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Solving the comfort-retrofit
conundrum through post-occupancy
evaluation and multi-objective
optimisation

Chuan-Rui Yu1, Xuan Liu2, Qian-Cheng Wang3 and Dujuan Yang2

Abstract
Developing appropriate building retrofit strategies is a challenging task. This case study presents a multi-
criteria decision-supporting method that suggests optimal solutions and alternative design references with a
range of diversity at the early exploration stage in building retrofit. This method employs a practical two-step
method to identify critical comfort and energy issues and generate optimised design options with multi-
objective optimisation based on a genetic algorithm. The first step is based on a post-occupancy evaluation,
which cross-refers benchmarking and correlation and integrates them with non-linear satisfaction theory to
extract critical comfort factors. The second step parameterises previous outputs as objectives to conduct
building simulation practice. The case study is a typical post-war highly glazed open-plan office in London. The
post-occupancy evaluation result identifies direct sunlight glare, indoor temperature, and noise from other
occupants as critical comfort factors. The simulation and optimisation extract the optimal retrofit strategies
by analysing 480 generated Pareto fronts. The proposed method provides retrofit solutions with a criteria-
based filtering method and considers the trade-off between the energy and comfort objectives. The method
can be transformed into a design-supporting tool to identify the key comfort factors for built environment
optimisation and create sustainability in building retrofit.
Practical application: This study suggested that statistical analysis could be integrated with parametric
design tools and multi-objective optimisation. It directly links users’ subjective opinions to the final design
solutions, suggesting a newmethod for data-driven generative design. As a quantitative process, the proposed
framework could be automated with a program, reducing the human effort in the optimisation process and
reducing the reliance on human experience in the design question defining and analysis process. It might also
avoid humanmistakes, e.g. overlooking some critical factors. During the multi-objective optimisation process,
large numbers of design options are generated, and many of them are optimised at the Pareto front. Exploring
these options could be a less human effort-intensive process than designing completely new options,
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especially in the early design exploration phase. Overall, this might be a potential direction for future study in
generative design, which greatly reduce the technical obstacle of sustainable design for high building
performance.
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Multi-objectives optimisation, occupancy comfort, post-occupancy evaluation, building performance
simulation, computer-aided design

Received 6 February 2023; Revised 16 April 2023; Accepted 17 April 2023

Introduction

Rapid urbanisation and the rise of internet technol-
ogies have developed new lifestyles: people tend to
spend more time indoors. This social structural
change in activity patterns places stringent demands
on the building industry (1): a comfortable indoor
built environment, (2) higher building energy effi-
ciency. After World War II, many countries rapidly
constructed a large number of buildings to support
economic recovery and satisfy the needs of baby
boomers.1 Due to limited budget, these buildings are
usually built with little insulation and consideration
for the environment, consuming more energy, and
having a higher carbon footprint.2 Moreover, the
poor design and outdated building technologies pose
health and comfort concerns to the occupants.3 Aged
systems and disharmonious environment designs
limit building performance and lead to several op-
erational issues, causing more energy and mainte-
nance costs to the operators and occupants,
especially in global energy shortage.4,5 The global
climate change and energy crisis amplified these pre-
existing problems: the antiquated buildings have
been a stumbling block to sustainability. It is im-
portant to provide an energy-efficient and comfort-
able environment for occupants of aged buildings.

Compared with reconstruction, retrofitting exist-
ing buildings is more cost and carbon effective by
reusing existing structures and materials.6 Also,
retrofitting takes advantage in tackling occupant
complaints and concerns. Therefore, building ret-
rofitting has been gaining momentum and took
nearly 50% of the construction market in developed
countries.7 However, retrofitting is never an easy

task: successful retrofits require throughout consid-
eration and the design process is often a game be-
tween multiple objectives in the design context,
current condition, and regulations.8,9 For example,
building engineers should design different building
sub-systems to satisfy the final occupant needs of
thermal comfort (TC), indoor air quality, noise
control, energy efficiency and other dimensions. In
building retrofit, the decision-making (DM) process
entails a trade-off between two or even more ob-
jectives that can be optimised, for example, max-
imising the comfort of occupants and minimising the
consumption of energy.8 An integrated design ap-
proach with global optimisation consideration will be
beneficial to the DM in balancing different aspects
and multiple design objectives in building retrofits.10

Design optimisation emerges with the devel-
opment of low-energy buildings, aiming to find the
optimal possible solutions among complicated and
conflicting factors such as cost, comfort, and en-
ergy with the assistance of the computer. Multi-
objective optimisation (MOO) can provide a set of
solutions, rather than a single standard answer, for
trade-off analysis.11 There are several strategies to
solve MOO problems, such as aggregated method
(e.g., weighted sum) and Pareto-based strategies.
Within over 20 Pareto-based algorithms for design
optimisation, Genetic algorithm (GA) is one of the
most widely employed.12,13 It mimics natural
evolution and adopts the concepts such as genes,
mutation, and crossover. GA is capable to calculate
more than a single objective simultaneously and
toggle the constraints and uncertainty and consider
the interactive relationship between multiple ob-
jectives in the optimisation process.14 Among
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them, Non-dominated Sorting Genetic Algorithm
(NSGA-II) is most commonly used in the building
sector.8,15,16 Several studies have evidenced that
NSGA-II has the potential in supporting MOODM
in building retrofits.8,16,17

While there is already a solid MOO research
foundation, these novel algorithms are still not
widely used in practical designs of building retrofit.
One important cause is the imbalance between
limited computing power and an extremely large
amount of uncertainty (i.e. new design objectives) in
building retrofit DM.11 Because of limited comput-
ing power, the MOO algorithms can hardly cover all
design objectives but only consider a few of them.
Many recent studies have improved the existing
algorithms and workflows to cover more
objectives.18–22 For example, Yu et al. developed a
novel NSGA-II-based algorithm to consider energy
efficiency and TC in building retrofit.8 Merlet et al.
considered heating demand, overheating and cost
dimensions and integrated a temporal dimension
with the phasing of the construction work in the
retrofitting strategies.23 These studies extend the
implications of MOO in building retrofitting.
However, most of the applications rely heavily on
qualitative experience, especially in practical cases.
The identification of the critical variables and con-
trolling the number of objectives is more effective to
reduce the complexity and the optimisation time.
While many studies focused on the improvement of
MOO algorithms, there is a lack of a standard design
framework combining objective election and the
algorithms Therefore, urging for a practical frame-
work to guide the formation of a design optimisation
problem from a design question.

