

Model-Driven Engineering for Artificial Intelligence - A
Systematic Literature Review
Citation for published version (APA):
Raedler, S., Berardinelli, L., Winter, K., Rahimi, A., & Rinderle-Ma, S. (2023). Model-Driven Engineering for
Artificial Intelligence - A Systematic Literature Review. arXiv.org. https://doi.org/10.48550/arXiv.2307.04599

DOI:
10.48550/arXiv.2307.04599

Document status and date:
Published: 10/07/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.48550/arXiv.2307.04599
https://doi.org/10.48550/arXiv.2307.04599
https://research.tue.nl/en/publications/98e1f796-4f1b-46f7-92aa-5be282d2202b

Model-Driven Engineering for Artificial Intelligence - A

Systematic Literature Review⋆

Simon Rädlera,b, Luca Berardinellic, Karolin Winterd, Abbas Rahimic,
Stefanie Rinderle-Maa

aDepartment of Computer Science, TUM School of Computation, Information and
Technology, Technical University of Munich, Boltzmannstr.

3, Garching, 85748, Germany

bBusiness Informatics Group, Technical University of Vienna, Favoritenstraße
9-11/194-3, Vienna, 1040, Austria

cDepartment of Business Informatics–Software Engineering, Johannes Kepler
University, Altenberger Straße 69, Linz, 4040, Austria

dDepartment of Industrial Engineering and Innovation Sciences, Eindhoven University of
Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands

Abstract

Background: Technical systems are becoming increasingly complex due to
the increasing number of components, functions, and involvement of different
disciplines. In this regard, Model-Driven Engineering (MDE) techniques and
practices tame complexity during the development process by using models
as primary artifacts. Today, the amount of data generated during product
development is rapidly growing, leading to an increased need for leverag-
ing Artificial Intelligence (AI) algorithms. However, using these algorithms
in practice can be difficult and time-consuming. Therefore, utilizing MDE
techniques and tools for formulating AI algorithms or parts of them can
reduce these complexities and be advantageous.

Objective: This study aims to investigate the existing body of knowledge

⋆This project has been partially supported and funded by the AIDOaRt project, an
ECSEL Joint Undertaking (JU) under grant agreement No. 101007350 and the Austrian
Research Promotion Agency (FFG) via the Austrian Competence Center for Digital Pro-
duction (CDP) under the contract number 881843.

Preprint submitted to SoSym Journal July 11, 2023

ar
X

iv
:2

30
7.

04
59

9v
1

 [
cs

.S
E

]
 1

0
Ju

l 2
02

3

in the field of MDE in support of AI (MDE4AI) to sharpen future research
further and define the current state of the art.

Method: We conducted a Systemic Literature Review (SLR), collecting pa-
pers from five major databases resulting in 703 candidate studies, eventually
retaining 15 primary studies. Each primary study will be evaluated and
discussed with respect to the adoption of (1) MDE principles and practices
and (2) the phases of AI development support aligned with the stages of the
CRISP-DM methodology.

Results: The study’s findings show that the pillar concepts of MDE (meta-
model, concrete syntax and model transformation), are leveraged to define
domain-specific languages (DSL) explicitly addressing AI concerns. Differ-
ent MDE technologies are used, leveraging different language workbenches.
The most prominent AI-related concerns are training and modeling of the AI
algorithm, while minor emphasis is given to the time-consuming preparation
of the data sets. Early project phases that support interdisciplinary commu-
nication of requirements, such as the CRISP-DM Business Understanding
phase, are rarely reflected.

Conclusion: The study found that the use of MDE for AI is still in its early
stages, and there is no single tool or method that is widely used. Additionally,
current approaches tend to focus on specific stages of development rather
than providing support for the entire development process. As a result, the
study suggests several research directions to further improve the use of MDE
for AI and to guide future research in this area.

Keywords: Model-Driven Engineering, Artificial Intelligence, MDE4AI,
Domain Specific Language, SLR, Literature Review, Machine
Learning
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Engineering systems are becoming more complex due to the increasing num-
ber of components, functions, and the involvement of several disciplines [5].
To address this complexity, the integration of Model Driven Engineering
(MDE) is promising [31, 32, 41].

2

MDE aims to support the engineering of systems by providing and maintain-
ing information for the development using models rather than documents [31].
Models are enriched with information, shared among stakeholders, and ma-
nipulated by Computer-Aided Software Engineering (CASE) tools, aiming at
the highest possible degree of automation, e.g., via model transformations.
Consequently, MDE techniques allow informed decisions by producing and
consuming models as machine-processable artifacts.

Although the models are enriched with information, MDE techniques lack the
means to gather sufficient knowledge from more extensive data, e.g., Big Data
or data collected from complex (software) systems. In this respect, means
of artificial intelligence (AI) and its sub-disciplines, namely machine learning
(ML) and deep learning (DL), are beneficial to exploit the information hidden
in data [49]. Integrating data-driven methods to support engineering tasks
has recently been defined as data-driven engineering [61]. It has proven to be
beneficial in several engineering areas such as manufacturing [20], aerospace
industry [12] or other industrial applications [6, 23, 57].

AI integration is mainly case-specific, and thus there are several methods
supporting the implementation of AI in literature [3], e.g., Cross Industry
Standard Process for Data Mining (CRISP-DM) [64], which support the
development of AI tools by providing support for the specific development
steps typically applied to AI projects. The incorporation of methods such as
CRISP-DM and MDE capabilities is rarely considered in the literature, even
though the need for experts to implement data-driven solutions is increasing
due to the requirement to integrate AI into existing methods [18] and the
implementation effort is decreasing by applying MDE principles and practices
to the development of AI capabilities.

Recently, a series of AI and MDE workshops was initiated, focusing on us-
ing MDE techniques for defining AI methods (MDE4AI) and AI support for
MDE (AI4MDE) [16, 14, 13]. The adoption of MDE practices to support AI
capabilities of the system under study promises to support the development
through degrees of automation of the engineering activities (e.g., code gener-
ation), and, therefore, increase the number of industrial applications. Still, to
the best of our knowledge, the current state of practice and state of the art is
not elaborated regarding MDE approaches that support the implementation
of AI capabilities.

In this respect, the overall Research Goal (RG) of this SLR can be defined as

3

given in Table 1. The RG definition is aligned to the Goal-Question-Metric
perspective [4].

Purpose Collection and comparison of studies on
Issue model-driven approaches that explicitly address the engineering of
Object artificial intelligence applications (machine learning, deep learning)
Viewpoint from the point of view of researchers.

Table 1: The overall research goal.

We define the following overarching Research Question (RQ) based on this
research goal:

Main RQ What is the current state of the art for model-driven engineering
with extensions to formalize artificial intelligence methods and appli-
cations?

To address the main research question, various refined and more fine-grained
RQs are introduced in Section 3.

According to the guidelines set out by [36], a systematic literature review
(SLR) is conducted to gather and assess existing literature to address the
identified research questions [46]. Particularly, this work focuses on the
state of the art for MDE approaches that enable the formalization of AI
use cases.

The contributions of this SLR comprise:

• Collection and analysis of state of the art model-driven approaches for
AI applications.

• Introduction of quantitative assessment criteria for model-driven ap-
proaches for AI.

• Quantitative assessment of existing approaches with derived research
opportunities.

The remainder of the paper is organized as follows. Section 2 provides back-
ground on terms such as MDE and AI. Section 3 introduces the research
methodology, i.e., the paper search and selection process. Section 4 presents
the approaches aligned with the data extraction strategy of the SLR proto-
col in Section 3. Section 5 answers the research questions, discusses the key
findings, and depicts implications and future research. Section 6 assesses the

4

quality and limitations of the current SLR using threats to validity analysis.
Finally, Section 7 summarizes the paper.

2. Background

This section presents relevant background on MDE and AI. The focus is
on fundamentals that support understanding of the SLR results and is not
intended to reflect the current state of the art in each research area.

2.1. Model-Driven Engineering

The core of MDE includes the pillar concepts of model, metamodel, and model
transformation [8, 53].

Models are machine-readable artifacts representing particular concerns of a
system under study, such as design-time information like software architec-
ture or hardware platform, or operational information like monitored data.
Metamodels define the modeling concepts and their relationships, providing
an intentional description of all possible models that must conform to the as-
sociated metamodel. From a language engineering perspective, a metamodel
represents the abstract syntax of a modeling language. Metamodels define
modeling languages conceptually and are independent of any concrete rep-
resentation. The concrete syntax of a language assigns graphical or textual
elements to metamodel elements that can be understood by users and edited
through model editors [8, 53]. As models in MDE are considered machine-
readable artifacts, so-called model transformations apply to modifying exist-
ing or generating new engineering artifacts. These artifacts then are used for
particular purposes, realizing the steps of the envisioned engineering process
toward the (partial or full) generation of the software system.

Depending on the specific engineering concerns (software, hardware, or sys-
tem as a whole) as well as the role played by model artifacts due to degrees
of automation of model management activities (e.g., model-based being to
refer to a lighter version of model-driven), different modeling acronyms are
typically used (e.g., MBE, MBSE, MDE, MDSE. MDD, MDA)1. The various
modeling acronyms show that the MDE community is widespread, and the
same applies to the goals and applications of MDE approaches.

