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Predicting Multi-Component Phase Equilibria of Polymers
using Approximations to Flory–Huggins Theory

Stijn H. M. van Leuken, Rolf A. T. M. van Benthem, Remco Tuinier,* and Mark Vis*

The rational development of sustainable polymeric materials demands
tunable properties using mixtures of polymers with chemical variations. At the
same time, the sheer number of potential variations and combinations makes
experimentally or numerically studying every new mixture impractical. A direct
predictive tool quantifying how material properties change when molecular
features change provides a less time- and resource-consuming route to
optimization. Numerically solving Flory–Huggins theory provides such a tool
for mono-disperse mixtures with a limited number of components, but for
multi-component systems the large number of equations makes numerical
computations challenging. Approximate solutions to Flory–Huggins theory
relating miscibility and solubility to molecular features are presented. The set
of approximate relations show a wider range of accuracy compared to existing
approximations. The combination of the analytical, lower-order, and more
accurate higher-order approximations together contribute to a broader
applicability and extensibility of Flory–Huggins theory.

1. Introduction

Developments in polymer science related to sustainable polymer
materials result in a rapidly expanding number of possibilities
for materials development, both in terms of new molecules like
bio-based polymers[1,2] and in terms of mixing different types
of polymers in the circularity of polymers from post-consumer
waste-streams.[3,4] This development of new polymeric materials
aims at tuning the molecular features to application demands.
Different polymers, solvents, and fillers can be combined to
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optimize material properties. However,
the phase stability of such mixtures must
be taken into account. The equilibrium
concentrations in the different phases
of these systems provide insight into
the solubility,[5] solvent uptake in poly-
mer melts,[6] maximum concentrations
in immiscible polymer blends,[7] and
equilibrium concentrations upon phase-
separation[8]—all properties that are im-
portant for the processing and application
of materials, aiding the explanation of
experimental observations.

A wide range of experimental meth-
ods has been developed and used to
study the phase-separation of polymers.
Calorimetry,[9] scattering,[10] spectro-
scopy,[11] vapor and gas sorption,[12] in-
verse gas chromatography,[13] melting
point depression,[14] non-radiative energy
transfer,[15] and excimer fluorescence[16]

can all be used to measure quantities relevant for the misci-
bility of polymers.[17,18] However, the large number of possible
polymer mixtures makes it impossible to test all combinations
experimentally. Additionally, challenges such as precise sample
preparation, detection of phase transitions, and measuring other
material properties make it challenging to obtain all the rele-
vant information, even for experimentally tested combinations
of polymers.[19] Theoretical frameworks relating unknown mate-
rial properties to known material properties and predicting their
dependency on molecular features helps to understand these sys-
tems better. Such frameworks guide the design of bio-based and
circular materials and the choice for the most insightful experi-
ments, reducing the required number of experiments.

Theory and simulation have been used often to predict and ex-
plain the phase behavior of polymers. Commonly used simula-
tion methods are based on molecular dynamics simulations[20]

and Monte Carlo simulations.[21] A problem with using simu-
lations to determine equilibrium concentrations of polymers is
that the time to reach equilibrium scales with the size of the
polymers. Therefore, simulations become extremely computa-
tionally demanding for realistic systems. In molecular dynamics
simulations, the overall movement of polymers slows down with
polymer length, particularly above the entanglement length.[22]

Molecular dynamics simulations with larger polymers become
possible by simplifying interaction potentials, course-gaining,
and multi-scale sampling.[23,24] The achievable length and time
scales, however, remain limited. In Monte Carlo simulations, the
acceptance probability of displacements of polymers decreases
with polymer size.[25] Techniques to resolve these problems, such
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as configuration-bias methods and the Pruned-enriched Rosen-
bluth method,[26] only partially solve this problem and become
unreliable for still relatively small molecules.[25]

Simulations with larger polymers are possible using ex-
tended configurational bias methods such as the recoil-growth
method[27] and the Extended Continuum configurational bias
method.[28,29] For example, kink-jump and crankshaft,[30,31] con-
certed rotation and bridging moves,[32] or fractional moves[33]

also help to make simulations more efficient under specific con-
ditions. The sampling efficiency can improve with, for example,
pseudo-ensembles, parallel tempering, and histogram reweigh-
ing methods.[21,25] Although these methods make simulations
more efficient in certain situations, they are still inefficient for
other cases, such as long chains.[25] A higher number of molec-
ular variations requires a higher number of polymers for proper
sampling, resulting in even longer required computation times.
Good initial guesses can reduce the required computation time.
Direct, predictive theoretical expressions for the concentrations
in phase-separated polymeric systems could deliver these ini-
tial guesses.

Numerical techniques are another way to estimate polymer
phase stability. One of the most well-known theories to de-
scribe the phase stability of polymer mixtures is Flory–Huggins
theory,[8,34] which is generally solved numerically. This theory
connects phase equilibria using a limited number of material-
dependent variables for polymeric materials. In its mean-field
description of polymers, Flory–Huggins theory assumes polymer
segments distribute homogeneously. Also, it neglects the micro-
structure of polymers and only includes nearest-neighbor inter-
actions. Despite the limitations of Flory–Huggins theory, trends
in coexisting concentrations are well reflected by the theory.[8]

Other lattice theories and extensions of Flory–Huggins theory
exist, reducing limitations and making the theory applicable in
more situations. These extensions involve theories for the depen-
dency of the interaction energy on environmental conditions and
molecular features and adjustments of the used lattice statistics
and spatial variations. Some examples are self-consistent field
theory,[35,36] cell theories,[37] hole theories[38,39] and local compo-
sition models.[40,41] Although these techniques provide a fairly ac-
cessible way to predict the phase coexistence equilibria for many
polymeric mixtures, making predictions becomes increasingly
difficult with increasing complexity.

Compared with experiments, simulations, and numerical
computations, direct analytical expressions can be quicker to use
and more accessible for comparison with experiments. Addition-
ally, such equations directly show how molecular features affect
the miscibility of different components. These advantages help
to interpret experimental data and guide polymer and material
processing choices for circularity related applications. Moreover,
researchers can fit analytical expressions with experiments, sim-
ulations, or numerical computations to find parameters and sub-
sequently use these parameters to make predictions. For simu-
lations and numerical computations, the direct analytical expres-
sions can be used to determine the used initial guess.

This paper specifically focuses on Flory–Huggins theory to
predict phase equilibria of polymeric systems. Flory–Huggins
theory can be used to numerically determine binodals, which
describe the equilibrium phase-separated concentrations. There
is, however, not yet a direct, analytical expression for the bin-

odal that holds for the full range of concentrations. Several
approximate analytical solutions, each applicable under spe-
cific conditions, to Flory–Huggins theory have been presented
in the literature in the last few decades. For polymers with
equal lengths, a Ginzburg–Landau expansion can be used to
derive an approximate solution.[42] The equilibrium absorption
of infinitely long polymers in a bath of solvent without poly-
mers can be estimated.[43] Sanchez approximated the equilib-
rium concentrations for polymer mixtures close to the criti-
cal point.[44] Scheinhardt-Engels, Leermakers, and Fleer[45] de-
rived equations near the critical point by requiring station-
ary diffusion between the different phases. Finally, Tsenoglou
and Papaspyrides[46] derived an analytical equation for mixtures
where the two components are only slightly compatible, far from
the critical point. Appendix A provides an overview of the expres-
sions for the approximations from the literature.

