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Ideas NCBR

Polish Academy of Sciences

Abstract

Diffusion models have achieved remarkable success in
generating high-quality images thanks to their novel train-
ing procedures applied to unprecedented amounts of data.
However, training a diffusion model from scratch is com-
putationally expensive. This highlights the need to inves-
tigate the possibility of training these models iteratively,
reusing computation while the data distribution changes.
In this study, we take the first step in this direction and
evaluate the continual learning (CL) properties of diffu-
sion models. We begin by benchmarking the most common
CL methods applied to Denoising Diffusion Probabilistic
Models (DDPMs), where we note the strong performance
of the experience replay with the reduced rehearsal coeffi-
cient. Furthermore, we provide insights into the dynamics
of forgetting, which exhibit diverse behavior across diffu-
sion timesteps. We also uncover certain pitfalls of using the
bits-per-dimension metric for evaluating CL.

1. Introduction
Diffusion models [23] have recently gained popularity

due to their state-of-the-art performance in generative im-
age modeling. Models like DALL-E 2 [18], and Imagen
[20] have produced unparalleled quality and diversity in
generated images, inspiring the community to explore vari-
ous creative applications. Stable training of Deep Diffusion
Probabilistic Models (DDPMs) with unprecedented vol-
umes of data is one of the key factors that enable these re-
markable applications. For instance, the DALL-E 2 model
was trained using approximately 650 million images [18],

and open-source implementations of this method have re-
ported a training time of 56 days using TPU v3 hardware
[4]. Such computational resources are beyond the reach of
many academic institutions, smaller companies, and inde-
pendent researchers. Therefore, reducing the computational
burden of diffusion models is crucial to increase their ac-
cessibility and democratization. One promising approach
for reducing resource requirements is to continually reuse
previously trained models and train them with continuously
incoming data.

Continual learning (CL) [5, 17] is focused on the effec-
tiveness of model training when data portions known as
tasks are presented to the learner in a sequence, with a pos-
sibility of the changing training data distribution. There are
several common goals for CL algorithms, such as prevent-
ing forgetting, increasing transfer, and limiting computa-
tional resources. Although most applications consider the
problem of continual supervised learning, there is a grow-
ing field of research focusing on CL in generative model-
ing [13, 30]. Nevertheless, to the best of our knowledge,
diffusion models have yet to be tested in the continual learn-
ing setup.

We take the first step to fill this gap by investigating
how diffusion models forget and how they behave when
trained with different CL methods. To achieve this, we
conduct a series of experiments on common MNIST [8],
and Fashion-MNIST [28] datasets. Firstly, we demonstrate
that DDPMs suffer from catastrophic forgetting, which is
evident in the reduced quality of generations from previ-
ous tasks when retrained with additional data. Next, we
retrain the DDPM using the simple and effective Experi-
ence Replay [3] algorithm and confirm its ability to pre-
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vent catastrophic forgetting, working especially well with
reduced relative weight for rehearsal loss. In addition to our
benchmarking experiments, we note and quantify some in-
teresting phenomena. Firstly, we observe that the standard
bits-per-dimension (BPD) metric does not capture forget-
ting well, as it can deteriorate only slightly despite the com-
plete loss of generative ability. Secondly, we demonstrate
the effect of timestep-dependent overfitting on the buffer
data, consistent with the generation-denoising decomposi-
tion of DDPMs from [6].

2. Background and related work
2.1. Diffusion models

In this section, we briefly introduce diffusion generative
models [23], specifically Denoising Diffusion Probabilistic
Models (DDPMs), as described in [11,16]. The forward dif-
fusion process gradually adds Gaussian noise to data sam-
ples x0 from a data distribution q(x0), given by:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI).

The values of βt define a variance schedule that is set so that
the resulting distribution becomes indistinguishable from an
isotropic Gaussian after τ timesteps. The idea behind the
diffusion models is to model the reverse diffusion process
distributions q(xt−1|qt) with a powerful approximator such
as a deep neural network with parameters θ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

This modeling approach allows us to start from the isotropic
Gaussian and then go through the reverse diffusion process
to model the data distribution.