1See https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
for a discussion.

5

https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/

2.2. Artificial Intelligence

Artificial intelligence is a flourishing science with numerous practical appli-
cations, ranging from image/voice recognition to recommendation systems
and self-driving cars. The primary goal of AI is to tackle problems that are
tough for humans but relatively simple for computers [27]. Nevertheless, the
different terms around AI are quite fuzzy, and depending on the applica-
tion area, different terms like machine learning (ML), deep learning, data
science, data mining, and so on are used [21]. For example, data science
is the umbrella term referring to the broad field of extracting information
and knowledge by analyzing data to derive patterns, trends, etc., and report
them as human-understandable insights [56] that are beneficial for various
areas [59], such as manufacturing [20].

Although each term refers to a specific subcategory of data science, the im-
plementation phases are essentially similar. Therefore, in the following, all
synonyms and sub-terms will be related to the term AI for better under-
standing. Consequently, methodologies have been developed to structure and
support the implementation of AI projects [64, 3, 22, 24, 66]. The implemen-
tation phases of the methodologies in literature are quite similar, although
the naming is different [3]. In this work, the focus is on the phases of the
CRISP-DM methodology [64]. The main reason for orienting to CRISP-DM
is that it is described in the literature as a de-facto standard in the industry
and is widely used due to its generality [58, 55]. Additionally, the phases
of CRISP-DM can be applied to other sub-topics of data science projects
that are not covered under the term data mining. CRISP-DM comprises six
phases [64]:

1. The business understanding phase involves gathering knowledge on the
application domain and the project objectives.

2. The data understanding starts with initial data collection and analysis
to get familiar with the data.

3. In the data preparation phase, the input datasets are built from the
given data by applying techniques such as normalization to transform
the data.

4. The modeling phase applies the AI algorithm to the prepared data, and
additional fine-tuning is applied, e.g., hyper-parameter optimization.

6

5. The evaluation phase is used to obtain whether the elaborated model
performs as it should.

6. The deployment phase deals with infrastructure and the presentation
of customer-usable knowledge.

2.3. Related Work

In [48], Portugal et al. surveyed domain-specific languages (DSL) and frame-
works for designing ML algorithms for Big Data. The DSLs are described
according to the classification in [25, 17, 62]. However, the survey is not
systematic, i.e., it does not follow any explicit surveying protocol. More-
over, we propose a classification following DSL engineering principles and
practices used in MDE [8, 15]. Moreover, Portugal et al. do not consider
DLSs in relationship with the implementation phases of AI algorithms. How-
ever, we consider the referenced literature of Portual et al. in our survey for
snowballing.

3. Research Methodology

This section introduces the SLR method applied in this work. The SLR study
protocol is based on the guidelines by [46, 35, 36], introducing the main steps
of SLRs to be performed in the Software Engineering domain.

Figure 1 depicts an activity-like diagram of the performed search and se-
lection process protocol workflow. The workflow consists of the following
steps:

1. Identifying the Research Goals and the Research Questions (RG/RQ):
The objective of this work and the research questions are defined to
guide the SLR (Section 1 shows the result of the RG/RQ elaboration)

2. Search Process : The literature search is conducted on selected databases
collecting scientific publications via the execution of queries based on
a search string suitably designed according to the given RGs and RQs
(Section 3.2).

3. Study Selection: The authors define the inclusion and exclusion criteria
(IC/EC) and apply them to the papers collected in the databases by
reading their titles and abstracts. Subsequently, the selected papers
are evaluated based on their content (Section 3.3).

7

Identifying
RGs / RQs Papers SelectionSearch Data Extraction Results and

Discussion

Database
s

Search String

RGs/RQs

IC/EC

Results
(703)

Tables

Excluded Papers
(612)

Team

SLRPapers
(91)

Excluded Papers
(87)

Snowballing (11)

Papers
(15)

Figure 1: SLR Methodology Overview

4. Data extraction: Given a set of selected studies that passed the IC/EC
criteria application, detailed data are extracted throughout a full-text
reading. In the SLR, papers’ detailed information is collected in eval-
uation tables. If a publication is relevant, snowballing is applied to
add referenced papers or the one citing the selected publication (see
Section 3.4).

5. Results Analysis and Discussion: Collected results are analyzed, and a
discussion occurs among the authors to answer the stated RQs.

The execution of the protocol is documented in a spreadsheet2, and bibli-
ographic entries are collected in Zotero Library. An export can be found
online2.

3.1. Research Questions

The overall research goal is already introduced in Table 1 aligned with the
main research question. To answer the main research question, various re-
fined and more fine-grained RQs are defined as follows:

RQ1 What MDE aspects are addressed in the approaches, e.g., abstract
syntax (metamodel), concrete syntax, executable semantics etc.?

This RQ aims to assess the pillar concepts of MDE languages concern-
ing comprehensiveness (of modeling) and applicability (maturity).

RQ2 Which phases of AI development aligned with the CRISP-DM method-
ology are covered by the approaches?

This RQ assesses the extent to which the development phases of CRISP-
DM are covered. As a result, implications can be made about the extent
of support.

2https://github.com/sraedler/Model-Driven-Engineering4Artificial-Intelligence

8

https://github.com/sraedler/Model-Driven-Engineering4Artificial-Intelligence

RQ3 Which industrial domains are supported by MDE for AI approaches?

This RQ enables finding industries that are using MDE in the context
of AI and thus driving the development of MDE for AI using domain-
specific tools and methodologies towards the needs of the (specific) in-
dustry.

RQ4 What are the used methods and the supporting MDE tools the pro-
posed approaches rely on?

This RQ allows assessing the underlying methods and the related tool
support, including further development leveraging these underlying tech-
nologies to gain maturity.

RQ5 To what extent is communication between different stakeholders sup-
ported by MDE?

Communication and business knowledge elaboration are two of the core
pitfalls in the development of AI solutions [47]. Therefore, this question
aims to assess the contribution to support fostering AI in the industry.

RQ6 Which challenges and research directions are still open?

This RQ will lead to future research directions and challenges for the
model-based engineering of AI applications due to a collection of lim-
itations in the proposed approaches based on respective authors or our
obtainment.

3.2. Search Process

This section describes the search activity in Figure 1. According to [36],
defined search queries are executed on dedicated search engines. In this re-
search, the queries are performed on the following bibliographic sources:

• ACM Digital Library: http://dl.acm.org/

• dblp Computer Science Bibliography: https://dblp.org/

• IEEE Xplore Digital Library: http://ieeexplore.ieee.org

• Google Scholar: https://scholar.google.com

• Springer: https://link.springer.com

9

http://dl.acm.org/
https://dblp.org/
http://ieeexplore.ieee.org
https://scholar.google.com
https://link.springer.com

To select suitable terms for the search, keywords from known studies, the
MDE4AI workshop3 and the International Journal on Software and Systems
Modeling (SoSyM)4 were selected.

The selected keywords for the search terms are the following:

S1(MDE) = {MDE;Model−Driven Engineering;DSL;DomainSpecific Language;

Metamodeling;Domain Modeling}
S2(AI) = {AI;Artificial Intelligence;ML;Machine Learning;Deep Learning; Intelligence}

Each keyword ki from the set S1 and S2 has been combined in conjunctive
logic proposition p ∈ P .

P = {p|p = si ∈ S1 ∧ sj ∈ S2}

i = 1, 2, 3, 4, 5, 6, j = 1, 2, 3, 4, 5, 6

The resulting set P of 36 propositions (pi) includes the final search strings.
According to [36], the propositions (pi) should be combined as OR state-
ments. However, for some search engines, a single search term is too compli-
cated, as some search engines limit the length of the search term or do not
generate results correctly due to nested search terms. Therefore, each search
string is executed as a single query.

The automated search was executed in November 2022. In total, 703 papers
have been collected. The search terms and results are archived and are online
available2. If a result file is unavailable, the search query on the specific search
engine did not retrieve any results.

3.3. Paper Selection

The inclusion and exclusion criteria (IC/EC) as outlined in Tab. 2 are em-
ployed for the paper selection. The IC/EC have been evaluated for each
paper collected by queries executed on the selected databases by reading
its title and abstract. Additionally, doctoral theses are excluded due to the
extensiveness, but the referenced publications of the author are included in
snowballing. Although review papers are not considered for the survey, we
presented relevant surveys in the background section (Section. 2.3).

3https://mde-intelligence.github.io/
4https://www.sosym.org/

10

https://mde-intelligence.github.io/
https://www.sosym.org/

Table 2: Inclusion Criteria (IC) and Exclusion Criteria (EC)

Type ID Type

IC
1 We include system-level DSL (metamodel) with AI extensions
2 We include data-driven/model-driven approaches with AI extensions

EC

1 We exclude simulation-based (only) approaches
2 We exclude algorithm-based (only) approaches
3 We exclude secondary studies
4 We exclude review papers, but include them in snowballing
5 We exclude study available only in form of abstract
6 We exclude study not in English language

7
We exclude papers with focus on software architecture
for MDE for AI, e.g. Hadoop integration in infrastructure

8 We exclude vision only papers and proposals

Following the IC/EC criteria application, a full-paper read is applied to se-
lect the final papers. Additionally, snowballing is accomplished as suggested
by [36] to retrieve further results. The relevant papers from the list of snow-
balling papers were selected with the same procedure as the query results.
Table 3 lists the final list of selected papers. Particularly, 11 papers are
added by query selection, and four are added due to snowballing. The strong
selection of results from the heavy use of AI/ML as keywords in the publica-
tions and the actuality of the research approach, see Workshop on Modeling
Intelligence [14, 16].