Previous analytical expressions focused on specific conditions
and limits. In contrast, in this paper, multiple analytical equa-
tions are presented that together describe the full range of pos-
sible interactions and polymer chain lengths. By providing an-
alytical expressions for each step, from available coexisting con-
centrations to predictions for other coexisting concentrations, we
give a more complete view than previously given in the literature.
Figure 1 gives a schematic overview of these different approxi-
mations I–V . In the different sections, expressions for specific
limits are derived. These are used to relate a measured concen-
tration directly to predicted concentrations in coexisting phases,
relate a measured concentration to interaction parameters, and
relate interaction parameters to predicted concentrations. Lower-
order approximations can be used for more accessible analytical
equations, useful for more intuitive insight into the system, or a
higher-order approximation can be used to get more accurate pre-
dictions. In the following sections, we start with the theoretical
background of Flory–Huggins theory, followed by the derivation
of the approximate expressions. We first present expressions for a
system consisting of two components, to make it easier to follow
the derivations and to be able to compare directly with numerical
results and approximations from literature. Next, the expressions
are presented for multi-component systems for which numerical
computations are challenging.

2. Theory

Flory–Huggins theory[8,34] relates microscopic properties of poly-
mers to the equilibrium concentrations in phase-separated
polymer–polymer mixtures, polymer–solvent mixtures, and
other polymer–small molecule mixtures. The Flory–Huggins
Helmholtz energy F of mixing for two components reads

F
NkBT

=
𝜙1

M1
ln𝜙1 +

𝜙2

M2
ln𝜙2 + 𝜒12𝜙1𝜙2 (1)

with N = M1N1 + M2N2 the total number of lattice
sites/monomers, kB the Boltzmann constant, T the temper-
ature, M1 and M2 the degree of polymerization of component 1
and 2, and 𝜒12 the interaction parameter between components 1
and 2. The quantities 𝜙1 =

M1N1

N
and 𝜙2 =

M2N2

N
are the volume

fractions of components of respectively type 1 and 2. Flory[8]

and Huggins[34] derived this expression using a lattice approach
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Figure 1. Schematic overview of the approximations. In approximation I, the concentration of component (1) in phase A (𝜙A
1 ) can be used to determine

the concentration in phase B (𝜙B
1 ), which are in thermal, mechanical, and chemical equilibrium. Approximations II relate these concentrations in a

closed expression to the interaction energies of the involved molecules (𝜒). The dependency of binodal concentrations on these interaction energies is
given by approximations III–V. Approximations III and IV are valid when the components are miscible up to higher concentrations and approximation
V holds when the components are only slightly miscible. Additionally, approximation III is valid when the involved polymers are similar in length, while
approximation II applies when the chain lengths are significantly different.

which enabled them to express the entropy of mixing as well
as the enthalpy of mixing of the components. The chemical
potential μ of component 1 and 2 in a two component system
are, from the derivative of the free energy Equation (1)

μ𝛼1
kBT

= ln𝜙𝛼1 +
(

1 −
M1

M2

)
𝜙𝛼2 + M1𝜒12𝜙

𝛼

2

2

μ𝛼2
kBT

= ln𝜙𝛼2 +
(

1 −
M2

M1

)
𝜙𝛼1 + M2𝜒12𝜙

𝛼

1

2

(2)

in all phases 𝛼. Two or more phases coexist if they are in ther-
mal and mechanical equilibrium and if the chemical potentials
of the different phases are equal, so for two components and two
phases A and B

μA
1 = μB

1 (3a)

μA
2 = μB

2 (3b)

The Flory–Huggins lattice approach invokes incompressibility,
so for two components volume conservation requires

𝜙A
1 + 𝜙A

2 = 1 (4a)

𝜙B
1 + 𝜙B

2 = 1 (4b)

Due to the assumed incompressibility, the osmotic pressure is di-
rectly related to the chemical potentials in Flory–Huggins theory.
As a result, osmotic pressures are equal if the chemical potentials
are equal.

The equations here are presented for unbranched homopoly-
mers. When mean-field homogeneous mixing of groups can be
assumed for copolymers, it is possible to average over all nearest-
neighbor interactions, effectively averaging the contributions of

different groups. For example, for two copolymers a and b with
na and nb different groups

𝜒∗
ab =

na∑
i

nb∑
j

𝜓i𝜓j𝜒
ab
ij − 1

2

na∑
i

na∑
i

𝜓i𝜓j𝜒
aa
ij − 1

2

nb∑
i

nb∑
i

𝜓i𝜓j𝜒
bb
ij (5)

In this equation, 𝜓i and 𝜓j are the volume fractions of groups i
and j in the polymers. This effective interaction energy is the dif-
ference in interaction energy between the homogeneously mixed
copolymers and phase separated copolymers, with in both states
the different groups homogeneously mixed. The factors 1

2
cor-

rect for double counting of interactions. Adaptations to this the-
ory when homogeneous mixing cannot be assumed, for example
for block-copolymers with large blocks, are out of the scope of
this paper.

As a general analytical solution for the Flory–Huggins bin-
odal does not exist, the system of Equations (2)–(4), is usually
solved numerically. To test the analytical approximations for spe-
cific limits derived in this paper, we performed numerical compu-
tations using Wolfram Mathematica.[47] To do these calculations,
we solved Equations (2)–(4) using the function FindRoot.[48] This
function searches for a simultaneous numerical root of the given
functions. The parameters were varied in small steps, starting
at a state where each phase-consisted mostly of one component.
For binary systems, this procedure suffices to find the numeri-
cal binodals. The reference dependencies plotted as grey lines in
the figures in the next sections result from combining these nu-
merical solutions. They are used to compare the predictions from
analytical expressions and numerical computations. For systems
with a higher number of components, these numerical compu-
tations would become more challenging and require appropriate
initial guesses.

A point of a fluid–fluid binodal that can be found analytically
is the critical point. This point marks the transition from the re-
gion where a mixture is stable at all concentrations to a region
where phase-separation is possible. The critical point for a two
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component mixture can be found by equating the second and
third derivatives of F to 𝜙 to 0

𝜕2F
𝜕𝜙1

2
= 𝜕3F
𝜕𝜙1

3
= 0 (6)

In Section 3.1 we first focus on systems consisting of two com-
ponents. As a result, there are either two phases or one mixed
phase. For a binary mixture of components 1 and 2, the expres-
sion for the critical volume fraction of component 1 is

𝜙c,1 =
√

M2√
M1 +

√
M2

(7)

which is used in some of the expressions derived in the next
sections. In systems with many components, it is often possible
to make additional approximations on the concentrations in the
different phases. Section 3.2 gives three examples of such sys-
tems. Appendix A summarizes previously derived analytical ap-
proximations from literature[42–46] in the same notation as our ap-
proximations.

3. Results and Discussion

3.1. Approximations for Two-Component Mixtures

In this section, approximations to Flory–Huggins theory are de-
rived and tested. Although the dependency of the binodal con-
centrations can be determined readily for two components by nu-
merically solving Equations (2)–(4), the case of two components
makes the derivations more intuitive and easier to compare with
numerical computations and previous approximations.[42–46] In
Section 3.2, the approximations presented here will be general-
ized to multi-component systems. The steps presented here cover
the complete process from the input of measured concentrations
to the required effective parameters and from the effective param-
eters to predictions for the concentrations in other systems.

