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In this paper we present a method for designing a double freeform lens that includes the effect of Fresnel reflections
on the output intensity. We elaborate this method for the case of a point source and a far-field target. A new expres-
sion for the transmittance through a double freeform lens is derived, and we adapt a least-squares algorithm to
account for this transmittance. A test case based on street lighting is used to show that our adaptation improves the
accuracy of the algorithm and that it is possible to minimize Fresnel losses with this new method to design efficient
lenses. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAA.490053

1. INTRODUCTION

Energy efficiency is an important criterion for the design
of novel optical systems for illumination applications. The
advancements in LED light have improved these systems much,
but improvements can also be made on the lenses. For that, it
is important that all light ends up where it is desired. A design
algorithm that is as close to reality as possible is crucial for this.
With Fresnel reflections, the amount of flux that gets reflected
(and thus also the amount that gets transmitted) depends on the
angle at which light hits a lens surface. Especially in freeform
lenses, these angles can vary strongly with the position on the
lens. This leads to varying transmittance for different parts of the
lens. Ignoring these variations in transmittance gives a lens with
a transmitted illumination pattern that differs from the desired
one. In a previous paper, we have presented a novel method that
incorporates Fresnel reflections in the design of a lens with a
single freeform surface [1]. In this paper, we will extend that
method to lenses with two freeform surfaces. This way, extra
freedom in the design process is created, which we can use to
minimize the energy loss due to Fresnel reflections.

There exist several methods for designing nonimaging refrac-
tive optical elements with two (or more) freeform surfaces.
Many of them are made for optical systems where both the
source and target are a point or a collimated beam [2–5]. Others
assume arbitrary but fixed input and output wavefronts [6,7]. In
both cases, the theorem of Malus and Dupin (equal optical path
length between two wavefronts) is used. As a result, once one
surface is known, the other is determined to regulate the optical
path length. This way, the second freeform is necessary to shape
the wavefront, rather than adding an extra degree of freedom.

Another approach is to have a prescribed first freeform surface
and then calculate the second surface based on a target distri-
bution. This is, for example, done by Wei et al. [8]. This first
surface can be computed from an intermediate distribution.
This is done, for example, by the least-squares algorithm in
[9], which we adapt in the current paper. Similarly, Shen et al.
compute the first surface from an intermediate distribution and
subsequently compute the second surface [10]. They base their
intermediate distribution on a minimization of Fresnel losses.
This is part of the goal of our paper too, and we will present in
Section 2.C a more accurate way of calculating those losses.
Another method, by Moiseev et al., controls the refractive con-
tributions of both surfaces by distributing the deflection for each
ray among them [11]. They then minimize the Fresnel losses to
find the optimal deflection parameter.

To the best of our knowledge, there is no method for con-
structing a double freeform lens that takes into account the
effect of Fresnel reflections on the output pattern. We also do
not know of any inverse design algorithm that uses the accu-
rate calculation of Fresnel losses in a double freeform lens, as
presented in this paper.

A least-squares algorithm has been developed by Prins et al.,
initially for designing a reflector or lens for shaping a collimated
beam into a far-field target [12]. This is based on the optical
map combined with energy conservation, giving rise to the
Monge–Ampère equation. It is then solved with a least-squares
algorithm. This has later been expanded to several other optical
systems by solving a generalized Monge–Ampère equation with
the optical mapping. The resulting algorithm is called the gen-
eralized least-squares (GLS) algorithm. This works, for example,
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for a lens with one freeform surface shaping a point source to
a far-field target. There are still several optical system layouts
for which this framework cannot be used as a design algorithm,
such as a lens or reflector for a near-field target. A further gener-
alization of the Monge–Ampère equations, called the generated
Jacobian equation, was used to extend the least-squares algo-
rithm to these layouts [13]. It is this so-called generated Jacobian
least-squares (GJLS) algorithm that is also used to design double
freeform lenses with a point source and a far-field target [9]. An
overview of optical systems and the corresponding versions of
the least-squares algorithm is given by Anthonissen et al. [14].

