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Abstract
We consider the problem of deciding, given a sequence of regions, if there is a choice of points, one
for each region, such that the induced polyline is simple or weakly simple, meaning that it can touch
but not cross itself. Specifically, we consider the case where each region is a translate of the same
shape. We show that the problem is NP-hard when the shape is a unit-disk or unit-square. We
argue that the problem is is NP-complete when the shape is a vertical unit-segment.

1 Introduction

Finding a planar drawing of a graph has been studied widely due to its many applications, for
example in floor-planning and visualisations [7]. Often when the graphs come from geometric
data, such as road networks, vertices already have predetermined locations. In these cases,
if edges must be drawn as straight line segments, there is a unique corresponding drawing.
Real-world data such as GPS trajectories are often imprecise. Imprecision can be modeled
by assigning to each vertex an imprecision region. A geometric graph induced by assigning
each vertex to a point in its imprecision region is called a realisation.

Algorithms for imprecise data have been considered in the past [5, 8]. We consider the
problem of deciding whether imprecise data admits a realisation without self-intersections.
Godau [4] showed that this problem is NP-hard if the imprecision regions are closed disks
of varying radius. In follow-up work, Angelini et al. [2] showed that the problem remains
NP-hard when the regions are pairwise-disjoint unit-disks, or unit-squares. In this work, we
consider the problem for a very restricted graph class, namely path-graphs. That is, we are
looking for a realisation that is a simple polyline.

Efficient algorithms exist to determine whether a polygon or polyline is weakly simple [1, 3].
When the polygon is imprecise however, Löffler [6] showed that determining whether a weakly
simple realisation exists when the imprecision regions are scaled translates of a fixed shape,
such as a segment or circle, is NP-hard. Finally, Silveira et al. [9] show that the problem is
NP-complete for straight-line drawings of graphs where each vertex has degree exactly one
(i.e. the graph is a matching), using unit-length vertical segments as imprecision regions.

Definitions and problem statement. A polygonal chain or polyline is a piecewise-linear
path in the plane, given by a sequence P = (pi)n

i=0 of points called vertices. With slight
abuse of notation, we interpret P as the polyline, instead of its vertices. An imprecise polyline
is given by a sequence of regions R = (ri)n

i=0 in the plane. We call the polyline (pi)n
i=0 a

realisation of R if pi ∈ ri for each i.
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A polyline is simple (or plane) if it does not cross or touch itself. An ε-perturbation of a
polyline P = (pi)n

i=0 is a polyline P ′ = (p′
i)n

i=0 such that ∥pi − p′
i∥ ≤ ε for all i. A polyline

(pi)n
i=0 is weakly simple if for every ε > 0 there is an ε-perturbation that is simple. We are

interested in the problem of deciding whether an imprecise polyline R admits a weakly simple
realisation.

Results and organisation. We show that the problem is NP-hard already when each region
is a translate of the same shape S. This setting differs from [6] in the sense that now all
regions must have uniform size. In Section 2 we prove this for the case where S is a unit
disk, and discuss how the construction can be adapted to show NP-hardness for unit squares.
Hence, computing the infimum ε for which a polyline has a simple ε-perturbation under the
L1, L2, and L∞ norms is NP-hard. In the full version we additionally show NP-completeness
if S is a unit-length vertical segment.

2 Unit disks as regions

We prove by reduction from planar monotone 3SAT that the problem is NP-hard when all
regions are unit disks. We first introduce planar monotone 3SAT. A monotone 3CNF formula
is a formula φ(x1, . . . , xm) :=

∧
i Ci with Boolean variables x1, . . . , xm, where each clause Ci

is either positive (of the form (xj ∨ xk ∨ xl)) or negative (of the form (¬xj ∨ ¬xk ∨ ¬xl)). A
monotone rectilinear layout of a monotone 3CNF formula is a plane drawing of the incidence
graph between its clauses and variables, in which variables are drawn as disjoint horizontal
segments on the x-axis, all positive clauses lie above the x-axis, all negative clauses lie below
the x-axis, and edges are rectilinear, do not cross the x-axis, and have at most one bend.
We may assume for each clause that its central edge does not bend, see Figure 1. Planar
monotone 3SAT is an NP-complete problem that asks, given a monotone 3CNF formula
φ with a given monotone rectilinear layout, whether φ is satisfiable. For our reduction we
construct gadgets consisting of imprecise polylines corresponding to variables, clauses, and
edges of the layout. We then show how to connect these gadgets into a single imprecise
polyline that has a weakly simple realisation if and only if the formula φ if satisfiable.

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

¬x2 ∨ ¬x3 ∨ ¬x4

Figure 1 Example of an induced variable-clause graph for planar monotone 3SAT.