3.1.1. Predicting Coexisting Concentrations Using Measured
Concentrations

This section shows the derivation of an equation enabling the es-
timation of how much of a polymer is present in one phase based
on that component’s concentration in the other phase. Knowl-
edge about the interaction parameter between the involved com-
ponents is not needed. This equation can, for instance, be used
to relate polymer dissolution to solvent uptake. At the same time,
the effective ratio of polymer lengths, needed for predictive cal-
culations, can be estimated from 𝜙A

1 and 𝜙B
1 because there is only

one ratio for each combination of concentrations.
There are three limiting situations for which the coexistence

concentrations for binary systems are known. The first one is
the limit of complete phase-separation, 𝜙A

1 = 1 and 𝜙B
1 = 0 or

𝜙A
1 = 0 and 𝜙B

1 = 1. Second, when M1 = M2, symmetry dictates
that 𝜙A

1 = 𝜙B
2 and 𝜙A

2 = 𝜙B
1 = 1 − 𝜙B

2 = 1 − 𝜙A
1 , so 𝜙A

1 + 𝜙B
1 = 1

and 𝜙A
2 + 𝜙B

2 = 1. Finally, we can use that the concentrations are

known at the critical point (Equation (7)). As a possible equa-
tion satisfying these limits, valid for all M1 and M2, we surmise

𝜙A
1

f1(M1 ,M2)

+ 𝜙B
1

f2(M1 ,M2)

= 1 (8)

The functions f1 and f2 are yet to be determined, with the re-
quirement that the real values of f1 and f2 are larger than zero.
Due to the symmetry of the problem, 𝜙A

2 and 𝜙B
2 depend on M2

and M1 in the same way as 𝜙B
1 and 𝜙A

1 depend on M1 and M2. To-
gether with the requirement that 𝜙A

1 = 1 − 𝜙A
2 and 𝜙B

1 = 1 − 𝜙B
2 ,

this yields

(
1 − 𝜙B

1

)f1(M2 ,M1) +
(
1 − 𝜙A

1

)f2(M2 ,M1) = 1 (9)

As a result of the chosen expression, the limits for full phase-
separation and M1 = M2 are already satisfied. We can solve the set
of Equations (8) and (9) by using the third limit, the critical point,
Equation (7). Using this requirement in the equations above gives
two equations that can be used to find f1 and f2

𝜙c,1
f1(M1 ,M2) + 𝜙c,1

f2(M1 ,M2) = 1 (10a)

(
1 − 𝜙c,1

)f1(M2 ,M1) +
(
1 − 𝜙c,1

)f2(M2 ,M1) = 1 (10b)

This set of equations has f1(M1, M2) = f2(M1, M2) = − log2(𝜙c,1) =
log2(1 +

√
M1

M2
) as a solution. This also means f1(M2, M1) =

f2(M2, M1) = log2(1 +
√

M2

M1
). Now, solving for 𝜙A

1 or 𝜙B
1 gives the

following closed expression for the relation of the coexisting con-
centrations

𝜙A
1 =

(
1 − 𝜙B

1

1∕𝜖)𝜖
𝜙B

1 =
(

1 − 𝜙A
1

1∕𝜖)𝜖 with 𝜖 = log2

(
1 +

√
M1

M2

)
(11)

Figure 2 shows the difference between the numerical solutions
of Flory–Huggins theory (grey curves) and Equation (11) (orange
curves). The relation between the concentrations in the different
phases is exact for M1 = M2, and closely resembles the depen-
dencies for other values of M2

M1
. Equation (11) suggests the pro-

portionality of the concentrations in the different phases is only
a function of the ratio of the polymer chain lengths and not of
𝜒 or the absolute lengths. Numerical computations with varying
values for 𝜒 , M1 and M2 indeed confirm the independence of
𝜙B

1∕𝜙
A
1 of 𝜒 and the absolute values of M1 and M2.

Equation (11) makes it possible to calculate how much of a
component dissolves in one of two phase-separated phases by
measuring the concentration in the other phase without needing
any knowledge about the interaction energy between two com-
ponents. Also, the effective ratio of the polymer lengths can be
estimated using this equation. In Section 3.1.2, Equation (11) is
used to derive a relation between the interaction energies and one
of the concentrations, giving all parameters required to make pre-
dictions.
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Figure 2. The relation between the binodal concentrations of component
1 in the two coexisting phases of a binary mixture. The grey curves show the
numerical solutions at constant M2∕M1, the dashed orange curves follow
the analytical expressions (approximation I, Equation (11)), and the dots
show the critical points (Equation (7)).

3.1.2. Predicting Interaction Energies Using Measured Coexistence
Concentrations

The equilibrium concentrations found in the coexisting phases of
a particular two-component system can be used to calculate the
phase equilibria of other mixtures with similar components. In-
teraction parameters can be used to perform these calculations,
after these parameters are estimated. This section shows an ana-
lytical approximation of these interaction parameters 𝜒 as a func-
tion of the concentrations. With these equations, these wider ap-
plicable parameters can be determined directly from known con-
centrations.

Insertion of Equation (2) into Equations (3a) and (3b) gives

𝜒 = 1

M2

(
𝜙A

1

2

− 𝜙B
1

2
)[

ln
𝜙B

2

𝜙A
2

+
(

1 −
M2

M1

)(
𝜙B

1 − 𝜙A
1

)]
(12a)

𝜒 = 1

M1

(
𝜙B

2

2
− 𝜙A

2

2
)[

ln
𝜙A

1

𝜙B
1

+
(

1 −
M1

M2

)(
𝜙A

2 − 𝜙B
2

)]
(12b)

When all concentrations are known, these equations can be used
directly. More conveniently, using the approximation presented
in the previous section, it is only necessary to have one of these
concentrations. 𝜙A

2 and 𝜙B
2 can be eliminated using 𝜙A

1 + 𝜙A
2 = 1

and𝜙B
1 + 𝜙B

2 = 1.𝜙A
1 or𝜙B

1 can be eliminated using Equation (11).
This results in equations relating 𝜒 directly to one of the coexist-
ing concentrations

𝜒 =
M1 − M2

𝜙A
1 +

(
1 − 𝜙A

1

1∕𝜖
)𝜖 + 1

M2

ln
⎡⎢⎢⎣

1−
(

1−𝜙A
1

1∕𝜖
)𝜖

1−𝜙A
1

⎤⎥⎥⎦
𝜙A

1

2

−
(

1 − 𝜙A
1

1∕𝜖
)2𝜖

(13a)

𝜒 =
M1 − M2[

1 − 𝜙B
1

]
+

[
1 −

(
1 − 𝜙B

1

1∕𝜖
)𝜖]

+ 1
M1

ln
⎡⎢⎢⎣ 𝜙B

1(
1−𝜙B

1

1∕𝜖
)𝜖

⎤⎥⎥⎦[
1 − 𝜙B

1

]2 −
[
1 −

(
1 − 𝜙B

1

1∕𝜖
)𝜖]2

(13b)

In these equations, 𝜙A
1 > 𝜙c,1 and 𝜙B

1 < 𝜙c,1. For Equation (13a),
the chemical potential of component 2 is used and 𝜙B

1 is approxi-
mated using Equation (11), while in Equation (13b), the chemical
potential of component 1 is used and 𝜙A

1 is approximated using
Equation (11). In both cases, the other balance of the chemical
potentials is approximated indirectly using Equation (11). In one
of the branch of the binodal, the first of these approximations has
the largest effect, while in the other branch, the other approxima-
tion has the largest effect. Optimally, one of these equations is
used for each of the branch of the binodal.

Figure 3 shows how these analytical expressions for 𝜒 as a
function of a single binodal concentration compare with the nu-
merical solution. For M1 = M2, both relations for 𝜒 are equal and
exact, as the relation between 𝜙A

1 and 𝜙B
1 is exact. When M1 and

M2 are not equal, and the best combination of approximations
is used, the difference is smallest for high differences in length
because the effect of the approximate relation between the con-
centrations derived in the previous section is smaller. The approx-
imated binodal concentration has a smaller effect on 𝜒 for larger
differences in length.