In practice, design analysis for building retrofit
still presents a deep reliance on human experience.
The industry, therefore, is urging for a practical
framework to guide the formation of efficient and
standard design optimisation from existing subjec-
tive and experience-based design process. To bridge
the research gaps mentioned before, this paper aims
to develop a practical and systematic framework to
identify critical comfort issues with post-occupancy
evaluation (POE) and generate optimised design
options with GA-based MOO with genetic algo-
rithm, with a priority to quantitative measures. The

proposed framework in this study is generic and
therefore, can work under various building typolo-
gies, different regulations and climate zones. By
focusing on quantitative measures, it reduces the
reliance on human experience to perform successful
design analysis and encourages more designers to be
benefited from the design technology advance. This
research also employs a typical post-war highly
glazed open-plan office in London, United Kingdom
as a case study. The discussion is not just to process
the MOO in a case study project, but also to find a
way to translate a raw design question to a pro-
cessable optimisation problem, to integrate stake-
holders’ ideas and designs, and to interpret and select
within the optimisation results.

Overview of previous studies

Occupancy comfort

Occupancy comfort, satisfaction and productivity are
affected by both physical and phycological Indoor
Environment Quality (IEQ) factors, e.g. location, interior
designs, biophilia and views, TC, indoor air quality,
noise and acoustics, and visual condition.24–27 TC re-
flects individuals’ perception of satisfaction towards the
thermal condition in a space.25 TC is commonly pre-
dicted or presented with comfort models, such as Pre-
dicted Mean Vote (PMV) model and the Adaptive
comfort model. Local discomfort also affects TC.
Typical local discomfort is cold draught, radiant
asymmetric, etc.28

Visual comfort considers both physical parame-
ters and psychological effects of visual conditions.29

A uniform and sufficient visual environment and
suitable daylighting are preferable for promoting
well-being, and productivity in the workplace30,31

However, excessive daylighting, usually caused by
large windows for good view, may bring problems
such as glare, causing visual and physiological an-
noyance.32 Window shading devices are a common
measure to balance daylighting and views and mit-
igate glare. But some types are proved to be less
useful for computer uses, such as perforate blinds and
non-opaque shading devices.30

Aural comfort is affected by the sound itself
besides the environment and is related to annoyance
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and disturbance.33 Aural comfort is affected by
people, interior materials, noise screens, background
noise, reverberation time, and even window opening
etc.2,34,35

In addition, demographic factors (e.g. gender, age,
familiarity to a space) also play important roles in
comfort perception.36,37 For example, Asif 38 found that
comfort indoor temperatures of male and female
present significant difference. Ageing of building and
interior might also contribute to the indoor comfort
perception.39 Office settings are less discussed but can
be influential for overall satisfaction and productivity,
e.g. personal control, orientation, cellular or open of-
fice, and distance to outdoor windows.31,33,37,40,41 All
these IEQ factors contributes to human comfort and
satisfaction to a space.

Post occupancy evaluation

POE is a process of evaluating the building perfor-
mance against the initial design and construction
goals, as well as its actual use by occupants. POE has
been widely employed to understand the options and
satisfaction of building end-users to the IEQ build-
ing.42 This technique is often used for (1) transfer-
ence of operation knowledge to further building
design, (2) improvement of existing facility perfor-
mance, and (3) benchmarking building perfor-
mance.42 POE covers a wide range of building
performance metrics, such as occupancy comfort,
energy consumption and maintenance cost. POE
typically includes a combination of quantitative data
collection (such as energy consumption, indoor en-
vironmental quality measurements, etc.) and quali-
tative assessments (such as surveys, interviews, and
observation) to evaluate the performance of the
retrofitted building. This process collects occupants’
opinions over satisfaction and comfort in the target
building and presents a general overview of satis-
faction with the space.37 Participants are invited to
score their feelings over different questions about
IEQ and write down comments if a more precise
description is desirable. The questionnaire might
include categorical factors, such as gender and age,
for more precise analysis and description of the IEQ
status. It enables the occupants, the main users of the
built environment, to reflect the actual status of a

building, and spot key factors and issues requiring
thorough consideration.43 In recent years, POE has
been promoted by LEED and other green building
certification system to evaluate building IEQ.44

Multi-objective optimisation

Conventional design optimisation relies on iterative
and experimental processes to explore different de-
sign options for an optimal solution by humans.12

The process is very time and effort-consuming, and
the result is relying on the experience and expertise
of the engineers in optimizing areas. With the de-
velopment of computer science, different algorithms
emerged to replace humans in this iterative optimi-
sation process, such as direct search, evolutionary
algorithms and Meta-heuristic algorithms.13 The
evolutionary algorithm is one of the most effective
methods, capable of considering multi-objectives,
interactive, qualitative, robustness, uncertainties
and reliability. Design variables were mostly selected
through a comprehensive literature review process.22

TC and energy demand are widely used as objec-
tives.45 These empirical-based strategies might lead
to bias and less optimal results due to the overlooking
of parameters.