Training loss is constructed as a variational upper bound
on the negative likelihood E[− log pθ(x0)], which can be
written in the following form:

L := − log pθ(x0|x1)︸ ︷︷ ︸
L0

+DKL(q(xT |x0)||p(xT ))︸ ︷︷ ︸
Lτ

+

τ∑
t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

.
(1)

Individual parts of the loss can be computed analytically to
yield

Lt = Ex0,ε

[
β2
t

2σ2
tαt (1− αt)

·

||ε− εθ
(√
αtx0 +

√
1− αtε, t

)
||2
]
,

(2)

where αt := 1 − βt, αt :=
∏t
s=0 αs, ε ∼ N (0,1), and εθ

is the prediction of the noise that was used in the diffusion

process. A simplified form of the loss introduced by [11]
omits the multiplicative factor:

Lsimple
t = Ex0,ε

[
||ε−εθ

(√
αtx0 +

√
1− αtε, t

)
||2
]
. (3)

The model is trained using stochastic gradient descent,
where the training data x0, noise ε, and timestep t are ran-
domly selected, and either Lt or Lsimple

t is used as the loss
function.

2.2. Continual learning

Continual learning (CL) [5, 17] pertains to the scenario
where the data distribution changes during the learning pro-
cess. CL methods aim to reduce forgetting of previous tasks
and maximize forward transfer, which involves leveraging
past tasks to facilitate faster and improved learning.

This paper examines continual learning for generative
modeling, in which a sequence of N tasks T1, T2, . . . , TN
is considered. Each task Ti is associated with a dataset Di,
and the objective is to model the distribution of Di, as mea-
sured by some metric m. We adopt standard CL metrics,
namely average performance and forgetting. Specifically,
we denote mi,j as the value of the metric m for task i after
training on task j. The average m is defined as the average
value of m across all tasks after training, i.e.,

avg m :=
1

N

N∑
i=1

mi,N .

We also define m-forgetting as

m-forgetting :=
1

N

N∑
i=1

(mi,N −mi,i).

As our metrics m, we use bits-per-dimension (BPD),
which is appropriately normalized negative log-likelihood,
and Frechet Inception Distance (FID) [10], a common met-
ric capturing both quality and diversity of the samples from
generative models. These metrics are standard in the litera-
ture on diffusion models [11, 16].

In our experiments, we consider several standard CL
methods. The first is Finetuning, where training is done
sequentially on given tasks without particular adaptations.
Then, we consider two replay-based methods that leverage
data from past tasks in order to reduce forgetting. Expe-
rience replay [3] maintains a small buffer of examples for
each past task and adds an auxiliary loss that is the same as
the standard loss function but computed on the batch from
replay buffers. Generative replay [21] is similar. How-
ever, instead of using buffers, it keeps a frozen version of
the model from before the current task and uses it to gen-
erate rehearsal data from previous tasks. Regularization-
based methods constrain model parameters to stay close to



Table 1. Numerical comparison of CL methods on MNIST dataset. We report means and standard errors over 10 random seeds.

avg FID ↓ FID-forgetting ↓ avg BPD ↓ BPD-forgetting ↓

Finetuning 61.97± 0.69 55.59± 0.76 2.13± 0.01 0.10± 0.01
L2 46.02± 0.72 13.11± 0.68 1.95± 0.00 −0.01± 0.01
Exp. replay, coef. = 1 15.56± 0.21 10.62± 0.19 2.64± 0.04 0.72± 0.04
Exp. replay, coef. = 0.01 6.37± 0.27 1.00± 0.29 1.92± 0.00 0.00± 0.00
Gen. replay, coef. = 1 10.36± 0.53 5.35± 0.46 1.99± 0.01 0.06± 0.00

Table 2. Numerical comparison of CL methods on Fashion-MNIST dataset. We report means and standard errors over 10 random seeds.

avg FID ↓ FID-forgetting ↓ avg BPD ↓ BPD-forgetting ↓

Finetuning 107.53± 0.70 94.57± 0.76 3.62± 0.01 0.28± 0.00
L2 95.46± 1.82 −1.76± 0.64 3.54± 0.00 −0.01± 0.00
Exp. replay, coef. = 1 31.34± 0.53 19.28± 0.40 4.04± 0.01 0.77± 0.01
Exp. replay, coef. = 0.01 18.27± 0.86 5.36± 0.99 3.31± 0.00 0.03± 0.00
Gen. replay, coef. = 1 31.61± 2.41 19.60± 1.89 3.36± 0.00 0.08± 0.00

the past ones, which worked well on previous tasks. In par-
ticular, the L2 method adds the L2 distance between the
current and historical network parameters as an auxiliary
loss.