3.4. Data Extraction

Each selected paper presented in Table 3 underwent a data extraction pro-
cess following the data extraction template in Table 4. Additionally, the
publication type is assessed as Exploratory (without evaluation, e.g., a pure
concept or vision) or Technical (with evaluation).

11

Table 3: List of selected publications with type of publication incl. snowballing results.
Item Type Year Author Title
Conference Paper 2020 [2] Model Driven Approach for Neural Networks
Conference Paper 2019 [7] STRATUM: A BigData-as-a-Service for Lifecy-

cle Management of IoT Analytics Applications
Journal Article 2020 [19] Lavoisier: A DSL for increasing the level of

abstraction of data selection and formatting in
data mining

Journal Article 2022 [26] A domain-specific language for describing ma-
chine learning dataset

Conference Paper 2017 [28] The next Evolution of MDE: A Seamless Inte-
gration of Machine Learning into Domain Mod-
eling

Conference Paper 2019 [29] Meta-Modelling Meta-Learning
Conference Paper 2019 [30] Model-based design for CPS with learning-

enabled components
Conference Paper 2019 [37] Realization of a Machine Learning Domain

Specific Modeling Language: A Baseball An-
alytics Case Study

Conference Paper 2019 [38] On the Engineering of AI-Powered Systems
Journal Article 2021 [42] AdaptiveSystems: An Integrated Framework

for Adaptive Systems Design and Development
Using MPS JetBrains Domain-Specific Model-
ing Environment

Conference Paper 2022 [43] A Model-Driven Approach for Systematic Re-
producibility and Replicability of Data Science
Projects

Journal Article 2021 [44] A Model-Driven Engineering Approach to Ma-
chine Learning and Software Modeling

Journal Article 2022 [45] Towards a DSL for AI Engineering Process
Modeling

Conference Paper 2021 [51] An MDE Method for Improving Deep Learning
Dataset Requirements Engineering using Alloy
and UML

Conference Paper 2020 [67] Arbiter: A Domain-Specific Language for Eth-
ical Machine Learning

12

Table 4: Data Extraction Template

RQ Concern Assessment Description

RQ1 MDE

Metamodels The metamodel of the approach is either depicted as a diagram in a refer-
enced repository or clearly mentioned and textually described.

Concrete Syntax The concrete syntax is given if figures, listings, or tables to illustrate an im-
plementation/use case excerpt or it is indicated whether textual or graphical
modeling is applied for a specific aspect.

Arbitrary Constraints The approach or the underlying modeling framework (e.g., SysML) allows
the specification of arbitrary constraints.

Model Transformation The approach uses or introduces model transformation to generate engineer-
ing artifacts of any kind.

RQ2,

RQ5
AI

Business Understanding The model contributes to the understanding of the underlying business.
Particularly, the creation of the data and aspects from other disciplines are
introduced, such as requirements modeling for AI.

Data Understanding The model supports at least two of the following aspects: data description,
data attribute interrelation, data background, data quality, and data com-
position.

Data Ingestion The model clearly depicts the origin of data and how to load it.

Feature Preparation The model allows an understanding of how data needs to be transformed,
connected, or preprocessed.

Model Training The model depicts the used algorithm with input and output values and
potential hyperparameters.

Metrics/Evaluation The model depicts metrics for the AI approach or introduces evaluation
criteria.

RQ3
Others

Problem Domain The domain of the case study or the mentioned area of application.

RQ4 Frameworks The method and tools used in the approach, e.g., WebGME, Xtext, Xtend,
etc.

13

The extracted data mainly address two concerns of interest, i.e., MDE and
AI. Modeling concerns refer to the evidence of sound knowledge and applica-
tion of model foundations [15] (e.g., abstract syntax/grammar/metamodel,
textual/graphical concrete syntax, constraints, model transformations) and
supporting tools (e.g., modeling language frameworks). AI concerns [1] indi-
cate to which extent the publications support ML modeling aligned with the
dimensions of the CRISP-DM methodology [64]. It should be noted that the
assessment dimensions do not correspond exactly to the phases of CIRSP-DM
to allow for a more detailed categorization of concerns; e.g., in CRISP-DM,
Data Ingestion is part of the Data Understanding phase but separated in the
given assessment. An aspect of a concern of interest is assessed as available
(✓) if the aspect is presented in the approach or as underlying principle is
typically offered by the underlying environment (e.g., constraint modeling
might not be presented but is typically offered by the underlying MDE tool-
ing). Finally, it is worth noting that there is no evaluation of the deployment
phase of CRISP-DM as it is beyond the scope of this paper.

4. Literature Assessment

The result obtained from the data extraction process described in the previ-
ous section is presented in Tables 5, 7 and 8.

14

Table 5: Result of the data extraction for the MDE and AI concerns.

RQ Concern
Criteria

Paper
[2] [7] [19] [26] [28] [29] [30] [37] [38] [42] [43] [44] [45] [51] [67] Sum

General
Technical or
Exploratory Paper

T T T T T E T E T T T T E T T
12 T
3 E

RQ1 MDE

Metamodels ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14
Concrete Syntax ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14
Arbitrary Constraints ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
Model Transformation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12

RQ2, RQ5 AI

Business Understanding ✓ ✓ ✓ ✓ 4
Data Understanding ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
Data Ingestion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
Feature Preparation ✓ ✓ ✓ ✓ ✓ 5
Model Training ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11
Metrics/Evaluation ✓ ✓ ✓ ✓ 4

15

In [2], Al-Azzoni proposes a model-driven approach to describe ML problems
addressed by artificial neural networks. The approach enables the description
of datasets as well as the consuming Multi-Layer Perception (MLP) Neural
Networks (NN). With templates and code generators, executable Java pro-
grams can be generated. The approach is validated using the Pima Indians
Diabetes dataset.

In [7], Bhattacharjee et al. introduce STRATUM, a model-driven tool that
enables dealing with the lifecycle of intelligent component development. The
platform addresses design-related concerns such as modeling the ML algo-
rithm pipeline, accessing data streams, allocating and properly sizing cloud-
based execution platforms, and monitoring the overall system’s quality of
service. The primary goal of this work is to support deploying and maintain-
ing various cloud-based execution platforms. The MDE part of this work is
minor and less detailed.

In [19], De La Vega et al. introduce a DSL that describes datasets to select
sufficient data on a high level. The approach uses a SQL-like textual language
to select, combine and filter various data on an attribute level. The approach
aims to increase a dataset’s abstraction level to reduce complexity and make
using data mining technologies easier.

In [26], the DescribeML DSL is proposed to define ML datasets. From a
DescribeML model, a template with basic information is automatically gen-
erated, based on a given dataset. The provided DSL allows the definition of
metadata, data attributes with statistical features and provenance, and so-
cial concerns. This approach aims to improve the understanding of datasets
and thus support the replicability of AI projects. Currently, this work is
limited to the dataset description. Future work aims to describe AI models
and other elements of an AI pipeline.

In [28], Hartmann et al. present an approach based on so-called micro-
learning units at a language definition level. This work proposes to weave
the learning units into domain modeling, due to the high entanglement of
learning units and domain knowledge. For this purpose, the approach allows
the definition of DSLs with learned attributes (i.e., what should be learned),
how (i.e., algorithm and parameters), and from what (i.e., other attributes
and relations).

Hartmann et al. leverage the previous study for meta-learning in [29]. This

16

study proposes two generic metamodels for modeling i) ML algorithms and
ii) meta-ML algorithms (i.e., algorithms to learn ML ones).

In [30], a comprehensive modeling environment for learning-enabled compo-
nents in CPS development is introduced. The approach supports training,
data collection, evaluation, and verification. It integrates Goal Structuring
Notation (GSN) to support assurance and safety cases. The publication is,
among others, part of a research project5 facilitating MDE.

In [37], a DSL is introduced with the goal of proving the plausibility of using
MDE approaches to create ML software. The DSL, conceptually sketched by
another research group in [9], is realized and applied to a case study in the
sports domain. The approach integrates model transformation to generate
executable code.

In [38], an approach describing deep learning using MDE is presented. The
approach combines two DSLs, namely MontiAnna, and EmbeddedMontiArc.
The former is a textual modeling framework for designing and training Ar-
tificial Neural Networks (ANNs). It also embeds another DSL, MontiAnna-
Train, for describing the training procedure. The latter, EmbeddedMontiArc,
is an architectural description language. It supports the definition of com-
ponents and connectors, with a particular focus on embedded, automotive,
and cyber-physical systems. The frameworks are intended to define deep
artificial neural networks, e.g., convolutional neural networks, for processing
traffic images to learn how to drive a car in a simulator.

In [42], Meacham et al. propose a set of DSLs and toolset implemented
on top of the MPS6 language workbench for the design and development
of adaptive systems offering MAPE-K and AI in context capabilities. The
approach describes an extension and composition of DLSs that are extended
with application-specific concepts.

