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In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance 

between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a 

disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each 

region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and 

upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations 

of the curves. 

We prove that both problems are NP-hard for the Fréchet distance in several uncertainty models, and that 

the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (dis- 

crete [ 5 ] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, 

we show that computing the expected (discrete and continuous) Fréchet distance is #P-hard in some models. 

On the positive side, we present an FPTAS in constant dimension for the lower bound problem when Δ/ δ

is polynomially bounded, where δ is the Fréchet distance and Δ bounds the diameter of the regions. We also 

show a near-linear-time 3-approximation for the decision problem on roughly δ -separated convex regions. 

Finally, we study the setting with Sakoe–Chiba time bands, where we restrict the alignment between the 

curves, and give polynomial-time algorithms for the upper bound and expected discrete and continuous 

Fréchet distance for uncertainty modelled as point sets. 
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 INTRODUCTION 

n this article, we investigate the well-studied topic of curve similarity in the context of the bur-
eoning area of geometric computing under uncertainty. Classical algorithms in computational
eometry typically assume the input point locations are known exactly; however, in recent years,
here has been a concentrated effort to adapt these algorithms to uncertain inputs, which can
ore faithfully model real-world inputs. The need to model such uncertain inputs is perhaps no
ore clear than for the location data of a moving object obtained from physical devices, which

s inherently imprecise due to issues such as measurement error, sampling error, and network la-
ency [ 49 , 52 ]. Moreover, to ensure location privacy, one may purposely add uncertainty to the data
y adding noise or reporting positions as geometric regions rather than points. (See the survey by
rumm [ 42 ] and the references therein.) 
Here we consider both the continuous and discrete Fréchet distance for uncertain curves. Given

he preceding applications, our uncertain input is given as a sequence of compact regions, from
hich a polygonal curve is realised by selecting one point from each region. Our goal is to find,

or a given pair of uncertain curves, the upper bound, the lower bound, and the expected Fréchet
istance, where the upper (respectively, lower) bound Fréchet distance is the maximum (respec-
ively, minimum) distance over any realisation. For the expected Fréchet distance, we assume a
robability distribution is provided that describes how each vertex on a curve is chosen from the
ompact region. 

.1 Previous Work 

eometric Computing Under Uncertainty . The two most common models of geometric uncertainty
re the locational model [ 43 ] and the existential model [ 53 , 57 ]. In the existential model, the loca-
ion of an uncertain point is known, but the point may not be present; in the locational model, we
now that each uncertain point exists, but not its exact location. 
In this article, we consider the locational model. Each uncertain point is a set of potential loca-

ions. We call an uncertain point indecisive if the set of potential locations is finite, or imprecise if
he set is not finite but is a convex region. A realisation of a set of uncertain points is a selection
f one point from each uncertain point. The goal is typically to compute the realisation of a set
f uncertain points that minimises or maximises some quantity (e.g., area, distance, perimeter) of
ome underlying geometric structure (e.g., convex hull, MST). A large number of minimisation
nd maximisation variants for imprecise points can be found in the thesis of Löffler [ 43 ] and other
orks [ 41 , 44 , 46 ]. For indecisive points, such problems are often called colour-spanning problems ,
s each indecisive point can be viewed as a colour and the goal is to select a point of each colour to
inimise or maximise some quantity [ 1 , 7 , 23 , 30 ]. Besides finding tight upper and lower bounds

or various measures, there have also been studies on visibility [ 22 ], imprecise terrains [ 27 , 35 ],
nd Voronoi diagrams [ 51 ] and Delaunay triangulations [ 15 , 45 , 55 ]. 
By assigning a probability distribution to uncertain points, one can also consider the expectation

r distribution of various measures [ 2 , 4 , 21 , 39 , 48 ]. Finally, imprecision has also been studied
rom a movement perspective, with the focus on the imprecision between measurements [ 19 ]
nd how imprecision grows and shrinks as time passes and new location information becomes
vailable [ 29 ]. 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fréchet Distance . Computing the Fréchet distance between two precise curves can be done in
ear-quadratic time [ 3 , 6 , 12 ], and assuming the strong exponential time hypothesis, it cannot
e computed or even approximated well in strongly subquadratic time [ 9 , 18 ]. However, for sev-
ral restricted versions, the Fréchet distance can be calculated faster, for example, for c-packed
urves [ 26 ], when the edges are long [ 36 ], or when the alignment of curves is restricted [ 11 , 47 ].
any variants of the problem have been considered: Fréchet distance with shortcuts [ 20 , 25 ], weak

réchet distance [ 6 ], discrete Fréchet distance [ 3 , 28 ], Fréchet gap distance [ 31 ], Fréchet distance
nder translations [ 10 , 33 ], and more. 
There are also numerous applications of different variants of Fréchet distance in common curve

nd trajectory analysis tasks, such as clustering [ 13 , 14 ] or curve simplification [ 54 , 56 ]. 

Fréchet Distance Under Uncertainty . There has been surprisingly little work incorporating uncer-
ainty in curve and trajectory analysis. Buchin and Sijben [ 21 ] have studied the discrete Fréchet
istance for uncertain points modelled by a probability distribution. However, their problem is
uite different from our variant: they show how to compute the distance distribution for a fixed
oupling between the two curves and then solve the problem of finding the optimal coupling that
chieves a given Fréchet distance. We look at the problem with the different order of quantifiers:
e know how to compute the Fréchet distance between two curves and want to find ‘optimal’

ealisations yielding a certain distance. 
Previously, Ahn et al. [ 5 ] considered the lower bound problem as we define it for the discrete

réchet distance, giving a polynomial-time algorithm for uncertain points modelled by balls or
yperrectangles in constant dimension. The authors also gave efficient approximation algorithms
or the discrete upper bound Fréchet distance for uncertain inputs, where the approximation factor
epends on the spread of the region diameters or how well separated they are. Subsequently, Fan
nd Zhu [ 32 ] showed that the discrete upper bound Fréchet distance is NP-hard for uncertain
nputs modelled as thin rectangles. To our knowledge, we are the first to consider either variant
or the continuous Fréchet case, and the first to consider the expected Fréchet distance. 
Subsequently to this work, Buchin et al. [ 16 ] have studied the lower and upper bound prob-

ems in 1D, as well as obtained some results for the weak Fréchet distance. They have obtained
tronger results showing NP-hardness of the upper bound problem for indecisive points and points
odelled with intervals (or line segments), both for the discrete and the continuous Fréchet dis-

ance. For the lower bound problem, they show a polynomial-time algorithm when uncertainty
s modelled with intervals—essentially, a setting where we prove NP-hardness in 2D—thus de-
ineating the point where the problems become difficult. Finally, Buchin et al. [ 17 ] also studied
he related problem of curve simplification under uncertainty, showing how to obtain a minimal-
ength subsequence of an uncertain curve that has a small distance to the original curve, no matter
he realisation. 

.2 Our Contributions 

n this article, we present an extensive study of the Fréchet distance for uncertain curves. We
rovide a wide range of hardness results and present several approximations and polynomial-time
olutions to restricted versions. We are the first to consider the continuous Fréchet distance in the
ncertain setting, as well as the first to consider the expected Fréchet distance. 
On the negative side, we present a plethora of hardness results (Table 1 ; details follow in Sec-

ion 3 ). The hardness of the lower bound case is curious: although the discrete Fréchet distance on
mprecise inputs [ 5 ] and, as we prove, continuous Fréchet distance on indecisive inputs both permit
 simple dynamic programming solution, the continuous Fréchet distance problem on imprecise
nput has just enough (literal) wiggle room to show NP-hardness by reduction from SubsetSum .
uchin et al. [ 16 ] explore this in 1D and find a similar dichotomy for the weak Fréchet distance. 
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Table 1. Hardness Results for the Decision Problems in This Article (in 2D) 

Indecisive Imprecise 
Disks Line Segments

Discrete Fréchet distance 
LB Polynomial [ 5 ] Polynomial [ 5 ] Polynomial [ 5 ] 
UB NP-complete NP-hard NP-hard 
Exp #P-hard — #P-hard 

Fréchet distance 
LB Polynomial — NP-hard 
UB NP-complete NP-hard NP-hard 
Exp #P-hard — —

Ahn et al. [ 5 ] solve the lower bound problem for disks, but their algorithm extends to the indecisive curves as 

well as line segment imprecision. 

 

T  

t  

a  

g
 

a  

t  

b  

S  

t  

f  

t

2

I  

d

2

D  

p  

p  

α  

p  

p
b  

f  

s

2

G  

X  

t

A

We complement the lower bound hardness result by two approximation algorithms (Section 4 ).
he first is an FPTAS for general uncertain curves in constant dimension when the ratio be-
ween the diameter of the uncertain points and the lower bound Fréchet distance is polynomi-
lly bounded. The second is a 3-approximation for separated imprecise curves but uses a simpler
reedy approach that runs in near-linear time. 
The NP-hardness of the upper bound by a reduction from CNF-SAT is less surprising but requires

 careful setup and analysis of the geometry to then extend it to a reduction from #CNF-SAT to
he expected (discrete or continuous) Fréchet distance under the uniform distribution. However,
y adding the common constraint that the alignment between the curves needs to stay within a
akoe–Chiba [ 50 ] band of constant width (see Section 5 for definition and results), we can solve
hese problems in polynomial time for indecisive curves. Sakoe–Chiba bands are frequently used
or time-series data [ 8 , 40 , 50 ] and trajectories [ 11 , 24 ], when the alignment should (or is expected
o) not vary too much from a certain ‘natural’ alignment. 

 PRELIMINARIES 

n this section, we introduce the notation relevant to the rest of this article, as well as recall the
efinitions of the (discrete) Fréchet distance. 

.1 Curves 

enote [ n] ≡ {1 , 2 , . . . , n}. Consider a sequence of d-dimensional points π = 〈 p 1 , p 2 , . . . , p n 〉 . A
olygonal curve π is defined by these points by linearly interpolating between the successive
oints and can be seen as a continuous function: π ( i + α ) = ( 1 − α )p i + αp i+1 for i ∈ [ n − 1] and
∈ [0 , 1] . The length of such a curve is the length of the sequence, |π | = n. Where we deem im-

ortant to distinguish between points that are a part of the curve and other points, we denote the
olygonal curve by π = 〈 π1 , π2 , . . . , πn 〉 . We denote the concatenation of two sequences π and σ
y π � σ ; this also naturally defines concatenation of polygonal curves. We denote a subsequence
rom vertex i to j of π as π [ i : j] ≡ 〈 p i , p i+1 , . . . , p j 〉 . Finally, p � q (or simply pq) denotes the line
egment between points p and q. We can generalise this notation: ⊔ 

i ∈ [ n ] 
p i ≡ p 1 � p 2 � · · · � p n ≡ 〈 p 1 , p 2 , . . . , p n 〉 ≡ π . 

.2 Metrics Definitions 

iven two points x , y ∈ R 

d , denote their Euclidean distance by ‖ x − y‖ . For two compact sets
, Y ⊂ R 

d , denote their distance by ‖ X − Y ‖ = min x ∈ X ,y∈ Y ‖ x − y‖ . Throughout the article, we
reat the dimension d as a small constant. 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 1. Left: Discrete Fréchet distance, where an optimal coupling is shown in dashed red lines. Right: Fréchet 
distance, where the dashed green lines indicate specific values for an optimal alignment ϕ1 , ϕ2 . 
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Let Φn denote the set of all reparametrisations of length n, defined as continuous non-decreasing
unctions ϕ : [0 , 1] → [1 , n] , where ϕ (0 ) = 1 and ϕ (1 ) = n. Given a pair of curves π and σ of
engths n and m, respectively, and corresponding reparametrisations ϕ1 ∈ Φn and ϕ2 ∈ Φm 

, define
idth ϕ1 ,ϕ2 

(π , σ ) = max t ∈[0 ,1] ‖π (ϕ1 (t )) − σ (ϕ2 (t ) ) ‖. We call the pair (ϕ1 , ϕ2 ) an alignment. 
The width represents the maximum distance between two points traversing the curves from

tart to end according to ϕ1 and ϕ2 (which allow varying speed, but no backtracking). The Fréchet
istance d F (π , σ ) is defined as the minimum possible width over all such traversals: 

d F ( π , σ ) = inf 
ϕ1 ∈Φn ,ϕ2 ∈Φm 

width 

ϕ1 ,ϕ2 

( π , σ ) = inf 
ϕ1 ∈Φn ,ϕ2 ∈Φm 

max 
t ∈[0 ,1] 

‖π ( ϕ1 ( t )) − σ ( ϕ2 ( t ) ) ‖. 

The discrete Fréchet distance d dF (π , σ ) is defined similarly, except that we do not traverse edges
f the curves but must jump from one vertex to the next on either or both curves. We define
 valid coupling as a sequence c = 〈 (p 1 , q 1 ), . . . , (p r , q r )〉 of pairs from [ n] × [ m] , where (p 1 , q 1 ) =

( 1 , 1 ), ( p r , q r ) = (n, m), and, for any i ∈ [ r − 1] , we have (p i+1 , q i+1 ) ∈ {(p i + 1 , q i ), (p i , q i + 1 ), (p i +
 , q i + 1 )}. Let C be the set of all valid couplings on curves of lengths n and m; then 

d dF (π , σ ) = inf 
c ∈C 

max 
s ∈[ | c | ] 

‖π (p s ) − σ (q s )‖, 

here c s = (p s , q s ) for all s ∈ [ | c | ] . Both distances are illustrated in Figure 1 . 

Computing the Discrete Fréchet Distance . We recall the standard dynamic programming ap-
roach by Eiter and Mannila [ 28 ]. The algorithm is deduced in a standard manner from the
ollowing recursion: 

d dF (π [1 : i + 1] , σ [1 : j + 1] ) = max ( ‖π ( i + 1 ) − σ (j + 1 )‖, 
min ( d dF ( π [1 : i] , σ [1 : j] ), 

d dF (π [1 : i + 1] , σ [1 : j] ), 

d dF (π [1 : i] , σ [1 : j + 1] ) ) ) . 

n other words, the discrete Fréchet distance is the maximum of the distance of the newly added
lement in the coupling and the value that was considered best previously. Due to the coupling re-
trictions, there are only three possible subproblems that we need to consider, and we may choose
he best of them, thus obtaining the preceding recursion. It is straightforward to turn it into a
ynamic program. 
Table 2 gives the distance matrix and the computation of the discrete Fréchet distance for the

xample of Figure 1 . Each cell of the table on the right shows the value of the discrete Fréchet
istance so far; the final result can be read out from the top right corner of the table, and the
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Table 2. Distance Matrix and Computation of discrete Fréchet Distance 
for the Example of Figure 1 

4 
√ 

10 
√ 

5 2 

2 
√ 

2 
√ 

2 3 2 
√ 

5 √ 

5 1 
√ 

10 5 

2 
√ 

2 
√ 

13 4 
√ 

2 

4 
√ 

10 
√ 

5 
√ 

5 

2 
√ 

2 2 3 2 
√ 

5 √ 

5 2 
√ 

10 5 

2 2 
√ 

13 4 
√ 

2 

Left: Distance matrix on vertices. Right: Dynamic program for the discrete Fréchet 

distance, filled from the bottom left corner. Rows correspond to points from the 

left trajectory and columns to points from the right trajectory. The optimal path is 

marked in grey. 

Fig. 2. Left: Visualisation of the Fréchet distance. Right: Free-space diagram for the threshold ε = 2 . 15 . One 
can draw a monotonous path (in green) from the lower left corner to the upper right corner of the diagram, 
so the Fréchet distance between the trajectories is below the threshold. 
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oupling that yields this result can be read from the sequence of grey cells. Notice that the table
hows the same coupling as Figure 1 . 
Given two trajectories of length n and m in two dimensions, this approach takes Θ(mn) time to

un. More recently, Agarwal et al. [ 3 ] presented an algorithm that computes the discrete Fréchet
istance in time O ( mn log log n / log n ) in two dimensions, for m ≤ n. However, it is rather complex and
oes not help the intuition about the problems discussed in this article, so we will not go into fur-
her detail. The decision version of the problem can be solved in a similar fashion, but propagating
oolean values instead. 

Computing the Fréchet Distance . One can use a similar approach to solve the decision version
f the Fréchet distance problem, except now we have free and blocked areas within each cell of
he table rather than simply having a Boolean value in each cell. The resulting table is called a
ree-space diagram. On polygonal curves, each cell becomes an intersection of an ellipse with the
ell, with the inside of the ellipse being free. The answer to the problem is True if and only if there
s a monotone path from the bottom left corner to the top right corner of the free-space diagram.
 free-space diagram for the example of the two polygonal curves of Figure 1 is shown in Figure 2 .
Algorithmically, this can be checked by keeping the open intervals on the edges of the cells (i.e.,

he white segments on cell borders shown in Figure 2 ). The algorithm then runs in time Θ(mn).
or further details, the reader is invited to consult the work by Alt and Godau [ 6 ] or previous work
n the same topic [ 34 ]. 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 3. Left: Trajectory data. Centre: Polygonal curve on the data. Right: Imprecise curve with disks as im- 
precision regions and the real curve. 
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.3 Uncertainty Model 

n uncertain point is commonly represented as a compact region U ⊂ R 

d . Usually, it is a finite
et of points, a disk, a rectangle, or a line segment. The intuition is that only one point from this
egion represents the true location of the point; however, we do not know which one. A realisation
of such a point is one of the points from the region U . When needed, we assume the realisations
re drawn from U according to a known probability distribution P . We denote the diameter of
ny compact set (e.g., an uncertain point) U ⊂ R 

d by diam (U ) = max p,q∈U 

‖ p − q‖ . An indecisive

oint is a special case of an uncertain point: it is a set of points U = { p 1 , . . . , p k } , with each point
 

i ∈ R 

d for i ∈ [ k] . Similarly, an imprecise point is a compact convex region U ⊂ R 

d . We will often
se disks or line segments as such regions. Note that a precise point is a special case of an indecisive
oint (set of size one) and an imprecise point (disk of radius zero). 