Pivot gadget. Before we construct the gadgets for the variables and clauses, we introduce
an auxiliary gadget: the pivot gadget. The purpose of the pivot gadget is to force a given
edge of any weakly simple realisation to go through some fixed point of our choosing. The
gadget is illustrated in Figure 2 and consists of three components. Two of these components
together form the pivot so that the edge of the third component must pass through the
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Figure 2 (a) The pivot gadget. (b) A weakly simple realisation, showing a simple perturbation.
Note that this perturbation moves most vertices outside of their assigned disks

center (0, 0) of the pivot. The coordinates of the top component will be:

1, . . . , 7 7→ (−1 − ε, 2), (1, 2), (1, 5), (0, −1), (−1, 5), (−1, 2), (1 + ε, 2)

for some value ε > 0, and the bottom component is a rotated copy of the top component:

1′, . . . , 7′ 7→ (1 + ε, −2), (−1, −2), (−1, −5), (0, 1), (1, −5), (1, −2), (−1 − ε, −2).

There is some freedom in choosing the placement of regions 1′′ and 2′′, but to make sure
that the realisation passes through the pivot we require that the x-coordinate of region 1′′ is
less than -1, that of region 2′′ is greater than 1, and the tangent lines to the pair of circles 1′′

and 2′′ all intersect the segment between (0, −5) and (0, 5). We can accommodate any angle
of the edge between regions 1′′ and 2′′ by choosing ε > 0 sufficiently small. Namely, such
that the point (−ε, 2) where we will realise region 1 lies above the tangent lines from point
(0, 0) to region 1′′, and such that symmetric properties hold for regions 7, 1′ and 7′.

Figure 2(b) depicts a weakly simple realisation of the pivot gadget. Other weakly simple
realisations may differ in placement for points in regions 1, 7, 1′, 7′, 1′′ and 2′′ only; the
segment connecting 1′′ and 2′′ must always pass through (0, 0).

▶ Lemma 1. For any weakly simple realisation, the segment of the pivot gadget connecting
regions 1′′ and 2′′ must pass through (0, 0).

▶ Lemma 2. Any choice of points for regions 1′′ and 2′′ such that the segment connecting
them passes through (0, 0) has a corresponding weakly simple realisation of the pivot gadget.

Variable gadget. We construct a variable gadget that can take on two distinct states, one
for true and one for false, see Figure 3(a). The exact coordinates of the regions are as follows,

1 2

3

4

5 6

(a)

1 2

3

4

5 6

(b)

1 2

3

4

5 6

(c)

Figure 3 (a) The variable gadget. (b) The false state. (c) The true state.
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Figure 4 (a) The clause gadget, with realisations where (b) x1, (c) x2, or (d) x3 is true.

assuming the left most region is centered at (0, 0) and l > 8 is arbitrary:

1, . . . , 6 7→ (0, 0), (8, 0), (5, 2), (5, −2), (2, 0), (l, 0).

▶ Lemma 3. The variable gadget admits exactly two weakly simple realisations.

If the final horizontal line from region 5 to 6 is above the blocking vertical line between
regions 3 and 4, then the gadget is in its false state (Figure 3(b)). We consider the situation
where it is below as the true state (Figure 3(c)).

Clause gadget. The clause gadget is used to represent formulas of the form (x1 ∨ x2 ∨ x3),
where the variables can also all be negated. The initial placement of the regions for this
gadget can be seen in Figure 4(a). We use an X-shape to schematically represent the pivot
gadgets. The regions x1, x2 and x3 correspond to the literals of the clause and the regions 1,
2, 3 and 4 are used to put restrictions on these literals. The exact positions of the regions of
this gadget are as follows, centering the top-left region at (0, 0):

1, 2, 3, 4 7→ (0, 0), (0, −5), (6, −5), (6, 0).

We place the point for x1 at (1, −3), x2 at (2, −4.6) and x3 at (5, −3). The construction
used to connect the regions of these literals to variable gadgets and the exact placement
of the pivot gadgets is explained later. For now, it is only important to know that when
a variable is false, then the part of the polyline going to the literal point must either go
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completely vertical through the pivot gadget at the bottom, or completely horizontal through
the pivot gadgets at the sides. The regions of x1, x2, and x3 are placed precisely so that in
this situation there is exactly one realisation that does not intersect the pivot gadget. We
shall refer to the position of a variable in this realisation as its false position and say that it
is covered in a solution if it lies in the interior of the polyline defined by the corner points of
the clause gadget. If the variable is true then the line can be placed at an angle through the
pivot gadget, allowing the literal point to be realised in multiple ways. We refer to the left-,
bottom- and rightmost positions of x1, x2, and x3 as their respective true position.