As mentioned, we previously included Fresnel reflections in
the design of lenses with one freeform surface. This was done for
systems with a far-field target and a point source or collimated
source beam. To do this, we adapted the GLS algorithm. In this
paper, we design lenses with two freeform surfaces, shaping a
point source into a far-field target. As stated before, the GLS
algorithm does not suffice, and we need the GJLS algorithm for
that. We make changes along the same lines as in [1] to account
for the variation in Fresnel coefficients along the freeform sur-
faces. This is done such that the transmitted target intensity
will have the same shape as a hypothetical target distribution
without Fresnel reflections. We will also use the extra freedom
that a second freeform surface introduces to minimize the total
flux that is lost due to Fresnel reflections.

In this paper, we first give a mathematical description of the
double freeform lens layout in Section 2. From this, the equa-
tions that govern the path of a ray can be derived. We will give a
brief overview of this in Section 2.B. In Section 2.C, we derive
an expression for the transmittance of the flux through the
double freeform lens, and in Section 2.D we describe the energy
balance between the source and target. After that, in Section 3,
we briefly elaborate on the algorithm, focusing on the changes
compared to [9]. We finally evaluate the results of this algorithm
in Section 4.

2. OPTICAL SYSTEM

In this section we will present a mathematical model for the
optical system of a double freeform lens. We give equations
governing the path of a ray in the system and equations for the
conservation of the flux that is transmitted through the lens. It
is in the latter part that Fresnel reflection plays a role, so we give
a formula to compute the Fresnel coefficients. These equations
are used in the calculation of the optical surfaces.

A. Optical System Layout

We consider an optical system of a lens where both the entrance
and exit surfaces are freeform. All rays incident to the lens origi-
nate from a point source, which we assume to be at the origin of
our coordinate system. The target is located in the far field. This
means that the target is so far away from the lens that we can con-
sider the lens to be a point. Thus, only the directions of the out-
going rays matter. See Fig. 1 for a sketch of the system.

We assume that the lens has refractive index n, and the sur-
rounding medium has refractive index 1. The direction of a ray,
emitted from the source, is given by the unit direction vector
ŝ = (s 1, s 2, s 3)

>. We denote the directions after the first and

Fig. 1. Intersection of the x , z plane with an example lens with two
freeform surfaces and a point source.

second refractions by ι̂= (i1, i2, i3)
> and t̂= (t1, t2, t3)>,

respectively. We use the hat notation to indicate unit vectors.
The source has a given intensity distribution f = f (ŝ). In the
far field we have a desired distribution g = g (t̂). These source
and target distributions should have an equal total flux, which
we assume to be equal to 1. This also means that this target
distribution cannot actually be achieved, as some flux is lost
due to Fresnel reflections. Therefore, the target distribution is
purely hypothetical, and we aim to find a lens that creates an
output with the same shape or pattern as the hypothetical target.
Furthermore, we define the setS as the support of f .

The first surface is defined by the radial distance function u.
A point on this surface can be described by the position vector
r1(ŝ)= u(ŝ)ŝ . The second surface is then defined by the dis-
tance v from the first to the second surface, measured along a
once-reflected ray (ι̂). A point on the second surface has a posi-
tion vector r2(ŝ)= u(ŝ)ŝ + v(ŝ)ι̂. See Fig. 1 for an illustration
of the optical system with ray direction vectors.

To change to two-dimensional coordinates, we introduce
the stereographic projection from the south pole of the unit
sphere. This gives a unique two-dimensional representation for
every unit direction vector that is not (0, 0,−1)>. Generally,
light is directed (mostly) in the positive z direction, which
makes projection from the south pole beneficial, creating a com-
pact domain in the stereographic coordinates. For the source
coordinates, this projection is denoted by x = x(ŝ) and given by

x(ŝ)=
(

x1

x2

)
=

1

1+ s 3

(
s 1

s 2

)
, ŝ(x)=

1

1+ |x |2

 2x1

2x2

1− |x |2

.