.4 Uncertain Curves and Distances 

efine an uncertain curve as a sequence of uncertain points U = 〈 U 1 , . . . , U n 〉 . A realisation
� U of an uncertain curve is a polygonal curve π = 〈 p 1 , . . . , p n 〉 , where each p i is a realisa-

ion of the corresponding uncertain point U i . We denote the set of all realisations of an uncer-
ain curve U by Real (U ) (Figure 3 ). In a probabilistic setting, we write π � P U to denote that
ach point of π gets drawn from the corresponding uncertainty region independently according to
istribution P . 
For uncertain curves U , V , define the upper bound, the lower bound, and the expected dis-

rete Fréchet distance (and extend to the continuous Fréchet distance d max 
F , d min 

F , d E (P ) 
F using d F )

s follows: 

d max 
dF ( U , V ) = max 

π� U,σ� V 
d dF ( π , σ ), d max 

F ( U , V ) = max 
π� U,σ� V 

d F ( π , σ ), 

d min 
dF ( U , V ) = min 

π� U,σ� V 
d dF ( π , σ ), d min 

F ( U , V ) = min 

π� U,σ� V 
d F ( π , σ ), 

d E (P ) 
dF 

( U , V ) = E π� P U,σ� P V [ d dF ( π , σ )] , d E (P ) 
F ( U , V ) = E π� P U,σ� P V [ d F ( π , σ )] . 

f the distribution is clear from the context, we write d E 

F and d E 

dF 
. The preceding definitions also

pply if one of the curves is precise, as a precise curve is a special case of an uncertain curve. 
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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 HARDNESS RESULTS 

n this section, we first discuss the hardness results for the upper bound and the expected value of
he continuous and discrete Fréchet distance for indecisive and imprecise curves. We then demon-
trate hardness of finding the lower bound continuous Fréchet distance on imprecise curves. 

.1 Upper Bound and Expected Fréchet Distance 

e present proofs of NP-hardness and #P-hardness for the upper bound and the expected Fréchet
istance for both indecisive and imprecise curves by showing polynomial-time reductions from
NF-SAT (satisfiability of a Boolean formula) and #CNF-SAT (its counting version). We consider
he upper bound problem for indecisive curves and then illustrate how the construction can be
sed to show #P-hardness for the expected Fréchet distance (both discrete and continuous). We
hen illustrate how the construction can be adapted to show hardness for imprecise curves. All
ur constructions are in two dimensions. 

3.1.1 Upper Bound Fréchet Distance: Basic Construction. Define the following problem. 

Problem 3.1 (Upper Bound Discrete Fréchet). Given two uncertain curves U and V and a
hreshold δ ∈ R 

+, decide if d max 
dF 

(U , V ) > δ . 

We can similarly define its continuous counterpart, using d max 
F instead. 

Problem 3.2 (Upper Bound Continuous Fréchet). Given two uncertain curves U and V and
 threshold δ ∈ R 

+, decide if d max 
F (U , V ) > δ . 

We first give some extra definitions to make the proofs clearer. Suppose we are given a CNF-SAT
ormula C with 

C = 
∧ 

i ∈ [ n ] 
C i , C i = 

∨ 

j ∈ J ⊆[ m ] 

x j ∨ 
∨ 

k ∈ K ⊆[ m ] \ J 
¬ x k for all i ∈ [ n] . 

ere, n and m are the number of clauses and variables, respectively, and x j for any j ∈ [ m] is a
oolean variable. Such a variable may be assigned ‘true’ or ‘false’; an assignment is a function a :
 x 1 , . . . , x m 

} → { True , False } that assigns a value to each variable, a (x j ) = True or a (x j ) = False
or any j ∈ [ m] . We denote by C[ a ] the result of substituting x j �→ a (x j ) in C for all j ∈ [ m] . As an
id to the reader, the problem we reduce from is as follows. 

Problem 3.3 (CNF-SAT). Given a CNF-SAT formula C , decide if there is an assignment a such that
[ a ] = True . 

We pick some value 0 < ε < 0 . 25 . 1 Construct a variable curve, where each variable corre-
ponds to an indecisive point with locations (0 , 0 . 5 + ε ) and (0 , −0 . 5 − ε ); the locations are in-
erpreted as assigning the variable True and False . Any realisation of the curve corresponds to a
ariable assignment. 
Intuitively, one curve encodes the variables, and the other encodes the structure of the formula.
e define a variable gadget on a variable curve to encode the value of a Boolean variable, and
e define assignment gadgets on the other curve to encode the literals x and ¬ x occurring in

he formula. The gadgets interact with each other, so if a literal is true, the distance is large. The
ssignment gadgets have positions for ‘true’, ‘false’, and ‘do not care’ values, the latter being used
o skip a variable unused in a clause. We repeat the construction for each variable on both curves
ith some synchronisation enforcement, constructing a variable clause gadget and an assignment
 This range is determined by the relative distances in the construction. 

CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 4. Illustration of the gadgets used in the basic construction. Assignment gadgets are repeated to make 
up assignment clause gadgets; they are repeated to make up the clause curve. Variable gadgets are repeated 

to make up the variable clause gadget; it is prepended and appended by (0 , 0 ) to make up the variable curve. 
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lause gadget, so the distance is large if the clause is satisfied by setting the variables in a specific
ay. Finally, we construct the full variable curve and the clause curve. Here the goal is that we have
 single copy of variables that can be assigned True or False , and we can choose which clause we
ant to align with them. The other clauses are caught by extra points on the variable curve so as

o not affect the distance. Some clauses are not satisfied and will yield a small distance, whereas
thers are satisfied and yield a large distance; therefore, since we can choose the clause freely, we
nly get large distance between full curves if all clauses give a large distance, so all are satisfied,
nd so is the formula. Finding the upper bound Fréchet distance now corresponds to finding the
ealisation of the points that achieves the large distance, or finding the truth assignment of the
ariables that satisfies the formula. We show the locations used by the gadgets and their nesting
n Figure 4 . We show an example construction for a specific formula and a realisation in Figure 5 ,
howing also the possible alignment options between the clause curve and the variable curve and
he resulting distances. Next, we define the gadgets formally level by level and prove that the
istances are correct. 

Literal Level . Define a variable gadget, where an indecisive point corresponds to a variable and
s followed by a precise point far away, to force synchronisation with the other curve: 

VG j = {(0 , 0 . 5 + ε ), (0 , −0 . 5 − ε )} � (2 , 0 ). 

Consider a specific clause C i of the formula. We define an assignment gadget AG i, j for each
ariable x j and clause C i depending on how the variable occurs in the clause: 

AG i, j = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

( 0 , −0 . 5 ) � ( 1 , 0 ) if x j is a literal of C i , 
( 0 , 0 . 5 ) � ( 1 , 0 ) if ¬ x j is a literal of C i , 
( 0 , 0 ) � ( 1 , 0 ) otherwise. 

ote that if the assignment x j = True makes the clause C i true, then the first precise point of the
orresponding assignment gadget appears at distance 1 + ε from the realisation corresponding to
etting x j = True of the indecisive point in VG j . 
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 5. Realisation of VC for the assignment x 1 = True , x 2 = True , x 3 = False and CC for the formula C = 

(x 1 ∨ x 3 ) ∧ (¬ x 1 ∨ x 2 ∨ ¬ x 3 ) ∧ (x 1 ∨ ¬ x 2 ). We show the variable curve, and three times the clause curve, 
since we have three feasible options for matching the curves, corresponding to the three clauses. The other 
clauses are matched to (0 , 0 ) and are collapsed to a point in the figure. Note that C = True with the given 

variable assignment. Also note that we can choose any of C 1 , C 2 , C 3 to couple to VC ; we always get the 
bottleneck distance of 1 + ε , as all three are satisfied, so here d dF ( VC , CC ) = 1 + ε . 
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We now show the relation between the gadgets. To do so, we introduce the one-to-one coupling
s a valid coupling c = 〈 (p 1 , q 1 ), . . . , (p r , q r )〉 , where the coupling is restricted to (p s+1 , q s+1 ) =
p s + 1 , q s + 1 ) for all s ∈ [ r − 1] . Necessarily, such a coupling only exists for curves of equal length.

Lemma 3.4. Suppose we are given a clause C i and a variable x j that both occur in a CNF-SAT
ormula C , and we restrict the set of valid couplings C to only contain one-to-one couplings. We only
et the discrete Fréchet distance equal to 1 + ε if the realisation of VG j we pick corresponds to the
ssignment of x j that ensures the clause C i is satisfied; otherwise, the discrete Fréchet distance is 1. In
ther words, if we consider π � VG j that corresponds to setting a (x j ), then 

d dF (π , AG i, j ) = 

{ 

1 + ε if assigning x j satisfies C i , 
1 otherwise. 

Proof. First of all, observe that as we only consider one-to-one couplings, the second points of
oth gadgets must be coupled; the distance between them is ‖ ( 2 , 0 ) − ( 1 , 0 )‖ = 1 . Thus, the discrete
réchet distance between the curves must be at least 1. 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Now consider the possible realisations of VG j . Say that we pick the realisation (0 , 0 . 5 + ε ) �
(2 , 0 ), which corresponds to assigning a (x j ) = True . If x j is a literal of C i , so C i [ a ] = True , then
y construction we know that AG i, j is ( 0 , −0 . 5 ) � ( 1 , 0 ). Since we consider only the one-to-one cou-
lings, we must couple the first points together, yielding the distance ‖ (0 , 0 . 5 + ε ) − (0 , −0 . 5 )‖ =
 + ε > 1 , so the discrete Fréchet distance in this case is 1 + ε , and indeed we picked the assignment
hat ensures that C i is satisfied. If instead ¬ x j is a literal of C i , so C i [ a ] = False , then we know
hat AG i, j is ( 0 , 0 . 5 ) � ( 1 , 0 ), and it is easy to see that, as ‖ (0 , 0 . 5 + ε ) − (0 , 0 . 5 )‖ = ε < 1 , we get
he discrete Fréchet distance of 1, and that we picked an assignment that does not ensure that C i 

s satisfied. 
A symmetric argument can be applied when we consider the realisation (0 , −0 . 5 − ε ) � (2 , 0 ) for

G j : if ¬ x j is a literal of C i , then we get the discrete Fréchet distance of 1 + ε and we picked an
ssignment that surely satisfies C i . 
Finally, consider the case when AG i, j = ( 0 , 0 ) � ( 1 , 0 ). This implies that assigning a value to x j 

as no effect on C i (i.e., a literal involving x j does not occur in C i ), so neither assignment (and nei-
her realisation of VG j ) would ensure that C i is satisfied. Also observe that ‖ (0 , 0 . 5 + ε ) − (0 , 0 )‖ =
‖ (0 , −0 . 5 − ε ) − (0 , 0 )‖ = 0 . 5 + ε < 1 , so both realisations yield the discrete Fréchet distance of 1. 

So, we can conclude that we get the distance 1 + ε if and only if the partial assignment of a value
o x j ensures that C i is satisfied; otherwise, we get the distance 1. �

Clause Level . We can repeat the construction, yielding a variable clause gadget and an assignment
lause gadget: 

VCG = (−2 , 0 ) � 
⊔ 

j ∈ [ m ] 

VG j , ACG i = (−1 , 0 ) � 
⊔ 

j ∈ [ m ] 

AG i, j . 

onsider the Fréchet distance between the two gadgets. Observe that coupling a synchronisation
oint from one gadget with a non-synchronisation point in the other yields a distance larger than
 + ε , whereas coupling synchronisation points pairwise and non-synchronisation points pairwise
ill yield the distance at most 1 + ε . So, we only consider one-to-one couplings—that is, we couple
oint i on one curve to point i on the other curve, for all i . 
Now, if a realisation corresponds to a satisfying assignment, then for some x j we have picked

he realisation that is opposite from the coupled point on the clause curve, yielding the bottleneck
istance of 1 + ε . If the realisation corresponds to a non-satisfying assignment, then the synchro-
isation points establish the bottleneck, yielding the distance 1. So, we can clearly distinguish
etween a satisfying and a non-satisfying assignment for a clause. It is crucial now that we show
he following. 

Lemma 3.5. Given a CNF-SAT formula C containing some clause C i and m variables x 1 , . . . , x m 

,
onsider curves α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for arbitrary precise curves α1 , α

′ 
1 , α2 , α

′ 
2 with

| α1 | = k and | α2 | = l . If an optimal coupling between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for any
ealisation of VCG has a pair (k + 1 , l + 1 ), then there is an optimal coupling that has pairs (k +
 , l + s ) for all s ∈ [2 m + 1] —that is, there is an optimal coupling that is one-to-one for any realisation
f VCG . 

Proof. Observe that both gadgets have exactly 2 m + 1 points. Suppose the optimal coupling
pt has a pair (k + 1 , l + 1 ), so it couples the first points of VCG and ACG i . If Opt is already
ne-to-one for all s ∈ [2 m + 1] , there is nothing to be done. Suppose now that it is one-to-one
ntil some 1 ≤ r < 2 m + 1 , so it has pairs (k + s , l + s ) for all s ∈ [ r ] , but it does not have a pair

( k + ( r + 1 ), l + ( r + 1 ) ) . Then one of the following cases occurs: 
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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• r = 2 q + 2 is even; then we know that the point (2 , 0 ) in VG q+1 is not coupled to the point
(1 , 0 ) in AG i,q+1 , but the preceding indecisive point is coupled to the assignment point.
Then either (2 , 0 ) is coupled to an assignment point, with the distance at least 2, or (1 , 0 ) is

coupled to an indecisive point, yielding the distance of 
√ 

1 + (0 . 5 + ε ) 2 > 1 . If we eliminate
that pair and instead couple (2 , 0 ) to (1 , 0 ), we will still have a valid coupling and obtain
the distance of 1 on this pair; thus, the new coupling is not worse that the original one, and
so it is also an optimal coupling that is one-to-one for all s ∈ [ r + 1] . 

• r = 2 q + 1 is odd; then we know that the indecisive point in VG q+1 is not coupled to the
assignment point in AG i,q+1 , but the preceding (2 , 0 ) and (1 , 0 ) (or (−2 , 0 ) and (−1 , 0 )) are
coupled. Then either Opt has a pair of the indecisive point and (1 , 0 ), or it has a pair of the
assignment point and (2 , 0 ). (The cases for (−1 , 0 ) and (−2 , 0 ) are symmetrical.) In either
case, we want to eliminate that pair from the coupling and instead add the pair of the
indecisive point and the assignment point, yielding a valid coupling that is one-to-one for
all s ∈ [ r + 1] . To complete the proof for this case, we need to show that such a coupling
is optimal. 

Consider the first possible coupling. The distance between the indecisive point and (1 , 0 ) 

is 
√ 

1 + (0 . 5 + ε ) 2 , whereas the distance between the indecisive and the assignment point
is ε , 0 . 5 + ε , or 1 + ε . As ε < 0 . 25 , note that 

0 . 25 + ε > 2 ε 

1 + 0 . 25 + ε + ε 2 > 1 + 2 ε + ε 2 

1 + (0 . 5 + ε ) 2 > (1 + ε ) 2 √ 

1 + (0 . 5 + ε ) 2 > 1 + ε, 

so our change to the optimal coupling will replace a pair with a pair of lower distance, so
the new coupling is at least as good as the original one, and thus optimal. 

Now consider the second coupling. The distance between the assignment point and (2 , 0 ) 
is at least 2, and 2 > 1 + ε > 0 . 5 + ε > ε , so again our change yields an optimal coupling. 

By induction on r , we conclude that the statement of the lemma holds. �

We can now use the two previous results to show the following. 

Lemma 3.6. Given a CNF-SAT formula C containing some clause C i and m variables x 1 , . . . , x m 

,
onstruct curves α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for arbitrary precise curves α1 , α

′ 
1 , α2 , α

′ 
2 with

 α1 | = k and | α2 | = l . If some optimal coupling between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for any
ealisation of VCG has a pair (k + 1 , l + 1 ) and d dF (α1 , α2 ) ≤ 1 and d dF (α

′ 
1 , α
′ 
2 ) ≤ 1 , then the discrete

réchet distance between the curves is 1 + ε for realisations of VCG that correspond to satisfying
ssignments for C i , and 1 for realisations that do not. In other words, if π � VCG corresponds to an
ssignment a and we only consider the restricted couplings, then 

d dF (α1 � π � α ′ 1 , α2 � ACG i � α ′ 2 ) = 
{ 

1 + ε if C i [ a ] = True , 
1 otherwise. 

Proof. First of all, since some optimal coupling between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for
ny realisation of VCG has a pair (k + 1 , l + 1 ), we can use Lemma 3.5 to find an optimal coupling
pt that is one-to-one on the subcurves corresponding to the gadgets. That means that we can,
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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ssentially, split the curves, if we consider only such restricted couplings: 

d dF (α1 � π � α ′ 1 , α2 � ACG i � α ′ 2 ) = max ( d dF ( α1 , α2 ) , d dF (π , ACG i ) , d dF (α
′ 
1 , α
′ 
2 )) 

= max ( 1 , d dF ( π , ACG i ) ) , 

here the last equality follows from the fact that d dF (π , ACG i ) ≥ 1 , since the first points are in a
oupling and have the distance 1, and from the assumption that d dF (α1 , α2 ) ≤ 1 and d dF (α

′ 
1 , α
′ 
2 ) ≤ 1 .

ote that here we do not restrict the coupling on α1 , α2 and α ′ 1 , α
′ 
2 . 

To obtain the end result, we need to consider the distance between π and ACG i under a one-to-
ne coupling. Using Lemma 3.4 , it is easy to see that if we have a (x j ) = True for some variable x j 
nd x j is a literal in C i , then C i [ a ] = True , and d dF (π , ACG i ) = 1 + ε ; similarly, if a (x j ) = False for
ome variable x j and ¬ x j is a literal in C i , then C i [ a ] = True , and d dF (π , ACG i ) = 1 + ε . If there is
o such x j , then C i [ a ] = False and d dF (π , ACG i ) = 1 . We conclude that the lemma holds. �

Formula Level . Next, we define the variable curve and the clause curve as follows: 

VC = ( 0 , 0 ) � VCG � ( 0 , 0 ), CC = 
⊔ 

i ∈ [ n ] 
ACG i . 

bserve that the synchronisation points at (−2 , 0 ) and (−1 , 0 ) ensure that for any optimal coupling
e match up VCG with some ACG i as described before. Also note that all the points on CC are
ithin distance 1 from (0 , 0 ). Therefore, we can always pick any one of n clauses to couple to VCG ,
nd couple the remaining points to (0 , 0 ); the bottleneck distance will then be determined by the
istance between VCG and the chosen ACG i . 
Now consider a realisation of VCG . If the corresponding assignment does not satisfy C , then
e can synchronise VCG with a clause that is false to obtain the distance of 1. If the assign-
ent corresponding to the realisation satisfies all the clauses, we must synchronise VCG with a

atisfied clause, which yields a distance of 1 + ε . We show the following important property of
ur construction. 

