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Summary

Statistical Arbitrage Trading on Electricity Markets
Using Deep Reinforcement Learning

Transitioning from non-renewables to renewables has made electricity prices
more volatile. Because of increased volatility, forecasting energy prices has be-
come more challenging. The European single intraday coupled market (CID)
was established to combat this price uncertainty. With an established liquid CID,
arbitrage trading opportunities have emerged across short-term markets. Note
that potential arbitrage opportunities arise when prices vary between markets
or when prices deviate from their long-term trends. Arbitrage trading could help
in the energy transition process by reducing price differences between markets,
and increasing market liquidity as well as efficiency while yielding profits for
arbitrage traders. This PhD thesis aims to automate and optimise the decision-
making of arbitrage trading agents for short-term electricity markets, namely
the day-ahead market (DAM), CID and balancing market (BAL).

In optimising the decision-making of intelligent agents, the thesis makes eight
contributions to three research areas: intraday market analytics, electricity price
forecasting, and electricity trading. As our first contribution, visualisation meth-
ods are developed to gain novel market insights about the CID. These insights
aid in developing trading algorithms. An analysis method, utilising several ex-
ploratory visual analytics tools, is devised. This method can monitor market
trends, behaviours and price consensuses, as well as identify trading oppor-
tunities and market risks. To the best of our knowledge, we are the first to
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implement exploratory visual analytics tools for the CID, thus contributing to
intraday market analytics research.

In addition to the above, this thesis makes five contributions to electricity price
forecasting research. Firstly, the use of technical indicator features as inputs,
such as moving averages and Bollinger bands, is proposed to capture the be-
havioural biases of traders. These features allow machine learning models to
capture trading signals and better predict electricity prices. Secondly, we deploy
data augmentation methods utilising autoencoders and generative adversarial
networks. Data augmentation expands training set sizes and reduces the im-
pacts of data drift. Thirdly, we employ technical indicator features alongside
data augmentation in DAM price forecasting. The combined use of technical
features and data augmentation further boosts forecast accuracies. Fourthly,
a feature engineering method is proposed for CID forecasting. The proposed
features capture the underlying price drivers hidden in the limit order book.
Lastly, we evaluate machine learning models for BAL price forecasting. We are
the first, to our knowledge, to compare the performances of LASSO, random
forest, gradient boosting, and deep neural networks in BAL forecasting. Accu-
rate forecasts are required to optimise risk-to-reward ratios of arbitrage trading
strategies. Our contributions improve the benchmark forecasting accuracies of
DAM, CID and BAL prices by, on average, 27%, 35% and 19% respectively.

Finally, this thesis makes two contributions to electricity trading research. Al-
gorithms and methods are employed for optimising the risk-to-reward ratio of
an end-to-end arbitrage trading strategy in short-term electricity trading. A
novel rule-based trading strategy, which uses DAM and CID price forecasts, is
developed for the DAM. This strategy accurately opened 74% of DAM positions,
which later closed on the CID or BAL. Novel trading methods utilising deep rein-
forcement learning (DRL) are developed to optimise arbitrage trading decisions
across the CID and BAL. We employ the synchronous advantage actor-critic al-
gorithm (A2C) and asynchronous advantage actor-critic algorithm (A3C) with
function approximators of deep neural networks. We are the first, to our knowl-
edge, to employ A3C or A2C for arbitrage trading across the CID and BAL.
Trained autonomous trading agents secured significant profit across a test set.
Note that the test set contained Dutch DAM, CID and BAL contracts spanning
2020. While A3C traded roughly 7 GWh of electricity and yielded profits of
approximately C20k, A2C traded close to 34 GWh of electricity and generated
even higher positive profits of approximately C98k.
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In conclusion, this thesis makes eight contributions to intraday market analytics,
electricity price forecasting, and electricity trading research. We hope that our
contributions would prove useful to researchers and traders who want to im-
prove their forecasting accuracies and reward-to-risk ratios as well as develop
autonomous trading methods for short-term electricity markets. Moreover, our
contributions should aid in the reduction of inefficiencies emerging across elec-
tricity markets.





Samenvatting

Statistische Arbitragehandel op Elektriciteitsmarkten
met Behulp van Diepgaand Leren

Door de overgang van niet-hernieuwbare naar hernieuwbare energie zijn de
elektriciteitsprijzen volatieler geworden. Vanwege de toegenomen volatiliteit is
het voorspellen van energieprijzen een grotere uitdaging geworden. Om deze
prijsonzekerheid tegen te gaan, is de Europese single intraday coupled market
(CID) opgericht. Met een gevestigde liquide CID zijn er arbitragehandelsmogeli-
jkheden ontstaan op kortetermijnmarkten voor elektriciteit. Houd er rekening
mee dat potentiële arbitragemogelijkheden zich voordoen wanneer prijzen var-
iëren tussen markten of wanneer prijzen afwijken van hun langetermijntrends.
Arbitragehandel zou kunnen helpen bij het energietransitieproces door prijsver-
schillen tussen markten te verkleinen en de marktliquiditeit en efficiëntie te
vergroten, terwijl het winst oplevert voor arbitragehandelaren. Dit doctoraat-
sproefschrift heeft tot doel de besluitvorming van arbitragehandelsagenten voor
kortetermijnelektriciteitsmarkten, namelijk de day-ahead markt (DAM), CID en
balanceringsmarkt (BAL), te automatiseren en te optimaliseren.

Bij het optimaliseren van de besluitvorming van intelligente agenten levert het
proefschrift acht bijdragen aan drie onderzoeksgebieden: intraday-marktanalyse,
elektriciteitsprijsprognoses en elektriciteitshandel. Als onze eerste bijdrage wor-
den visualisatiemethoden ontwikkeld om nieuwe marktinzichten over de CID
te verkrijgen. Deze inzichten helpen bij het ontwikkelen van handelsalgorit-
men. Er wordt een analysemethode ontwikkeld, waarbij gebruik wordt gemaakt
van verschillende verkennende visuele analysetools. Deze methode kan mark-
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ttrends, gedragingen en prijsconsensus volgen, evenals handelsmogelijkheden
en marktrisico’s identificeren. Voor zover wij weten, zijn wij de eersten die
verkennende visuele analysetools voor de CID implementeren en zo bijdragen
aan intraday-marktanalyseonderzoek.

Naast het bovenstaande levert dit proefschrift vijf bijdragen aan onderzoek
naar elektriciteitsprijsprognoses. Ten eerste het gebruik van technische indi-
catorkenmerken als invoer, zoals voortschrijdende gemiddelden en Bollinger-
banden, wordt voorgesteld om de gebruikelijke vooroordelen van handelaren.
Met deze functies kunnen machine learning-modellen handelssignalen vast-
leggen en elektriciteitsprijzen beter voorspellen. Ten tweede passen we metho-
den voor gegevensvergroting toe met behulp van auto-encoders en generatieve
vijandige netwerken. Data-augmentatie breidt de omvang van trainingssets
uit en vermindert de impact van data-drift. Ten derde gebruiken we tech-
nische indicatorfuncties naast gegevensvergroting bij DAM-prijsvoorspellingen.
Het gecombineerde gebruik van technische kenmerken en data-uitbreiding ver-
hoogt de voorspellingsnauwkeurigheid verder. Ten vierde wordt een feature
engineering-methode voorgesteld voor CID-prognoses. De voorgestelde func-
ties leggen de onderliggende prijsbepalende factoren vast die verborgen zijn
in het limietorderboek. Ten slotte evalueren we machine learning-modellen
voor BAL-prijsprognoses. Voor zover wij weten, zijn wij de eersten die de
prestaties van LASSO, willekeurig bos, gradiëntversterking en diepe neurale
netwerken in BAL-voorspelling vergelijken. Nauwkeurige prognoses zijn vereist
om de risico-opbrengstverhoudingen van arbitragehandelsstrategieën te opti-
maliseren. Onze bijdragen verbeteren de benchmarkvoorspellingsnauwkeurighe-
den van DAM-, CID- en BAL-prijzen met gemiddeld 27%, 35% en 19%.

Ten slotte levert dit proefschrift twee bijdragen aan onderzoek naar elektriciteit-
shandel. Er worden algoritmen en methoden gebruikt voor het optimaliseren
van de risico-opbrengstverhouding van een end-to-end arbitragehandelsstrate-
gie bij de kortetermijnhandel in elektriciteit. Voor de DAM is een nieuwe op
regels gebaseerde handelsstrategie ontwikkeld, die gebruikmaakt van DAM- en
CID-prijsprognoses. Deze strategie opende nauwkeurig 74% van DAM-posities,
die later op de CID of BAL werden gesloten. Er zijn nieuwe handelsmeth-
oden ontwikkeld die gebruikmaken van Deep Reinforcement Learning (DRL)
om arbitragehandelsbeslissingen over de CID en BAL te optimaliseren. We ge-
bruiken het synchrone voordeel actor-critic algoritme (A2C) en het asynchrone
voordeel actor-critic algoritme (A3C) met functiebenaderingen van diepe neu-
rale netwerken. Voor zover wij weten, zijn wij de eersten die A3C of A2C ge-
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bruiken voor arbitragehandel over de CID en BAL. Getrainde autonome han-
delsagenten behaalden aanzienlijke winst over een testset. Merk op dat de
testset Nederlandse DAM-, CID- en BAL-contracten bevatte voor 2020. Terwijl
A3C ongeveer 7 GWh aan elektriciteit verhandelde en een winst opleverde van
ongeveer C20k, verhandelde A2C bijna 34 GWh aan elektriciteit en genereerde
een nog hoger positief winst van ongeveer C98k.

Concluderend levert dit proefschrift acht bijdragen aan intraday-marktanalyses,
elektriciteitsprijsprognoses en onderzoek naar elektriciteitshandel. We hopen
dat onze bijdragen nuttig zullen zijn voor onderzoekers en handelaren die hun
voorspellingsnauwkeurigheden en beloning-naar-risicoverhoudingen willen ver-
beteren en autonome handelsmethoden voor kortetermijnmarkten willen on-
twikkelen. Bovendien zouden onze bijdragen moeten helpen bij het terugdrin-
gen van inefficiënties die op de elektriciteitsmarkten ontstaan.
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Chapter 1

Introduction

1.1 Motivation of the Research

An urgent need to transition away from fossil fuels, tackle climate change, and
achieve energy independence exists. Though necessary, the transition away
from dirty yet stable energy sources raises technological and economic chal-
lenges. In this thesis, we offer novel AI-based solutions to tackle some of these
challenges. Our solutions help ensure the stability of electrical grids and the
efficiency of short-term electricity markets: the day-ahead market (DAM), the
continuous intraday market (CID) and the balancing market (BAL).

The supply from renewable energy sources is dependent on weather condi-
tions which are difficult to forecast accurately. Given this limitation, electricity
traders, experiencing regulators’ efforts to incentivise renewable energy pro-
duction, have been forced to adjust their trading strategies. They have pivoted
from long-term to short-term trading, in order to be able to use more recent
and reliable forecasts, i.e. hour-ahead forecasts. This shift in liquidity, however,
has been insufficient to offset the additional risk created by renewable energy
productions and combat increasing price deviations emerging across markets.

Arbitrage trading strategies offer the opportunity to reduce price differences
between markets and increase market liquidity and efficiency while yielding
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profits for traders [1–7]. Arbitrage trading strategies are short-term investment
decisions that employ analysis to determine reasonable price levels at which to
enter and exit trades without making long-term physical commitments. They
arise when price differences between markets widen. Arbitrage traders try to
profit from such price differences by, for instance, buying energy on the DAM
and selling back the same amount of energy, at a higher price, on the CID/BAL.
In this context, arbitrage trading is not risk-free and only results in a profit when
traders correctly predict the direction of prices. Arbitrage trading is automated
when mathematical or intelligent learning methods, e.g. deep reinforcement
learning, are employed. Automated arbitrage trading is also called statistical
arbitrage trading.

Arbitrage trading electricity is more difficult than arbitrage trading other com-
modities. The volatility of electricity prices often surpasses the volatility of other
commodities [8]. The uncertainty from renewable sources mentioned above im-
pacts the accuracy of electricity price forecasts, increasing the risk for traders.
Unlike other commodity traders, electricity traders are forced to close their open
positions at the end of the trading session at volatile BAL prices; because de-
mand must always match supply across the grid. Short trading windows, dur-
ing which trades are executed, further complicate the optimisation of trading
opportunities. Novel methods are thus needed to predict prices accurately and
make trading decisions optimally.

1.2 Research Goals and Questions

This PhD thesis aims to optimise the decision-making of arbitrage trading agents
for short-term electricity markets. In optimising the decision-making of intelli-
gent agents, the thesis focuses on answering the following research questions:

1. How can trading behaviours across the CID be visualised?

2. Can new features capable of capturing the effects of technical price drivers
be identified for the DAM?

3. How can time series be augmented to boost DAM prediction accuracies?

4. Can ensembles be used to boost forecast accuracies of DAM prices?
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Figure 1.1: The diagram highlighting the research questions of the thesis. Research
questions are shown with grey rectangles. Data, both actual and predic-
tions, are shown with rounded rectangles. Trading insights and decisions
are shown with parallelograms. Exogenous predictions refer to predictions
of exogenous variables, such as load, generation, temperature, wind speed,
solar irradiance and precipitation.

5. Can new features capable of increasing forecast accuracies be identified
for CID prediction?

6. How can machine learning be used to improve forecast accuracies of BAL
prices?
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7. How can an optimal arbitrage trading algorithm be identified for the CID
and BAL?

8. How can an optimal arbitrage trading strategy be determined for the DAM,
CID, and BAL?

Figure 1.1 shows the order in which the research questions are tackled.

1.3 Main Contributions

This PhD thesis makes eight contributions to three research areas, namely intra-
day market analytics, electricity price forecasting, and electricity trading. Fig-
ure 1.2 highlights the thesis’s contributions. Below these contributions are fur-
ther detailed.

Intraday Market Analytics

Original market insights about the CID are attained using novel exploratory
visualisation techniques. Market insights aid in developing both our forecast-
ing methods and trading algorithms. Our contribution is described below. We
expect our contribution to be useful for practitioners and researchers seeking
additional market insights with easily implementable techniques.

1. Exploratory visual analytics tools for the CID: Since 2018 a new in-
tegrated European intraday trading platform, the CID, has been opera-
tional, offering market participants cross-border liquidity. Trading activity
on the CID has increased substantially since its inception, mainly due to
increasing renewable energy penetration. CID trading volumes should
increase further, in line with anticipated renewable energy production
growth. Given its rising status, more research is needed to better under-
stand the workings of the CID. With this in mind, we develop exploratory
visual analytic tools capable of analysing CID trade flows. Some of the
visualisation techniques are designed, using data from the CID limit order
book and trade book, to monitor market trends, behaviours, price consen-
sus and liquidity. Meanwhile, other visualisation techniques are created,
using CID volumes and short-term electricity market prices, to identify
trading opportunities and market risks. Visualisations are created using
CID data available for the Dutch market area.
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Figure 1.2: The diagram highlighting the contributions of the thesis. Contributions,
methods, are shown with grey rectangles. Data, both actual and predic-
tions, are shown with rounded rectangles. Trading insights and decisions
are shown with parallelograms. Exogenous predictions refer to predictions
of exogenous variables, such as load, generation, temperature, wind speed,
solar irradiance and precipitation.

Electricity Price Forecasting

Statistical arbitrage trading (SAT) agents need accurately predicted prices to re-
duce uncertainty, increase profits, and ensure better decision-making. To do so,
this thesis develops novel forecasting methods, which significantly increase the
accuracy of short-term electricity price forecasts. These novel methods impact
the field of electricity price forecasting through five unique contributions listed
below. We expect our contributions to benefit electricity traders and researchers
who seek to improve their forecasting accuracies of electricity prices.
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2. Technical indicators for forecasting DAM prices: Volatility and forecast
errors of DAM prices have grown in recent years. Changing market condi-
tions, epitomised by geopolitical factors and increasing renewable energy
production, have spurred this growth. If forecast accuracies of DAM prices
are to improve, new features capable of capturing the effects of technical
or fundamental price drivers should be identified. Technical indicators
(TIs), such as Bollinger Bands and Momentum indicators, are widely used
across financial markets to identify traders’ behavioural biases. To date,
TIs have never been applied to the forecasting of DAM prices. TI features
capable of capturing the behavioural biases of DAM traders are proposed
to improve the forecasting accuracies of DAM prices. The simple inclusion
of TI features in DAM forecasting is shown to significantly boost the ac-
curacies of machine learning models for the Belgian DAM; reducing the
root mean squared errors of linear, ensemble, and deep model forecasts
by up to 4.50%, 5.42%, and 4.09% respectively. Moreover, tailored TIs are
identified for each of these models, highlighting the added explanatory
power offered by technical features.

3. Data augmentation methods for forecasting DAM prices: A model’s
expected generalisation error is inversely proportional to its training set
size. This relationship can pose a problem when modelling multivariate
time series because structural breaks and low sampling rates can severely
restrict training set sizes, increasing a model’s expected generalisation er-
ror by spurring regression model overfitting. Artificially expanding the
training set size, using data augmentation methods, can, however, coun-
teract the restrictions imposed by small sample sizes, increasing a model’s
robustness to overfitting and boosting out-of-sample prediction accura-
cies. To artificially expand training set sizes and boost DAM price pre-
diction accuracies, autoencoders (AEs), variational autoencoders (VAEs)
and Wasserstein generative adversarial networks with a gradient penalty
(WGAN-GPs) are proposed for time series augmentation. To evaluate our
proposed augmentors, as a case study we forecast Belgian and Dutch DAM
prices using both autoregressive models and artificial neural networks.
Overall, our results demonstrate that AEs, VAEs, and WGAN-GPs can sig-
nificantly boost regression accuracies; on average decreasing mean abso-
lute errors by 2.23%, 2.73% and 2.97% respectively.

4. Ensemble methods for forecasting DAM prices: Given observed im-
provements obtained utilising TIs and augmentation methods, ensemble
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methods utilising various combinations of each method are proposed. En-
semble methods should further improve forecasting accuracies of DAM
prices. Across the Belgian and Dutch DAMs, our results show that com-
bining AE, VAE, and WGAN-GP forecasts can, on average, increase naive
benchmark accuracies by 25.40%. Moreover, our results demonstrate that
combining TI forecasts with augmentation method forecasts can similarly
boost naive benchmark accuracies by up to 24.04%. An ensemble method
averaging AE, VAE, WGAN-GP, and TI model forecasts outperformed all
other evaluated forecasting methods, decreasing naive benchmark errors
by 27.63%.

5. A feature engineering method for forecasting CID prices: Increasing
renewable energy production has significantly increased the volatility of
CID prices and decreased the forecasting accuracy of regression models.
If forecast accuracies of CID prices are to improve, feature engineering
methods, which capture significant CID price drivers, should be identi-
fied. A novel feature engineering method for capturing CID price drivers
is proposed. The CID forecasting accuracies of machine learning models,
accepting these features as inputs, are evaluated. Note that while most
CID studies only focus on forecasting the volume-weighted average price
of trades (VWAP), this thesis focuses on predicting: the VWAP, the lowest
traded price and the highest traded price, the average best ask price, the
average best bid price, and the average mid-price to account for continu-
ous trading characteristics. Overall, LASSO feature selection suggests that
our proposed features, such as the VWAP of exported trades, the number
of bid orders, the number of limit order book revisions and the minimum
of the best ask price for a contract, are significant predictors of CID prices.
Using the selected features as inputs in a range of models is shown to
boost their Dutch CID forecasting accuracies. For instance, deep neural
networks (DNN), using our novel input features, are found to outperform
naive benchmark forecasts by 35%.

6. Machine learning methods for forecasting BAL prices: BAL prices are
the most unpredictable among short-term electricity market prices be-
cause the BAL deals with unforeseen incidents which are random and
hard to predict. Nevertheless, accurate forecasts of BAL prices are valu-
able inputs of arbitrage trading strategies. We develop machine learning
methods capable of better forecasting BAL prices. The forecasting mod-
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els, such as LASSO, random forest, gradient boosting, and deep neural
networks, are evaluated.

Given the demonstrated gains made possible by using technical indicators
(TIs) in our earlier contributions, TI features are used as inputs in eval-
uated models. As a case study, Dutch BAL prices, namely take and feed
prices, are predicted. The best-performing model, deep neural networks,
is found to boost the forecasting accuracy of a naive benchmark model,
on average, by 19%.

Electricity Trading

This thesis deploys autonomous trading agents to explore statistical arbitrage
trading (SAT) strategies. Novel trading algorithms capable of significantly in-
creasing traders’ profits are identified. These novel methods advance the field
of electricity trading via two distinct contributions listed below. We expect our
contributions to benefit electricity traders and researchers who seek to develop
state-of-art intelligent trading strategies.

7. Asynchronous advantage actor-critic (A3C) agent for statistical arbi-
trage trading across the CID and BAL: SAT can reduce price differences
across the CID and BAL while yielding profits for trading agents. These
trading agents aim to optimise the risk-reward ratio of their autonomous
trading strategies. To find an optimal trading policy, an algorithm em-
ploying a deep reinforcement learning method, namely asynchronous ad-
vantage actor-critic (A3C), is proposed. State engineering and selection
processes are conducted to increase the performance of trading agents. A
novel reward function and goal-based exploration, i.e. behaviour cloning,
are introduced to motivate trading agents to explore the state space. A3C
is evaluated across the Dutch CID and BAL markets. On 1760 test con-
tracts, A3C trades a total of 7017 MWh of electricity and generates profits
of C19927.

8. Rule-based (RB) and advantage actor-critic (A2C) agents for statisti-
cal arbitrage trading across the DAM, CID and BAL: SAT can reduce
price differences across the DAM, CID and BAL while yielding profits for
trading agents. SAT agents aim to optimise the risk-reward ratio of an
end-to-end trading strategy. To find an optimal DAM trading policy, a
rule-based (RB) trading method using DAM and CID price forecasts is
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proposed. Using these forecasts, our RB agent opens a majority of DAM
positions (74%) accurately. To find optimal CID and BAL trading policies,
an algorithm employing a deep reinforcement learning method, namely
advantage actor-critic (A2C), is proposed. Evaluated across Dutch short-
term markets, A2C yields profits surpassing those obtained using A3C and
other benchmarks. Our best agent trades 33805 MWh of electricity across
1760 hourly test contracts; yielding significantly positive profits of C97853.

1.4 Structure of the Thesis

This PhD thesis is divided into three parts. Each part begins with a background
chapter that lays the groundwork for the main contributing chapters. Figure 1.3
displays the organisation of the thesis and links between the main chapters.
Below, the contents of contributing chapters are summarised for each part of
the thesis.

Part I Electricity Markets

The first part of the thesis, consists of Chapters 2-3, describes short-term elec-
tricity markets and explores the CID with visual tools. This part aids in devel-
oping both forecasting methods in Part II and trading algorithms in Part III.

Chapter 3 This chapter introduces visual analytics tools for analysing the CID,
and identifies easily implementable tools for succinctly visualising market risks.
The content of this chapter has been published in:

[9] S. Demir, K. Kok, N. G. Paterakis, “Exploratory Visual Analytics for the
European Single Intra-day Coupled Electricity Market,” in 2020 Interna-
tional Conference on Smart Energy Systems and Technologies (SEST), 2020,
pp. 1-6. DOI: 10.1109/SEST48500.2020.9203043

Part II Forecasting Electricity Market Prices

Statistical arbitrage trading (SAT) agents, implemented in Part III of the the-
sis, need accurately predicted prices to reduce uncertainty, increase profits, and
ensure better decision-making. To do so, Part II of the thesis, consists of Chap-
ters 4-9, develops novel forecasting methods, which significantly increase the
accuracy of price forecasts across short-term electricity markets.

https://doi.org/10.1109/SEST48500.2020.9203043
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Figure 1.3: The organisation of the thesis. While background chapters are shown with
rounded rectangles, contributing chapters are shown with rectangles. The
introduction and conclusion chapters are shown with parallelograms.

Chapter 5 This chapter investigates the explanatory power of TIs in DAM price
forecasting. This chapter’s content has been published in:

[10] S. Demir, K. Mincev, K. Kok, N. G. Paterakis, “Introducing Technical In-
dicators to Electricity Price Forecasting: A Feature Engineering Study for
Linear, Ensemble, and Deep Machine Learning Models,” Applied Sciences,
vol. 10, no. 1, 2020. DOI: 10.3390/app10010255

https://doi.org/10.3390/app10010255
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Chapter 6 This chapter examines the use of data augmentation as a method
for boosting DAM forecasting accuracies. The content of this chapter has been
published in:

[11] S. Demir, K. Mincev, K. Kok, N. G. Paterakis, “Data Augmentation for
Time Series Regression: Applying Transformations, Autoencoders and Ad-
versarial Networks to Electricity Price Forecasting,” Applied Energy, 304,
117695, 2021. DOI: 10.1016/j.apenergy.2021.117695

Chapter 7 This chapter examines ensemble models that utilise different com-
binations of forecasts from Chapters 5 and 6. This chapter’s content has been
published in Sections 3.1 and 5.1 in:

[12] S. Demir, K. Kok, N. G. Paterakis, “Statistical Arbitrage Trading Across
Electricity Markets Using the Advantage Actor-Critic Methods,” Sustain-
able Energy, Grids and Networks, 34, 101023, 2023. DOI: 10.1016/j.segan-
2023.101023

Chapter 8 This chapter studies the explanatory power of novel features cre-
ated from the limit order book and trade book in CID price forecasting. A part
of this chapter’s content has been published in Sections 3.2 and 5.2 in:

[12] S. Demir, K. Kok, N. G. Paterakis, “Statistical Arbitrage Trading Across
Electricity Markets Using the Advantage Actor-Critic Methods,” Sustain-
able Energy, Grids and Networks, 34, 101023, 2023. DOI: 10.1016/j.segan-
2023.101023

Chapter 9 This chapter compares a range of machine learning models for BAL
price forecasting.

Part III Statistical Arbitrage Trading Across Electricity Markets

The third part of the thesis, consists of Chapters 10-12, deploys autonomous
trading agents in the exploration of SAT strategies.

Chapter 11 This chapter investigates the profitability of SAT across the CID
and BAL using the A3C algorithm. This chapter’s content has been published in:

https://doi.org/10.1016/j.apenergy.2021.117695
https://doi.org/10.1016/j.segan.2023.101023
https://doi.org/10.1016/j.segan.2023.101023
https://doi.org/10.1016/j.segan.2023.101023
https://doi.org/10.1016/j.segan.2023.101023
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[13] S. Demir, B. Stappers, K. Kok, N. G. Paterakis, “Statistical Arbitrage Trad-
ing on the Intraday Market Using the Asynchronous Advantage Actor-
Critic Method,” Applied Energy, 314, 118912, 2022. DOI: 10.1016/j.ap-
energy.2022.118912

Chapter 12 This chapter examines the profitability of a SAT strategy across the
DAM, CID and BAL using the RB and A2C algorithms. This chapter’s content has
been published in Sections 4, 5.3 and 5.4 in:

[12] S. Demir, K. Kok, N. G. Paterakis, “Statistical Arbitrage Trading Across
Electricity Markets Using the Advantage Actor-Critic Methods,” Sustain-
able Energy, Grids and Networks, 34, 101023, 2023. DOI: 10.1016/j.segan-
2023.101023

1.5 Mathematical Notation

In this thesis, scalar variables are denoted using lowercase Latin letters, such
as x, or symbols, such as θ. Note that exceptions to this notation occur. The
number of samples, for instance, is shown with the capital letter N following
common convention seen in the existing literature. Vectors are denoted by bold
lowercase Latin letters, such as x, or bold symbols, such as θ.

Matrices and sets are denoted by capital letters. Following the existing litera-
ture, the set of integers is denoted by Z, and the set of real numbers by R. The
set of a real-valued vector of dimension n is shown with Rn .

The expected value is denoted by E. Forecasts are denoted by using a hat on the
predicted variable, e.g. p̂d am for the forecast of DAM price pd am .

Functions are denoted by lower and capital letters, such as f (.) and F (.). Func-
tions defined by abbreviations, such as SMA(.) for the simple moving average
function, are also used. Note that exceptions still occur for functions. The loss
function, for instance, is shown with the calligraphic letter L(.) following the
existing literature.

https://doi.org/10.1016/j.apenergy.2022.118912
https://doi.org/10.1016/j.apenergy.2022.118912
https://doi.org/10.1016/j.segan.2023.101023
https://doi.org/10.1016/j.segan.2023.101023
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Chapter 2

Background: Electricity
Markets

This chapter provides background information about electricity markets: the
first part of the thesis. Specifically, the chapter describes European short-term
electricity markets: namely the day-ahead market (DAM), continuous intraday
market (CID), and balancing market (BAL).

2.1 Introduction

Energy producers and suppliers must together meet the energy needs of every-
day consumers and businesses. In doing so, they forecast hourly or quarter-
hourly energy demand and plan a path for satisfying this demand. They do this,
while jointly trying to maximise profits and minimise price and volume risks.

Numerous markets for trading electricity and meeting the demand for energy
exist: from long-term futures markets with maturities ranging from weeks to
years, to short-term markets where contracts with maturities ranging from one
hour to one day are traded. Figure 2.1 highlights the order of the electricity
market floors; the first trading floor is the futures market, the second trading
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Figure 2.1: Electricity markets.

floor is the DAM, and the final trading floor is the CID. Outstanding positions
are cleared on the BAL.

The scope of the thesis comprises short-term electricity markets, namely the
DAM, CID, and BAL. To date, research has primarily focused on the DAM. The
transition from non-renewable to renewable energy sources is, however, chang-
ing this; influencing short-term electricity markets by shifting the share of vol-
ume from the DAM to CID. The CID’s traded volume and liquidity have risen,
as has the quantity of studies researching the CID. Among these studies, [14]
explored CID trading behaviours, [15] provided a literature review of CID fore-
casting, and [16, 17] debated the trading mechanism between continuous and
auction-based markets. Nonetheless, more research is needed to understand
this growing market.

The next chapter introduces and explains the novel visualisation methods de-
veloped for the CID. Before that, however, this chapter focuses on introducing
short-term electricity markets, paying extra attention to introducing the CID.

2.2 Day-Ahead Markets

The DAM is the largest short-term electricity market by volume. The DAM is
an auction-based market; facilitating the purchase and sale of 24 hourly energy
contracts for next-day delivery. Uniquely, DAM clearing prices are computed
using a matching mechanism that aggregates all asks and bids submitted before
noon. For the DAM’s 24 hourly contracts, the matching engine sets prices where
demand and supply intersect. Trade settlement occurs once prices are set, with
hourly energy delivery commencing at 00:00 the following day.
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2.3 Continuous Intraday Markets

Before market participants’ outstanding positions become binding on the BAL,
traders are granted one final opportunity, through the CID, to close out their
positions. The CID facilitates market-based transactions of energy both na-
tionally and internationally. While national markets allow trading only within
one market area, coupled markets allow trading between several market ar-
eas. There were several intraday coupled markets in Europe such as Nordic,
Iberian and EPEX before 2018. As stated in [18], on 12/06/2018, the single
intraday coupled market (CID)1 centralised all previous coupled markets by ini-
tially launching across Austria, Belgium, Denmark, Estonia, Finland, France,
Germany, Latvia, Lithuania, Norway, the Netherlands, Portugal, Spain and Swe-
den. The CID was expanded to cover more countries such as Bulgaria, Croatia,
the Czech Republic, Hungary, Poland, Romania and Slovenia in 2019. The CID
was expanded further by including Italy in 2021, as well as Greece and Slovakia
in 2022.

2.3.1 CID Design

As described in [18], the CID system consists of trading, capacity management,
and shipping modules. The trading module combines all orders into one shared
order book; delivering continuous trading services. The trading module also
allocates the first implicit capacity for the capacity management module.2 Con-
sequently, the capacity management module updates cross-border capacity in
real-time. Finally, the shipping module informs market participants, whose or-
ders are matched, about the post-coupling process.

All three modules mentioned above work collaboratively. Per Figure 2.2, ini-
tially, participants submit their orders to their market areas. If there is available

1The CID might be referred to as the SIDC or XBID by market operators.
2Note that the implicit market loss, the allocated capacity difference between two counterparties,

is accounted for and calculated as follows. When an order with quantity (q in MWh) and price (p
in e/MWh) is submitted to the CID, the trade amount is calculated by multiplying quantity and
price: q ×p. The trade amount should be the same for both counterparties to match their orders.
Implicit losses, such as 5% between the Netherlands and Norway and 4% between the Netherlands
and Norway2, are, however, taken into consideration [18]. For example, a bid order is submitted
from the Dutch market area with qb = 100 MWh and pb = 50 e/MWh. The trade amount of this
order is 100×50 = 5000 e. If this bid order is to be matched with an ask order from the Norway2
market area, the quantity and price of the ask order should be qa ≈ 104.17 MWh and pa ≈ 48 e/MWh
respectively to preserve an equal trade amount 100×50 ≈ 104.17×48 (qb ×pb = qa ×pa).
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Figure 2.2: CID flow for Dutch (NL), Belgian (BE) and French (FR) participants.

capacity and a match is found, those orders are stricken from the register. Elab-
orating, the shared order book immediately updates itself by removing these
orders from its registry, and the capacity management module updates itself by
allocating implicit capacity. The matched orders are sent to the shipping mod-
ule from the shared order book, where the post-coupling process is initiated.
The European Commodity Clearing, which is a clearing house for all transac-
tions, informs exchange members’ transmission system operators (TSO) about
transactions every fifteen minutes.

2.3.2 Trading

In Europe, intraday markets are more complex than the DAM because they have
more trading procedures and product types. Elaborating, trading procedures
can be auction-based or continuous-based. Orders are stored in the limit order
book for both trading procedures. While orders for auction trading are cleared
at fixed discrete times, orders for continuous trading are executed instanta-
neously when they are matched.
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Figure 2.3: Trading timelines for all hourly contracts. Blue bars are delivery periods.
Pink circles represent the auction-based DAM. Pink bars are continuous-
based CID trading sessions, starting at 15:00 on the day d −1, a day earlier
than the delivery day.

Product types can be 60-minute (hourly), 30-minute or 15-minute. Note that
the hourly product has 24 tradable contracts (expiries) per day, the 30-minute
product has 48 contracts, and the 15-minute product has 96 contracts. In prac-
tice, most volumes are traded with the hourly product in the intraday mar-
ket [18]. Figure 2.3 further details trading timelines of the hourly electricity
contracts, h ∈ {h0,h1, . . .h23}, for the intraday market with continuous trading.

The CID is a continuous market, offering hourly contracts, as shown in Fig-
ure 2.3. The start of trading and the end of trading are referred to as the gate
opening time (GOT) and the gate closing time (GCT) respectively. The GCT is
60 minutes before delivery. The GOT may differ across countries. For example,
the GOT is at 14:00 on the day d − 1, a day earlier than the delivery day, for
Belgium, and at 15:00 on the day d−1 for the Netherlands, Germany, Denmark,
France, Switzerland and Austria [18]. The period between GOT and GCT is
defined as a trading period or a trading session. During this trading session,
orders, with attributes described below, can be continuously submitted to and
cleared by the CID. Detailing the attributes:

• order type specifies orders either with a bid (to buy electricity) or an ask
(to sell electricity).

• quantity is the total available volume (in MWh).
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• price limit (price) is the price restriction (in e/MWh) for limit orders. Us-
ing this price limit, orders are matched at this price or a better price.

• delivery area is a participant’s delivery area, such as The Netherlands.

• expiry defines a tradable contract, h ∈ {h0,h1, . . .h23}. For instance, h3 refers
to an hourly contract for energy delivery between 3 and 4 am. As stated
in [18], the expiries can be traded regularly throughout the year except
for two days when daylight saving time changes. From winter to summer
time change, h2 cannot be traded. From summer to winter time change,
the same expiry is divided into two hour expiries.

• validity restriction bounds orders by time, such as “good for session” and
“good till date”, or by volume such as “iceberg”3.