2.2.1 Continual learning with generative models

Generative models are typically used for CL in the gener-
ative rehearsal [13, 22] approach. This technique employs
a generative model that generates rehearsal examples from
previous tasks for the continually trained classifier. How-
ever, the generative model used for rehearsal may suffer
from catastrophic forgetting, so it is often trained with a
generative replay that combines generations from previous
tasks and new data samples.

Other approaches that focus on continual learning of
generative models include extensions to regularization-
based methods [15], buffer-based replay [19], or ar-
chitectural adaptation with techniques such as hypernet-
works [26]. Several works use the specific properties of
Variational Autoencoders [12] to continually align their la-
tent space [7] and shared features [1] or with additive aggre-
gated posterior [9]. Additionally, some works train GANs
in the continual learning scenarios [27]; [29] extends the
approach to VAEGAN.

3. Experiments
In this section, we provide observations on the perfor-

mance of diffusion models in a continual learning setup us-
ing the most common algorithms. We compare numerical
results from running various CL methods in Section 3.1.
Next, we focus on specific phenomena, namely the poor
quality of the bits-per-dimension metric in Section 3.2 and

timestep-dependent overfitting when using experience re-
play in Section 3.3.

Experimental setup For our experiments, we use two
datasets: MNIST and Fashion-MNIST. We divide the ten
classes into five tasks, with two classes per task. We use a
single DDPM model to learn all five tasks and pass the task
ID during training and evaluation as a one-hot vector on
which the model is conditioned. We train for 20K gradient
descent steps in every task and adopt the hyperparameters
of the diffusion model from [11].

3.1. Comparing CL methods

In this section, we provide an empirical comparison of
selected continual learning methods, namely Finetuning,
L2, Experience replay, and Generative replay. Table 1 and
Table 2 show the results for MNIST and Fashion-MNIST,
respectively.

Finetuning maintains a high level of flexibility but
quickly forgets how to generate samples from previous
tasks, as indicated by the FID results. As discussed in Sec-
tion 3.2, the decline is less evident regarding BPD. The L2
method introduces strong regularization, which restricts for-
getting and plasticity. Forgetting metrics for this method
are generally close to zero and are the best among the com-
pared methods, although the final average performance is
not satisfactory, especially for the FID metric. In Expe-
rience replay, we apply a low coefficient for the replay
loss compared to the main loss (coef. = 0.01). This suc-
cessfully mitigates overfitting to the buffer data (see Sec-
tion 3.3), consequently leading to the best performance in
terms of average FID and BPD. For completeness, we also
present the result for equal coefficients (coef. = 1). We
conducted a coefficient sweep for Generative replay, but



the best performance was achieved for coef. = 1, underper-
forming Experience replay.

3.2. What metrics should be used? Pitfalls of BPD

Previous research has pointed out the limitations of log-
likelihood as a metric and its inability to accurately re-
flect the capabilities of a generative model [14, 24]. In
this section, we follow [11, 16] in calculating negative log-
likelihood in bits-per-dimension (BPD). We demonstrate
that this metric presents particular challenges in the context
of generative continual learning and provide some insights
into its unusual behavior in the case of diffusion models.

To highlight the pitfalls of BPD, we calculate BPD val-
ues on examples from the first task while retraining the
model with a simple finetuning method without any CL ap-
proach. Even though the model suffers from severe forget-
ting and does not generate images from previous tasks, only
producing samples resembling the classes from the last task
(as shown in Figure 1(a)), the deterioration of the BPD met-
ric is minor (see Figure 1(b)). Surprisingly, the situation is
reversed for the variant of Experience replay with rehearsal
coef. = 1, where generations from the previous tasks re-
main plausible, but the loss deterioration is more visible.

To better understand the behavior of BPD, we propose
examining its individual terms as it is a weighted sum of
per-timestep quadratic terms (see Equations 1 and 2). We
focus on a diffusion model with 1000 timesteps and ob-
serve that, at an early stage of the forward diffusion process
(timestep 50), the Finetuning method shows minimal dete-
rioration, as shown in Figure 1(c). However, at a later stage
(timestep 700), deterioration is substantial (Figure 1(d)).
This indicates that the diffusion model forgets how to gen-
erate new image features from random noise while its de-
noising capabilities remain intact. The above observation is
consistent with the work of [6], which suggests that early
diffusion timesteps correspond to a "denoising part" with
good generalization to out-of-distribution data. Addition-
ally, [16, Figure 2] shows that early diffusion timesteps con-
tribute the most to log-likelihood. So the early timesteps, on
which Finetuning’s validation loss does not deteriorate sig-
nificantly, are the ones that have the most impact on BPD,
explaining the limited overall deterioration of BPD. How-
ever, it should be noted that the late timesteps, which con-
tribute less to the BPD and are referred to as the "generative
part" of the diffusion model in [6], are crucial for generating
high-quality samples.