Lemma 3.7. Given a CNF-SAT formula C with n clauses and m variables, construct the curves VC
nd CC as defined earlier and consider a realisation (0 , 0 ) � π � (0 , 0 ) of curve VC , corresponding to
ome assignment a . Then, under no restrictions on the couplings except those imposed by the definition,

d dF ( ( 0 , 0 ) � π � (0 , 0 ), CC ) = 

{ 

1 + ε if C[ a ] = True , 
1 if C[ a ] = False . 

n other words, the discrete Fréchet distance is 1 + ε if the realisation corresponds to a satisfying as-
ignment, and is 1 otherwise. 

Proof. We can show this by proving that the premises of Lemma 3.6 are satisfied. 
First of all, note that all the points of CC are within distance 1 from (0 , 0 ). Furthermore, note

hat we can always give a coupling with the distance at most 1 + ε : couple (0 , 0 ) to (−1 , 0 ) from
CG 1 , then walk along realisation of VCG and ACG 1 in a one-to-one coupling, and then couple
he remaining points in CC to (0 , 0 ). As all the points of CC are within distance 1 from (0 , 0 ) and as
his is otherwise the construction of Lemma 3.6 , this coupling yields the discrete Fréchet distance
f at most 1 + ε for any realisation of VC . Therefore, any coupling that has pairs further away than
 + ε cannot be optimal. Observe that the only point within that distance from (−2 , 0 ) is (−1 , 0 ).
herefore, we only need to consider couplings that couple the first point of realisation of VCG to
he first point of some ACG i as possibly optimal. Thus, for each of the n couplings we get, we can
pply Lemma 3.6 . There are two cases to consider: 
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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• There is some gadget ACG i with the distance 1 to π under the one-to-one coupling. Then
we can choose that gadget to couple to π and couple all the other points in CC to (0 , 0 )
at the beginning or at the end of VC as suitable. As all the points of CC are within dis-
tance 1 from (0 , 0 ), this coupling will yield distance 1; as lower distance is impossible, this
coupling is optimal, so then d dF ( ( 0 , 0 ) � π � (0 , 0 ), CC ) = 1 . Observe that by our construc-
tion, this situation corresponds to the case when C i [ a ] = False , by Lemma 3.6 , and so
indeed C[ a ] = False . 

• The distance between any gadget ACG i and π under the one-to-one coupling is 1 + ε . Then,
no matter which gadget we choose to couple to π , we will get the distance of 1 + ε , so in
this case d dF ( ( 0 , 0 ) � π � (0 , 0 ), CC ) = 1 + ε . Note that, by our construction, this means that
C i [ a ] = True for all i ∈ [ n] ; therefore, indeed C[ a ] = True . 

As we have covered all the possible cases, we conclude that the lemma holds. �

We illustrate the gadgets of the construction in Figure 4 . We also show an example of the cor-
espondence between a Boolean formula and our construction in Figure 5 . 

3.1.2 Upper Bound Discrete Fréchet Distance on Indecisive Points. 

Theorem 3.8. The problem Upper Bound Discrete Fréchet for indecisive curves is NP-complete.

Proof. First of all, observe that if two realisations of lengths n and m are given as a certificate for
 ‘Yes’-instance of the problem, then one can verify the solution by computing the discrete Fréchet
istance between the realisations and checking that it is indeed larger than the threshold δ . The
omputation can be done in time Θ(mn), using the algorithm proposed by Eiter and Mannila [ 28 ].
herefore, the problem is in NP. 
Now suppose we are given an instance of CNF-SAT —that is, a CNF-SAT formula C with n clauses

nd m variables. We construct the curves VC and CC , as described previously, and get an instance
f Upper Bound Discrete Fréchet on curves VC and CC with the threshold δ = 1 . If the answer
s ‘Yes’, then we also output ‘Yes’ as an answer to CNF-SAT ; otherwise, we output ‘No’. 

Using Lemma 3.7 , we see that if there is some assignment a such that C[ a ] = True , then for the
orresponding realisation the discrete Fréchet distance is 1 + ε , and the other way around, if for
ome realisation we get the distance 1 + ε , then by our construction all the clauses are satisfied
nd C[ a ] = True ; thus, d max 

dF 
( VC , CC ) = 1 + ε . However, if there is no such assignment a , then for

ny assignment a there is some C i with C i [ a ] = False , yielding C[ a ] = False , and also for any
ealisation of VC there is some gadget ACG i that yields the discrete Fréchet distance of 1; thus,
 

max 
dF 

( VC , CC ) = 1 . Therefore, the formula C is satisfiable if and only if d max 
dF 

( VC , CC ) > 1 , and so
ur answer is correct. 
Furthermore, observe that the curves have 2 m + 2 and 2 mn + n points, respectively, and so the

nstance of Upper Bound Discrete Fréchet that gives the answer to CNF-SAT can be constructed
n polynomial time. Thus, we conclude that Upper Bound Discrete Fréchet for indecisive curves
s NP-hard; combining it with the first part of the proof shows that it is NP-complete. �

3.1.3 Upper Bound Fréchet Distance on Indecisive Points. We use the same construction as for
he discrete Fréchet distance. To do the same proof, we need to present arguments for the con-
inuous case that lead up to an alternative to Lemma 3.7 . For the arguments to work, we need to
urther restrict the range of ε to be [0 . 12 , 0 . 25 ). 
Consider the construction drawn in Figure 6 . The key points here are that (0 , 0 . 5 + ε ) is far from

ny point on the clause curve, and that (2 , 0 ) is only close enough to (1 , 0 ). We can present a lemma
imilar to Lemma 3.4 . 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 



Fréchet Distance for Uncertain Curves 29:15 

Fig. 6. Construction for ε = 0 . 15 . The shaded red area shows the points within distance 1 from the segment 
( 0 , −0 . 5 ) � ( 1 , 0 ). Observe that (0 , 0 . 5 + ε ) is outside that region, and that (1 , 0 ) is the only red point within 

distance 1 from (2 , 0 ). 
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Lemma 3.9. Given a clause C i and a variable x j that both occur in the CNF-SAT formula C , we
nly get the Fréchet distance equal to (1 + ε ) · 2 / √ 5 if the realisation of VG j we pick corresponds to the
ssignment of x j that ensures the clause C i is satisfied; otherwise, the Fréchet distance is 1. In other
ords, if we consider π � VG j that corresponds to setting a (x j ), then 

d F ( π , AG i, j ) = 

{ 

( 1 + ε ) · 2 √ 
5 

if assigning x j satisfies C i , 

1 otherwise. 

Proof. Consider the possible realisations of VG j . Suppose we pick the realisation (0 , 0 . 5 + ε ) �
(2 , 0 ), which corresponds to assigning a (x j ) = True . If x j is a literal in C i , so C i = True , then by
onstruction we know that AG i, j is ( 0 , −0 . 5 ) � ( 1 , 0 ). As noted in Figure 6 , the distance between

(0 , 0 . 5 + ε ) and any point on (0 , −0 . 5 ) � (1 , 0 ) is larger than 1. To be more specific, the distance be-
ween the point (x , y) and the line defined by (x 1 , y 1 ) � (x 2 , y 2 ) can be determined using a standard
ormula as 

d = 
|x (y 2 − y 1 ) − y (x 2 − x 1 ) + x 2 y 1 − x 1 y 2 | √ 

(x 2 − x 1 ) 2 + (y 2 − y 1 ) 2 
. 

n our case, we get 

d = 
|0 − (0 . 5 + ε ) · (1 − 0 ) − 1 · 0 . 5 − 0 | √ 

(1 − 0 ) 2 + (0 + 0 . 5 ) 2 
= 

2 · (1 + ε ) 
√ 

5 
. 

s the point (0 , 0 . 5 + ε ) must be aligned with some point on AG i, j , the Fréchet distance we get in
his case cannot be smaller than d . Furthermore, it is easy to see that the point (0 , 0 . 5 + ε ) is the
urthest point from AG i, j ; thus, we get that Fréchet distance is exactly d . 
However, if ¬ x j is a literal in C i , then by construction we know that AG i, j is ( 0 , 0 . 5 ) � ( 1 , 0 ). As

oted in Figure 6 , the distance between (2 , 0 ) and any point on ( 0 , 0 . 5 ) � ( 1 , 0 ) is at least 1, with
he smallest distance achieved at (1 , 0 ). It is clear that this is the furthest pair of points on the two
adgets in this case; thus, we get the Fréchet distance of 1. 
A symmetric argument can be applied when we consider the realisation (0 , −0 . 5 − ε ) � (2 , 0 ) for

G j : if ¬ x j is a literal in C i , then we get the Fréchet distance of d and we picked an assignment that
atisfies C i ; in the other case, we get that C i is not necessarily satisfied and the Fréchet distance
s 1. 

Finally, consider the case when AG i, j = ( 0 , 0 ) � ( 1 , 0 ). Again, this implies that assigning a value
o x j has no effect on C i , so neither assignment (and neither realisation of VG j ) would ensure
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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hat C i is satisfied. Also observe that both realisations give rise to curves that are entirely within
istance 1 of ( 0 , 0 ) � ( 1 , 0 ), yielding the Fréchet distance of 1. �

We can now naturally get a lemma similar to Lemma 3.6 . 

Lemma 3.10. Given a CNF-SAT formula C containing some clause C i and m variables x 1 , . . . , x m 

,
onstruct curves α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for arbitrary precise curves α1 , α

′ 
1 , α2 , α

′ 
2 with

 α1 | = k and | α2 | = l . If some optimal alignment ϕ1 , ϕ2 between α1 � VCG � α ′ 1 and α2 � ACG i � α ′2
or any realisation of VCG has some value t such that ϕ1 (t ) = k + 1 and ϕ2 (t ) = l + 1 and d F (α1 , α2 ) ≤
 and d F (α

′ 
1 , α
′ 
2 ) ≤ 1 , then the Fréchet distance between the curves is (1 + ε ) · 2 / √ 5 for realisations of

CG that correspond to satisfying assignments for C i , and 1 for other realisations. In other words, if
� VCG corresponds to assignment a and we only consider the restricted alignments, then 

d F (α1 � π � α ′ 1 , α2 � ACG i � α ′ 2 ) = 
{ 

(1 + ε ) · 2 √ 
5 

if C i [ a ] = True , 

1 otherwise. 

Proof. First of all, observe that as we traverse VCG , we need to align (2 , 0 ) with (1 , 0 ) to obtain
n optimal alignment. Therefore, essentially, the traversal can be split into m parts, each of which
orresponds to traversing VG j and AG i, j at the same time for all j ∈ [ m] . We can use Lemma 3.9 to
ote that if some variable x j is assigned a value that makes the clause C i satisfied, then the Fréchet
istance becomes (1 + ε ) · 2 / √ 5 ; if that is not the case for any variables, then we can traverse the
ntire curve, as well as α1 and α ′ 1 by linearly interpolating our position between the vertices of the
ur ves and other wise using the alignment derived from the coupling of the discrete case, while
taying within distance 1 of the other curve, yielding the Fréchet distance of 1. The distance also
annot be smaller than 1 due to aligning (2 , 0 ) and (1 , 0 ). �

Although this proof is a bit less formal than that of Lemma 3.6 , its validity should be sufficiently
lear from the geometric considerations described earlier in this section. 
Now we can provide a lemma that mirrors Lemma 3.7 . 

Lemma 3.11. Given a CNF-SAT formula C with n clauses and m variables, construct the curves VC
nd CC as defined earlier and consider a realisation (0 , 0 ) � π � (0 , 0 ) of curve VC , corresponding to
ome assignment a . Then 

d F ( ( 0 , 0 ) � π � ( 0 , 0 ), CC ) = 

{ 

( 1 + ε ) · 2 √ 
5 

if C[ a ] = True , 

1 if C[ a ] = False . 

n other words, the Fréchet distance is (1 + ε ) · 2 / √ 5 if the realisation π corresponds to a satisfying
ssignment, and is 1 otherwise. 

Proof. First of all, observe that any point of CC is within distance 1 of (0 , 0 ); furthermore,
hen starting to traverse π , we must match (−2 , 0 ) with (−1 , 0 ) in an optimal alignment. Thus, the
remise of Lemma 3.10 is satisfied, and, using reasoning similar to that of Lemma 3.7 , we observe
hat an optimal alignment chooses one of the clauses to traverse in parallel with the variable curve,
nd so if there is a clause that is not satisfied, then we get the Fréchet distance of 1, and if all of
hem are satisfied, then all of them yield the Fréchet distance of (1 + ε ) · 2 / √ 5 . �

Finally, we can show the main result. 

Theorem 3.12. The problem Upper Bound Continuous Fréchet for indecisive curves is
P-complete. 

Proof. First of all, observe that if two realisations of lengths n and m are given as a certificate
or a ‘Yes’-instance of the problem, then one can verify the solution by checking that the Fréchet
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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istance between the realisations is larger than the threshold δ . The computation can be done in
ime Θ(mn), using the algorithm proposed by Alt and Godau [ 6 , 34 ]; so the problem is in NP. 
Now suppose we are given an instance of CNF-SAT —that is, a CNF-SAT formula C with n clauses

nd m variables. We construct the curves VC and CC , as described previously, and get an instance
f Upper Bound Continuous Fréchet on curves VC and CC with the threshold δ = 1 . If the
nswer is ‘Yes’, then we also output ‘Yes’ as an answer to CNF-SAT ; otherwise, we output ‘No’. 
Using Lemma 3.11 , we can see that if there is an assignment a such that C[ a ] = True , then for the

orresponding realisation the Fréchet distance is (1 + ε ) · 2 / √ 5 , and the other way around, if for some
ealisation we get the distance (1 + ε ) · 2 / √ 5 , then by our construction all the clauses are satisfied
nd C[ a ] = True ; thus, d max 

F ( VC , CC ) = (1 + ε ) · 2 / √ 5 . However, if there is no such assignment a ,
hen for any assignment a there is some C i with C i [ a ] = False , yielding C[ a ] = False , and also
or any realisation of VC there is some gadget ACG i that yields the Fréchet distance of 1; thus,
 

max 
F ( VC , CC ) = 1 . Therefore, the formula C is satisfiable if and only if d max 

F ( VC , CC ) > 1 , and so
ur answer to the CNF-SAT instance is correct. 
Furthermore, as before, the instance of Upper Bound Discrete Fréchet that gives the answer

o CNF-SAT can be constructed in polynomial time. Thus, we conclude that Upper Bound Con-
inuous Fréchet for indecisive curves is NP-hard; combining it with the first part of the proof
hows that it is NP-complete. �

3.1.4 Expected Fréchet Distance on Indecisive Points. We show that finding the expected dis-
rete Fréchet distance is #P-hard under the uniform distribution by providing a polynomial-time
eduction from #CNF-SAT —that is, the problem of finding the number of satisfying assignments
o a CNF-SAT formula. Define the following problem and its continuous counterpart. 

Problem 3.13 (Expected Discrete Fréchet). Find d E (U ) 
dF 

(U , V ) for uncertain curves U , V . 

Problem 3.14 (Expected Continuous Fréchet). Find d E (U ) 
F (U , V ) for uncertain curves U , V .

The main idea is to derive an expression for the number of satisfying assignments in terms of

 

E (U ) 
dF 

( VC , CC ). This works, since there is a one-to-one correspondence between Boolean variable
ssignment and a choice of realisation of VC , so counting the number of satisfying assignments
orresponds to finding the proportion of realisations yielding large Fréchet distance. We can es-
ablish the result for Expected Continuous Fréchet similarly. 

Theorem 3.15. The problems Expected Discrete Fréchet and Expected Continuous Fréchet
or indecisive curves are #P-hard. 

Proof. Suppose we are given an instance of the #CNF-SAT problem—that is, a CNF-SAT for-
ula C with n clauses and m variables. Denote the (unknown) number of satisfying assignments
f C by N . We can construct the curves VC and CC in the same way as previously. We then get
n instance of Expected Discrete Fréchet on indecisive curves under the uniform distribution.
ssuming we solve it and get d E (U ) 

dF 
( VC , CC ) = μ, we can now compute N : 

N = (μ − 1 ) · 2 
m 

ε 
. 

 is then the output for the instance of #CNF-SAT that we were given. Clearly, construction of
he curves can be done in polynomial time, and so can the computation of N ; hence, the reduction
akes polynomial time. 
We still need to show that the result we obtain is correct. For each assignment, there is exactly

ne realisation of the curve VC . Furthermore, as we choose the realisation of each indecisive point
niformly and independently, all the realisations of VC have equal probability of 2 −m . There are
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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 satisfying assignments, and each of the corresponding realisations yields the discrete Fréchet
istance of 1 + ε . In the remaining 2 m − N cases, the distance is 1. Using the definition of expected
alue, we can derive 

μ = d E (U ) 
dF 

( VC , CC ) = N · 2 −m · (1 + ε ) + (2 m − N ) · 2 −m · 1 = 1 + N · ε 
2 m 

. 

hen it is easy to see that indeed N = (μ − 1 ) · 2 m 

ε 
. So, we get the correct number of satisfying

ssignments, if we know the expected value under the uniform distribution. Therefore, Expected
iscrete Fréchet for indecisive curves is #P-hard. 
One can derive a very similar formula to show that Expected Continuous Fréchet is also

P-hard for indecisive curves. We can use almost the same reduction as for the discrete case, so
iven an instance of #CNF-SAT (CNF-SAT formula C with n clauses and m variables), we construct
he two curves, solve Expected Continuous Fréchet to obtain the value of μ, and compute 

N = 2 m · ( μ − 1 ) ·
√ 

5 

2 ( 1 + ε ) −
√ 

5 

s the output for #CNF-SAT . To show that the output is correct, note that 

μ = 2 −m · N · 2 
√ 

5 
· (1 + ε ) + 2 −m · (2 m − N ) · 1 = 1 + 2 −m · N ·

( 
2 
√ 

5 
(1 + ε ) − 1 

) 
, 

o we can express N as 

N = 2 m · ( μ − 1 ) ·
√ 

5 

2 ( 1 + ε ) −
√ 

5 
. 

gain, the reduction is correct and can be done in polynomial time, so Expected Continuous
réchet for indecisive curves is #P-hard. �

We use the uniform distribution; however, we only need to compute the probability of picking
 realisation that corresponds to a satisfying assignment, N · 2 −m above. If we can do so for a dif-
erent distribution, then the rest of the proof does not require modifications to show #P-hardness.