(1)
Furthermore, we define the set X = x(S). Analogously, we

have the stereographic projections y1 = y1(ι̂) and y2 = y2(t̂).
As each ray has vectors ŝ , ι̂, and t̂, we assume there exist map-
pings y1 = (y1,1, y1,2)

>
=m1(x) and y2 = (y2,1, y2,2)

>
=

m2(x) and we defineY1 =m1(X ) andY2 =m2(X ).

B. Optical Mapping

We will give a brief summary of the derivation of the equations
governing the path of a ray through the optical system. The
derivations for these equations are given by Romijn et al. [9]. For
the first surface, there is a relation between x and y1, given by

u(x)= G1(x , y1, z)= z
(

1− n +
2n|x − y1|

2

(1+ |x |2)(1+ | y1|
2)

)−1

.

(2)
The variable z is a function that depends on the once-

refracted ray, so z= z( y1). Note that we write u as a function of
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x instead of ŝ . With this we mean u(ŝ(x)), but we shorten this
for notational purposes.

For the second surface, given u = u(x) and y1 = y1(x), an
expression is found for the function v. This implicitly links the
source coordinates x with target coordinates y2. It is given by

v(x)= G2(x , y2, z)

=

(
z− u(x)

2|x − y2|
2

(1+ |x |2)(1+ | y2|
2)

)

×

(
n − 1+

2| y1 − y2|
2

(1+ | y1|
2)(1+ | y2|

2)

)−1

, (3)

where z is now a function of y2.
The equation u(x)= G1(x , y1, z) has many solutions for u

and z. Let the pair u1 = u and u2 = z be such a solution. Denote
now, for ease of notation, G = G1 and Y =Y1. Then, for every
x ∈X and y ∈Y , we have u1(x)= G(x , y, u2( y)). For the
second surface, the same equation can be derived by writing
u1 = v, u2 = z, G = G2, andY =Y2. For the following deriva-
tion it does not matter whether we are talking about the first or
second surface. We define a function H such that for a fixed x
and y, H(x , y, ·) is the inverse of G(x , y, ·); i.e., for all x ∈X ,
y ∈Y ,

u1(x)= G(x , y, u2( y))⇔ u2( y)= H(x , y, u1(x)). (4)

For G to be invertible, it should be a one-to-one mapping.
For that, it is sufficient that either ∂

∂z G > 0 for all x ∈X , y ∈Y ,
or ∂

∂z G < 0. We have for the second surface ∂
∂z G2 > 0. For the

first surface, the sign of ∂
∂z G1 depends on the choice of source

and target domains [9].
We can find a unique solution to Eq. (4) if we assume

that u1 is a G-convex function, meaning u1(x)=max y∈Y
G(x , y, u2( y)) [15,16]. This is also called a G-transform of u2.
It is shown in ([13], Supp. mat.) that when ∂

∂z G > 0, we get the
following pair:

u1(x)=max
y∈Y

G(x , y, u2( y)), u2( y)=min
x∈X

H(x , y, u1(x)).

(5)
This means that u2 is an H-concave function. If instead we

choose u1 to be a G-concave function, the max/min pair will
become a min/max pair and u2 will be H-convex. If the generat-
ing function is such that ∂

∂z G < 0, the pairs will be max/max or
min/min.

A necessary condition for either of these pairs to be a solution
is that G and H are at a critical point with respect to y and x ,
respectively. Since we want an equation for u1, we consider the
requirement for H to be at a critical point, namely

∇x H(x , y, u1(x))+ Hz(x , y, u1(x))∇u1 = 0. (6)

Here, ∇x H denotes the gradient of H with respect to its
first argument, and Hz denotes the derivative with respect
to its third argument. For convenience, we introduce
H∗(x , y)= H(x , y, u1(x)). We then write Eq. (6) in the
short form

∇x H∗(x , y)= 0. (7)

This equation implicitly defines a mapping y=m(x), under
the conditions of the implicit function theorem [17]. However,
it is difficult to compute m directly from this. Instead, we derive
an expression for the Jacobian Dm of m. We will show later in
Section 2.D why this is useful. We substitute y=m(x) into
Eq. (7) and differentiate again with respect to x to obtain

Dx x H∗(x ,m(x))+Dx y H∗(x ,m(x))Dm= 0. (8)

Here, Dx x H∗ denotes the Hessian of H∗ with respect to x
and C := Dx y H∗ is the matrix of mixed derivatives of H∗. We
define P :=−Dx x H∗. Note that−P is the Hessian of H∗, so
whether we choose a minimum or maximum for H in Eq. (5)
determines whether P should be a symmetric negative definite
(SND) or symmetric positive definite (SPD), respectively.
Substituting these definitions into Eq. (8) gives

P(x)= C(x ,m(x))Dm(x). (9)

Note that an equation of this form holds for both the first and
the second surfaces. However, H is either H1 or H2, and thus all
terms containing H vary depending on the surface.