Optimisation is a time and computational power-
consuming process. MOO, surrogate model, ma-
chine learning and other methods are the frontier in
application methods and optimisation algorithms for
resolving the obstacle in real-world applications.46

Another trend is to integrate design optimisation with
BIM for better integration with other construction
activities.13 Optimisation can be conducted for single
objective or multi-objective. Although it is possible
to divide multi-objective problems into a series of
single-objective problems, MOO addresses design
issues in integral and reflects the interactive rela-
tionship between objectives, and thus, widely
adopted in the built environment field to optimise
conflicting building design objectives for DM
suggestions.18,47 The optimisation objectives can be
economics (e.g. initial cost), environmental (e.g.
energy consumption, carbon footprint), and social
parameters (e.g. TC, IEQ comfort) in buildings.48,49

GA is an evolutionary algorithm developed by
Holland,50 which is inspired by Darwin’s evolutionist
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theory. GA adopt the concept of genes, transition,
crossover, mutation, and natural selection. Genes are
the sets of inputs related to the objectives. Based on a
large pool of candidates with different genes, the
candidates are compared over their performance on
the objectives to determine the possibility for gene
transition to the next generation.

There are several algorithms for GA. NGSA-2 is
widely used for MOO due to its effectiveness and
efficiency.11–13 SPEA algorithm is a recent technique
in MOO developed by Zitzler et al.51 and adopted as
one of the main optimisation algorithms for MOO in
Rhino-grasshopper (GH) environment. The updated
version, SPEA-2, was compared with the trending
NSGA-2 algorithm, as well as the other two algo-
rithms. The SPEA might be trapped in the local
optimal problem, thus not recommended in MOO
problem. SPEA-2 and NSGA-2 were both the best-
performing algorithm for MOO, while SPEA-2 was
more effective than NSGA-2 in high-dimensional
objectives problems.

After several generations of GA s, the Pareto front
is formed by candidates of the best possible trade-
offs over the objectives.52 Although it is possible to
further evaluate the Pareto front, e.g. weighted sum
methods,53 the human visual selection is still com-
mon in the further selection of an optimal solution
from the Pareto front.54,55 Such human involvement
lowers the technical difficulties of the computer
program, but reduces the usability of MOO, because
more human effort is required, the judgement is still
affected by human factors and automation cannot be
achieved.

Application of MOO in design practices

The optimisation problem can be presented with a
mathematical function with three main components,
i.e. the objective function, the constraints function,
and the variables and their constraints.56 Therefore,
MOO workflow can reflect the three main structures
of a MOO problem, i.e. MOO variable, MOO
constraints and objectives, and MOO settings.

Zhu et al.18 incorporated this workflow in the
optimisation for energy, daylighting and TC for
Rural Tourism Buildings (RTB) in China. The study
is conducted with GH and Octopus. A field survey

was conducted beforehand to summarize the RTB
features and form three prototype replicas. Then, 16
to 19 design variables in building design, envelope
details, and even the interior dimensions are para-
meterised for generating design options. The MOO
successfully output recommended range of values for
these variables. Additionally, it is possible to divide
the workflow by the optimisation process with pre-
processing, processing, and post-processing phases.
Jafari and Valentin57 proposed a framework for
building energy retrofit with MOO, based on a
heritage house retrofitting case. Before defining
MOO problem, an initial energy simulation study
was conducted to narrow down the number of design
alternatives and determine their impacts and inter-
actions. The LCC was also calculated for the alter-
natives. Next, the design alternatives as well as the
interactive energy simulation model and LCC
evaluation models were fed in MATLAB for MOO
towards minimizing LCC and energy. Subsequently,
investment costs were calculated for the Pareto front
to obtain the optimal design solution. The outputs
successfully balanced the energy, LCC and invest-
ment cost. In short, the former workflow emphasizes
a clearer outline of a MOO problem, guiding to
preparation for parameters required by the MOO
process. The later workflow provides an overview of
the process, similar to other engineering applications
such as CFD. However, neither is directly compatible
with the overall building design workflow, making it
less practical for DM. It is relying on manual se-
lection for the Pareto front, which leave rooms of
improvement for automating the MOO process.

Recent research has tried to adapt MOO for real-
world design applications, from improvement in
workflow, algorithms, and combination with other
techniques. Zhang et al.58 created a generative design
process for residential building design with MOO.
Numerous design parameters were categorised into
qualitative (e.g. spatial form) and quantitative factors
(e.g. room geometry) and inputted in GH and Python
for MOO. The candidates were optimised for cooling
and heating load. Designers were involved in the
final selection with visual presentations of the load
and the spatial schemes, improving the efficiency of
passive design in an early stage. Hamdy et al.49 used
MATLAB to optimise building design and building
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services systems for less carbon emission and in-
vestment costs for a low-emission dwelling. Eight
design variables were identified from sensitivity
analysis and defined with the carbon emission and
cost for each option. Besides the utopian solution,
they suggested that the analysis of the Pareto front
also provides useful information for designing.
Schwartz et al.6 combined Sketchup and EnergyPlus
for BPS and jEPlus for MOO in early design DM.
The study is specific to the refurbishment of two
listed buildings in the UK. By defining different
material and construction options as MOO genes, the
optimisation successfully runs towards both Life
Cycle Carbon Footprint (LCCF) and Life Cycle Cost
(LCC) and finds a better retrofit scheme than the
original human design. Giouri et al.59 utilised mode
FRONTIER with NSGA-2 algorithm to study the
impact of design alternatives for zero-energy high-
rise buildings. The design variables include building
envelope, PV systems and building systems. The
objectives were energy demand, energy production
and adaptive TC. After numerous simulations run
and analyse of the Pareto front in post-processing, the
study successfully generated valuable design sug-
gestions for DM. Kirimtat et al.60 optimised facade
amorphous shading devices for minimising total
energy use and maximising Useful Daylight Illu-
minance (UDI) with MOO. The geometry is divided
into 25 variables. UDI was approximated with sur-
rogate model from a regression study between UDI
and geometry variables. Energy was simulated with
EnergyPlus. The optimisation results reduced 14% of
energy without compromising daylight. Chegari
et al.22 combined machining learning with MOO by
using ANN to generate the surrogate model of BPS.
The method successfully optimised for energy re-
duction and indoor comfort, and greatly reduced the
processing time while maintained a good accuracy.
This greatly improves the time required for MOO,
making it more applicable in real-world practice. Asl
et al.61 incorporate MOO into the Building Infor-
mation Modelling (BIM) and successfully optimised
for energy and daylighting for LEED IEQ credit
requirement in a residential building. Also, the cloud-
based BPS coming with Autodesk showed a high
potential to speed up the optimisation process. Kim
and Clayton62 used MOO with parametric behaviour

maps for an adaptive building envelope design in hot
climate. The dynamic envelope can control its
openness to control the shading effect. To balance
cooling load and daylighting, the MOO was con-
ducted for the operation function in different sce-
narios. Ascione et al.63 proposed to optimise the
hourly set point temperatures of HVAC system with
the weather forecast and occupancy profiles with
MOO, and manually select from the Pareto front as
the operation setting the next day.