3.1.5 Upper Bound Discrete Fréchet Distance on Imprecise Points. Here we consider imprecise
oints modelled as disks and as line segments; the results and their proofs turn out to be very
imilar. We denote the disk with the centre at p ∈ R 

d and radius r ≥ 0 as D (p, r ). We denote the
ine segment between points p 1 and p 2 by S (p 1 , p 2 ). 

Disks . We use a construction very similar to that of the indecisive points case, except now
e change the gadget containing a non-degenerate indecisive point so that it contains a non-
egenerate imprecise point, for all j ∈ [ m] : 

VG j = D ( ( 0 , 0 ), 0 . 5 + ε ) � (2 , 0 ). 
ssentially, the two original indecisive points are now located on the points realising the diameter
f the disk. 
We can reuse the proof leading up to Theorem 3.8 , if we can show the following. 

Lemma 3.16. Suppose d max 
dF 

( VC , CC ) = ν . If one considers all the realisations π of VC that yield
 dF (π , CC ) = ν , then among them there will always be a realisation that only places the imprecise
oint realisations at either (0 , 0 . 5 + ε ) or (0 , −0 . 5 − ε ). 

Proof. First of all, note that the points ( 2 , 0 ) and ( 1 , 0 ) are still in the curves in the same quality
s before, so they must be coupled, and hence the lowest discrete Fréchet distance achievable with
ny realisation is 1. 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Now consider a realisation of an imprecise point. Suppose that all the clause assignment points
or that imprecise point are placed at (0 , −0 . 5 ). Then geometrically it is obvious that the distance
s maximised by placing the realisation at (0 , 0 . 5 + ε ); if there is a realisation that achieves the best
ossible value ν without doing this, then we can move this point and still get ν . 
Suppose that some clause assignment points are at (0 , −0 . 5 ) and some at (0 , 0 . 5 ). As the real-

sation comes from the disk of radius 0 . 5 + ε , there is no realisation that is further than 1 away
rom both assignment points; therefore, to maximise the distance, we have to choose one of the
wo locations and then the previous case applies. 
So, it is clear that, from an arbitrary optimal realisation, moving to the (correct) indecisive point

ealisation will still yield an optimal realisation for the maximum discrete Fréchet distance; thus,
he statement of the lemma holds. �

Line Segments . We change the gadget to be, for all j ∈ [ m] , 

VG j = S ( ( 0 , −0 . 5 − ε ), (0 , 0 . 5 + ε )) � (2 , 0 ). 
gain, the two original indecisive points are now located on the ends of the segment; moreover,

he segment is a strict subset of the disk. 
We can state a similar lemma. 

Lemma 3.17. Suppose d max 
dF 

( VC , CC ) = ν . If one considers all the realisations π of VC that yield
 dF (π , CC ) = ν , then among them there will always be a realisation that only places the imprecise
oint realisations at either (0 , 0 . 5 + ε ) or (0 , −0 . 5 − ε ). 

Proof. Since the line segments include these points and are subsets of the disks, the statement
f Lemma 3.16 immediately yields this result. �

So, now we can state the following for both models. 

Theorem 3.18. The problem Upper Bound Discrete Fréchet for imprecise curves modelled as
ine segments or as disks is NP-hard. 

Proof. As shown in Lemma 3.16 and Lemma 3.17 , for the same CNF-SAT formula, the upper
ound discrete Fréchet distance on indecisive and imprecise points is equal for our construction.
o, trivially, Upper Bound Discrete Fréchet is NP-hard for imprecise curves. �

3.1.6 Upper Bound Fréchet Distance on Imprecise Points. We use exactly the same construction
s in the previous section. The argument here follows the previous ones very closely, so we can
mmediately state the following theorem. 

Theorem 3.19. The problem Upper Bound Continuous Fréchet for imprecise curves modelled
s line segments or as disks is NP-hard. 

Proof. Note that we can apply exactly the same argument as the one in Lemma 3.16 and
emma 3.17 to reduce this problem to the one on indecisive points. Then, we can apply the same
rgument as in the proof of Theorem 3.18 to conclude that the problem is NP-hard. �

3.1.7 Expected Discrete Fréchet Distance on Imprecise Points. We can also consider the value of
he expected Fréchet distance on imprecise points. We show the result only for points modelled as
ine segments; in principle, we believe that for disks a similar result holds, but the specifics of our
eduction do not allow for clean computations. 
We cannot immediately use our construction: we treat subsegments at the ends of the impreci-

ion segments as True and False , but we have no interpretation for points in the centre part of a
egment. So, we want to separate the realisations that pick any such invalid points. To that aim, we
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 7. The curve FG j hops between (0 , 0 ) and (1 , 0 ) for every variable x k (in black) except when k = j; in the 
latter case, the curve goes to ( 0 , 0 . 5 ), ( 0 , −0 . 5 ), and back to (1 , 0 ) (in green). Consider the line segment on the 
variable curve representing x j (in red). As a consequence, for any realisation of the variable clause gadget 
such that the realisation of x j falls within S ( ( 0 , −0 . 5 ), (0 , 0 . 5 )), the gadget FG j can be aligned with VCG to 
obtain Fréchet distance 1. 
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A

ntroduce extra gadgets to the clause curve that act as clauses but catch these invalid realisations,
o each of them yields the distance of 1. Now we have three distinct cases: realisation is satisfying,
on-satisfying, or invalid. For every j ∈ [ m] , define 

FG j = ( −1 , 0 ) � 
⊔ 

k ∈[ j−1] 

(
( 0 , 0 ) � ( 1 , 0 ) 

)
� ( 0 , 0 . 5 ) � ( 0 , −0 . 5 ) � ( 1 , 0 ) � 

⊔ 

k ∈ [ m ] \ [ j] 

(
( 0 , 0 ) � ( 1 , 0 ) 

)
. 

o, we define a clause gadget that ignores all the variables except for x j and then features both
true’ and ‘false’ for x j . The intuition is that any realisation corresponding to the invalid state of a
ariable will be close to both (0 , 0 . 5 ) and (0 , −0 . 5 ), and every other variable value is close to (0 , 0 ),
o aligning the gadget FG j with the variable curve will yield a small Fréchet distance if x j is in an
nvalid state. See also Figure 7 . We then define the clause curve as 

CC = 
⊔ 

i ∈ [ n ] 
ACG i � 

⊔ 

j ∈ [ m ] 

FG j . 

e can now choose to couple one of the FG clauses to the variable curve. As before, due to the
ynchronisation points, we can never get the Fréchet distance below 1. If one of the realisations x j 
f the segments falls into the interval [ (0 , −0 . 5 ), (0 , 0 . 5 )] , then it will be not further away than 1
rom both the corresponding points on FG j ; all the other points, being in the middle at (0 , 0 ), are
uaranteed to be at most 0 . 5 + ε < 1 away from their coupled point. So, the one-to-one coupling 2

ill yield the discrete Fréchet distance of 1; thus, the optimal discrete Fréchet distance in this case
s 1. Therefore, we only need to consider the situations when all the realisations happen to fall in
ither the interval ( ( 0 , 0 . 5 ), (0 , 0 . 5 + ε )] or [ (0 , −0 . 5 − ε ), (0 , −0 . 5 )). We will treat the first interval
s True and the second interval as False . Denote the number of satisfying assignments by N . To
nd the expression for the expected discrete Fréchet distance, we need to consider three cases: 

• At least one realisation of m variables falls within the y-interval [ −0 . 5 , 0 . 5] . Note that the
realisation on each segment is uniform and independent of other segments. Under the
 Technically, it is one-to-one on all points except the realisation corresponding to x j ; that one has to be coupled to both 

0 , 0 .5 ) and (0 , −0 .5 ) in FG j . 
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uniform distribution, we get 

Pr [ at least one realisation from [ −0 . 5 , 0 . 5] ] = 1 −
∏ 

j ∈ [ m ] 

2 ε 

1 + 2 ε 
= 1 −

( 
2 ε 

1 + 2 ε 

) m 

. 

Note that in each such case, we get the discrete Fréchet distance of 1, as discussed before. 
• All realisations fall outside the y-interval [ −0 . 5 , 0 . 5] , and they correspond to a non-

satisfying assignment. Each specific non-satisfying assignment corresponds to picking val-
ues on the specific interval, either ( ( 0 , 0 . 5 ), (0 , 0 . 5 + ε )] or [ (0 , −0 . 5 − ε ), (0 , −0 . 5 )), so 

Pr [ specific assignment ] = 
∏ 

j ∈ [ m ] 

ε 

1 + 2 ε 
= 

( 
ε 

1 + 2 ε 

) m 

. 

There are 2 m − N such assignments, and each of them contributes the value of 1. 
• All realisations fall outside the y-interval [ −0 . 5 , 0 . 5] , and they correspond to a satisfying

assignment. Again, the probability of getting a particular assignment is ( ε / 1 + 2 ε ) m , and there
are N such assignments. Now they contribute values distinct from 1; still, the optimum is
contributed by one of the new clauses, and then it will be defined by the realisation closest
to (0 , 0 ). This is shown in the following lemma. 

Lemma 3.20. Consider some realisation π � VC where each value can be interpreted either as True
r False and the corresponding assignment satisfies the formula. Pick j such that the subcurve of π
ealising VG j contains the point closest to (0 , 0 ), at location (0 , 0 . 5 + ε ′ ) or (0 , −0 . 5 − ε ′ ) for some
 

′ > 0 . Then the optimal coupling establishes a coupling between π and FG j , and the discrete Fréchet
istance is d dF (π , CC ) = 1 + ε ′ . 

Proof. First of all, note that we still have to couple the synchronisation points and we cannot
ave discrete Fréchet distance below 1. So, we need to consider only the couplings of π with the
adgets of CC . Note that if we couple FG j to π , we get discrete Fréchet distance of 1 + ε ′ . Recall that
e consider only satisfying assignments, so, if we consider an arbitrary subcurve ACG i , then there

s some variable x � that satisfies the corresponding clause, and so the realisation of that variable
s 1 + ε ′′ away from the corresponding assignment point. Therefore, such a coupling will yield the
iscrete Fréchet distance of 1 + ε ′′ ≥ 1 + ε ′ . Finally, it is easy to see that choosing some FG k with
 � j will also yield some distance 1 + ε ′′ ≥ 1 + ε ′ . So, the statement of the lemma holds. �

So, here we need to find E [ min j ∈ [ m ] (1 + ε 
′ 
j )] with ε ′ j sampled uniformly from (0 , ε] ; we can

ephrase this to 1 + ε · E [ min j ∈ [ m ] u j ] with u j sampled uniformly from (0 , 1] . It is a standard result
hat the minimum now is geometrically distributed, so we get E [ min j ∈ [ m ] u j ] = 1 / 1 +m , and hence
he expected contribution is 1 + ε / 1 +m . 
We can bring the three cases together to find 

d E (U ) 
dF 

( VC , CC ) 

= 1 ·
( 
1 −

(
2 ε 

1 + 2 ε 

)m 

) 
+ 1 · (2 m − N ) ·

( ε 

1 + 2 ε 

)m 

+

(
1 +

ε 

1 +m 

)
· N ·

( ε 

1 + 2 ε 

)m 

= 1 + N · ε m+1 

(1 +m) · (1 + 2 ε ) m 

. 

o, if we were to compute d E (U ) 
dF 

( VC , CC ) = μ, then the number of satisfying assignments is 

N = ( μ − 1 ) · ( 1 +m) · ( 1 + 2 ε ) m 

ε m+1 
. 
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his is easy to compute in polynomial time, and our construction can still be done in polynomial
ime; hence, the result follows. 

Theorem 3.21. The problem Expected Discrete Fréchet for imprecise curves modelled as line
egments under the uniform distribution is #P-hard. 

We have stated the results for the uniform distribution; however, we conjecture that this con-
truction could work for some other distributions. The requirements are that we need to be able
o compute the probabilities of falling into each region; that all realisations are equiprobable, or
e have some other way to compute the probability of getting a satisfying realisation; and that
e can compute E [ min j ∈ [ m ] u j ] under the appropriate distribution of u j . 

.2 Lower Bound Fréchet Distance 

n this section, we prove that computing the lower bound continuous Fréchet distance is NP-
ard for uncertainty modelled with line segments. This contrasts with the algorithm for indecisive
urves, given in Section 4.1 , and with the algorithm previously suggested by Ahn el al. [ 5 ] for the
iscrete Fréchet distance. Unlike the upper bound proofs, this reduction uses the NP-hard problem
ubset-Sum . We consider the following problems. 

Problem 3.22 (Lower Bound Continuous Fréchet). Given an uncertain curve U with m ver-
ices, a polygonal curve σ with n vertices, and a threshold δ > 0 , decide if d min 

F (U , σ ) ≤ δ . 

Problem 3.23 (Subset-Sum). Given a set S = {s 1 , . . . , s n } of n positive integers and a target integer
, decide if there exists an index set I such that 

∑ 

i ∈I s i = τ . 

As a polygonal curve is an uncertain curve, proving Problem 3.22 is NP-hard implies the corre-
ponding problem with two uncertain curves is also NP-hard. 

3.2.1 An Intermediate Problem. We start by reducing Subset-Sum to a more geometric inter-
ediate curve-based problem. 

Definition 3.24. Let α > 0 be some value, and let π = 〈 π1 , . . . , π2 n+1 〉 be a polygonal curve. We
all π an α-regular curve if for all i ∈ [2 n + 1] , the x-coordinate of πi is i · α . Let Y = {y 1 , . . . , y n }
e a set of n positive integers. Call π a Y -respecting curve if 

(1) For all i ∈ [ n] , π passes through the point ( ( 2 i + 1 / 2 ) α , 0 ) . 
(2) For all i ∈ [ n] , π either passes through the point ( ( 2 i − 1 / 2 )α , 0 ) or ( ( 2 i − 1 / 2 ) α , −y i ) . 

Intuitively, Definition 3.24 requires π to pass through ( ( 2 i + 1 / 2 ) α , 0 ) as it reflects the y-
oordinate about the line y = 0 (Figure 8 ). Thus, if the curve also passes through ( ( 2 i − 1 / 2 ) α , 0 ) ,
he two reflections cancel each other. If it passes through ( ( 2 i − 1 / 2 ) α , −y i ) , the following lemma
rgues that y i shows up in the final vertex height. 

Lemma 3.25. Let π be a Y -respecting α-regular curve, and let I be the subset of indices such that π
asses through ( ( 2 i − 1 / 2 )α , −y i ) for all i ∈ I . If π1 = (α , 0 ), then π2 n+1 = ( ( 2 n + 1 )α , 2 

∑ 

i ∈I y i ). 

Proof. For j ∈ [ n] , let I j = {i ∈ I | i ≤ j}, and let βj = 
∑ 

i ∈I j y i , where β0 = 0 . We argue by in-

uction that π2 j+1 = ( ( 2 j + 1 ) α , 2 βj ) , thus yielding the lemma statement when j = n. For the base
ase, j = 0 , the statement becomes π1 = (α , 0 ), which is true by assumption of the lemma. 
Assume that π2 j−1 = ( ( 2 j − 1 ) α , 2 βj−1 ) . Suppose that j � I . In this case, since π is Y -

especting, it passes through points ( ( 2 j − 1 / 2 )α , 0 ) and ( ( 2 j + 1 / 2 ) α , 0 ) . This implies π2 j =

 2 jα , −2 βj−1 ) and π2 j+1 = ( ( 2 j + 1 )α , 2 βj−1 ) = ( ( 2 j + 1 ) α , 2 βj ) . Now suppose that j ∈ I . In this case,
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 8. Passing through ( ( 2 i − 1 / 2 ) α , 0 ) does not change the height, and passing through ( ( 2 i − 1 / 2 ) α , −y i ) 
adds 2 y i . 
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t must pass through points ( ( 2 j − 1 / 2 )α , −y j ) and ( ( 2 j + 1 / 2 ) α , 0 ) . This implies π2 j = (2 jα , 2 βj−1 −
 · (2 βj−1 + y j )) = (2 jα , −2 (βj−1 + y j )) and π2 j+1 = ((2 j + 1 )α , 2 (βi−1 + y j )) = ((2 j + 1 ) α , 2 βj ) . See
igure 8 . �

The following corollary is needed in the next section and follows from Lemma 3.25 . 

Corollary 3.26. For a set Y = { y 1 , . . . , y n } , let M = 
∑ n 

i= 1 y i . For any vertex πi of a Y -respecting
-regular curve, its y-coordinate is at most 2 M and at least −2 M . 

Problem 3.27 (RR-Curve). Given a set Y = {y 1 , . . . , y n } of n positive integers, a value α = α (Y ) >
 , and an integer τ , decide if there is a Y -respecting α-regular curve π = 〈 π1 , . . . , π2 n+1 〉 such that

1 = (α , 0 ) and π2 n+1 = ((2 n + 1 ) α , 2 τ ) . 

By Lemma 3.25 , Subset-Sum immediately reduces to the preceding problem by setting Y = S .
ote that for this reduction, it suffices to use any positive constant for α ; however, we allow α to
epend on Y , as this is ultimately required in our reduction to Problem 3.22 . 

Theorem 3.28. For any α (Y ) > 0 , RR-Curve is NP-hard. 

3.2.2 Reduction to Lower Bound Fréchet Distance. Let α , τ , Y = { y 1 , . . . , y n } be an instance
f RR-Curve . In this section, we show how to reduce it to an instance ( δ , U , σ ) of Prob-
em 3.22 , where the uncertain regions in U are vertical line segments. The main idea is to use
 to define an α-regular curve, and to use σ to enforce that it is Y -respecting. Let M = 

∑ n 
i= 1 y i .

hen U = 〈 V 1 , . . . , V 2 n+1 〉 , where V i is a vertical segment whose horizontal coordinate is i · α
nd whose vertical extent is the interval [ −2 M , 2 M ] . By Corollary 3.26 , we have the following
imple observation. 

Observation 3.29. The set of all Y -respecting α-regular curves is a subset of Real (U ). 

Thus, the main challenge is to define σ to enforce that the realisation is Y -respecting. To that
nd, we first describe a gadget forcing the realisation to pass through a specified point. 