In [43], Melchor et al. propose an MDE approach to formalizing ML projects
and the associated infrastructure in which the resulting tool will be deployed.
The approach aims to increase the reproducibility and replicability of data
science projects. Hence a key feature of the approach is to describe processes
and datasets in detail.

5https://modelbasedassurance.org/
6Meta Programming System

17

https://modelbasedassurance.org/

In [44], Moin et al. present an MDE approach based on ThingML7 to sup-
port the development of IoT devices with the extension of data analytics and
ML. The ThingML framework supports defining software parts and compo-
nents using UML. The communication between the components (things) is
defined using ports, messages, and state machines. The approach supports
the transformation of the model into executable code.

In [45], Morales et al. provide a DSL to model AI-related processes us-
ing Eclipse-based technologies. The approach aims to describe AI processes
within an organization and thus contribute to the structured designing, en-
acting, and automating of AI engineering processes.

A model-driven engineering approach for defining dataset requirements is
introduced in [51]. It focuses on the structural definition of requirements
using semi-formal modeling techniques.

In [67], Zucker et al. present a very preliminary version of a declarative
DSL for ethical AI addressing transparency, fairness, accountability, and re-
producibility concerns of ethical machine-learning datasets. The approach
describes datasets in a SQL-fashioned language and provides a notation to
record how ML models will be trained.

4.1. Model-Driven Engineering Concerns

In this section, we report the contributions of the selected studies with re-
spect to MDE techniques and practices [8, 15], i.e., metamodels/grammars,
graphical/textual concrete syntax, constraints, and model transformations.
In particular, we consider whether the proposed approaches leverage language
workbenches [33] to create DSLs adopted in the presented approaches.

Abstract Syntax

In 14 out of 15 approaches, the abstract syntax of one or more DSLs is de-
fined by metamodels or grammars. The only exception is [67], where the
authors explicitly remark that the proposed DSL is a preliminary ad-hoc im-
plementation for the proposed case study and does not provide any grammar
or metamodel specifications.

In the following, we classify the selected studies based on the technolo-
gies used to specify the abstract syntax of DSLs used in the proposed ap-

7https://github.com/TelluIoT/ThingML

18

https://github.com/TelluIoT/ThingML

proaches [33]. A large majority of the selected studies, i.e., eleven, adopt
a metamodel-centric language design [2, 7, 19, 28, 29, 30, 37, 43, 44, 45,
51] by leveraging EMF and WebGME language frameworks, two adopts a
grammar-centric approach [26, 38] by leveraging Langium and Monticore
language workbenches, and one a projectional [42] approach, based on Jet-
Brains MPS.

EMF-based. In eight studies, the metamodel is based on EMF [2, 19, 26,
37, 43, 44, 45, 51]. Several EMF metamodels focus on the description of
datasets [2, 19, 26, 51]. Other studies additionally describe algorithms [2,
37, 43] or even further steps of the implementation [44, 45]. In [37], the
conceptual metamodel presented as an entity-relationship diagram in [9] is
realized as a UML profile, i.e., a lightweight extension of the UML metamodel
in Papyrus UML, which leverages EMF.

KMF/Greycat-based. Two studies [28, 29] of the same research group are
based on the Kevoree Modeling Framework (KMF) and its successor Grey-
Cat, which results from a research project to create an alternative to the
EMF based on Ecore. In [28], the capabilities of the Greycat metalanguage
are presented. In particular, it allows the definition of microlearning units
by explicitly declaring learned attributes as part of the domain-specific meta-
models. In [29], two metamodels for ML and meta-learning are proposed.
The former contains definitions for datasets, metadata, and learning algo-
rithm with hyper-parameters.

WebGME-based. Two studies [7, 30] define metamodels using the WebGME
metamodeling framework. While UML and profiles cannot provide the lan-
guage engineering support typically offered by language workbenches, We-
bGME allows specifying DSLs creating a class diagram-based metamodel
from which the DSL infrastructure is automatically generated. In [7], the
so-called Stratum approach for BigData-as-a-Service provides a DSML con-
sisting of several metamodels built on top of WebGME (metamodel for ML
algorithms, metamodel for data ingestion frameworks, metamodel for data
analytics applications, metamodels for heterogeneous resources). In [30], the
metamodel is based on existing metamodel libraries: SEAM, DeepForge, and
ROSMOD.

Langium-based. In [26], the DescribeML DSL is the only work leveraging the
recent Langium open-source language workbench enabling domain-specific

19

languages in VS Code, Eclipse Theia, and web applications, leveraging the
Language Service Protocol (LSP)8. In [26], three metamodels are described
i) metadata model, ii) composition model, and iii) provenance and social con-
cerns model. Such metamodels are then implemented as grammars9.

MontiCore-based. In [38], all DSLs, i.e., MontiAnna, MontiAnnaTrain, and
EmbeddedMontiArc, are all defined using the MontiCore language work-
bench [54]. One of the main benefit is the reuse of existing C++ code gener-
ators for neural network frameworks (MxNet, Caffe2, and Tensorflow).

MPS-based. In [42], five different DSLs are created with JetBrains MPS, an
open-source projectional language workbench that allows direct changes to
the abstract syntax tree through an editor, without the need for a grammar
or parser. [42] leverages MPS’ language extension and composition capabili-
ties to deal with domain-independent (e.g., using the AdaptiveSystems DSL
to structure the system according to MAPE-K loop by IBM) and domain-
specific concerns (e.g., AdaptiveVLE to model concerns of virtual learning
environments).

Concrete Syntax

This section assesses the proposed approaches’ notations or concrete syntax.
A concrete syntax is explicitly mentioned by 13 out of 15 approaches.

Seven studies [19, 26, 28, 29, 42, 44, 67] provide a textual (or tabular) nota-
tion; five studies [7, 30, 37, 45, 51] adopt a graphical notation; one [38] offers
both a textual and a graphical notation.

No concrete syntax available. Two studies [2, 43] do not provide a DSL-
specific concrete notation. In particular, Al-azzoni [2] left the definition of a
complete DSL as future work while [43] is conceived to reuse the notations
offered by tools defining data science pipelines. However, by leveraging EMF,
a tree-based notation is possible by automatically generated editors, and,
potentially, compatible technologies can provide textual or graphical concrete
syntax options (e.g., via Xtext and Sirius, respectively).

8https://microsoft.github.io/language-server-protocol/specifications/

lsp/3.17/specification/
9Based on Chevrotain, https://chevrotain.io/docs/.

20

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://chevrotain.io/docs/

Textual notation. In [19], De La Vega et al. provide a textual concrete syntax
for the Lavoisier DSL defined by an Xtext-based grammar. Similarly, in [44],
the approach is built on top of ThingML and, as such, it provides an Xtext-
based textual editor. In [26], the textual concrete syntax is defined by a
recent language workbench, Langium. In [28] and [29], an Emfatic-inspired
textual modeling language is defined. In [42], five different interwoven DSLs,
are proposed, mixing textual and tabular projections, created with JetBrains
MPS. In [67], a SQL-like textual notation is proposed. However, they do not
provide any grammar, and then the textual notation is just a proposal.

Graphical notation. In [7] and [30], the graphical concrete syntax is defined
through capabilities offered by the WebGME language framework. [37] im-
plements the metamodel as a UML profile in Papyrus. The UML Class Di-
agram is chosen as graphical notation since all the stereotypes inherit from
the Class metaclass. No DSL-specific customization of the UML graphical
notation is offered. [45] provides a web-based graphical editor realized us-
ing Sirius Web10. In [51], the DSL provides a graphical concrete syntax and
editor realized in Sirius11. However, the paper does not discuss or show its
graphical elements.

Multiple notation. In [38], Kushmenko et al. are the only ones proposing
a mix of textual and graphical concrete notations to represent AI concerns.
However, it is worth noting that the SVG-based hierarchical representation
of components and connectors is made for visualization purposes and is not
editable12.

Model Transformation

Twelve selected studies include model transformations as part of the pro-
posed approaches. These model transformations are classified based on their
intents, as described in [40], and the technology they use, as described in [34].
Table 6 summarizes the intents of the model transformation for each paper,
as well as the main model-driven technologies used. It is important to note
that none of the papers explicitly list or classify their model transformations.
The identification of existing transformations and their intents is an attempt
by the authors of this paper to provide a basis for comparison.

10https://www.eclipse.org/sirius/sirius-web.html
11https://www.eclipse.org/sirius
12https://github.com/EmbeddedMontiArc/Documentation

21

https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/sirius
https://github.com/EmbeddedMontiArc/Documentation

Table 6: Model transformation intent category and concrete intent.