• execution restriction bounds orders by a specific execution, such as “fill or
kill” (FOK), “linked fill or kill” (LFOK), “immediate or cancel” (IOC), and
“all or none” (AON).4

The Limit Order Book

The limit order book (LOB) at time t consists of all active ask and bid orders
submitted to the CID. See an example LOB in Figure 2.4. In general, orders are
removed from the LOB if they are matched, deleted or deactivated. Otherwise,
orders are removed from the LOB with time-related validity restrictions, such as
“good for session” and “good till date”.

Describing basic LOB terminologies, as also shown in Figure 2.4, the best ask
price pa

t is the lowest of all available ask prices at time t ∈ [1,T ], where T is
the last time step of a trading session, can be also referred to as the GCT.
Meanwhile, the best bid price pb

t is the highest of all available bid prices at

3Iceberg orders hide total quantity information from other participants and are used especially
for large orders. Iceberg orders have two additional attributes: total quantity and initial quantity.
Note that initial quantity is the tip of the Iceberg mountain, and the remaining quantity is the
hidden-quantity. An iceberg order is divided into equally smaller orders (slices) and gradually
introduced to the limit order book. Thus, other participants can only see the introduced slice. If the
initial quantity is matched, then the next slice is introduced to the order book.

4The IOC, FOK and LFOK, i.e. linked FOK, orders need to be executed immediately or cancelled
without entering the limit order book. While the IOC orders can be matched partially or entirely,
the FOK and LFOK orders can only be matched entirely. The AON orders also need to be executed
entirely. However, they stay in the limit order book until their execution or cancellation.
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Figure 2.4: An example LOB at time t . Bid orders are shown with green blocks. Mean-
while, ask orders are presented with red blocks.

time t . Using the best ask and bid prices, the mid-price at time t is calcu-
lated as pmi d

t = (pa
t + pb

t )/2, and the bid-ask spread at time t is calculated as
p spr ead

t = pa
t −pb

t . The bid-ask spread can be used as a metric to evaluate mar-
ket liquidity. Note that liquidity is defined as the possibility of finding a trading
counterparty. The higher the bid-ask spread the lower the market liquidity.

Order Matching

During a trading session, submitted orders are automatically matched based on
the first-come-first-served principle, which prioritises the best price and order
entry time. When a new order is submitted, orders are matched if the submitted
bid price is higher than the best ask price, or if the submitted ask price is lower
than the best bid price. The transaction occurs based on the lower quantity
and any remaining quantity is kept in the limit order book. If multiple ask or
bid orders have the same price, the order matching engine prioritises time, by
executing earlier entered orders.

2.4 Balancing Markets

The real-time balancing market (BAL), also referred to as the imbalance or reg-
ulation market, is built to keep the electricity system balanced. The BAL, man-
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aged by a transmission system operator (TSO), settles imbalanced positions for
each delivery period with balance responsible parties (BRPs).5 Note that a de-
livery period is defined as 15 minutes in the Netherlands, resulting in a total of
96 delivery periods across a 24h window [19].

For any delivery period, after trading on the DAM and/or the CID, a BRP might
still hold an outstanding open position. If a BRP has a remaining long position,
i.e. positive imbalance or imbalance surplus, usually caused by generating more
electricity than is scheduled or consuming less than is scheduled, then this BRP
receives the long imbalance price, i.e. feed price, for its long position. If a BRP
has a remaining short position, i.e. negative imbalance or imbalance shortage,
usually caused by generating less electricity than is scheduled or consuming
more than is scheduled, then this BRP pays the short imbalance price, i.e. take
price, for its short position.

Imbalance prices are calculated through a single-pricing scheme in the Nether-
lands [19]. Elaborating, if upward or downward reserves are activated, the
activation cost of reserves is used for both imbalance shortages and imbalance
surpluses, and BRPs pay or receive the same price. If, however, both upward
and downward reserves are activated, the activation cost of upward reserves
is used for imbalance shortages and the activation cost of downward reserves
is used for imbalance surpluses, resulting in different imbalance prices. More-
over, when the system imbalance is high, a balance incentivising component is
used to weigh imbalance prices. A BRP is punished if its position is in the same
direction as the system imbalance. Otherwise, a BRP is awarded.

2.5 Concluding Remarks

In this chapter, the background knowledge required for visualising and analysing
electricity markets was outlined. Motivations for visualising electricity markets,
and descriptions of each short-term market layer were provided. The next chap-
ter of the thesis uses this background information to build novel visualisation
methods for the CID. Note that the background information about short-term
electricity markets is also used in the following parts of the thesis to develop
novel price forecasting methods and trading strategies.

5The BAL could be referred to as a market where a TSO trades with flexible players to adjust
the balance of the power system, e.g. tertiary control (mFRR). However, in this thesis, the BAL is
referred to as a market where a TSO settles BRPs’ open positions, i.e. the imbalance settlement.



Chapter 3

Exploring the Continuous
Intraday Market

The European continuous intraday market (CID) trading activity has increased
substantially in recent years mainly as a consequence of the increasing penetra-
tion of renewable energy production and its subsequent impact on imbalance
market prices. Nonetheless, more research is needed to understand this growing
market. This chapter presents exploratory visual analytics tools for tradable con-
tracts of the CID. The main visualisations are created from the limit order book
(LOB) and trade book (TB), and intended to increase our domain knowledge of
the CID by monitoring market trends, behaviours, depth, price consensus and
liquidity. Furthermore, previous contracts of CID volumes and balancing prices
are visualised to identify trading opportunities and risks. We expect that the
presented visual analytics will be useful for both practitioners and researchers
seeking quick and easily implementable tools for acquiring additional market
insights and developing manual or automated trading strategies.

3.1 Introduction

CID trading activity has significantly increased in recent years, in line with in-
creasing renewable energy production. To understand why, the expected im-
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pact of increased renewable production on balancing energy need must be ex-
plained. With this in mind, note that: firstly, a high demand on balancing power
results from large differences between expected and actually delivered energy
consumption/production within a grid area; secondly, renewable energy pro-
duction is relatively unpredictable. Putting the above together, it should be
apparent how increased penetration of renewable energies could be expected,
ceteris paribus, to increase balancing energy needs [20]. The CID offers a coun-
terweight to the above, preventing balancing energy needs from rising [21].

From the market participants’ perspective, trading activity in the CID has in-
creased mainly because participants aim to: hedge their position against balanc-
ing market (BAL) prices, benefit from the flexibility of the CID trading period,
and reach the available liquidity of neighbouring countries. Dissecting these
aims in turn, after the closure of the day-ahead market (DAM), participants of-
ten find themselves with an energy gap, requiring the revaluation of their bids
and asks. This gap can arise because of DAM forecast errors or unpredictable
intermittent renewable energy supply spikes. Given updated and more accurate
energy forecasts, practitioners can use the CID to balance their energy gap and
further hedge their risk exposure to highly uncertain BAL prices.

Examining the flexibility of the CID trading period, CIDs offer continuous trad-
ing opportunities starting from the closure of the DAM to shortly before deliv-
ery. This flexibility helps participants to continuously optimise their portfolio
and update their planning decisions over an extended period of time. Unlike
with the DAM, participants can trade multiple times. The producer may decide
to buy energy whenever it becomes cheaper than his/her production cost.

Finally, elaborating on the opportunity of reaching the available liquidity of
neighbouring countries, note that the liquidity is defined as the possibility of
finding a trading counterparty. Since 2018 the CID has been operating to of-
fer market participants the available liquidity of other countries. For instance,
Danish wind producers may not able to sell their energy inside Denmark due
to a significant difference between the bid and ask volumes for hours with high
wind power production. The CID offers these producers an opportunity to ex-
port energy to other countries which have more favorable market conditions.

CID trading volumes are expected to increase even further in the upcoming
years since the penetration of renewable energy sources is expected to rise [14].
This growth will further increase the liquidity and importance of the CID, and
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attract not only more practitioners but also more academic researchers. We ex-
pect that practitioners and researchers will be more aware of the trading oppor-
tunities on the CID and create more sophisticated optimisation processes taking
into account the increased volatility of electricity prices and the increased pen-
etration of renewable sources on electricity markets.

Above, participants’ increasing interest in CID trading is explained; however,
how participants make their trading decisions (e.g. which trading contract to
trade, when to submit orders, or how to price orders) has not been discussed
yet. To reach trading decisions, practitioners continuously monitor fundamental
indicators including market behaviours, price drivers and market insights such
as the market depth, bid-ask spread and price consensus. Exploratory visual
analytics offer practitioners tools for effectively visualising these fundamental
indicators to be used in their development of trading strategies. Beyond manual
trading, practitioners can also use these fundamental visualisations to acquire
market insights prior to setting their automated trades.

With the above in mind, in this thesis we outline exploratory visual tools for
tradable CID contracts. We develop tools for visualising transactions, executed
trades, the volume-at-price, and distributions of prices and volumes. We also
identify easily implementable tools for succinctly visualising previous hour risks
using CID trading volumes and balancing prices. These visualisations are cre-
ated with Python software using the CID LOB and TB, and balancing prices.

3.2 Visual Analytics Approach to Continuous Intra-
day Market Exploration

3.2.1 Data

Our primary data sources are the TB and LOB of the CID, available for the
Dutch market area. The LOB includes all submitted orders entered with an
entry time, price and quantity. The TB consists of all executed trades with
their buy/sell areas, matched times, prices and quantities. CID trade and LOBs
are not publicly available. The data was acquired by Scholt Energy, an energy
supplier, for 2018.1 Additionally, DAM prices for The Netherlands and Belgium,

1After 2018, note that several incidents, such as the Covid-19 pandemic and the Russia-Ukraine
conflict, have affected the CID. Thus, our observations in this chapter may or may not be observed
during these deviating times.
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Figure 3.1: Transaction flow graph showing the number of CID trades from and to the
Dutch market area in 2018. Buy areas are on the left side and sell areas are
on the right.

and BAL prices for The Netherlands are collected. These prices are publicly
available at the ENTSO-E Transparency Platform [22].

3.2.2 Visualisations for Transactions

Domain knowledge is a very crucial strength for any market participant. Most
of CID participants follow import and export trading behaviours of their neigh-
bouring countries. Figure 3.1 presents a Sankey diagram [23] showing trans-
action flows for the Dutch market area. It is clear from this figure that for
cross-border transactions, Dutch participants exchanged electricity mostly with
Germany. This might indicate that features impacting German markets may
also significantly impact CID prices. By visualising transactions, participants
can gain insights about potential price drivers affecting CID prices.

While only transactions for a year are presented, it should be noted that plotting
transactions for each season across several years could expose further insights
about countries’ trading behaviors and the price drivers. This is because, trading
behaviors can exhibit seasonalities only identifiable across a longer term period.
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(a) (b)

Figure 3.2: Executed trades and volume-at-price graphs for the Expiry-1, 16/03/2018.
Figure (a) displays trades on the y-axes - prices (the left side) and accumu-
lated volumes (the right side) - and timestamps on the x-axes. Figure (b)
shows all submitted orders using price bins on the y-axes and volumes on
the x-axes.

3.2.3 Visualisations for the Contract History

Contract history visualisations can be used to gain insights about the liquidity
of a market or to develop trading strategies. In this section, the visualisations
are presented for the Expiry-13, i.e. h13 an hourly contract for energy delivery
between 1 and 2 pm, on 16/03/2018. They are however applicable to any
expiry for any day to gain insights about the CID.

Firstly, the TB history is investigated for contract history visualisations. Exe-
cuted trades, extracted from the TB, are plotted in Figure 3.2a. Prices and the
cumulative volume are plotted together to facilitate a combined analysis. By
monitoring executed prices and volumes, practitioners can explore the market
behaviour, or deduce the possible remaining trading volume together with its
price range. Figure 3.2a shows that overall the energy was exchanged in small
quantities. The highest volume of trades happened around 11 am; impacting
prices which increased from 50 to 75 e/MWh. While the majority of transac-
tions occurred between 9 and 11 am and were traded in a narrow price band
[47, 60] e/WWh, a small number of transactions occurred either before 9 am
or after 11 am and were traded in a higher price band [55, 79] e/MWh. This
difference may be explained by a change in traders’ overall risk tolerance e.g.
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(a) (b)

Figure 3.3: Raw and best order price graphs for the Expiry-13, 16/03/2018. Figure (a)
illustrates prices of all submitted orders throughout the trading session.
Note that orders are plotted based on their timestamps; however, minutes
and seconds are not displayed in the x-axis for simplicity. Figure (b) shows
only the best ask and bid prices for the final hours of the trading session.

risk-averse for trading before 9 am and risk-taker for trading after 11 am. Us-
ing executed trades plots, practitioners can thus anticipate price changes by
monitoring transactions and gauging the markets’ risk appetite. An additional
observation from Figure 3.2a is that transactions only occurred in several last
hours of the trading session. This is also one of the CID trading behaviours
deduced using ELBAS data by [14].

Moving from visualising the TB to visualising the LOB, practitioners can monitor
the depths of bids and asks, and potential price consensuses using Figure 3.2b,
a volume-at-price graph, also known as a market depth graph. The volume-
at-price graph visualises volumes of all available orders for each price band.
A price band, e.g. (54, 56] e/MWh, is considered as a price consensus of the
market if it includes both bids and asks. In practice, volume-at-price graphs
typically have heavy tails. While the upper heavy tail - the most expensive price
band - consists of a considerable proportion of asks, the lower heavy tail - the
least expensive price band - consists of a considerable proportion of bids.

Figure 3.2b presents an CID volume-at-price graph with all submitted orders
extracted from the LOB. The figure illustrates that Expiry-13, as expected, has
heavy tails. The upper tail - the price band of (70, ∞) e/MWh - consists of asks
and the lower tail - the price bands of (-∞, 44] and (44, 46] e/MWh - consists
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of bids. Between these two tails, various price consensus, i.e. price bands which
include both order types, are observed. The most dominant price bands of them
all, however, are the price bands of (50, 52] and (52, 54] e/MWh with their
higher quantities.

Volume-at-price graphs are very useful tools to investigate the market depth.
They, however, fail to visualise a very important component: entry times of
orders. One of the reasons practitioners may wish to track orders with their
entry times is that it allows them to visualise any changes in the market trend.
Figure 3.2b fails to capture changing market trends. Raw and best order price
graphs, Figure 3.3, and quantile price and volume graphs, Figure 3.4, are gen-
erated to address this shortcoming. Together they can be used to track the CID’s
trend and liquidity by integrating orders’ entry times into the visualisation. Fig-
ure 3.3a shows prices of all submitted orders based on their entry times. It
can be observed that the price spread between ask and bid orders is very dis-
tinguishable and the market liquidity is very low in early hours. This leads us
to concentrate on actively traded hours which are the last hours of the trading
session. Figure 3.3b is based on the best bid and ask prices, respectively the
highest and lowest prices of their types. These have major impact on matching,
their plot shows the most important information about the LOB and probably
is the most commonly used diagram among practitioners. Note that the best
prices are calculated every minute after orders have been executed. Figure 3.3b
shows higher ask prices for the final hour. A possible explanation for this might
be that sellers increase prices after seeing demand from buyers, the high amount
of bid volumes in Figure 3.2b. Increased ask prices force bid prices to increase,
as shown in Figure 3.3b.

To gain insight into future market price movements, we propose to visualise
quantile bids and asks. Once best bids and asks are matched, significant price
swings can ensue, if there is a lack of liquidity, immediately after matched orders
are removed. This leads us to plot Figures 3.4a and 3.4b, the distributions of
prices and volumes with their important quantiles. Again note that the quantiles
are calculated every minute after orders have been executed. Figures 3.4a and
3.4b show that the final hour is less liquid than the previous two hours; a wider
bid ask spread and less available quantity signify this. Figure 3.2a supports this
conclusion; fewer trades are executed during the final hour. Considering that
sellers with a large portfolio have less risk to be balanced in the BALs, they may
be able to take more risk in the final hour of trading because of a potentially
high/skewed reward to risk ratio. In other words, they might prefer waiting to
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(a) (b)

09 10 11

Hour

Figure 3.4: Quantile price and volume graphs for the Expiry-13, 16/03/2018. The lower
quartile (q1), median (q2), and upper quartile (q3) are displayed for each
graph. Figure (a) presents ask and bid price quantiles of all available orders
for the latest hours. Figure (b) illustrates the total ask and bid volumes of
price quantiles for the same period. The x-axis is shared across subplots.

sell their energy at higher prices. Using the distributions of prices and volumes,
participants could, then, monitor the market trend, behaviour and liquidity.

3.2.4 Visualisations for the Previous Hour Risks

Market participants submit orders while weighing both risks and rewards. They
usually begin this process by examining the volume and price history of previ-
ous expiries, and the price history of the BAL. For instance, a power generator
might find an opportunity if previous hour CID expiries show high executed
prices - significantly higher than their corresponding DAM prices - and low total
volumes. It is likely that the upcoming expiry would show the same price and
volume trends. This producer could thus decide to produce some additional
energy for the upcoming expiry. This decision is, however, made while consid-
ering the balancing price risk. The balancing price of the upcoming expiry might
show the same trend as several previous hours. If previous balancing prices are
very high, the producer incorporates this risk into his or her calculations.

Figure 3.5 illustrates an overview of electricity markets for the previous expiries
of the Expiry-13, 16/03/2018. 8 previous hours are displayed. Note that, prior
to trading, neither CID prices and volumes, nor balancing prices for the Expiry-
13, would be available. Consequently, CID’s volume for the Expiry-13 is not
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Figure 3.5: Previous hour visualisations for the Expiry-13, 16/03/2018. 8 previous
hours, from the Expiry-06 to Expiry-13, are displayed. Figure (a) shows the
total executed volumes. Figure (b) presents a box plot of executed prices.
Figure (c) illustrates the same information, but with Japanese candlesticks.
Figure (d) exhibits prices of DAMs, Dutch (nl) and Belgian (be), and the
balancing prices, take and feed. The x-axis is shared across subplots.

displayed in Figure 3.5a, CID’s prices for the Expiry-13 in Figures 3.5b and 3.5c,
and balancing prices for the Expiry-13 in Figure 3.5d. Only DAM prices are
available prior to the Expiry-13 being traded and they are thus displayed in Fig-
ure 3.5d. Figure 3.5b visualises the distribution of executed prices using multi-
ple box plots. Each box plot highlights the median (red line) and interquartile
range using its main body, and the range and outliers using its whiskers. Mean-
while, Figure 3.5c visualises the progression of trading using Japanese candle-
sticks [24]. Each candlestick highlights the open and close price using its main
body, and minimum and maximum price using its whiskers. A red candlestick
represents a price drop, while a green candlestick represents a price increase.
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Together Figures 3.5b and 3.5c can be used to gain both statistical and technical
insights about price movements. For example, from Figures 3.5b and 3.5c it can
be discerned that Expiry-09 opened at a price of 150, also its median price, and
closed at a price of 290, also its maximum price.

Examining the previous hour risks of the Expiry-13, the contract is expected to
follow a similar price trend to its previous contracts, Expiries-11-12-13. Using
Figures 3.5b, 3.5c and 3.5d a low CID price risk but a high balancing price risk
is expected. Specifically, the Expiry-13 prices are assumed to follow a moder-
ate interquantile range of [50, 80] e/MWh and a red candlestick. Figure 3.2a
confirms our expectations for the price range but not for the candlestick.

Figure 3.5 also shows that the Expiry-08 and Expiry-09 have low CID volumes,
high CID prices - far greater than hour 8 and 9 DAM prices - and high balancing
prices. Our aforementioned power generator might find an opportunity and de-
cide to produce some additional energy for the Expiry-10. The presence of this
opportunity may explain why the volume doubled for that expiry. The market
behaviour of previous hours is an important input of trading decision mecha-
nisms for most participants. By visually inspecting previous hours, participants
can explore opportunities and risks.

3.3 Conclusion

We developed visualisations for tradable contracts of the European single in-
traday coupled electricity market (CID). Specifically, we visualised transaction
flows and contract histories; presenting executed trades, the volume-at-price
and the distributions of prices and volumes. While our contract history plots
are illustrated for the end of the trading session, they can be used for any times-
tamp throughout the session. Participants can thus continuously monitor the
market trend, behaviour, depth, price consensus and liquidity. Additionally, we
visualised CID trading volumes and balancing prices of previous hour contracts
to highlight a contract’s trading risk. Using this plot, we highlighted how poten-
tial trading opportunities as well as risks can be identified prior to trading.
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Chapter 4

Background: Forecasting
Electricity Market Prices

This chapter provides background information about electricity price forecast-
ing: the second part of the thesis. Specifically, the chapter performs a review
of existing electricity price forecasting literature, and briefly describes models
utilised in this thesis.

4.1 Introduction

The accuracy of price forecasts directly impacts the profitability and risk associ-
ated with trading decisions. The higher the forecasting accuracy, the lower the
price uncertainty, and by extension the lower the market risk associated with
each trading decision. Ceteris paribus, to reduce price uncertainty in statisti-
cal arbitrage trading strategies and increase profits of statistical arbitrage trad-
ing agents, novel forecasting methods which increase forecasting accuracies of
short-term electricity market prices are needed.

Outlining the structure of the remaining chapter, Section 4.2 describes the lit-
erature review. Then, Section 4.3 introduces our benchmark models: autore-
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gressive forecasting models. Section 4.4 offers brief descriptions of machine
learning models. Finally, Section 4.5 concludes the chapter.

4.2 Literature Survey

The prevalence of non-renewable energy sources meant that forecasting stud-
ies of short-term electricity markets historically predominantly focused on the
day-ahead market (DAM). Underlying the reasons why, stable supply meant
that the final intersection of supply and demand could reasonably be predicted,
with high accuracy, 24-hour-ahead of delivery. The recent transition from non-
renewable to renewable sources of energy, however, is changing the status quo.
Traded volume and liquidity on the continuous intraday market (CID) is grow-
ing, and the number of electricity price forecasting studies focusing on the CID
is increasing. Below, recent examples of electricity price forecasting studies for
the DAM, CID and balancing market (BAL) are outlined.

4.2.1 Forecasting Day-Ahead Market Prices

Several papers, including [10, 25–36], have studied DAM price forecasting. In
[29, 30], lagged DAM prices and exogenous variables, such as load forecast,
were found to be important features for forecasting DAM prices. In [27], lagged
DAM prices were used together with neighbouring market prices. Using Belgian
and French DAM prices, the forecasting performance of neural networks (NNs)
was improved. Similarly, data from multiple markets were stacked together
in [32]. The forecasting performance of NNs was also improved.

In [25, 28], the forecast accuracies of deep, ensemble, and statistical models
were evaluated. Machine learning models were found to outperform statisti-
cal models in both studies. Elaborating, in [28] for example, NNs were found
to outperform long short-term memory networks (LSTM) and gated recurrent
units (GRUs) in forecasting Belgian DAM prices.

Other studies, such as [10, 31], have also compared the performances of deep
and shallow machine learning models. In [10], deep models were found to
outperform shallow models in forecasting Belgian DAM prices. In [31], GRUs
were found to outperform all other neural network structures, such as NNs and
LSTMs, and statistical methods, such as seasonal autoregressive integrated mov-
ing average (SARIMA) models and Markov models, in forecasting Turkish DAM
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prices. Contrasting performances of artificial networks, such as NNs, GRUs and
LSTM, across [28, 31], differences in performance can be explained by model
complexity, data characteristics, or training set sizes.

In [34–36], hybrid models were shown to outperform individual benchmark
models. In [34], the hybrid model was harmonised using a wavelet trans-
formation, an autoregressive moving average model, a kernel extreme learn-
ing machine (KELM), and self-adaptive particle swarm optimisation (SAPSO).
In [35], the hybrid model was constructed with variational mode decompo-
sition, SAPSO, SARIMA, and deep belief networks. Model accuracies were as-
sessed across three different DAMs in [35]. Exogenous variables, however, were
not included in this study. In [36], the hybrid model was structured using a lo-
cal forecasting paradigm, a general regression neural network, coordinate delay
and a harmony search algorithm. Unlike in [35], exogenous variables were in-
cluded in this study. Model accuracies, however, were assessed only on one
DAM in [36]. In [33], applications of spike forecasting were further explored.
Using the Borderline-SMOTE method to balance the number of samples in dif-
ferent target classes, [33] increased the number of spike samples in training
data; yielding DAM forecasting accuracy improvements. For a more detailed re-
view of the DAM forecasting literature/best practices, we recommend interested
readers read [25,26].

4.2.2 Forecasting Continuous Intraday Market Prices

Several studies, such as [37–46], have studied CID price forecasting. Most of
these studies investigated CID price drivers: including lagged CID prices, hour
of the day variables, and day of the week variables. Exogenous variables, such
as DAM prices, forecasts of load, generation, wind and solar power, as well as
forecast errors were also investigated. Listing the variables that were found to
have the most explanatory power, recent historic CID prices and DAM prices
were found to be among the most important variables for forecasting German
CID prices by [37]. Wind power forecast errors were found to be the most
important features for the same market by [38].

The effect of wind and solar power forecasts was further investigated by [40,
41]. A 1 GWh error in wind power forecasts was found to have a greater influ-
ence on German CID prices than a 1 GWh error in solar power forecasts by [41].
Findings of [41] show that a 1 GWh negative wind power forecast error can be
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expected to raise the CID price by approximately 7 C/MWh at night and around
4 C/MWh during the day.

In [43], a model employing fundamental features as inputs was found to be able
to explain roughly 75% of the CID price variance. The findings of [43] show
that if the current residual load value is 1 GWh lower than the average load
across the past four periods, then CID prices can be expected to fall by 0.295
C/MWh. Otherwise, they can be expected to rise by 0.676 C/MWh.

The forecast accuracies of LSTM networks and shallow machine learning mod-
els, such as extreme gradient boosting (XGB) and random forest (RF) models,
were evaluated across the German market by [45]. LSTMs were found to out-
perform a RF model and slightly outperform XGB. Neural network-based fore-
casting models together with Lasso and linear regression models were further
evaluated across the Turkish market in [46]. Neural network-based models
were found to outperform the least absolute shrinkage and selection opera-
tor (LASSO) and linear regression models. Among neural-network models, re-
current neural networks were found to outperform artificial neural networks,
meanwhile GRUs were found to outperform LSTMs.

4.2.3 Forecasting Balancing Market Prices

Compared to the DAM and CID, significantly fewer electricity price forecasting
studies have focused on the BAL. This is because BAL prices are, by design,
unpredictable; resulting from unforeseen stochastic price imbalances. Several
studies, including [47–50], have nevertheless researched BAL price forecasting.
In [47], the explanatory power of nineteen variables: including DAM prices, set-
tlement periods, as well as load, production, wind power, and solar power, was
investigated. For the UK market, the net imbalance volume, aggregated LOLP,
aggregated de-rated margins, and month dummies were found to be among
the most important features, with weights of 28.6%, 27.5%, 14.0%, and 8.9% re-
spectively. In [48], benchmark models, such as autoregressive moving average
(ARMA), autoregressive model (ARX) with exogenous inputs and naive Bayes,
were investigated for the Nordic NO2 BAL. Models which include the balancing
state feature were found to perform better than models without the feature.

In [47], the forecasting accuracies of GB, RF and XGB models were evaluated.
XGB was found to outperform other machine learning models. In [49], a two-
step probabilistic approach was evaluated. Belgian BAL prices were predicted
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after computing the net regulation volume state transition probabilities. This
approach was found to outperform a probabilistic benchmark using the Gaus-
sian processes and a deterministic benchmark using multi-layer perceptrons.

4.3 Autoregressive-Exogenous Models (ARXs)

ARXs are linear time series models capable of capturing both autoregressive and
exogenous relationships driving stochastic processes. Formally, a single output
ARX(n, m) model is defined according to (4.1).

yt = a0 +
n∑

i=1
ai yt−i +

m∑
i=1

bi ui +νt , (4.1)

where yt−i is the model output at time t − i , ui is i th exogenous input, ai and
bi are the i th autoregressive and exogenous parameters respectively, and νt is
the residual noise. To train an ARX, LASSO is employed; optimising a and b
according to (4.2).

argmin
a,b

L(a,b;y,u) = Eyt∼py(yt )

[(
yt−(a0+

n∑
i=1

ai yt−i+
m∑

i=1
bi ui )

)2]+τ( ∥ a ∥1 + ∥ b ∥1

)
,

(4.2)

where τ is a regularisation parameter.

4.4 Machine Learning Models

4.4.1 Linear Regression (LR)

The most fundamental of linear models, LR [51] fits a straight line for a predic-
tor, through a series of points by minimising the sum of squared errors between
its targets and predictions. LR is sensitive to outliers and correlated features.
Nevertheless, as LR is one of the primary machine learning models used for
forecasting, it is included in our examination.

4.4.2 Huber Regression (HR)

Extending LRs, HR [52] is a linear model robust to response variable outliers.
Unlike LR, HR optimises both an absolute and squared loss function, reducing
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the impact of outliers. To switch between loss functions, HR uses an epsilon
hyperparameter. Despite implementing an enhanced optimisation procedure,
HR remains sensitive to explanatory variable outliers and correlations.

4.4.3 Random Forest (RF)

RF [53] fits several decision trees on random samples of the data and averages
them to obtain a final result. Individual trees are fit by recursively splitting the
data in such a way that maximises the information gain.

4.4.4 AdaBoost (AB)

AB [54] is an adaptive boosting algorithm used to sequentially train an en-
semble of weak learners. The algorithm begins by fitting a weak learner, and
continues by training copies of this learner, placing a greater instance weight
on incorrectly predicted values. The algorithm proceeds until the final model, a
weighted sum of all trained weak learners, becomes a strong learner. Note that
the AB algorithm used in this thesis trains an ensemble of decision trees.

4.4.5 Gradient Boosting (GB)

Another boosting algorithm, GB [55] focuses on sequentially improving model
predictions by fitting copies of learners to residuals. Residual predictions are
repeatedly added to model predictions until the sum of residuals stops decreas-
ing. Similarly to AB, the GB algorithm utilised in this thesis trains an ensemble
of decision trees.

4.4.6 A Scalable Tree Boosting System (XGB)

XGB [56] is yet another boosting algorithm and aware of sparsity and builds a
tree based on this awareness. The key point of Sparsity-aware splitting is that
the algorithm finds its way to only presence entries as a default. Chen et al. [56]
found that Sparsity-aware splitting can make an algorithm 50 times faster than
the simple gradient algorithm.

4.4.7 Deep Neural Networks

Deep models, or artificial neural networks (ANNs), consist of an input, output,
and hidden layer. Of these three, the hidden layer is the most varied, with
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architectures differing in depth and layer make-up. Below, we describe some of
the most fundamental layers and modules used in deep models.

Fully Connected Layer (FCL): Fully connected neurons, comprising of a lin-
ear regression with an added non-linearity [57], are stacked to build an FCL.
FCLs can be used to approximate any continuous function [58], explaining why,
with increasing computational power, they are frequently used in state-of-the-
art price predictors.

ANN layers comprise of groups of interconnected nodes. Each node weights
the outputs of previous layers according to f (b +w⊺z), where b is a bias term,
w is a vector of trainable weights, z is a vector of previous layer outputs, and
f (.) is a differentiable activation function, such as a rectified linear unit (ReLU),
capable of adding a non-linearity to a node’s output. In an FCL, nodes in layer l
are connected to all other nodes from layer l −1; computing the dot product of
their outputs according to f (b +w⊺zl−1). Each FCL yields Pl−1 ×Pl optimisable
parameters, where Pl and Pl−1 are the number of nodes in layers l and l −1.

Convolutional Layer (CONV): Locally connected neural networks, or convolu-
tional neural networks (CNNs) [59], are used for feature mapping/extraction.
The primary module used by these networks, CONV, works by sliding equally
sized filters with trainable parameters across input data producing 2D activa-
tion maps. While FCLs tune the parameters of every neuron, CONVs implement
parameter sharing to remain computationally feasible. Overall, CONVs have
proved adept at identifying features in images [60] and time series [61], mak-
ing them potentially very powerful modules for price forecasting.

In a CONV, multiple cascaded convolutions are applied across zl−1. Formally,
kernels of size (W×H), computing f (b +∑D+k

k

∑W+ j
j

∑H+i
i wk j i zk j i ), where D is

the depth of zl−1, are passed across zl−1. Unlike FCLs, CONVs implement param-
eter sharing, only optimising C×W×H×D parameters, where C is the number
of CONV kernels.

Residual Module: A residual module, ResNet [62], adds the inputs from one
module to the outputs of another module. It thus creates a direct identity map-
ping in a network between module inputs and outputs, combating both the van-
ishing gradient problem and the degradation problem, which otherwise impede
the training of deep networks.



42 Background: Forecasting Electricity Market Prices

4.5 Concluding Remarks

In this chapter, the background knowledge required for forecasting electricity
prices was summarised. The information covered is utilised in the ensuing
chapters to build novel forecasting methods. The focus was placed on briefly
describing the motivation for forecasting short-term electricity prices. More-
over, a literature review of forecasting studies, for each short-term market layer,
was performed. Finally, various forecasting models were briefly explained.



Chapter 5

Forecasting Day-Ahead Market
Prices: Technical Indicators

Day-ahead electricity market (DAM) volatility and price forecast errors have
grown in recent years. Changing market conditions, epitomised by increasing
renewable energy production and rising intraday market trading, have spurred
this growth. If forecast accuracies of DAM prices are to improve, new features
capable of capturing the effects of technical or fundamental price drivers must
be identified. This chapter focuses on identifying/engineering technical fea-
tures capable of capturing the behavioural biases of DAM traders. Technical
indicators (TIs), such as Bollinger Bands, Momentum indicators, or exponen-
tial moving averages, are widely used across financial markets to identify be-
havioural biases. To date, TIs have never been applied to the forecasting of
DAM prices. This chapter demonstrates how the simple inclusion of TI features
in DAM forecasting can significantly boost the regression accuracies of machine
learning models. Moreover, tailored TIs are identified for each of these models,
highlighting the added explanatory power offered by technical features.
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5.1 Introduction

DAM prices have historically been driven by fundamental drivers or fundamen-
tals1; reflecting an intrinsic demand and supply of electricity. However, in recent
years, regulatory changes, such as [63], have swept through markets provoking
disruptive propagotary shocks. These shocks, which culminated from a growing
need to generate cleaner and safer energy [64,65], have indirectly boosted the
impacts of technical price drivers or technicals2 on the DAM and moved prices
further from their intrinsic values. As a result, the identification of new model
features, capable of capturing the residual impacts of technicals, has become
necessary to forecast DAM prices accurately.

Because traders’ decisions are not always perfectly rational, a greater willing-
ness to distribute orders across day-ahead and intraday markets accentuated the
impacts of technicals; moving prices away from their intrinsic values. Exempli-
fying this point, note that all trades on electricity markets are placed because of
an underlying stochastic energy need. Whereas before the boom in renewable
generation, traders almost exclusively utilised the DAM to meet this need in the
short-term - resulting in planning decisions rooted principally in fundamentals
- today, intraday opportunities offer traders many more ways to maximise their
respective reward to risk ratio - resulting in more heterogeneous short-term
planning decisions and the proliferation of technicals. Day-ahead and intraday
substitution can thus be understood to have heightened the impacts of techni-
cals on DAM prices.

To capture the impacts of technicals, an approach to forecasting future price
movements using historic market data is needed. Technical analysis (TA) [66],
widely used by practitioners to identify investment opportunities across finan-
cial markets, offers such an approach. Rooted in the theories of behavioural fi-
nance [67], TA, an analysis methodology, focuses on analysing statistical trends
in historical market data to forecast future price movements. TA was estab-
lished around three assumptions: prices move in trends; history repeats itself;

1Fundamentals are associated with the intrinsic value of a good, commodity, or security. Exam-
ples include goods’ production costs, economic variables, etc. Fundamentals would drive prices in
a world of perfectly rational investors, i.e. investors that always optimally maximise their utility.