Interaction parameters 𝜒 of different polymers and solvents
are used to compare and predict miscibilities. With Equation (13)
interaction parameters can be calculated directly using a closed
expression. Furthermore, 𝜒 can be estimated using only estima-
tions of the lengths of the involved constituents and a single mea-
sured equilibrium phase concentration.

3.1.3. Predicting Coexisting Concentrations Using Interaction
Energies

The microscopic properties of the polymers involved in a mixture
can be used to predict phase coexistence concentrations. Con-
ventionally, Equations (2)–(4) are used to numerically find the
dependency of the binodal on M and 𝜒 . Especially for systems
with many components, the process of solving Flory–Huggins
equations requires appropriate initial guesses for the concentra-
tions, and is further complicated by the larger number of vari-
ables. Furthermore, these relations accommodate the direct fit-
ting of simulation and experimental data and quick calculations.
Higher-order polynomial solutions are more accurate, and main-
tain the advantage that no initial guesses for the calculations are
required. This section describes multiple relations of 𝜙 as a func-
tion of molecular features. The variance in approximations in
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Figure 3. Binodals of binary mixtures for various chain length ratios M1∕M2 with M2 = 10. Numerical solutions are indicated by the solid grey curves.
The yellow dashed curves are plotted using Equation (13a) (approximation IIa) in the left graph and using Equation (13b) (approximation IIb) in the
right graph. For 𝜙1 > 𝜙c,1, Equation (13a) gives more accurate results, while for 𝜙1 < 𝜙c,1, Equation (13b) is more accurate.

distinct conditions renders the equations together applicable over
a wide range of concentrations. Appendix B shows the derivations
of these approximations. In this section, these approximations
are presented for two components. In the next section, we will
show that these approximations can be combined to determine
concentrations for more than two components.

Phase Equilibria for Near-Critical Polymers with Equal and Sim-
ilar Chain Lengths:: When polymers with similar lengths are
mixed, this can be described in Flory–Huggins theory with M1 ≈
M2. These can be mixtures of smaller similar-sized polymers,
such as monomers before a polymerization reaction or oligomer
blends, or blends of larger polymers, where the difference in
chain length is small relative to the absolute chain length of the
mixed polymers. Up to second order, these symmetrical mixtures
can be approximated as

𝜙A
1 = 1

2
+ 1

2
𝜓

𝜙B
1 = 1

2
− 1

2
𝜓

with 𝜓 =
√

3
2

M𝜒 − 3 (14)

The derivation of this equation can be found in Ap-
pendix B.1. This solution is equal to the solution following
from the Ginzburg–Landau expansion of the Flory–Huggins free
energy.[42] As expected, this equation suggests a critical point at
𝜓 = 0, or 𝜒 = 2

M
.

Figure 4 shows how Equation (14) and two higher-order
approximations compare with numerical solutions to Flory–
Huggins theory. Solutions for polynomials of all orders can
be found using for example Horner’s method,[49] the Secant
method,[50] or Brent’s method.[51] With these methods, no prior
knowledge about the system for initial guesses is necessary be-
cause variable intervals can be reduced until, in each interval,
these methods are guaranteed to find the one valid solution.[52]

The agreement of the approximations is best for concentrations
close to 𝜙c,1. The range of 𝜒 -values where the approximation can
be used is more extensive for shorter polymers because the con-
centrations are close to 𝜙c,1 over a broader range of 𝜒 .

The same principle can be applied when M1 and M2 are not
exactly equal, but similar. Using the precise values of M1 and M2
in the approximation, results in exactly 𝜙c,1 in the limit 𝜓 → 0.
The effect on the dependencies is, however, small for small dif-
ferences in M. The next section discusses more accurate closed

Figure 4. Binodal of the binary mixture with M1 = M2 = 10. Numerical
solutions are indicated by the solid grey curves. The first blue dot-dashed
curve is plotted using Equation (14). The darker, longer dashed curves are
solutions using higher orders of Equation (B4).

expressions for larger differences in the polymer chain length.
The limit𝜓 → 1 is discussed in more detail in the final part of this
section. This limit is relevant far from the critical point, where in
each phase, the concentration of one of the components is much
higher than the concentration of the other components.

Phase Equilibria for Near-Critical Polymers with Unequal Chain
Lengths:: This section focuses on systems with asymmetric
chain lengths, where M1 and M2 are different. This situation is
applicable in mixtures of a polymer and a solvent or mixtures of
polymers that differ significantly in molar mass. An example of
such a mixture is the combination of degraded and virgin poly-
mer in a recycling process. Up to third order, these asymmetric
mixtures can be approximated with

𝜙A
1 = 𝜙c,1 + (1 − 𝜙c,1)

(
−

pA

2
+

√(pA

2

)2
−

q
M1

)
(15a)

𝜙B
1 = 𝜙c,1 − 𝜙c,1

(
−

pB

2
+

√(pB

2

)2
−

q
M2

)
(15b)

Appendix B.2 shows the derivation of these equations. In these
equations, pA = − 3

2
[2M2(1 − 𝜙c,1)2𝜒 − 1], pB = − 3

2
[2M1𝜙

2
c,1𝜒 − 1]

and in both equations q = 3[M1𝜙c,1 + M2(1 − 𝜙c,1) −
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Figure 5. Linear and logarithmic plot of the binodal of the binary mixtures with M1 = 100 and M2 = 10. Numerical solutions are indicated by the
solid grey curves. The first red double-dot-dashed curve is plotted using Equation (15). The darker, longer dashed curves are solutions that each use a
higher-order of Equation (B9).

2M1M2𝜙c,1(1 − 𝜙c,1)𝜒 ]. Higher-order solutions can again be
found using for example Horner’s method,[49] the Secant
method,[50] or Brent’s method.[51] Figure 5 shows a linear
and logarithmic plot of Equation (15) and two higher-order
approximations compared to the numerical solutions. In the
logarithmic plot it can be seen that increasing the order of the
approximation does not always reduce the difference between
the approximation and the numerical solution for a range of
values of 𝜒 .

In the limit M1 → ∞ and M2 = 1, Equation (15a) reduces
to 𝜙A

1 = 3(𝜒 − 1
2
) and in the limit M1 → 1 and M2 = ∞ Equa-

tion (15b), 𝜙B
1 = 1 − 3(𝜒 − 1

2
), which are the same limiting equa-

tions as found earlier.[43] Far from the critical point, Equation (15)
does not hold because the effect of the (smaller) change of one of
the concentrations does not have a negligible effect far from the
critical point. The limit 𝜓 → 1 is explained in more detail in the
next section.

For both equal and unequal chain lengths, 𝜒c can already
be used to directly determine whether polymer–polymer and
polymer–solvent mixtures are miscible at all concentrations. The
equations presented above for equal and unequal chain lengths
make it possible to also directly estimate at which concentrations
polymers are still miscible if 𝜒 is above 𝜒c. For phase-separating
mixtures close to the critical point, the equations provide the
equilibrium concentrations in each phase.