C. Double Freeform Surface Transmission

The equations that we have derived so far describe the path of
a transmitted ray, but they do not contain any information on
the flux or intensity. To look at the propagation of the flux, we
first look at what happens at an optical surface. It is known that
at each refracting surface, part of the light gets reflected due to
Fresnel reflections. The fraction of reflected light depends on the
angle at which a ray hits the surface, the refractive index, and the
polarization of the light. We will assume that the light emitted
by the point source is naturally polarized; i.e., we can express it as
half perpendicular and half parallel polarized.

In our previous paper, [1], we stated an expression for the
reflectance at a single freeform surface as a function of the
incident and transmitted ray directions. This expression can
easily be adapted to other ratios of perpendicular and parallel
polarized light. One would be tempted to apply the transmis-
sion coefficients for perpendicular and parallel polarized light
twice to their respective incident fluxes. Others also choose to
apply the formula for naturally polarized light twice, looking
at the polarization directions separately [10,11]. However, the
problem with these approaches is that the directions of what
counts as perpendicular and parallel polarized change. These
terms are defined with respect to the plane of incidence (POI),
but that is generally different on the first and second refractions.
A different approach is needed to compute the transmittance
over the two surfaces.

Instead of looking at the flux transmission, we will consider
the electrical fields. The amplitude transmission coefficient t is
the ratio of transmitted and incident electric field amplitudes,
given by the Fresnel equations. Similarly, the ratio of transmit-
ted and incident flux is given by T. The coefficients t and T are
linked [18] via

T =
(

nt cos θt

ni cos θi

)
t2. (10)
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The subscripts t and i denote transmitted and incident,
respectively, while n is the refractive index and θ is the angle
of the ray with the surface normal. The ratio T can be written
as a function of ŝ and ι̂, or ι̂ and t̂, depending on the surface
[1]. We split the electric field in perpendicular and parallel
polarized light, denoted by E S and E P , respectively. The trans-
mission functions have different Fresnel equations for S- and
P -polarized light. Looking at the second surface, as in [1], we
have ni = n and nt = 1, and the flux transmission coefficients
are given for S- and P -polarized light by

TS(ι̂, t̂)= 1−
1

(1− n2)
2 (2nι̂·t̂− (1+ n2))2, (11a)

TP (ι̂, t̂)= 1−
1

(ι̂·t̂)
2
(1− n2)

2
((1+ n2)ι̂·t̂− 2n)2. (11b)

It can be found that these functions are the same if ni = 1 and
nt = n, i.e., when substituting 1

n for n. It can also be found by
calculation that TS(ι̂, t̂)= (ι̂·t̂)2TP (ι̂, t̂).

We assume that the source emits naturally polarized light
with an electric field E 0. The flux is given by f (ŝ)dS(ŝ) along a
direction ŝ , where dS is an infinitesimal surface element of the
unit sphere. The flux of this beam is conserved while incident on
the first surface, so I cos θi dA= f dS, where I is the irradiance
and dA is a surface element on the optical surface. The irradi-
ance is linked to the electric field amplitude by I =Cn|E |2, for
some constant C > 0 and with n denoting the refractive index
in the media where the electric field is located. Since we assume
naturally polarized light emitted by the source, we can write
IS = IP = I/2.

