-covalent bonding strategy in 
synergy with TPI through a melt-blending technique for 
fabricating novel SMP nanoarchitectures.[65] SEM 
results reveal that PDA nanoparticulates evenly deco
rated CNTs surfaces. From results garnered from DSC, 
TGA, and XRD, crystallization features, as well as the 
specimens’ thermal stability composed of CNTs@PDA 
were enhanced, in comparison with those constituted of 
CNTs. Furthermore, the surface and fracture morphol
ogies of the specimen were SEM examined, and results 
reveal that PDA remarkably enhanced the interfacial 
compatibility between CNTs@TPI, which further 
enhanced the mechanical features of the composites. 
Simultaneously, the CNTs@PDA (2.4 phr) nanocompo
site displayed the best mechanical features as well as 
shape-memory behavior.[65] From this image, the sur
face of un-functionalized CNTs was somewhat smooth 

Figure 4. TEM images of (a) EP-M-1.0%. (b) EP-M@PDA-1.0%. B. SEM images of fractured surfaces for (a) EP. (b) EP-M-3.0%. (c) and (d) 
EP-M@PDA-3%.[59]
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Figure 5. A. Epoxy vitrimers cross-linked by dynamic trans-esterification reaction. B. Shape memory disposition of (a1 – a3) strip 
specimen. (b1 – b3) spiral specimen (c1 –c3) u-form specimen.[59]

Figure 6. SEM images of cryo-fractured surfaces of PLA@PBAT@CNFs blends (a, b) and in situ generated composites (c, d). (a, c)—3wt. 
% CNFs, (b, d) —7wt. % CNFs.[64]
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and clarified in the outlay, as the CNTs@PDA surface 
displayed an obvious coating sheet which was dense and 
comprehensive in architecture.[65]

The shape memory (SM) sandwich architectures 
were constructed utilizing two SMPC specimens of 100 
30 mm2 as outerlayers and the PU foam with and with
out microcapsules as the core of the architectures 
(Figure 7a,b).[65] This foaming volume facilitates attain
ment of a foaming ratio of about 4.5. The rate of shape 
recovery of each specimen was examined 20 times, 
thereby proving the performance stability of the 
SMPC. This sandwich architecture is schematized as 
shown in Figure 7a. Two specimen for individual con
dition, with and without microcapsules within the 
foam’s core, were constructed (Figure 7b). Optical 
microscopic examination of the constructed SH cap
sules set was conducted to ascertain effectiveness of 
the procedure and determine the average size of the 
capsules (Figure 7a,b). The self-mending capabilities of 
the constructed SM sandwich architectures were ascer
tained utilizing a three-point bending test via a universal 
testing machine (MTS Insight 5) as presented in the 
schematization in Figure 7C.

Micrographic images of the PU foams with and with
out microcapsules are presented in Figure 6. The PU 
foam displayed a closed cells architecture wherein 
microcapsules of a darker color with sizes of varying 
micrometers are dispersed, as depicted in Figure 8A 
(a-d). The mending effect was also seen through micro
graphic images of deteriorated regions both in pre- 

mending (compressed specimen) and post-mending 
(post heating), as presented in Figure 8B (a-d).[65]

Shape fixity measured values and shape recovery are 
presented in Figure 9a. Irrespective of microcapsules 
prevalence, garnered results demonstrate that the PU 
foam exhibit shape recovery capability of about 94% and 
up to 79% fixity. Examination of the SME of the sand
wich architectures, as depicted in Figure 9b, demon
strate how shape fixity as well as shape recovery are 
similar for all specimens, irrespective of microcapsules 
prevalence.[65]

Finally, the capability of designing and optimizing 
self-mending shape memory architectures at 
a macroscopic instead of molecular or micrometric 
level presents these structures appropriate for large- 
scale fabrication in versatile application areas, including 
aeronautics and automotives.[65]

In a related work, a number of polylactic acid/ther
moplastic polyurethane (PLA@TPU) blends in synergy 
with multi-walled carbon-nanotubes (MWCNTs) were 
fabricated via extrusion for 3D printing, whilst the 
printed specimens were deeply investigated for their 
thermally-configured SME and mechanical features.[66] 