2The term “technical” comes from the discipline of technical analysis (TA) [66]. Technicals are
factors which move prices away from their intrinsic values. They result because in practice investors
are not perfectly rational; investors often make seemingly sub-optimal decisions. Behavioural eco-
nomics focuses on explaining how investors’ biases, emotions, and other psychological factors influ-
ence decisions and, by extension, prices.
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studying price fluctuations allows the prediction of future shifts in demand and
supply [66]. In short, TA assumes that technicals form reoccurring patterns in
market data which careful analysis can identify and predict. One of the ways in
which TA identifies emerging price patterns is using technical indicators (TIs).
TIs transform market data using various formulas. By transforming the data,
TIs can facilitate the identification of complex price patterns; signalling when
securities are overbought or oversold, when prices deviate from a central trend,
or when they are near support and resistance lines - levels that prices bounce
off of and break through. Moreover, in conjunction with price charts, TIs can
provide leading indications of future price movements, offering additional ex-
planatory power to models forecasting financial time series. Numerous studies,
such as [68–70], have extensively demonstrated the explanatory power of TIs
across stock markets. Given that technicals result from universally exhibited
behavioural biases among investors, such studies motivate our examination of
TIs with the DAM.

Summarising the principle contribution of this chapter, to the best of our knowl-
edge, we are the first to evaluate the explanatory power of TIs in DAM price fore-
casting. This chapter demonstrates that the simple inclusion of TI features can
significantly reduce linear, ensemble, and deep model regression forecast errors.
Describing the structure of this chapter, examined TIs and the methodology are
introduced in Sections 5.2 and 5.3 respectively. Subsequently, in Section 5.4
results are presented. Finally, in Section 5.5 the chapter is concluded.

5.2 Technical Indicators

While a plethora of TIs exists, none can guarantee the addition of explana-
tory power. This is because the success of individual TIs is domain and period-
dependent. For instance, price-based trend-following indicators may be useful
in times of high autocorrelation; however, they cease being indicative of future
price moves when autocorrelation vanishes and trends become spurious [71].
With this in mind, TIs satisfying the following two criteria are chosen.

1. TI calculation only requires close prices.

2. TI inclusion is likely to improve predictive performance by highlighting
oscillations or trends in DAM prices.
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Criterion 1 is imposed by the properties of the DAM – neither high, low, nor
open prices are available.3 Criterion 2 stems from our desire to avoid examining
overly intricate TIs which have been optimised for rare use-cases and evaluate
TIs which are well suited for the DAM. DAM prices typically move between hor-
izontal support and resistance lines, behaving comparably to ranging markets
whose prices move within a band. On occasion, however, DAM prices breakout
from this price band, and establish a trend; behaving comparably to trending
markets. Overall, such varying behaviour spurs us to evaluate both oscillators,
which vary around a central line or within set levels, and trend-following TIs,
which measure the direction of a trend. The former TIs are well suited for
ranging markets, while the latter TIs are optimised for trending markets.

Together Criteria 1 and 2 allow us to follow the suggestions of [69] by focus-
ing our research on the simplest and most widely used TIs, which are likely to
introduce more explanatory power than noise. Below, our list of chosen TIs are
introduced and formulas for their calculation are provided. Note that through-
out the chapter the following notations are used: t time, pt price at time t ,
n lag-factor for ∀n ∈ Z, s span for ∀s ∈ Z, where n and s are hyperparameters
tuned using grid-search during the modelling of DAM prices.

5.2.1 Simple Moving Average (SMA)

The SMA [66], a type of moving average, is the most fundamental TI. It is often
used as a building block in the calculation of other compound indicators such
as Bollinger Bands (BBANDs). The SMA captures trends by smoothing a price
series using a lag-factor, n. A single SMA curve, either alone or in conjunction
with the price series, can be used to forecast future price movements and gener-
ate trading ideas [73]. Specifically, the SMA can be used to identify support and
resistance lines. Furthermore, SMA crossovers can be used to identify emerging
price trends or consolidations [74].4 The SMA is calculated according to (5.1).

SMA(pt ,n) = pt + . . . pt−(n−1)

n
= 1

n

n−1∑
i=0

pt−i . (5.1)

3Over a given period, the open/close/high/low price of a security is the initial/last/highest/low-
est recorded trading price, respectively [72]. Together, these metrics can be used to convey primary
information about a security’s price movements over a specific period. Unlike other financial mar-
kets, however, the DAM only records a single clearing price for each hourly contract. This price is
considered to be the close price.

4When the price crosses the SMA from above/below, it can signal that prices have
peaked/troughed. A downward/upward trend may follow.
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5.2.2 Exponential Moving Average (EMA)

The EMA [66] is a special type of moving average that exponentially averages
historic prices. Through its weighting, the EMA can place greater significance on
more recent price trends. This weighting distinguishes the EMA from the SMA
and allows the EMA to more rapidly reflect immediate price movements. During
periods of high volatility, placing more weight on more recent price moves can
be an advantage. The EMA is calculated according to (5.2).

EMA(pt , s) = pt +α×pt−1 + . . .αt ×p0

1+α+ . . .αt , (5.2)

where α = s−1
s+1 is the weighting term. α can be tailored to give more or less

importance to the recent past.

5.2.3 Moving Average Convergence Divergence (MACD)

The MACD [66] is a trend-following momentum indicator comprising of three
time series: the MACD ‘Series’, ‘Signal’, and ‘Histogram’. These series can be
used in tandem to formulate trading rules, for instance, extending the double
crossover trading strategy [75]. To avoid introducing too many features at once,
the MACD is split into its components, treating each as an individual indicator.
These indicators are described below.

• ‘Series’: Calculated from two EMAs, the ‘Series’ [73] gives insight into
price convergence, divergence, and crossover. The ‘Series’ reflects the dif-
ference between a fast (e.g. s = 12) and a slow (e.g. s = 26) EMA, capturing
the second derivative of a price series. Using (5.2), the ‘Series’ is calcu-
lated according to (5.3).

Series(pt , s1, s2) =EMA(pt , s1)−EMA(pt , s2), (5.3)

where s2 > s1.

• ‘Signal’: The ‘Signal’ [73] is an EMA of the ‘Series’. It provides a lag-
ging indication of crossovers between fast and slow EMAs. The ‘Signal’ is
calculated according to (5.4), using (5.2) and (5.3).

Signal(pt , s1, s2, s) =EMA(Series(pt , s1, s2), s). (5.4)

• ‘Histogram’: The ‘Histogram’ [73] is the difference between the ‘Series’
and ‘Signal’. Mathematically, it can be interpreted as the fourth derivative
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of a price series, anticipating changes in the ‘Series’. Using (5.3) and (5.4),
the ‘Histogram’ is calculated according to (5.5).

Histogram(pt , s1, s2, s) = Series(pt , s1, s2)−Signal(pt , s1, s2, s). (5.5)

5.2.4 Moving Standard Deviation (MSD)

The MSD [76], measuring the rolling n day volatility of prices, is considered
helpful in predicting the size of future price moves. The indicator anticipates
periods of low volatility following periods of high volatility and vice versa. Using
(5.1), the MSD is calculated according to (5.6).

MSD(pt ,n) =
√√√√ 1

n

n−1∑
i=0

(pt−i −SMA(pt ,n))2. (5.6)

5.2.5 Bollinger Bands (BBANDs)

BBANDs [66] consist of two bands: the BBAND+, calculated according to (5.7),
and the BBAND−, calculated according to (5.8).

BBAND+(pt ,n) = SMA(pt ,n)+2×MSD(pt ,n), (5.7)

BBAND−(pt ,n) = SMA(pt ,n)−2×MSD(pt ,n). (5.8)

These bands, each two MSDs away from the SMA, indicate when a security is
overbought (price above the BBAND+) or oversold (price below the BBAND−).
BBANDs can be used to facilitate the prediction of future increases/decreases in
volatility, and to identify technical signals such as the W-Bottom [77]. To avoid
introducing too many features, two compound TIs derived from BBANDs, the
%B and the Bandwidth, are explored.

• %B: The %B [78] scales the price series by the BBAND width. When the
underlying security price equals the SMA, the %B equals 0.5. When the
price is equal to the BBAND−/BBAND+, the %B equals 0/1 respectively.
Similarly to BBANDs, the %B can be used to identify when prices are
overbought or oversold, to predict future volatility and to generate trading
ideas. Using (5.7) and (5.8), the %B is calculated according to (5.9).

%B(pt ,n) = pt −BBAND−(pt ,n)

BBAND+(pt ,n)−BBAND−(pt ,n)
. (5.9)
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• Bandwidth: The Bandwidth [78] measures the BBANDs divergence and
is used to anticipate changing volatility and price breakouts. Using (5.1),
(5.7), and (5.8), the Bandwidth is calculated according to (5.10).

Bandwidth(pt ,n) = BBAND+(pt ,n)−BBAND−(pt ,n)

SMA(pt ,n)
. (5.10)

5.2.6 Momentum (MOM)

The MOM [66] is a trend-following leading indicator. Elaborating, the MOM
provides insight into price trends, acting as a signal to buy/sell when crossing
above/below the zero line. Unlike the SMA, the MOM can peak or trough be-
fore the price, providing a forward-looking (‘leading’) trend prediction. As a
forward-looking indicator, when the MOM peaks or troughs and begins to di-
verge from the main price trend, it can signal bearish or bullish divergence. The
MOM is calculated according to (5.11).

MOM(pt ,n) = pt −pt−n . (5.11)

5.2.7 Rate of Change (ROC)

The ROC [66, 73] is an oscillator, comparable to the MOM indicator, that ex-
presses change as a percentage instead of an absolute value. As a standardised
measure of change, the ROC can be used to identify overbought or oversold
extremes that previously foreshadowed a trend reversal. Note that when above
zero, the ROC indicates an overall uptrend, and when below zero, it indicates
a downtrend. When prices are moving within a fixed corridor/range, the ROC
remains near zero, confirming price consolidation. In these instances, the ROC
provides little insight about future price movements. The ROC is calculated
according to (5.12).

ROC(pt ,n) = pt −pt−n

pt−n
. (5.12)

5.2.8 Coppock Curve (COPP)

The COPP [79] is a smoothed momentum oscillator. Although the COPP was
originally developed to capture long-term price trends occurring in American
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equities, since its inception it has been used to identify both long and short-
term trends in numerous markets, e.g. [73]. Using (5.2) and (5.12), the COPP
is calculated according to (5.13).

COPP(pt , s,n1,n2) =EMA
(
ROC(pt ,n1)+ROC(pt ,n2), s

)
. (5.13)

5.2.9 True Strength Index (TSI)

Providing trend insights, as well as indications of when a security is overbought
or oversold, the TSI [80] is a smoothed momentum oscillator. Technical analysts
often look for trend lines in the TSI to identify support and resistance price
bands. Using (5.2), the TSI is calculated according to (5.14).

TSI(pt , s1, s2) = EMA
(
EMA(pt −pt−1, s1), s2

)
EMA

(
EMA(|pt −pt−1|, s1), s2

) . (5.14)

5.3 Feature Engineering Approach to Day-Ahead Mar-
ket Price Forecasting

This chapter focuses on demonstrating the explanatory power of TIs by boost-
ing forecasting accuracies of Belgian DAM prices. More information about the
Belgian DAM can be found at [81]. Below, data, data processing, TI calculation
method, as well as model training and evaluation procedures are described.

5.3.1 Data

A dataset of historic DAM prices, spanning four and a half years, is gathered
from [81]. Three and a half years of prices, from 01/01/2014 to 29/06/2017,
are used for hyperparameter tuning and model training. A single year of prices,
from 30/06/2017 to 30/06/2018, is used for testing. The summary statis-
tics (in C/MWh) of the train/test data are: mean, 41.12/44.96 and standard
deviation, 20.16/19.39.

5.3.2 Data Processing

Data processing is conducted to maximise the performances of the models.
Firstly, using Min-Max scaling, both features and response variables are scaled.
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Min-Max scaling bounds each value a ∈ A between 0 and 1 according to the
formula: a∗ = (a−Ami n)/(Amax −Ami n), where Ami n and Amax are the minimum
and maximum values of a set A, and a∗ is the scaled value of a. Secondly, to
capture significant serial correlation, an autocorrelation plot (ACF) is examined.
ACFs plot lags on the x-axis and autocorrelation coefficients on the y-axes [82].
The plots visually facilitate the selection of an optimal look-back period. Cap-
turing all significant terms in our ACF plot, a 6 day look-back period with an
additional averaged 8-week look-back is selected. Formally, to forecast day d+1
prices, six prices from days d to d −5 along with the average of d −6, d −13, . . . ,
d −55 prices are used.

5.3.3 Forecasting Models

Significant performance gains, using multiple models, must be observed if we
are to robustly demonstrate the added explanatory power TIs offer. With this
in mind, a list of high-performing models is identified to evaluate TIs. After
consulting [28,83], machine learning (ML) models described in Section 4.4 are
chosen. Our selected linear models are LR and HR, and ensemble models are RF,
AB and GB. Additionally, deep models are used with: two FCLs (2NN); a single
CONV (CNN); two CONVs (2CNN); two CONVs and a single FCL (2CNN_NN);
seven CONV residual modules (ResNet).

5.3.4 TI Calculation

The TI formulas, presented in Section 5.2, require sequential inputs - i.e. con-
tinuous linear time. The DAM, however, is not sequential because it releases
24 prices simultaneously upon clearing. Consequently, the dataset is treated as
an assortment of prices from 24 separate markets when calculating DAM TIs.
Formally, h hour prices are used to calculate h hour TIs. For instance, the 12h
SMA(n = 3) at 09/11/2014 is calculated by taking the average of three 12h
prices: the 07/11, 08/11, and 09/11. Finally, in order to identify tailored TIs
for every model specified in Section 5.3.3, TI hyperparameters are optimised
using grid-search separately for each model.

5.3.5 Model Training and Prediction

To be able to evaluate TI performance, each model introduced in Section 5.3.3
is trained twice: once as a benchmark model accepting only lagged prices, and
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(a) Linear and ensemble models

(b) Deep models

Figure 5.1: Diagrams displaying TI model inputs - lagged prices concatenated with a
lagged TI - and outputs. Per Section 5.3.2, d to d − 5 represent the 6 day
look-back period, while av g stands for the averaged 8 week look-back. M is
a black box representation of ML models.

once as a TI model accepting both lagged prices and a lagged TI. Depending on
the TI model, one of two approaches is used to concatenate inputs. Length-wise
concatenation is used with linear and ensemble models, while channel-wise
concatenation is used with deep models. Figure 5.1 visualises these approaches.
Forecasting the DAM necessitates predicting 24 hourly prices. Because linear
and ensemble models do not support multi-output prediction, but deep models
do, to forecast the DAM different training methods are used for linear, ensem-
ble, and deep models. These methods are visualised in Figure 5.1 for TI mod-
els. To forecast all 24 prices with linear and ensemble models, the data is split
into 24 separate sets and train 24 single-output regressions. For instance, to
predict the next day’s 12h price, a benchmark model is trained using a set of
lagged 12h prices. On the other hand, to forecast DAM prices with deep models,
a multi-output regression is trained. Thus, to predict next days 01-24h prices, a
benchmark deep model is trained using the entire training set of lagged prices.
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Table 5.1: Grid-search selected model hyperparameters. Benchmark model perfor-
mance is optimised to select these.

Hyperparameters

LR -
HR epsilon:1.35
RF n_estimators: 100
AB n_estimators: 100, loss: square, learning rate: 0.1
GB loss: huber
2NN neuron1: 500, neuron2: 250, learning rate: 0.001
CNN kernel: (1, 3), filter: 16, CONV layer: 1, learning rate: 0.001, dropout: 0.25
2CNN kernel: (2, 3), filter: 13, CONV layer: 2, learning rate: 0.001, dropout: 0.25
2CNN_NN kernel: (1, 3), filter: 32, CONV layer: 2, neuron: 123, learning rate: 0.001
ResNet kernel: (3, 3), filter: 23, CONV layer: 7, learning rate: 0.001

To select optimal hyperparameters for each model, the training set is divided in
two using a 3:1 ratio to get training and validation sets. Grid-search, which max-
imises benchmark model validation performance, is subsequently conducted us-
ing these sets. Table 5.1 presents grid-search selected optimal model hyperpa-
rameters. Note that scikit-learn [84] is used to run linear and ensemble models,
and Keras [85] to run deep models. As a result, unless otherwise specified in
Table 5.1, either scikit’s, or Keras’ default model hyperparameters are used.

5.3.6 Evaluation

To evaluate the explanatory power of TIs, benchmark and TI model perfor-
mances are compared. In order to assess performance, various metrics measur-
ing the discrepancies and similarities between a model’s targets and predictions
are computed. Firstly, the root mean squared error (RMSE) and the mean abso-
lute error (MAE) are calculated for benchmark and TI models. By analysing the
percentage change in these discrepancy metrics, %RMSE and %MAE, overall ac-
curacy improvements are determinable. The %RMSE and %MAE are calculated
according to (5.15).

%ME= 100×
(MEBench −MET I

MEBench

)
, (5.15)

where MEBench is the mean benchmark model error and MET I is the mean TI
model error. A positive %RMSE and %MAE indicate that the inclusion of TI
features, overall, reduces forecast errors.
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Secondly, the Pearson correlation coefficient (PCC) is calculated for benchmark
and TI models. The PCC is a similarity metric, whose square is equal to the
coefficient of determination. By analysing the percentage change in this metric,
%PCC, overall improvements in a model’s goodness of fit are ascertainable. The
%PCC is calculated according to (5.16).

%PCC= 100×
(PCCT I −PCCBench

PCCBench

)
. (5.16)

A positive %PCC indicates that the inclusion of TI features, overall, increases a
model’s goodness of fit.

Finally, to determine the statistical significance of any performance improve-
ments, one tailed Diebold-Mariano (DM) tests [86] with a mean squared error
loss function are conducted. The DM test statistically evaluates differences be-
tween two models’ forecasts by comparing their residuals, in our case {eBench

t }T
t=1

and {eT I
t }T

t=1. The test converts a loss-differential, lt = g (eBench
t )− g (eT I

t ) where
g (.) is the loss function, into an asymptotically normal DM statistic. Using the
DM test, we can statistically evaluate whether TI forecast accuracies are equal to
or worse than benchmark forecast accuracies (H0: E(lt ) ≤ 0) or weather they are
better (H1: E(lt ) > 0). We reject H0 when DM values are above 2.33, indicating
statistically significant performance improvement at a 1% significance level.

5.4 Results and Discussion

The repeated selection of a handful of TI hyperparameters, such as %B(n = 58),
EMA(s = 6) and ROC(n = 49), by the grid-search optimisation, points to the
prevalence of real and identifiable behavioural biases across the Belgian DAM.
Our results, presented in Table 5.2 demonstrate that TI features can help in
the identification of these biases by adding explanatory power and significantly
boosting the regression accuracies of linear, ensemble, and deep models. On av-
erage, per the results in Table 5.2, the best TIs reduce forecast RMSEs by 3.28%,
MAEs by 3.32%, and increase PCCs by 1.96%. These empirical metric improve-
ments are statistically significant at a 1% level, yielding DM values above 2.33,
in 9/10 cases.

Summarising TI performances across the ML models: the ROC increased 9 mod-
els’ accuracies; EMA, 8; SMA, 7; MOM, 6; ‘Series’, 4; ‘Signal’, 4; ‘Histogram’, 4;
MSD, 4; %B, 4; COPP, 4; TSI, 3; and Bandwidth, 1. Broadly, the Bandwidth was
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Table 5.2: Summary results, showing the three best performing - lowest RMSE - TIs for
each model. Raw evaluation metrics - RMSE, MAE, and PCC - measure TI
model performances. Percentages - %RMSE, %MAE, and %PCC - measure TI
model performance improvements. Bold DM values represent statistically sig-
nificant performance improvements at a 1% significance level. The following
hyperparameter (HP) keys are used: *=(n1=18, n2=24, s=18); **=(s1=2,
s2=26, s=9); ***= (s1=58, s2=116, s=9); ****= (n1=58, n2=74, s=54).

LR HR RF AB GB 2NN CNN 2CNN 2CNN_NN ResNet

Be
st

TI

TI %B EMA EMA MOM MOM EMA ROC ROC ROC ROC
HP n=58 s=2 s=6 n=58 n=58 s=22 n=49 n=49 n=9 n=27
RMSE 11.47 11.57 12.21 12.66 11.64 10.96 11.14 11.03 11.10 11.09
%RMSE 4.49 4.50 1.66 5.42 3.74 4.09 2.73 2.39 2.36 1.38
MAE 7.87 7.67 8.07 8.58 7.84 7.59 7.65 7.58 7.66 7.56
%MAE 3.26 5.59 2.10 6.20 2.22 1.56 4.21 2.91 3.41 1.75
PCC 0.79 0.79 0.76 0.74 0.79 0.81 0.80 0.81 0.81 0.80
%PCC 2.92 2.75 1.08 3.79 2.80 1.85 1.40 1.19 0.95 0.82
DM 10.39 14.86 1.74 4.18 3.68 3.23 7.15 4.51 5.15 4.28

Se
co

nd
-B

es
t

TI

TI EMA %B MOM ROC %B SMA - EMA SMA COPP
HP s=2 n=58 n=58 n=57 n=54 n=22 - s=18 n=18 *
RMSE 11.57 11.59 12.22 12.71 11.78 11.08 - 11.26 11.27 11.16
%RMSE 3.73 4.35 1.57 5.01 2.66 3.00 - 0.37 0.91 0.77
MAE 7.70 7.78 8.15 8.68 7.81 7.68 - 7.77 7.78 7.60
%MAE 5.36 4.17 1.10 5.14 2.60 1.56 - 0.44 1.91 1.16
PCC 0.79 0.79 0.77 0.73 0.78 0.81 - 0.80 0.80 0.80
%PCC 2.55 2.89 1.57 3.23 1.71 1.38 - 0.06 0.01 0.40
DM 13.67 12.30 1.23 4.36 1.61 2.08 - 0.16 1.36 2.40

Th
ir

d-
Be

st
TI

TI ‘Histogram’ SMA ROC EMA EMA ‘Histogram’ - - COPP -
HP ** n=18 n=57 s=6 s=6 *** - - **** -
RMSE 11.62 11.66 12.23 12.82 11.79 11.12 - - 11.28 -
%RMSE 3.25 3.76 1.50 4.19 2.53 2.66 - - 0.75 -
MAE 7.88 7.79 8.18 8.78 7.84 7.68 - - 7.78 -
%MAE 3.11 4.02 0.77 4.06 2.20 1.51 - - 1.89 -
PCC 0.79 0.79 0.76 0.73 0.78 0.80 - - 0.80 -
%PCC 2.22 2.43 0.97 3.01 1.67 1.13 - - 0.01 -
DM 11.92 16.02 0.56 3.92 2.43 2.49 - - 1.32 -

found to be the worst-performing TI, while the ROC and the EMA were found
to be the best.

5.5 Conclusion

This chapter evaluated the explanatory power of TIs by examining whether the
inclusion of TI features could boost forecasting accuracies of DAM prices. Over-
all, it has been demonstrated that TIs can capture the residual impacts from
traders’ behavioural biases; resulting in statistically significant reductions in
forecast errors with ML models. Evaluated case study has identified four TIs
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well suited to forecasting Belgian DAM prices: the EMA, the %B, the MOM, and
the ROC. More specifically, results advised using %B(n = 58) and EMA(s = 2)
with linear models, MOM(n = 58) with ensemble models, EMA(s = 22) with
NNs, and ROC(n = 49) with CNNs. While it was found that TI performance is
model dependent, the ROC and the EMA succeeded in reducing the RMSE and
MAE of 90% and 80% of the ML models respectively.



Chapter 6

Forecasting Day-Ahead Market
Prices: Data Augmentation

A model’s expected generalisation error is inversely proportional to its training
set size. This relationship can pose a problem when modelling multivariate time
series, because structural breaks, low sampling rates, and high data gathering
costs can severely restrict training set sizes, increasing a model’s expected gen-
eralisation error by spurring regression model overfitting. Artificially expanding
the training set size, using data augmentation methods, can, however, counter-
act the restrictions imposed by small sample sizes: increasing a model’s ro-
bustness to overfitting and boosting out-of-sample prediction accuracies. While
existing time series augmentation methods have predominantly utilised feature
space transformations to artificially expand training set sizes and boost predic-
tion accuracies, we propose using autoencoders (AEs), variational autoencoders
(VAEs) and Wasserstein generative adversarial networks with a gradient penalty
(WGAN-GPs) for time series augmentation. To evaluate our proposed augmen-
tors, Belgian and Dutch day-ahead electricity market prices are predicted using
both autoregressive models and artificial neural networks. As our proposed
augmentors outperform existing augmentation methods, we strongly believe
that both practitioners and researchers aiming to generate time series or reduce
time series regression errors will find utility in this chapter.



58 Forecasting Day-Ahead Market Prices: Data Augmentation

6.1 Introduction

Sample sizes play a critical part in determining the optimal complexity of hy-
pothesis sets and, by extension, the minimum attainable generalisation error.
In multivariate time series analysis, the progression of time can often shift the
target distribution. This shift increases the proportion of noise in historic data,
making its inclusion in the learning process potentially detrimental. When data
is scarce it is crucial to explore techniques capable of augmenting the sample.
While numerous studies have demonstrated that augmentation can improve
classification and regression accuracies, to date none have explored augmenting
multivariate time series (i.e. time series with more than a single time-dependent
variable) with exogenous variables despite the fact that the latter is commonly
used by practitioners in regression analysis. This chapter aims to fill this gap by
identifying methods capable of successfully augmenting multivariate time series
for regression analysis.

6.1.1 Sample Sizes and Model Performance

Statistical learning and machine learning aim to identify patterns in data by
minimising a model’s generalisation error. Because the joint distribution of x,
a feature vector, and y , a scalar target output, T = {(x1, y1), ..., (xN, yN)}, is un-
known, in practice, a direct minimisation of the generalisation error is impos-
sible. Instead, in most statistical learning processes, an empirical error, and a
regularisation term, such as the L2 norm, are minimised jointly.

Both bias plus variance decomposition and the Vapnik-Chervonesnkis (VC) the-
ory justify the above statistical learning process. The bias plus variance de-
composition specifies a framework for better understanding and analysing the
generalisation error. This framework exposes an almost unavoidable trade-off,
termed the bias-variance trade-off, between a model’s bias in parameter esti-
mation and variance of parameter estimates. The bias-variance trade-off can
be used to show that the availability of training data determines the minimum
attainable expected generalisation error. The VC theory expresses a generalised
upper bound, termed the VC inequality, to the generalisation error. Similarly to
the bias-variance trade-off, the VC inequality can be used to directly prove that
a model’s VC-dimension - i.e. a model’s complexity captured by its number of ef-
fective parameters - is proportional to the number of training examples needed
to attain a certain level of expected modelling performance - i.e. a certain gen-
eralisation bound [87]. Together the bias plus variance decomposition and VC
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inequality motivate studies which seek to reduce the expected generalisation
error by expanding training set sizes.

Grounding theory in practice, note that studies, such as [88] for image classifi-
cation, demonstrate that the relationship between model performance and data
quantity is logarithmic. While, to the best of our knowledge, this relationship
has yet to be extensively studied for regression models, back of the envelope
calculations show that for every new training (x, y) example the expected gen-
eralisation error of, for instance, a linear regression modelling a linear target
function decreases by (e J +e)/(N 2+N ), where e is the best approximation error,
J is the number of features, and N is the number of samples [87]. The above
examples further underscore the importance of dataset sizes in minimising the
expected generalisation loss, as well as the potential performance improvements
that an expansion of the training set can yield.

6.1.2 Data Augmentation

Linking modelling performance to data augmentation, in instances where it is
impractical or even impossible to expand real training dataset sizes, due to
costs, data scarcity, or time series structural breaks, it is worthwhile to con-
sider whether augmented data could be used in place of additional real training
data to boost modelling performance. While, to the best of our knowledge, a
generalised proof establishing a direct relationship between the expected gener-
alisation error and number of augmented data points has yet to be theoretically
formulated, numerous studies, such as [89–96], empirically demonstrate that
using augmented data can boost both classification and regression accuracies
comparable to the addition of real data. Below, the augmentation methods ex-
plored in these studies are introduced.

Commencing with augmentation methods that have been utilised to boost clas-
sification accuracies, feature space augmentors, exploiting simple transforma-
tions such as symmetry, position, or style, have been observed to successfully
generate data for both image and time series classification problems [89,90].
For instance, [90] observed a 5.1% accuracy increase in Parkinson’s disease mo-
tor state classification, with a convolutional neural network, after augmenting
wearable sensory data using random rotations. Despite this success, because of
temporal relationships in time series, it must be stressed that applying feature
space augmentations to time series can be risky. This is because, for augmen-
tation methods to be useful they have to generate meaningful data originating
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from the underlying target distribution. Whilst we can observably conclude that
images generated using feature space transformations continue to be meaning-
ful, we cannot readily conclude this with time series.

Beyond feature space transformations, researchers have successfully applied
augmentors utilising generative autoencoders to classification problems [91,
92]. Autoencoders [97] are artificial neural networks that learn to encode, and
subsequently decode model inputs, by performing unsupervised representation
learning. Because encoding transforms input features from a feature space X to
a latent space Z , autoencoders can generate data by applying perturbations in
Z , or by performing Bayesian inference and sampling from a latent distribution.
These methods, to the best of our knowledge, have never been used to augment
multivariate time series; however, both have a potential theoretical advantage
over feature space transformations that make them worth examining.

Generative adversarial networks (GANs) [98] have also been utilised to boost
classification accuracies [93,99]. GANs, comprising of a generator G and a dis-
criminator D, differ from generative autoencoders in their training approach.
While the latter is trained by minimising the divergence between model inputs
and outputs directly, GANs use D to indirectly train G. The process is com-
parable to a game between a forger and a detective, and allows G to learn
to generate data from the distribution of the real data. Although, to the best of
our knowledge GANs have never been used to augment multivariate time series,
studies such as [93, 94] demonstrate their ability to generate meaningful data
and boost forecasting performances. Tran et al. [94] observed deep model clas-
sification accuracy improvements of 6%, across MNIST, CIFAR-10 and CIFAR-
100 datasets, surpassing feature space transformation performances.

Finally describing augmentation methods for time series regression, to the best
of our knowledge two studies, [95, 96], have thus far attempted to boost re-
gression accuracies using augmentation methods. In particular, [95] proposed
generating univariate time series by replacing the error of deseasonalised and
detrended time series with bootstrapped errors, while [96] proposed generating
the same series by sampling Markov Chain Monte Carlo parameters and fore-
casting time series paths using those parameters. Across the M3-competition
dataset, [95] demonstrated that the bootstrapping augmentation method, com-
bined with bagging, significantly improves the prediction accuracies of exponen-
tial smoothing models. Across the same dataset, [96] observed a 5.7% reduc-
tion in symmetrical mean absolute percentage errors of long short-term mem-
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ory recurrent neural networks. Whether these augmentation methods could
be adapted to readily and successfully generate multivariate time series with
exogenous inputs is uncertain.

Elaborating, for example, to generate multivariate time series using [95], one
would have to augment multiple univariate time series; replacing the errors of
multiple deseasonalised and detrended time series with correlated bootstrapped
errors. To achieve this without introducing an excessive amount of noise, cross
correlations between the time series would probably have to be modelled. More-
over, the time series would have to be of the same length, with the same sam-
pling periodicity. As the above, in and of itself, constitutes a new data augmen-
tation method, as it significantly extends the use case presented in [95], we
consider any attempts to implement it beyond the scope of our examination.

6.1.3 Motivation and Contributions

The literature review above exposes how researchers have thus far concen-
trated more on developing augmentation methods for classification than re-
gression. Particularly, augmentation methods for multivariate time series with
exogenous variables have to date not been researched. Motivated by a desire
to fill this void, this chapter concentrates on developing universally applica-
ble augmentation methods for both univariate and multivariate time series re-
gression analysis. Because of their prevailing use in classification studies as
well as their ease of implementation, three feature space augmentors - jitter-
ing, scaling, and magnitude-warping - are evaluated. Similarly, because of their
significant achievements with classifiers, their capacity to model the underly-
ing distribution of data, and their ability to generate data without any domain
knowledge, tailored model-based augmentors - autoencoders (AEs), variational
autoencoders (VAEs), and Wasserstein GANs with a gradient penalty (WGAN-
GP) - are developed and evaluated.

To fully explore the effectiveness of the above-mentioned augmentation meth-
ods, their performance impact on autoregressive models with exogenous inputs
(ARX) and two artificial neural networks (ANN) are examined. ARXs are chosen
both to demonstrate the methods impacts on linear model performances, and
because they have been shown to achieve reasonable DAM benchmark fore-
cast accuracies. ANNs are chosen because they have been shown to outperform
other state-of-the-art statistical and machine learning models in DAM forecast-
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ing [28]. Summarising the principle contributions of this chapter, to the best of
our knowledge, we are the first to:

• explore the augmentation of multivariate time series with exogenous vari-
ables,

• utilise feature space transformations, AEs, VAEs and WGAN-GPs for re-
gression augmentation,

• apply augmentation methods to the forecasting of DAM prices.

Outlining the structure of this chapter, in Sections 6.2-6.5 the theories and mod-
els underpinning our augmentation methods are described. In Section 6.6 our
methodology and case study are outlined. In Section 6.7 the results are anal-
ysed. Finally, in Section 6.8 the chapter is concluded.

6.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence (DK L) is an asymmetric statistical distance mea-
sure, measuring the divergence between two distributions. The forward DK L is
calculated as: DK L

(
pX (x)||p X̃ω

(x̃)
) = ∑

j pX (x j ) ln
pX (x j )

p X̃ω (x̃ j ) , where pX and p X̃ω
are

real and generated data distributions respectively. The reverse DK L is calculated
as DK L

(
p X̃ω

(x̃)||pX (x)
)
. As later demonstrated, the weights, ω, of autoencoders

and GANs can be optimised by minimising the forward DK L and reverse DK L

respectively. The impacts of minimising these metrics on data generation are
highlighted below.

By reformulating (6.1), it can be shown that minimising the forward DK L is
equivalent to performing maximum likelihood estimation [59].

argmin
ω

DK L(pX (x) ||p X̃ω
(x̃)) = argmin

ω
Ex∼pX [− log p X̃ω

(x̃)+ log pX (x)] (6.1)

= argmin
ω

Ex∼pX [− log p X̃ω
(x̃)]−H(pX (x))

= argmax
ω

Ex∼pX [log p X̃ω
(x̃)],

where H(pX (x)) is the entropy of real data, which is known and constant. The
consequence of minimising the forward DK L is a ‘mean seeking’ approximation,
which spurs a model to cover the support of pX , assigning a high probability
mass where pX is high, while centring p X̃ω

around the mean of pX .
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In contrast, minimising the reverse DK L encourages ‘mode seeking’ approxi-
mations of pX by assigning a high probability mass to the mode of the real
distribution [59]. Equation (6.2) formally expresses this.

argmin
ω

DK L(p X̃ω
(x̃) ||pX (x)) = argmin

ω
Ex̃∼p X̃ω

[− log pX (x)]−H(p X̃ω
(x̃)), (6.2)

where H(p X̃ω
(x̃)) is the entropy of generated data. Equation (6.2) highlights

that when minimising the reverse DK L, a generative model learns to assign low
probabilities to p X̃ω

where pX is low.

6.3 Autoencoders

Autoencoders are lossy networks that learn to encode and subsequently decode
model inputs. Generally, autoencoders are implemented in a J/U /J or bottle-
neck architecture, where J is the dimension of input and output layers, U is
the dimension of hidden layers/latent space, and J >U . Under such a structure
the encoder extracts the most salient features from the input vector, x; trans-
forming inputs from the feature space X ∈ RJ to an unstructured and generally
more compact latent space Z ∈ RU . To find the optimal encoder and decoder
parameters, ϕ and θ respectively, autoencoders are trained by minimising a
reconstruction loss according to (6.3) [100].

θ̂,ϕ̂= argmin
θ,ϕ

Ex∼pX (x)ℓ(x,Dθ(Eϕ(x))), (6.3)

where Eϕ(.), Dθ(.), and ℓ(x, .) are encoding, decoding, and distance functions
respectively, and x is a vector sampled from the training set X = {x1, ...,xN}.
As [101] argues and as further explained in Section 6.6.7, it is the dimension-
ality reduction, which occurs during encoding, that makes latent space trans-
formations more likely to generate data from the underlying distribution than
feature space transformations.