Phase Equilibria Far from the Critical Point:: Finally, we show
an approximate, closed expression for the binodal far from the
critical point. This approximation can be used to find the equilib-
rium concentrations for mixtures with limited solubility. Exam-
ples of applications in this regime are determining whether fillers
can be added to improve material properties, checking whether a
polymeric material is susceptible to impurities or contaminants,
and dilute polymeric systems. In such cases, the concentration
dependency can be approximated with

𝜙A
1 = 1 − e

−
(
𝜒− 1

M1

)
M2−1

1 − e
−
(
𝜒− 1

M1

)
M2−1

e
−
(
𝜒− 1

M2

)
M1−1

(16a)

𝜙B
1 = 1 − 1 − e

−
(
𝜒− 1

M2

)
M1−1

1 − e
−
(
𝜒− 1

M1

)
M2−1

e
−
(
𝜒− 1

M2

)
M1−1

(16b)

Figure 6. Binodal of the binary mixture with M2 = 10. Numerical solutions
are indicated by the solid grey curves. The green triple-dot-dashed curves
are plotted using Equation (17) (approximation V).

This can be further simplified for large 𝜒

𝜙A
1 = 1 − e

−
(
𝜒− 1

M1

)
M2−1

(17a)

𝜙B
1 = e

−
(
𝜒− 1

M2

)
M1−1

(17b)

Appendix B.3 shows the derivation of these equations. This equa-
tion can be confirmed with Equation (14) using the limit 𝜓 → 1
instead of 𝜓 → 0. A similar approach was used by Tsenoglou and
Papaspyrides.[46] The triple-dot-dashed curve in Figure 6 shows
how Equation (17) compare to the numerical solutions. For suffi-
ciently large 𝜒 , the equilibrium concentrations also decrease ex-
ponentially with the length of the polymers. As expected, the bin-
odal start deviating for smaller 𝜒 due to the approximations.

When 𝜒 = 1
M1

, the concentrations approach a constant, non-

zero value for large M2 that is independent of the chosen 𝜒 = 1
M1

.

This can be understood by looking at the Flory–Huggins free en-
ergy (Equation (1)). When M2 is large, the difference in entropy
of the second constituent can be neglected. The equilibrium con-
centration of constituent 1 in phase A will be approximately 1.
The total free energy is minimal when dF

dN1
= 0. At 𝜒 = 1

M1
, this

condition reduces to ln(𝜙B
1 ) = −𝜙B

1

2

+ 3𝜙B
1 − 2, so 𝜙B

1 = 0.3162.
Under these conditions, the entropy and enthalpy balance each

Macromol. Theory Simul. 2023, 32, 2300001 2300001 (7 of 14) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 7. Numerical binodals of binary mixtures with 𝜒 = 1
M1

(grey curves). For 𝜒 = 1
M1

, the concentration in one of the phases is expected to become

independent of M2 for large enough M2. This figure shows some examples of this effect. The green triple-dot-dashed curve is the theoretically expected
limiting value of 0.3162.

Figure 8. Linear and logarithmic plot of the binodal of the binary mixtures with M1 = 1000 and M2 = 1. Numerical solutions are indicated by the
solid grey curves. The brown red double-dot-dashed curve is plotted using the same equation as the third curve in Figure 5. The purple dotted curves
correspond to the approximations from literature, which can be found in Appendix A. Starting with the lightest color and largest distance between dots,
the dots indicate the second approximation by Brennan and Madden (Equation (A2b)),[43] the approximation by Sanchez,[44] (Equation (A3)) and the
approximation by Scheinhardt-Engels, Leermakers and Fleer (Equation (A5)).[45]

other in such a way that the equilibrium concentration in phase
B becomes independent of 𝜒 = 1

M1
and M2.

Figure 7 illustrates that the concentrations approach a con-
stant value for numerical solution of Flory–Huggins theory for
𝜒 = 1

M1
. This means that, in theory, it is possible to create a mix-

ture where the degree of polymerization does not affect the equi-
librium concentrations in the mixture. Experimentally, achieving
such a combination of materials could ease the creation of ma-
terials with consistent properties, by decreasing the influence of
for example polydispersity.

3.1.4. Combined Approximations and Comparison with Earlier
Approximations

In the previous sections, we proposed approximate expres-
sions for the binodal as a function of the material properties.
Here we compare these results with previous findings by other
groups.[42–45] Figure 8 compares the approximations for unequal

chain length in this paper, the earlier approximations, and the nu-
merical solutions to Flory–Huggins theory. In this section, curves
based on the derived equations in the previous sections are plot-
ted with the same colors and dashing as in the earlier figures. For
the higher-order approximations, it can be seen that our approach
results in a smaller difference with the numerical solutions than
the earlier approximations.

In Figure 8, the approximations explained in the other parts of
this paper can be compared with the approximations from litera-
ture and the numerical solutions. Independent of M1 and M2 and

the resulting location of the critical point,
d𝜙A

1

d𝜙B
1

= −1 at the critical

point. This suggests an equidistant deviation of the two coexist-
ing concentrations from the critical point by both branches of the
binodal. Sanchez used an equidistant deviation in his derivation
of an analytical expression of the Flory–Huggins concentrations
as a function of the material properties.[44] This approximation
is expected to be more accurate close to the critical point than
our approximation for symmetrical systems. The approaches
described in this paper sacrifice some accuracy close to the

Macromol. Theory Simul. 2023, 32, 2300001 2300001 (8 of 14) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 9. Binodals of the binary mixtures with M1 = 10 and M2 = 3 (left) and M1 = 20 and M2 = 20 (right). Numerical solutions are indicated by the
solid grey curves. The pink dashed curves are a combination of Equation (13b) for 𝜙1 > 𝜙c,1 and Equation (13b) for 𝜙1 < 𝜙c,1. The blue dot-dashed curve
and the green triple-dot-dashed curve are the same curves as in Figure 4 and Figure 6. The purple dotted curves correspond to the approximations from
literature, which can be found in Appendix A. Starting with the lightest color and largest distance between dots, the symmetrical expansion by Safran
(only in right graph, Equation (A1)),[42] the approximation by Sanchez (Equation (A3)),[44] and the approximation by Scheinhardt-Engels, Leermakers,
and Fleer (left Equation (A5), right Equation (A4)).[45]

critical point to win accuracy slightly further from the critical
point. The approach also results in correct concentrations both in
the limit close to the critical point (𝜓 → 0, blue dot-dashed and
green triple-dot-dashed curves) and infinity far from the critical
point (𝜓 → 1, green triple-dot-dashed curve).

The full range of concentrations can be approximated by com-
bining (higher-order) approximations. Figure 9 shows an exam-
ple where Equations (13a) and (13b) are combined and where
Equations (14) and (17) are combined. Combining the approxi-
mations mentioned in this paper, 𝜙A

1 , 𝜙A
2 , and 𝜒 can each be ex-

pressed in each other in closed expressions, both close to and far
from the critical point.

3.2. Approximations for Multi-Component Mixtures

The previous sections show approximations of Flory–Huggins
theory for two component mixtures and how they compare to nu-
merical computations and earlier approximations. For such two-
component systems, the number of concentrations that must sat-
isfy the equations simultaneously is limited, making numerical
determination straightforward. Computations becomes more de-
manding for multi-component systems due to the bigger system
of equations and high number of concentrations that must be
determined simultaneously. Computations become even more
demanding when the different polymers vary in size and num-
ber of chemical groups. These properties affect the solubility and
should be accounted in the calculations, increasing the number
of components and equations even further.