In general, the overview of the recent studies
indicates that MOO is capable of blending into many
designs process for different design intents. It is also
compatible with different computational techniques,
such as ANN. However, the application process is
still highly diverse and customised from case to case,
making MOO a completely new research project
when moving into a new project. This makes the
design team refuse to integrate MOO into their daily
design routine without good reason, especially in the
tight design and DM schedule nowadays.

Method

The mathematical expression of an optimisation
problem consists of three main components, the
objective function, the constraints function, and the
variables and their constraints.56 Adapting the con-
cept, MOO design can be approached by identifying
and constructing the following a 3 + 1 essentials.

(a) Optimisation objectives and constraints.
These are the design targets to achieve and
the key constraints and limitations affecting
the optimisation process. For example, to
reduce building energy use, one can reduce
the window size, but the window size is
constrained by the daylighting of the space.
An effective MOO question should consist
of at least one objective and one constraint,
developing a contradictory relationship.

(b) Evaluation functions and matrix. These are
the equation, algorithm, or program that
quantify the abovementioned optimisation
objectives and constraints into design per-
formance index. For instance, the design
energy performance can be evaluated with an
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energy simulation program and return the
predicted Energy Use Intensity (EUI) value.

(c) Design parameters. A study should deter-
mine design variables that will affect the
design performance index above. These
design variables will usually have a range,
representing the constraints in reality.

(+1) MOO process configuration. Different MOO
algorithm, variables and setting parameters defines
the behaviours of the optimisation process and could
lead to different results. This includes the selection
and inputs for the optimisation algorithm, mutation
rate, sample sizes, gene pool sizes, etc.

Usually, the objective/constraints, functions, and
variables are determined by the user, with qualitative
analysis and intuition to the design question. And thus,
it limits the adaption of MOO by human error and
experience. This drawback could be tackled with
quantitative data analysis. As in Figure 1, this study
elaborated the “3 + 1” concept into a design workflow,
which quantitatively explores the design question,
formulates the MOO question, and generates opti-
mised design options for future study. Firstly, the
study used a POE survey and statistical analysis to
identify MOO objectives effectively. Next, based on
these objectives, the study selected objective functions
for building performance analysis. Then, following
industrial conventions, constraints, and design in-
tention, the MOO variables and constraints was be
defined. At last, the MOO process has generated a set
of optimised designs from the above inputs. After
candidate screening, a set of optimal design options
could be obtained for future design.

Defining MOO objectives by POE and
statistical analysis

Before the formal research stages, a brief meeting
within the research group was conducted for design
directions. After that, site inspection, drawing
evaluation, past operation data inspection and oc-
cupancy interview were used to further understand
the expected deliveries and details. To ensure the
credibility of the analysis, POE and statistical
analysis were adopted to provide a comprehensive

overview to the occupancy related issues. This also
reduce the human effort in the design analysis by
using computational power.

POE is a widely used method to support the
collection of the occupancy satisfaction rating. The
BUS Methodology64 is a recognized POE ques-
tionnaire, containing a questionnaire with 45 quan-
titative and qualitative questions to evaluate the
abovementioned IEQ aspects as well as the several
design factors and personal details for detailed
analysis.37,39 Physical copies of questionnaire were
distributed to all occupants in the study building in
March 2019. In addition, the seating location of the
respondent was collected alongside the survey to link
the survey rating to a specific location in the office.

The POE survey was conducted with BUS
methodology questionnaire. Excel and SPSS were
adopted for statistical analysis. Rhino and GH is a
widely used platform for parametric design owing to
its visual and extensible features.65 The version,
Rhino 5 + GH, was used for parametric modelling.
Ladybug and Honeybee from Ladybug tools were
adopted for BPS, which are cored with EnergyPlus
for thermal simulation and Daysim for daylight
simulation. Octopus plugin was used for MOO
process, with which the SPEA algorithm was
adopted.51 The MOO process data was extracted into
EXCEL for post-processing.

The study conducted a qualitative analysis of all
comments in the feedback. Also, descriptive analysis
was used to reveal the under-performing factors,
correlation analysis to further confirmed the key IEQ
factors as well as analysis of variance (ANOVA)
analysis to test the impact of categorical factors, such
as layout, personal control, and human factors. In
general, the statistical analysis systematically re-
vealed the key comfort issues and the potential
causes for discomfort rather than complicated
manual analysis efforts.

Defining MOO variables by parametric design
and BPS

The step aimed to determine MOO variables
which would encourage further optimisation process.
The parametric design model includes both the
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Figure 1. The proposed method.
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geometry models and the BPS models. The geometry
model of baseline building was modelled first the
foundation for the overall parametric model of the
design building. The BPS models contained the
parameters for different simulations. Design vari-
ables for TC can be simplified into the U-value and
thermal mass properties of envelope without modi-
fied the geometry model. For glazing types, U-value,
SHGC and VT were changed according in the BPS
model to reflect changes in both thermal and lighting
performance. After model validation, only the retrofit
measures and related design variables were added or
modified in the BPS model. To reduce the number of
variables, only related design variables were pa-
rametrized for the geometry model and directly link
to the BPS model after conversion.