As a result, we caution against relying solely on variants
of log-likelihood as a definitive measure for generative CL
performance and advocate for reporting other metrics, such
as FID.

(a) Samples generated from Finetuning and Experience replay (coef. =
1). The former suffers from severe forgetting, at the end generating only
classes from the last task; the latter successfully generates classes coming
from respective tasks.

(b) Even though Finetuning model forgets how to generate images from
task 1, BPD on task 1 only slightly deteriorates, greatly outperforming Ex-
perience replay (coef. = 1).

(c) Part of the loss corresponding to early diffusion timestep is barely af-
fected for Finetuning.

(d) Part of the loss corresponding to late diffusion timestep deteriorates vis-
ibly for Finetuning. However, its scale is much smaller compared to (c) and
thus it does not affect overall BPD much.

Figure 1. Evolution of BPD values on task 1 for Finetuning and
Experience replay methods during training on 5 subsequent tasks.



3.3. Experience replay: beware of overfitting

Recent works [2, 25] have highlighted an important is-
sue of models trained with replay methods overfitting to the
examples stored in the rehearsal buffer. In this section, we
demonstrate this phenomenon for diffusion models and fur-
ther explore the specific structure of this overfitting.

In Figure 1, we saw that using replay can be detrimen-
tal to the validation loss of the replayed task. In our ex-
periment, we employed a buffer size of 200 examples per
task, which is relatively small, and assigned equal weights
to the current task and rehearsal loss (rehearsal coef. = 1).
Therefore, overfitting was a likely cause for the loss deteri-
oration. We demonstrate that this is indeed the case, and
intriguingly, the extent of overfitting to the replay buffer
heavily depends on the diffusion timestep. We present the
results of the further investigation of the Experience replay
(coef. = 1) method in Figure 2. For the early timestep
(50), the loss of the first task on the replay data signifi-
cantly drops after the task is finished, while the validation
loss notably increases (Figure 2(a)). In contrast, for the late
timestep (700), no overfitting occurs, resulting in Experi-
ence replay (coef. = 1) outperforming the Finetuning base-
line, as demonstrated in Figure 2(b). We hypothesize that
two primary factors contribute to this timestep-dependent
overfitting: (1) the scale of the loss parts related to the early
timesteps is greater, incentivizing the optimization process
to overfit at these timesteps; and (2) in the late timesteps,
more noise is introduced to the input before passing it to the
neural network (see Equation 3), acting as a natural regular-
izer that prevents overfitting. We believe that the described
phenomenon is essential for understanding the dynamics of
continual learning of diffusion models. One possible direc-
tion of utilizing it would be to enhance the performance of
the Experience replay method.

We note that reducing the relative weight for the re-
hearsal loss successfully addresses the overfitting problem,
leading to significantly improved performance of the Expe-
rience replay (coef. = 0.01) variant, see Section 3.1.

4. Conclusions and future work

In this study, we have taken an initial step toward un-
derstanding the dynamics of continual learning in diffu-
sion models. We provide benchmarking results for training
diffusion models with various CL methods, demonstrating
the strong performance of the experience replay with re-
duced rehearsal weight. We also present some qualitative
observations regarding this framework, including the prob-
lematic behavior of the BPD metric and the occurrence of
timestep-dependent overfitting when Experience replay (re-
hearsal coef. = 1) is used.

We envision several interesting directions for future
work. Firstly, we believe that novel CL strategies could be

(a) For the early diffusion timestep, overfitting on task 1 is clearly visible
for the Experience replay (coef. = 1) method.

(b) In contrast, there seems to be no overfitting for the late diffusion
timestep.

Figure 2. Demonstration of diffusion timestep-dependent overfit-
ting for Experience replay (coef. = 1).

developed to enhance standard experience replay for diffu-
sion models by leveraging their structural properties, such
as the presence of diffusion timesteps. Secondly, extending
the study to text-to-image and pretrained diffusion models
would be also compelling. Lastly, providing more com-
prehensive benchmarking results, which include additional
methods and datasets, would be beneficial to the research
community.
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