With more components, Equations (2)–(4) and Equation (7)
can be written as:

μ𝛼k
k𝛽T

= ln
(
𝜙𝛼k

)
+

∑
i≠k

[(
1 −

Mk

Mi

)
𝜙𝛼i + Mk𝜒ki

(
1 − 𝜙𝛼k

)
𝜙𝛼i −

1
2

Mk

∑
j≠k

𝜒ij𝜙
𝛼

i 𝜙
𝛼

j

]
(18a)

μ𝛼i = μ𝛽i (18b)

∑
i

𝜙𝛼i = 1 (18c)

𝜙c,k =
∏

i≠k

√
Mi∑

j

∏
i≠j

√
Mi

(18d)

In these equations, i, j, and k are indices of different components,
and 𝛼 and 𝛽 are the indices of the different phases. The chemical
potentials are now equal for all phases and all components. These
are the equations needed to derive the approximate relations for
multi-component mixtures.

Here, we demonstrate the advantage of the earlier discussed
approximations using three examples of multi-components sys-
tems that are challenging to solve numerically without approxi-
mations. Many polymers have a large diversity of their chemical
structure and chain lengths,[53] drastically increasing the num-
ber of components. Despite its reported large affect,[54] this vari-
ety is often not included in theoretical studies. The demonstrated
procedure in the presented relatively simple conceptual examples
can be applied in the same manner for more components, pro-
viding options for theoretical many-component studies.

3.2.1. Recycling Polymer Mixtures

As a first example, we focus on multi-component polymer mix-
tures in recycling processes. A way to maintain optimal prop-
erties for recycled materials is by separating different types of
polymers during the recycling process. Using the difference
in solubility of polymers is one of the techniques used for
this separation.[55,56] Although chemical differences in chemi-
cal groups in these materials make separation possible, this is
never entirely without contaminations from other types of plas-
tic. Therefore, minimizing the number of contaminations is de-
sirable because their chemical structures can result in less favor-
able material properties and complicate the material’s recycling
process.[56] For this reason, theoretically predicting how process-
ing conditions affect the concentrations of these contaminations
helps to improve polymer recycling but is challenging due to the
number and variation in the components.

In the discussed situation, the different types of polymers
each have limited miscibility in each other, so each phase will

Macromol. Theory Simul. 2023, 32, 2300001 2300001 (9 of 14) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 10. The concentrations of the different polymer types in one of the phases after separation in a recycling process. The left figure shows the
analytical and numerical results for a hypothetical system with three components. The actual situation will be closer to the hypothetical system in the
right figure, with nine components. The graphs show the effect of changing the length M of the common polymer 1 and two other polymers in phase
A. All other polymer lengths are arbitrarily chosen. The lighter curves correspond to polymer with double the length of the polymers represented by the
darker curves. The black curve is the concentration (𝜙A

1 ) of the polymer at high concentration in phase A.

predominantly consist of one of the components. The concentra-
tion of the other components in that phase can be determined
using a similar derivation as in Section 3.1.3. If we look at com-
ponents 1 and 2 and phases A and B, where A is the phase with
mostly 1 and B is the phase with mostly 2, we can neglect the
concentrations of the other components 3, 4, 5, .... In this case,
Equation (18) can again be simplified to Equation (B11) and from
Equation (B11) to Equations (16) and (17), but with 𝜒12 instead of
𝜒 . The same reasoning could be applied to the other phases and
components, so in general

𝜙
𝛽

i = e
−
(
𝜒ij−

1
Mj

)
Mi−1 (19)

with j the majority component in phase 𝛽. The majority con-
centrations can be calculated after all the minority concentrations
are determined using

𝜙
𝛽

j = 1 −
∑
i≠j

𝜙
𝛽

i (20)

Figure 10 gives a hypothetical example of the recycled polymer
mixture as a function of the size of these polymers. If the mixture
consists of only of three components, numerical computations is
still possible and can be compared with the approximations, re-
sulting in Section 3.2.1. For all components, the approximations
and numerical computations agree well further from the critical
point. Closer to the critical point, the results deviate because lim-
ited miscibility is assumed. Section 3.2.1 shows a more realistic
situation with nine components. In reality, there will be many
more variations in lengths and number of functional groups in
these polymers, resulting in an even greater number of compo-
nents in the calculation. Using the approximations, the num-
ber of components has an insignificant effect on the difficulty of
the calculations, while numerically solving the system of equa-
tions becomes very challenging.

3.2.2. Solvent Fractionation of Polydisperse Polymers

Solvent fractionation is selectively dissolving polymers with dis-
tinct properties such as size, composition, or structure. The
technique is used in many forms in material preparation and

characterization.[54,57] As an example of a polymer mixture in con-
tact with a solvent mixture, we will look at the solvent fractiona-
tion of a polydisperse polymer in a solvent consisting of two com-
ponents. We assume here that the total amount of solvent used
is high in comparison to the total amount of polymer.

In the considered situation, the solvent molecules mix at all
concentrations. As a result, the concentrations can be found di-
rectly from a mass balance. The effective interaction energy of the
new, mixed, effective majority concentration of the mixed com-
ponents m in phase 𝛽 with the polymers i can be calculated using
these concentrations

𝜒∗
i𝛽 =

n𝛽∑
m

𝜃𝛽m𝜒im − 1
2

n𝛽∑
m1

n𝛽∑
m2

𝜃m1
𝜃m2

𝜒m1m2
(21)

The interaction parameter 𝜒∗
i𝛽 is the mean-field averaged in-

teraction between polymer segment i and the solvent mixture
with relative amounts 𝜃m. The relative numbers of interactions
of i with different mixed components m scale with the relative
amount of m. At the same time, a higher concentration of i re-
sults in a lower number of interactions between different mixed
components m1 and m2. The factor 1

2
corrects for double count-

ing of these interactions. This equation is a specific example of
the effective interaction between mixtures

𝜒
𝛼𝛽

ab =
n𝛼∑
i

n𝛽∑
j

𝜃i𝜃j𝜒
𝛼𝛽

ij − 1
2

n𝛼∑
i

n𝛼∑
i

𝜃i𝜃j𝜒
𝛼𝛼

ij − 1
2

n𝛽∑
i

n𝛽∑
i

𝜃i𝜃j𝜒
𝛽𝛽

ij (22)

resulting from a mean-field comparison of the average num-
ber of interactions when the two blends are mixed with where the
two components are in different phases. This equation is similar
to Equation (5), for the effective averaging of functional groups.

The equation for the calculation of the equilibrium concentra-
tions of the polymers is now equal to Equation (19), but with this
effective interaction energy:

𝜙
𝛽

i = e
−
(
𝜒∗

i𝛽
− 1

Mj

)
Mi−1 (23)

Figure 11 gives a hypothetical example of the equilibrium con-
centrations of a polydisperse polymer in the solvent mixture for
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Figure 11. The left figure shows the maximal concentration of polymer that dissolves in a mixture of two solvents s and ß as a function of the concentration
of one of these two solvents. The right figure shows the concentration of additives and fillers as a function of the concentration of the interaction between
two locally phase separated polymers in both phases. The interaction between the polymers 1 and 2 is varied, while the interactions between the polymers
and the additives and fillers are kept constant.

eight different polymers. This graph shows that the maximal dis-
solving amount of polymer is larger for the shorter polymers in
a polydisperse sample than for larger polymers. The concentra-
tion of a polymer can be maximal when 𝜃2, the concentration of
the second solvent, is minimal, maximal, or anywhere between
these limits. Repeating this process in multiple solvents makes
it possible to select polymers with certain lengths and functional
groups. The same method can be used for polydisperse samples
with a complete molar mass distribution.