6.4 Variational Autoencoders

VAEs [102] are a special class of autoencoder, modelling observed and latent
variable probability distributions while learning structured latent space repre-
sentations z of real observations x. To learn these representations, VAEs use
variational inference to approximate the true posterior, p(z|x), with a variational
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posterior qλv (z|x), where λv is a collection of variational parameters. From a
neural net perspective, VAEs perform variational expectation maximisation to
optimise the parameters ϕ of an inference network qϕ(z|x) that outputs λv . VAE
encoders are called inference networks because they parametrise the inference
of a true posterior. VAE decoders, performing the parametrised probabilistic
decoding pθ(x|z), are called generation networks.

Deriving the VAE objective function [102], note that directly approximating the
true distribution of x as: pθ(x) = ∫

pθ(x,z)d z = ∫
pθ(x|z)p(z)d z is intractable be-

cause it requires evaluating all configurations of z. However, by reformulating
the above using Bayes’ rule, a tractable objective function representing the lower
bound of Ex∼pX (x) log pθ(x) can be derived. Specifically, to optimise the parame-
ters of the inference and generation networks, ϕ and θ respectively, the value
function V is maximised according to (6.4).

argmax
ϕ,θ

V (θ,ϕ;x) = Ez∼qϕ(z|x)[log pθ(x|z)]−DK L [qϕ(z|x)||p(z)]. (6.4)

Since the value function V(θ,ϕ;x) = Ex∼pX (x)
[

log pθ(x)−DK L[qϕ(z|x)||pθ(z|x)]
] ≤

Ex∼pX (x)[log pθ(x)] [103], maximising V (θ,ϕ;x) is equivalent to minimising the
forward DK L[qϕ(z|x)||pθ(z|x)]. This is because, as the forward DK L approaches
0, V approaches Ex∼pX (x) log pθ(x). Linking V to autoencoders, by taking the neg-
ative of V similarities and differences between VAE and autoencoder objective
functions can be identified. Formally, the negative of V is equal to (6.5).

argmin
θ,ϕ

L(θ,ϕ;x) =−[
Ez∼qϕ(z|x)[log p

θ(x|z)]−DK L [qϕ(z|x)||p(z)]
]

.
(6.5)

In (6.5), the first term on the right measures the expected negative log-likelihood
of x. This term is equivalent to an autoencoder’s reconstruction loss. The sec-
ond term measures the information loss from variational approximation: it is
a regulariser term controlling the structuredness of z and distinguishing VAEs
from autoencoders.

6.5 Wasserstein Generative Adversarial Networks

GANs are adversarial networks that learn to generate samples from the under-
lying probability distribution of data without explicitly modelling said distribu-
tion. They do this by pitting two neural networks Gϕ, a generator, and Dθ, a dis-
criminator, against each other in a minmax game. To train Dθ, [104] proposed
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maximising the negative cross-entropy of a binary classifier, outputting variable
y , and separating real (x ∼ pX (x|y = 1)) and generated (x̃ ∼ pGϕ (x̃|y = 0)) data.
Formally, θ and ϕ are optimised according to (6.6) and (6.7).

argmax
θ

VD (ϕ,θ;x,z) = Ex∼pX (x)[logDθ(x)]+Ez∼pZ (z)[log(1−Dθ(Gϕ(z)))],

(6.6)

argmax
ϕ

VG (ϕ,θ;z) = Ez∼pZ (z)[logDθ(Gϕ(z))]. (6.7)

Equating GANs to VAEs, by treating the binary targets y of Dθ as observed vari-
ables, and the inputs X́ = {x, x̃} of Dθ as latent variables, [103] established a con-
nection between a GAN’s objective functions and variational expectation max-
imisation. Similarly to a VAE’s inference network, [103] highlighted that Gϕ can
be thought of as performing posterior inference; with the variational posterior
pϕ(X́ |y) approximating the posterior qr (X́ |y) ∝ qθ0

(1− y |X́ )
[
Ey∼pY (y) pϕ0

(X́ |y)
]
,

where θ0 and ϕ0 are D and G weights from the previous training iteration re-
spectively, and, qθ0

(y |X́ ) is equal to Dθ0
(X́ ), as shown in (6.8).

∇ϕEX́∼pϕ(X́ |y)p(y) log qθ0
(1− y |X́ ) =∇ϕJSD

(
pGϕ (x̃|y = 0)||pX (x|y = 1)

)
−∇ϕEy∼p(y)

[
DK L(pϕ(X́ |y)||qr (X́ |y)

]
.

(6.8)

In (6.8), the JSD term, whose impact becomes negligible once the reverse DK L

is sufficiently minimised, is upper bounded by the reverse DK L term [103]. The
optimisation of Gϕ according to (6.7) is thus equivalent to the minimisation of
the reverse DK L.

There are two critical drawbacks with optimising ϕ according to (6.7): unstable
gradient updates and mode collapse [105]. For a fixed Gϕ, as Dθ improves and
approaches optimality (θ → θ∗) the gradient norm of the objective function -
∥∇ϕ logDθ

(
Gϕ(z)

)∥ - rapidly explodes. An instability of gradient updates spurs
network saturation/instability and increases the complexity of hyperparameter
tuning. Further, as minimising the reverse DK L encourages ‘mode seeking’ ap-
proximations of pX , optimising ϕ according to (6.7) can provoke mode collapse,
which occurs when Gϕ, with varying input vectors, begins generating data cen-
tred at a single mode of a complex multimodel dataset.
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Wasserstein GANs (WGANs) [106] are a variant of traditional GANs that offer
an alternative training approach to [104] centred around the optimisation of a
more stable objective function: the Wasserstein distance. The Wasserstein dis-
tance, a symmetric measure of distribution similarity, is mathematically defined
in its primal form as the infimum (greatest lower bound) energy cost of trans-
forming p X̃ into pX . Unlike the JSD and reverse DK L, the Wasserstein distance is
continuous everywhere and yields smooth and meaningful gradients even when
the manifolds of pX and p X̃ have disjoint supports. Moreover, it limits mode col-
lapse, by dissuading ‘mode seeking’ approximations of pX . Because computing
the infimum is intractable, in practice a dual form of the Wasserstein distance,
expressed in (6.9), is computed.

W (pX , p X̃ ) = sup
∥ f ∥L≤1

Ex∼pX (x)[ f (x)]−Ex̃∼p X̃ (x̃)[ f (x̃)], (6.9)

where sup is the supremum (least upper bound), f : X → R is a 1-Lipschitz
function with | f (x1)− f (x2)| ≤ |x1 − x2|. Arjovsky et al. [106] derived the above
objective function using the Kantorovich-Rubinstein duality; turning a minimi-
sation problem with an infimum into a maximisation problem with a supremum.
Formalising the WGAN training procedure, using f in place of D, ϕ and θ are
optimised according to (6.10).

argmin
ϕ

max
θ

W (ϕ,θ;x,z) = Ex∼pX (x)[ fθ(x)]−Ez∼pZ (z)[ fθ(Gϕ(z)))]. (6.10)

Note, fθ must satisfy the Lipschitz constraint, because only Lipschitz continuous
functions produce feasible/optimal solutions for both the dual/primal forms
of the Wasserstein loss respectively. To satisfy the Lipschitz constraint, [106]
proposed using gradient clipping when optimizing θ. Alternatively, a gradient
penalty, underlined in (6.11), may be added to the objective function [107].

argmin
θ

W (θ;x, x̃) = Ex̃∼p X̃ (x̃)[ fθ(x̃)]−Ex∼pX (x)[( fθ(x))]+λEx̂∼p X̂ (x̂)[(∥ ∇x̂ fθ(x̂) ∥2 −1)2]︸ ︷︷ ︸
gradient penalty

,

(6.11)

where λ is the gradient penalty coefficient and x̂ is an interpolated randomly
sampled vector: αx̃+ (1−α)x with 0 ≤ α≤ 1. The gradient penalty ensures that
the gradient norm of the objective function does not exceed 1, without requiring
extensive hyperparameter tuning.
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Table 6.1: Summary statistics of Belgian and Dutch DAM prices (in e/MWh).

Belgian DAM Prices Dutch DAM Prices
Training Validation Test Training Validation Test

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

36.78 23.69 44.59 21.62 55.27 23.54 32.29 11.35 39.31 12.76 52.53 15.18

6.6 Data Augmentation to Day-Ahead Market Price
Forecasting

6.6.1 Data

As a case study, to evaluate the robustness of our augmentation methods, Bel-
gian and Dutch DAM prices are predicted. To forecast these, lagged DAM
prices [10, 28], day-ahead grid load forecasts [29], day-ahead available gen-
eration forecasts [28] and meteorological features, namely actual and day-
ahead forecasts of temperature, wind speed, solar irradiance, and precipita-
tion, are used. From [108, 109] dataset is gathered. Data from 01/01/2016
to 31/12/2016 is used for model training and data augmentation (training),
data from 01/01/2017 to 31/12/2017 for hyperparameter tuning (validation),
and data from 01/01/2018 to 31/12/2018 for augmentation evaluation (test).
Summary statistics of DAM prices are presented in Table 6.1. Training, valida-
tion, and test means (Mean) and standard deviations (SD) are presented.

Analysing Table 6.1, it is observed that the dataset of DAM prices displays vary-
ing statistical characteristics across countries (Belgium/The Netherlands) and
time (training/validation/test). On average, the Mean and SD of DAM prices
are higher in Belgium than The Netherlands. Finally, the Mean and SD of DAM
prices are observed to generally increase across the training, validation, and test
sets, i.e. across time.

6.6.2 Data Processing

To facilitate data augmentation using generator networks, Min-Max normali-
sation, which binds data in the range [0,1], is used. Such data can be readily
generated by applying a sigmoid activation function across final layer network
outputs as in [110].
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6.6.3 Feature Selection

Many researchers have modelled the DAM as a multiple output regression prob-
lem. The DAM, however, is chosen to model as a single output regression prob-
lem, forecasting the prices of every DAM hourly contract independently. This
allows us to: (1) tailor our modelling approach to the varying statistical char-
acteristics of every contract, (2) capture any price drivers which may be unique
to a specific contract, and (3) avoid using too many features in the forecasting
of any single contract. Feature selection is used to shrink an initial feature pool
of 2160 features to a reduced feature space of at most 35 features. Our initial
feature pool, for any DAM contract, consists of the features mentioned in Sec-
tion 6.6.1 spanning a seven-day-lagged period. Specifically, the total of 2160
features comprises of 14401 meteorological features, 3842 generation and load
features, and 3363 price features. For example, the Dutch feature pool contains
seven-day-lagged 00h-23h: Dutch prices, Belgian prices, Dutch generation and
load forecasts, and Dutch meteorological features. Note that Belgian and Dutch
prices are used together for both the Dutch and Belgian feature pools to increase
the explanatory variability coming from neighbouring countries.

To understand why our modelling input size is constrained to at most 35 features
refer back to our discussion of the generalisation bound in Section 6.1.1. The
VC-bound4 for a regression can be expressed according to (6.12) [111]:

P

(
Eout(h) ≤ Ein(h)(

1− c
p
γ
)
+

)
= 1−δ, (6.12)

where γ= a/N [V C (H)+V C (H) ln(bN /V C (H))− ln(δ/4)], a,b,c are constants, N
is the sample size, Eout and Ein are the generalisation and empirical errors, 1−δ
is the probability that the bound holds, and V C (H) is the VC-dimension of the
family of regression models F = { f (x,h)} : RJ → R indexed by h ∈ H . The VC-
bound exposes how changes in V C (H) and N impact the expected generalisa-
tion error. Because the generalisation bound follows the same monotonicity as

1360 temperature features, 360 wind speed features, 360 solar irradiance features and 360
precipitation features. Each of the above consists of 7 * 24 (seven-day) lagged actuals + 7 * 24
(seven-day) lagged forecasts + 24 next day forecasts.

2192 generation features and 192 load features; each consisting of 7 * 24 (seven-day) lagged
forecasts + 24 next day forecasts.

3168 Belgian and 168 Dutch DAM prices; each consisting of 7 * 24 (seven-day) lagged actuals.
4VC-theory assumes that sample points are independently and identically distributed (i.i.d.).

While DAM prices are not uniformly i.i.d., in determining the maximum number of features this
assumption is made to obtain reasonable bounds.
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Figure 6.1: Visualisation presenting the number of selected features for every Belgian
(BE) and Dutch (NL) DAM hour denominated contract. On average, roughly
20 features are selected for Belgian contracts and 18 for Dutch contracts.

the VC-bound, (6.12) can be used to determine the N needed to train a family
of models F , or the F that a constrained N can reasonably train. Numerous
studies, such as [87], indicate that by applying a rule of 10, mathematically ex-
pressed as 10×V C (H) ≤ N , a reasonable generalisation error - i.e. a level where
the VC-bound is meaningful with a probability close to 1 - can be attained.
The rule of 10 can either be applied to determine an appropriate N for a given
V C (H) or the reverse. Given our N of 365, the rule of 10 suggests that an F
with a V C (H) ≤ 36 is best suited to our case study.

Linking the V C (H) to our final modelling feature size, it can be shown that
the V C (H) of a J -dimensional linear classifier and regression is equal to J +1 -
i.e. its degrees of freedom. The V C (H) of a real-valued function F = { f (x,h)} is
equal to the V C (H) of its respective binary classifier 1( f (x,h)−[ f (x,h)] > 0) [51].
Because the expressiveness and by extension V C J

N N (H) of J -dimensional real-
valued neural networks is at least as large as the V C J

LR (H) of a J -dimensional
linear regression, a limit can be determined for the maximum number of feature
inputs for our case study. Formally, F J

LR ⊆F J
N N implies that

[
V C J

LR (H) = J +1
]≤

V C J
N N (H), and therefore J ≤ V C J

LR (H)) ≤ V C J
N N (H). From the above it can be

discerned that strictly no more than 35 feature inputs, J , should be selected by
our feature selection method.

Similarly to [112], random forests (RF) are used to identify and select features
with the greatest explanatory power. RF, an ensemble machine learning model,
fits numerous decision trees to random samples of a training dataset. Because
each tree is trained to recursively split data by maximising an information gain,
estimates of a feature’s importance can be computed. This property, as well as
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RF’s computational speed, and robustness to outliers and noise [113], make RF
an effective feature selection method.

The RF feature selection method is trained on the training set and tuned by
minimising the R2 across the validation set. A feature importance cut-off that
prevents the RF method from selecting more than 35 features is set. Figure 6.1
displays the total number of features selected for every Belgian and Dutch DAM
contract. One-day-lagged and seven-day-lagged dependent variables are fre-
quently selected, capturing the well-known seosonalities in DAM prices. For
example, the following 17 features are selected for the Dutch 14h contract:
BE11

−7, BE14
−7, NL14

−7, generation_fc14
−7, BE15

−7, NL15
−7, NL16

−7, NL17
−2, NL14

−1, NL16
−1, BE17

−1,
NL17

−1, NL18
−1, load_fc14

−1, and wind_fc14
−1. The NL14

−7 and generation_fc14
−7 represent

the seven-day-lagged Dutch 14h DAM price and seven-day-lagged Dutch 14h
generation forecast respectively. While both the one-day-lagged and seven-day-
lagged dependent variables are selected for the Dutch 14h contract, as our RF
feature selection method is not constrained, no lagged dependent variables are
selected in 6 out of 48 cases: the Belgian: {00h, 01h, 14h}, and the Dutch:
{00h, 10h, 13h}.

6.6.4 Forecasting Models

To establish reasonable benchmark forecast accuracies DAM prices are modelled
using ARXs. Further, following [28], DAM prices are modelled using a two-layer
neural network (2NN) consisting of two intermediate FCLs. Finally, to evaluate
the performance impacts of augmentation on convolutional neural networks,
DAM prices are modelled using a joint three-layer network (2CNN_NN) consist-
ing of two intermediate CONVs, two optional max-pooling or average-pooling
layers, and a single intermediate FCL. Layers are stacked to identify non-linear
relationships, and prevent an explosion in the number of network parameters.
Early stoppage, L2 regularisation, dropout, ReLU activation functions, Adam,
learning rate scheduling, and learning rate decay are used to combat node sat-
uration, speed-up model training, and reduce the likelihood of overfitting.

Bayesian optimisation is used to identify optimal architectures and hyperpa-
rameters of every model. Models are trained on the training set and evalu-
ated on the validation set. The hyperparameters are selected based on the
best validation score, i.e. the lowest root mean squared error. Note that the
augmented data is not used for optimisation. Samples of selected hyperpa-
rameters are presented in Tables 6.2 - 6.3. For ARX, bayesian optimisation is
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Table 6.2: Optimised ARX model hyperparameters for the Belgian 15h and 17h, and
Dutch 06h and 22h.

ARX (BE 15h) ARX (BE 17h) ARX (NL 06h) ARX (NL 22h)

Regularisation Parameter 1.78×10−3 1.70×10−3 1.29×10−4 2.11×10−4

Maximum Iterations 1450 1175 925 1425
Tolerance 2.40×10−4 6.42×10−4 1.49×10−5 3.66×10−4

Table 6.3: ANN hyperparameters for the Belgian 15h and 17h, and Dutch 06h and 22h.

2NN (BE 17h) 2CNN_NN (BE 15h) 2NN (NL 22h) 2CNN_NN (NL 06h)

Hidden Layers [500, 500] [(1, 5, 48), AvgPool, (1, 3, 32), 12] [97, 43] [(1, 4, 8), (1, 4, 32), 64]
Dropout 0.25 0.00 0.00 0.00
Learning Rate 5.62×10−3 9.07×10−4 1.36×10−3 1.27×10−4

used to select the L1 regularisation parameter ∼ U
[
0,1

]
, the maximum num-

ber of training iterations ∼U
[
800,825,850, . . . ,1600

]
, and the optimisation toler-

ance ∼U
[

log(10−5), log(10−3)
]
. For ANN, bayesian optimisation is used to iden-

tify the ANN hidden layers, the dropout ∼U
[
0,0.25,0.5

]
, and the learning rate

∼U
[

log(10−4), log(2×10−2)
]
.

Note, in Table 6.3 CONVs are represented using tuples specifying kernel height
and width, and the number of filter outputs. FCLs are represented using integers
specifying neuron count. An average pooling layer, using a one dimensional
kernel of size 2 with a stride of 2, is represented using the acronym AvgPool.
Explaining the above notation with an example: the NL 06h 2CNN_NN consists
of two CONVs, with one dimensional kernels and channel outputs of size 4 and
4, and 8 and 32 respectively, connected to a single FCL with 64 neurons. This
network is specified as [(1, 4, 8), (1, 4, 32), 64] in Table 6.3.

Early stoppage and learning rate scheduling and decay are employed while
training ANNs. ANN training continues until either an early stoppage crite-
rion, requiring a minimum training loss improvement of 1e-6 over 22 epochs,
is satisfied, or the maximum number of training epochs, 200, is reached. The
learning rate is reduced by a factor of 10 after every 50 epochs. Additionally, it
is reduced by a factor of 4/3 after 7 epochs of the training loss plateauing.
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Figure 6.2: Generated time series examples for the Belgian 01h contract. Note that x
consists of lagged prices (in e/MWh) for this contract. The training (Real)
time series is used as an input in the generation of the augmented series.
The violet band displays how t̃ is sliced to give x̃, in the feature range [1,15],
and ỹ , in the feature range (15,16].

6.6.5 Basics of Data Augmentation

When augmenting multivariate time series, both X , real explanatory variables,
and Y , real response variables, can be simultaneously used to generate X̃ , aug-
mented explanatory variables, and Ỹ , augmented response variables. X and
Y represent measurements indexed through time, forming a set of time series
{t ∈ T | t = x∪ y, ∀x ∈ X , y ∈ Y }. An ability to generate a set of augmented time
series {t̃ ∈ T̃ | t̃ = x̃∪ ỹ , ∀x̃ ∈ X̃ , ỹ ∈ Ỹ } simplifies augmentation by alleviating the
need for any pseudo-labeling of X̃ . Examples of generated time series are pre-
sented in Figure 6.2. Below Sections 6.6.6-6.6.9 describe how, given a set of
normalised training inputs T , normalised augmented outputs T̃ can be gener-
ated using a multitude of augmentation methods.

6.6.6 Feature Space Augmentation

From [90], jittering, scaling and magnitude-warping are chosen. Briefly de-
scribing how these methods generate data, jittering adds varying amounts of
noise (ϵ ∼ N (0,σ2I )) to t. Scaling generates data by multiplying t by a random
scalar (s ∼ N (1,σ2)). Magnitude-warping, similarly to scaling, multiplies t by
a smoothly-varying random curve with r knots and a standard deviation σ. To
select the optimal hyperparameters σ and r , Bayesian optimisation is employed.
Table 6.4 in Section 6.6.10 presents examples of selected hyperparameters.
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6.6.7 Autoencoder Augmentation

AEs, introduced in Section 6.3, are utilised to augment multivariate time series.
Similarly to [110], as a distance function, l (x, .), to measure the reconstruction
loss in (6.3) the binary cross-entropy (BCE) is chosen. It is found that using the
BCE, an asymmetric loss function, outperformed using a symmetric loss, such
as the mean squared error.5 The BCE a special instance of the cross-entropy
H(pX (x), p X̃ (x̃)) =−∑

j pX (x j ) log p X̃ (x̃ j ), is calculated according to (6.13).

BCE(x,Dθ(Eϕ(x))) =−
J∑

j=1

[
pX (x j ) log p X̃ (Dθ(Eϕ(x)) j )

+ (
1−pX (x j )

)
log

(
1−p X̃ (Dθ(Eϕ(x)) j )

)
, (6.13)

where J is the dimensionality of X . Optimising the BCE pointwise is equivalent
to optimising the forward DK L: DK L(pX (x) ||p X̃ (x̃)) =H(pX (x), p X̃ (x̃))−H(pX (x)),
because H(pX (x)), the entropy of pX , is known and constant. For our AEs’ train-
ing, Leaky ReLU with a negative slope ζ is used to combat neuron saturation,
early stoppage and L2 regularisation with a regularisation parameter τ to limit
model overfitting, and Adam to speed-up convergence. The search spaces of ζ
and τ for Bayesian optimisation can be found in Section 6.6.10.

AEs, once trained, can generate time series, t̃, by applying perturbations to
encoder outputs in the latent space Z according to t̃ = Dθ̂(g (Eϕ̂(t))), where g :

Z → RJ is a perturbation function. This is advantages because encoding model
inputs from the feature space T to Z increases the relative volume occupied
by the real distribution pT [101]. To allow tailored data generation, optimal

5To demonstrate why an asymmetric loss function, specifically the BCE, is better suited to mod-
elling pX than a symmetric loss function such as the mean squared error (MSE), below the fore-
casting losses (L) and gradient magnitudes (|∇|) for two model predictions are calculated. Firstly,
the L and |∇| are considered when a model underpredicts a scaled target value (0.1) in the left
tail of pX by 0.075. Using the MSE, record that LMSE

0.025 = (0.025 − 0.1)2 = 0.0056 and |∇|MSE
0.025 =

|2x̃ j − 2x j | = 0.15, while with the BCE record that: LBC E
0.025 = −0.1log(0.025)− 0.9log(0.975) = 0.392

and |∇|BC E
0.025 = |− x j /x̃ j + (1 − x j )/(1− x̃ j )| = 3.077. Secondly, the L and |∇| are considered when

the model overpredicts the same target by 0.075. The MSE again records a loss of 0.0056 and
gradient magnitude of 0.15, while the BCE yields: 0.3474 and 0.519. It is clear that the MSE
treats both underprediction and overprediction of target values in the left tail of pX identically
({LMSE

0.025, |∇|MSE
0.025} = {LMSE

0.175, |∇|MSE
0.175}), while the BCE places an emphasis on correcting underpredic-

tion ({LBC E
0.025, |∇|BC E

0.025} > {LBC E
0.175, |∇|BC E

0.175}). Notice also that BCE |∇| dominate those of the MSE. Such
asymmetric weight updating is desirable when modelling a non-uniform probability distribution
as it promotes mass covering, while strictly preventing outlier generation. The results are: fewer
generated data points near 0 and 1, and more generated data points near the central tendency.
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Figure 6.3: AE network architecture showing the input-output relationship for multi-
variate time series generation. Encoder and decoder are drawn with one
hidden layer for simplicity. Each, however, usually consists of more hidden
layers.

encoding and decoding functions for every DAM hourly contract are identified
using Bayesian optimisation. Table 6.5 in Section 6.6.10 presents examples of
encoding and decoding functions.

As shown in Figure 6.3, encoder outputs are scaled by a scaling matrix S ∼
N (1,di ag (υ⊺)), where υ⊺ is equal to the column-wise standard deviation (SD)
of encoder outputs, [σ1, . . .σU ], multiplied by γ. Formally, a scaling latent space
perturbations is applied according to: g (z) = Sz. Bayesian optimisation is used
to identify an optimal γ. See Section 6.6.10 for the search space of γ.

6.6.8 Variational Autoencoder Augmentation

Introducing our VAE architectures, all inference networks use a single latent
variable layer with a normal prior (p(z) ∼ N (0, I )) and variational parameters
λv : µ and σ2. These parameters are approximated as: N (z|µϕ(t),σ2

ϕ
(t)), where

µϕ(t) and σ2
ϕ

(t) are parametrised latent variational estimates of λv . To train
our VAEs, a variant of (6.5) is used. The weight of the forward DK L regulariser
in (6.5) is adjusted by a Bayesian optimised parameter δ [114]. Additionally,
an L2 penalty, weighted by a Bayesian optimised parameter τ, is added. For a
minibatch of m time series ({ti }m

i=1 ∼ pT ), our VAE is trained according to (6.14).

argmin
θ,ϕ

L(θ,ϕ;t) = 1

m

m∑
i=1

(
−

(
J∑

j=1
ωi , j

)
+δ

(
−1

2

U∑
u=1

Υi ,u

))
+τ(∥ θ ∥2

2 + ∥ϕ ∥2
2), (6.14)
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Figure 6.4: VAE network architecture showing the input-output relationship for multi-
variate time series generation. Inference and generation networks are drawn
with one hidden layer for simplicity. Each, however, usually consists of more
hidden layers. Note that a vector ϵ∼ N (0, I ) yields {ϵ1, ...,ϵU }.

where ωi , j = pT (t i
j ) log pθ(t i

j |zi )+(
1−pT (t i

j )
)

log
(
1−pθ(t i

j |zi )
)
, Υi ,u = 1+logσϕ(ti )2

u−
µϕ(ti )2

u −σϕ(ti )2
u , and J/U are the dimensionalities of feature/latent variable

outputs respectively [102]. In (6.14), the first term on the right is equivalent to
the BCE, while the second term is a closed-form expression of the forward DK L.
Bayesian optimisation is used to identify optimal inference and generation net-
works for each DAM contract. Table 6.5 in Section 6.6.10 presents examples of
optimal inference and generation networks. Similarly to AEs, Leaky ReLU with
a negative slope ζ, early stoppage, and Adam are applied. The search spaces
of δ, τ and ζ for Bayesian optimisation can be found in Section 6.6.10. Once
trained, by minimising the above VAE loss, the prior (p(z) ∼ N (0, I )) is sampled
and passed through the generation network to yield VAE augmented data as
shown in Figure 6.4.

6.6.9 Wasserstein Generative Adversarial Network Augmen-
tation

Summarising three generators that motivated our WGAN-GP generation ap-
proach, [116] proposed generating outputs, x̃2, by performing Gϕ(x1) → x̃2:
inputs, x1, are passed into Gϕ and dropout is used to provide noise to Gϕ.
Similarly, [117] proposed generating outputs by performing Tϕ(x1) → x̃2 using
a transformation network comparable to an autoencoder, Tϕ, in place of Gϕ.
Finally, [118] proposed generating outputs by performing Gϕ(z,σ) → x̃. Noise,
ϵ∼ N (0,σ2I ), is added in every layer of Gϕ to improve energy-based GAN train-



76 Forecasting Day-Ahead Market Prices: Data Augmentation

+ϵ

+ϵ

t1

t2

...
tJ−1

tJ

input t

z11

z12...
z1n

z21

z22...
z2n

t̃1

t̃2

...
t̃J−1

t̃J

output t̃
t1...
tJ

t̃1...
t̃J

t̂1...
t̂J

input t/t̃/ t̂

t̂1

t̂2

...
t̂J−1

t̂J

z31

z32...
z3n

d

outputgenerator Gϕ critic Dθ

Figure 6.5: WGAN-GP network architecture showing the input-output relationship sep-
arately for a generator and a critic. Crosses in generator nodes i.e. z1n1−1
represent our use of dropout. Meanwhile t̂ =αt+ (1−α)t̃, where α∼U [0,1].
The generator and the critic are drawn with one hidden layer for simplic-
ity. Each, however, usually comprises of more than one hidden layer. To
obtain the WGAN-GP loss, all inputs, namely t , t̃ , and t̂ , must individually
be passed through the critic.

ing stability. Using elements of [116–118], we propose performing Gϕ(t,σ) → t̃
to augment time series. Our Gϕ accepts time series t as inputs and adds noise,
ϵ ∼ N (0,σ2I ), to intermediate layer outputs. Modifying (6.10) and (6.11), our
WGAN-GP is trained according to (6.15) and (6.16).

argmin
θ

WD (θ;t, t̃) = Et̃∼pT̃ (t̃)[Dθ(t̃)]−Et∼pT (t)[(Dθ(t))]

+λEt̂∼pT̂ (t̂)[(∥ ∇t̂Dθ(t̂) ∥2 −1)2], (6.15)

argmin
ϕ

WG (ϕ;t) =−Et∼pT (t)[Dθ(Gϕ(t,σ)))]+τ ∥ϕ ∥2
2, (6.16)

where Dθ, referred to as the critic in WGANs, approximates the 1-Lipschitz
function f : T →R. The L2 penalty, τ ∥ϕ ∥2

2, is added to the generator loss to
further improve training stability. During a non-exhaustive empirical evaluation
it is found that L2 regularisation facilitated WGAN-GP training and increased
the diversity of generated data.

Algorithm 6.1 presents our proposed method for training WGAN-GP time se-
ries augmentors. The hyperparameters referenced in Algorithm 6.1 and further
described in Section 6.6.10 are selected using Bayesian optimisation for every
DAM hourly contract. Similarly to [107], the negative critic loss, −WD (θ;t, t̃),
is used in our convergence criterion. Once trained, Gϕ is employed to gen-
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Algorithm 6.1 WGAN-GP for multivariate time series augmentation. The need
to control both training duration and identify early instances of mode collapse
is weighed against the need to avoid impeding model convergence. Following
[107], default variables λ= 10 and ncr i t i c = 5 are used.
Require: learning rates αg and αd , gradient penalty coefficient λ, regularisation parameter τ, standard deviations
σ, minimum spread coefficient ψ, batch size m, early stopping parameters k, number of training iterations K , the
number of critic updates per generator update ncr i t i c
Require: initial discriminator parameters θ, initial generator parameters ϕ

k = 1, . . . ,K n = 1, . . . ,ncr i t i c i = 1, . . . ,m
1: Sample training time series t ∼ PT , and a random number α∼U [0,1]
2: t̃ ←Gϕ(t,σg )

3: t̂ ←αt+ (1−α)t̃
4: L(i ) ← Dθ (t̃,σd )−Dθ (t,σd )+λ(∥ ∇t̂Dθ (t̂,σd ) ∥2 −1)2

5: θ←RMSprop
(
∇θ 1

m
∑m

i=1 L
(i ) , θ, αd

)
6: Sample a batch from the training time series {t(i )}m

i=1 ∼ PT

7: ϕ←RMSprop
(
∇ϕ 1

m
∑m

i=1

[−Dθ (Gϕ(ti ,σg ),σd )
]+τ ∥ϕ ∥2

2 , ϕ, αg

)
k > kcheck

8: T̃ ←Gϕ(T,σ)
∑J

j=1 SD
(
T̃

)<ψ∑J
j=1 SD

(
T

)
or −WD

(
θ;T, T̃

)
has not set new low for kbr eak

9: early stopping break
∗Noise, ϵ∼ N (0,σ2 I ), is added element-wise to intermediate G layer outputs and, similarly to [115], optionally to D.

erate multivariate time series. Example Gϕ and Dθ network architectures are
presented in Figure 6.5 and Table 6.5.

Across a randomly selected sample of DAM contracts, the training stability of
WGAN-GPs is empirically compared with the training stability of vanilla GANs,
GANs with soft real and fake labels, WGANs, and context encoders, which gen-
erate regions of a target and use a compound loss function comprising of a
reconstruction loss plus an adversarial loss. Overall, WGAN-GPs were found to
be the most stable and easy to train. They suffered significantly fewer instances
of mode collapse and were less sensitive to small hyperparameter changes.

6.6.10 Model Architectures and Hyperparameters for Aug-
mentation Methods

Table 6.4 shows a sample of selected hyperparameters for feature space aug-
mentors, introduced and described in Section 6.6.6. Bayesian optimisation is
employed to select log(σ) ∼U

[
log(9×10−3), log(10−1)

]
and r ∈ 4, . . . ,8.

Table 6.5 presents a sample of optimal architectures for our model-based aug-
mentation methods: AE, VAE, and WGAN-GP, described in Sections 6.6.7- 6.6.9.
To combat neuron saturation, leaky ReLU activations, with a negative slope
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Table 6.4: Optimised feature space augmentation hyperparameters for the Belgian 13h
and Dutch 17h.

Jittering Scaling Mag. Warp.

2NN (BE 13h) σ= 1.78×10−2 σ= 4.52×10−2 r = 4, σ= 3.20×10−2

2CNN_NN (NL 17h) σ= 1.01×10−2 σ= 1.22×10−2 r = 6, σ= 1.51×10−2

ARX (BE 13h) σ= 3.67×10−2 σ= 9.87×10−2 r = 7, σ= 8.98×10−2

Table 6.5: Optimised model-based augmentation network architectures for the Belgian
13h and Dutch 17h and 22h.

AE VAE WGAN-GP
Encoding Decoding Inference Generation Generator Critic

2NN (BE 13h) [25, 13, 4] [9, 17, 24] [17, 12, 2] [7, 12, 24] [27, 24] [32, 21]
2CNN_NN (NL 17h) [9, 3] [9, 17, 15] [31, 3] [7, 12, 15] [52, 31, 15] [31, 1]
ARX (NL 22h) [17, 5] [7, 12, 13] [31, 3] [17, 13] [27, 13] [27, 13, 1]

ζ, are applied to intermediate layer outputs of both the generator and critic.
For AEs, Bayesian optimisation is used to select: ζ ∼ U [0, 2× 10−1]; log(γ) ∼
U [log(10−4), log(10−2)]; and log(τ) ∼ U [log(10−5), log(5 × 10−3)]. For VAEs, it is
used to select: ζ∼U [0,2×10−1]; log(δ) ∼U [log(10−4), log(7.5×10−3)]; and log(τ) ∼
U [log(10−5), log(5×10−3)]. For WGAN-GPs, it is used to select: learning rate for
the generator logαg ∼U [log(10−5), log(2×10−2)]; learning rate for the discrimina-
tor log(αd ) ∼U [log(10−5), log(2×10−2)]; standard deviation of added noise for the
generator log(σg ) ∼ U [log(10−4), log(10−1)]; standard deviation of added noise
for the discriminator σd ∼U [0,10−2]; negative slope ζ ∼U [0,2×10−1], and reg-
ularisation log(τ) ∼U [log(10−5), log(10−1))]. Hyperparameters impacting WGAN-
GP training duration are set by trial and error to: m=32; K =3000; kcheck=360;
kend =720; kbr eak=600; and ψ= 2.5×10−1.

6.6.11 Evaluation Setup

This chapter aims to determine whether data augmentation can significantly
boost the prediction accuracies of multivariate time series regression models.
To achieve this aim, across the test set, an empirical and statistical analysis
are conducted for regression models trained with (Aug: [T, T̃ ], size = 2Ntr ai n)
and without (Bench: [T ], size = Ntr ai n) augmentation. The specifics of our
empirical and statistical evaluation procedures are detailed below.



6.7 Numerical Results and Discussion 79

Describing our empirical evaluation procedure, to assess the overall impacts of
data augmentation, in Section 6.7 the mean absolute errors (MAE), the root
mean squared errors (RMSE), and the symmetric mean absolute percentage er-
rors (sMAPE) of regression forecasts with and without augmentation are com-
puted and evaluated. Additionally, similarly to [89], Win / Tie / Loss scores are
computed to measure an augmentor’s efficiency. Instances where benchmark
RMSEs decrease/increase across the test set are classified as Wins/Losses. In-
stances where an augmentor fails to improve upon benchmark RMSEs across
the validation set are classified as Ties.