Definition 3.30. For any point p = (x , y) ∈ R 

2 and value δ > 0 , let the δ -gadget at p, denoted by
 δ (p), be the curve (x , y) � (x , y + δ ) � (x , y − δ ) � (x , y + δ ) � (x , y) . See Figure 9 (a). 

Lemma 3.31. Let p = (x , y) ∈ R 

2 be a point, and let S be any line segment. If d F ( S, g δ ( p)) ≤ δ , then
 must pass through p. 
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Fig. 9. Depiction of gadgets g δ ( p), lcg δ ( p), and ucg δ ( p). Dashed circles represent zero-area points; the red 

(blue) square represents the starting (ending) point. 
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Proof. In order, g δ (p) visits the points (x , y + δ ) , (x , y − δ ) , and (x , y + δ ) . Let a = (a x , a y ),
 = (b x , b y ), c = (c x , c y ) be the points from S which get aligned with these respective points under
n optimal Fréchet alignment. If the Fréchet distance is at most δ , then b y ≤ y ≤ a y , c y . If S has a
ositive slope with respect to the order along S , then also c y ≥ b y ≥ a y , so we have a y = b y and
o a = b. However, if a = b, then this point must be p itself, as p is the only point with distance
t most δ from both (x , y + δ ) and (x , y − δ ) . If S has a negative slope, then c y ≤ b y ≤ a y , so now
 y = c y and b = c , and again this must be point p. Finally, if S is horizontal, then a = b = c = p, as
his is the only point on a horizontal segment aligned with both (x , y + δ ) and (x , y − δ ) . �

For our uncertain curve to be Y -respecting, it must pass through all the points of the form
 ( 2 i + 1 / 2 ) α , 0 ) . This condition is satisfied by placing a δ -gadget at each such point, as follows from
emma 3.31 . The second condition for a curve to be Y -respecting is that it passes through ( ( 2 i −
 / 2 ) α , 0 ) or ( ( 2 i − 1 / 2 ) α , −y i ) . This condition is much harder to encode and requires putting several
-gadgets together to create a composite gadget. 

Definition 3.32. For any point p = (x , y) ∈ R 

2 and value δ > 0 , let p l 
δ
= (x − δ/ 2 , y ) and p r 

δ
= (x +

/ 2 , y). Define the δ -lower composite gadget at p , denoted lcg δ (p ), to be the curve g δ (p ) � p r 
δ
�

 δ (p ) � p l 
δ
� p r 

δ
. See Figure 9 (b). Define the δ -upper composite gadget at q, denoted ucg δ (q), to be

he curve g δ (q) � q l 
δ
� g δ (q). See Figure 9 (c). Define the δ -composite gadget of p and q, denoted

g δ (p, q), to be the curve lcg δ (p) � ucg δ (q). 

To use the composite gadget, we centre the lower gadget at height −y i and the upper gadget
irectly above it at height zero. As the two gadgets are on top of each other, ultimately, we require
ur uncertain curve to go back and forth once between consecutive vertical line segments; we
ave the following key property. 
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Fig. 10. On the left, λi . On the right, the two possible solutions with Fréchet distance at most δ . The top 
(respectively, bottom) corresponds to an α-regular curve passing through q (respectively, p). 
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Lemma 3.33. Let p = (p x , −p y ) and q = (p x , 0 ) be points in R 

2 . Let π = 〈 a, b, c, d〉 be a three-
egment curve such that b x > p x + δ and c x < p x − δ . If d F ( π , cg δ ( p, q)) ≤ δ , then 

(1) the segment ab must pass through p, 
(2) the segment cd must pass through q, and 

(3) the segment bc must either pass through p or through q. 

Proof. Recall from Definition 3.32 that cg δ ( p, q) = g δ ( p) � p r 
δ
� g δ (p) � p l 

δ
� p r 

δ
� g δ (q) �

 

l 
δ
� g δ (q), and that the gadgets g δ (p) and g δ (q) lie entirely on the vertical line at p x = q x . Thus,

s b x > p x + δ and c x < p x − δ , each occurrence of g δ (p) or g δ (q) in cg δ (p, q) must map either
ntirely before or after b, and similarly entirely before or after c . 
Moreover, as cg δ (p, q) starts with g δ (p) and b x > p x + δ , this implies that a maps to p and g δ (p)
aps to a subsegment of ab, which by Lemma 3.31 implies that ab passes through p. Similarly, as

g δ (p, q) ends with g δ (q) and c x < q x − δ , cd passes through q. 
Finally, the portion of cg δ (p, q) that maps to the segment bc must contain a point on the vertical

ine at p x = q x (since b x > p x + δ and c x < p x − δ ). By the construction of cg δ (p, q), this point
ust lie on one of the (middle) g δ (p) or g δ (q) gadgets. As we already argued, such gadgets must
ap entirely to one side of b or c , so Lemma 3.31 implies that bc must pass through p or q. �

As bc shares an endpoint with ab and cd , the following corollary is immediate. It is used later
o argue that while our uncertain curve goes back and forth between consecutive vertical lines, it
efines an α-regular curve. See Figure 10 used for Theorem 3.36 . 

Corollary 3.34. If d F ( π , cg δ ( p, q)) ≤ δ , then either ab and bc are on the same line, or cd and bc
re on the same line. 

The following lemma acts as a rough converse of Lemma 3.33 . 

Lemma 3.35. Let p = (p x , −p y ) and q = (p x , 0 ) be points in R 

2 , with p y ≤ δ/ 4 . Let π = 〈 p, b, c, q〉
e a curve such that p x + δ < b x ≤ p x + 1 . 1 δ , p x − 1 . 1 δ ≤ c x < p x − δ , and −δ/ 2 ≤ b y , c y ≤ δ/ 2 . If bc
asses through either p or q, then d F ( π , cg δ ( p, q)) ≤ δ . 
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Proof. Recall that cg δ ( p, q) = g δ ( p) � p r 
δ
� g δ (p) � p l 

δ
� p r 

δ
� g δ (q) � q l 

δ
� g δ (q). First, ob-

erve that all the points on the prefix g δ (p ) � p r 
δ

of cg δ (p , q) are at most δ away from p, and

hus can all be mapped to the starting point of π . Similarly, all points on the suffix q l 
δ
� g δ (q) of

g δ (p, q) are at most δ away from q, and thus can all be mapped to the ending point of π . Thus, it

uffices to argue that d F (π , σ ) ≤ δ , where σ = p r 
δ
� g δ (p) � p l 

δ
� p r 

δ
� g δ (q) � q l 

δ
. 

It is easiest to describe the rest of the mapping in a similar manner—that is, as an alternating
equence of moves, where we stand still at a single point on one curve while moving along a con-
iguous subcurve from the other curve, and then switching curves. We now describe this sequence,
hich differs based on whether bc passes through p or q. Ultimately, the mappings are valid, since

or each move, all points on the subcurve have distance at most δ to the fixed point on the other
urve. Thus, we now simply describe the moves without reiterating this property (distance at most
) which is validating each move. 
First, suppose that bc passes through p, in which case π = 〈 p, b, p, c, q〉 . In this case, we first map

he prefix 〈 p, b, p〉 of π to p r 
δ
. Next, we map the prefix p r 

δ
� g δ (p) � p l 

δ
of σ to p. Then we map the

uffix 〈 p , c , q〉 of π to p l 
δ
. Finally, we map the suffix p l 

δ
� p r 

δ
� g δ (q) � q l 

δ
of σ to q. 

Now suppose that bc passes through q, in which case π = 〈 p, b, q, c, q〉 . In this case, we first map
he prefix p r 

δ
� g δ (p) � p l 

δ
� p r 

δ
of σ to p. Next, we map the prefix 〈 p, b, q〉 of π to p r 

δ
. Then we map

he suffix p r 
δ
� g δ (q) � q l 

δ
of σ to q. Finally, we map the suffix 〈 q, c, q〉 of π to q l 

δ
. �

Theorem 3.36. Lower Bound Continuous Fréchet (Problem 3.22 ) is NP-hard, even when the
ncertain regions are all equal-length vertical segments with the same height and the same horizontal
istance (to the left or right) between adjacent uncertain regions. 

Proof. To prove NP-hardness, we give a reduction from RR-Curve , which is NP-hard by
heorem 3.28 . Let α (Y ), τ , Y = {y 1 , . . . , y n } be an instance of RR-Curve . For the reduction, we
et δ = 4 M , where M = 

∑ n 
i= 1 y i . Note that Theorem 3.28 allows us to choose how to set α (Y ), and

n particular we set α = 2 . 1 δ = 8 . 4 M . (More precisely, the properties we need are that α > 2 δ and
≥ 4 M .) We now describe how to construct U and σ . 
Let V = {V 1 , . . . , V 2 n+1 } be a set of vertical line segments where all upper (respectively, lower)

ndpoints of the segments have height 2 M (respectively, −2 M), and for all i , the x-coordinate
f V i is iα . Let U = 〈 U 1 , . . . , U 4 n+1 〉 be the uncertain curve such that U 4 n+1 = V 2 n+1 , and for
ll i ∈ [ n] , U 4 i−3 = V 2 i−1 , U 4 i−2 = V 2 i , U 4 i−1 = V 2 i−1 , and U 4 i = V 2 i . For i ∈ [2 n + 1] , define the
oints z i = (iα , 0 ), and for i ∈ [ n] , define q i = ( ( 2 i − 1 / 2 ) α , 0 ) , q ′ i = ( ( 2 i +

1 / 2 ) α , 0 ) , and p i = ( ( 2 i −
 / 2 ) α , −y i ) . For a given value i ∈ [ n] , consider the curve λi = z 2 i−1 � cg δ (p i , q i ) � z 2 i � g δ (q ′ i ) (see
igure 10 (a)). Let s = (α , 0 ) and t = ( ( 2 n + 1 ) α , 2 τ ) . Then the curve σ is defined as 

σ = g δ (s ) � λ1 � λ2 � · · · � λn � g δ (t ). 

First, suppose there is a curve π ′ = 〈 π ′ 1 , . . . , π ′ 4 n+1 〉 � U such that d F (π
′ , σ ) ≤ δ . Let π =

 π1 , . . . , π2 n+1 〉 be the curve such that π2 n+1 = π
′ 
4 n+1 , and for all i ∈ [ n] , π2 i−1 = π4 i−3 and π2 i = π4 i .

e argue that π is an α-regular Y -respecting curve with π1 = s and π2 n+1 = t . 
Observe that π is α-regular, as by the definition of U , πi is a point on the vertical segment

 i . Additionally, as σ begins (respectively, ends) with g δ (s ) (respectively, g δ (t )), by Lemma 3.31 ,

1 = π
′ 
1 = s (respectively, π2 n+1 = π

′ 
4 n+1 = t ). Thus, it remains to argue that π is Y -respecting. To

hat end, consider the portion λi of σ for some i . 
First, consider the gadget g δ (q ′ i ) from λi lying between z 2 i and z 2 i+1 . By our choice of α , this

adget is strictly more than δ away from both V 2 i and V 2 i+1 , and so the portion of π ′ aligned with
 δ (q ′ i ) must lie between π ′ 4 i = π2 i and π ′ 4 i+1 = π2 i+1 . Thus, by Lemma 3.31 , π must pass through
 

′ 
i . 
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Now consider the gadget cg δ (p i , q i ) = lcg (p i ) � ucg (q i ) from λi lying between z 2 i−1 and z 2 i .
his gadget is strictly more than δ away from both V 2 i−1 and V 2 i , implying both that the portion of
′ aligned with cg δ (p i , q i ) lies between π ′ 4 i−3 and π ′ 4 i , and that all three segments in the subcurve
rom π ′ 4 i−3 to π

′ 
4 i must in part map to cg δ (p i , q i ). Thus, by Lemma 3.33 , π ′ 4 i−3 π

′ 
4 i−2 passes through

 i , and π ′ 4 i−1 π
′ 
4 i passes through q i . By Corollary 3.34 , either π ′ 4 i−2 = π

′ 
4 i or π

′ 
4 i−3 = π

′ 
4 i−1 , and thus

′ 
4 i−3 π

′ 
4 i = π2 i−1 π2 i passes through either p i or q i (see Figure 10 (b)). Thus, π is Y -respecting. 

Now suppose that there is an α-regular Y -respecting curve π = 〈 π1 , . . . , π2 n+1 〉 such that π1 = s
nd π2 n+1 = t . Let int (p i ) be the intersection with V 2 i of the line through π2 i−1 and p i , and let int (q i )
e the intersection with V 2 i−1 of the line through π2 i and q i . Let π ′ = 〈 π ′ 1 , . . . , π ′ 4 n+1 〉 be the curve
uch that π ′ 4 n+1 = π2 n+1 , and for all i ∈ [ n] , π ′ 4 i−3 = π2 i−1 , π

′ 
4 i−2 = int (p i ), π

′ 
4 i−1 = ρ, and π ′ 4 i = π2 i ,

here ρ = π2 i−1 if π passes through q i and ρ = int (q i ) if π passes through p i . See Figure 10 (b). 
Let mid (S ) be the midpoint of a line segment S . Observe that by construction, mid (π ′ 4 i−3 π

′ 
4 i−2 ) =

 i , mid (π ′ 4 i−1 π
′ 
4 i ) = q i , and mid (π ′ 4 i−2 π

′ 
4 i−1 ) = p i (respectively, q i ) if π passed through q i (respec-

ively, p i ). Let γi = 〈 p i , π ′ 4 i−2 , π ′ 4 i−1 , q i 〉 , which by the previous argument is a subcurve of π ′ . 
To argue that d F (π

′ , σ ) ≤ δ , we now describe how to walk along the curves π ′ and σ so that
t all times the distance between the positions on the respective curves is at most δ . Note that γi 

atisfies the conditions of Lemma 3.35 , implying that d F ( cg δ (p i , q i ), γi ) ≤ δ , and thus for all i , we
an map cg δ (p i , q i ) to γi . For the other parts of the curves, first observe that with the exception
f the cg δ (p i , q i ) gadgets, σ is x-monotone—that is, as we walk along it, the x-coordinate never
ecreases. Moreover, with the exception of the γi portions, π ′ is x-monotone. Finally, observe that
g δ (p i , q i ) and γi have the same starting and ending points, and π ′ and σ both start at s and end at
. Thus, with the exception of the cg δ (p i , q i ) and γi portions, we can map all points from σ with a
iven x-coordinate to the point on π ′ with the same x-coordinate. It is easy to verify that this maps
oints between the curves that are at most δ apart. First, as π ′ is identical to π outside of the γi , and
ince π is Y -respecting, π ′ passes through s , t , and q ′ i for all i . Thus, the mapping stands still on π ′

t these respective points as σ executes the g δ (s ), g δ (t ), and g δ (q ′ i ) gadgets. The vertical distance
lsewhere between the curves is at most 4 M by Corollary 3.26 , and by construction 4 M ≤ δ . �

 ALGORITHMS FOR LOWER BOUND FRÉCHET DISTANCE 

n the previous section, we showed that the decision problem for d min 
F is hard, given an uncertain

urve with line-segment-based imprecision model and a polygonal curve. Interestingly, the same
roblem is solvable in polynomial time for indecisive curves. This result highlights a distinction
etween d min 

F and d max 
F and between the different uncertainty models. To tackle d min 

F with general
ncertain curves, we develop approximation algorithms. 

.1 Exact Solution for Indecisive Curves 

he key idea is that we can use a dynamic programming approach similar to that for computing
he Fréchet distance [ 6 ] and only keep track of realisations of the last indecisive point considered
o far. (Note that one can also reduce the problem to the Fréchet distance between paths in DAG
omplexes, studied by Har-Peled and Raichel [ 38 ], but this yields a slower running time.) We present
he approach for an indecisive and a precise curve, and then generalise it to two indecisive curves.

4.1.1 Indecisive and Precise. Consider the setting with an indecisive curve U = 〈 U 1 , . . . , U m 

〉
ith m points and a precise curve σ = 〈 q 1 , . . . , q n 〉 with n points; each indecisive point has k
ossible realisations, U i = { p 1 i , . . . , p 

k 
i } . We want to solve the decision problem ‘Is the lower bound

réchet distance between the curves below some threshold δ?’, so d min 
F (U , σ ) ≤ δ? 

Consider the free-space diagram for this problem; suppose U is positioned along the horizontal
xis and σ along the vertical axis. Just as for the precise curve Fréchet distance, we are interested
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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n the reachable intervals on the cell boundary, since the free space in the cell interior is convex;
owever, now we care about the different realisations of the points, so we get a set of reachable
oundaries instead of a single cell boundary. We can adapt the standard dynamic program to deal
ith this problem. We propagate reachability column by column. An important aspect is that we
nly need to make sure that a reachable point is reachable by a monotone path in the free-space
iagram induced by some valid realisation; we do not need to remember which one, since we never
eturn to the previous points on the indecisive curve, and we also do not care about the realisations
hat yield a distance higher than δ—a significant deviation from the upper bound Fréchet distance.
First of all, define Feas (i, �) to be the feasibility column for the realisation p � i of U i . This is a

et of intervals on the vertical cell boundary line in the free-space diagram, corresponding to the
ubintervals of one curve within distance δ from a point on the other curve. It is computed exactly
he same way as for the precise Fréchet distance—it depends on the distance between a point and a
ine segment and gives a single interval on each vertical cell boundary. We can compute feasibility
or the right boundary of all cells in a column for a given realisation, thus obtaining Feas (i, �). 
Consider the standard dynamic program for computing the Fréchet distance on precise curves.

epresent it so that it operates column by column, grouping propagation of reachable intervals
etween vertically aligned cells. Call that procedure Prop (R), where R is the reachability column
or point i and the result is the reachability column for point i + 1 on one of the curves. Again, the
eachability column is a set of intervals on a vertical line, indicating the points in the free-space
iagram that are reachable from the lower left corner with a monotone path. 
Define Reach (i, s ) to be the reachability column induced by p s i , where a point is in a reachability

nterval if it can be reached by a monotone path for some realisation of the previous points. Then
e compute 

Reach ( i + 1 , �) = Feas ( i + 1 , �) ∩ 
⋃ 

� ′ ∈[ k] 

Prop ( Reach (i, � ′ ) ) . 

o, we iterate over all the realisations of the previous column, thus getting precise cells, and simply
ropagate the reachable intervals as in the precise Fréchet distance algorithm. For the column
orresponding to U 1 , we set one reachable interval of a single point at the bottom for all realisations
 

s 
1 for which ‖p s 1 − q 1 ‖ ≤ δ . 
We now show correctness of this approach. 