MOO and post-processing

Manual selection by visual inspection is an easy and
still widely adopted technique for optimal solution
selection.66 Human preference could be easily in-
troduced in the process, such as appearance. But the
interface was not effective with more than three

objectives. Also, the process has to be undertaken in
a trail-and-error method by randomly comparing
candidates, which can be less effective over large
number of pareto front. Octopus plugin has a built-in
visual navigation for this process. Utopia point
method is another method, which assumes a theo-
retical point of optimal trade-off over all objectives,
then locate the candidate with shortest distance to this
utopia point.67,68 The process can be automated with
computer.69 Additional screening for constraints and
limitations may be required for this method.

To avoid the abovementioned problems, this
study adopted criteria filtering for selecting the op-
timal solution. As illustrated in Figure 2, different
criteria were set based on the design objectives, and
gradually applied to the pareto front, until finding the
optimal solution. The basic filtering screens out
candidates that do not fulfil mandatory design re-
quirements, such as the criteria for compliance. In
other word, it is the “knock-out” filter Then, the
ranking filtering reduces the number of candidates
based on their rankings in the performance criteria. It
can be adopted several times to adjust the preference
on different criteria, and to reduce remaining

Figure 2. The process of selecting the optimal solution by filtering.
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candidates by constricting the filter criteria. This
study adopted the percentile ranking for BPS results,
which aims to achieve a balance for all objectives.
Until targeted number, preferable design solution can
be effectively manually compared and selected. This
method can effectively reduce the size of candidates
regardless of the size of pareto front while ensuring
that all candidates meet the required design
constraints.

case study

Reference building. The case study building is a
multi-tenant commercial office building in London,
UK. The design is specific to the 450 m2 open-plan
office at the top floor (ninth floor). It is a post-war
building featuring uniform large single-glazed
windows on all façades. Figure 3 illustrated the
detailed construction of a typical façade module
which duplicate across all facades. As a listed
building, the façade features and external con-
struction cannot be changed. The occupants also
required not to take up internal spaces. The retrofit
measures were restricted to the recessed space from
external window panel to the windowsill, which
was only 370 mm in depth.

Site-inspection showed the building was not in-
sulated. There are no surrounding shadings. The air
conditioning units were integrated into the win-
dowsills with a small air inlet through the window.
No monitoring nor tariff data was available for en-
ergy use evaluation.

Climate data. The building is located in central
London, UK. The climate is classified as temperate
oceanic variety (Cfb) in the Köppen–Geiger climate
classification. The mean annual temperature is over
11°C in central London, which is warmer than the
surrounding suburbs.28 The monthly dry bulb tem-
perature is from 5.4°C in January to 18.4°C in July.
London is affected by heatwave, during which the
temperature could goes over 30°C. The “London
Wea Ctr St James Park”70 was used for all simula-
tions. London is at 51.5°N latitude. Sunlight come at
low altitude from North-east in the morning and
Northwest in the late afternoon.

Simulation model. The baseline model was developed
based on the original building geometry, as-built
drawings and building constructions (as in Table 1).
As in Figure 4, the services areas, meeting roomwere set
as non-conditioned areas. The other floors were also
simulated buffer zones with a simplified simulation
setting.

The baseline model simulation results were
compared to the typical data and POE result for
model verification. The energy consumption is
slightly higher than the typical office commercial
average. The simulation results showed that it was
bad performing in TC and glare. winter PMV
comfort was at 3.9% satisfaction. Summer adaptive
comfort was at 66.3% satisfaction. These was similar
to the POE results. The ASE result is at 28.9%, i.e.
the space is exposed to high level of glare. Areas near
west, east, and south windows were highly likely to
experience glare whereas the middle area was at
acceptable glare probability. Generally, the baseline
model approximated the actual building perfor-
mance. Further MOO process only modified the
corresponding parameters.

Optimisation and results

Design initiation

At the beginning, an on-site meeting was arranged to
have a brief understanding to the reference building
and complaints from the people. On-site photo,

Figure 3. A typical facade module.
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layout drawings, on-site measurements and com-
plaints were collected and discussed with the cor-
respondents. The largest problem needed retrofitting
in the reference building was reported as the sunlight
glare (SG) issue as well as the winter cold problem.
Sunlight could penetrate deep into the office and
cause SG in a specific time of the day in a year. The
space became extremely cold in winter even with
central heating. The occupants were desperate for an
effective retrofit plan to resolve these discomfort
issues.

Determining the key IEQ problems with POE

Physical copies of the BUS survey were distributed
to all occupants in the office and collected after

Table 1. Basic building information for the case office.

Parameters Value/description Source

Location London, UK Meeting
Total occupancy 78 seats
Office hours 9 a.m. to 6 p.m.
Key measurements
Ceiling height 2650 mm On-site measurement
Windowsill height 830 mm
Window-to-wall ratio 56%
Operable window
ratio

25% of each glazing area, sliding windows on top

Façade column 370 × 370 mm
Element constructions
Ceiling U-value = 1.5 W/m2K Drawings/on-site

inspectionExternal wall U-value = 1.6 W/m2K (600 mm without insulation)
Interior wall U-value = 2.2 W/m2K
Floor U-value = 2.2 W/m2K
Single glazed window U-value = 5.7 W/m2K

Ventilation
Natural ventilation Assumed to be the operable windows. Open in summer, closed in

winter
On-site measurement

HVAC Window-sill fan coil unit. Heating setpoint at 21°C. No cooling Meeting
Internal load
People 130 kW, total (75 kW, sensible; 55 kW, latent) 71
Equipment 6.46 W/m2

Lighting 8.1 W/m2

Infiltration 1.2 ach

Figure 4. The simplified office geometry model.
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2 weeks. The seating location of the respondent was
collected alongside the survey to link the survey
rating to specific location in the office. 32 valid
samples were finally collected. Participants were
evenly distributed for workstation location in the
office, gender and age range. Occupants commented
with winter thermal discomfort, glare and noise in-
terruption problems.

In terms of ratings, TC in winter and summer were
both badly performing (over 50% dissatisfaction). In
winter, the temperature was reported unstable, cold
and the air was slightly stuffy, very draughty. In
summer, the temperature was hot, and unstable but
the air was acceptable. Noise from colleagues and
outside, and noise interruptions were unsatisfactory.
Noticeably, overall lighting and natural lighting
condition were satisfactory (less than 20% dissatis-
faction). But the SG issue was unacceptable to most
participants (65% dissatisfaction).