Describing our statistical evaluation procedure, to determine the statistical sig-
nificance of any accuracy improvements, one-sided Wilcoxon signed-rank tests
[119] are performed. The Wilcoxon test is a nonparametric test used to com-
pare distributions of paired samples. This test is used to compare Bench and
Aug RMSEs: {RMSEbench

i }n
i=1 and {RMSEaug

i }n
i=1 respectively. The test assumes

symmetry between positive and negative sample differences: di = RMSEaug
i −

RMSEbench
i , ∀ i ∈ {1, . . . ,n}. To compute the Wilcoxon statistic, the rank sums of

positive and negative differences are calculated, and their minimum is taken.
Note, following the recommendations of [120], the Pratt ranking method is
used to obtain conservative estimates of the Wilcoxon statistic. A one-sided
Wilcoxon test is performed with the null hypothesis H0: Median({di }n

i=1) ≥ 0
and alternative hypothesis H1: Median({di }n

i=1) < 0. When the Wilcoxon statis-
tic translates to a p-value less than 0.05, H0 is rejected, and H1 is accepted. A
p-value less than 0.05 indicates a statistically significant performance improve-
ment at a 5% level.

6.7 Numerical Results and Discussion

To highlight overall performance changes, summary augmentation results are
presented in Table 6.6. Mean forecast error percentage changes, %∆ E, for each
country and evaluation model pair, are calculated according to: 100× [(Eaug −
Ebench)÷Ebench], where Eaug and Ebench are the augmentation and Bench. mean
forecast errors respectively, and E is either the MAE, RMSE, or sMAPE. To cal-
culate Summary forecast error percentage changes, %∆ Es are averaged across
the six evaluation cases. Bold p-values, from Wilcoxon tests, indicate statis-
tically significant performance improvements at a 5% level. Gray highlights
show the best results for each row.
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Table 6.6: Augmentation results displaying average percentage changes in benchmark
(Bench.) mean forecast errors: specifically MAEs, RMSEs, and sMAPEs.

Jittering Scaling Mag. Warp. AE VAE WGAN-GP Bench.

Be
lg

ia
n

D
AM

Pr
ic

es

2N
N

%∆ MAE -0.36 -0.94 -2.23 -3.26 -4.07 -3.96 9.26
%∆ RMSE -0.98 -1.15 -2.14 -3.18 -3.50 -4.36 16.47
%∆ sMAPE -0.24 -1.03 -2.28 -3.49 -4.52 -4.04 17.27
Win / Tie / Loss 6/13/5 4/16/4 12/7/5 15/4/5 21/1/2 15/1/8 -
p-value 0.38 0.42 0.03 0.01 0.00 0.12 -

2C
N

N
_N

N

%∆ MAE 0.39 0.58 1.90 -3.82 -5.79 -3.03 9.30
%∆ RMSE 0.25 0.57 1.74 -2.72 -2.92 -3.54 16.38
%∆ sMAPE 0.76 0.60 1.99 -3.27 -5.07 -2.41 17.09
Win / Tie / Loss 7/12/5 4/16/4 5/10/9 16/1/7 17/0/7 16/0/8 -
p-value 0.33 0.55 0.93 0.01 0.01 0.03 -

AR
X

%∆ MAE 0.57 -0.70 0.50 -1.96 -2.80 -6.03 10.02
%∆ RMSE 0.22 -0.54 0.25 -1.58 -2.37 -4.23 18.25
%∆ sMAPE 0.57 -0.55 0.43 -1.73 -2.77 -5.82 18.25
Win / Tie / Loss 6/7/11 14/5/5 11/0/13 17/1/6 17/1/6 15/2/7 -
p-value 0.84 0.01 0.66 0.00 0.00 0.06 -

D
ut

ch
D

AM
Pr

ic
es

2N
N

%∆ MAE 0.43 0.52 0.19 -0.76 -0.94 -1.33 6.69
%∆ RMSE 0.28 0.15 -0.05 -0.64 -0.94 -1.13 9.53
%∆ sMAPE 0.40 0.56 0.30 -0.72 -0.78 -1.15 12.96
Win / Tie / Loss 6/13/5 7/10/7 6/11/7 16/2/6 14/1/9 16/0/8 -
p-value 0.38 0.65 0.55 0.04 0.02 0.05 -

2C
N

N
_N

N

%∆ MAE -0.89 -0.02 0.45 -2.27 -0.60 -1.77 6.90
%∆ RMSE -0.55 0.08 0.42 -1.95 -0.79 -2.32 9.73
%∆ sMAPE -0.77 0.25 0.76 -2.35 -0.94 -1.85 13.36
Win / Tie / Loss 9/15/0 4/16/4 5/13/6 17/4/3 16/2/6 19/1/4 -
p-value 0.00 0.53 0.70 0.00 0.03 0.00 -

AR
X

%∆ MAE 0.05 -1.07 -0.67 -1.31 -2.18 -1.71 6.92
%∆ RMSE -0.08 -1.14 -0.94 -1.00 -2.52 -2.47 9.97
%∆ sMAPE 0.22 -1.00 -0.47 -1.20 -1.98 -1.72 13.37
Win / Tie / Loss 9/13/2 13/8/3 13/5/6 16/2/6 17/0/7 19/0/5 -
p-value 0.03 0.00 0.02 0.00 0.00 0.00 -

Su
m

m
ar

y %∆ MAE 0.03 -0.27 0.02 -2.23 -2.73 -2.97 8.18
%∆ RMSE -0.14 -0.34 -0.12 -1.85 -2.17 -3.01 13.39
%∆ sMAPE 0.16 -0.19 0.12 -2.13 -2.67 -2.83 15.39
Win / Tie / Loss 43/73/28 46/71/27 52/46/46 97/14/33 102/5/37 100/4/40 -
p-value 0.08 0.01 0.27 0.00 0.00 0.00 -

The results indicate that not all augmentation methods can significantly boost
the regression accuracies of multivariate time series models. While AEs, VAEs,
and WGAN-GPs, on average, reduce benchmark summary MAEs, RMSEs, and
sMAPEs by more than 2%, yielding p-values < 0.05, jittering and magnitude-
warping fail to significantly improve summary benchmark MAEs and sMAPEs,
yielding p-values ≥ 0.05. Beyond the summary results, AEs, VAEs, and WGAN-
GPs are observed to significantly boost benchmark performances in 6/6, 6/6
and 4/6 evaluation cases respectively. Moreover, they are observed to im-
prove 58.33% to 87.4% of benchmark RMSEs; yielding %∆ RMSEs between
-4.36% and -0.64%. Meanwhile, jittering, scaling and magnitude-warping are
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observed to yield p-values < 0.05 in 2/6, 2/6, and 2/6 evaluation cases, and
improve 16.67% to 58.33% of benchmark RMSEs; producing %∆ RMSEs be-
tween -2.14% and 1.74%. Overall, out of the augmentors evaluated, VAEs and
WGAN-GPs achieve the greatest forecast error improvements. VAEs produce
the highest number of Wins, while WGAN-GPs produce the greatest average
%∆ MAE, %∆ RMSE, and %∆ sMAPE improvements. To facilitate further analy-
ses, Belgian, and Dutch ARX, 2NN, and 2CNN_NN augmentation performances
are analysed separately below.

To explain the relative underperformance of jittering, scaling, and magnitude-
warping, remember that the success of feature space augmentation is data-
dependent. Broadly, feature space augmentation either increase forecast accura-
cies by spurring the identification of long-term trends or decrease forecast accu-
racies by adding too much noise and scrambling any potential trends in time se-
ries. Analysing average ARX %∆ RMSE improvements, scaling (−0.84%) is found
to perform better than magnitude-warping (−0.35%) and jittering (0.07%). We
postulate that scaling, in contrast to jittering, successfully improves linear model
performances, because it better regulates the amount of noise added to input
time series by transforming both trends and residual errors.

In the case of deep models, it must also be noted that feature space augmen-
tations can increase overfitting by not adding enough noise; extending train-
ing times without facilitating the identification of non-linear long-term trends.
Analysing average ANN %∆ RMSE improvements, jittering (−0.25%) is found
to perform better than magnitude-warping (−0.09%) and scaling (−0.01%). We
postulate that, with ANNs, scaling, in contrast to jittering, generally fails to
generate sufficiently distinct time series, i.e. add enough noise, to meaningfully
facilitate the identification of non-linear long-term trends.

Beyond feature space augmentation, in Table 6.6, overwhelming evidence that
model-based augmentors consistently generate meaningful time series capable
of significantly boosting the regression accuracies of both ARXs and ANNs is
found. All model-based augmentors decrease Belgian, and Dutch ARX, 2NN,
and 2CNN_NN MAEs, RMSEs, as well as sMAPEs. Moreover, they yield more
than 14 (58.33%) Wins across all evaluation cases. Analysing performance dif-
ferences between Belgian and Dutch evaluation cases, AEs, VAEs, and WGAN-
GPs are observed to reduce Belgian forecasting errors more than Dutch errors.
Varying feature counts, used in the forecasting of Belgian and Dutch DAM prices,
may explain these differences. Because Dutch prices are, on average, forecasted
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using fewer features, it is reasonable to postulate that less complex ANNs are
used to forecast Dutch prices. Elaborating, per Section 6.1.1, decreased model
complexity reduces the need for large training sets and, by extension, the ex-
pected forecast error reduction attainable from data augmentation.

Finally, analysing model-based augmentation performances across ARXs and
ANNs, on average, model-based augmentors are observed to reduce ARX MAEs,
RMSEs, and sMAPEs by 2.67%, 2.36%, and 2.54%, and ANN MAEs, RMSEs, and
sMAPEs by 2.63%, 2.33%, and 2.55% respectively. While similar ARX and ANN
improvements are surprising, note that they mostly result from WGAN-GP’s Bel-
gian ARX performance. On average, AEs and VAEs achieve higher forecast error
reductions with ANNs than ARXs.

6.8 Conclusion

This chapter demonstrated that multivariate time series augmentation methods
can significantly boost the regression accuracies of both autoregressive models
with exogenous inputs and artificial neural networks. While jittering, scaling,
and magnitude-warping generally struggled to improve a majority of forecast
errors, AEs, VAEs, and WGAN-GPs were found to significantly reduce a ma-
jority of forecast errors; on average reducing benchmark MAEs by 2.23%, 2.73%
and 2.97% respectively. Taking every result into consideration, VAEs and WGAN-
GPs were found to be our best and most stable individual multivariate time
series augmentors, decreasing 70.83% and 69.44% of benchmark errors.



Chapter 7

Forecasting Day-Ahead Market
Prices

Price forecast errors for the day-ahead market (DAM) have grown in recent
years. To reduce these forecast errors, we propose using technical indicator
features described in Chapter 5, and data augmentation methods devised in
Chapter 6. This chapter evaluates the impacts of technical indicators and data
augmentation methods on DAM forecast errors. The chapter additionally evalu-
ates whether ensemble methods that average multiple forecasts, obtained using
technical indicators and data augmentation, could be used to further boost fore-
casting accuracies of DAM prices.

7.1 Introduction

To ensure the profitability of autonomous agents, accurate forecasts of day-
ahead market (DAM) prices are needed. To attain accurate DAM forecasts, neu-
ral networks, which have been shown to outperform statistical models [10, 25,
28], are employed throughout this chapter. Additionally, we propose using tech-
nical indicators and data augmentation methods.



84 Forecasting Day-Ahead Market Prices

Chapter 5 underlined how the use of technical indicator features, such as mov-
ing averages and Bollinger bands, can improve the accuracy of machine learning
models. Technical features assist in the identification of behavioural biases of
DAM traders. Meanwhile, Chapter 6 highlighted how data augmentation meth-
ods, using autoencoders and generative adversarial networks, can be used to
boost forecast accuracies.

This chapter compares forecasting results attained using technical indicators
and data augmentation methods. Further, the chapter evaluates ensemble meth-
ods that average the forecasts obtained using these methods. To the best of our
knowledge, we are the first to employ both technical indicator features and data
augmentation methods to forecast DAM prices.

Note that while methods implemented in Chapters 5 and 6 were tested using
data spanning from 2017 to 2018, in this chapter the same methods, together
with our newly proposed ensemble methods, are tested using data spanning
2020. The use of a more recent dataset further highlights the veracity of previ-
ously tested methods, and demonstrates the methods intransigence to potential
data drift.

Outlining the structure of this chapter, the methodology for forecasting DAM
prices is described in Section 7.2. In Section 7.3 the results are outlined. Finally,
in Section 7.4 the chapter is concluded.

7.2 Ensemble Approach to Day-Ahead Market Price
Forecasting

The data gathering and processing steps employed in the forecasting of DAM
prices are outlined below. Additionally, the evaluation procedure is described,
and the DAM forecasting results are analysed.

7.2.1 Data

Dutch and Belgian DAM prices, spanning from 01/01/2016 to 11/12/2020,
are collected together with load and generation day-ahead forecasts from the
ENTSO-E Transparency Platform [22]. This data is subsequently split into train-
ing and test data. Data from 01/01/2016 to 01/01/2020 are used for training,
while data from 01/01/2020 to 11/12/2020 are used for testing. Comparably
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Table 7.1: Summary statistics for Belgian and Dutch DAM prices in e/MWh.

mean standard deviation
train test train test

BE 43.95 31.04 22.93 16.38
NL 41.31 31.46 14.67 15.08

to previous chapters, the testing period is selected to span one year. It is also
selected to immediately follow the training period for each DAM contract.

Note that hyperparameter optimisation is not performed in this chapter. Instead,
features and optimised parameters from Chapters 5 and 6 are used directly.
Consequently, no validation set is required.

Summary statistics of DAM prices for the training and test sets are shown in
Table 7.1. From Table 7.1 we discern that Belgian DAM prices in the test set
have a lower standard deviation than historic DAM prices.

Analysing train and test set differences further, note that Table 7.1 additionally
highlights differences in mean DAM prices. The means of Belgian and Dutch
DAM prices are higher across the training set than test set. This contrasts the
trend observed across train and test data in Chapters 5 and 6.

7.2.2 Data Processing

Min-max scaling is applied across a 30-day rolling window to scale features. A
30-day window is selected to counteract market seasonalities.

7.2.3 Prediction

The forecasting accuracies of a two-layer neural network (2NN), consisting
of two intermediate fully connected layers, and a joint three-layer network
(2CNN_NN), consisting of two intermediate convolutional layers and a single
intermediate fully connected layer, are assessed. Parameters and features from
Chapters 5 and 6 are used. L2 regularisation, ReLU activation functions and
Adam are employed to improve training stability.
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7.2.4 Ensemble Forecasts of Day-Ahead Market Prices

The aforementioned forecasting models are evaluated with technical indicator
(TI) feature inputs from Chapter 5, and with the addition of augmented data
from Chapter 6. The best performing TIs and augmentors from these chapters
are utilised in this chapter. Following Chapter 5, for instance, exponential mov-
ing average TI, i.e. EMA(s = 22), is evaluated with 2NN forecasting models and
rate of change TI, i.e. ROC(n = 9), is evaluated with 2CNN_NN models. Fol-
lowing Chapter 6 three augmentation methods using autoencoders (AE), varia-
tional encoders (VAE) and Wasserstein generative adversarial networks with a
gradient penalty (WGAN-GP) are evaluated. Each of these individual methods
is considered as a benchmark against their combined ensemble method.

Ensemble forecasts, obtained by averaging the forecasts from multiple models,
are assessed. Evaluated ensemble forecasts are listed below:

• AE+VAE: To calculate AE+VAE ensemble forecasts, firstly, a forecasting
model, either 2NN or 2CNN_NN, is trained using both real data and AE
augmented data. Secondly, a forecasting model is trained using both real
and VAE augmented data. Finally, the forecasts from these models are
averaged according to (7.1) to obtain AE+VAE forecasts.

p̂NN
AE+VAE = 1/2(p̂NN

AE + p̂NN
VAE), (7.1)

where NN refers to either a 2NN or 2CNN_NN forecasting model, p̂NN
AE are

forecasts obtained using a model trained using real and AE augmented
data, p̂NN

VAE are forecasts obtained using a model trained using real and
VAE augmented data, and p̂NN

AE+VAE are ensemble AE+VAE forecasts.

• AE+WGAN-GP: In order to calculate AE+WGAN-GP ensemble forecasts,
firstly, a forecasting model is trained using real data and AE augmented
data. Secondly, a forecasting model is trained using real and WGAN-GP
augmented data. Finally, the forecasts from these models are averaged
according to (7.2) to obtain AE+WGAN-GP forecasts.

p̂NN
AE+WGAN-GP = 1/2(p̂NN

AE + p̂NN
WGAN-GP), (7.2)

where p̂NN
WGAN-GP are forecasts obtained using a model trained with both

real, and WGAN-GP augmented data, and p̂NN
AE+WGAN-GP are ensemble

AE+WGAN-GP forecasts.
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• VAE+WGAN-GP: To calculate VAE+WGAN-GP ensemble forecasts, firstly,
a forecasting model is trained using real data and VAE augmented data.
Secondly, a forecasting model is trained using real and WGAN-GP aug-
mented data. Finally, the forecasts from these models are averaged ac-
cording to (7.3) to obtain VAE+WGAN-GP forecasts.

p̂NN
VAE+WGAN-GP = 1/2(p̂NN

VAE + p̂NN
WGAN-GP), (7.3)

where p̂NN
VAE+WGAN-GP are ensemble VAE+WGAN-GP forecasts.

• AE+TI: To calculate AE+TI ensemble forecasts, firstly, a forecasting model
is trained using real data and AE augmented data. Secondly, a forecasting
model is trained using TI features as inputs. Finally, the forecasts from
these two models are averaged according to (7.4).

p̂NN
AE+TI = 1/2(p̂NN

AE + p̂NN
TI ), (7.4)

where p̂NN
TI is the NN forecast using TI features as inputs, and p̂NN

AE+TI is
the AE+TI ensemble forecast.

• VAE+TI: To calculate VAE+TI ensemble forecasts, firstly, a forecasting
model is trained using real data and VAE augmented data. Secondly, a
forecasting model is trained using TI features as inputs. Finally, the fore-
casts from these models are averaged according to (7.5).

p̂NN
VAE+TI = 1/2(p̂NN

VAE + p̂NN
TI ), (7.5)

where p̂NN
VAE+TI is the VAE+TI ensemble forecast.

• WGAN-GP+TI: To calculate WGAN-GP+TI ensemble forecasts, firstly, a
forecasting model is trained using real data and WGAN-GP augmented
data. Secondly, a forecasting model is trained using TI features as inputs.
Finally, the forecasts from these models are averaged according to (7.6)
to obtain WGAN-GP+TI forecasts.

p̂NN
WGAN-GP+TI = 1/2(p̂NN

WGAN-GP + p̂NN
TI ), (7.6)

where p̂NN
WGAN-GP+TI is the WGAN-GP+TI ensemble forecast.
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• AE+VAE+WGAN-GP: After training forecasting models with real data,
and AE, VAE and WGAN-GP augmented data, AE+VAE+WGAN-GP en-
semble forecasts are calculated according to (7.7).

p̂NN
AE+VAE+WGAN-GP = 1/3(p̂NN

AE + p̂NN
VAE + p̂NN

WGAN-GP), (7.7)

where p̂NN
AE+VAE+WGAN-GP are AE+VAE+WGAN-GP ensemble forecasts.

• AE+VAE+WGAN-GP+TI: After training forecasting models with real and
AE/VAE/WGAN-GP augmented data, and after training a forecasting model
with TI features as inputs, AE+VAE+WGAN-GP+TI ensemble forecasts
are determined according to (7.8).

p̂NN
AE+VAE+WGAN-GP+TI = 1/4(p̂NN

AE + p̂NN
VAE + p̂NN

WGAN-GP + p̂NN
TI ), (7.8)

where p̂NN
AE+VAE+WGAN-GP+TI are AE+VAE+WGAN-GP+TI forecasts.

7.2.5 Evaluation

The mean absolute errors (MAE) are used to evaluate forecasting accuracy. Ad-
ditionally, to facilitate relative evaluation, naive benchmark forecasts are com-
puted according to (7.9):

p̂BENCH
d+1 = 1/2(pd am

d +pd am
d−1 ). (7.9)

where pd am
d is DAM prices on day d . The benchmark is a two-day moving

average of DAM prices.

7.3 Results and Discussion

The forecasting accuracies of models are summarised in Table 7.2. Analysing
the results, the benchmark, BENCH, is observed to yield the highest average
MAE of 8.07. Meanwhile, TI is observed to yield an average MAE of 7.56; 6.20%
lower than BENCH. Improving forecasting accuracies further, data augmenta-
tion methods, namely AE, VAE, and WGAN-GP, are observed to yield average
MAEs of 6.47, 6.45, and 6.39 respectively; up to 20.82% lower than BENCH. The
high performance of data augmentation methods highlights the importance of
the training set size in reducing the generalisation error of DAM forecasts.
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Table 7.2: MAE results on the test set for DAM price forecasting methods.

NL BE average2NN 2CNN_NN 2NN 2CNN_NN

AE 5.70 5.62 7.27 7.28 6.47
VAE 5.72 5.69 7.04 7.33 6.45
WGAN-GP 5.78 5.65 6.89 7.23 6.39
TI 6.54 7.61 8.15 7.96 7.57
AE+VAE 5.58 5.53 6.71 6.81 6.16
AE+WGAN-GP 5.60 5.52 6.59 6.84 6.14
VAE+WGAN-GP 5.61 5.55 6.47 6.80 6.11
AE+TI 5.54 6.04 6.55 6.57 6.18
VAE+TI 5.55 6.12 6.37 6.48 6.13
WGAN-GP+TI 5.54 6.08 6.42 6.56 6.15
AE+VAE+WGAN-GP 5.56 5.49 6.40 6.63 6.02
AE+VAE+WGAN-GP+TI 5.37 5.62 6.14 6.24 5.84

BENCH 7.75 8.38 8.07

Combining forecasts from the above methods boosts accuracies even further.
For example, AE+WGAN-GP, which generates forecasts by averaging AE and
WGAN-GP forecasts, yields an average MAE of 6.14. This is 5.10% and 3.91%
lower than AE and WGAN-GP methods respectively. Overall, AE+VAE+WGAN-
GP+TI is observed to yield the lowest average MAE of 5.84. The ensemble
method, using both TI features and data augmentation, outperforms TI by
22.85%, and AE, VAE, and WGAN-GP on average by 9.27%.

7.4 Conclusion

In this chapter, day-ahead market (DAM) prices were predicted by employ-
ing both technical indicator features and data augmentation methods. Data
augmentation methods, namely autoencoders (AE), variational autoencoders
(VAE) and Wasserstein generative adversarial networks with a gradient penalty
(WGAN-GP), were found to outperform technical indicators (TI). Overall, how-
ever, an ensemble method, AE+VAE+WGAN-GP+TI, averaging AE, VAE, WGAN-
GP, and TI model forecasts was found to outperform all other evaluated fore-
casting methods.





Chapter 8

Forecasting Continuous
Intraday Market Prices

Continuous intraday market (CID) trading and volatility have grown in recent
years. Increasing renewable energy production has spurred this growth, but
induced price uncertainty in CID trading strategies. To reduce uncertainty and
increase the profitability of trading strategies, more accurate CID price forecasts
are needed. If forecast accuracies of CID prices are to improve, new features
and models capable of capturing the effects of continuous trading must be iden-
tified. This chapter evaluates novel features that have been shown to have high
explanatory power in forecasting CID prices. Moreover, the chapter compares
the forecast accuracies of machine learning models using these inputs.

Note that while most CID studies only focus on forecasting the volume-weighted
average price of trades (VWAP), this chapter focuses on predicting elements of
the trade book (TB) and limit-order book (LOB). For instance, the VWAP, the
lowest traded price (LOW) and the highest traded price (HIGH), the average
best ask price (ASK), the average best bid price (BID), and the average mid-
price (MID) are all predicted.
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8.1 Introduction

In earlier chapters, we highlighted that the transition from non-renewable to
renewable sources of energy in recent years has negatively impacted price fore-
cast accuracies. Traded volume and liquidity on the CID have grown. And the
number of trading algorithms/agents operating on the CID has increased. To
improve agents’ decision-making, increase profits, and reduce overall risk expo-
sure, accurate CID price predictions are needed.

In Chapter 4, the literature review highlighted that CID price forecasting studies
have thus far focused predominantly on forecasting the VWAP of the ID3 index1

using readily available features, such as the lagged VWAP, and seasonal and
exogenous features. By not using other types of features from the LOB and TB,
and by not predicting all CID prices, existing studies have thus far ignored or
failed to account for significant continuous trading characteristics.

Given the potential to increase the performance of CID trading agents by ex-
panding the feature input space and forecasting all CID prices, this chapter
focuses on feature engineering novel features by extracting statistical informa-
tion from the LOB and TB. Additionally, the focus is placed on forecasting all
CID prices, instead of just the VWAP of the ID3 index. Summarising the three
contributions of this chapter, to the best of our knowledge, we are the first to:

• predict CID prices: VWAP of the whole trading session, LOW, HIGH, ASK,
BID and MID,

• engineer novel features using the LOB and TB for forecasting CID prices,

• evaluate machine learning models, such as the least absolute shrinkage
and selection operator (LASSO), random forest (RF), gradient boosting
(GB), deep neural networks (DNN) and an ensemble model, for forecast-
ing CID prices.

Outlining the structure of this chapter, CID prices are introduced in Section 8.2.
The methodology for forecasting CID prices is described in Section 8.3. In Sec-
tion 8.4, we analyse the results from our CID forecasting studies. Finally, in
Section 8.5 the chapter is concluded.

1The VWAP of the ID3 index is calculated only for the last three hours of a trading session.
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8.2 Continuous Intraday Market Prices

TB prices capture information about executed trades. Given N , i.e. the number
of transactions executed for a contract, TB prices are defined as:

• The Volume-Weighted Average Price of Trades (VWAP): The VWAP
is the ratio between the cumulative traded amount and the cumulative
traded volume over an entire trading session for a contract. Formally, the
VWAP is calculated according to (8.1).

pv w ap =
N∑

i=1
(p tr aded

i ×q tr aded
i ) /

N∑
i=1

q tr aded
i , (8.1)

where p tr aded and q tr aded are the traded price and quantity for one trans-
action respectively.

• The Highest Traded Price (HIGH): The HIGH is the highest traded price
across a trading session for a contract. Formally, the HIGH is calculated
according to (8.2).

phi g h = max {p tr aded
1 , . . . p tr aded

N } (8.2)

• The Lowest Traded Price (LOW): The LOW is the lowest traded price
across a trading session for a contract. Formally, the LOW is calculated
according to (8.3).

p low = min {p tr aded
1 , . . . p tr aded

N } (8.3)

LOB prices have the potential to capture significant CID price drivers. Figure 2.4
presents a snapshot of the LOB. Assuming the CID trading session is discretised
according to t ∈ [1,T ], where T is the total number of time steps for a contract,
LOB prices are formally defined as:

• The Average Best Ask Price (ASK): The ASK is the average best ask price
over an entire contract’s trading session. Formally, the ASK is calculated
according to (8.4).

p̄a = 1/T
T∑

t=1
pa

t (8.4)
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• The Average Best Bid Price (BID): The BID is the average best bid price
over an entire contract’s trading session. Formally, the BID is calculated
according to (8.5).

p̄b = 1/T
T∑

t=1
pb

t (8.5)

• The Average Mid-Price (MID): The MID is the average mid-price over an
entire contract’s trading session. The MID is calculated according to (8.6).

p̄mi d = 1/T
T∑

t=1
pmi d

t (8.6)

8.3 Feature Engineering Approach to Continuous
Intraday Market Price Forecasting

To forecast CID prices, the use of machine learning models that take novel
features as inputs is proposed in this chapter. To this end, various steps and
procedures, such as data gathering, feature engineering, data processing, cross-
validation, feature selection, modelling and evaluation, are implemented. These
steps and procedures are outlined below.

8.3.1 Data

LOB and TB data spanning from 01/01/2020 to 11/12/2020 is queried from
Scholt Energy [109].2 The data originates from the Single Intraday Coupled
Market (CID), available for the Dutch Market. Day-ahead forecasts of temper-
ature, wind speed, solar irradiance and precipitation are also gathered from
Scholt Energy [109]. Finally, load and generation day-ahead forecasts are col-
lected from the ENTSO-E Transparency Platform [22].

Table 8.1 presents summary statistics for CID prices. These prices show similar
averages (mean) and standard deviations (std). However, HIGH has a higher
mean and std than LOW. Similarly, ASK has a higher mean and std than BID.

2Please note that some contracts were missing from the dataset. Also, note that some contracts
were removed from the data set for failing data quality tests.



8.3 Feature Engineering Approach to Continuous Intraday Market Price Forecasting 95

Table 8.1: Summary statistics for CID prices in e/MWh.

VWAP MID BID ASK LOW HIGH

mean 30.45 31.17 28.64 33.71 24.86 34.10
std 24.35 20.82 19.88 22.70 18.29 30.17

8.3.2 Feature Engineering

Using the LOB of each hourly contract, CID price drivers are gathered. To have
an impact, LOB features must capture relevant information required to accu-
rately forecast CID prices. Detailing our proposed LOB features:

• # bid orders: The total number of submitted bid orders for a contract.

• # ask orders: The total number of submitted ask orders for a contract.

• # orders: The total number of submitted orders for a contract.

• # revisions: The total number of important revisions for a contract. Note
that a revision number is updated when the LOB changes, e.g. a new
order is received. Important revision numbers that change either the best
ask price or the best bid price are considered and the remaining revision
numbers are excluded.

• min of pa: The best offered ask price, the lowest price among all submit-
ted ask orders, for a contract.

• std of pa: The standard deviation of all submitted ask order prices for a
contract.

• max of pb: The best offered bid price, the highest price among all sub-
mitted bid orders, for a contract.

• std of pb: The standard deviation of all submitted bid order prices for a
contract.

• p̄mi d hour index-1/2/3/4: Hour indices refer to specific time intervals of
a trading session. For instance, hour index-1 is the last hour of a trading
session, i.e. [T −1hour, T ]. Hour index-i is [T − i hour, T − i +1hour ]. The
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p̄mi d hour index-i is calculated by averaging all mid-prices across hour
index-i .

• p̄ spr ead : The price spread between the best ask price and the best bid price
p spr ead at time t is defined in Section 2.3.2. The average price spread
p̄ spr ead for a contract is calculated as p̄ spr ead = 1/T

∑T
t=1 p spr ead

t .

• 1st quantile of cumulative ask quantities: The 25th percentile (lower
quartile) of the cumulative ask quantity distribution.

• 2nd quantile of cumulative ask quantities: The 50th percentile (median)
of the cumulative ask quantity distribution.

• 3rd quantile of cumulative ask quantities: The 75th percentile (upper
quartile) of the cumulative ask quantity distribution.

• 1st quantile of cumulative bid quantities: The 25th percentile (lower
quartile) of the cumulative bid quantity distribution.

• 2nd quantile of cumulative bid quantities: The 50th percentile (median)
of the cumulative bid quantity distribution.

• 3rd quantile of cumulative bid quantities: The 75th percentile (upper
quartile) of the cumulative bid quantity distribution.

Using the TB of each hourly contract, information about trades is also extracted.
Detailing our proposed TB features:

• pv w ap of exports: The vwap calculated based on exported traded prices
for a contract.

• pv w ap of imports: The vwap calculated based on imported traded prices
for a contract.

• pv w ap of locals: The vwap calculated based on traded prices within a
country for a contract.

• pv w ap hour index-1/2/3/4: The vwap during a specific hour index for a
contract.

• spread phi g h and p l ow : The spread between phi g h and p low .
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• open price: The first traded price for a contract.

• std of traded prices: The standard deviation of traded prices for a con-
tract.

• traded volume: The total traded volume for a contract.

• traded volume hour index-1/2/3/4: The total traded volume during a
specific hour index for a contract.

• exported traded volume: The total exported traded volume to other
countries for a contract.

• imported traded volume: The total imported traded volume from other
countries for a contract.

• locally traded volume: The total traded volume within a country for a
contract.

• # transactions: The total number of transactions for a contract.

• binary import: The binary import feature is 0 if a country exports more
than imports for a contract. Otherwise, it is 1.

• binary trade hour index-1/2/3/4: The binary trade feature is 1 if a coun-
try trades with another country during a specific hour index for a contract.
Otherwise, it is 0.

Additionally, other possible price drivers are obtained by adding exogenous fea-
tures to the input space. Forecasts of wind speed, temperature, solar irradiance,
precipitation, and Dutch and Belgian DAM prices are evaluated. Seasonal fea-
tures such as day of the week, hour of the day, holiday, and month of the year
are evaluated as well. These categorical seasonal features are processed using
one-hot encoding.

8.3.3 Data Processing

Min-Max scaling is used for each feature. Remember that min-max scaling
bounds each value a ∈ A between 0 and 1 according to the formula: a∗ =
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(a − Ami n)/(Amax − Ami n), where Ami n and Amax are the minimum and maxi-
mum values of a set A, and a∗ is the scaled value of a.

8.3.4 Cross Validation

Describing training, validation, and testing procedures, given a need to accumu-
late forecasts for the entire dataset (from 01/01/2020 to 11/12/2020) an itera-
tive procedure is employed to obtain test forecasts for all 49 weeks of inputs. In
one iteration, the available data is split into roughly 48 weeks of training and 1
week of test data. 48-fold cross-validation is subsequently employed across the
training data; yielding an optimised model, which is used to generate forecasts
of CID prices for the test data. This process is repeated 49 times until forecasts
are obtained for the entire dataset.

8.3.5 Feature Selection

Feature selection commences by removing highly correlated features from the
data set using the Pearson correlation coefficient as a reference. Highly corre-
lated features, with a correlation larger than 0.8, are removed. Known electricity
market characteristics are accounted for by adding day-lagged and hour-lagged
features. For instance, to forecast VWAP of contract/expiry 16 on day d +1, i.e.
pv w ap of hd+1

16 , a fourteen-day-lagged period hd−13
16 , . . . hd

15, hd
16, hd

17 is considered
for each feature.

The feature selection process is finalised by removing the least important fea-
tures from the data set using the least absolute shrinkage and selection opera-
tor (LASSO) [121]. Note that LASSO parameters, alpha ∈ (0, 10] and tolerance
∈ (10−5, 10−1], are optimised.

8.3.6 Model Training and Prediction

The ability of regression models, such as LASSO, random forest (RF) [53], gradi-
ent boosting (GB) [55] and deep neural networks (DNN), to predict CID prices
is evaluated. Each model has a unique hyperparameter set to be optimised by
minimising the forecast error across the validation set. For example, LASSO has
the alpha ∈ (0, 10] and tolerance ∈ (10−5, 10−1], RF has the number of estima-
tors (# estimators) ∈ [30, 200], and GB has the maximum depth (max depth)
∈ [2, 14]. Similarly, DNN has the number of hidden layers (# layers) ∈ [1, 4], the
size of these layers (# neurons) ∈ [32, 2048] and the learning rate ∈ [10−4, 10−1].
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Table 8.2: Selected average number of features and LASSO parameters.

VWAP MID BID ASK LOW HIGH

# features 37 42 42 42 43 30

alpha 0.21 0.19 0.27 0.20 0.23 0.32
tolerance 0.06 0.05 0.05 0.06 0.05 0.05

Note that DNN models are constructed with fully connected layers, ReLU acti-
vation functions and Adam optimisers. Additionally, L2 regularisation is imple-
mented to reduce the possibility of overfitting.

An ensemble method, which averages all evaluated forecasts, as shown in (8.7),
is further considered.

p̂ENSEMBLE = 1/4(p̂LASSO + p̂GB + p̂RF + p̂DNN) (8.7)

In summary, four individual models, namely LASSO, RF, GB, and DNN, and one
ensemble model are evaluated. The hyperparameters of the individual models
are optimised using 48-fold cross-validation.

Note that in this thesis, CID prices are predicted before 12:00. CID forecasts are
thus obtained before DAM settlement.