We write E 1 for the electric field after transmission through
the first optical surface, with polarization components E 1,S and
E 1,P . Using the amplitude transmission coefficients, we can
write |E 1,S | = t1,S |E 0,S | and |E 1,P | = t1,P |E 0,P |. This can be
used to write the transmitted irradiance as

I1,S =Cn|E 1,S |
2
=Cnt2

1,S |E 0,S |
2
= nt2

1,S IS , I1,P = nt2
1,P IP .
(12)

Consequently, the flux after transmission by the first surface is
given by

I1,S cos θt dA= nt2
1,S IS cos θt dA

= T1,S
1

2
I cos θi dA

=
1

2
T1,S f dS, (13a)

I1,P cos θt dA=
1

2
T1,P f dS. (13b)

This gives a total transmitted flux of 1
2 (T1,S + T1,P ) f dS. We

denote the fraction of transmitted flux as

T1(ŝ, ι̂)= 1
2 (T1,S(ŝ, ι̂)+ T1,P (ŝ, ι̂)). (14)

This is in line with well-known results for the transmittance
of naturally polarized light. However, after this surface, the light
is not naturally polarized anymore, due to different transmis-
sions for the polarization orientations. Therefore, we cannot use

this formula anymore for the second surface. Furthermore, the
planes of incidence (POIs) of the first and second refraction in
general do not coincide. Therefore, what is considered S- and
P-polarized might change.

We introduce the unit vectors ê1,S and ê1,P , both perpen-
dicular to ι̂, with ê1,S perpendicular to the POI at the first
surface and ê1,P in this POI. This gives, for example,

E 1,S = |E 1,S |ê1,S + 0 ê1,P . (15)

Incident on the second surface, the electric field is still
perpendicular to ι̂. The POI can be different from the first
refraction, but still contains ι̂. Therefore, we can describe the
second POI as a rotation with an angle γ around ι̂ with respect
to the first POI. We obtain

E 1,S = |E 1,S |(cos γ ê2,S − sin γ ê2,P ), (16a)

E 1,P = |E 1,P |(sin γ ê2,S + cos γ ê2,P ), (16b)

where ê2,S and ê2,P are the basis vectors of the electrical field
plane incident to the second surface; see Fig. 2.

We denote by E 2,S the electric field amplitude of light cor-
responding to E 0,S and E 1,S after the second surface. Note
that the subscript S has to do with the polarization state with
respect to the first POI, but not the second. The amplitudes after
transmission at the second surface are given by

E 2,S = |E 1,S |(t2,S cos γ ê2,S − t2,P sin γ ê2,P ), (17a)

E 2,P = |E 1,P |(t2,S sin γ ê2,S + t2,P cos γ ê2,P ). (17b)

The flux associated with E 1,S incident on the second surface
is equal to the part transmitted by the first surface, given by
I1,S cos θi dA= 1

2 T1,S f dS, where θi now indicates the angle
incident on the second surface. After transmission through the
second surface, we denote the angle of the transmitted ray by θt ,
and the flux related to E 2,S is given by

I2,S cos θt dA=C |E 2,S |
2 cos θt dA

=C |E 1,S |
2(t2

2,S cos2 γ + t2
2,P sin2 γ ) cos θt dA

= I1,S
1

n
cos θt

cos θi
(t2

2,S cos2 γ + t2
2,P sin2 γ ) cos θi dA

= (T2,S cos2 γ + T2,P sin2 γ )I1,S cos θi dA

=
1

2
T1,S(T2,S cos2 γ + T2,P sin2 γ ) f dS.

(18a)

Fig. 2. Relation between the polarization directions and γ .
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In the same way, the flux related to E 2,P is given by

I2,P cos θt dA=
1

2
T1,P (T2,S sin2 γ + T2,P cos2 γ ) f dS.

(18b)
The total transmitted flux is then equal to the sum of these

expressions. This still contains the angle γ , which we want to
express in terms of ŝ , ι̂, and t̂. For this, we use the fact that the
normal to the first POI must be perpendicular to ŝ and ι̂, and
similarly the normal to the second POI is perpendicular to ι̂

and t̂. We can also see γ as the angle between the normals of the
POIs, giving us

cos γ =±
(ŝ × ι̂)·(ι̂× t̂)

|ŝ × ι̂||ι̂× t̂|
. (19)