Lemma 4.1. For all i > 1 , 

Reach (i, �) = 
{
y 
���� ∃ p � 1 1 , . . . ,p 

� i−1 
i−1 

[
d F 

(( ⊔ 

j ∈[ i−1] 
p 
� j 
j 

)
� p � i , σ [1 : �y �] � σ (y ) 

)
≤ δ

]}
. 

o, for any point inside a reachability interval, there is a realisation that defines a free-space diagram
nd a monotone path through that diagram to this point. 

Proof. We show this by induction on i . To compute Reach (2 , �) for any fixed � ∈ [ k] , we start
rom a single point in the bottom left corner of the free space for the realisations of U 1 that are
lose enough to q 1 , and we propagate the reachability through the resulting precise free-space
olumn. Clearly, the statement holds in this case; if some realisation of U 1 is too far from q 1 , then
he reachability column is correctly empty. 
Now assume the statement holds for Reach (i, � ′ ) for all � ′ ∈ [ k] . Note that all the values that we

dd to Reach (i + 1 , �) for some fixed � are feasible, since we explicitly take the feasibility column
nd intersect it with the propagated reachability. Furthermore, any point y in Reach (i + 1 , �) comes
s a result of propagation from some Reach (i, � ′ ) for some � ′ . So, there is at least one point y ′ in the

eachability column i for realisation p � 
′ 

i from which there is a monotone path to y. Since we know
here was a realisation up to that point of the two curves that enables a monotone path from the
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tart of the free space diagram to y ′ , and since point U i+1 is independent from the previous points,
nd since we have a fixed valid realisation for points U i and U i+1 that enables the continuation of
he monotone path from y ′ to y, we conclude that the statement holds for the column i + 1 . �

Therefore, querying the upper boundary of all reachability intervals for U m 

will give us the
nswer to the decision problem. 
Now we analyse the complexity of the reachability column. A particular right cell boundary is

ntirely reachable if the bottom of the cell is reachable; combined with the feasibility interval, we
et one reachability interval per cell. Furthermore, if a cell is only reachable from the left, since
e consider monotone paths, each realisation of the previous points induces a reachable interval
f [ y ′ , 1] for some 0 ≤ y ′ ≤ 1 if you assume the boundary coordinate range to be [0 , 1] ; therefore,
aking a union of such intervals still gives us at most one reachability interval per cell. So, in
he worst case, we store Θ(mk ) intervals. To propagate, we consider all combinations of the two
uccessive indecisive points for all cells, yielding the running time of Θ(mnk 2 ). 
Furthermore, observe that we can also store a realisation of the previous point on the indecisive

urve with the interval that corresponds to the lowest reachable point on the current interval. If
e then store all the reachability columns, we can later backtrack and find a specific curve that

ealises the Fréchet distance below the threshold δ . This increases the storage requirements to
(mnk ); the running time stays the same. We summarise the results next. 

Theorem 4.2. Given an indecisive curve U = 〈 U 1 , . . . , U m 

〉 , where each indecisive point has k
ptions, U i = { p 1 i , . . . , p 

k 
i } , a precise curve σ = 〈 q 1 , . . . , q n 〉 , and a threshold δ > 0 , we can decide if

 

min 
F ( U , σ ) ≤ δ in time Θ( mnk 2 ) in the worst case, using Θ(mk ) space. We can also report the reali-
ation of U realising the Fréchet distance at most δ , using Θ(mnk ) space instead. Call the algorithm
hat solves the problem and reports a fitting realisation Decider (δ , U , σ ). 

4.1.2 Indecisive and Indecisive. Now consider the setting where instead of σ we are given curve
 = 〈 V 1 , . . . , V n 〉 with k options per indecisive point, V i = { q 1 i , . . . , q 

k 
i } . We can adapt the algorithm

f the previous section by propagating in column-major order, but cell by cell. 
A cell boundary now depends on three indecisive points, so there are k 3 options per bound-

ry to consider. We now store the possibilities for m − 1 right cell boundaries, k 3 realisations per
oundary, and a single horizontal boundary, with also k 3 options. So, we use Θ(mk 3 ) storage. 
Whenever we propagate to one further cell, we need to find the reachability for the top and the

ight boundary of the cell based on the left and the lower boundary of the cell. We again go over all
he combinations of the realisations of the points that define the cell, yielding k 4 possible precise
ells to consider. We aggregate the values as before, as for both the top and the right boundary
nly three points matter. 
Since we solve the same problem as in the previous section and never have to revisit a previously

onsidered point, it should be clear that this approach is correct. However, now we take Θ(k 4 ) time
er cell, so in the worst case we need Θ(mnk 4 ) time to complete the propagation. 

Theorem 4.3. Given two indecisive curves U = 〈 U 1 , . . . , U m 

〉 and V = 〈 V 1 , . . . , V n 〉 , where each
ndecisive point has k options, U i = { p 1 i , . . . , p 

k 
i } and V i = { q 1 i , . . . , q 

k 
i } , and a threshold δ > 0 , we can

ecide if d min 
F (U , V ) ≤ δ in time Θ(mnk 4 ) in the worst case, using Θ(mk 3 ) space. 

.2 Approximation by Grids 

iven a general uncertain curve U and a polygonal curve σ , in this section we show how to find a
urve π � U such that d F ( π , σ ) ≤ ( 1 + ε ) d min 

F (U , σ ) . This is accomplished by carefully discretis-
ng the regions, in effect approximately reducing the problem to the indecisive case, for which we
hen can use Theorem 4.2 . 
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For simplicity, assume the uncertain regions have constant complexity. Throughout the section,
e assume d min 

F (U , σ ) > 0 , justified by the following lemma. 

Lemma 4.4. Let U be an uncertain curve with m vertices and σ a polygonal curve with n vertices.
hen one can determine whether d min 

F (U , σ ) = 0 in O (mn) time. 

Proof. Observe that if for some j, σj lies on the segment σj−1 σj+1 , then d F (σ , σ
′ ) = 0 , where

′ = 〈 σ1 , . . . , σj−1 , σj+1 , . . . , σn 〉 . So we can assume that no vertex of σ lies on the segment between
ts neighbours, as otherwise we can remove that vertex and get the same result in terms of the
réchet distance. Thus, at every vertex σ turns, implying that if there exists π � U such that
 F (π , σ ) = 0 , then for all j, σj must be aligned with some πi . 
This observation leads to a simple decision procedure. Define 

s (j ) = {i ∈ [ m] | d F (π [1 : i] , σ [1 : j] ) = 0 }, 
o a set of indices on σ that yield the zero Fréchet distance between the correspondent pre-
x curves. Then we can go through σ one vertex at a time, maintaining s (j ), and ultimately
 

min 
F (U , σ ) = 0 if and only if m ∈ s (n). 
Initially, s (1 ) = {i ∈ [ m] | ∀k ∈ [ i] : σ1 ∈ U k }, which is easy to test and compute. For j > 1 , s (j )

an be computed from s (j − 1 ) as follows. Let Stab j (k ) be the set of indices i > k such that there
xist points p k+1 , . . . , p i−1 , appearing in order along σj−1 σj , where p � ∈ U � for all k < � < i . (Note
hat we always have k + 1 ∈ Stab j ( k ).) So, Stab j ( k ) is the set of indices i of uncertainty regions,
tarting from k + 1 , such that all the regions between k and i are stabbed by the segment σj−1 σj in
he correct order. Then we have 

s (j ) = {i | σj ∈ U i ∧ i ∈ Stab j ( k ) with k = max 
�<i 
{� ∈ s ( j − 1 )} } . 

rom this definition of s (j ), it is easy to see that it can be computed in O (m) time given s (j − 1 ),
nd thus the total time required is O (mn). In particular, if s (j − 1 ) is non-empty, then let z be
he minimum value in s (j − 1 ). We now incrementally loop over values of i , where initially i =
 + 1 , and add i to s (j ) if σj ∈ U i and i ∈ Stab j (z). Note that in constant time per iteration, we
an maintain sufficient information to determine if i ∈ Stab j (z), as we describe further. If at any
teration i = z ′ + 1 for z ′ ∈ s (j − 1 ), we forget Stab j (z) (as we no longer need to stab those regions)
nd start maintaining and checking Stab j (z 

′ ). 
Note that the intersection of any U � with σj−1 σj is a constant number of intervals along σj−1 σj .

hen Stab j (k ) can be computed incrementally as follows. First, let p k+1 be the earliest point of

j−1 σj ∩ U k+1 . For some i > k + 1 , let p i be the earliest point of σj−1 σj ∩ U i , which is at least as far
long σj−1 σj as p i−1 (if it exists). If such p i exists, then we know that i ∈ Stab j (k ). Maintaining this
nformation indeed takes constant time per iteration. �

4.2.1 Decision Procedure. An algorithm is a (1 + ε )-decider for Problem 3.22 , if when
 

min 
F (U , σ ) ≤ δ , it returns a curve π � U such that d F ( π , σ ) ≤ ( 1 + ε )δ , and when d min 

F (U , σ ) >
1 + ε )δ , it returns False (in between either answer is allowed). In this section, we present a (1 + ε )-
ecider for Problem 3.22 . We make use of the following standard observation. 

Observation 4.5. Given a curve π = 〈 π1 , . . . , πn 〉 , call a curve σ = 〈 σ1 , . . . , σn 〉 an r -perturbation
f π if ‖πi − σi ‖ ≤ r for all i ∈ [ n] . Since ‖πi − σi ‖, ‖πi+1 − σi+1 ‖ ≤ r , all points of the segment σi σi+1

re within distance r of πi πi+1 . For segments, this implies that d F (πi πi+1 , σi σi+1 ) ≤ r , which implies
hat d F (π , σ ) ≤ r by composing the mappings for all i . 

The high-level idea is to replace U with the set of grid points it intersects; however, as our
ncertainty regions may avoid the grid points, we need to include a slightly larger set of points. 
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 11. An example of the sets from Definition 4.6 . The region U is shown in blue, and Thick (U , r ) is in 

orange. The grid points of GT r (U ) are in blue, and the corresponding set of expanded r -grid points EG r (U ) 
are in red. 
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Definition 4.6. Let U be a compact subset of R 

d . We now define the set of points EG r (U ) which

e call the expanded r -grid points of U (Figure 11 ). Let B ( 
√ 

d r ) denote the ball of radius 
√ 

d r , centred

t the origin. Let Thick ( U , r ) = U ⊕ B ( 
√ 

d r ), where ⊕ denotes the Minkowski sum. Let G r denote
he regular grid of side length r , and let GT r (U ) denote the subset of grid vertices from G r that fall
n Thick (U , r ). Finally, we define 

EG r (U ) = {p | p = arg min 

q∈U 

‖q − x ‖ for x ∈ GT r (U ) }. 

In the following observation, we use the terms defined previously. 

Observation 4.7. For any x ∈ U , there is a point p ∈ EG r (U ) such that ‖p − x ‖ ≤ 2 
√ 

d r . 

Proof. For any point x ∈ U , let д be its nearest grid point in G r . Since ‖x − д‖ ≤
√ 

d r , we

now that д ∈ Thick ( U , r ) = U ⊕ B ( 
√ 

d r ). So let p be the point in U which is closest to д; thus,

 ∈ EG r (U ). Therefore, ‖ x − p‖ ≤ ‖ x − д‖ + ‖д − p‖ ≤
√ 

d r +
√ 

d r = 2 
√ 

d r . �

Lemma 4.8. There is a (1 + ε )-decider for Problem 3.22 in d dimensions with running time O (mn ·
(1 + ( Δ/ εδ ) 2 d ) ) , for 0 < ε ≤ 1 and constant d , where Δ = max i ∈ [ m ] diam (U i ) is the maximum diameter
f an uncertain region. 

Proof. It helps with the analysis if εδ < Δ. To ensure this, we first do the following. Select
n arbitrary curve x � U . Now using the standard O (mn) time exact decider for the Fréchet
istance [ 6 ], query whether d F ( x , σ ) ≤ ( 1 + ε )δ . If the decider returns d F ( x , σ ) ≤ ( 1 + ε )δ , then
e can return x as our solution. Otherwise, d F ( x , σ ) > ( 1 + ε )δ , and we next query whether
 F (x , σ ) ≤ Δ + δ . By Observation 4.5 and the triangle inequality, d F (x , σ ) ≤ Δ + d min 

F (U , σ ). Thus,

f the decider returns Δ + δ < d F (x , σ ) , then δ < d min 
F (U , σ ) , and so we return False . Otherwise,

he two decider calls tell us that (1 + ε ) δ < d F (x , σ ) ≤ Δ + δ , implying εδ < Δ. 
Let r = εδ/ 2 

√ 
d , and for any U i of U , let E i = EG r (U i ) denote the expanded r -grid points of U i , as

efined in Definition 4.6 . Consider the indecisive curve U 

′ = 〈 E 1 , . . . , E m 

〉 . We call the algorithm
ecider ( ( 1 + ε )δ , U 

′ , σ ) of Theorem 4.2 and return whatever it returns—that is, if it returns a
urve, then we return that curve, and if it returns that d min 

F ( U 

′ , σ ) > ( 1 + ε )δ , then we return that

 

min 
F ( U , σ ) > ( 1 + ε )δ . 

First, observe that E i ⊆ U i , and thus d min 
F (U , σ ) ≤ d min 

F (U 

′ , σ ). So if d min 
F (U , σ ) > (1 + ε )δ ,

hen the decider must return d min ( U 

′ , σ ) > ( 1 + ε )δ , as desired. Now suppose that d min (U , σ ) ≤
F F 
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. In this case, we argue that our algorithm outputs a curve π ′ � U such that d F (π
′ , σ ) ≤

1 + ε )δ . It suffices to argue that there exists some curve π ′ � U 

′ such that d F ( π
′ , σ ) ≤ ( 1 +

)δ , as then Theorem 4.2 guarantees the decider outputs a curve (which is in Real (U ), as
t is a superset of Real ( U 

′ )). So let π = 〈 π1 , . . . , πm 

〉 be the curve in Real (U ) realising the
ower bound Fréchet distance to σ—that is, d F (π , σ ) = d min 

F (U , σ ). Let π ′ = 〈 π ′ 1 , . . . , π ′ m 

〉 be
he curve such that π ′ i = min x ∈E i ‖ x − πi ‖ . Note that by Observation 4.7 , we have ‖πi − π ′ i ‖ ≤
 

√ 

d r for all i . Thus, π ′ is a 2 
√ 

d r -perturbation of π as described in Observation 4.5 , and so

 F (π , π
′ ) ≤ 2 

√ 

d r = εδ . As the Fréchet distance satisfies the triangle inequality, we therefore have
 F (π
′ , σ ) ≤ d F (π , σ ) + d F (π , π

′ ) ≤ δ + εδ = (1 + ε )δ . Thus, as π ′ � U 

′ , when our algorithm calls
ecider ( ( 1 + ε )δ , U 

′ , σ ), it returns a curve. 
For the running time, recall we first spent O (mn) time to ensure εδ < Δ, in which case we must

ound the number of points in each E i . By Definition 4.6 , for all i , the number of points in E i is
ounded by the number of grid points in the region Thick (U i , r ). This region is the Minkowski sum

f a compact set of diameter at most Δ with a radius 
√ 

d r ball, so its diameter is at most Δ + 2 
√ 

d r .
ecall that d is a constant; thus, the number of grid points and hence |E i | is 

O 

( (Δ + 2 
√ 

d r 

r 

)d 
) 
= O 

( (
2 
√ 

d Δ

εδ
+ 2 
√ 

d 
)d 

) 
= O 

( ( Δ

εδ
+ 1 

)d 
) 
= O 

( ( Δ

εδ

)d 
) 
. 

hus, by Theorem 4.2 , the call to Decider takes time O (mn( Δ/ εδ ) 2 d ), which bounds the total time
f our algorithm. �

4.2.2 Optimisation. 

Theorem 4.9. Let U be an uncertain curve with m vertices, σ a polygonal curve with n vertices,
nd δ = d min 

F (U , σ ). Then for any 0 < ε ≤ 1 , there is an algorithm which returns a curve π � U 

uch that d F ( π , σ ) ≤ ( 1 + ε )δ , whose running time is O (mn( log (mn) + ( Δ/ εδ ) 2 d )) for constant d , where
= max i ∈ [ m ] diam (U i ) is the maximum diameter of an uncertain region. 

Proof. Fix an arbitrary curve x � U . First, we compute the Fréchet distance between x and
. If d F (x , σ ) ≥ Δ + Δ/ ε , then we return x as our solution. Intuitively, this means that the Fréchet
istance is large when compared to the diameter of the uncertain regions, and so any realisation
e can pick works as a (1 + ε )-approximation. To see why this is valid, let ˆ π � U be an optimal
olution—that is, d F ( ̂  π , σ ) = d min 

F (U , σ ). Note that x is a Δ-perturbation of ˆ π , and thus by the
riangle inequality and Observation 4.5 , 

d F (x , σ ) ≤ d F (x , ˆ π ) + d F ( ̂  π , σ ) ≤ Δ + d F ( ̂  π , σ ). 

f Δ + Δ/ ε ≤ d F (x , σ ) , then plugging in the preceding inequality implies that Δ ≤ ε · d F ( ̂  π , σ ), which
n turn implies that 

d F (x , σ ) ≤ Δ + d F ( ̂  π , σ ) ≤ (1 + ε ) · d F ( ̂  π , σ ). 

So suppose that d F ( x , σ ) < ( 1 + 1 / ε )Δ, in which case 

d min 
F ( U , σ ) = d F ( ̂  π , σ ) ≤ d F ( x , σ ) + d F ( ̂  π , x ) < 

(
1 +

1 

ε 

)
Δ + Δ = 

(
2 +

1 

ε 

)
Δ = γ . 