Paper Intent Category Concrete Intent Tool
[2] Refinement Model to Code Epsilon EGL
[7] Refinement Model to Code JS Implementation

[19]
Language Translation Translation

Xtend
Abstraction Restrictive Query

[26] Language Translation Translation
Typescript
(Visual Studio Code)

[29]
Refinement Refinement

n.a.
Refinement Model to Code

[28]
Refinement Model to Code

KMF/GreyCat
Semantic Definition Translational Semantics

[30]
Refinement Model to Code

n.a.Semantic Definition Translational Semantics
Analysis Safety Analysis (added)

[37] Refinement Model to Code Epsilon EGX/EGL/EOL

[38] Refinement Model to Code
EmbeddeMontiArc
/EMADL2CPP

[42]
Refinement Model to Code

Jetbrains MPS
Model Composition Model Merging

[44] Refinement Model to Code Xtend
[51] Semantic Definition Translational Semantics Xtend

22

Nine studies leverage model-to-code transformations [2, 7, 28, 29, 30, 37, 38,
42, 44] to perform refinements on involved artifacts to generate executable
code. Three studies [28, 30, 51] aim at executable models by defining transla-
tional semantics for their DSLs. Five approaches [19, 29, 28, 30, 42] provide
more than one transformation with different intents. Two approaches [19, 26]
translate artifacts across different modeling languages

The rightmost column in Table 6 mentions the main model-driven technology
leveraged by the studies to implement model transformations.

The most commonly used platform among the studies is Eclipse, with Ep-
silon13 and Xtend14 being the most popular tools. For example, in [2], the
Epsilon Generation Language (EGL) is used in conjunction with templates
to define model transformations that generate Java code. Similarly, [37]
uses EGL to generate C# code for making predictions on test data. In [7],
WebGME’s code generation capabilities are extended with templates for
each sub-task. In [19], two intents of model transformations are reflected:
language translation and abstraction using a restrictive query. The model
transformation, based on Xtend, transforms dataset descriptions into tabular
datasets using low-level data transformation operations, which can then be
used in data mining algorithms. In [28], the GreyCat framework, built on
the KMF, provides code generation toolsets for building object-oriented ap-
plications. In [29], the concept of using code generators to generate ML code
is mentioned. In [30], the ALC toolchain enables code generation for data
collection or training exercises of learning-enabled components, as well as
translational semantics for configuring an embedded Jupyter Notebook that
executes the learning model. The approach also allows for the construction
of safety cases. In [38], the MontiAnna2X code generator generates MxNet,
Caffe2, or Tensorflow code. In [42], JetBrains MPS language is used to gen-
erate Java code. In [44], Java and Xtend are used to generate Python code.
Finally, in [51], model-to-code transformation is used to complete formal
specifications using the Alloy Analyzer.

4.2. Artificial Intelligence Concerns

Same as for the MDE concerns, the findings regarding AI development char-
acteristics are presented in the following.

13https://www.eclipse.org/epsilon
14https://www.eclipse.org/xtend

23

https://www.eclipse.org/epsilon
https://www.eclipse.org/xtend

Business Understanding

Industry often faces the problem of missing business understanding and short-
comings in elaborating business values [50, 10, 11, 60]. Therefore, model-
ing business understanding is essential for mature and comprehensive ap-
proaches, e.g., by defining requirements. The assessment revealed that four
of the 15 approaches foster business understanding by integrating system-
relevant modeling or processes.

In [30], the business understanding is fostered due to requirements and com-
ponents modeling using SysML. Particularly, a Goal Structuring Notation
(GSN) approach is used to define and structure requirements.

In [45], business-relevant information is modeled through the integration of
Roles, leading to increased business understanding. Additionally, the meta-
model reflects means to model requirements. However, details are currently
missing on how the modeling is defined.

In [67], requirements on ethical ML can be formalized. Particularly, trans-
parency, accountability and fairness are taken into account so that specific
attributes are protected during the implementation, e.g., attributes consist-
ing of values such as ’race’ or ’age’.

In [51], a method to describe ML datasets from an requirements engineering
perspective is presented. Notably, functional and non-functional require-
ments are integrated to describe dataset structural requirements.

Data Understanding

The data understanding fosters the downstream processes of CRISP-DM.
Additionally, it allows assessing dataset quality and streamlining to form
hypotheses for hidden information [64]. In the selected literature, seven ap-
proaches support modeling some aspects of the data understanding.

[19] contextualizes dataset properties and improves data understanding by
implicitly applying rules on how to select data. In [26], a detailed descrip-
tion of a dataset and data composition is given that fosters the overall data
understanding. In [37], data understanding is enhanced due to the input
data’s graphical representation and the variables’ composition. In [43], data
understanding is promoted by describing data attributes such as the data
type. Furthermore, the type of ML algorithm is described, allowing the re-
production of an ML project.

24

In [28, 29], the enrichment of properties on a metamodel-level is enabled,
which contributes to further description of the properties and, therefore,
increases data understanding. Moreover, the interconnection of the data
properties is highlighted by the underlying principle. Still, the description of
the attributes is not very detailed, leading to no support in understanding a
single property and its origin. In [51], the advanced requirements modeling
allows for understanding datasets with specific properties and structured data
elements better.

Data Ingestion

Ten of the given 15 approaches describe the loading and ingestion of data.
Data ingestion, in this sense, refers to the loading or referencing of the input
datasets.

In [42], the implementation of data ingestion using a DSL is described. Six
other approaches support the specification of a file path, URI, URL, etc., to
reference data [43, 67, 30, 2, 19, 45]. In [19], the loading of the dataset is
described by specifying the name and path of the file or SQL server in com-
bination with SQL selection scripts. Therefore, this approach supports both
file and database-related data. In [45], data loading from various sources,
such as SQL servers, is supported.

In contrast, to fix data sources, the loading from edge devices or sensors is
supported by three approaches [7, 38, 44]. In [7], data loading from vari-
ous edge devices is presented using technologies such as RabittMQ or Kafka.
In [38], data loading is provided with tagging schemas for EMADL ports.
In [44], two approaches are given, first a black-box approach, where the ML
model is imported from a pickle, and second, the paths or URLs of the
dataset(s) are passed to the training, validation, and testing of the algo-
rithm.

Feature Preparation

The preparation of features for certain ML algorithms is supported by five
of the 15 approaches.

In [7], the feature preparation is defined in the metamodel. Unfortunately,
details on the specific methods, parameters, or the order of execution are
missing. In [2], normalization of dataset features is supported. However,
other pre-processing methods are not supported in the metamodel. In [43],

25

data operations contain one or more input or output ports. Each data opera-
tion is an atomic operation on the input data to produce certain output data.
In [44], each state allows executing functions. The keyword DA Preprocess
is used to apply data preparation methods on a specific dataset. In [45], fea-
tures can be prepared with specific feature extraction techniques, and data
can be transformed with data engineering techniques, e.g., Regression sub-
stitution.

Model Training

The specification of an algorithm and the related training of the model is
depicted in 11 of the 15 approaches. The types of algorithms can be separated
in Inference [37], Machine Learning [28, 29, 42, 43, 45] and Deep Learning [2,
7, 30, 38, 44] using Neural Networks.

Inference. [37] extended the approach of [9] with the required implementa-
tion using SysML and Papyrus modeling framework. Within the original
approach [9], model training is given by an assignment for each variable,
whether it is an observed variable, a random variable, or a standard variable.
Details on hyper-parameter tuning are not given.

Machine Learning. In [28, 29], various algorithm models can be used with
specific input (learning) and output attributes. In [42], the algorithm (re-
ferred to as approach) is specified aligned with various hyper-parameters,
e.g., Random Forest Cross Validation Folds. In [43], the algorithm type
(e.g., Random Forest) with a specific task type (e.g., Classification) can be
described. Hyper-parameters are not presented in the metamodel. In [45],
hyper-parameters and performance criteria can be specified for each AI model.

Deep Learning. In [2], the training is defined using an MLPDescription block
with certain learning rules like BackpropagationFurther details on other
hyper-parameters or the output’s facilitation are not given. In [7], an al-
gorithm for the training is defined in the metamodel. Moreover, hyper-
parameters are defined and applied to a specific algorithm in the editor.
In [30], an experimental model defines the model training. The details of
the implementation can be found in the Jupyter Notebooks. In [38], the
training of NN is given with possibilities to specify the network layers and
connections. In [44], state diagrams are used to define various steps of the
algorithm. With the state keyword DA Train, various training-related set-

26

tings are made, and with DA Predict, the trained model can be applied to
data.

Metrics/Evaluation

To assess the validity of an algorithm, four of the 15 approaches integrate
the modeling of metrics.

In [30], the metrics are applied directly in the Jupyter Notebooks, which
is not actually a modeling approach. Nevertheless, the Jupyter Notebook is
integrated into the model. So it can be considered as part of the model.

In [7], metrics are integrated into the metamodel and can be applied to the
training output. In [38], the evaluation metrics are selected using the name
of the metrics, e.g., Mean Squared Error (MSE).

In [44], basic metrics such as Mean Absolute Error (MAE) or MSE can be
applied to the algorithms, such as regression algorithms.

4.3. Frameworks (Methods & Tools)
Most of the approaches are based on frameworks and tools. Table 7 de-
picts each approach’s used frameworks and tools. Most of the approaches do
not particularly mention the underlying methods. Still, similarities can be
seen.

The approach of [9] presents a concept and not an implementation, which is
why no tools and underlying methods are depicted.

4.4. Artifacts Available and Domain of Application
Artifacts are a means to enable the replication of research results. Table 8
shows whether artifacts are depicted in the publication as a reference to an
online resource or not present. Additionally, the type of application men-
tioned in the publication or inherently given through the evaluation sample
is depicted in the table. If no specific domain is mentioned or derivable,
Unknown is annotated.