Using properties of the cross product and dot product, we
obtain, after some calculations,

cos2 γ =
((ŝ·ι̂)(ι̂·t̂)− ŝ·t̂)

2

(1− (ŝ·ι̂)2)(1− (ι̂·t̂)
2
)
. (20)

Substituting this into Eqs. (18a) and (18b), combining
them, and using that TS(ŝ, ι̂)= (ŝ·ι̂)2TP (ŝ, ι̂), we find that the
fraction of transmitted flux, denoted by T2, is given by

T2(ŝ, ι̂, t̂)=
1

2
TP (ŝ, ι̂)TP (ι̂, t̂)

× [(ŝ·ι̂)2 + (ι̂·t̂)2 + ((ŝ·ι̂)(ι̂·t̂)− ŝ·t̂)2]. (21)

D. Energy Conservation

We will now discuss the propagation of the light distribution
through the optical system. As mentioned before, we start with
an intensity f emitted by the source, and we have a hypothetical
target intensity g . After the first surface, we have a hypothetical
intermediate target distribution h = h( y1). We will elaborate
later on how this is chosen. Along the same lines as in [1], we
state an energy conservation condition. For any subset A⊆ S,
the energy emitted by that part of the source, transmitted
through the optical system, should be equal to the energy in the
image set m(A). Analogously to [1], for the first surface this
leads to the adapted Monge–Ampère equation

det(Dm1(x))= T1(x ,m1(x))
J ŝ (x)

J ι̂(m1(x))
f (x)

h t(m1(x))

=: F1,t(x ,m1(x)). (22)

Here, J ŝ and J ι̂ denote the Jacobians associated with the coor-
dinate transformations from ŝ and ι̂ to x and y1, respectively.
The function T1 is, as mentioned before, the transmittance
through the first surface, and h t is the transmitted intermediate
target distribution. Note that we write x instead of ŝ as the argu-
ment of several functions in Eq. (22), e.g., f (x)= f (ŝ(x)).
This is purely for the sake of convenience. It should not lead
to confusion, as it is clear from the context which argument is
needed. We want h t to be a scaling of h , such that the total flux
of h t is equal to the flux transmitted from the source through the
first surface. We write h t = 01h , with01 ∈ (0, 1) and

01(m1)=

∫
S

T1(ŝ, ι̂(m1)) f (ŝ)dS(ŝ). (23)

Note that the notation has changed with respect to [1].
Similarly, for transmission through the entire lens, given

by mapping m2 :X →Y2, we introduce a transmitted target
intensity g t , which is a scaling of the hypothetical target distri-
bution g . We introduce the fraction of the total transmitted flux,
02 ∈ (0, 1), and write g t = 02g . We obtain

02(m1,m2)=

∫
S

T2(ŝ, ι̂(m1), t̂(m2)) f (ŝ)dS(ŝ), (24)

and the adapted Monge–Ampère equation

det(Dm2(x))= T2(x ,m1(x),m2(x))
J ŝ (x)

J t̂(m2(x))
f (x)

g t(m2(x))

=: F2,t(x ,m2(x)).
(25)

Note that we assume a fixed m1 when calculating m2, so we
can write F2 as a function of x and m2 only.

As in Section 2.B, we omit the subscripts in Eqs. (22) and
(25) to indicate that an equation can hold for either case, giving
det(Dm)= Ft . Substituting this into Eq. (9) gives us

det(P(x))= F (x ,m(x))det(C(x ,m(x))), (26)

as a constraint on the determinant of P . To close the model, we
introduce the transport boundary condition [12], given by

∂Y =m(∂X ). (27)

As shown in [1], it is already possible to construct a lens with
one freeform surface that can achieve the propagation from f
to g . Because of that, we have freedom in choosing what the
distribution after the first surface should be. Romijn et al. show
that the choice of intermediate intensity has little influence
on the accuracy of the raytraced target distribution [9]. We
choose the hypothetical far-field target intensity h after the
first surface based on an interpolation of mappings [9]. Assume
there is a mapping from the source to the target domain, given
by m∗ =m∗(x), which we will specify later. We introduce an
interpolation between the identity mapping and m∗, given by

m∗1(x)= βx + (1− β)m∗(x). (28)