Let GridDecider (U , σ , ε ′ , δ ) denote the (1 + ε ′ )-decider of Lemma 4.8 , which correctly returns
ither False (which implies d min 

F (U , σ ) > δ ) or a curve in Real (U ) with the Fréchet distance at
ost (1 + ε ′ )δ to σ . We perform a decreasing exponential search using GridDecider . Specifically,

tarting at i = 0 , we call GridDecider (U , σ , ε / 4 , γ/ (1 + ε / 4 ) i ). If GridDecider returns a curve (i.e.,
rue ), we increment i by 1 and repeat, and otherwise if GridDecider outputs False , we return
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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he curve from iteration i − 1 . (Note that GridDecider cannot return False when i = 0 , as this
ould imply that d min 

F (U , σ ) > γ .) 
Let j denote the index when the algorithm stops. So we know that GridDecider (U , σ , ε / 4 , γ/ (1 +

 / 4 ) j ) returned False , and GridDecider (U , σ , ε / 4 , γ/ (1 + ε / 4 ) j−1 ) returned a curve π � U such that
 F ( π , σ ) ≤ ( 1 + ε / 4 ) · γ/ (1 + ε / 4 ) j−1 . Therefore, 

γ

(1 + ε / 4 ) j 
< d min 

F ( U , σ ) ≤ d F ( π , σ ) ≤ ( 1 + ε / 4 ) 
γ

(1 + ε / 4 ) j−1 
= 

γ

(1 + ε / 4 ) j−2 
, 

hich implies that 

d F ( π , σ ) ≤
(
1 +

ε 

4 

)2 

d min 
F ( U , σ ) = 

(
1 +

ε 

2 
+

ε 2 

16 

)
· d min 

F ( U , σ ) < ( 1 + ε ) · d min 
F (U , σ ). 

As for the running time, by Lemma 4.8 , the time for the i-th call to GridDecider is 

O 

( 
mn 

( (1 + ε / 4 ) i Δ

εγ

)2 d 
) 
= O 

( 
m n 

( (1 + ε / 4 ) i Δ

ε (2 + 1 / ε )Δ

)2 d 
) 
= O 

( 
m n 

(
1 +

ε 

4 

)2 di 
) 
. 

Recall that δ = d min 
F (U , σ ) and j is the index the last time GridDecider is called. By the preced-

ng argument, δ ≤ γ/ (1 + ε / 4 ) j−2 , which implies that j − 2 ≤ log 1 +ε / 4 ( γ/ δ ). Recall that d is a constant;
s GridDecider is called j + 1 times, and the running times for the calls to GridDecider form an
ncreasing geometric series, the total time for all calls to GridDecider is 

O 

( 
mn 

(
1 +

ε 

4 

)2 d ·
(
3 +log 1 + ε 

4 
( γ/ δ ) 

) ) 
= O 

( 
mn 

(
1 +

ε 

4 

)6 d (
1 +

ε 

4 

)2 d ·log 1 + ε 
4 

( γ/ δ ) 
) 

= O 

( 
mn 

(
1 +

ε 

4 

)2 d ·log 1 + ε 
4 

( γ/ δ ) 
) 
= O 

( 
mn 

(γ
δ

)2 d ·log 1 + ε 
4 

(1 +ε / 4 ) 
) 

= O 

( 
mn 

(γ
δ

)2 d 
) 
= O 

( 
mn 

( (2 + 1 / ε )Δ

δ

)2 d 
) 
= O 

( 
m n 

( Δ

εδ

)2 d 
) 
. 

s it takes O ( mn log ( mn)) time to initially compute d F (x , σ ) using the algorithm of Alt and Go-
au [ 6 ], the total running time is O (mn( log (mn) + ( Δ/ εδ ) 2 d ) ) . �

If the polygonal curve σ is replaced with an uncertain curve V , it is easy to see that by dis-
retising both U and V , the same analysis gives an algorithm to compute d min 

F (U , V ). The only
ifference now is that we must use Theorem 4.3 instead of Theorem 4.2 , yielding the following. 

Corollary 4.10. Let U and V be uncertain curves with m and n vertices, respectively, and δ =
 

min 
F (U , V ). Then for any 0 < ε ≤ 1 , there is an algorithm returning curves π � U and σ � V such

hat d F ( π , σ ) ≤ ( 1 + ε )δ , whose running time is O (mn( log (mn) + ( Δ/ εδ ) 4 d )) for constant d , where Δ
s the maximum diameter of an uncertain region. 

.3 Greedy Algorithm 

ere we argue that there is a simple 3-decider for Problem 3.22 , running in near-linear time in the
lane. Roughly speaking, the idea is to greedily and iteratively pick πi ∈ U i so as to allow us to
et as far as possible along σ . Without any assumptions on U , this greedy procedure may walk
oo far ahead and get stuck. Thus, in this section, we assume that consecutive U i are separated, so
s to ensure optimal solutions do not lag too far behind. Here we also assume that U i are convex
i.e., imprecise) and have constant complexity, as it simplifies certain definitions. Throughout this
ection, let U = 〈 U 1 , . . . , U m 

〉 be an uncertain curve and let σ = 〈 σ1 , . . . , σn 〉 be a polygonal curve.

Definition 4.11. Call U γ -separated if for all i ∈ [ m − 1] , ‖U i −U i+1 ‖ > γ and each U i is convex.
efine an r -visit of U i to be any maximal-length contiguous portion of σ ∩ ( U i ⊕ B ( 2 r )) which
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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ntersects U i ⊕ B (r ), where ⊕ denotes the Minkowski sum. If U is γ -separated for γ ≥ 4 r , then
ny r -visit of U i is disjoint from any r -visit of U j for i � j, in which case define the true r -visit of U i 

o be the first r -visit of U i which occurs after the true r -visit of U i−1 . (For U 1 , it is the first r -visit.)

Lemma 4.12. If U is γ -separated for γ ≥ 4 r , then for any curve π � U and any reparametrisations
f and д such that width f ,д (π , σ ) ≤ r , πi must map to a point on the true r -visit of U i for all i . 

Proof. First, note that since width f ,д (π , σ ) ≤ r , πi must map to a point in an r -visit of U i , and
hus we only need to prove it is the true r -visit. 
We prove the claim by induction on i . For i = 1 , the claim holds, as π1 must map to σ1 , and σ1 is

n the first r -visit of U 1 , which is its true r -visit. 
Now suppose the claim holds for i − 1 . πi must map to a point on an r -visit of U i , and by the

nduction hypothesis, this visit must happen after the true r -visit of U i−1 on σ . Moreover, as U is
 r -separated, the first point in U i ⊕ B (r ) of the first r -visit of U i that occurs after the true r -visit
f U i−1 (i.e., true r -visit of U i ) must map to a point x on πi−1 πi . Note, however, that as both x
nd πi map to points in U i ⊕ B (r ), the portion of σ that the segment xπi maps to must lie within
 i ⊕ B (2 r ) (i.e., the same r -visit). Therefore, all of xπi is mapped to the true r -visit of U i , completing
he proof. �

For two points α and β on σ , let α ≤ β denote that α occurs before β , and for any points α ≤ β,
et σ (α , β ) denote the subcurve between α and β . 

Definition 4.13. The δ -greedy sequence of σ with respect to U , denoted gs (U , σ , δ ), is the longest
ossible sequence α = 〈 α1 , . . . , αk 〉 of points on σ , where α1 = σ1 , and for any i > 1 , αi is the point
urthest along σ such that ‖αi −U i ‖ ≤ δ and d F ( αi−1 αi , σ ( αi−1 , αi )) ≤ 2 δ . 

Observation 4.14. For any i ≤ k , let α i = 〈 α1 , . . . , αi 〉 be the i-th prefix of gs (U , σ , δ ). Then
 F ( α

i , σ ( α1 , αi )) ≤ 2 δ , and α i � U 

i ⊕ B (δ ), where U 

i ⊕ B (δ ) = 〈 U 1 ⊕ B (δ ), . . . , U i ⊕ B (δ )〉 . 

Lemma 4.15. If U is 10 δ -separated and d min 
F (U , σ ) ≤ δ , then gs (U , σ , δ ) has length m and αm 

=

n . 

Proof. Let gs (U , σ , δ ) = α = 〈 α1 , . . . , αk 〉 . Let opt = 〈 opt 1 , . . . , opt m 

〉 be any curve in Real (U )
uch that d F ( opt , σ ) = d min 

F (U , σ ). Throughout this proof, we fix a mapping realising d F ( opt , σ )
nd let βi be the point on σ which opt i maps to under this mapping. For the curve α , we fix
he mapping which is the composition of the maps realising d F ( αi−1 αi , σ ( αi−1 , αi )) ≤ 2 δ , and, in
articular, αi on α maps to αi on σ . 
We prove by induction that for i ≤ m, αi exists and βi ≤ αi . For i = 1 , we have α1 =

1 = σ1 . So assume that αi−1 exists. By Observation 4.14 , α i−1 � U 

i−1 ⊕ B (δ ), and, moreover,
 F ( σ ( α1 , αi−1 ), α

i−1 ) ≤ 2 δ . Since U is 10 δ -separated, U 

i−1 ⊕ B (δ ) is 8 δ -separated, and thus by
emma 4.12 , αi−1 is on the true 2 δ -visit of U i−1 ⊕ B (δ ) by the prefix curve σ (α1 , αi−1 ). Observe
hat the true 2 δ -visit of U i−1 ⊕ B (δ ) by the prefix curve σ (α1 , αi−1 ) is a subset of the true 2 δ -
isit of U i−1 ⊕ B (δ ) by σ , and thus αi−1 is on the true 2 δ -visit of U i−1 ⊕ B (δ ) by σ . We also have
hat opt � U ⊕ B (δ ), as U j ⊂ U j ⊕ B (δ ) for all j, so by Lemma 4.12 , βi−1 and βi are on the true
 δ -visit of U i−1 ⊕ B (δ ) and U i ⊕ B (δ ). In particular, this implies that βi−1 ≤ αi−1 ≤ βi , as the true
 δ -visits of U i−1 ⊕ B (δ ) and U i ⊕ B (δ ) are disjoint. Thus, some point x on the segment opt i−1 opt i 
ust map to αi−1 . Note that d F ( x opt i , σ ( αi−1 , βi )) ≤ δ . As ‖x − αi−1 ‖ ≤ δ , d F (x opt i , αi−1 opt i ) ≤ δ ,
nd so by the triangle inequality for the Fréchet distance, d F ( αi−1 opt i , σ ( αi−1 , βi )) ≤ 2 δ . Since
βi − opt i ‖ ≤ δ , βi is a possible choice for αi , and thus αi exists and βi ≤ αi . Finally, since αi 

xists for all i ≤ m, α = gs (U , σ , δ ) has length m, and moreover, since βm 

≤ αm 

and βm 

= σn , we
onclude that αm 

= σn . �
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The following lemma is the only place where we require the points to be in R 

2 . The proof uses
 result from Guibas et al. [ 37 ]. 

Lemma 4.16. For U and σ in R 

2 , where U is 10 δ -separated, gs (U , σ , δ ) is computable in time
(m + n log n). 

Proof. Given αi from gs (U , σ , δ ), we describe how to compute αi+1 , if it exists. Let σj be the
mallest-index vertex such that αi < σj . Let 〈 D j , . . . , D n 〉 be the sequence of 2 δ -radius disks, where
 l is centred at σl . Observe that for αi+1 to be able to lie on σz σz+1 , for any z ≥ j, we first require

hat d F ( αi αi+1 , σ ( αi , αi+1 )) ≤ 2 δ , which occurs if and only if there exist points p j , . . . , p z that ap-
ear in order along αi αi+1 such that p l ∈ D l . Clearly, such points are necessary, but they are also
ufficient, as d F (p l p l+1 , σl σl+1 ) ≤ 2 δ . (As αi and αi+1 lie on σ , the same holds for αi σj and σz αi+1 .)
s (U , σ , δ ) also requires that αi+1 lie within distance δ of U i+1 . This is equivalent to requiring that

z σz+1 intersects U i+1 ⊕ B (δ ). As both σz σz+1 and U i+1 ⊕ B (δ ) are convex regions, their intersec-
ion is convex—that is, a single subsegment of σz σz+1 . Let S i+1 (z) denote this segment, which we
an compute in constant time, as U i+1 is a constant-complexity convex region. Note that αi+1 may
ie on the same segment of σ as αi (i.e., z = j − 1 ), which is an easier case, as no disks need to be
ntersected and d F ( αi αi+1 , σ ( αi , αi+1 )) ≤ 2 δ holds. 

Given a sequence of k equal-radius disks 〈 D 1 , . . . , D k 〉 , say that a line � stabs the disks if for all
 ≤ k , there exists a point p j ∈ � ∩ D j such that the p j appear in order along �. Guibas et al. [ 37 ]
ive an O (k log k )-time algorithm that determines the set of all stabbing lines. As follows from the
escription of our problem, their algorithm can be used to determine αi+1 given αi by restricting
he stabbing line to first pass through αi and requiring it to intersect S i+1 (k ) at the end. 
We now sketch the necessary changes. Their algorithm inserts the disks in order, maintaining

hree objects—the support hull, the limiting lines, and the line stabbing wedge. The support hull
onsists of a pair of upper and lower concave chains that all stabbers must pass between, and the
imiting lines represent the largest and the smallest slope stabbers. The wedge is the set of all points
 such that there is a stabber that passes through p after passing through the required points from
he disks. To modify their approach for our setting, we require the stabber to initially pass through

i . This actually simplifies the problem by joining and collapsing the chains of the support hull, 3

nd thus we can focus on the wedge. After j insertions, the wedge boundary consists of O (j ) pieces
rom the disks, flanked by the limiting lines. These ordered boundary pieces are stored in a binary
ree to facilitate logarithmic time updates when a new disk is inserted, and we can simply reuse
his structure to determine the intersection of the wedge with S i+1 (j ). 
By Definition 4.13 , the line segment σz σz+1 that αi+1 lies on must have z be as large as possible.

hus, we run the preceding incremental procedure, where in the j-th round we check for inter-
ection with S i+1 (j ). If no such intersection is found before we reach the end of σ or the wedge
ecomes empty, then αi+1 does not exist. Otherwise, αi+1 is defined. However, the rounds which
ave intersection with S i+1 (j ) need not be contiguous; thus, care is needed to determine the last
uch intersection efficiently. 
Let k be the largest index such that αk is defined. By Observation 4.14 , for any i ≤ k , we have

 F ( α
i , σ ( α1 , αi )) ≤ 2 δ and α i � U 

i ⊕ B ( δ ). Since U is 10 δ -separated, U 

i ⊕ B (δ ) is 8 δ -separated,
nd so by Lemma 4.12 , αi must be in the true 2 δ -visit of U i ⊕ B (δ ) by σ (α1 , αk ). Thus, when com-
uting αi , we only need to consider vertices from σ which occur after αi−1 and before the end of
he true 2 δ -visit of U i ⊕ B (δ ). If n i is the number of such vertices, it therefore takes O (1 + n i log n i )
ime to compute αi with the preceding algorithm. Moreover, as the true 2 δ -visits for U i ⊕ B (δ ) and
 Alternatively, one can enforce the condition by defining an initial zero-radius disk D 0 at αi , and indeed the referenced 

ork [ 37 ] considers stabbers for more general collections of convex objects. 
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 j ⊕ B (δ ) for i � j ≤ k are disjoint, any vertex of σ contributes to at most two counts n i , as we have

j ∈ U j ⊕ B (δ ), and we may process vertices from α j to the end of U j ⊕ B (δ ) twice; thus, 
∑ 

i n i ≤ 2 n.

herefore, the total running time is O (m + n log n) +
∑ k 

i= 1 O (1 + n i log n i ) = O (m + n log n), where
he leading O (m + n log n) term accounts for the time to determine if αk+1 does not exist for
 < m. �

Theorem 4.17. Let U be 10 r -separated for some r > 0 . There is a 3-decider for Problem 3.22 in the
lane with the running time O (m + n log n) that works for any query value 0 < δ ≤ r . 

Proof. Compute gs (U , σ , δ ). If it has length m, then let π = 〈 π1 , . . . , πm 

〉 be any curve in
eal (U ) such that ‖πi − αi ‖ ≤ δ for all i . If this occurs and if αm 

= σn , we output π as our so-
ution, and otherwise we output False . Thus, the running time follows from Lemma 4.16 . 

Observe that if we output a curve π , then d F (π , σ ) ≤ 3 δ , using the triangle inequality: 

d F (π , σ ) ≤ d F (π , α ) + d F (α , σ ) ≤ δ + 2 δ = 3 δ . 

hus, we only need to argue that when d min 
F (U , σ ) ≤ δ , a curve is produced, which is immediate

rom Lemma 4.15 . �

It is also possible to turn this procedure into a 9-approximation algorithm for d min 
F . Suppose we

re given a 10 r -separated uncertain curve. We can use decreasing exponential search with a factor
f 3, starting with δ = r . Suppose that for δ = r , we get True ; eventually, we switch to False . Let
he last True value be x ; then 3 x must be True , and x / 3 and x / 9 must be False . Note that at most
ne value of δ can fall into the interval with the uncertain answer of the 3-decider. Then we know
hat d min 

F (U , σ ) ≤ 3 x and d min 
F (U , σ ) > 3 · x / 9 = x / 3 . Let δ ′ = 3 x be the returned distance, then

 

min 
F (U , σ ) ≤ δ ′ < 9 d min 

F (U , σ ), so δ ′ is a 9-approximation to the lower bound Fréchet distance. 

 ALGORITHMS FOR UPPER BOUND AND EXPECTED FRÉCHET DISTANCE 

s shown in Section 3.1 , finding the upper bound and the expected discrete and continuous Fréchet
istance is hard even for simple uncertainty models. However, restricting the possible couplings
r alignments between the curves makes the problem solvable in polynomial time. In this section,
e use indecisive curves. Define a Sakoe–Chiba time band [ 50 ] in terms of reparametrisations of

he curves: for a band of width w and all t ∈ [0 , 1] , if ϕ1 (t ) = x , then ϕ2 (t ) ∈ [ x −w, x +w] . In the
iscrete case, we can only couple point i on one curve to points i ±w on the other curve. 