As a result, eight approaches work with datasets, which can originate from
any domain. The processing of IoT data is presented in five approaches,
whereas one is more specific for image data.

5. Results and Discussion

The discussion is organized according to the research questions in Section 3.1.

27

Table 7: Used Methods and Tools (RQ4)

Tool or Method
Paper

[2] [7] [19] [26] [28] [29] [30] [37] [38] [42] [43] [44] [45] [51] [67]

Alloy ✓
BPMN ✓

DeepForge ✓
EMF-based ✓ ✓ ✓ ✓
Epsilon ✓ ✓
GSN ✓

GreyCat ✓ ✓
Jetbrains MPS ✓

Jupyter Notebook ✓ ✓
Langium ✓

MontiCore Workbench ✓
Papyrus ✓ ✓
Python ✓ ✓

ROSMOD ✓
SEAM ✓
SQL ✓ ✓
Sirius ✓ ✓

ThingML ✓
WebGME ✓ ✓
Xtext ✓ ✓ ✓

Table 8: Availability and type of artifacts aligned with the type of application.

Publication
In the
Publication

Online
(Git, Server)

No Artifacts Type of Application

[2] ✓ Datasets
[7] ✓ IoT
[19] ✓ Datasets
[26] ✓ Datasets
[28] ✓ IoT
[29] ✓ Unknown
[30] ✓ IoT (CPS)
[37] ✓ Datasets
[38] ✓ IoT (Image)
[42] ✓ Adaptive Systems
[43] ✓ Datasets
[44] ✓ IoT
[45] ✓ Unknown
[51] ✓ Datasets
[67] ✓ Datasets

28

5.1. RQ1 - What language aspects of MDE are addressed in the approaches,
e.g., abstract syntax, concrete syntax, metamodel, etc.?

From a language engineering perspective, each dimension is reflected in most
approaches. As for concrete syntax, sometimes an example with concrete
syntax is given, but the whole definition of the syntax is not presented.

The description of constraints is rarely used. A reason might be that con-
straints are often rule-based terms, which can be eliminated with specific
parameters or algorithms from the AI domain.

Although not all approaches define a model transformation, most generate
artifacts from the models, like the execution code using Python or Jupyter
Notebooks.

The review revealed that current approaches are quite diverse from a lan-
guage technology perspective. In addition, most approaches rely on textual
rather than graphical modeling.

5.2. RQ2 - Which phases of AI development aligned with the CRISP-DM
methodology are covered by the approaches?

The CRISP-DM development cycle’s supported phases are less balanced than
the model-driven engineering perspectives. More than half of the approaches
support the early phases, such as business understanding. The feature prepa-
ration is often not mentioned or integrated with only simple features, e.g.,
normalization of variables is given but not the subsequent processing of pre-
processing tasks. The main focus of the approaches lays in the formalization
of model training. However, most of the approaches only support a small
range of algorithms. Therefore, the applicability might be very case specific
and less flexible.

In summary, it can be seen that multiple approaches depict a specific aspect
of the CRISP-DM development cycle, but only a few support more than half
of the phases.

5.3. RQ3 - Which industrial domains are supported by MDE for AI ap-
proaches?

Most approaches support processing datasets in specific file formats or using
data from SQL servers. Since these datasets can originate from any domain,
no focus on a domain can be determined in these approaches.

29

However, some approaches are rather based on IoT/CPS or sensor data,
supporting the integration of production systems or data from the use of
e.g., CPS products. Nevertheless, no domain can be clearly defined here
since collecting sensor data is possible in any domain.

5.4. RQ4 - What are the used methods and MDE tools the proposed ap-
proaches rely on?

The present works are based on a wide variety of tools and methods. One
reason for this could be the application domain, e.g., SysML would rather be
used as a basis if the integration into a mechanical engineering environment
is intended since SysML is used anyway. The advantages and disadvantages
of the individual methods and tools are therefore considered application-
dependent, and no statement can be made about the quality of the underly-
ing methods. Furthermore, there is a trend towards Eclipse and its products
(Papyrus, Sirius, Epsilon, etc). The use of EMF for the definition of meta-
models or as a basic modeling construct can also be identified as state of the
art.

5.5. RQ5 - To what extent is communication between different stakeholders
supported by MDE?

Communication in an AI project can be fostered by unifying the language of
communication, potentially leading to a better understanding and reduced
unknown knowledge among team members. With less unknown knowledge,
unrealistic expectations might be reduced, being one of the categories of why
AI projects fail [63]. The intersection with other domains is mainly in the
initial phases of an AI project, mainly the business, and data understanding.
Still, the documentation of other phases of the CRISP-DM cycle supports
communication among other AI experts. With respect to interdisciplinary
communication, only three approaches support the documentation and inte-
gration of business understanding, leading to further research needs. Data
understanding and the downstream processes of the CRISP-DM are more
often supported. However, still, further integration of MDE techniques is
required due to the early development of some of the approaches.

5.6. RQ6 - Which challenges and research directions are still open?

The researchers’ observation selected the direction of future research and
open challenges. The first observation is that business understanding needs
to be more supported. In literature, experts report needing more business

30

values for AI as a challenge, which potentially originates from the missing un-
derstanding of AI experts in the specific business. Consequently, AI experts
may not suggest appropriate AI approaches that are realistic and relevant.
Aligned with the business understanding, the requirements of a project need
to be formalized to allow the derivation of project metrics and further assess
the impact of the computational support [52]. Considering that the second
largest group of supported applications in the existing works is IoT, perhaps
systems engineering approaches should be more integrated into MDE for AI.
The definition of requirements or the modeling of the environment could also
be borrowed and adapted from these approaches.

Another future work that supports the maturity of MDE for AI is consolidat-
ing the advantages of the existing approaches and extending these approaches
to fit various use cases. The combination of various approaches to a com-
prehensive methodology regarding MDE for AI could streamline the research
topic and foster the development of MDE for AI toolboxes.

Apart from combining the research workforces, future research needs to focus
on the collaboration of engineers using methods designed for concurrently
working on models. As of the review’s findings, the approaches mainly focus
on supporting single editors and do not support collaborative work on a single
model. With respect to more extensive or interdisciplinary projects, the
live or collaborative work on a single model could increase the development
performance and the benefit and acceptance of MDE for AI.

Next, the output of MDE for AI is often a derivation of Python code, etc.,
based on model transformation. Python is an easy-to-understand, well-
known, daily-used language of AI experts that might lead to changes in the
Python code rather than the model. Consequently, full code generation is
not applied, leading to no single source of information because partial truth
of information is stored in the model and partial in the Python code [8]. In
this context, it is necessary to elaborate a closed-loop process that feeds the
results of the executed algorithm back into the model or adjusts the model in
case of changes in the code, e.g., in Python. With this closed-loop approach,
the model is always up-to-date, and further, the collaboration with others
potentially improves because of the abstracted representation of the actual
changes.

Finally, only a few approaches mention user studies to assess the impact and
benefits of MDE for AI. For this, user studies are required to identify unused

31

potentials and further streamline the development towards a user-centered
MDE for AI methodology.

6. Threats to Validity

The study’s validity describes the extent to which the results are trustworthy
and how biases arising from the subjective views of the researcher are avoided
during the analysis. Validity must be considered at all stages of a study, and
several approaches have been proposed in the literature. Following [35], the
following threats to validity are considered:

• Construct Validity: Construct validity describes the validity of the con-
cept or theory behind the study design such that the results are gen-
eralizable [65]. In this SLR, construct validity refers to the potentially
subjective analysis of the studies and the different ways in which data
extraction is conducted. Following the guidelines [35], each study anal-
ysis is conducted independently by at least two researchers. If the
researchers cannot agree on a conclusion, a third researcher evaluates
and discusses the literature until there is no disagreement. In addition,
each selected literature was evaluated using the quality criteria sug-
gested by [39]. A protocol based on [35] was defined for performing the
extraction protocol, which was discussed by the performing researchers
after each step.

• Internal Validity: Internal validity describes the causal relationships
of the researcher’s investigation of whether a factor influences an as-
pect under study. The particular danger is that a third factor has an
unknown effect or side effect. To avoid this danger, the same behavior
as for construct validity applies, that more than one researcher assesses
the causal relationships. In addition, the tactic suggested by [35] was
followed.

• External Validity: External validity exists when a finding in the se-
lected literature is of interest to others outside the case under study.
In this regard, the SLR uses a quality assessment based on [39], so
included papers are published in peer-reviewed. Therefore, third-party
investigators pre-assessed the selected studies, and the validity of the
initial publication is the responsibility of the external authors.

• Conclusion Validity: The validity of the conclusion relates to concerns

32

about the reproducibility of the study. The concerns in this paper re-
late to the possible omission of studies. In this regard, the concerns are
mitigated by the carefully applied search strategy using multiple digital
libraries in conjunction with the snowballing system as per [35]. In ad-
dition, the researchers followed the detailed search protocol as defined
in Section 3 and applied the quality ratings. However, some concerns
might exist due to the interdisciplinary nature of the fields involved
and the various definitions of modeling and AI. These were minimized,
however, by the detailed background introduction in Section 2.