Pearson correlation analysis was conducted be-
tween the continuous parameters to reveal relation-
ships among the IEQ parameters. “Overall winter air
comfort” are found highly correlated to “overall
winter temperature comfort” (ρ = 0.892, p = 0.000,
N = 30) and “overall winter temperature comfort”
(ρ = 0.804, p = 0.000, N = 30). “Overall satisfaction
to winter air condition” was related to “winter air
temperature” (ρ = 0.773, p = 0.000, N = 31), “winter
air stability” (ρ = 0.436, p = 0.014, N = 31) and
“winter air stillness” (ρ = 0.456, p = 0.010, N = 31).
“Overall satisfaction to summer air condition” was
correlated to “summer air temperature” (ρ = 0.804,
p = 0.000, N = 30) and “summer air stability” (ρ =
0.500, p = 0.005, N = 30). “Overall satisfaction in
overall noise condition” was correlated to “overall
comfort” (ρ = 0.620, p = 0.002, N = 31), “noise from
colleagues” (ρ = 0.531, p = 0.002, N = 31) and “noise
interruption” (ρ = 0.485, p = 0.008, N = 29). Un-
expectedly, “Overall lighting satisfaction” was not
identified as strongly correlated to “sunlight glare”
and “natural lighting”, which was against the low
comfort rating in SG.

The one-way ANOVAwas used to exam potential
comfort impact of categorical data. Human
factors (Sex and age) were not found influential to the
result. In terms of layout, the west end of the office
was found to have higher satisfaction over design

(p = 0.005), storage space (p = 0.006), overall noise
(p = 0.004) and overall comfort (p = 0.005). Air
stiffness (r = 0.004) was found better near window,
suggesting a better ventilation and air movement near
window than deep into the floorplan. However, there
is no positive result to support our hypothesis that the
cold draught and radiant asymmetric is the main
issues for thermal discomfort.

Generally, Pearson correlation results and
ANOVA analysis results are aligned for key IEQ
factors affecting comfort and productivity. Air
temperature and temperature stability (TS), and noise
from colleagues can be identified as key IEQ vari-
ables. The TC was affected by the potential low and
unstable air temperature, cold draught and ventilation
in winter. As expected, this implied that air tem-
perature is a key IEQ factor, especially in winter.
Objectives of the retrofit must consider TC in winter.
SG did not show a strong correlation to overall
comfort, due to the small sample size. However, SG
was found badly performance in the benchmark and
an overall dissatisfaction rate (88%). SG was still
identified as a key variable.

Although noise from colleagues was strongly
correlated to IEQ comfort, it was specific to certain
locations, implying that noise was more likely to be a
personal or management issue than a building per-
formance issue. Therefore, the noise was not selected
as a key IEQ factor for performance improvement.

Defining MOO objectives according to
POE results

As for TC, the adaptive comfort model is for natural
human adaptation to the thermal condition.72,73 PMV
model is a steady-state model suitable for condi-
tioned space.28 From the 8460 hours in a year, the
occupied hour was extracted, from which the per-
centage of hour in comfort was determined. The
office is mainly naturally ventilated in summer and
heated in winter. Therefore, the adaptive comfort
model was selected for summer (January to March)
and the PMV model for winter (June to September).
The adaptive comfort model and PMV model are
both optimizing for the same “maximizing” direc-
tion. To reduce the number of objectives, they were
summed up as one objective.
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Thermal Comfort ¼ Adaptive comfort

þ PMVcomfort#
(1)

TS is the temperature variation over time.
Analysis of stability is usually conducted
with time-related charts. However, there is yet a
specific index or method defining how stability
affects TC. Generally, higher stability means less
potential for thermal disturbance. Thus, a sim-
plified method to model stability is to calculate the
error between hourly temperature differences over
daily average temperature. The TS was the sum of
the simulated hourly indoor temperature (Tk ) and
its daily mean (Tdaily) for all occupied hours (Hk):

TS ¼
Xn

k¼1

�
Tk � Tdaily

�
� Hk# (2)

SG can be evaluated with image-based and grid-
based calculation model. Although imaged-based glare
simulation is more precise for glare prediction,74 it
requires excessive computational power and time,
making it impossible for annual hourly evaluation.75

Annual Sunlight Exposure (ASE) is a grid-based cal-
culation model accessing both location and time for
glare probability and approximating the potential glare
problem with a considerably shorter time. ASE is
adopted in LEED v4 standard76 and WELL v1 stan-
dard35 as an effective SG indicator. The threshold of
acceptable glare is recommended at ASE 1000 lux,
250 h < 10%,which stands for less than 10%of the area
being exposed to over 1000 lux horizontal illuminance
for more than 250 hours annually. Thus, ASE (1000
lux, 250 hr) was adopted for glare approximation.

View-out (VO) was also set as an objective to
balance the occupants’ need for outdoor view as an
additional parameter from the designer’s intention.
Indoor designs and is also an important occupancy
satisfaction feature. VO can offset some unsatis-
factory feelings from glare. Generally, a large view
angle is preferable in modern offices. View analysis
was based on a Horizontal 60° cone of vision al-
gorithm which approximates the percentage of out-
doors visible from indoors at each test point at a
seated eye level of 1.2 metres. View analysis returns
an average percentage for the whole space. Defining
parametric design variables for MOO

The façade concept was developed to reflect the
identified problems in the POE. The design followed
the parametric concept, by separating the design into
several elements and assigning variables to control
the shapes of these elements. These parametric ge-
ometries were then assigned different materials and
went through simulations in Building Performance
Simulation (BPS) tools. As in Figure 5, three types of
parametric geometries were developed based on the
typical façade module, to simplify the parametric
geometry model. The variable parameters were se-
lected to be directly related to the IEQ performance.
Besides the geometry, the properties of this element
were also set to be changeable by the MOO program.
Vertical shading fins were selected for better per-
formance over the low-angle sun. The length of the
vertical fin was set as a parameter for changing the
shading effect. To change the glazing ratio for solar
aperture and thermal properties, an insulation panel
was added to the top of the façade element. The size
of the lower glazed area could be changed with the
parameter. Another parameter set, with/without
secondary glazing, was set to further improve the
façade thermal performance. Double glazing and
triple glazing were not considered because it is not
allowed to replace the original window panels.
Table 3 recorded the detailed setting for the design
variables.