3.2.3. Additives and Fillers in Polymer Blends

A polymer blend can be beneficial by combining each polymer’s
advantageous properties. Various additives and fillers are used to
modify the properties of materials further. In some cases, mix-
tures of polymers will form a single, homogeneous phase, for
which the concentrations of additives and fillers can be estimated
similarly to Section 3.2.2. In other cases, local phase separation
results in regions with a higher concentration of one of the mixed
polymers. The equilibrium concentrations of the polymers, addi-
tives, and fillers in these phases influence each other.[58,59] As a fi-
nal example, we here consider a hypothetical system consisting of
a mixture of two polymers that locally phase-separate, with small
concentrations of additives and fillers, showing how the concen-
tration of polymers in these phases affects the distribution of the
additives and fillers over the phases.

In situations where there are components that have limited
miscibility and components that have near-critical miscibility,
first, the concentrations of components that have near-critical
miscibility can be determined. For the calculation of these con-
centrations, the small concentrations of components with limited
miscibility are neglected. If two of these near-critical components
have similar lengths, their concentrations can be estimated using

𝜙𝛼1 = 1
2
+ 1

2
𝜓 (24a)

𝜙
𝛽

1 = 1
2
− 1

2
𝜓 (24b)

In the case of unequal chain lengths the concentrations can be
approximated using

𝜙𝛼1 = 𝜙c,1 + (1 − 𝜙c,1)
⎛⎜⎜⎝
√(p𝛼

2

)2
−

q
M1

−
p𝛼
2

⎞⎟⎟⎠ (25a)

𝜙
𝛽

1 = 𝜙c,1

⎛⎜⎜⎝1 −

√(p𝛽
2

)2

−
q

M2
+

p𝛽
2

⎞⎟⎟⎠ (25b)

or their higher order equivalents, following the logic in Sec-
tion 3.1.3. This reasoning can be used for all the pairs of near-
critical mixing phases in systems with even more phases. These
equations can be used in the considered example to estimate the
locally phase-separated polymers. After estimating these concen-
trations, again effective interaction energies can be estimated in
each of these phases using Equation (22). The concentrations of
the additives and fillers can then be estimated using

𝜙
𝛽

i = e
−
(
𝜒∗

bi
− 1

M∗
b

)
Mi−1 (26)

for each of the phases 𝛽. Besides the mean-field averaged in-
teraction energy 𝜒∗

bi, also the effective chain-length changes as

a result of mixing, M∗
b =

∑n𝛽
j

𝜙
𝛽

j

Mj
. This equation for M∗

b can be

derived using the same steps as in Section 3.1.3, starting from
Equation (18). The concentrations𝜙𝛽j are the concentrations from
Equations (24) and (25)

Section 3.2.2 shows how the distribution of the additives and
fillers is affected by the relative concentrations of the polymers.
These concentrations indirectly depend on the interaction of
these two polymers. When the difference in polymer concentra-
tions of the two phases is smaller, the difference in concentra-
tions of the additives and fillers is also smaller. The same ap-
proach can be applied in numerically challenging systems with
more coexisting phases, polymers, additives, and fillers.

4. Conclusions

Flory–Huggins theory can predict phase separation in mixtures
of polymers and solvents. By equating the chemical potentials
resulting from Flory–Huggins theory, the equilibrium composi-
tions of the coexisting phases can be predicted numerically from
the chain lengths and interactions of the involved molecules.

Macromol. Theory Simul. 2023, 32, 2300001 2300001 (11 of 14) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Especially for more complex mixtures, these numerical compu-
tations can be challenging compared to analytical approxima-
tions. Such approximations can be used to directly find inter-
action parameters by fitting experimental data using closed ex-
pressions, can be applied to calculate equilibrium concentrations
quickly, and can provide initial values for numerical computa-
tions and simulations.

This paper gives an overview of different approximate, analyti-
cal solutions, each applicable in different situations. These situa-
tions include the miscibility of (bio-based) polymers and solvents,
virgin and post-consumer polymers, and polymers and fillers,
impurities or contaminants. The order of the used equations in-
fluences the accuracy but also the complexity of the calculations.
The lower-order, closed expressions are simple and more con-
venient for quick calculation. Higher-order approximations are
less readable, but more accurate and still free of a required ini-
tial guess. Combining the approximations makes it possible to
make predictions over the full range of concentrations. The re-
sults show that close to the critical point, the logarithmic-terms
in the equations for the chemical potentials can be approximated.
When there is limited miscibility, all terms but the logarithmic
terms can be approximated. Using the similarity or difference
of the polymer chain lengths and the relation between the con-
centrations in different phases, the different concentrations and
interaction energies can be connected with closed expressions.

The methods presented here can be applied to a mixture of
any number of components. Here we demonstrated this for a
multi-component polymer recycling mixture, polymer–solvent
mixture after solvent fractionation and a mixture of polymers
and additives and fillers. Depending on the considered system,
different approximations can be combined, making it possible
to predict phase equilibria for numerically challenging systems
with multiple components, and with size polydispersity or chem-
ical polydispersity. Together, the presented approximate relations
between molecular features and equilibrium concentrations en-
hance the applicability of solvency theories by their simplicity
and enhance their realistic relevance in practical circularity chal-
lenges by their extensibility.

Appendix A: Analytical Approximations to the
Near-Critical Binodals from Flory–Huggins Theory
from the Literature

This appendix presents a short overview of previous approximations of
analytical expressions of binodals from Flory–Huggins theory. These so-
lutions for the binodals are represented here using the same variables as
used in this paper and are used for the literature results plotted in Figures 8
and 9.

A Ginzburg–Landau expansion[42] can be used to derive an expression
for the equilibrium concentrations as a function of the microscopic prop-
erties for a mixture of equal length polymers. In this approach, the entropic
contribution to the free energy is expanded around the critical concentra-
tion, giving

𝜙 = 1
2
± 1

2

√
3
2

M𝜒 − 3 (A1)

This equation is valid close to the critical point.

If polymers are in contact with a solvent, but the polymers do not dis-
solve in the solvent, the chemical potential of the solvent in the solvent-
rich phase will be zero.[43] This approximation is accurate for infinitely long
polymers with positive interaction energies with small solvent molecules.
If the logarithmic terms in the other chemical potential (see Equation (2))
are approximated using a Taylor expansion, an expression can be derived
for the concentrations. The first- and second-order approximations by
Brennan and Madden[43] are given by

𝜙 = 3
(
𝜒 − 1

2

)
(A2a)

𝜙 = 2
3

(√
1 + 9

(
𝜒 − 1

2

)
− 1

)
(A2b)

Sanchez[44] derived an equation for the concentrations as a function of the
microscopic properties of materials. At the critical point, d𝜙1A

d𝜙1B
= −1 . This

can be used to find

𝜙 = kcrit +
√

3(k − kcrit) ±
1
2

b
√

6 (A3a)

k = 1
2
+ 1

4𝜒

(
1√
M1

− 1√
M2

)
(A3b)

kcrit =
√

M2√
M1 +

√
M2

(A3c)

b2 = 2k2 − 1
𝜒M1

(A3d)

Scheinhardt-Engels, Leermakers, and Fleer[45] derived equations using the
flux of the components between the different states. In equilibrium, the
net fluxes between the states should be zero, resulting in a set of equa-
tions that can be solved close to the critical point. They used the Flory–
Huggins chemical potentials for the flux. For mixtures with equal chain
length, they found

𝜙 = k ± 1
2

b
√

6 (A4a)

k = 1
2
+ 1

4𝜒

(
1√
M1

− 1√
M2

)
(A4b)

b2 = 2k2 − 1
𝜒M1

(A4c)

For polymers with different chain lengths

𝜙 = 1
2

(
3k − kcrit ±

√
6b2 − 3(k − kcrit)