▶ Lemma 4. For every choice of two of the three literals there exists a realisation that
uncovers their false positions, and any realisation uncovers at most two false positions.

Connecting variables and clauses. For the reduction we must connect the variable gadgets
to the clause gadgets. For this we follow the layout given by the planar monotone 3SAT
instance (see Figure 1). Clauses always connect to variables in a downward or upward facing
E-shape. To preserve the planarity of this graph, our reduction should follow this shape to a
close enough degree. So the clause gadget is to be placed directly above one of the variable
gadgets and the other two variable gadgets connect to it with a bend from the side.

1

2
3

(a)

1

2
3

(b)

1

2
3

(c)

1

2

3

(d)

Figure 5 (a) The right wire gadget to connect a variable to a clause. Realisations where (b) both
are in the false state, (c) the variable is in its false state and the clause in its true state and (d) the
variable gadget in its true state.

Consider the right connection from a variable to a clause. The wire gadget in this case
involves three regions and two pivot gadgets (see Figure 5(a)). Region 1 is horizontally
aligned with the variable gadget of the corresponding to the right literal of the clause. As in
Figure 3, we place these variable regions between region 2 and 6, resulting in a realisation
with a horizontal line at the top if the state is false and at the bottom if the state is true.
We denote the position of region 1 as (0, 0). Region 3 is the right literal region of the clause
gadget. The position of this region is determined by the clause gadget. Let region 3 be
positioned at (−a, b). For our wire gadget, we place region 2 at position (1, b + 1) and place
two pivot gadgets at ( −a

2 + 1, b + 1) and (0, b
2 + 1), oriented appropriately. We stretch the

variable-clause graph without changing its validity, so that a and b are large enough that the
components of the wire gadget do not overlap.

▶ Lemma 5. If a variable gadget for xi is in its false state, any weakly simple realisation
places xi in its false position. Otherwise xi can be placed in either its true or false position.

The wire gadget for connecting the left literal of a clause to its variable gadget is the
above gadget but mirrored. For connecting the middle variable to the clause we do the same,
except here we need only a single pivot gadget and no region 2, as this connection does not
need to bend. All three versions of the wire gadget can be seen in effect in Figure 6.

EuroCG’23
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x1 x2 x3

x1 ∨ x2 ∨ x3

(a)

(b) (c)

Figure 6 Example of the construction for variable-clause graph (a). The weakly simple
realisation in (b) sets x2 to true and the realisation in (c) sets x1 to true.

The complete reduction. The general construction works as follows. First we place all
gadgets as prescribed by the layout obtained from the planar monotone 3SAT instance.
Next, we connect the gadgets in a planar manner. For this, we connect the variables from
left to right as in Figure 6. We connect the gadgets in the top half of the construction by
processing the clauses on the outer face (that lie above the x-axis) as follows, and connecting
the results from left to right. Connect the clause to its right wire (and its pivot gadgets), then
recursively process and connect the clauses in the region enclosed by its right and middle
wire, then connect the middle wire, then recursively process and connect the clauses in the
region enclosed by the middle and left wire, and finally connect the left wire. The gadgets
in the bottom half are connected in a symmetric manner. We can put everything together
by connecting the variables, top half, and bottom half (their loose endpoints all lie on the
“outer face”).

Correctness of the reduction follows from the correctness of the individual gadgets. As
each gadget and connection uses a constant number of regions, whose positions can be
determined based on the variable-clause graph, the reduction is polynomial in size and time.

▶ Theorem 6. Deciding whether there exists a weakly simple realisation for a sequence of
unit disks is NP-hard.

▶ Observation 7. If our construction admits a weakly simple realisation, then there is one
that uses only the top, right, bottom and leftmost points of its regions. The problem hence
remains NP-hard when each region is a subset of a unit disk and contains these four points.

The problem we considered can also be looked at from a different point of view. One could
consider the center of each region in the sequence to be a vertex of an input polyline and the
regions themselves denoting how we are allowed to perturb these vertices. In that case the
setting of unit disks that we discussed corresponds to perturbing vertices by unit distance
under the L2 norm. Under the L1 norm the regions are diamond-shaped and contained in
a unit disk. Thus by the above observation the problem remains NP-hard. After an affine
transformation, it follows that the problem is also NP-hard under the L∞ norm.
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3 Discussion

We showed that deciding if an imprecise polygon has a weakly simple realisation is NP-hard
if each region is a unit disk, unit square, or vertical unit segment. By growing each region
slightly, the same follows for deciding whether a simple realisation exists. Whereas the case
of vertical segments is NP-complete, it is unclear whether the problems of Section 2 lie in NP,
as it is unclear whether polynomially many bits suffice to encode a solution. The settings of
Section 2 lie in the complexity class ∃R, and we wonder if these settings are ∃R-hard.
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