Initially, the morphological examination revealed that 
the blends were immiscible, as MWCNTs mixed with 
TPU phase, thus enhancing their interfacial adherence 
while improving the shape recovery response. Later, the 
mechanical properties (tensile strength and Young’s 
modulus) exhibited descending trends after embedment 
of MWCNTs. Contrastingly, in wave architectured (3D- 

Figure 7. A (a) SM sandwich architecture; (b) image of the constructed sandwich specimen. B (a) Post-fabrication optical microscopic 
image of SH capsules; (b) image SH capsules incorporated within water-clear epoxy resin. C. Schematization of the shape memory and 
mending procedure.[65]
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printed) specimens, a systematic increment in tensile 
strength along with Young’s modulus was ascribed to 
the wave-length, in alliance with development of the 
shape-memory behavior (both recovery and fixity) as 
depicted in Figure 10.[66] 

The wave architectured PLA@TPU@CNT nanoarch
itectures show potential of alleviating shape-memory 
performance as well as dimensional stability for multi
functional applications.[66]

In similar investigation, PCL-TPU/MWCNT nanofi
brous-architecture has been fabricated to function as out
standing sensing entity for wearable gadgets,[67] whereas 
in another work, polyolefin elastomer (POE)/lauric acid 
(LA)/carbon black (CB) referred qs POE/LA/CB 
nanoarchitectures exhibiting triple-stimuli responsive 

shape memory effect (SME) was demonstrated to be 
safe for a vast range of applications.[68]

2.2. SMPNs composed of cellulose nanocrystals

Ascribed to their renewability, stiffness, and biocompat
ibility, cellulose nanocrystals CNCs, previously termed 
cellulose nanowhiskers, have demonstrated suitability as 
nanofiller for varieties of biopolymeric materials.[69] 

Furthermore, CNCs are garnered from very abundant 
biopolymeric materials which offer numerous benefits, 
including availability, inexpensiveness, low density, 
renewability along with chemical and physical 
features.[70] Their chemical architecture in the presence 
of hydroxyl entities offers feasibility of forming 

Figure 8. A. (a, b) optical microscopic images of PU foam devoid of microcapsules; (c, d) images of self-mending capsules within the PU 
foam. B. (a, b) optical microscopic images of PU foam post compression (shape fixity) prior recovery; (c) images of PU foam post 
recovery (mending effect).[65]

Figure 9. PU cylindrical foams shape memory behavior with and without microcapsules (a). (b) SM sandwiches load – displacement 
curves at initial state and post recovery.[65]
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elevated-modulus and interconnectivity of CNCs archi
tecture within the polymeric matrix via hydrogen bond
ing. An advantage of this nanoreinforcement is that 
display of elevated stiffness and high aspect ratio.[70]

Generally, CNCs are possesses low toxicity, present
ing them attractive for fabrication of water-responsive 
SMCs with prospects for biomedical applications (self- 
tightening sutures, self-retractable as well as removable 
vascular stents).[71] Nevertheless, the fabrication of 
nanoarchitectures through direct physical encapsulation 
of CNCs within polymeric matrices is challenging 
because of the inferior affinity between the nanorein
forcement and the polymeric chains resulting in insig
nificant increment in or even nil improvement of the 
mechanical features of the polymeric materials. On 
incorporation of cyclodextrin (CD) within SMPs, 
enchanting and outstanding functionalities are incul
cated thereby broadening their prospective 
applications.[72]

Shape memory polyurethane (SMPU) has been ver
satily perceived as prospective smart materials, whereas, 
porous SMPU exhibited inferior shape memory along 
with mechanical features. Hence, in a work, nanocellu
lose was embedded within SMPU to enhance all the 
properties of the porous SMPU via 3-D printing proto
typing as elucidated in Figure 11. Results affirmed the 
potential applications of SMPU/CNC nanoarchitectures 
for smart biomaterials.[73] 

In another work, CNC@SMP bionanoarchitectures 
were constructed via in situ single-route procedure as 
depicted in Figure 12.[74] 