7. Conclusion

AI is emerging in several disciplines today and has recently attracted the
interest of the MDE community, with several workshops being held on the
subject. The development of AI requires several development phases, which
potentially can be supported using MDE approaches. Currently, the support
of AI by MDE is still at an early stage of development. Therefore, it is
necessary to understand the existing approaches to support AI to streamline
future research and build on existing knowledge.

We conducted an SLR to investigate the existing body of knowledge in MDE
approaches to formalize and define AI applications. To this end, we followed
a rigorous, SLR protocol, selected 15 approaches, and evaluated them for
several dimensions of interest, from MDE and AI.

The result showed that the language engineering perspective of MDE for
AI is already mature, and some approaches seem applicable in industrial
case studies. The MDE approaches focus on the training phase of the AI
approaches, while time-consuming tasks such as data pre-processing are not
considered often. Additionally, the focus is not on improving communication,
collaboration, or understanding of the business processes to be supported,
which is reported in the literature as a core problem in AI development
projects. Finally, the review showed that the approaches are case-specific
and lack general applicability.

Future work in this research area is depicted in Section 5.6. It consists of,
among other things, consolidating approaches to combine benefits, expanding
approaches to be less case-specific, and adopting a closed-loop process that
allows for model-based development that potentially leads to an authoritative

33

source of truth. We plan to develop a framework that allows us to mitigate
some of the shortcomings and foster MDE with a focus on AI.

References

[1] Rama Akkiraju, Vibha Sinha, Anbang Xu, Jalal Mahmud, Pritam Gun-
decha, Zhe Liu, Xiaotong Liu, and John Schumacher. Characterizing
Machine Learning Processes: A Maturity Framework. In Dirk Fahland,
Chiara Ghidini, Jörg Becker, and Marlon Dumas, editors, Business
Process Management, pages 17–31, Cham, 2020. Springer International
Publishing.

[2] Issam Al-Azzoni. Model Driven Approach for Neural Networks. In 2020
International Conference on Intelligent Data Science Technologies and
Applications (IDSTA), pages 87–94, 2020.

[3] Ana Azevedo and Manuel Filipe Santos. KDD, SEMMA and CRISP-
DM: A Parallel Overview. IADIS European Conference Data Mining,
pages 182–185, 2008.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal
Question Metric Approach. pages 1–10, 1994.

[5] B. Beihoff, C. Oster, S. Friedenthal, Christiaan Paredis, D. Kemp,
H. Stoewer, D. Nichols, and J. Wade. A World in Motion – Systems
Engineering Vision 2025. Technical report, INCOSE, San Diego, Cali-
fornia, 2014.

[6] Massimo Bertolini, Davide Mezzogori, Mattia Neroni, and Francesco Za-
mmori. Machine Learning for industrial applications: A comprehensive
literature review. Expert Systems with Applications, 175:114820, August
2021.

[7] Anirban Bhattacharjee, Yogesh Barve, Shweta Khare, Shunxing Bao,
Zhuangwei Kang, Aniruddha Gokhale, and Thomas Damiano. STRA-
TUM: A BigData-as-a-Service for Lifecycle Management of IoT Analyt-
ics Applications. In 2019 IEEE International Conference on Big Data
(Big Data), pages 1607–1612, 2019.

34

[8] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice: Second Edition. Synthesis Lectures
on Software Engineering, 3(1):1–207, March 2017.

[9] Dominic Breuker. Towards Model-Driven Engineering for Big Data An-
alytics - An Exploratory Analysis of Domain-Specific Languages for
Machine Learning. 47th Hawaii International Conference on System
Sciences, HICSS 2014, Waikoloa, HI, USA, January 6-9, 2014, pages
758–767, 2014.

[10] Matthias Brunnbauer, Gunther Piller, and Franz Rothlauf. Idea-AI:
Developing a Method for the Systematic Identification of AI Use Cases.
August 2021.

[11] Matthias Brunnbauer, Gunther Piller, and Franz Rothlauf. Top-Down
or Explorative? A Case Study on the Identification of AI Use Cases.
July 2022.

[12] Steven L. Brunton, J. Nathan Kutz, Krithika Manohar, Aleksandr Y.
Aravkin, Kristi Morgansen, Jennifer Klemisch, Nicholas Goebel, James
Buttrick, Jeffrey Poskin, Adriana W. Blom-Schieber, Thomas Hogan,
and Darren McDonald. Data-Driven Aerospace Engineering: Reframing
the Industry with Machine Learning. AIAA Journal, 59(8):2820–2847,
2021.

[13] Lola Burgueño, Jordi Cabot, Manuel Wimmer, and Steffen Zschaler.
Guest editorial to the theme section on AI-enhanced model-driven en-
gineering. Software and Systems Modeling, 21(3):963–965, June 2022.

[14] Loli Burgueño, Alexandru Burdusel, Sébastien Gérard, and Manuel
Wimmer. MDE Intelligence 2019: 1st Workshop on Artificial Intelli-
gence and Model-Driven Engineering. In Proceedings of the 22nd Inter-
national Conference on Model Driven Engineering Languages and Sys-
tems, MODELS ’19, pages 168–169. IEEE Press, 2021.

[15] Loli Burgueño, Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen
Lambers, Sebastien Mosser, Richard F. Paige, Alfonso Pierantonio,
Arend Rensink, Rick Salay, Gabriele Taentzer, Antonio Vallecillo, and
Manuel Wimmer. Contents for a Model-Based Software Engineering

35

Body of Knowledge. Software and Systems Modeling, 18(6):3193–3205,
December 2019.

[16] Loli Burgueño, Marouane Kessentini, Manuel Wimmer, and Steffen
Zschaler. MDE Intelligence 2021: 3rd Workshop on Artificial Intelli-
gence and Model-Driven Engineering. 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), pages 148–149, 2021.

[17] Krzysztof Czarnecki. Overview of generative software development. In
Unconventional Programming Paradigms: International Workshop UPP
2004, Le Mont Saint Michel, France, September 15-17, 2004, Revised
Selected and Invited Papers, pages 326–341. Springer, 2005.

[18] Christopher Davey, Sanford Friedenthal, Sky Matthews, David Nichols,
Paul Nielsen, Christopher Oster, Taylor Riethle, Garry Roedler, Paul
Schreinemakers, Emma Sparks, and Heinz Stoewer. Systems Engineer-
ing Vision 2035 – Engineering Solutions for a Better World. Technical
report, INCOSE, San Diego, California, 2022.

[19] Alfonso de la Vega, Diego Garćıa-Saiz, Marta Zorrilla, and Pablo
Sánchez. Lavoisier: A DSL for increasing the level of abstraction of
data selection and formatting in data mining. Journal of Computer
Languages, 60:100987, October 2020.

[20] Alican Dogan and Derya Birant. Machine learning and data mining in
manufacturing. Expert Systems with Applications, 166:114060, March
2021.

[21] Frank Emmert-Streib and Matthias Dehmer. Defining Data Science by
a Data-Driven Quantification of the Community. Machine Learning and
Knowledge Extraction, 1(1):235–251, March 2019.

[22] P. Espadinha-Cruz, R. Godina, and E.M.G. Rodrigues. A review of
data mining applications in semiconductor manufacturing. Processes,
9(2):1–38, 2021.

[23] Simon Fahle, Christopher Prinz, and Bernd Kuhlenkötter. Systematic
review on machine learning (ML) methods for manufacturing processes
– Identifying artificial intelligence (AI) methods for field application.
Procedia CIRP, 93:413–418, 2020.

36

[24] M.M. Forootan, I. Larki, R. Zahedi, and A. Ahmadi. Machine Learn-
ing and Deep Learning in Energy Systems: A Review. Sustainability
(Switzerland), 14(8), 2022.

[25] Martin Fowler. Domain Specific Languages. Addison-Wesley Profes-
sional, 1st edition, 2010.

[26] Joan Giner-Miguelez, Abel Gómez, and Jordi Cabot. Describeml: A
tool for describing machine learning datasets. In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, MODELS ’22, page 22–26, New York,
NY, USA, 2022. Association for Computing Machinery.

[27] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, Cambridge, MA, USA, 2016. http://www.

deeplearningbook.org.

[28] Thomas Hartmann, Assaad Moawad, Francois Fouquet, and Yves
Le Traon. The next Evolution of MDE: A Seamless Integration of Ma-
chine Learning into Domain Modeling. In Proceedings of the ACM/IEEE
20th International Conference on Model Driven Engineering Languages
and Systems, MODELS ’17, page 180. IEEE Press, 2017.

[29] Thomas Hartmann, Assaad Moawad, Cedric Schockaert, Francois Fou-
quet, and Yves Le Traon. Meta-Modelling Meta-Learning. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), pages 300–305, 2019.

[30] Charles Hartsell, Nagabhushan Mahadevan, Shreyas Ramakrishna, Ab-
hishek Dubey, Theodore Bapty, Taylor Johnson, Xenofon Koutsoukos,
Janos Sztipanovits, and Gabor Karsai. Model-Based Design for CPS
with Learning-Enabled Components. In Proceedings of the Workshop
on Design Automation for CPS and IoT, DESTION ’19, pages 1–9,
New York, NY, USA, 2019. Association for Computing Machinery.

[31] Kaitlin Henderson and Alejandro Salado. Value and benefits of model-
based systems engineering (MBSE): Evidence from the literature. Sys-
tems Engineering, 24(1):51–66, January 2021.