Here, β ∈ [0, 1] is a weight factor. Note that m∗ and m∗1
and their associated surfaces do not satisfy Eqs. (2) and (3).
Therefore, we only use these mappings to calculate h , and we
have to find another m1 for calculating the optical lens sur-
face. We can find h by using the generalized Monge–Ampère
equation without Fresnel reflections, given by

det(Dm∗1(x))=
J ŝ (x)

J ι̂(m∗1(x))
f (x)

h(m∗1(x))
. (29)

We now have all the equations that we need to calculate a dou-
ble freeform lens for a point source and a far-field target, taking
into account the variations in Fresnel reflections.
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3. LEAST-SQUARES ALGORITHM

In this section we will give a brief overview of the algorithm
that is used to compute the lens surfaces. The algorithm in
general starts with an initial guess for the mapping and surface.
With fixed m and u1 we calculate C and then solve Eq. (9),
subject to Eq. (26), in a least-squares sense to find P . This
means that we minimize a quadratic functional that is equal
to 0 when Eqs. (9) and (26) are satisfied. A boundary function
b : ∂X → ∂Y is then found by enforcing Eq. (27). Then, a new
mapping m is calculated by fixing P and b, and solving Eqs. (9)
and (27) in a least-squares sense. These steps are explained in
detail in [12,19,20]. Subsequently, a new surface function u1

is computed by solving Eq. (6) with fixed y=m(x), again in a
least-squares sense. This step is explained in detail in [13,20].
Next, we compute the quantities related to Fresnel reflections
from the new mapping. This uses Eq. (14) or Eq. (21) for calcu-
lating the transmittance function, and Eq. (23) or Eq. (24) for

Fig. 3. Flowchart for the least-squares solver.

the fraction of total transmitted flux. We then scale h or g with
the new 0 and compute a new Ft . Lastly, the new m and u1 are
used to calculate a new C . A flowchart of this algorithm is given
in Fig. 3.

To calculate the full lens, we first find a mapping
m∗ :X →Y2, mapping a distribution f into g , using the
algorithm for a lens with a spherical first surface. This is done
without taking Fresnel losses into account. We use the resulting
mapping to compute an intermediate target distribution; see
Eqs. (28) and (29).

Next, we calculate m1 :X →Y1 and u by using the algo-
rithm as shown in Fig. 3. This m1 should map from f on X to
a scaling of h on Y1 that was calculated before. After this, we
finally keep m1 and u fixed, and run the algorithm again for the
second surface defined by m2 and v.

4. NUMERICAL RESULTS

We apply our algorithm to compute a lens for a street-lighting
application. We approximate an LED as a point source with a
Lambertian intensity distribution. We assume that the lens is
small with respect to the distance to the street, so we can look at
the far-field output distribution. The target is shown in Fig. 4.

The lens material has a refractive index n = 1.5. We use a
uniform polar 400× 400 grid on the stereographic source coor-
dinates and run the algorithm for 1000 iterations per surface,
or until ‖mn+1

−mn
‖L2< 10−10. We vary the parameter β in

Eq. (28) from 0.2 to 1. We show the intermediate distribution
h for several values of β in Fig. 5. Note that this is the far-field
target intensity after the first surface. The target distribution
after the second surface is equal to that in Fig. 4(a) for all values
ofβ.

A. Verifying the Results

We verify the resulting lenses using our own raytracer in Matlab.
We trace 10 million rays through the optical systems by inter-
polating u and v. The stereographic target domain is enclosed

Fig. 4. (a) Target distribution J t̂g in stereographic coordinates and (b) irradiance pattern on a target plane at distance l = 200.
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Fig. 5. Four intermediate distributions, h( y1), in stereographic coordinates, with their value of β [see Eq. (28)] and the double freeform lenses
found by the algorithm in spatial coordinates.