The inclusion of about 10 wt. % CNCs induced 
a notable improvement in the tensile strength at yield 
and modulus of elasticity while maintaining the 

elongation at break, ascribed to the combined activities 
of CNCs as a nucleating entity for crystallization and 
elevated compatibilization of the reinforcement agent of 
the architecture. Furthermore, the in situ embedment of 
CNCs improved the shape memory ability of polyur
ethanes, thereby enabling its usage in functional mate
rial applications, including the biomedical field.[74]

Another work demonstrated outstanding thermal, 
mechanical, shape memory, and self-mending proper
ties of 3-D printable, thermos-reversible, cross-linked 
network architecture.[46] Here, the thermos-reversible 
cross-linking route is constituted of Diels-Alder (DA) 
reversible covalent and transient cross-linkage, fabri
cated utilizing thermoplastic polyurethane (TPU) and 
poly(ε-caprolactone) (PCL) with cellulose nanocrystal
line (CNC) as the cross-linking entity. The inclusion of 
CNC, functionalized using furan (CNC-FA) and maleic 
anhydride groups (CNC-MAH), exhibited outstanding 
compatibility with TPU@PCL matrix, resulting in for
mation of physically inclined and chemically affiliated 
cross-linking architectures in the nanoarchitectures, as 
depicted in Figure 13.[46] 

Additionally, the mechanical, thermal, and self- 
mending features of the material were significantly 
enhanced after the inclusion of functionalized 
CNC.[46] The mechanically stabilized 3-D printable self- 
mending nanoarchitectures facilitate the construction of 
lasting conductive gadgets and biomimetically affiliated 
skin gadgets with elevated mechanical features, out
standing electrical mending and superior strain- 
propagated fluorescence features, exhibiting prospects 
in next-generation flexy electronics, encryption gadgets 
as well as electronic skins, thereby expanding applica
tions of 3D-printable materials.[46]

Figure 10. Shape memory effect of PLA@TPU@CNT nanoarchitectures.[66]
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In another investigation, thermoresponsive and 
water-responsive shape-memory polymeric nanoarchi
tectures were constructed via chemical cross-linkage of 
cellulose nanocrystals (CNCs) with polycaprolactone 
(PCL) and polyethylene glycol (PEG) referred as 
PCL@PEG@CNC bionanoarchitecture as depicted in 
Figure 14.[75] 

Hence, this thermoresponsive and water-responsive 
shape-memory nanoarchitectures could undergo poten
tial developed into a novel smart biomaterial.[75] Hence, 
PCL@PEG@CNC bionanoarchitecture depicts a variety 
of applications as medical gadgets, drug delivery sys
tems, anti-cancerous therapies, and biologically for 
hydrogels, bio-artificial organs, as well as tissue engi
neering. PCL@PEG@CNC bionanoarchitecture has 
potential use in the construction of 3-D scaffolds for 
bone tissue engineering attributable to advantages (bio
compatibility, gradual rate of degradation, and load- 
carriability.[75]

In another investigation, a pH-responsive shape- 
memory polymeric nanoarchitecture was constructed 
through the combination of poly (ethylene glycol) 
@poly(ε-caprolactone)@polyurethane (PECU) with 
modified cellulose nanocrystals (CNCs). CNCs were 
functionalized with pyridine moieties (CNC – C6H4 

NO2) via hydroxyl replacement of CNCs with pyri
dine-4-carbonyl chloride and with carboxyl groups 
(CNC – CO2H) via 2,2,6,6-tetramethyl-1-piperidiny
loxy (TEMPO) mediated surface oxidation, 
respectively.[6]

The shape memory behavior of this material only 
depended on environmental pH variation. Hence, this 
pH-responsive shape-memory nanoarchitecture poten
tially be constructed into a novel smart polymeric 
nanoarchitecture.[6]

In another investigation, a number of thermoplastic poly
urethane (TPU)@carbomer (CB)@nano-celluloses (CNCs) 
multi-responsive shape-memory nanoarchitectures were 

Figure 11. Construction, 3-D prototyping, and shape memory behavior of SMPU/CNC nanoarchitectures.[73]

Figure 12. Construction route, characterization and shape memory behavior of PU@PCL@CNC bionanoarchitectures.[74]