[32] T. Huldt and I. Stenius. State-of-practice survey of model-based systems
engineering. Systems Engineering, 22(2):134–145, March 2019.

37

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[33] Ańıbal Iung, João Carbonell, Luciano Marchezan, Elder Rodrigues,
Maicon Bernardino, Fabio Paulo Basso, and Bruno Medeiros. System-
atic mapping study on domain-specific language development tools. Em-
pirical Software Engineering, 25(5):4205–4249, September 2020.

[34] Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Din-
gel, and Daniel Varró. Survey and classification of model transformation
tools. Software and Systems Modeling, 18(4):2361–2397, 2019.

[35] B. Kitchenham and S. Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Technical report, 2007.

[36] Barbara Kitchenham and Pearl Brereton. A systematic review of sys-
tematic review process research in software engineering. Information
and Software Technology, 55(12):2049–2075, December 2013.

[37] Kaan Koseler, Kelsea McGraw, and Matthew Stephan. Realization of a
Machine Learning Domain Specific Modeling Language: A Baseball An-
alytics Case Study. In Slimane Hammoudi, Lúıs Ferreira Pires, and Bran
Selic, editors, Proceedings of the 7th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2019,
Prague, Czech Republic, February 20-22, 2019, pages 13–24. SciTePress,
2019.

[38] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebas-
tian Stuber. On the Engineering of AI-Powered Systems. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshop (ASEW), pages 126–133, San Diego, CA, USA, November
2019. IEEE.

[39] Hannah A Long, David P French, and Joanna M Brooks. Optimising
the value of the critical appraisal skills programme (CASP) tool for
quality appraisal in qualitative evidence synthesis. Research Methods in
Medicine & Health Sciences, 1(1):31–42, September 2020.

[40] Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay,
Gehan M.K. K Selim, Eugene Syriani, and Manuel Wimmer. Model
transformation intents and their properties. Software and Systems Mod-
eling, 15(3):647–684, 2016.

38

[41] Azad Madni and Shatad Purohit. Economic Analysis of Model-Based
Systems Engineering. Systems, 7(1):12, February 2019.

[42] Sofia Meacham, Vaclav Pech, and Detlef Nauck. AdaptiveSystems: An
Integrated Framework for Adaptive Systems Design and Development
Using MPS JetBrains Domain-Specific Modeling Environment. IEEE
Access, 9:127973–127984, 2021.

[43] Fran Melchor, Roberto Rodriguez-Echeverria, José M. Conejero,
Álvaro E. Prieto, and Juan D. Gutiérrez. A Model-Driven Approach for
Systematic Reproducibility and Replicability of Data Science Projects.
In Xavier Franch, Geert Poels, Frederik Gailly, and Monique Snoeck,
editors, Advanced Information Systems Engineering, Lecture Notes in
Computer Science, pages 147–163, Cham, 2022. Springer International
Publishing.

[44] Armin Moin, Moharram Challenger, Atta Badii, and Stephan
Günnemann. A model-driven approach to machine learning and software
modeling for the IoT: Generating full source code for smart Internet of
Things (IoT) services and cyber-physical systems (CPS). Software and
Systems Modeling, 21(3):987–1014, June 2022.

[45] Sergio Morales, Robert Clarisó, and Jordi Cabot. Towards a DSL for
AI Engineering Process Modeling. Product-Focused Software Process
Improvement, 13709:53–60, 2022.

[46] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines
for conducting systematic mapping studies in software engineering: An
update. Information and Software Technology, 64:1–18, August 2015.

[47] David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael
Muller, and Felix Portnoy. How AI Developers Overcome Communica-
tion Challenges in a Multidisciplinary Team: A Case Study. Proceedings
of the ACM on Human-Computer Interaction, 5(CSCW1):1–25, April
2021.

[48] Ivens Portugal, Paulo Alencar, and Donald Cowan. A Survey on
Domain-Specific Languages for Machine Learning in Big Data. 2016.

39

[49] Foster Provost and Tom Fawcett. Data Science and its Relationship
to Big Data and Data-Driven Decision Making. Big Data, 1(1):51–59,
March 2013.

[50] S. Rädler and E. Rigger. A Survey on the Challenges Hindering the
Application of Data Science, Digital Twins and Design Automation in
Engineering Practice. Proceedings of the Design Society, 2:1699–1708,
May 2022.

[51] Benôıt Ries, Nicolas Guelfi, and Benjamin Jahic. An MDE Method
for Improving Deep Learning Dataset Requirements Engineering using
Alloy and UML. In Slimane Hammoudi, Lúıs Ferreira Pires, Edwin Sei-
dewitz, and Richard Soley, editors, Proceedings of the 9th International
Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2021, Online Streaming, February 8-10, 2021, pages
41–52. SCITEPRESS, 2021.

[52] Eugen Rigger, Thomas Vosgien, Kristina Shea, and Tino Stankovic. A
top-down method for the derivation of metrics for the assessment of
design automation potential. Journal of Engineering Design, pages 1–
31, October 2019.

[53] Alberto Rodrigues da Silva. Model-driven engineering: A survey sup-
ported by the unified conceptual model. Computer Languages, Systems
& Structures, 43:139–155, 2015.

[54] Bernhard Rumpe, Katrin Hölldobler, and RWTH Aachen, editors.
MontiCore 5 Language Workbench. Number Band 32 in Aachener
Informatik-Berichte, Software-Engineering. Shaker Verlag, Aachen, edi-
tion 2017 edition, 2017.

[55] Jeff Saltz. CRISP-DM is Still the Most Popular Framework for Execut-
ing Data Science Projects, November 2020.

[56] L. Nelson Sanchez-Pinto, Yuan Luo, and Matthew M. Churpek. Big
Data and Data Science in Critical Care. Chest, 154(5):1239–1248,
November 2018.

[57] Iqbal H. Sarker. Machine Learning: Algorithms, Real-World Applica-
tions and Research Directions. SN Computer Science, 2(3):160, March
2021.

40

[58] Christoph Schröer, Felix Kruse, and Jorge Marx Gómez. A Systematic
Literature Review on Applying CRISP-DM Process Model. Procedia
Computer Science, 181:526–534, 2021.

[59] Pramila P. Shinde and Seema Shah. A Review of Machine Learning and
Deep Learning Applications. In 2018 Fourth International Conference
on Computing Communication Control and Automation (ICCUBEA),
pages 1–6, Pune, India, August 2018. IEEE.

[60] Ida Someh, Barbara Wixom, and Angela Zutavern. Overcoming Organi-
zational Obstacles to Artificial Intelligence Value Creation: Propositions
for Research. pages 5809–5818, January 2020.

[61] Jakob Trauer, Sebastian Schweigert-Recksiek, Luis Onuma, Karsten
Spreitzer, Markus Mörtl, and Markus Zimmermann. Data-Driven En-
gineering – Definitions and Insights from an Industrial Case Study for
a New Approach in Technical Product Development. January 2020.

[62] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart CL Kats, Eelco Visser, and GH Wachsmuth.
Dsl engineering-designing, implementing and using domain-specific lan-
guages. 2013.

[63] Jens Westenberger, Kajetan Schuler, and Dennis Schlegel. Failure of AI
projects: Understanding the critical factors. Procedia Computer Science,
196:69–76, January 2022.

[64] Rüdiger Wirth and Jochen Hipp. CRISP-DM: Towards a standard pro-
cess model for data mining. Proceedings of the 4th International Con-
ference on the Practical Applications of Knowledge Discovery and Data
Mining, 2000.

[65] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineering.
Springer Science & Business Media, June 2012.

[66] J. Xu, M. Kovatsch, D. Mattern, F. Mazza, M. Harasic, A. Paschke,
and S. Lucia. A Review on AI for Smart Manufacturing: Deep Learning
Challenges and Solutions. Applied Sciences (Switzerland), 12(16), 2022.

41

[67] Julian Zucker and Myraeka d’Leeuwen. Arbiter: A Domain-Specific
Language for Ethical Machine Learning. In Annette N. Markham, Ju-
lia Powles, Toby Walsh, and Anne L. Washington, editors, AIES ’20:
AAAI/ACM Conference on AI, Ethics, and Society, New York, NY,
USA, February 7-8, 2020, pages 421–425. ACM, 2020.

42

	Introduction
	Background
	Model-Driven Engineering
	Artificial Intelligence
	Related Work

	Research Methodology
	Research Questions
	Search Process
	Paper Selection
	Data Extraction

	Literature Assessment
	Model-Driven Engineering Concerns
	Artificial Intelligence Concerns
	Frameworks (Methods & Tools)
	Artifacts Available and Domain of Application

	Results and Discussion
	RQ1 - What language aspects of MDE are addressed in the approaches, e.g., abstract syntax, concrete syntax, metamodel, etc.?
	RQ2 - Which phases of AI development aligned with the CRISP-DM methodology are covered by the approaches?
	RQ3 - Which industrial domains are supported by MDE for AI approaches?
	RQ4 - What are the used methods and MDE tools the proposed approaches rely on?
	RQ5 - To what extent is communication between different stakeholders supported by MDE?
	RQ6 - Which challenges and research directions are still open?

	Threats to Validity
	Conclusion