From the above research, theMOO problem could
be described as the following pseudo equation. The

Figure 5. Façade design concept and its parameters.
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MOO objectives and MOO objective functions are
described in Table 2. Following the design intention
and constraints, a parametric model was developed in
Rhino and GH and inputted into the MOO program.
Table 3 described the relevant variables.

Target ¼ IncreaseðTCÞ&ReduceðTSÞ
&ReduceðSGÞ& IncreaseðVOÞ

MOO process

The optimisation genes and objectives were set
according to Table 2. Because the MOO algorithm
proved to be more effective at a higher population
size,22 the population size for each generation was
set at 60 to reduce the possibility of local optimal.
The elitism, mutation probability, mutation rate and
crossover rate were set to 0.5, 0.2, 0.9, and 0.8

Table 2. Objectives and objective functions (simulation models).

No Abbr
Key IEQ
objectives

Objective functions
(Simulation model) Unit Description

1 TC Thermal comfort Adaptive and PMV model — Number of occupied hours within comfort range
for summer and winter

2 TS Temperature
stability

— — Total difference from daily mean for hourly air
temperature

3 SG Sunlight glare ASE 1000 lux, 250 h % Percentage of areas fulfilling ASE requirement for
1000 lux and 250 hours

4 VO View for outdoor Horizontal 60° cone of
vision

% Average percentage of outside view from interior

Table 3. Summary of design variables for MOO.

Var
# Abbr Full variable name Description Range

Variable
type

1 GR_S Glazed ratio of
south façade

The area ratio of glazed panel at each façade. The rest
part was assumed to be insulation panel

0.1 to 1.0 Continuous

2 GR_E Glazed ratio of east
façade

3 GR_N Glazed ratio of
north façade

4 GR_W Glazed ratio of west
façade

5 VS_S Vertical shading of
south façade

The depth of vertical fins on south, east, north and
west glazing

0.00 m–

0.70 m
Continuous

6 VS_E Vertical shading of
east façade

7 VS_N Vertical shading of
north façade

8 VS_W Vertical shading of
west façade

9 GT Glazing typea Glazing type for the façade window. 0 – secondary
glazing; 1 – Original single glazing

0, 1 Discrete

aSingle glazing is assumed with U-value = 5.7W/m2K, SHGC= 0.79, VT = 0.69; secondary glazing with single glazing with U-value = 2.9W/
m2K, SHGC = 0.6, VT = 0.5.28
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respectively. Eventually, MOO converged and
ended in the eighth generation. 101 Pareto front
solutions were generated and identified. These
Pareto-front individuals went through a selection
process for the optimal individual. As in Figures 6
and 7, the elite candidates as well as the Pareto front
candidates distributed randomly across the design
variables and objectives Figures 6 (a). All Pareto
front candidates ranged from 73% to 90% for TC (as
in y-axis of Figures 6 (c) and y-axis of Figures 6 (d)),

3727 to 4908 for TS (as in colour scale of Figures 6
(b–d)), 0.1%–25% for SG (as in x-axis of Figures 6
(b) and x-axis of Figures 6 (d)), and 0.6%–14.5% for
VO (as in y-axis of Figures 6 (b) and x-axis of
Figures 6 (c)) . The range of TC and TS was rela-
tively small, suggesting that the design concept was
less effective in improving office thermal perfor-
mance. The range of SG and VO was relatively
large, indicating a wide variety of design options for
lighting performance.

Figure 6. Projection of the 3-dimensional plot space over either two objectives axes screenshot for Pareto front and
history candidates for view over ASE result, comfort index overview result, and comfort index over ASE result. The
grey mesh represents the Pareto front (a).
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Post-processing

The criteria filtering method reduced the size of the
preferred candidate for further analysis, with steps
shown in Table 4. Firstly, the genes and objectives

results were extracted. After the filtering for the
basic glare requirement ASE250, 1000 ≤ 10%, only
52 out of 101 Pareto front remained. This ensured
all remaining were satisfactory for SG. Afterwards,
the remaining solutions were calculated for their

Figure 7. Distribution of (a) and (b) pareto front that fulfil the ASE 1000 lux, 250 hr < 10%, and (c) and (d) all Pareto
front.

Table 4. Filtering process in this case study (done with excel data filtering function).

Step Process Criteria applied

Number of
candidates

Before After

1 Basic filtering ASE result ≤10% (note: Glare is the key issues in this case. Therefore, it is set as the
“knock-out” criteria. All results that do not fulfil glare requirement should not be
considered further).

101 52

2 Re-filtering Result percentile for view, comfort and stability ≤70% 52 26
3 Re-filtering Result percentile for view, comfort and stability ≤50% 26 4
4 Manual

selection
Analysing all objectives for the optimal 4 1
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Figure 8. Result variations for the Pareto front. Each line represents the percentile result from an induvial candidate. The
purple line represents the selected optimal solution. The orange lines represent the preferred candidates. The green
lines represent the candidates that fulfil ASE 1000 lux, 250 hr < 10%. The grey lines represent the candidate that are
“knocked-out”.

Table 5. Façade characteristics of four preferable candidates.

Façade characteristics Unit

Candidate code

#20 #33 #46 #79

Glazing ratio GR_S % 0.00 0.00 0.00 0.00
GR_E % 0.71 0.52 0.77 0.71
GR_N % 0.83 0.86 0.74 0.83
GR_W % 0.00 0.00 0.00 0.00

Vertical shading length VS_S m 0.70 0.21 0.52 0.70
VS_E m 0.00 0.00 0.00 0.00
VS_N m 0.00 0.00 0.00 0.00
VS_W m 0.70 0.00 0.00 0.70

Glazing type GT — Secondary glazing

Table 6. Simulation results of four preferable candidates.