Fig. 6. Errors in the raytraced output distributions as functions of β. These are calculated by comparing a scaling of the raytraced intensity and the
desired intensity per bin. (a) shows the average error for varying grid sizes with the design algorithm as stated in this paper. (b) compares these errors to
the errors that would be obtained if Fresnel reflections were not taken into account in the design algorithm.

by the square [−1, 1]2, which we split into 50× 50 uniform
bins. The raytraced stereographic output distribution is then
compared to the desired target distribution times the Jacobian,
J t̂g . For each bin we sum up the flux of all rays arriving in this
bin, and divide by the size of the bin. We denote an arbitrary bin
by �bin and this flux by 8RT. We compare this to the integral
of J t̂g over the bin, also divided by the size of the bin. This is
denoted by

8ex :=

∫
�bin

J t̂( y)g ( y)d y. (30)

We are interested in comparing the output distribution’s
shape, rather than the flux, because there is always lost energy
due to Fresnel reflections and we want the output distribution to
be a scaling of g . Therefore we evaluate δ := |8RT/02 −8ex|,
where 8RT is divided by 02 to compare two quantities with
equal total flux. We take the average of δ over all bins and plot
this against β in Fig. 6(a). The figure shows this error not only
for a 400× 400 grid, but also for a 200× 200 and 100× 100
grid. We see that the error nicely decreases with finer grids. This

indicates that the deviation from the desired target is dominated
by the discretization error.

B. Comparing the Results

We also want to see how the inclusion of Fresnel reflections in
the algorithm affects the results. To do this we run the same
simulation as described in the beginning of this chapter, design-
ing a lens for a street-lighting application. However, this time
we do this without taking into account the Fresnel reflections
in our design algorithm. We run these simulations with all
parameters equal to before. A raytrace, including Fresnel reflec-
tions, is performed on each resulting lens. This is then again
compared to the desired target distribution J t̂g , in the same
way as in Section 4.A. The average errors for these lenses with
a 400× 400, 200× 200, and 100× 100 grid are shown in
Fig. 6(b). These results are compared to the errors shown in
Fig. 6(a). We see that the error is larger if we do not take into
account Fresnel reflections in our algorithm. This shows in par-
ticular for larger values of β. We show later in Section 4.C that
this corresponds to lenses with a large fraction of reflected light.



Research Article Vol. 40, No. 7 / July 2023 / Journal of the Optical Society of America A 1317

Fig. 7. (a) Fraction of reflected light and (b) peak reflectance as functions ofβ.

We also see that for larger values of β, the error barely
decreases for finer grids. This indicates that the error is dom-
inated there by the error caused by the unaccounted Fresnel
reflections.

Our new algorithm does not have errors caused by ignoring
Fresnel reflections, and the discrepancy compared to the desired
target is only due to discretization errors. This validates our
approach and shows the benefit of incorporating Fresnel losses
in the inverse design algorithm.

C. Total Fresnel Loss

We also look at the total loss due to Fresnel reflections, 1− 02,
and the maximum reflectance as a function of β. These are
shown in Fig. 7. We see there that the total loss varies between
approximately 8% and 9.5%. Relative to the theoretical mini-
mal reflectance of 7.84% (normal incidence on both surfaces),
two freeform surfaces can give a huge improvement compared
to a single freeform surface (β = 1). As mentioned before,
the reflectance is highest for large values of β, corresponding
to larger errors in the algorithm without taking into account
Fresnel reflections. We see that the maximum reflectance is a lot
larger for a single freeform as well, which makes it more sensitive
to small manufacturing and alignment errors. This shows that
we can significantly improve the efficiency and tolerance of
point-to-far-field lenses by designing them with two freeform
surfaces and choosing theβ in our algorithm around 0.5.

5. CONCLUSION

In this paper we presented an inverse design algorithm for dou-
ble freeform lenses that takes into account Fresnel reflections.
An expression has been derived for the transmitted fraction of
light after two freeform surfaces. This is incorporated in the
existing GJLS algorithm.

We tested our algorithm on a test problem modeling a street
light. This showed that we can utilize the degree of freedom,
introduced by the second freeform surface, to minimize the
loss of flux due to reflections. This can be used to design more
efficient lighting applications. We also showed that we can
make the design of lenses more accurate by taking into account
variations in Fresnel reflections.
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