8.3.7 Evaluation

Mean absolute error (MAE) is used to evaluate the accuracy of price forecasts.
Furthermore, a naive benchmark is considered to facilitate a relative evaluation
of forecast accuracies. As a benchmark, a two-day moving average, calculated
according to (8.8), is computed.

p̂BENCH
d+1 = 1/2(pd +pd−1), (8.8)

where p is either pv w ap , p̄mi d , p̄b , p̄a , p low , or phi g h .
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Table 8.3: Importance checklist for the trade book (TB) features.

VWAP MID BID ASK LOW HIGH

pv w ap ✓ ✓ ✓
pv w ap of exports ✓ ✓ ✓ ✓ ✓
pv w ap of imports ✓
pv w ap of locals ✓ ✓
pv w ap hour-2 ✓ ✓ ✓ ✓
pv w ap hour-3 ✓ ✓ ✓ ✓ ✓
pv w ap hour-4 ✓
phi g h ✓ ✓
plow ✓ ✓ ✓ ✓ ✓ ✓
spread phi g h and plow ✓ ✓
open price ✓ ✓ ✓ ✓
std of traded prices
traded volume
traded volume hour-1
traded volume hour-2
traded volume hour-3
traded volume hour-4
exported traded volume
imported traded volume
locally traded volume
# transactions
binary import ✓ ✓ ✓ ✓ ✓ ✓
binary trade hour-1 ✓ ✓ ✓ ✓ ✓
binary trade hour-2 ✓ ✓ ✓ ✓ ✓ ✓
binary trade hour-3 ✓ ✓ ✓ ✓ ✓ ✓
binary trade hour-4 ✓ ✓ ✓ ✓ ✓ ✓

8.4 Results and Discussion

8.4.1 Feature Selection

Table 8.2 presents optimisation results for the feature selection method de-
scribed in Section 8.3.5. On average, 40 features are selected to predict CID
prices. Below, the selected features for forecasting each CID price are detailed.
Note that fourteen-day-lagged, seven-day-lagged, two-day-lagged and one-day-
lagged LOB and TB features are often selected.
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Table 8.4: Importance checklist for the limit order book (LOB) features.

VWAP MID BID ASK LOW HIGH

# bid orders ✓ ✓ ✓ ✓ ✓ ✓
# ask orders ✓ ✓ ✓
# orders ✓ ✓
# revisions ✓ ✓ ✓ ✓ ✓ ✓
min of pa ✓ ✓ ✓ ✓ ✓ ✓
std of pa

max of pb ✓
std of pb

p̄mi d ✓
p̄mi d hour-1
p̄mi d hour-2
p̄mi d hour-3
p̄mi d hour-4 ✓ ✓ ✓ ✓ ✓ ✓
p̄mi d hour-5
p̄b ✓ ✓
p̄a ✓ ✓ ✓
p̄spr ead

1st quantile of cumulative ask quantities
2nd quantile of cumulative ask quantities
3rd quantile of cumulative ask quantities
1st quantile of cumulative bid quantities
2nd quantile of cumulative bid quantities
3rd quantile of cumulative bid quantities

As Table 8.3 shows, features reflecting traded price information are frequently
selected. While the literature focuses on pv w ap , the results show that other TB
prices, such as phi g h , p low and the open price, can aid in predicting CID prices.

Similarly, binary features are also found to have high explanatory power. The bi-
nary import feature, which is 0 if a country exports more energy than it imports,
and 1 otherwise, for example, is found to be an important feature in predicting
all CID prices, highlighting how countries’ import/export behaviours can drive
both TB and LOB prices.

Unlike the traded price and binary features, features reflecting traded volume
are, however, not found to be important in predicting CID prices. A potential
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Table 8.5: Importance checklist for the exogenous features.

VWAP MID BID ASK LOW HIGH

wind speed forecast ✓ ✓ ✓ ✓ ✓ ✓
temperature forecast ✓ ✓ ✓ ✓
solar irradiance forecast ✓ ✓ ✓ ✓ ✓ ✓
precipitation forecast ✓ ✓ ✓
Dutch DAM price forecast ✓ ✓ ✓ ✓ ✓ ✓
Belgian DAM price forecast ✓

Table 8.6: Importance checklist for the seasonal features.

VWAP MID BID ASK LOW HIGH

holiday ✓ ✓ ✓ ✓ ✓ ✓
day of the week ✓ ✓ ✓ ✓ ✓ ✓
hour of the day ✓ ✓ ✓ ✓ ✓ ✓
month of the year ✓ ✓ ✓ ✓ ✓ ✓

reason for this may be that market participants/agents avoid using volume-
related features in their decision-making processes.

As Table 8.4 shows, four LOB features, namely # bid orders, # revisions, min
of pa and p̄mi d hour-4, are found to be important features in predicting all CID
prices. The # bid orders and # revisions offer information about the liquidity
of the CID and proved to be important CID price drivers. While the success of
these features, to some extent, is expected, the success of min of pa and p̄mi d

hour-4 is surprising. The importance of min of pa shows the powerful effect of
the lowest offered ask price on CID prices throughout a trading session. The
importance of p̄mi d hour-4 indicates very active CID trading in this hour index
compared to the other hours of a trading session.

As Table 8.5 presents, most exogenous features are found to be important fea-
tures in predicting CID prices. Three features, namely wind speed forecasts,
solar irradiance forecasts and Dutch DAM price forecasts, are found to be im-
portant features in predicting all CID prices. This result was expected since wind
and solar forecasts, and DAM prices are widely used in the literature when fore-
casting CID prices.



8.5 Conclusion 103

Table 8.7: Selected average parameters.

VWAP MID BID ASK LOW HIGH

LASSO alpha 0.21 0.18 0.27 0.20 0.22 0.33
tolerance 0.06 0.06 0.05 0.04 0.06 0.05

GB max depth 6 5 5 5 5 6
RF # estimators 115 104 110 115 105 115

DNN
learning rate 0.007 0.007 0.005 0.007 0.004 0.007
# layers 2 2 2 2 2 2
# neurons (272, 408) (210, 404) (287, 484) (365, 617) (301, 514) (215, 400)

Finally analysing seasonal features, as Table 8.6 shows, features capturing sea-
sonal effects are found to be important in predicting all CID prices. The results
show that even holidays and month of the year features are important predic-
tors. Among seasonal features, day of the week and hour of the day dummies
were expected to be important, owing to their widespread use in the literature.
Holiday and month of year dummies, however, were not expected to be impor-
tant, owing to their infrequent use in the literature.

8.4.2 Prediction

Table 8.7 shows hyperparameter optimisation results. The table shows that sim-
ilar hyperparameters are frequently selected by evaluated models in predicting
CID prices. DNNs, for instance, with a two hidden layer architecture are more
frequently selected.

Table 8.8 presents the forecast accuracies of evaluated models. Overall, BENCH
is found to yield the highest average MAE of 11.67. Using novel features as
inputs, individual machine learning models, LASSO, GB, and RF, for example,
yield average MAEs of 8.09, 8.03, and 8.37 respectively; outperforming BENCH
by roughly 30%. Among individual models, DNN is the best model and obtains
the lowest average MAE of 7.62; outperforming BENCH by 35%. ENSEMBLE,
which takes the average of all model forecasts, further improves forecast accu-
racies; yielding the lowest average MAE of 7.44.

8.5 Conclusion

In this chapter, continuous intraday market (CID) prices, namely the volume-
weighted average price of trades (VWAP), the lowest traded price (LOW), the
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Table 8.8: MAE results on the test set.

LASSO GB RF DNN ENSEMBLE BENCH

VWAP 8.27 8.22 8.58 7.78 7.59 12.25
MID 7.43 7.40 7.75 6.97 6.83 10.59
BID 7.14 7.09 7.41 6.77 6.47 10.40
ASK 8.37 8.40 8.75 8.00 7.75 11.98
LOW 7.83 7.70 8.14 7.22 7.25 11.50
HIGH 9.51 9.36 9.59 8.95 8.73 13.27

average 8.09 8.03 8.37 7.62 7.44 11.67

highest traded price (HIGH), the average best ask price (ASK), the average best
bid price (BID), and the average mid-price (MID), were predicted. To predict
these prices, feature engineering was utilised to extract statistical information
from the limit order book (LOB) and trade book (TB). Subsequently, feature
selection, using LASSO, was employed to evaluate the importance/explanatory
power of created features.

Overall, the feature selection process revealed that exogenous features, such as
wind speed forecasts, solar irradiance forecasts, day-ahead market price fore-
casts, and seasonal features, such as holiday, day of the week, hour of the day
and month of the year, are important predictors of CID prices. Additionally,
the process revealed that novel features capturing price information are more
important than features capturing volume information. Among TB features, the
VWAP of exported trades, the VWAP of hour-3, the LOW, the binary import, and
binary trade hours-1/2/3/4 were found to be the most important predictors in
forecasting a majority of CID prices. Among LOB novel features the # bid or-
ders, the # revisions, the min of pa , and the p̄mi d hour-4 were found to be the
most important features in predicting all CID prices.

Using selected feature inputs, the forecasting accuracies of a range of machine
learning models were evaluated. LASSO, random forest (RF) and gradient
boosting (GB) were found to outperform a naive benchmark. Deep neural net-
works (DNN), meanwhile, were found to outperform all other individual mod-
els. Ensemble modelling, i.e. taking the average of all model forecasts, was
found to further improve CID forecast accuracies.



Chapter 9

Forecasting Balancing Market
Prices

Accurately predicted balancing market (BAL) prices are needed to ensure the
profitability of arbitrage trading strategies. To predict BAL prices, this chapter
proposes and evaluates a range of machine learning models, such as the least
absolute shrinkage and selection operator (LASSO), random forest (RF), gra-
dient boosting (GB), extreme gradient boosting (XGB), deep neural networks
(DNN), and ensemble models. Moreover, the chapter also proposes using tech-
nical indicator (TIs) features as inputs for forecasting BAL prices.

9.1 Introduction

Day-ahead forecasting of BAL prices is challenging because the BAL is designed,
as a measure of last resort, to handle stochastic and unforeseen demand and
supply imbalances. Despite this, because BAL price forecasts are used as inputs
in the decision-making processes of continuous intraday market (CID) trading
agents, accurate forecasts are needed.

As the literature review from Chapter 4 highlights, to date, BAL price forecast-
ing research has predominantly focused on the comparison of simple machine
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learning and statistical models. More research is needed to identify the best
BAL forecasting practices.

With the above in mind, in this chapter, the existing literature is extended by
evaluating linear-based, tree-based, and neural network-based models. As the
BAL has different pricing systems across European countries, the focus is placed
solely on predicting Dutch BAL prices.

Chapter 5 highlighted the explanatory power of TI features in day-ahead mar-
ket (DAM) price forecasting. Consequently, as an additional research goal, the
explanatory power of TI features in forecasting BAL prices is explored.

Summarising the two contributions of this chapter, to the best of our knowledge,
we are the first to:

• explore using TI features in forecasting BAL prices,

• evaluate and compare an exhaustive range of machine learning mod-
els, such as the least absolute shrinkage and selection operator (LASSO),
random forest (RF), gradient boosting (GB), extreme gradient boosting
(XGB), deep neural networks (DNN), and ensemble models, in forecast-
ing BAL prices.

Outlining the structure of this chapter, the methodology for forecasting BAL
prices is described in Section 9.2. In Section 9.3, the results are analysed. Fi-
nally, in Section 9.4 the chapter is concluded.

9.2 Balancing Market Price Forecasting Using Ma-
chine Learning Models

To forecast BAL prices using machine learning models, various steps and pro-
cedures, such as data gathering, feature engineering, data processing, feature
selection and modelling, are followed/employed. These steps and procedures
are described below.
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Table 9.1: Summary statistics for BAL take and feed prices in e/MWh.

mean standard deviation
train val test train val test

TAKE 43.69 42.56 35.51 42.13 37.01 52.72
FEED 40.57 40.39 31.96 40.80 36.42 51.90

9.2.1 Data

BAL-related features, such as the take price, feed price, upward incident reserve,
downward incident reserve and regulation state - spanning from 01/01/2016
to 11/12/2020 - are gathered from TenneT [19], an electricity transmission sys-
tem operator (TSO). Additionally, Dutch and Belgian day-ahead market (DAM)
prices are collected, together with load and generation day-ahead forecasts,
from the ENTSO-E Transparency Platform [22]. Finally, day-ahead forecasts of
temperature, wind speed, solar irradiance and precipitation are gathered from
Scholt Energy [109].

Data is split into training, validation, and test data. Data from 01/01/2016
to 01/01/2019 is used for training. Data from 01/01/2019 to 01/01/2020
is used for hyper-parameter tuning and feature selection. Finally, data from
01/01/2020 to 11/12/2020 is used for testing.

The hourly BAL take price (p t ake) and feed price (p f eed ) are computed by av-
eraging four quarter-hourly BAL take and feed prices. Summary statistics of
these prices are shown in Table 9.1. These summary statistics show that while
the mean of BAL prices has decreased from the training set to the test set, the
volatility has increased significantly.

9.2.2 Feature Engineering

Exogenous features, including the generation forecast, load forecast, solar irra-
diance forecast, temperature forecast, wind speed forecast, imbalance volume,
purchase volume, upward power, downward power, upward incident reserve,
downward incident reserve, incentive component, regulation state, volume,
Dutch DAM prices, and Belgian DAM prices are considered. Highly correlated
features with a Pearson correlation larger than 0.8 are removed.
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Though the BAL is less prone to seasonality effects than other short-term elec-
tricity markets, known electricity market characteristics are accounted for by
adding day-lagged and hour-lagged features. For instance, to forecast p t ake of
hd+1

16 , a fourteen-day-lagged period hd−13
16 , . . . hd

15, hd
16, hd

17 is considered for each
feature. Categorical features, such as month of the year, week of the year, day
of the week, hour of the day and holiday, are also considered.

Finally, several TI features, such as the exponential moving average (EMA)
from Section 5.2.2, momentum (MOM) from Section 5.2.6, Bollinger bands
(%B) from Section 5.2.5, are considered. Specifically, EMA(s=4), EMA(s=24),
MOM(n=4), MOM(n=24), %B(n=4) and %B(n=24) are calculated separately
for p t ake and p f eed .

9.2.3 Data Processing

Min-Max scaling is used for each feature. Min-max scaling bounds each value
a ∈ A between 0 and 1 according to the formula: a∗ = (a− Ami n)/(Amax − Ami n),
where Ami n and Amax are the minimum and maximum values of a set A, and
a∗ is the scaled value of a.

9.2.4 Feature Selection

Taking all aforementioned features from Section 9.2.2, a feature selection ap-
proach is deployed to remove the least important features from the input space.
Detailing the feature selection steps, the method firstly calculates mutual in-
formation scores between each feature and the target. The calculation of mu-
tual information scores requires nonparametric approaches based on entropy
estimates from k-nearest neighbor distances [122]. Overall, if the dependency
between two random variables is high, then the mutual information is high.
Otherwise, the mutual information is low. The mutual information of two inde-
pendent random variables, for instance, is zero.

After calculating mutual information scores, the feature selection method se-
lects k ∈ [1,100] features with the highest scores. Underlining the selection pro-
cess, the mean absolute error (MAE) of linear regression is calculated across the
validation set for each k. The lowest resulting MAE offers the optimal number
of important features k∗.
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9.2.5 Model Training and Prediction

The ability of regression models, such as LASSO, random forest (RF), gradient
boosting (GB), extreme gradient boosting (XGB), and deep neural networks
(DNN), to predict BAL prices is evaluated. Each model has a unique set of
hyperparameters to be optimised. By minimising the MAE across the validation
set, optimal hyperparameters for each model are identified.

Specifying the hyperparameter sets for each model, LASSO optimises alpha ∈
(0, 10] and tolerance ∈ (10−5, 10−1]. RF optimises the number of estimators
(# estimators) ∈ [30, 200]. GB optimises the maximum depth (max depth) ∈
[2, 14]. XGB optimises max depth ∈ [2, 14] and # estimators ∈ [30, 200]. DNN
optimises the number of hidden layers (# layers) ∈ [1, 4], the size of these layers
(# neurons) ∈ [32, 2048], and the learning rate ∈ [10−4, 10−1]. Note that DNN
models employ fully connected layers, ReLU activation functions, and the Adam
optimiser. Additionally, L2 regularisation and dropout are used to reduce the
possibility of overfitting.

Finally note that an ensemble method, which averages all evaluated forecasts
following (9.1), is additionally considered.

p̂ENSEMBLE = 1/5(p̂LASSO + p̂RF + p̂GB + p̂XGB + p̂DNN) (9.1)

9.2.6 Evaluation

MAE is used to evaluate the accuracy of price forecasts. Furthermore, a naive
benchmark is considered to facilitate a relative evaluation of forecast accuracies.
As a benchmark, a two-day moving average is calculated according to (9.2).

p̂BENCH
d+1 = 1/2(pd +pd−1), (9.2)

where p is either p t ake or p f eed .

9.3 Results and Discussion

The results of the feature selection step employed in the evaluation of forecast-
ing BAL prices are outlined below. Then, the performance of forecasting models
is compared and analysed.
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Table 9.2: Selected hyperparameters.

LASSO RF GB XGB DNN
alpha # estimators max depth max depth; # estimators # neurons; learning rate

TAKE 0.1 105 2 4; 30 [511, 409]; 0.005
FEED 0.1 130 2 2; 30 [1008, 943, 41, 121]; 0.0009

9.3.1 Feature Selection

The feature selection method, which is described in Section 9.2.4, selected 75
and 90 features when forecasting p t ake and p f eed respectively. Significant over-
lap between these two selections was identified. Elaborating, out of the eval-
uated categorical features the week of the year, the hour of the day, and the
month of the year were all found to be important when forecasting both p t ake

and p f eed . Similarly, out of the evaluated TI features, EMA(s=4), EMA(s=24),
%B(n=4) and %B(n=24) were found to be important for predicting both BAL
prices. The feature selection method discarded MOM(n=4) and MOM(n=24)
when forecasting both p t ake and p f eed .

Among exogenous variables, generation forecast, load forecast, temperature
forecast, purchase volume, and Dutch and Belgian DAM prices were found to be
important when forecasting both BAL prices. The solar irradiance forecast and
imbalance volume were, however, found to only be important when forecasting
p t ake . Similarly, the wind forecast and the upward power were found to only
be important when forecasting p f eed . Seven-day-lagged, two-day-lagged and
one-day-lagged exogenous features were often selected; combating electricity
market seasonality.

Finally, note that numerous lagged p t ake features, from a fourteen-day-lagged
period, were selected when forecasting p t ake . Numerous lagged p f eed features
were selected when forecasting p f eed .

9.3.2 Prediction

Table 9.2 presents the results from the hyperparameter optimisation described
in Section 9.2.5. The table shows that similar hyperparameters are frequently
selected by the evaluated models when predicting BAL prices. LASSO, for in-
stance, chooses an alpha of 0.1 when forecasting both p t ake and p f eed .
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Table 9.3: MAE results on the test set.

LASSO RF GB XGB DNN ENSEMBLE BENCH

TAKE 32.05 37.05 35.16 35.74 31.96 33.63 39.36
FEED 30.96 35.10 33.57 31.35 30.07 31.56 38.69

average 31.51 36.08 34.37 33.55 31.02 32.60 39.03

DNN, however, chooses different hyperparameters when forecasting both p t ake

and p f eed . A DNN with two hidden layers is selected when predicting p t ake ,
and four hidden layers when predicting p f eed .

Table 9.3 shows the forecast accuracies of all the evaluated models. Overall,
BENCH is found to yield the highest average MAE of 39.03. Individual machine
learning models, LASSO, RF, GB and XGB, yield average MAEs of 31.51, 36.08,
34.37 and 33.55 respectively; outperforming BENCH by roughly 13%. Similar
to [47], XGB is found to outperform both GB and RF. Among individual models,
DNN is identified as the best model; obtaining the lowest average MAE of 31.02.
It thus outperforms BENCH by 19%. ENSEMBLE, which takes the average of all
model forecasts, fails to further improve upon DNN forecast accuracies; yielding
an average MAE of 32.60.

9.4 Conclusion

In this chapter, balancing market (BAL) prices, namely take and feed prices,
were predicted. To predict these prices, feature engineering was utilised, and
technical indicator (TI) features were created. Further, to evaluate the impor-
tance of engineered features in predicting BAL prices, feature selection was em-
ployed. Among TI features, EMA and %B were found to be the most important
predictors in forecasting BAL prices.

Using the selected features as inputs, the forecasting accuracies of a range of
machine learning models were evaluated. LASSO, random forest (RF), gradi-
ent boosting (GB), and extreme gradient boosting (XGB) were found to out-
perform an evaluated naive benchmark model. Deep neural networks (DNN),
meanwhile, were found to outperform all other models; yielding the lowest BAL
forecast errors.
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Chapter 10

Background: Statistical
Arbitrage Trading on Electricity
Markets

This chapter provides background information about statistical arbitrage trad-
ing (SAT): the third part of this thesis. The chapter conducts a literature review,
and briefly describes SAT and reinforcement learning.

10.1 Introduction

The transition from non-renewable to renewable sources of energy has signif-
icantly increased short-term trading volumes; impacting the day-ahead mar-
ket (DAM), continuous intraday market (CID) and balancing market (BAL).
Although DAM volumes continue to exceed CID volumes, greater renewable
production and CID liquidity have significantly upended the planning decisions
of traders, boosting their willingness to distribute orders across short-term elec-
tricity markets. There are, however, risks inherited in market inefficiencies and
illiquidities for traders. Trading strategies increasing market efficiency and liq-
uidity are greatly needed to reduce traders’ risks.
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Arbitrage trading strategies offer an opportunity to reduce price differences
across markets, and increase market liquidity and efficiency while yielding prof-
its for traders [1–7]. Arbitrage opportunities emerge when price differences
between markets emerge. Alternatively, they can also arise when prices de-
viate from their long term means. Arbitrage traders (or intelligent arbitrage
agents) try to profit from such price differences without exposing themselves to
long-term physical commitments. Note that intelligent arbitrage agents adopt
statistical arbitrage trading (SAT), which is an autonomous trading strategy that
employs intelligent learning methods.

The third part of this thesis focuses on developing novel SAT strategies for short-
term electricity markets. The aim is to optimise the risk-reward ratios of these
trading strategies. Before outlining novel strategies, however, this chapter fo-
cuses on introducing the required background information.

Outlining the structure of the remainder of this chapter, Section 10.2 conducts
a literature review of SAT strategies that have been applied to short-term elec-
tricity markets. Subsequently, Section 10.3 describes SAT for short-term elec-
tricity markets, and Section 10.4 introduces reinforcement learning. Finally,
Section 10.5 concludes the chapter.

10.2 Literature Survey

Most SAT, or virtual bidding, studies that have explored maximising the prof-
its of purely financial traders, have focused on exploiting the price differences
between the DAM and BAL. Among these studies, [123] and [124] followed a
stochastic optimisation approach to exploit price differences. Similarly, [125]
implemented a min-max two-level optimisation model, [126] a data-driven ap-
proach, [127] a machine-learning approach and [2] an online-learning algo-
rithm. Each method has been shown to yield positive returns across United
States markets.

Analysing studies that considered the CID, [128] explored the profitability of
arbitraging between the CID and BAL using a rule-based trading method. As
part of the strategy, a short or long position was opened on the CID, before
being closed on the BAL. To decide whether to place an initial long or short
position, [128] forecast demand. Imbalance volume was additionally predicted.
If the forecast of imbalance volume was long, then a short position on the CID
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was taken and vice versa. By executing this trading rule every 30 minutes with
a fixed 2 MWh quantity for the British market, [128] was able to achieve annual
revenues of £73407.

Not all evaluated CID trading strategies have centred on arbitrage trading.
Some, such as [129–131], have focused on evaluating bidding strategies for
asset-backed physical traders, i.e. energy producers. Others, such as [132–134],
have focused on bidding strategies for storage device operators. Among these
studies, [132,133] have implemented deep reinforcement learning (DRL) meth-
ods. Bertrand and Papavasiliou [132] evaluated how REINFORCE, a policy gra-
dient DRL algorithm, could be used to optimise bidding strategies. On the Ger-
man market, their proposed method surpassed the profitability of a rolling in-
trinsic policy by 17.8%. Boukas et al. [133] investigated a value function approx-
imation method, an asynchronous distributed version of the fitted Q iteration,
to maximise the total return. On the German market, their proposed method
improved the profitability of a rolling intrinsic policy by 2.7%. A state selection
process, however, was not conducted, and as a result, their study was limited
because state engineering and selection processes are vital to function approx-
imators in DRL methods. The optimal number of important states (features)
leads to better forecasts and decisions.

10.3 Statistical Arbitrage Trading (SAT)

10.3.1 SAT Across the Intraday and Balancing Markets

Initiator CID traders can place multiple limit orders of varying sizes and prices.
Theoretically, initiator traders have an infinite-dimensional action space. Ag-
gressor CID traders, on the other hand, have a low-dimensional action space by
trading available orders, i.e. {B ,S, H }, where B buys the best ask order, S sells
the best bid order and H holds. In this thesis, agents which behave as aggressor
traders are developed.

The aggressor agent starts with a volume of vt0 = 0. At any time, this agent
can open a long position (vt > 0) with a buy action or a short position (vt <
0) with a sell action on the CID. As shown in Figure 10.1, such an agent, for
example, opens a long position and trades continuously [B ,B , H ,S, H ] (left) and
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Figure 10.1: Two examples of arbitrage aggressor trading opportunities on the CID for
any h. Trading timeline is discretised into 5 for a simple visualisation.

[B , H ,S,S, H ] (right).1 Assume q a
t and qb

t are 1 MWh. This agent’s total bought
quantity

∑
q a is then 2 MWh (left) and 1 MWh (right), and total sold quantity∑

qb is 1 MWh (left) and 2 MWh (right). Agent’s total traded quantity
∑

q =
mi n{

∑
q a ,

∑
qb} is 1 MWh, and the remaining quantity, i.e. final position,

∑
q a −∑

qb = vT is 1 MWh (left) and −1 MWh (right).

Even though hundreds of transactions are executed during the trading session,
some positions are not closed on the CID, either because a counter-party is not
found or because closure on the BAL is desired, such as in [128]. In these
situations, open positions are cleared on the BAL. BAL prices are announced
for each quarter-hour. For hourly contracts, four quarterly balancing prices are
averaged separately for short and long positions, p t ake and p f eed respectively.
Note that BAL prices display significantly higher volatility ranging from negative
prices to high positive prices.

The arbitrage trading strategy aims to maximise profit PnL. On the CID, the
agent receives cash

∑
t pb

t ×qb
t from selling electricity and pays cash

∑
t pa

t ×q a
t for

buying electricity. The cash made on the CID is then C ci d =∑
t pb

t ×qb
t −

∑
t pa

t ×q a
t .

The remaining quantity
∑

t q a
t −∑

t qb
t = vT is closed on the BAL. PnL is thus

1Remember from Chapter 2.3, at time step t ∈ [t1,T ], the best ask price pa
t is the lowest of all

available ask prices for the CID. Meanwhile, the best bid price pb
t is the highest of all available bid

prices. Note that their available quantities are qa
t and qb

t respectively.
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calculated as in (10.1).

PnL =


C ci d + vT ×p t ake −T C , if

∑
t qb

t >∑
t q a

t

C ci d + vT ×p f eed −T C , if
∑

t qb
t <∑

t q a
t

C ci d −TC , otherwise
(10.1)

where TC is the trading cost: TC = 0.232×∑
q. Note that to factor in the frictions

associated with trading, a market operator is assumed to charge traders C0.232
for opening and subsequently closing a position of 1 MWh.

10.3.2 SAT Across Short-Term Electricity Markets

By trading across the DAM, CID and BAL, arbitrage traders aim to maximise
profits, PnL, without taking or unwinding long-term physical commitments.
Diving into the decisions an arbitrager faces, a trader can open a DAM position
v0 (in MWh) either by buying of vmax > 0 or short selling vmi n < 0, where vmi n

and vmax are pre-defined limits for short and long positions respectively. A
trader pays −vmax ×pd am for a long position and receives −vmi n ×pd am for a
short position. This represents the cash received or spent on the DAM: C d am .

Having opened a DAM position, an arbitrager can subsequently partially or fully
close out the position on the CID. Elaborating, a trader can buy the best ask
order (B), sell the best bid order (S), or hold (H) at any time step t ∈ [1,T ]
during the CID trading session. Figure 10.2, for example, shows a trader who
starts with v1 = vmax - the open position brought forward from the DAM - and
continuously trades on the CID, performing {H , S, S, S, S, H , B , B , H , . . . }. This
trader pays pa

t × q a
t for buy decisions and receives pb

t × qb
t from sell decisions.

The total cash paid or received by trading on the CID is C ci d . Note that the
total arbitraged quantity is:

∑T
t=1 qt = mi n{

∑T
t=1 q a

t ,
∑T

t=1 qb
t }. Meanwhile, the

outstanding quantity and final position is
∑T

t=1 q a
t −∑T

t=1 qb
t = vT .

When the CID trading window closes at time step t = T , any outstanding open
position the arbitrager holds is automatically settled on the BAL. The cash made
on the BAL, C bal , is calculated as vT ×p t ake or vT ×p f eed .

Summarising the above, the profit PnL of the arbitrage trader is calculated ac-
cording to (10.2).

PnL =C d am +C ci d +C bal −TC , (10.2)
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Figure 10.2: An example of arbitrage trading for an example hourly contract h. The
continuous trading timeline of CID is split into discrete time steps t ∈ [1,T ].

where

C d am =
{
−vmax ×pd am , if v0 > 0

−vmi n ×pd am , otherwise

C ci d =
T∑

t=1
pb

t ×qb
t −

T∑
t=1

pa
t ×q a

t

C bal =


vT ×p t ake , if vT < 0

vT ×p f eed , if vT > 0

0, otherwise

TC = 0.116× ( T∑
t=1

q a
t +

T∑
t=1

qb
t

)
Note that TC is the trading cost assumed to be charged by a market operator.

10.4 Reinforcement Learning

RL [135] aims to solve a sequential decision-making problem. In the context of
RL, a decision is defined as an action and a decision-maker as an agent. At time
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Figure 10.3: Agent’s interaction with the environment.

step t ∈ [1, T ], an agent executes its action at after receiving a state measure-
ment st . A state is a vector that holds all the necessary information about an
environment in order to enable an optimal decision. Based on an agent’s action,
the agent receives immediate scalar feedback with a reward signal rt+1 ∈R. The
interaction described above and Figure 10.3 proceeds iteratively for an episode
starting from the initial state s1 to the terminal state sT .

An RL system is designed to find an optimal behaviour by maximising the total
reward over a given number of episodes e ∈ [1, emax ]. The behaviour, a mapping
from states to actions, is defined by the policy function as shown in (10.3).

π(a|s) =P[at = a | st = s] (10.3)

A stochastic policy function outputs a probability for each action. An agent
decides whether to exploit - by choosing the action with the highest probability
- or explore - by choosing a random action.

The expected total reward, which is accumulated until the terminal state sT , is
defined by a value function. While a value function evaluating a state is called
the state-value function V , a value function evaluating an action from a state
is called the action-value function Q. Under a policy π, Vπ and Qπ are given
in (10.4).

Vπ(s) = Eπ[Rt | st = s]

Qπ(s, a) = Eπ[Rt | st = s, at = a]
(10.4)

where Rt = rt+1+γrt+2+γ2rt+3+·· ·+γT−1rT is the return and γ ∈ [0,1] is the dis-
count factor. As shown in (10.5), the maximum values among all policies yield



122 Background: Statistical Arbitrage Trading on Electricity Markets

optimal value functions, V ∗ and Q∗, and thus an optimal policy π∗.

V ∗
π∗ (s) = max

π
Vπ(s)

Q∗
π∗ (s, a) = max

π
Qπ(s, a)

(10.5)

10.5 Concluding Remarks

In this chapter, background knowledge required for SAT, the focus of the third
part of the thesis, was introduced. Motivations for exploring SAT strategies were
detailed. Moreover, a literature review was conducted, and the fundamentals
of SAT and reinforcement learning were described. The subsequent chapters in
this part of the thesis use the above background information to build novel SAT
strategies which optimise the risk-reward ratio.



Chapter 11

Trading Across the Intraday
and Balancing Markets

This chapter focuses on statistical arbitrage trading (SAT) opportunities involv-
ing the continuous exploitation of price differences arising during an intraday
trading period with the option of closing positions on the balancing market
(BAL). The chapter aims to maximise the reward-risk ratio of an autonomous
trading strategy. To find an optimal trading policy, we propose utilising the asyn-
chronous advantage actor-critic (A3C) algorithm, a deep reinforcement learn-
ing method, with function approximators of two-headed shared deep neural
networks. A risk-constrained trading strategy is enforced by limiting the maxi-
mum allowed position, and conduct state engineering and selection processes.
A novel reward function and goal-based exploration, i.e. behaviour cloning, are
introduced. Our methodology is evaluated on a case study using the limit or-
der book of the European single intraday coupled market (CID) available for
the Dutch market area. The majority of hourly products on the test set return
a profit. We expect this chapter to benefit electricity traders, renewable elec-
tricity producers and researchers who seek to implement state-of-art intelligent
trading strategies.



124 Trading Across the Intraday and Balancing Markets

11.1 Introduction

Arbitrage traders, otherwise referred to as virtual traders, try to profit from price
differences without exposing themselves to long term physical commitments.
Several studies, such as [1–7], have shown that arbitrage trading can reduce
price differences between electricity markets while yielding profits for arbitrage
traders. In this chapter, the profitability of statistical arbitrage trading across
the CID and BAL, introduced in Section 10.3.1, is investigated.

Trading decisions, namely buying, selling and holding, need to be automated
when exploiting statistical arbitrage to optimise the risk-reward ratio. Deep
reinforcement learning (DRL), employed by [136, 137] to solve similar deci-
sion processes, can be used to automate SAT decisions. Elaborating, various
DRL methods, such as value-based, policy-based and actor-critic, can be used
because of their consideration of future outcomes when making decisions and
their potential to solve sequential decision and control problems.

Actor-critic methods combine the benefits of value-based and policy-based meth-
ods and suffer from fewer shortcomings [138,139]. Policy-based methods suffer
from high variance during back-propagation. Actor-critic methods reduce this
variance. Combining actor-critic methods with generalised advantage estima-
tion further reduces the variance of gradient updates [138]. The most successful
algorithm in the space of advantage actor-critic methods has been shown to be
the asynchronous advantage actor-critic (A3C) method [139].

A3C has thus far been successfully applied to equity trading on the stock mar-
kets [140,141] and wind energy trading on the reserve electricity markets [142].
To the best of our knowledge, the use of A3C, in the context of SAT on the CID,
has not been explored yet. Considering the above-mentioned advantages of A3C
and similar successful implementations of A3C across other markets, it should
be possible to successfully apply A3C to SAT on the CID.

As the review from Chapter 10 highlights, the literature on CID trading is grow-
ing; however, papers focusing purely on financial trading are still scarce. Given
the potentials for increasing market stability, this chapter focuses on develop-
ing a SAT strategy. While a SAT strategy has already been explored by [128]
using a trading rule with forecasts, intelligent methods should be further de-
veloped and investigated. A DRL method implemented with the A3C algorithm
is utilised to maximise the reward-risk ratio of the arbitrage trading strategy.
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An agent capable of trading continuously on the CID with the opportunity to
close an outstanding position on the BAL is developed. Summarising the three
contributions of this chapter, to our knowledge, we are the first to:

• utilise A3C algorithm in developing a risk-constrained arbitrage trading
strategy on the CID,

• conduct state engineering and state selection processes for a DRL-based
arbitrage trading strategy on the CID,

• propose a novel reward function and behaviour cloning (goal-based ex-
ploration) for a DRL-based arbitrage trading strategy on the CID.

Outlining the structure of this chapter, details of our algorithmic trading method
are provided in Section 11.2. In Section 11.3, our case study and its results are
outlined. Finally, the chapter is concluded in Section 11.4.