Objectives performance Unit

Candidate code

20 33 46 79

ASE 1000 lux, 250 h % 7.80 6.22 8.23 7.57
TC — 86.94 87.39 87.13 86.96
TS — 4166 4173 4124 4165
VO % 10.26 9.96 9.80 10.05
TC ranked percentile % 49% 43% 45% 48%
TS ranked percentile % 47% 49% 43% 46%
VO ranked percentile % 45% 49% 50% 48%
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percentile in each objective. By gradually in-
creasing the ranked percentile requirement for TC,
TS, and VO, only four preferred candidates were
found to rank top 50% over all three objectives.
The remaining candidates are shown in colour in
Figure 8.

As in Tables 5 and 6, all preferred candidates
demonstrated similar façade characteristics. Min-
imum glazed area and maximum vertical shading
were found preferred at the south and west façades,
while large glazed area and no shading device was
preferred at the east and north façade. The TC, TS,
and VO performance results were also similar for
all four candidates. Candidate 33 had a less glazed
area at the east façade for a lower ASE value.
Candidates 20, 33, and 79 had a similar glazed area
at the east façade, resulting in a similar ASE value.
Overall, by manual comparison, candidate 79, as
shown in Figure 9, was selected as the optimal

candidate for slightly better performance over TC,
TS, and VO.

Optimal candidate results

The optimal solution was compared with the
baseline model. The improvement was substantial
for the glare but marginal for TC. 86% of the oc-
cupied hour was predicted comfortable in summer,
creating a satisfactory summer working environ-
ment. That in winter, however, dropped to about 1%
from 3%. The TS slightly improved with improved
glazing type.

As shown in Table 7 and Figure 10, SG per-
formance was significantly improved with an ASE
index of 7.6%, fulfilling LEED or WELL require-
ments for SG. Only a small area near the east façade
was exposed to potential glare problems. Mean-
while, a large view outdoor was still available from
highly glazed north and west windows. Most
working areas had sufficient daylight with Daylight
Factor ≥2%. The design strategies suggested by
MOO results effectively improve the overall
lighting condition, with no glazing at the south and
west façade. This strategy was not expected in the
initial design.

In terms of TC, MOO chose to bias the comfort in
summer and omit the winter comfort, because the
two indices were calculated together instead of
separately. The poor building thermal construction
also amplified the winter thermal discomfort, making
the MOO bias the easier summer comfort solutions.
Analysis to the pareto front also indicated that

Figure 9. Model of optimal solution, candidate no. 79.

Table 7. Comparing the simulated objectives results of the optimal solution to the baseline.

Objectives Unit Baseline Optimised Improvementa

TCb — 66.3% 87.0 35% increase
Adaptive comfort for summerb % 62.4% 86.1% 38% increase
PMV comfort for winterb % 3.9% 0.9% 77% reduction
TSb — 5482 4165 25% reduction
SG (ASE 1000 lux, 250 h) % 29% 7.57% LEED v4 compliance
Average view % 15% 10% 30% reduction

aThe percentage improvement was calculated by: %, Improvement ¼ ðV ,optimized� V ,baselineÞ=ðV ,baselineÞ× 100%.
bOccupied hours only.
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improving the glazing only cannot improve the
winter TC to the required comfort level. The office
required a thorough retrofit for both opaque and
transparent envelope components as well as the
equipment to achieve the required thermal
performance.

Conclusion

This study developed a systematic framework to
identify critical comfort issues with POE and gen-
erate an optimised design option with MOO. The
framework first cross-refers benchmarking and cor-
relation study and integrates them with non-linear
satisfaction theory to determine the critical comfort
factors. The method then parameterises the critical
comfort factors with building simulation programs
and sets them as objectives in the design optimisation
program. The study also presents a case study. In this
case, the open-plan layout for easy noise

propagation, large glazing area for SG, unsatisfactory
building thermal performance, and ineffective
heating system are identified as key comfort prob-
lems. To maintain sufficient daylighting indoors, the
simulation suggests fully insulating the south and
west façade, while only insulating the top part of the
north and east façade without extra shading devices.
Also, the results also suggested adding a secondary
glazing system and improving the opaque elements
for winter comfort.

The integration of different techniques simplifies
the overall workflow of MOO and makes the design
result and suggestions more reliable with support
from simulation. The computer-based workflow
creatively combined POE, statistical analysis, and
MOO program, which replace most human analysis
effort throughout a design cycle from the initial
design input to design suggestion in the early design
stage. Based on the initial design concept, the gen-
erated optimal results and preferred candidate

Figure 10. Glare probability analysis with ASE simulation (a) and daylight factor analysis (b) for the optimal solution.
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suggested several key design strategies for design
developments. The process replaced the trial-and-
error iterative process in optimising environment
design solutions. Different from typical design
workflow where DM is usually empirical, MOO
examines a large number of design alternatives and
gradually finds the optimal through statical analysis
and logical comparisons. The application of para-
metric design also allows for generating a novel
optimal design under a new design concept by simply
modifying the geometry and BPS models. The
proposed framework reduces the process of redoing
the manual modelling and the iterative process from
the beginning.

The limitation of the process might be that it is a
black box method which might introduce undetect-
able errors. The time for MOO was quite long due to
the excessive time in BPS. Further study might study
the surrogate model to perform BPS with much less
time, making it more applicable for the tightly
scheduled design industry. In addition, the correla-
tion study was found to have several limitations
which might affect the identification of key IEQ
factors, including false correlation and disruption by
small sample size. In this study, these disruptions
were not rare, which might be due to the small
sample size. For example, “sense of safety” to “air
freshness in summer” was reported related with ρ =
0.492. Therefore, it is recommended to cross-validate
the result with a different analysis, e.g., descriptive
analysis, correlation analysis and ANOVA, to avoid
potential disruptions.
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