POLYMER-PLASTICS TECHNOLOGY AND MATERIALS 1257



customized utilizing CNCs as a cross-linking agent.[76] The 
effect of CNCs composition on the mechanical behavior of 
TPU@CB@CNC nanoarchitecture has been elaborately 
investigated with the best CNCs inclusion pegged at 5 wt. 
%. Results revealed, that the nanoarchitecture exhibited 
multi-responsivity for heat, water, pH, and ethanol as illu
strated in Figure 15, demonstrating its prospect in slow-drug 
releasing, flexible robotic and electronic applications.[76] 

Cellulose-oriented water-induced shape memory 
materials have garnered great attention because of their 
versatile range of sources, elevated rate of responding, 
and ecobenign disposition. Nevertheless, shape memory 
polymers (SMPs) with rapid responsivity tend to lose wet 
strength as a result of too much hydration tendencies, 
which highly restrains the application versatility of 

cellulose-oriented shape memory water-responsive mate
rials. In order to mitigate this challenge, a work con
structed, cellulose nanofiber (CNF)@polyvinyl alcohol 
(PVA)@lignin (LIG)@Citric acid (CA) referred as 
CA@LIG@PVA@CNF hybrid membranous nanoarchi
tecture with elevated water-responsive shape memory 
features as depicted in Figure 16.[77] 

The CNF nanoarchitectural films exhibited outstanding 
performance at inhibiting ultraviolet as well as transmit
tance value of the membrane less than 8% in the ultra- 
violet region of 200–400 nm. Hence, the resultant 
CA@LIG@PVA@CNF membrane displayed potential 
usage in smart technology while offering a framework for 
constructing a cellulose-oriented shape memory polymeric 
nanoarchitecture.[77]

Figure 13. Fracture and healing mechanism of TPU@PCL@CNC-FA hybrid nanoarchitecture.[46]

Figure 14. Construction of PCL@PEG@CNC bionanoarchitecture.[75]
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2.3. Nanoclay shape memory polymeric 
nanoarchitectures

SMPNs are polymeric nanoarchitectures with the ability 
of returning to their earlier programmed configuration 
post exposure to external stimulus. Material properties 
enhancement with nanoclay reinforcement has 
improved its thermomechanical attributes while escalat
ing its scope of industrial applications.[78]

The quest for novel types of actuating equipments 
have continually grown, and novel strategies have been 
made feasible by the emergence of novel materials and 
construction approaches. Self-propelled actuating 
equipments have garnered significant interests because 

of inherent susceptibility to be propelled by entities in 
ambient clime.[79] This form of actuating equipments 
can undergo utilization in flexible strain sensors, soft 
robotics, smart breathing textiles and artificial 
muscles.[80] Nevertheless, synthetic polymeric matrices 
are not ecobenign and induce ecological challenges. 
Biodegradable biopolymeric materials usage has become 
panacea to ecological challenges.

Polylactic acid (PLA) exhibit biodegradability and 
biocompatibility with elevated prospects. In a work, 
nanoclay filled PLA/PU nanoarchitectures yarn was 
constructed with high twist.[81] The twisted yarn then 
underwent shaping to a coiled architecture via mandrel 

Figure 15. Shape memory responsivity of TPU@CB@CNC nanoarchitectures.[76]

Figure 16. Mechanical features and water responsive shape memory recovery mechanism of CA@LIG@PVA@CNF hybrid membranous 
nanoarchitectures.[77]
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annealing. Results revealed that the nanoarchitecture 
yarn exhibited a dual route shape-memory effect in 
a twisted-coiled architecture. It additionally revealed 
a remarkable reversible contraction stroke within low 
temperature range.[22]

Shape memory nanoarchitectures of PU@nanoclay 
were constructed via melt blending of PU@nanoclay. 
Relying on nano-indentation and micro-hardness 
examinations, the nanoarchitectures strength sharply 
escalated based on nanoclay composition, ascribed to 
the enhanced nanoclay – polymer interactions. 
Thermal mechanical examinations revealed good 
mechanical and shape memory impact of the 
nanoarchitectures. Complete shape memory recovery 
was exhibited by both pristine PU as well as PU-clay 
nanoarchitectures.[82] High resolution transmission 
electron microscopy (HR-TEM, JEOL 2010F) 
revealed that modified nanoclay formed 
a 3-D bundled network architecture wherein the 
length of single clay fiber changed from sub- 
micrometric level to a few micrometers whereas the 
diameter was in the order tens of nanometer (see 
Figure 17(a)). The ring-like scattered diffraction 
region expose the nanocrystalline attribute of the 
modified fibers as shown by the inset electron dif
fraction pattern in Figure 17(a). The corresponding 
HR-TEM images in Figure 17 (b, c) affirm that 

single crystallites are inculcated within amorphous 
matrix with isolation of a few nanometers.[82] 