2
)

(A5a)

k = 1
2
+ 1

4𝜒

(
1√
M1

+ 1√
M2

)
(A5b)

b2 = 2k2 − 1
𝜒M1

(A5c)
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Appendix B: Derivations of Coexisting
Concentrations as a Function of Interactions
Energies

B.1. Mixtures of Near-Critical Polymers with Equal and Similar
Chain Lengths

Here an approximate relation relating coexistence concentrations to M
and 𝜒 for polymers with similar chain lengths is presented. We introduce
a new variable, 𝜓 , that attains a value 𝜓 = 0 at the critical point (𝜒 → 𝜒c)
and 𝜓 = 1 infinitely far from the critical point (𝜒 → ∞). In the second of
these limits, all 𝜙’s go to either 1 or 0. For (approximately) symmetric sys-
tems

𝜙A
1 = 𝜙c,1 + (1 − 𝜙c,1)𝜓 (B1a)

𝜙B
1 = 𝜙c,1 − 𝜙c,1𝜓 (B1b)

with 0 ≤ 𝜓 ≤ 1. Next, a connection is made with the molecular features 𝜒
and M. If the expressions are used in Equation (12a), it reduces to

𝜒 =

(
1 − M2

M1

)
𝜓 + ln

( [1−𝜙c,1]+𝜙c,1𝜓

[1−𝜙c,1]−[1−𝜙c,1]𝜓

)
M1

([
𝜙c,1 +

(
1 − 𝜙c,1

)
𝜓
]2 −

[
𝜙c,1 − 𝜙c,1𝜓

]2
) (B2)

For symmetrical systems (M1 = M2), which have their critical point at
𝜙c,1 = 1

2

M𝜒 = 1
𝜓

ln

( 1
2
+ 1

2
𝜓

1
2
− 1

2
𝜓

)
(B3)

Using Equation (12b) instead of Equation (12a) in the derivation gives
the same result (Equation (B3)). To obtain an expression with 𝜙 as a func-
tion of the material properties close to the critical point, one can use a
series expansion of the logarithmic term around 𝜓 ≈ 0, giving

ln

( 1
2
+ 1

2
𝜓

1
2
− 1

2
𝜓

)
≃

k∑
i=0

2
2i + 1

𝜓2i+1 (B4)

The higher k, the higher the precision of the resulting equation, and for
k = ∞ Equation (B4) is exact. For example, up to 2nd order in 𝜓 (k = 1),
the resulting equation is

M𝜒 = 2 + 2
3
𝜓2 (B5a)

and solving for 𝜓 and using Equation (B1) gives Equation (14).

B.2. Mixtures of Near-Critical Polymers with Unequal Chain
Lengths

This section shows the derivation of an approximate relation relating co-
existence concentrations to M and 𝜒 for polymers with unequal chain
lengths. As a result of the asymmetrical binodal in these cases, one of
the coexisting concentrations varies strongly with 𝜒 , while the other con-
centration varies weakly with 𝜒 . In the limit M1 ≫ M2 and in the limit
M2 ≫ M1, the concentration at the critical point 𝜙c,1 ≈ 0 for one of the
constituents and 1 − 𝜙c,1 ≈ 1 for the other constituent. The concentration
that is already close to its limiting concentration will not change much with
𝜒 . We use this to approximate the concentration dependency with

𝜙A
1 = 𝜙c,1 + (1 − 𝜙c,1)𝜓 (B6a)

𝜙B
1 = 𝜙c,1 (B6b)

for 𝜙c,1 ≈ 0, or

𝜙A
1 = 𝜙c,1 (B7a)

𝜙B
1 = 𝜙c,1 − 𝜙c,1𝜓 (B7b)

for 𝜙c,1 ≈ 1.
The quantity 𝜓 is chosen such that the concentrations are equal to the

concentrations at the critical point for 𝜓 = 0. Using Equations (B6) and
(B7) in Equations (13a) and (13b) gives

𝜒 =
(M2 − M1)

(
1 − 𝜙c,1

)
𝜓 + M1 ln

(
1

1−𝜓

)
M1M2

([
𝜙c,1 +

(
1 − 𝜙c,1

)
𝜓
]2 − 𝜙2

c,1

) (B8a)

𝜒 =
(M1 − M2)𝜙c,1𝜓 + M2 ln

(
1

1−𝜓

)
M1M2

([
1 − 𝜙c,1

]2 −
[(

1 − 𝜙c,1
)
+ 𝜙c,1𝜓

]2
) (B8b)

with 𝜙A
1 > 𝜙c,1 for Equation (B8a) and 𝜙B

1 < 𝜙c,1 for Equation (B8b).
The logarithmic terms can again be replaced with a series expansion

around 𝜓 = 0

ln
(

1
1 − 𝜓

)
≃

k∑
i=1

𝜓 i

i
(B9)

which is exact for k = ∞. Approximating Equations (B8a) and (B8b) to
third order in 𝜓 and solving for 𝜓 results in Equation (15).

B.3. Derivation for Mixtures of Polymers with Limited Miscibility

Here we present the derivation for the equilibrium concentrations of
slightly mixing polymers. The starting point of this derivation is Equa-
tions (2)–(4). Using the expressions for the chemical potentials in Equa-
tion (2) and in Equation (3) and rearranging gives

ln
𝜙B

1

𝜙A
1

=
[(

1 −
M1

M2

)
𝜙A

2 + M1𝜒𝜙
A
2

2
]
−

[(
1 −

M1

M2

)
𝜙B

2 + M1𝜒𝜙
B
2

2
]
(B10a)

ln
𝜙A

2

𝜙B
2

=
[(

1 −
M2

M1

)
𝜙B

1 + M2𝜒𝜙
B
1

2
]
−

[(
1 −

M2

M1

)
𝜙A

1 + M2𝜒𝜙
A
1

2
]
(B10b)

Far from the critical point (𝜒 ≫ 𝜒c), both phases consist mostly of one of
the components. If we arbitrary choose that phase A is rich in component 1
and phase B rich in component 2, we can assume 𝜙A

1 ≫ 𝜙A
2 and 𝜙B

1 ≪ 𝜙B
2 .

This also means 𝜙A
1 = 1 − 𝜙A

2 ≈ 1, 𝜙A
2 ≈ 0, 𝜙B

1 ≈ 0, and 𝜙B
2 = 1 − 𝜙B

2 ≈ 1.
The absolute value of both logarithmic terms of Equation (B10) go to plus
or minus infinity if the ratio between the concentrations goes to zero or
infinity (ln 1

0
= ∞ and ln 0

1
= −∞). On the right-hand side of the equation,

the difference between using 𝜙A
1 = 1, 𝜙A

2 = 0, 𝜙B
1 = 0, and 𝜙B

2 = 1 and the
slightly different, not approximated coexistence concentrations is small,
so equation B10 can be approximated as

𝜙B
1

𝜙A
1

= e
−
(
𝜒− 1

M2

)
M1−1

(B11a)

𝜙A
2

𝜙B
2

= e
−
(
𝜒− 1

M1

)
M2−1

(B11b)
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This corresponds to neglecting all but the zeroth-order terms in a Taylor
expansion of the right-hand side of Equation (B10) around 𝜙A

2 ≈ 0 and
𝜙B

1 ≈ 0. Equation (B11) can be solved algebraically for 𝜙A
1 and 𝜙B

1 , by using
that 𝜙A

1 = 1 − 𝜙A
2 and 𝜙B

2 = 1 − 𝜙B
1 , giving Equation (16).
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