11.2 Asynchronous Advantage Actor-Critic Method
to Intraday Market Trading

11.2.1 Discrete Time Steps

The continuous trading timeline is discretised, i.e. time step t ∈ [t1,T ]. Typically
in the literature, fixed time intervals are used to separate time steps. For ex-
ample, the time interval ∆t between t and t +1 is set to 15 minutes in [133],
5 minutes in [143] and 1 minute in [144]. This approach, however, is not suf-
ficiently flexible for our arbitrage strategy. When a profitable ask/bid order is
submitted to the CID, the agent should buy/sell this order sooner than its com-
petitors. Additionally, the agent should adjust itself to trading sessions’ quiet
early hours using fewer time steps and busy final hours using more time steps.

To create flexible time steps, in this thesis the time interval ∆t is defined by the
order book revision number, i.e. update number for each change in the order
book. Most of the updates, however, are not important and change neither the
best ask price nor the best bid price. These revisions are dropped and only im-
portant updates are kept to improve training performance and reduce training
time. Figure 11.1, for example, is plotted after this process.
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Figure 11.1: The best ask/bid prices for h9 on 01/09/2020.

11.2.2 Actions

The SAT strategy aims to maximise profit while minimising risk, i.e. the volatil-
ity of profit. The challenge of this strategy is rooted in the uncertainty of future
CID prices, balancing prices and liquidity. To limit these uncertainties and risk, a
risk-constrained arbitrage trading strategy is imposed by constraining bought/-
sold quantity at each time step, position and total bought/sold quantity.

An agent can either avoid placing a trade (hold, H) or execute an existing order
(buy, B) q a

t ≤ qmax or (sell, S) qb
t ≤ qmax MW of electricity at time step t . Note

that q a
t is quantity at time step t for the best ask order, qb

t is quantity at time
step t for the best bid order, and qmax is the maximum allowed quantity to trade
at each time step t . The agent with a maximum allowed position can buy/sell
until its long/short position reaches vmax/vmi n . Additionally, the agent with a
maximum allowed total trading quantity can buy/sell until its total bought/sold
quantity,

∑
q a/

∑
qb , reaches qhi g h . To implement the above conditions, the

agent’s action space is constrained, as shown in (11.1).

at ∈


{H }, if

∑
q a = qhi g h and

∑
qb = qhi g h

{B , H }, if vt = vmi n or
∑

qb = qhi g h

{S, H }, if vt = vmax or
∑

q a = qhi g h

{B ,S, H }, otherwise

(11.1)

where at and vt are the action and volume positions respectively, at time step t .
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11.2.3 Rewards

A reward function that motivates the agent to learn to avoid punishment is
implemented. For a buy action, the best/worst ask order to buy is the lowest-
/highest ask across the entire trading session l a/ha and offers a buy reward of
0/−2. For the remaining ask orders l a < pa

t < ha , the agent receives negative
buy rewards r b

t ∈ (−2,0). The more expensive the asking price the lower the
buy reward. Two buy thresholds, the highest bid price across the entire trading
session bth = hb and BAL feed price bth = p f eed , are considered to separate pos-
sible profit and losses within the CID and between the CID and BAL. The agent
receives a buy reward of −1, if it buys at pa

t = bth . Above/below the threshold,
the agent receives a buy reward that takes on values in [−2,−1)/(−1,0]. The
immediate buy reward r b

t ∈ [−2,0] at time step t is calculated as (11.2).

r b
t = 1/2

(
f b(hb , pa

t )+ f b(p f eed , pa
t )

)
, (11.2)

where pa
t is the best ask price at time step t and

f b(bth , pa
t ) =

{
−1− (

(pa
t −bth)/(ha −bth)

)
, if pa

t > bth

−(
(pa

t − l a)/(bth − l a)
)
, otherwise

For a sell action, the best/worst bid order to sell is the highest/lowest bid across
the entire trading session hb/l b and offers a reward of 0/−2. For the remaining
bid orders, the more expensive the bid price the higher the sell reward r s

t ∈
(−2,0). Two sell thresholds, the lowest ask price across the entire trading session
s th = l a and BAL take price s th = p t ake , are considered. At time step t , the
immediate sell reward r s

t ∈ [−2,0] is calculated as (11.3).

r s
t = 1/2

(
f s (l a , pb

t )+ f s (p t ake , pb
t )

)
, (11.3)

where pb
t is the best bid price at time step t and

f s (s th , pb
t ) =

{
−2+ (

(pb
t − l b)/(s th − l b)

)
, if pb

t < s th

−1+ (
(pb

t − s th)/(hb − s th)
)
, otherwise

Hold actions are evaluated using the opportunity cost of not buying/selling. If
buy and sell decisions may lead to losses, the agent should hold and receive the
best possible hold reward of 0. If a buy or sell decision may lead to profit, the
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agent should not hold and shall receive a hold reward r h
t ∈ [−1,0). The more

profitable ask or bid orders are the lower the hold reward is as shown in (11.4).

r h
t =

{
0, if r b

t & r s
t <−1

−1−max{r b
t , r s

t }, otherwise
(11.4)

Additionally, at the end of the trading session for each contract, the end of con-
tract reward r e

t = PnL/100 is provided to motivate pursuing profitable actions.
Note that PnL is calculated according to (10.1) in Section 10.3.1. This reward
can also be used as a stop-loss threshold SLT . If losing C300 per contract is not
desired, for instance, a condition rt <−3 can be incorporated into training as an
episode terminator, as further explained in Section 11.2.5.

11.2.4 States

The state vector s should contain the information required to predict the pol-
icy π(s) or the state-value under the policy Vπ(s). Each component of the state
vector is a state variable. Together, all variables should be a compact and suffi-
cient representation of the environment. To predict π or Vπ accurately, only the
most important state variables should be used. A feature engineering process is
thus conducted using domain knowledge, and subsequently a feature selection
process is conducted using automated feature elimination methods. Below, the
types of state variables are first described, subsequently, possible engineered
variables for each type of variable are provided and finally our state selection
process is elaborated upon.

States are split into internal and external, st = si
t ∪ se

t . While internal states
reflect the agent’s portfolio, external states come from the market environment.
Example internal states for a trading agent are given below.

• Agent: volume position, cash, total traded volume, etc.

External states provide necessary information about the market and the mar-
ket price drivers. The limit order book, which contains all submitted orders
with their type, price, volume, and time information, offers the best insight for
continuous market trading. The order book, however, cannot be used as it is
for learning. Its inconsistent dimension size across time steps t ∈ [t1,T ] is in-
compatible with A3C’s function approximators which require consistent input
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size. A technique adopted in this thesis to achieve consistent dimension size for
each time step is to extract some statistical information about the order book.
Additionally, to reduce partial observability of the reinforcement learning (RL)
environment, lags of the best ask and bid prices, are considered. Example order
book features calculated from the order book are given below.

• Order book: the best ask price, the best bid price, bid-ask spread, the
first quantile of ask prices, the third quantile of bid prices, lags of best ask
prices, lags of best bid prices, total ask quantities, total bid quantities, total
quantity spread, the first quantile of cumulative ask quantities, the third
quantile of cumulative bid quantities, the second quantile of cumulative
bid quantities, etc.

Other important price drivers offering executed trade information, such as the
highest traded price for a contract (high price), the lowest traded price (low
price), the volume-weighted average price of trades (vwap), and the latest
traded price (last price), are extracted from the trade book.

• Trade book: total traded volume, high price, low price, vwap, last price,
etc.

Widely considered seasonal and time-based features are also created.

• Time-based: minutes to end of trading session, day, hour, holiday, etc.

Finally, some forecasts assisting agents to make better decisions are considered.

• Forecasts: low price forecast, high price forecast, vwap forecast, average
mid-price forecast, average bid price forecast, BAL feed price forecast, BAL
take price forecast, wind forecast, etc.1

Among all the aforementioned engineered external states, the most important
features are selected. This can be done with a recursive feature elimination
method using, for example, a logistic regression model. Since this method is

1Methods implemented to predict CID prices, such as low price, high price, vwap, average mid-
price, average bid price and average ask price, are described in Chapter 8. Similarly, methods
implemented to predict BAL prices, such as take and feed, are described in Chapter 9. Each chapter
uses several methods to predict prices. Forecasts of best performing models are used in this chapter.
For instance, the ENSEMBLE models are used to predict CID prices, and deep neural networks are
used to predict BAL prices.
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based on supervised learning f (se ) = a, the target [a1, aT ] needs to be created.
Intuitively, this target is the sequence of desired trading actions. To make a
profit on the CID, the agent should buy when pa

t is lower than hb and sell when
pb

t is higher than l a . To make a profit between the CID and the BAL, the agent
should similarly buy when pa

t is lower than p f eed and sell when pb
t is higher

than p t ake . Our aforementioned conditions are given in (11.5).

at =


B , if pa

t < hb or pa
t < p f eed

S, if pb
t > l a or pb

t > p t ake

H , otherwise
(11.5)

Creating our multi-class target [a1, aT ], the feature selection process starts by re-
moving correlated variables using the Pearson correlation method. The process
continues by recursively pruning the least important variables until the perfor-
mance of the logistic regression model worsens. The remaining variables are
considered the most important external state variables.

11.2.5 Asynchronous Advantage Actor-Critic (A3C)

As Figure 11.2 shows, the A3C works with multiple agents which are connected
through the global network. Agents interact with their environments and col-
lect different experiences to increase overall exploration. For each thread, the
critic updates the value and the actor updates the policy based on the feed-
back from the critic [135]. Differentiable function approximators, namely deep
neural networks (DNN), are used to estimate the value and the policy, e.g.
Vπ(st ) ≈ Vπ(st ;θv ) and π(at |st ) ≈ π(at |st ;θπ) respectively. Note that θv and θπ
are reserved for the global network parameters, and θ

′
v and θ

′
π for the local

network parameters.

Figure 11.3 presents a detailed individual agent network. The input-output
relationship is shown. Our policy is stochastic, i.e. π(a|s) = P[at = a | st = s].
The agent predicts a probability for each action based on the state inputs. If the
agent predicts {P (B) = 0.6,P (S) = 0.1,P (H) = 0.3}, for example, it may with a 0.6
probability exploit by choosing its best action B , or with a 0.4 probability explore
by choosing a random action of either S or H .

In the figure, the DNN - a shared two-headed two-layer neural network - is
shown. Note that the network type or the number of layers can vary. Hyper-
parameter tuning is implemented to select 1) the type of network for π and Vπ,
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Figure 11.2: The global network keeps the best value and policy of the most successful
local network. The global network cannot receive all agents’ gradients at
once. Agents get in the queue. Deep neural networks (DNN) are used as
function approximators. The red arrow represents the critic’s feedback.
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Figure 11.3: Individual network architecture showing the input-output relationship.
DNN has two hidden layers. The value Vπ has a linear activation function
and the policy π has a softmax function converting logits to probabilities.

(i.e. whether to employ a two-headed shared network or separate networks),
2) the number of layers, 3) the number of neurons, 4) the type of hidden layer
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activation function, 5) the number of agents, 6) the type of optimiser, and 7)
the hyper-parameters defined in Algorithm 11.1.

Algorithm 11.1 details the proposed A3C training procedure for each agent. At
the start of an episode e ∈ [1,emax ] gradients are reset (line 2), thread parame-
ters are synchronised (line 3), an episode index multiplier is calculated (line 3),
a discount rate is computed (line 5), an epsilon factor is calculated (line 6), the
time step is initialised (line 4), and the first state is extracted (line 5). Expe-
rience is subsequently collected during an episode (lines 6 to 23). The action
space is constrained accordingly to Section 11.2.2 (line 7).

Goal-based exploration is implemented to ensure that an agent learns effec-
tively during the initial training stage. With goal-based exploration, i.e. be-
haviour cloning, the first b < n number of agents are provided with exemplary
behaviours during their initial episodes (line 9). One agent follows (11.6) to
learn how to exploit arbitrage opportunities between the CID and BAL.

at =


B , if pa

t < p f eed & vt < vmax &
∑

q a < qhi g h

S, if pb
t > p t ake & vt > vmi n &

∑
qb < qhi g h

H , otherwise
(11.6)

Another agent follows (11.7) to learn arbitrage opportunities within the CID.

at =


B , if pa

t < hb & vt < vmax &
∑

q a < qhi g h

S, if pb
t > l a & vt > vmi n &

∑
qb < qhi g h

H , otherwise
(11.7)

Finally, another agent follows (11.8) pursuing high rewards based on a reward
threshold r th ∈ [−1,0).

at =


B , if r b

t > r th & vt < vmax &
∑

q a < qhi g h

S, if r s
t > r th & vt > vmi n &

∑
qb < qhi g h

H , otherwise
(11.8)

If agents show unsuccessful repetitive behaviours, exemplary behaviours using
(11.8) with r th ∈ [−0.3,0) can be further provided to agents during training to
improve their exploration.

To ensure that agents efficiently explore, decayed/decaying epsilon greedy ex-
ploration [135] is additionally implemented. With decayed epsilon greedy ex-
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ploration, agents are forced to explore with probability ϵ and exploit with prob-
ability 1 − ϵ (lines 15 and 18). The ϵ is decreased slowly starting from the
first episode to the last episode to ensure a higher exploration rate in the early
episodes and a higher exploitation rate in the final episodes.

Algorithm 11.1 A3C: Pseudocode for each thread
Require: hyper-parameters, γst ar t , γend , ϵst ar t , ϵend , t max , emax ,β, SLT , b; global parameters, θπ ,θv ; thread

parameters, θ
′
π ,θ

′
v ; global counter, e ← 1; and tst ar t ← 1

1: while e < emax do
2: reset gradients dθπ← 0, dθv ← 0

3: synchronise thread parameters θ
′
π =θπ, θ

′
v =θv

4: calculate episode index ei = 1− (e/emax )
5: calculate discount γ= (γst ar t −γend )∗ei +γend
6: calculate epsilon ϵ= (ϵst ar t −ϵend )∗ei +ϵend
7: t = tst ar t
8: get state st
9: while st ̸= sT and t − tst ar t < t max do
10: constrain the action space
11: if e < b then
12: clone at according to (11.6), (11.7) or (11.8)
13: else
14: if ϵr andom < ϵ then

15: explore: r andom at according to π(at |st ;θ
′
π)

16: else
17: exploit: max at according to π(at |st ;θ

′
π)

18: end if
19: end if
20: receive reward rt+1 and new state st+1
21: t ← t +1
22: st = sT , if rt < SLT
23: end while

24: Rπ =
{

0, for terminalsT

Vπ(st ,θ
′
v ), for non-terminalst

25: for i ∈ {t −1, . . . tst ar t } do
26: Rπ ← ri +γRπ

27: Aπ← Rπ−Vπ(si , ; θ
′
v )

28: dθπ← dθπ+β ▽
θ
′
π

logπ(ai |si ;θ
′
π)(Aπ)

29: dθv ← dθv +β ∂(Aπ)2/∂θ
′
v

30: end for
31: e ← e +1
32: update asynchronously θπ using dθπ, and θv using dθv
33: end while

Selecting an action at , the agent receives its reward and next state (line 21).
The agent collects experiences until either the terminal state, sT or t max are
reached (line 22). The sT is defined to be the last state in the training set. Early
episode termination is employed when the agent, following its policy, reaches a
predefined stop-loss threshold SLT , linked to the end of contract reward r e . In
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this way, the number of contracts in each episode varies. As a result, unsuccess-
ful policies are promptly updated for the better, and training time is reduced.

To update the actor, critic and global network, the critic first estimates the value
of a state Vπ, line 24. Then, for each gradient step the value of the state-action
Rπ is calculated (line 26). Intuitively, this value is an improvement compared
to Vπ. The difference is called the advantage function Aπ [139]. It can be
estimated by the temporal difference (TD) error and offers information about
the extra reward attainable when following the policy’s actions (line 27). If Aπ

is positive, gradients of the actor and critic are pushed in that direction by the
learning rate β. If Aπ is negative, gradients are pushed in the opposite direction
(lines 26 and 27). Using updated actor and critic gradients, the global network
is also updated (line 30). The network weights are updated until a predefined
maximum number of episodes emax is reached.

11.3 Case Study

11.3.1 Data

The primary data sources are the limit order book and trade book of the hourly
CID contracts available for the Dutch market area. The order and trade books of
CID are not publicly available. Data spanning from 01/01/2020 to 10/12/2020
were provided by the energy supplier Scholt Energy [109]. Forecasts, such as
wind speed and temperature, were also provided by Scholt Energy. Publicly
available data, namely BAL prices of The Netherlands and day-ahead market
prices of The Netherlands and Belgium, are collected from the ENTSO-E Trans-
parency Platform [22].

For the period under study, data for 8280 hourly contracts are available. The
data is split into training (4148 contracts), validation (1238 contracts) and test
sets (1760 contracts). Contracts not used in these sets are excluded because of
data quality issues. For example, numerous contracts, especially in January and
October, are found to have a significant number of missing observations.

To continuously train and evaluate our agent, a rolling window method illus-
trated in Figure 11.4 is employed. First, feature elimination is implemented to
select the most important features and A3C is shortly trained to tune hyper-
parameters. These are evaluated on the validation set. Defining the hyper-
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Figure 11.4: Rolling windows for training, validation and test sets.

parameters and features, A3C is trained on combined training and validation
set and evaluated on the test set.

11.3.2 Data Preprocessing

Order book and trade book data are processed by creating state variables in-
dexed by important revision numbers. Processing each contract, all contracts
are vertically stacked by time separately for training, validation and test sets.
Min-max scaling parameters are extracted from the training set for each vari-
able and scale all the data.

11.3.3 External State Selection

Feature selection is used to find the most important external states as mentioned
in Section 11.2.4. Initially, collinearity between features is measured using the
Pearson correlation. Correlated features with a correlation larger than 0.8 are
removed. Subsequently, logistic regression is used to eliminate the least im-
portant features. The regularisation penalty λ is set to 0.001 and the mixing
parameter between lasso and ridge regressions α is set to 0.9. Class balancing is
employed to increase f1 validation scores of buy and sell classes.

Using weights of the logistic regression as feature importance scores, 50% of
the least important features are eliminated in the first round and, 10% of the
least important features are recursively eliminated in the following rounds. The
recursive feature elimination is stop when a stopping criterion is reached; the
f1 validation score decreases by a total of 0.1. Using a variable step size ensures
that fewer features are eliminated after each round. Features with a high im-
portance are thus less likely to be removed. Features selected by our method
are presented in Table 11.1.
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Table 11.1: External states.

minutes to end of trading session
spread between pb

t and pa
t

spread between (pa
t +pb

t )/2 and its average forecast
spread between pb

t and Dutch day-ahead market price
spread between pb

t and p̄b forecast
spread between pb

t and p f eed forecast
spread between pb

t and 1/6
∑d−1

d−3
∑h

h−2 p t ake

spreads between pb
t and its lags [pb

t−8 : pb
t−1]

the best bid quantity qb
t

the number of bid orders
the third (upper) quantile of cumulative bid quantities
the best ask price pa

t
the first (lower) quantile of ask prices
the second quantile (median) of ask prices
the third (upper) quantile of ask prices
spread between pa

t and 1/6
∑d−1

d−3
∑h

h−2 p t ake

the best ask quantity qa
t

total ask quantities
the number of ask orders

11.3.4 A3C Modelling

In our RL environment, states, consisting of external and internal states, are
provided in Tables 11.1 and 11.2. In Table 11.2, qhi g h , PnLlow and PnLhi g h

are set per contract to 40, −600 and 10000 respectively. These are given to scale
agents’ cash and volume portfolios, similarly to the min-max scaling applied for
the external states. The categorical trade rule variable is added to guide agents
using forecast decision thresholds. This variable is updated for every rolling
window, based on the best validation set performance, resulting from one of
the following forecasts: the average traded price; vwap; high price and low
price; and p t ake and p f eed . For instance, the buy category is assigned if pa

t is
lower than a low price forecast, sell is assigned if pb

t is higher than a high price
forecast, and hold is assigned otherwise.

DRL training is implemented with A3C per Section 11.2.5. The probability of
buy/sell is assigned to 0 if the volume position reaches vmax = 3/vmi n = −3 or
the total bought/sold quantity reaches to qhi g h = 40. The subtracted probability
is added to another action using the categorical trade rule variable. For exam-
ple, when P (S) = 0.1 and vt = vmi n , P (S) = 0 and P (H) = P (H)+0.1 are assigned,
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Table 11.2: Internal states.

categorical trade rule based on forecasts
scaled total bought quantity

∑
t qa

t /qhi g h

scaled total sold quantity
∑

t qb
t /qhi g h

scaled position (vt + vmax )/(2× vmax )

scaled cash (PnL−PnLlow )/(PnLhi g h −PnLlow )

if the categorical trade rule variable advises to hold. At the end of each episode,
a callback function checks whether the total reward and PnL of the training set
increased and saves improved models. The last saved model is evaluated.

As mentioned in Section 11.2.5, hyper-parameter tuning is implemented. Specif-
ically, trials are set on the number of agents n ∼ [4,8], discount rate γst ar t ∼
[0.001,0.9], learning rate β ∼ [0.00001,0.1], the number of time steps to update
the global network t max ∼ [300,5000], optimiser ∼ {Adam,SGD,RMSProp}, and
the type of network ∼ {one-headed,two-headed}, activation function for hidden
layers ∼ {relu,tanh}, the number of hidden layers k ∼ [1,3], the number of neu-
rons for the first, second and third hidden layers n1 ∼ [4,512], n2 ∼ [4,256] and
n3 ∼ [4,128] respectively. A3C is trained until emax = 100 and evaluated on the
validation set by PnL for each trial. The process is performed by an automated
Python tuning library, optuna, which prunes unsuccessful hyper-parameters and
makes the tuning process more efficient [145]. The resulting hyper-parameters
are n = 8, γst ar t = 0.29, t max = 2906, β = 0.0003, k = 2, n1 = 216, n2 = 193, the
activation function of hidden layers is tanh, the optimiser is Adam, and the type
of network is a two-headed shared network.

Other hyper-parameters are defined by user preferences: discount rate γend =
0.9999, stop loss threshold SLT =−300 (i.e. the end of contract reward r e <−3),
epsilon ϵst ar t = 0.9 and ϵend = 0.01, maximum buy/sell quantity qmax = 1, max-
imum allowed position [vmi n , vmax] = [-3, 3], maximum allowed total traded
quantity for both buy and sell sides qhi g h = 40, and the number of agents who
clone behaviour b = 5. Note that the first agent clones (11.6), the second agent
clones (11.7), and the next three agents clone (11.8) with different reward
thresholds for their first episodes. Additionally, during training agents clone
(11.8) for the last t max states if the last state st = sT is reached by an early
episode ending and is the same for the last four episodes.
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A3C is trained for each month using the rolling window method. If a policy
manages to profit from most of the training contracts in an episode, this policy
is defined as an optimal policy. If an optimal policy is reached, training is stop
as early as emax = 1000. If not, training continuous until emax = 20000. After
training, A3C can execute a decision instantly.

11.3.5 Benchmark Strategies

Similarly to A3C, explored benchmarks execute an existing order q a
t ≤ qmax = 1

and qb
t ≤ qmax = 1 for buy and sell actions at time step t . Their positions are

constrained between [vmi n , vmax] = [−3, 3]. And the total bought and sold
quantities,

∑
q a and

∑
qb , are limited to qhi g h = 40 MW. The first benchmark is

BENCHVWAP using the volume weighted average price of trades until time step
t , i.e. pv w ap

t = ∑t
i=1(pricei ×volumei )/

∑t
i=1(volumei ). Knowing the past traded

prices, BENCHVWAP tries to maximise its revenue by following (11.9).

at =


B , if pa

t < pv w ap
t

S, if pb
t > pv w ap

t

H , otherwise
(11.9)

The remaining benchmarks that are programmed, BENCHPLUS and BENCH, are
expected to perform well because all the true values provided to these bench-
marks are valuable and not known ex-ante. If these two benchmarks indeed re-
sult in success, a simple trading rule using forecasts of the provided values could
be a promising trading strategy. If, on the other hand, these two benchmarks
result in poorer performance than A3C, an intelligent agent who can consider
various outcomes is needed. BENCHPLUS sets its trading rules knowing l a , hb ,
p t ake and p f eed as given in (11.10).

at =



B , if pa
t < hb &

{
pb

t > l a & pa
t < p f eed

or pb
t < l a

S, if pb
t > l a &

{
pa

t < hb & pb
t > p t ake

or pa
t > hb

H , otherwise

(11.10)
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BENCH sets its trading rules knowing l a , hb , and the averages of 30 future time
steps of the best ask and bid prices. Its trading rule is given in (11.11).

at =



B , if pa
t < hb &

{
pa

t < 1/30
∑t+30

i=t+1 pb
i

or pb
t < l a

S, if pb
t > l a &

{
pb

t > 1/30
∑t+30

i=t+1 pa
i

or pa
t > hb

H , otherwise

(11.11)

11.3.6 Evaluation

Our A3C trading algorithm is evaluated on the test set using both pure profit
and reward-risk metrics. For the profit metric, PnLc made for each contract
c ∈ [c1,C ], where C is the total number of contracts in the test set, is calculated.
A policy is defined as being successful if more than half of the contracts return
positive PnLc and

∑C
c=1 PnLc is positive. For the reward-risk metrics, the profit

to deviation ratio PD = ∑C
c=1 PnLc /σ, where σ is the standard deviation of the

PnL distribution, is calculated. To assess the overall quality of actions, the profit
per trade (PT ) ratio is also checked. PT is calculated as the cumulative PnL
divided by the total traded quantity, PT = ∑C

c=1 PnLc /
∑C

c=1
∑T

t=1 qt . Consider-
ing our pre-defined trading cost, a successful policy should have a PT > 0.232.
The higher the PD and PT the better the trading strategy. All the above met-
rics together inform us about the trade-off between the profit and risk, i.e. the
volatility of profits.

11.3.7 Results and Discussion

Figures 11.5 and 11.6 present the cumulative traded quantity and the cumu-
lative PnL for the three evaluated benchmarks and our A3C trading algorithm
across the test set. Evaluating the performances of BENCHVWAP and BENCH,
relative to our A3C algorithm the two benchmarks place three times as many
trades. Despite a high traded quantity, however, they generate lower revenues.
Given high trade quantities but low revenues, one may expect trading costs,
i.e. C0.232 per 1 MW, to be responsible for the two benchmarks’ poor perfor-
mances. An inability to manage balancing risk is, however, also responsible.
BENCHVWAP and BENCH perform reasonably well across the CID. Their per-
formance, however, is broadly negatively impacted when the requirements of
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Figure 11.5:
∑

q across test set contracts. The dashed black lines represent monthly
rolling window splits.

Figure 11.6:
∑

PnL on the test set contracts. The dashed black lines represent monthly
rolling window splits.

re-balancing are factored-in. BENCHVWAP and BENCH fail to profit from ar-
bitrage opportunities between the CID and the BAL. Moreover, they fail to ef-
ficiently plan for necessary position closures. This restricts the final attainable
PnL of the strategies.

Evaluating the performance of the third benchmark, BENCHPLUS places sig-
nificantly fewer trades than BENCHVWAP or BENCH. Despite placing fewer
trades, BENCHPLUS generates significantly higher profits. Knowledge of BAL
prices allows BENCHPLUS to outperform BENCHVWAP and BENCH. BENCH-
PLUS, however, cannot surpass A3C’s

∑
PnL. The granularity of time-steps may

partially explain the lower
∑

PnL. Across our case study, an agent is required
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Table 11.3: Statistical description of traded quantity (in MW).

A3C BENCHVWAP BENCH BENCHPLUS∑
q 7017.20 24614.60 25943.20 17245.80

mean 3.99 13.99 14.74 9.80

Table 11.4: Statistical description of PnL (in C).

A3C BENCHVWAP BENCH BENCHPLUS∑
PnL 19927.22 -1631.73 2578.04 14862.57

mean 11.32 -0.92 1.46 8.44
std 139.54 152.26 96.50 92.91

PnL> 0 56.08% 50.23% 59.77% 64.21%
PnL< 0 38.64% 49.77% 40.22% 35.80%
PD 142.80 -10.72 26.72 159.96
PT 2.84 -0.07 0.10 0.86

to make thousands of decisions per contract (see Figure 11.1). Implementing
an efficient rule-based trading strategy is challenging and complex when an
agent is required to make thousands of decisions. An intelligent agent who can
autonomously learn to consider and plan for future outcomes is needed. A3C
manages this, steadily increasing its revenue from 0 to C19927.22 and surpassing
all trading rule-based benchmarks.

Expanding the analysis, Tables 11.3 and 11.4 present additional metrics for
evaluating the performances of the benchmark and A3C trading agents. Ta-
ble 11.3 highlights that A3C on average trades 3.99 MW. This is marginally
higher than the maximum position size (3 MW) that the agent is permitted to
have open at any moment. The relatively low average traded quantity of the
A3C agent can be explained by our choice of hyperparameters. Our A3C agent
is set up to learn a risk-constrained trading strategy.

Analysing the percentage of positive PnLs, Table 11.4 shows that A3C and the
benchmarks successfully return a positive PnL > 0 at least 50% of the test con-
tracts. BENCHVWAP, with knowledge of only past prices, is found to be the
worst-performing agent. It fails to beat trading rules with knowledge of future
prices as would be expected.
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Analysing risk-reward ratios, A3C has a high PD and PT indicating a favourable
reward-to-risk ratio. The PD of BENCHPLUS is higher, however. This result is
expected since BENCHPLUS uses true values in its decision-making process. In
practice, were forecasts used instead of actual prices in BENCHPLUS, the risk
(standard deviation of profits) would be higher and the PD would be lower due
to the direct impacts of forecast errors. The PT of A3C is the highest out of all
evaluated trading strategies. Based on its PnL, PD and PT performances, A3C
is considered to be the best trading agent.

11.4 Conclusion

This chapter focused on the SAT strategy which aims to profit by trading con-
tinuously on the intraday market with the opportunity to close the remaining
position on the balancing market. The objective of the chapter was to maximise
profit while minimising any associated risk. To hedge against the risk, a con-
strained trading strategy was implemented with a maximum allowed position
for both short and long trades, and a maximum total allowed trading quantity
for total bought and sold quantities.

This chapter demonstrated that asynchronous advantage actor-critic (A3C), a
deep reinforcement learning (DRL) method, can be successfully utilised to de-
velop an autonomous trading agent capable of exploiting arbitrage opportuni-
ties. In this chapter, states were selected from a large number of engineered fea-
tures using a recursive feature elimination method. Exploration was enhanced
by using decayed epsilon greedy exploration and behaviour cloning, i.e. goal-
based exploration. A3C function approximators were designed with two-headed
shared deep neural networks.

Our methodology was evaluated on a case study using the limit order book of
the single intraday coupled market (CID) available for the Dutch market area.
A3C was trained on 4148 hourly contracts and tested on 1760 contracts using a
rolling window method. On test contracts, A3C traded a total of 7017.20 MW
of electricity and generated profits of C19927.22 with an average profit of C2.84
per trade. The majority of contracts, 56.08%, returned a profit.



Chapter 12

Trading Across the Day-Ahead,
Intraday and Balancing Markets

In this chapter, statistical arbitrage trading strategies that exploit price differ-
ences arising across short-term electricity markets, namely day-ahead (DAM),
continuous intraday (CID) and balancing (BAL) markets, are developed and
evaluated. To open initial DAM positions, a rule-based trading policy using
DAM and CID price forecasts is proposed. Using the DAM forecasts from Chap-
ter 7 and CID forecasts from Chapter 8, the direction of price movements is
correctly predicted the majority of the time. To manage open DAM positions
while optimising the risk-reward ratio, deep reinforcement learning agents are
employed utilising the advantage actor-critic algorithm (A2C). Note that BAL
price forecasts from Chapter 9 are used as a state variable by A2C. Evaluated
across Dutch short-term markets, A2C yields profits surpassing those obtained
using A3C and other benchmarks.

12.1 Introduction

Arbitrage trading offers financial incentives to traders and benefits to markets,
such as increasing market liquidity and efficiency [1, 2]. In this chapter, we
evaluate the profitability of statistical arbitrage trading (SAT) strategies across
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short-term electricity markets, introduced in Section 10.3.2. SAT strategies em-
ploying deep neural networks, technical indicators, data augmentation and the
synchronous advantage actor-critic (A2C) algorithm are developed and anal-
ysed for short-term electricity markets, namely the day-ahead market (DAM),
continuous intraday market (CID) and real-time balancing market (BAL). Our
autonomous agents first open a position on the auction-based DAM, before clos-
ing this position on the continuous-based CID or the BAL.

We employ deep reinforcement learning (DRL) to optimise the decision-making
process of placing trades across the CID. DRL is selected because of its numerous
documented successes, such as [136, 137], in solving sequential decision prob-
lems. Among DRL algorithms, advantage actor-critic algorithms have proven
particularly adept at solving sequential decision problems because of their abil-
ity to reduce the volatility of gradient updates [138, 139]. Yang et al. [146]
and [147] employed A2C in optimising trading decisions across equity markets.
Meanwhile, [148] applied A2C to optimise the decision making of a retail elec-
tricity trader. To the best of our knowledge, we are the first to employ A2C in
the context of SAT across the CID.

While SAT studies have thus far focused on the DAM-BAL and CID-BAL, as
shown in the literature review in Chapter 10, to the best of our knowledge
no study has developed or analysed a trading strategy capable of simultane-
ously exploiting arbitrage opportunities arising across all short-term electricity
markets yet. Given SAT’s benefits to markets and traders, we investigate the
profitability of SAT across the DAM-CID-BAL trading floors. We propose em-
ploying a rule-based trading agent, which uses forecasts of DAM and CID prices
to open a position on the DAM. These prices are already predicted in Chapters 7
and 8 using data augmentation methods, technical indicator features and novel
engineered features.

For the CID and BAL, we propose developing an agent trained utilising A2C. The
asynchronous version of A2C, A3C, has already been employed in Chapter 11.
Using A2C, however, is more cost-effective. Note that to improve training sta-
bility, unlike Chapter 11, in this chapter we use gradient clippings, different
reward thresholds, additional behaviour cloning methods, more goal-based ex-
plorations, more flexible constraints and no early episode terminations.

Summarising the contributions of the chapter, to the best of our knowledge, we
are the first to:
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• investigate the profitability of SAT across the DAM, CID, and BAL for a
purely financial trader,

• evaluate a rule-based trading agent that uses DAM and CID price forecasts
for the DAM,

• utilise A2C to develop a risk-constrained arbitrage trading algorithm for
the CID and BAL.

Outlining the structure of this chapter, in Section 12.2, our rule-based trading
method for the DAM is outlined. In Section 12.3, our advantage actor-critic
trading methods for the CID are introduced. The case study for the CID is
presented in Section 12.4. The results are shown in Section 12.5. Finally, in
Section 12.6 the chapter is concluded.

12.2 Rule-Based Approach to Day-Ahead Market Trad-
ing

To open a position on the DAM, we implement a rule-based trading agent using
forecasts of day-ahead market prices pd am , and continuous intraday market
prices, more specifically the volume-weighted average price of trades pv w ap .
If the forecast of pd am is lower than the forecast of pv w ap , we open a long
position, i.e buy vmax MWh. Otherwise, we open a short position, i.e. sell vmi n

MWh. Note that vmax is the maximum allowed long position, and vmi n is the
minimum allowed position for risk-constrained SAT strategies. Note also that
the methods employed to predict pd am and pv w ap are described in Chapters 7
and 8 respectively.1

1Chapters 7 and 8 evaluate several models to predict pd am and pv w ap . Forecasts of best-
performing models are used by the rule-based trading agent. Specifically, the 2NN model utilising
the AE+VAE+WGAN-GP+TI method is used to forecast pd am , and the ENSEMBLE model is used
to predict pv w ap .



146 Trading Across the Day-Ahead, Intraday and Balancing Markets

12.3 Advantage Actor-Critic Approach to Intraday
Market Trading

To manage open DAM positions, we utilise a deep reinforcement learning trad-
ing agent trained using the advantage actor-critic algorithm (A2C). This section
details this procedure.