.1 Upper Bound Discrete Fréchet Distance: Precise and Indecisive 

irst of all, let us discuss a simple setting. Suppose we are given a curve σ = 〈 q 1 , . . . , q n 〉 of n
recise points and U = 〈 U 1 , . . . , U n 〉 of n indecisive points, each of them having � options, so for
ll i ∈ [ n] we have U i = { p 1 i , . . . , p 

� 
i } . We would like to answer the following decision problem: ‘If

e restrict the couplings to a Sakoe–Chiba band of width w , is it true that d max 
dF 

(U , σ ) ≤ δ for some
iven threshold δ > 0 ?’ So, we want to solve the decision problem for the upper bound discrete
réchet distance between a precise and an indecisive curve. 
In a fully precise setting, the discrete Fréchet distance can be computed using dynamic pro-

ramming [ 28 ]. We create a table where the rows correspond to vertices of one curve, say σ , and
olumns correspond to vertices of the other curve, say π . Each table entry (i, j ) then contains a
rue or False value indicating if there is a coupling between π [1 : i] and σ [1 : j] with maximum
istance at most δ . We use a similar approach. 
Suppose we position U to go horizontally along the table and σ to go vertically. Consider an

rbitrary column in the table, and suppose that we fix the realisation of U up to the previous
olumn. Then we can simply consider the new column � times, each time picking a different reali-
ation for the new point on U , and compute the resulting reachability. As we do this for the entire
CM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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Fig. 12. Left: An indecisive and a precise curve. Middle: Distance matrix. ‘T T’ in the bottom left cell means 

‖1 − 1 a ‖ ≤ δ and ‖1 − 1 b ‖ ≤ δ . Right: Computing the reachability matrix, column by column. Note two 
reachability vectors for the second column. 
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olumn at once, we can ensure consistency of our choice of realisation. This procedure will give us
 set of binary reachability vectors for the new column, each vector corresponding to a realisation.
he reachability vector is a Boolean vector that, for the cell (i, j ) of the table, states whether for a
articular realisation π of U [1 : i] the discrete Fréchet distance between π and σ [1 : j] is below
ome threshold δ . 
An important observation is that we do not need to distinguish between the realisations that

ive the same reachability vector: once we start filling out the next column, all we care about is
he existence of some realisation leading to that particular reachability vector. So, we can keep a
et of binary vectors corresponding to reachability in the column. 
This procedure was suggested for a specific realisation. However, we can also repeat this for

ach previous reachability vector, only keeping the unique results. As all the realisation choices
appen along U , by treating the table column-by-column we ensure that we do not have issues
ith inconsistent choices. Therefore, repeating this procedure n times, we fill out the last column
f the table. At that point, if any vector from the last column has False in the top cell, then there
s some realisation π � U such that d dF (π , σ ) > δ , and hence d max 

dF 
(U , σ ) > δ . 

In more detail, we use two tables: the distance matrix D, where cell (i, k, j ) is True if and only if
‖p k i − q j ‖ ≤ δ , and the dynamic program, referred to as the reachability matrix R. First of all, we
nitialise the distance matrix D and the reachability of the first column for all possible locations
f U 1 . Then we fill out R column-by-column. We take the reachability of the previous column and
ote that any cell can be reached either with a horizontal step or with a diagonal step. We need to
onsider various extensions of the curve U with one of the � realisations of the current point; the
istance matrix should allow the specific coupling. Assume we find that a certain cell is reachable;
f allowed by the distance matrix, we can then go upwards, marking the cells above the current
ell reachable, even if they are not directly reachable with a horizontal or a diagonal step. Then
e just remember the newly computed vector; we make sure to only add distinct vectors. The
omputation is illustrated in Figure 12 ; the pseudocode is given in Algorithm 1 . 

Correctness . We use the following loop invariant to show correctness. 

Lemma 5.1. Consider column i . Every reachability vector of this column corresponds to at least one
ealisation of U [1 : i] and the discrete Fréchet distance between that realisation and σ [1 : min (n, i +
)] , and every realisation corresponds to some reachability vector. 

Proof. The statement is trivial for the first column: we consider all � possible realisations of U 1

nd compute reachability of cells (1 , 1 ) to (1 , 1 +w ) in a straightforward way. 
Now suppose the statement holds for column i . As follows from the recurrence establishing the

iscrete Fréchet distance, the reachability of column i + 1 only depends on the distance matrix for
olumn i + 1 and the reachability of column i . We consider every possible extension of U [1 : i]
o U [1 : i + 1] , as for every reachability vector of column i , we consider all � options from the
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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ALGORITHM 1 : Finding the time-banded upper bound discrete Fréchet distance on an indecisive and a 

precise curve. 
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istance matrix for column i + 1 . Thus, we only consider valid realisations for column i + 1 , and
e consider all of them from the point of view of reachability. �

Running Time . First of all, populating the distance matrix takes time Θ(�nw ). A call to Propa-
ate takes Θ(w ) time, so initialisation of the first column of the reachability matrix takes Θ(�w )
ime. Note that, at any further point, we may have at most 2 2 w+1 distinct reachability vectors; for
ach of them, we make � calls to Propagate , taking Θ(4 w �w ) time per column, so over all the
olumns we need Θ(4 w �wn) time. If we assume that adding an element to the set takes amor-
ised constant time, then the previous value dominates. Finally, the check at the end takes Θ(4 w )
ime. So, overall the algorithm runs in time Θ(4 w �nw ). This agrees with our hardness result: for
 small fixed-width time band, we get the running time of Θ(�n), whereas if we set w = n − 1 to
ompute the unrestricted distance, the algorithm runs in exponential time—Θ(4 n �n 

2 ). We can also
nly store vectors that dominate in terms of False values, as we are interested in the worst case.
his improvement reduces the running time by a factor of 

√ 

w . 
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Theorem 5.2. Problem Upper Bound Discrete Fréchet restricted to a Sakoe–Chiba time band of
idth w on a precise curve and an uncertain curve comprised of indecisive points with � options, both
f length n, can be decided in time Θ(4 w �n 

√ 

w ) in the worst case. 

.2 Upper Bound Discrete Fréchet Distance: Indecisive 

ow we extend our previous result to the setting where both curves are indecisive, so instead of σ
e have V = 〈 V 1 , . . . , V n 〉 , with, for each j ∈ [ n] , V j = { q 1 j , . . . , q 

� 
j } . Suppose we pick a realisation

or curve V —then we can apply the algorithm we just described. We cannot run it separately
or every realisation; instead, note that the part of the realisation that matters for column i is the
oints from i −w to i +w , since any previous or further points are outside the time band. So, we
an fix these 2 w + 1 points and compute the column. We do so for each possible combination of
hese 2 w + 1 points. 

Lemma 5.3. Any reachability vector we store in column i corresponds to some realisation of the
ubcurves U [1 : i] and V [1 : min (i +w, n)] , and every such realisation has the resulting reachability
ector stored in column i . 

Proof. First of all, consider the statement for column 1. Clearly, we consider all possible reali-
ations of both subcurves, so the statement holds. 
Now, as we move from column i to column i + 1 , we fix the realisation of points i + 1 −w to

 + 1 +w on curve V and consider all the vectors stemming from the possible values of point i −w ;
s in Lemma 5.1 , we cover all realisations of curve U . 
As for curve V , note that we, again, only need the reachability from the previous column and

he distance matrix from the current column, so the points before i + 1 −w do not play a role for
he consistency between the two, and thus they can be ignored. 
So, we only get reachability vectors corresponding to valid realisations, and we do not miss any,

s required. �

The running time is now Θ(4 w � 2 w+1 nw ), as we consider all combinations of the 2 w + 1 relevant
oints on V with � options per point. For small constants w and �, we get Θ(n); for w = n − 1 , we
et Θ(4 n n 

2 � 2 n−1 )—exponential time in n. As in the previous algorithm, we can store the Boolean
ectors more efficiently, reducing the running time by a factor of 

√ 

w . 

Theorem 5.4. Suppose we are given two indecisive curves of length n with � options per indecisive
oint. Then we can decide whether the upper bound discrete Fréchet distance restricted to a Sakoe–
hiba band of width w is below the threshold in time Θ(4 w � 2 w+1 n 

√ 

w ). 

.3 Expected Discrete Fréchet Distance 

o compute the expected discrete Fréchet distance with time bands, we need two observations: 

(1) For any two precise curves, there is a single threshold δ where the answer to the decision
problem changes from True to False —a critical value. That threshold corresponds to the
distance between some two points on the curves. 

(2) We can modify our algorithm to store associated counts with each reachability vector,
obtaining the fraction of realisations that yield the answer True for a given threshold δ . 

We can execute our algorithm for each critical value and get the cumulative distribution function
 ( d dF ( π , σ ) > δ ) for π , σ � U 

U , V . As explained in the rest of this section, using the fact that the

umulative distribution function is a step function, we compute d E 

dF 
. 

Consider first the setting of one precise and one indecisive curve. Previously, we stored the
eachability vectors in a set; instead, we can store a counter with each reachability vector so that
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 
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ALGORITHM 2 : Finding the time-banded upper bound discrete Fréchet distance on two indecisive curves. 
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very time we get an element that is already stored, we increment the counter. We cannot use the
mprovement that would allow us to discard some vectors, as that would eschew the count, and
e are not interested in the worst possible result now. We can implement a similar mechanism in

he setting of two indecisive curves. Moreover, we can propagate the count through the algorithm
nd in the end find the counts associated with answers True and False to the decision problem. 
So, if we store the count of realisations that give us a certain reachability vector, we essentially

btain, for some value of δ , 

P ( d dF ( π , σ ) > δ ) when π , σ � U 

U , V . 

or any realisation, there is a specific value of δ—a critical value —that acts as a threshold between
he answers True and False for that realisation, since if we fix the realisation, we just compute the
egular discrete Fréchet distance. Note that that threshold must be a distance between some two
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oints on different curves. In the case of a precise and an indecisive curve, there are �n(2 w + 1 )
uch distances with the time band of width w ; in the case of two indecisive curves, there are
 

2 n(2 w + 1 ) such distances. Therefore, if we run our algorithm for each of these critical values
nd record the counts of True and False for each threshold, we obtain the complete cumulative
istribution function P ( d dF ( π , σ ) > δ ) for π , σ � U 

U , V . 
Then we can simply find, under the time band restriction, 

d E (U ) 
dF 

( U , V ) = 

∫ ∞ 

0 

P π , σ� U 

U, V ( d dF ( π , σ ) > δ ) d δ . 

or any realisation the answer may change from True to False only at one of the critical values.
o, the distribution of True and False only changes at a finite set of critical values and is constant
etween them; therefore, P ( d dF ( π , σ ) > δ ) is a step function. Hence, finding the integral of interest
mounts to multiplying the value of P ( d dF ( π , σ ) > δ ) by the distance between two successive
alues of δ that match, and summing all the results—that is, to finding the area under the step
unction by summing up the areas of the rectangles that make it up. 
So, clearly, under the time band restriction, we can run one of our algorithms either �n(2 w +

 ) or � 2 n(2 w + 1 ) times to obtain the expected discrete Fréchet distance. We show the details in
lgorithm 3 for the two settings. We summarise this result as follows. 

Theorem 5.5. Suppose we are given an indecisive curve U and a precise curve σ of length n with �
ptions per indecisive point and we want to compute the expected discrete Fréchet distance constrained
o a Sakoe–Chiba band of width w . Then we can run ExpTBDFDIndPr (U , σ , w ) to obtain the result
n time Θ(4 w � 2 n 

2 w 

2 ) in the worst case. 

Proof. First of all, note that from the preceding discussion it immediately follows that the
lgorithm is correct. In the worst case, every δ that we have to add to E will be distinct, so we
ave �n(2 w + 1 ) insertions, taking in total Θ(� nw log � nw ) time. Then we run CntTBDFDIndPr
nce per value in E, and its running time is the same as that of TBDFDIndPr , so here we take time
(� nw · 4 w � nw ) in the worst case, as claimed. �

We can formalise the result similarly for the other setting. 

Theorem 5.6. Suppose we are given two indecisive curves U and V of length n with � options
er indecisive point and want to find the expected discrete Fréchet distance when constrained to a
akoe–Chiba band of width w . Then we can run ExpTBDFDIndInd (U , V , w ) to obtain the result in
ime Θ(4 w � 2 w+3 n 

2 w 

2 ) in the worst case. 

Proof. Again, note that from the preceding discussion, it immediately follows that the algo-
ithm is correct. In the worst case, we have � 2 nw insertions, taking in total Θ(� 2 nw log �nw ) time.
hen we run CntTBDFDIndInd once per value in E, and its running time is the same as that of
BDFDIndInd , so here we take time Θ(� 2 nw · 4 w � 2 w+1 nw ) in the worst case, as claimed. �

.4 Upper Bound Continuous Fréchet Distance 

e can adapt our time band algorithms to handle the continuous Fréchet distance. Instead of the
oolean reachability vectors, we use vectors of free space cells, introduced by Alt and Godau [ 6 ,
4 ]. We now need to store reachability intervals on cell borders. The number of these intervals is
imited: for any cell, the upper value of the interval is determined by the distance matrix, yielding
t most � 2 values; the lower value of the interval is determined by the distance matrix or by one
f the cells from the same row, yielding exponential dependency on w . However, the algorithm is
till polynomial time in n. 
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ALGORITHM 3 : Finding the time-banded expected discrete Fréchet distance on an indecisive and a precise 

curve and two indecisive curves. 
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In more detail, one could adapt the algorithms for the upper bound discrete Fréchet distance to
he case when either both curves are indecisive or one is precise and one is indecisive, and we are
nterested in the decision problem for the Fréchet distance and not the discrete Fréchet distance.
ince we are going column-by-column, we would need to store the reachability intervals on the
ertical border of each cell. 
It is simpler to see how this would work in the setting of a precise and an indecisive curve: each

olumn now is a column of a free-space diagram, and we only need to store the intervals on the
ight side of the column. As we progress to the next column, we need to consider all the options
rom the previous column, so we need to run the same algorithm, except we store and process
ectors of free-space intervals instead of True and False . One other distinction is that we do not
onsider diagonal steps—for the Fréchet distance, doing so would not be meaningful, as the path
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Fig. 13. Reachability adjustments. Left: Although the dotted interval is free according to the distance matrix, 
only the solid interval is reachable from the cell on the left with a monotone path, assuming the entire cell on 

the left is free. Right: The entire interval that is marked as free according to the distance matrix is reachable 
with a monotone path from the cell below, assuming the cell below is free. 
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3  
s continuous, and the diagonal step is not distinguishable from a horizontal step followed by a
ertical step, if such situation occurs. 
In particular, we now take the intervals stored in the distance matrix and compute reachability

ased on the previous column: if a cell can be reached horizontally from the previous cell, then the
ower bound of the interval in this cell may need to go up, since we can only use monotone paths.
ropagate will now take the intervals that correspond to the distance matrix and the precomputed
eachability and make the following adjustment: if a cell is reachable from below, then the entire
nterval on the right is actually reachable. Figure 13 presents an example of both cases. 

Other than that, the algorithm is exactly the same; clearly, we can make the same adjustments
o the algorithm handling two indecisive curves. 
Notice that we now do not have at most 2 2 w+1 vectors per column, since we store intervals

nstead of Boolean values, and they can be more varied. However, the number of values is still
imited: for any cell, the upper value of the interval is determined by the distance matrix, so there
an be at most � or � 2 values for the two settings. The lower value of the interval is determined
y the distance matrix or by one of the cells from the same row; these may have at most � or � 2

alues each, and there are at most 2 w of them, so per cell we can have at most Θ(�w ) or Θ(� 2 w )
ower interval values and Θ(�) or Θ(� 2 ) upper interval values, instead of just two possible values
n the discrete case. Note that for an interval, we only pick one of the possible lower bound values,
nd a lower bound value ultimately comes from the distance between some pair of points; addi-
ionally, we pick one upper bound value, giving us Θ(� 2 w ) and Θ(� 4 w ) possible unique intervals.
e also need to modify the set operations, for example, by enumerating the possible boundaries

nd storing intervals as pairs of indices; adding a vector to a set would then take O (w + log �w )
ime. The running time changes accordingly, replacing 4 w with (� 2 w ) 2 w+1 and replacing 4 w � 2 w+1

ith (� 4 w ) 2 w+1 , but, importantly, we still have linear dependency on n, so the running time is
olynomial for fixed w and �. 

.5 Expected Continuous Fréchet Distance 

e can, of course, again store the associated counts with the vectors of intervals in the algorithm.
s we look at the final cell, we can sum up the counts associated with the cases where the upper
ight corner of this cell is reachable, and so we can find the proportion of True to False for a
articular threshold δ . 
We can find the critical values; now they follow in line with those discussed by Alt and Godau [ 6 ,

4 ]. The number of the critical values is different: case 1, where we look at the start and end
ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 



29:44 K. Buchin et al. 

p  

b  

b
 

s  

r

 

p  

r

6

I  

u  

i  

i  

d  

F  

i  

t  

l  

m  

p
 

(  

p  

d  

o  

a  

b

R
 

 

 

 

 

 

 

 

 

 

 

 

 

A

oints, now yields Θ(� 2 ) events; case 2, where we look at two neighbouring cells, so at the distance
etween a segment and a point, yields Θ(� 3 nw ) events; and case 3, where we look at the distance
etween a segment and two points, yields Θ(� 4 nw 

2 ) events. 
Otherwise, we can run Algorithm 3 on the new critical values, calling instead the counting ver-

ion for the continuous Fréchet distance. This way, we can compute the expected Fréchet distance
estricted to a Sakoe–Chiba band in time polynomial in n for fixed w and �. 

Theorem 5.7. Suppose we are given two indecisive curves of length n with � options per indecisive
oint. Then we can decide the upper bound Fréchet distance and compute the expected Fréchet distance
estricted to a Sakoe–Chiba band of fixed width w in time polynomial in n. 

 CONCLUSION 

n this article, we studied the upper bound, the lower bound, and the expected Fréchet distance
nder various uncertainty models. We conclude that it is NP-hard to decide if the upper bound
s below a given threshold in all the models we consider; as the follow-up work [ 16 ] shows, also
n 1D. This seems to translate to #P-hardness for computing the expected Fréchet distance un-
er the uniform distribution. We do not have reason to believe that the variants of the expected
réchet distance not covered in Table 1 are easier. The lower bound problem presents an interest-
ng tradeoff, though: although the problem of deciding whether the lower bound is below a given
hreshold is still NP-hard for the continuous Fréchet distance for uncertain points modelled as
ine segments, the problem becomes tractable when either the uncertainty regions or the distance
easure (or both) are discrete. We conjecture that the continuous Fréchet distance for uncertain
oints modelled as disks (or other continuous regions) is no easier than for line segments. 
In future work on the topic, it would be helpful to understand where exactly the divide lies

i.e., what kind of uncertainty models make the problem simpler); we can also ask whether the
roblem is fixed-parameter tractable when parametrised by the number of allowed movement
irections (two in 1D, anywhere in 2D). One could also generalise the expected Fréchet distance to
ther distributions and uncertainty models, ideally formulating simple conditions on the input to
chieve a result. Finally, it would be interesting to see any approximation algorithms for the upper
ound Fréchet distance. 
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