Figure 18a presents the heat-mechanical cyclic 
examination of the 30 wt.% nanoclay nanoarchitec
ture. A remarkable shape recovery was seen as the 
shape recovery rate was 99.2% in initial tensile cycle 
and 97% within the second round. The maximum 
stress reduced by 8% ascribable to some flaws gar
nered whereas creep took place during continual 
loading at an air temperature of 60°C.[82] 

In a bid to expose the shape memory effect, thin 
beams of pristine PU and 30 wt.% nanoclay/PS 
nanoarchitecture, possessing cross sectional area (c.s.a) 
of 2 × 2 mm2, were bent post-heating to 80°C, while the 
shape were fixed during cooling at room temperature 
(20°C). The shape recovery was demonstrated on 
a hotplate with a surface temperature of 80°C. The 
pristine PU specimen displayed a sharp response, reco
vering to its initial configuration within 30 s (see 
Figure 19 (c)). The nanoarchitecture beam with 30 wt. 
% nanoclay also exhibited a complete shape memory 
recovery with 60 s (see Figure 19 (d)). The slow recovery 
of the nanoarchitecture specimen is ascribed to the 
inclusion of nanoreinforcement inhibiting the molecu
lar chains movement, such that the shape memory effect 
was mildly delayed. TEM image of nanoclay distribution 
within PU is presented in Figure 20.[82] 

Figure 17. TEM images of thermally-modified nanoclay: (a) General and electron diffraction pattern, (b) and (c) HR-TEM micrographic 
images taken at specific positioning of nanoclay cluster.[82]
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Figure 18. (A) Thermal cyclic tensile results of 30 wt.% nanoclay SMP nanoarchitecture.[82]

Figure 19. Recovery of shape memory specimens heated on a hotplate with a surface temperature of 80°C.[82]

Figure 20. (A) TEM image of nanoclay. (b) Schematic elucidation of nanoclay distribution within the polymeric matrix.[82]
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3. Challenges and future prospects

Despite the vast range of feasible geometry to adopt, key 
flaws of SMP includes poor stiffness and tensile strength, 
and general lack luster performances. Other notable lim
itations entail inferior heat dissipation, inertness to elec
tromagnetic, light and electrical stimuli in along with 
poor sensitivity and inferior time of actuation recovery. 
Hence their potential uses are limited especially in 
regions where high performance is critical. Therefore, to 
find panacea to these challenges, a new class of shape- 
memory nanoarchitectures has sufficed. In the interim, 
numerous works have been conducted on shape memory 
polymer and nanoarchitectures recently with versatile 
enhanced properties for multifunctional applications[83– 

164]. On the other hand, polymeric nanoarchitectures 
have been constructed with superior features for multi
functional applications.[165–228] It is anticipated that the 
future of SMPNs is bright at all spheres of human 
endeavor.

4. Conclusion

In present review, the fundamental design and mechan
isms of SMPNC have been presented elucidating the 
nanometric designing of nano-sized particulate- 
embedded SMP nanocomposites and applications. 
Specific examples were discussed to expose the under
lying principles and emerging applications. In previous 
decades, a broad range of research activities have been 
conducted to garner novel SMPN while enhancing the 
available ones for elevated performance. Nevertheless, 
some emerging SMP phenomena have evolved which 
improve the flexibility of existing shape memory technol
ogy, while additionally exploring new horizons for 
enhanced versatility as well as adoptability. Thus, 
a range of emerging concepts have displayed potential 
for a versatile range of engineering applications. 
Therefore, the future of stimuli-responsive shape memory 
polymeric nanoarchitectures is anticipatedly blue ship.
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