12.3.1 Actions

Actions at are defined over a discrete set. The action set is constrained to min-
imise risk. Firstly, the volume position vt is restricted by the maximum allowed
positions for short and long sides, vmi n and vmax respectively. Following this
strategy, if B is chosen, the agent buys q a

t ≤ vmax −vt MWh of electricity at time
step t ∈ [1,T ]. If S is chosen, the agent sells qb

t ≤−vmi n+vt MWh of electricity at
time step t . Additionally, similar to Chapter 11, the total bought quantity until
time step t , i.e.

∑t
i=1 q a

i , and the total sold quantity until time step t , i.e.
∑t

i=1 qb
i ,

are restricted by the maximum allowed total quantity qhi g h .

12.3.2 Rewards

Similarly to Chapter 11, we employ negative reward functions to ensure the
stability and efficiency of the learning algorithm. Note, however, that different
reward thresholds are used. Additionally, we avoid using the end of contract
reward as in Chapter 11. Only three different reward functions are needed to
span the action space of our agent.

The immediate buy reward function is calculated by measuring the distance
between a buy action - buying at pa

t - and both the best and worst possible
buy actions across a trading session - buying at the lowest and highest prices
palow /pahi g h . The buy reward function is bounded: r B

t ∈ [−2,0]. Equation (12.1)
formalises the buy reward function employed:

r B
t = 1/2

(
f B (pd am , pa

t )+ f B (pbhi g h , pa
t )

)
, (12.1)

where pa
t is the best bid price at time step t and

f B (τB , pa
t ) =

{
−1− (

(pa
t −τB )/(pahi g h −τB )

)
, if pa

t > τB

−(
(pa

t −palow )/(τB −palow )
)
, otherwise
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and τB is the buy threshold separating gains and losses. A reward of r B
t = −1,

attained at τB , marks where profit can at best equal 0 over a trading session.
When an agent purchases electricity for less than τB positive profits are attain-
able and r B

t > −1. Equally, when the agent purchases electricity for more than
τB a loss is guaranteed and r B

t <−1. To separate the gains and losses of trading
between the DAM and CID, we firstly consider τB = pd am . To separate the gains
and losses of trading within the CID, we secondly consider τB = pbhi g h .

Similarly to the above, the immediate sell reward function is calculated by mea-
suring the distance between a sell action - selling at pb

t - and both the best and
worst possible sell actions across a trading session - selling at the most expensive
and least expensive prices pbhi g h /pbl ow . The sell reward function is intrinsically
bounded: r S

t ∈ [−2,0]. The more expensive the bid price at which the agent sells
electricity the higher the sell reward. Equation (12.2) formalises the sell reward
function employed:

r S
t = 1/2

(
f S (pd am , pb

t )+ f S (pal ow , pb
t )

)
, (12.2)

where pb
t is the best bid price at time step t and

f S (τS , pb
t ) =

{
−2+ (

(pb
t −pblow )/(τS −pbl ow )

)
, if pb

t < τS

−1+ (
(pb

t −τS )/(pbhi g h −τS )
)
, otherwise

Sell thresholds of τS = pd am and τS = palow are considered to separate the gains
and losses of trading between the DAM and CID, and within the CID.

Finally, the hold reward function is determined by quantifying the opportunity
cost of a buy/sell action. Equation (12.3) formalises the hold reward function.

r H
t =

{
0, if r B

t & r S
t <−1

−1−max{r B
t , r S

t }, otherwise
(12.3)

Observe that the agent receives a hold reward of r H
t = 0 when buy and sell

actions lead to losses. The agent receives a hold reward r H
t ∈ [−1,0) if either

a buy action or a sell action is profitable. The more profitable the buy or sell
action is, the lower the hold reward is.

12.3.3 States

The features presented in Tables 11.1 and 11.2 are used to encode the state
space. The categorical trade rule feature, in contrast with Chapter 11, uses
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pd am in place of CID and BAL price forecasts. Formally, when pa
t < pd am the

feature takes the value buy. When pb
t > pd am the feature takes the value sell.

Otherwise, the feature takes the value hold.

12.3.4 Advantage Actor-Critic Algorithms

Algorithm 12.1 Pseudocode for each AC worker
Require: hyper-parameters, γst ar t , γend , ϵst ar t , ϵend , t max , emax ,β; global parameters, θπ ,θv ; thread parame-

ters, θ
′
π ,θ

′
v ; global counter, e ← 1; and t1 ← 1

Ensure: dθπ, dθv
1: while e < emax do
2: reset gradients dθπ← 0, dθv ← 0 and synchronise thread parameters θ

′
π =θπ, θ

′
v =θv

3: calculate episode index ei = 1− (e/emax ), discount γ = (γst ar t −γend )∗ ei +γend , and epsilon ϵ = (ϵst ar t −
ϵend )∗ei +ϵend

4: t = t1
5: get state st
6: while st ̸= sT and t − t1 < t max do
7: constrain the action space
8: if e = 1 then
9: clone behaviour at
10: else
11: if ϵr andom < ϵ then
12: if tr andom < t < tr andom + t max then
13: clone behaviour at
14: else
15: explore: r andom at according to π(at |st ;θ

′
π)

16: end if
17: else
18: exploit: max at according to π(at |st ;θ

′
π)

19: end if
20: end if
21: receive reward rt+1 and new state st+1
22: t ← t +1
23: end while

24: Rπ =
{

0, for terminalsT

Vπ(st ,θ
′
v ), for non-terminalst

25: for i ∈ {t −1, . . . tst ar t } do
26: dθπ← dθπ+β ▽

θ
′
π

logπ(ai |si ;θ
′
π)(ri +γRπ−Vπ(si , ; θ

′
v ))

27: dθv ← dθv +β ∂(Aπ)2/∂θ
′
v

28: end for
29: e ← e +1
30: update θπ using dθπ, and θv using dθv
31: end while

In the context of actor-critic (AC) algorithms, a DRL agent is an AC worker,
the value is updated by the critic and the policy is updated by the actor us-
ing the critic’s feedback [135]. The AC algorithm uses a single global network
but multiple AC workers, i.e. w ∈ [1,W ], where W is the number of local net-
works. AC workers update the global network asynchronously in A3C, whereas
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synchronously in A2C. Each AC worker collects different experiences by inde-
pendently interacting with the environment. Using multiple workers results in
a greater exploration of the state space.

Each actor is stochastic and approximated by deep neural networks that use
softmax functions in the output layer. Hyper-parameters, such as the number of
hidden layers L and the number of neurons nl for each hidden layer l ∈ [1,L],
are optimised.

Algorithm 12.1 formalises the update procedure of each AC worker. Describing
the algorithm, firstly, the AC worker resets gradients and synchronises thread
parameters (line 2). The worker then calculates the episode index, ascend-
ing discount rate and descending epsilon (line 3). Subsequently, it receives
its first state (line 5). Next, the worker interacts with the environment and
collects experiences (lines 6 to 23). The action space is constrained following
Section 12.3.1 (line 7). Each worker clones behaviours during the first episode.
It also clones behaviours t max /T of the time over the rest of the episodes (lines 9
and 13). Note that to spur exploration, each worker clones different behaviours.
Elaborating, the first worker, w1, clones (12.4), to learn to effectively arbitrage
between the DAM and the CID.

at =


B , if pa

t < pd am & vt < vmax &
∑t

i=1 q a
i < qhi g h

S, if pb
t > pd am & vt > vmi n &

∑t
i=1 qb

i < qhi g h

H , otherwise
(12.4)

The second worker, w2, meanwhile clones (11.7) to learn to arbitrage well
within the CID. The third worker, w3, clones (11.6) to arbitrage well between
the CID and the BAL. Finally, the rest of the workers, w ∈ [4,W ], clone (11.8)
with different reward thresholds ∈ [−1,0) to learn to reach higher rewards.

Following the decayed epsilon greedy exploration method, the worker explores
ϵ− (t max /T ) of the time and exploits 1− ϵ of the time (lines 15 and 18). The
worker collects experiences until the number of time steps to update the global
network t max or the last state in the training set sT is reached. Using col-
lected experiences, the critic estimates the value of a state. The advantage
function [139] Aπ is calculated by the difference between the estimated value
of this state and the value of the state-action. The actor and critic are updated
using Aπ (lines 26 and 27). Consequently, the global network is updated asyn-
chronously for A3C and synchronously for A2C (line 30). Note that the smooth
L1 loss and gradient clipping are implemented to avoid exploding gradients.
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Updating process continues until a predefined maximum number of episodes
emax is reached.

12.4 Case Study

In this section, the data gathering and processing steps employed in developing
agents for CID trading are outlined. Further, our actor-critic hyperparameters
are specified. And finally, the evaluation procedure is described.

12.4.1 Data and Data Processing

Data spanning 2020 - from 01/01/2020 to 11/12/2020 - are collected from
Scholt Energy [109]. In total the order-books of 8280 contracts are obtained.
4148 contracts are used for training and 1760 contracts for testing. The remain-
ing contracts are excluded from the study for failing data quality tests. Note that
because optimised parameters from Chapter 11 are used, no contract is ascribed
to a validation set. A rolling window is used to continuously train and evaluate
AC workers every month. Finally, min-max scaling is utilised to scale states.

12.4.2 Advantage Actor-Critic Algorithms

The reinforcement learning environment is configured following Section 12.3.
Using hyper-parameters from Chapter 11, hyperparameters are set: W = 8,
ϵst ar t = 0.9, ϵend = 0.01, γst ar t = 0.29, γend = 0.9999, t max = 2906, β= 0.003, L = 2,
n1 = 216 and n2 = 193. The chosen neural network architecture is a two-headed
shared network. A tanh activation function is used in the hidden layers. Adam
is selected as an optimiser.

To scale our states, PnLlow and PnLhi g h are set to −5000 and 10000 respectively.
To constrain our action space, a more flexible approach than Chapter 11 is used.
While Chapter 11 sets qhi g h = 40, vmax = 3, and vmi n = −3, we set qhi g h =
50, vmax = 10, and vmi n = −10. While Chapter 11 additionally constrains the
maximum allowed buying/selling quantity at each time step t to 1 MW, such a
fixed constraint is avoided in this chapter.

For every month of the training set, AC workers are trained until emax = 100.
Eight workers are thus trained across 800 episodes. At the end of each episode e,
the performance, i.e. the total reward accumulated across the training window,
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is calculated. Model weights are saved whenever performance improves. The
last saved model is used on the test set.

Training times vary across the rolling windows due to varying monthly contract
counts. For a single month, 1-2 days are required to train AC agents using a
GeForce GTX 1080. Once trained, the trading agent can however execute a
decision immediately.

12.4.3 Evaluation

Both profit (PnL and PT ) and risk-reward (PD) metrics are used to evaluate
agents’ test performances. Note that PnL is calculated according to (10.2) in
Section 10.3.2. The PT is calculated by dividing the PnL by the total traded
quantity. Formally, PT = ∑N

n=1 PnLn/
∑N

n=1
∑T

t=1 qt , where N is the total number
of contracts in the test set. The PD, measuring the profit per unit of risk, is
calculated as

∑N
n=1 PnLn/σ, where σ is the standard deviation of the PnL. The

higher PnL, PT , and PD the better the trading algorithm.

To contextualise the performances of our intelligent agents, two rule-based
benchmarks are evaluated as well. The first, intended to gauge the minimal
attainable profit from arbitrage trading on short-term markets, is the HOLD
benchmark. The HOLD closes out all open DAM positions on the BAL; no trade
is executed on the CID. The second benchmark (PRE-BA) follows the rules spec-
ified in (12.5):

at =


B , if pa

t < 1/30×∑t
i=t−30 pa

i & vt < vmax &
∑

q a < qhi g h

S, if pb
t > 1/30×∑t

i=t−30 pb
i & vt > vmi n &

∑
qb < qhi g h

H ,otherwise
(12.5)

PRE-BA uses the previous best bid and best ask prices to place trades. It is
developed to highlight the risk associated with CID trading.

12.5 Results and Discussion

12.5.1 Opening Positions on the Day-Ahead Market

DAM price forecasts, p̂d am , are utilised along with vwap forecasts, p̂v w ap , by
our ruled-based DAM trading agent. Defining the agent’s strategy, a long po-
sition is opened on the Dutch DAM, vmax = 10, if p̂d am < p̂v w ap . Otherwise, a
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Table 12.1: Confusion matrix across 2020 for the ruled-based DAM agent.

Targets
True False

Predictions True 1781 665
False 737 2203

Table 12.2: Traded quantity, profit and risk results on the test set.

quantity (in MWh) PnL (in C)
sum mean sum mean PnL>0 PD PT

A2C 33805.10 19.21 97853.69 55.60 61% 190.66 2.90
A3C 29571.70 16.80 89248.52 50.71 62% 174.06 3.02
PRE-BA 52070.50 29.59 1586.07 0.90 51% 3.21 0.03
HOLD 17600.00 10.00 1395.20 0.79 52% 2.83 0.08

short position is opened: vmi n = −10. Dutch and Belgian DAM price forecasts
are averaged to obtain p̂d am . Averaging DAM forecasts of neighbouring coun-
tries improves the performance of the rule-based trading agent. We postulate
that this occurs because the CID market provides quotes of pan-European elec-
tricity prices. Taking an average of DAM prices allows us to identify profitable
opportunities arising between neighbouring market areas.

Table 12.1 presents a confusion matrix summarising the performance results of
the DAM trading strategy. Following the rule-based trading strategy, the direc-
tion of price movements is correctly predicted 73.97% of the time. As opened
DAM positions are used as the initial CID positions, this accuracy is important
for the performance of the upcoming CID trading agent and the final profit. The
lower the accuracy the harder for the CID agent to yield a profit. For exam-
ple, assuming no trade is made on the CID and all opened DAM positions are
closed out at the BAL, an agent with an accuracy of 0% would yield a loss of
C406419.42, while an agent with an accuracy of 100% would return a profit of
C231842.07. Our ruled-based DAM trading agent with an accuracy of 73.97%
would return a profit of C678.07. Note that this agent will be evaluated as a
benchmark, called HOLD, in the next section.
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Figure 12.1: Cumulative PnL across test contracts. Monthly rolling windows are shown
with dashed black lines.

12.5.2 Closing Positions on the Continuous Intraday Market
or the Balancing Market

Analysing the summary results presented in Table 12.2, HOLD is observed to
yield the lowest PnL and PD, and the second-lowest PT . Only 52% of traded
test contracts return positive profits following HOLD. Evaluated across test set
contracts, Figure 12.1 shows the fluctuations in HOLD revenues. The cumula-
tive PnL is almost flat at around 0. By not placing trades on the CID, HOLD
exposes the importance of the CID in arbitrage trading.

Analysing the overall performance of PRE-BA, the second benchmark spurs the
highest execution of trades. 52070.5 MWh of electricity is traded by PRE-BA.
Despite this, PRE-BA yields the second-lowest PnL and PD, and the lowest
PT . Evaluated across test set contracts, Figure 12.1 exposes persistently low
revenues. Similarly to HOLD, the cumulative PnL fluctuates around 0. PRE-BA
highlights the risks of trading too frequently on the CID.

Turning to AC strategies, from the results in Table 12.2 it can be observed that
62% of traded contracts yield positive profits following A3C: 10% more contracts
than HOLD and 11% more than PRE-BA. Figure 12.1 further shows that A3C
manages to steadily increase the cumulative PnL. A3C generates 6319% more
profit per contract than HOLD and 5535% more than PRE-BA. Note, however,
that extra profit is not generated by accepting disproportionately more risk.
This is highlighted by A3C’s higher PD.
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Comparing the results relative to Chapter 11, A3C also yields greater returns
and a higher PD than the A3C implemented in Chapter 11. Across the same
test set, the A3C in Chapter 11 yields: a total PnL of C19927.22 with an average
PnL of C11.32 per contract, a PD of 142.80, and a PT of 2.84. Relative to these
results, A3C in this chapter generates 348% more profit, a 22% higher PD, and
a 6% higher PT . Relaxing trading quantity constraints and using the DAM in
arbitrage trading thus appears to increase the profit and reward-risk ratios.

Finally analysing A2C results, Table 12.2 shows that A2C trades: 92% more
MWh per contract than HOLD, 35% less than PRE-BA, and 14% more than A3C.
A2C yields the highest profit per contract: 6938% greater than HOLD, 6078%
greater than PRE-BA, and 10% greater than A3C. Evaluated across test set con-
tracts, Figure 12.1 shows that A2C gradually and consistently increases rev-
enues; surpassing A3C total revenues by the final test contract. Despite A3C
having a marginally higher PT , evaluated using the PnL and PD, A2C is found
to be the best arbitrage trading agent across short-term markets.

12.6 Conclusion

In this chapter, arbitrage trading agents capable of trading across the day-ahead
(DAM), continuous intraday (CID), and balancing (BAL) markets were devel-
oped and evaluated. A rule-based trading method, using forecasts of DAM
prices and CID volume-weighted average price of trades (vwap), was developed
to open positions on the DAM. Using these forecasts, 74% of positions were ac-
curately opened across the DAM following our rule-based trading method.

Focusing on the CID and BAL, a deep reinforcement learning (DRL) agent, em-
ploying the synchronous advantage actor-critic algorithm (A2C), was trained.
Behaviour cloning, i.e. goal-based exploration, was employed to increase the
performance of the agent. A two-headed shared deep neural networks was used
to determine the agent’s policy. The performance of the agent was compared
against three benchmark policies: HOLD, PRE-BA and A3C. A2C surpassed A3C
and significantly outperformed HOLD and PRE-BA.

Overall, using TIs, data augmentation, ensemble model and A2C, our best agent
was found to trade 33805.10 MWh of electricity across 1760 hourly test contracts;
yielding significantly positive profits of C97853.69.



Chapter 13

Conclusion and
Recommendations

In implementing arbitrage trading strategies, traders can help in the transition
away from fossil fuels, combating climate change and helping attain energy in-
dependence. Strategies for arbitrage trading provide the chance to boost market
liquidity, improve market efficiency, eliminate price discrepancies across mar-
kets, and generate a profit. Three of these opportunities counteract the chal-
lenges renewable energy creation creates. Helping arbitragers, thus, presents
an opportunity to help the climate.

This PhD thesis has aimed to automate and optimise the decision-making of ar-
bitrage trading agents for short-term electricity markets. Multiple contributions
have been made to the existing literature by optimising the decision-making
of intelligent agents. The thesis has developed new methods for forecasting
electricity prices and algorithms for optimising trading decisions. All devel-
oped methods can be deployed immediately into production. This chapter sum-
marises the thesis’ main contributions and conclusions, potential impacts on
society, and avenues for future research.
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13.1 Conclusion

Throughout the thesis, we have analysed and devised state-of-the-art algorithms
for exploiting statistical arbitrage trading (SAT) opportunities emerging across
short-term electricity markets. Proposed novel forecasting methods significantly
increased the accuracy of short-term electricity price forecasts. After predict-
ing prices, a rule-based trading agent was developed for the day-ahead market
(DAM), and a deep reinforcement learning trading agent was developed for the
continuous intraday market (CID) and balancing market (BAL). Proposed novel
trading methods increased the profitability of arbitrage trading strategies across
short-term electricity markets. The main contributions of the thesis, shown in
Figure 1.2, are summarised below. They help advance the fields of intraday
market analytics, electricity price forecasting and electricity trading.

Intraday Market Analytics

This thesis presented market insights obtained using novel exploratory visu-
alisation techniques for the CID. Our contribution, described below, helps to
broaden existing domain knowledge about the CID, exposing CID price drivers
and revealing CID trading strategies.

1. Exploratory visual analytics tools for the CID: Motivated by a need
to explore trends and behaviours of the CID, exploratory visual analytics
tools were developed for the CID. In Chapter 3, analytics tools, such as
CID transactions, executed trades, the volume-at-price, and distributions
of prices and volumes, were developed using data from the limit order
book and trade book. Using these tools, we showed that traders could
continuously monitor the market trend, behaviour, depth, price consensus
and liquidity. An additional analytics tool was also developed using CID
volumes and short-term market prices. This tool identified potential risks
and opportunities associated with electricity trading.

Electricity Price Forecasting

This thesis identified novel forecasting methods capable of increasing the accu-
racy of electricity price forecasts. Accurate forecasts are required when training
profitable SAT agents. Our contributions ensure that price uncertainty is de-
creased, increasing potential trading profits.
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2. Technical indicators for forecasting DAM prices: Motivated by a desire
to capture the effects of technical DAM price drivers, technical indicators
(TIs) were proposed as features in Chapter 5. Through a case study, which
involved forecasting Belgian DAM prices, it was demonstrated that TIs can
capture the residual impacts from traders’ behavioural biases, resulting in
statistically significant reductions in forecast errors of machine learning
models; reducing the root mean squared errors of linear, ensemble, and
deep model forecasts by up to 4.50%, 5.42%, and 4.09% respectively. Four
TIs, namely the Exponential Moving Average indicator (EMA), Bollinger
Bands (%B), the Momentum indicator (MOM) and the Rate of Change
indicator (ROC), were identified as being well suited to forecasting DAM
prices. While TI performance is model dependent, the ROC and the EMA
succeeded in reducing forecast errors of most machine learning models.

3. Data augmentation methods for forecasting DAM prices: Motivated by
a desire to boost out-of-sample prediction accuracies, in Chapter 6, data
augmentation methods were developed to artificially expand the train-
ing set size. Our augmentation methods utilised autoencoders (AEs),
variational autoencoders (VAEs) and Wasserstein generative adversarial
networks with a gradient penalty (WGAN-GPs). Through two case stud-
ies, which focused on forecasting Belgian and Dutch DAM prices, it was
demonstrated that augmentation methods can significantly boost the re-
gression accuracies of both autoregressive models with exogenous inputs
and artificial neural networks. AEs, VAEs, and WGAN-GPs were found to
significantly reduce a majority of forecast errors; on average decreasing
mean absolute errors by 2.23%, 2.73% and 2.97% respectively. Taking ev-
ery result into consideration, VAEs and WGAN-GPs were found to be the
best and most stable data augmentors.

4. Ensemble methods for forecasting DAM prices: Motivated by a desire
to improve forecasting accuracies of DAM prices, in Chapter 7, ensemble
methods utilising different combinations of forecasts from TIs, AEs, VAEs
and WGAN-GPs were proposed. Across ensemble methods for forecast-
ing Belgian and Dutch DAM prices, the best-performing method was the
method averaging AE, VAE, WGAN-GP and TI. This method outperformed
the naive benchmark model by 27.63%.
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This contribution is critical to the performance of SAT strategies because
the rule-based trading agent needs accurate DAM price forecasts to open
DAM positions correctly.

5. A feature engineering method for forecasting CID prices: Motivated by
a desire to capture CID price drivers and an urge to improve forecasting
accuracies of CID prices, in Chapter 8, a feature engineering method was
proposed. Novel features were created from the limit order book and
trade book and used as inputs to machine learning models. CID prices,
such as the volume-weighted average price of trades and average best ask
price, were predicted using our proposed feature pool. Forecasting models
using the most significant features, such as the total number of submitted
bid orders and the total number of revisions, were shown to boost the
naive benchmark forecasting accuracies of Dutch CID prices on average
by 15.27%. Note that as an additional tangential contribution from the
above, artificial neural networks were shown to, on average, outperform
machine learning models in forecasting CID prices by 6.62%.

CID price forecasts have been used as inputs in our rule-based trading
agents for the DAM and deep reinforcement learning agents for the CID
and BAL. This contribution is thus vital in correctly opening DAM positions
and making better decisions when trading across the CID and BAL.

6. Machine learning methods for forecasting BAL prices: Motivated by
an urge to improve forecasting accuracies of BAL prices, in Chapter 9,
machine learning methods were proposed. Artificial neural networks were
shown to outperform the naive benchmark model by 19% and all other
machine learning models on average by 8.43% when forecasting Dutch
BAL prices.

BAL price forecasts have been used as state variables in deep reinforce-
ment learning trading agents. This contribution thus aids in ensuring that
trading agents make profitable decisions across the CID and BAL.

Electricity Trading

This thesis developed novel trading methods that increase the profits of au-
tonomous electricity trading agents. Each contribution, described below, helps
to yield better decision-making systems for SAT strategies.
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7. Asynchronous advantage actor-critic (A3C) agent for statistical arbi-
trage trading across the CID and BAL: Motivated by a desire to develop
an autonomous trading agent capable of exploiting arbitrage trading op-
portunities across the CID and BAL, an algorithm employing a deep rein-
forcement learning method, namely asynchronous advantage actor-critic
(A3C), was proposed in Chapter 11. Function approximators were de-
signed with two-headed shared deep neural networks. A risk-constrained
trading strategy was enforced by limiting the maximum allowed position.
State engineering and selection processes were conducted to increase the
performance of the function approximators. A novel reward function and
behaviour cloning were introduced to motivate trading agents to explore.
Our proposed A3C implementation successfully optimised the risk-reward
ratio and yielded profits of C19927 by arbitraging 7017 MWh of electricity
across the Dutch CID and BAL.

8. Rule-based (RB) and advantage actor-critic (A2C) agents for statis-
tical arbitrage trading across the DAM, CID and BAL: Motivated by
an urge to develop autonomous trading agents capable of exploiting ar-
bitrage opportunities across the DAM, CID and BAL, a rule-based (RB)
trading agent was proposed for the DAM, and the advantage actor-critic
(A2C) trading agent was proposed for the CID and BAL in Chapter 12. A
risk-constrained trading strategy was implemented by limiting the maxi-
mum exposure for each market layer. The RB agent, which takes forecasts
of DAM and CID prices as inputs, was found to open accurate positions
on the Dutch DAM 74% of the time. The A2C agent, which was designed
with function approximators of two-headed shared deep neural networks,
closed the DAM positions opened by the RB agent. Behaviour cloning,
i.e. goal-based exploration, was integrated to increase the performance
of A2C. A2C was compared against several benchmark policies, includ-
ing the A3C. A2C was found to surpass A3C and significantly outperform
other benchmarks. The RB and A2C agents successfully optimised the
risk-reward ratio and yielded high returns of C97853 by arbitraging 33805
MWh of electricity across the Dutch DAM, CID and BAL.

13.2 Impact of the Research

This thesis aimed to optimise and automate SAT agents’ decision-making for
short-term electricity markets. In optimising the decision-making of SAT agents,
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this thesis has generated multiple contributions which have the potential to
positively impact society. As we outline below, the thesis has identified strategies
for aiding to improve the efficiency of electricity markets, which in turn should
quicken the transition from non-renewable energy sources to renewable energy
sources, helping fight climate change and secure Europe’s energy independence.

Electricity Markets and Participants

Transitioning from non-renewable to renewable sources of energy has increased
short-term market volatility. This thesis has proposed SAT strategies which,
when enacted, have the potential to reduce price volatility across short-term
electricity markets, as well as increase market liquidity and efficiency.

More accurate forecasts, secured using novel techniques proposed in this thesis,
such as TIs and data augmentation, should decrease market risk. Decreased
market risk should, in turn, increase both market participants’ willingness to
spread trades across short-term markets and implement SAT strategies. More
intermarket trading and enactment of SAT strategies - particularly automated
SAT strategies proposed in this thesis - should, in turn, spur short-term market
liquidity and efficiency, facilitating continued renewable energy uptake.

Overall, this PhD thesis has thus outlined methods to reduce market partici-
pants’ risks associated with price uncertainty, market liquidity, and intermarket
price volatility.

Renewable Energy Transition

As part of their strategy to combat climate change, policymakers have subsidised
and supported consumers and suppliers of clean and fully renewable energy.
The energy supply from renewable sources is, at present, hard to predict for
longer forecasting horizons. Renewable producers prefer to trade on the CID
using their short-term forecasts because it allows them to hedge their volatile
positions continuously.

To aid the sector in transitioning from non-renewable energy sources to renew-
able sources of energy, this thesis has developed exploratory analytics tools,
forecasting methods and automated trading strategies for the CID. These meth-
ods guide and incentivise renewable energy producers to better use the CID for
their trading decisions.
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13.3 Suggestions for Future Research

While this thesis develops novel electricity price forecasting and SAT methods,
more research is needed to achieve continued advances. Below, potential av-
enues of future research are described.

Exploratory Visual Tools for the CID

During tumultuous times, when market conditions are changing, visualisation
tools for analysing market trends can yield new insights. In this thesis, visual an-
alytics tools, such as graphs of transaction flows and ask/bid prices, were shown
to be able to identify novel trading opportunities and risks. Given that our im-
plemented tools successfully analysed CID trading activity, future research could
focus on novel tools for exploring CID trading activity further. Indicators, similar
to Bollinger Bands, for example, could be visualised.

Technical Indicators for Forecasting DAM Prices

Since this thesis is the first to successfully use technical indicator (TI) features
in DAM price forecasting, it is reasonable to argue that the potential of tech-
nical feature engineering should be investigated further. While this thesis has
examined the explanatory power of some of the simplest and widely used TIs in
finance, further research could explore the predictive power of more complex
TIs. Moreover, given the unique qualities of the DAM, future research could fo-
cus on engineering new TIs, which incorporate DAM volumes, order book data,
etc. to capture electricity traders’ behavioural biases.

Data Augmentation for Forecasting DAM Prices

Changing market conditions, epitomised by, for instance, increasing renewable
energy production, have impacted DAM prices drastically in recent years. This
shift in energy production has created breakpoints, making the inclusion of his-
toric data in the learning process potentially detrimental. When data is scarce it
is crucial to explore techniques capable of augmenting the training dataset size.

Given the successes of data augmentation methods in increasing DAM price
forecast accuracies, data augmentation methods should be investigated further.
While this thesis has examined autoencoders (AEs), variational autoencoders
(VAEs) and Wasserstein generative adversarial networks with a gradient penalty
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(WGAN-GPs), further research could examine variants of these successful aug-
mentors, such as adversarial VAEs and Info-GANs. Given the successes of com-
bined and ensemble augmentors shown in this thesis, further research could
also explore more sophisticated bootstrapping algorithms and novel averaging
methods for ensemble augmentation.

Moreover, generative adversarial networks (GANs) could be used for scenario
generation. A myriad of GANs exists, including TransGANs, that could be inte-
grated into the adversarial augmentation algorithm shown in this thesis to gen-
erate correlated time series. Researchers may consider using context encoders,
context-conditional GANs, or conditional WGAN-GPs in future research.

Feature Engineering for Forecasting CID Prices

The quality and quantity of inputs that are fed into forecasting models are gen-
erally more important than the model chosen to forecast targets. Given the
significance features play in ensuring high forecasting accuracies, the investiga-
tion of all possible price drivers for CID price forecasting is imperative.

Manually engineered features, which extract statistical information from the
limit order book and trade book, were selected as important price predictors
for forecasting CID prices in this thesis. Given that these features managed to
capture CID price drivers, further research could be directed towards examining
novel techniques for manually engineering features.

Alternatively, further research could focus on investigating automated feature
engineering methods. Deep neural network encoding, for instance, could be
utilised to extract latent features from the limit order book. These latent fea-
tures could be used as input features in forecasting models, potentially boosting
forecasting accuracies. Similarly, principal component analysis (PCA) could be
utilised to extract principal components that could be used as input features in
forecasting models.

Methods to Forecast CID Prices

Accurate CID price forecasts are vital in the identification of profitable trading
strategies. Despite this, note that an overwhelming proportion of electricity
price forecasting research has thus far focused on the DAM. The rising impor-
tance of the CID, however, enhances the need for CID price forecasting studies.
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This thesis has investigated machine learning forecasting models and engineered
features extracted from the limit order book and trade book for CID forecasting.
While a successful approach was found for improving CID forecasting accura-
cies, more research is needed to improve upon existing CID forecasting meth-
ods. ResNet or SqueezeNet, for instance, could be evaluated as CID forecasting
models. Moreover, lagged BAL prices or TIs could be evaluated as feature in-
puts, assessing their explanatory power in forecasting CID prices. Finally, data
augmentation methods could be evaluated in the context of CID forecasting.

Methods to Forecast BAL Prices

Similarly to the CID, the BAL has not received as much attention as the DAM.
Accurately forecasting BAL prices, however, is vital to optimising the risk-reward
ratio of any short-term electricity trading strategy.

While the existing literature and this thesis have explored a few models and
features, more research is needed to increase the forecasting accuracies of BAL
prices further. CID prices, for instance, can be evaluated as additional features
in BAL forecasting models. Moreover, gated recurrent units (GRUs) or deep
long short-term memory (LSTM) models could be evaluated. Finally, data aug-
mentation methods could again be assessed.

Methods to Forecast Price Spreads

Trading agents use price forecasts to make decisions. A trading agent that used
both DAM and CID price forecasts to open positions on the DAM was defined in
this thesis. Instead of forecasting prices separately for each market floor, price
spreads between markets could be predicted directly. The price spread between
the DAM and CID, for instance, could be predicted using regression or classi-
fication models to open positions on the DAM. Studies focusing on forecasting
price spreads could identify critical relationships between markets.

Rule-Based Approaches for Statistical Arbitrage Trading

Even though rule-based (RB) approaches are considered the simplest among
trading methods, they can be very profitable with a good strategy. As RB trad-
ing agents used in this thesis were found to be successful for the DAM, RB
approaches should be explored further for the DAM as well as the CID. Future
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RB studies, for example, can explore additional inputs than just price forecasts,
such as load and generation forecasts.

Moreover, an RB approach should be defined as a benchmark for all SAT studies.
As this thesis offers a benchmark RB using the volume-weighted average price
of trades for the CID, the same or similar RB approach should be tested as a
benchmark RB approach to make easy comparisons between studies.

Supervised Learning Approaches for Statistical Arbitrage Trading

Supervised learning approaches are easier to implement than reinforcement
learning (RL) approaches. The target, i.e. the sequence of desired trading ac-
tions, can be obtained by cloning the decisions of expert traders. This target
can be continuous, e.g. price of a limit order, or discrete, e.g. buy, sell and hold.
If the discrete target is chosen, classification models would have an unbalanced
class problem resulting from a significantly higher number of hold decisions.
Future research can tackle this by weighing classes during training or augment-
ing data for buy and sell classes. Future studies should analyse the performance
of models, from statistical models to deep neural networks, for both continuous
and discrete targets. Additionally, transformers using attention can be utilised
to improve the forecasting accuracies of artificial neural networks.

The above-supervised learning approach is used solely as a trading algorithm.
It, however, can also be integrated into RL approaches as a policy function to
decrease training time while increasing performance. Future research should
explore this to see whether performance improvement is attainable for RL trad-
ing algorithms.

Reinforcement Learning Approaches for Statistical Arbitrage Trading

RL approaches evaluated in this thesis were found to be profitable. Conse-
quently, RL-based SAT strategies should be investigated further. Due to the
complexity of RL systems, however, each RL component should be studied
separately. Future research, for example, should evaluate more sophisticated:
reward functions, action constraints, and function approximators. Instead of
focusing on single artificial neural networks, the use of ensembles could be
investigated. Moreover, future research could focus on exploration methods
for increasing sample efficiency. Given that this thesis identified goal-based
exploration as a useful training method, further goal-based exploration meth-



13.3 Suggestions for Future Research 165

ods, which use novel expert knowledge, could be investigated further. Trading
agents could also be incentivised to explore unknown states. States can be
defined by the uncertainty of the state, future, model or value function. Alter-
natively, they can be defined by entropy maximisation methods. K-neighbors,
for instance, could be used to separate unknown states from known states.

Finally, different RL methods, such as value-based or policy-based methods,
should be further evaluated and compared. Future research, for example, could
explore the use of the soft actor-critic (SAC) algorithm, proximal policy optimi-
sation (PPO), Rainbow and Impala methods for SAT strategy determination. It
would also be interesting to study whether adversarial attacks can increase the
robustness of these RL trading algorithms.

Multi-Agent Reinforcement Learning Approaches for Statistical Arbitrage
Trading

In multi-agent RL approaches, multiple RL agents collaborate to achieve a com-
mon goal. Considering RL approaches were found to be successful across the
CID and BAL in this thesis, multi-agent RL approaches that have proved apt
at solving SAT problems in other domains should also be investigated across
electricity markets to find whether they are able to extract further performance
improvements. Future research, for instance, could explore a multi-agent RL
team of buy-and-sell agents for the CID and BAL.

Note that the adoption of multi-agent approaches in the determination of SAT
strategies could yield solutions capable of covering several market layers. Fu-
ture research could investigate, for instance, a team of DAM, CID and BAL trad-
ing agents trained together using RL algorithms.
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