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Abstract: Tracking a person’s activities is relevant in a variety of contexts, from health and group-
specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In
a clinical context, sensor-based activity tracking could help monitor patients’ progress or deteri-
oration during their hospitalization time. However, during routine hospital care, devices could
face displacements in their position and orientation caused by incorrect device application, patients’
physical peculiarities, or patients’ day-to-day free movement. These aspects can significantly reduce
algorithms’ performances. In this work, we investigated how shifts in orientation could impact
Human Activity Recognition (HAR) classification. To reach this purpose, we propose an HAR model
based on a single three-axis accelerometer that can be located anywhere on the participant’s trunk,
capable of recognizing activities from multiple movement patterns, and, thanks to data augmentation,
can deal with device displacement. Developed models were trained and validated using acceleration
measurements acquired in fifteen participants, and tested on twenty-four participants, of which
twenty were from a different study protocol for external validation. The obtained results highlight
the impact of changes in device orientation on a HAR algorithm and the potential of simple wearable
sensor data augmentation for tackling this challenge. When applying small rotations (<20 degrees),
the error of the baseline non-augmented model steeply increased. On the contrary, even when
considering rotations ranging from 0 to 180 along the frontal axis, our model reached a f1-score of
0.85± 0.11 against a baseline model f1-score equal to 0.49± 0.12.

Keywords: device displacement; acceleration; wearable devices; data augmentation; patient
monitoring; human activity recognition

1. Introduction

The goal of Human Activity Recognition (HAR) is to classify the movement of a person
into a pre-defined activity set. This information is used in multiple contexts, ranging from
fitness tracking, health assessment and elderly care, to human–robot interaction [1–4]. In a
clinical context, HAR can be used to outline the patients activities during hospitalization to
improve, or enable, recovery/deterioration monitoring [5]; additionally, HAR allows for the
contextualization of electrocardiographic patterns [6,7]. As the study from Brown et al. [8]
stated, a low amount of dynamic activities may cause negative consequences in hospitalized
patients; therefore, it appears relevant to recognize and quantify their activities to timely
assist them. Wearable sensor technologies can support clinicians by providing tools for
continuous measurement acquisition; however, the positioning of these devices is critical.
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Once worn or applied to the body, sensor displacement can occur caused by wrong position-
ing, or by physical peculiarities of the patient such as gender, height, weight, and age [9].
Additionally, within a single position and if free of moving, the wearable device could
have continuous unexpected movements, mostly of small entity [10]. HAR algorithms are
mainly data-driven, meaning that poor results are expected upon random movements.

Most HAR approaches rely on machine learning (ML) techniques based on feature-
based models or raw-data models. Among the commonly applied algorithms, it is possible
to find Hidden Markov Models, Support Vector Machines (SVM), k-Nearest Neighbor,
and Random Forest. In addition to ML techniques, Deep Neural Networks (DNN)-based
algorithms are also used in the HAR context, considering a trade-off between model
simplicity and interpretability, as mentioned by the review from Zhang et al. [11].

In a previous work on HAR from our team, Fridriksdottir et al. [12] described a
DNN based on three-axial accelerometer to recognize hospitalized patients’ activity and
compared its results with those obtained with a feature-based SVM algorithm, where the
best performance was achieved by the DNN approach (accuracy of 94.5% and f1-score
of 94.6% against 83.35% and 85.07%, respectively, with SVM). This study was based on a
single device, body-taped to the patient’s chest to avoid its displacement. This way, the
body positions range that could have been recognized was narrowed down to a limited set.

Other researchers used a combination of an initial position classifier with a subsequent
position-dependent HAR algorithm. This concept relies on the assumption that HAR can
be obtained from sensors applied on different body locations: Saeedi et al. [13] considered
seven different locations (i.e., both ankles, wrists, left thigh, right arm, and waist), while
Sztyler et al. [14] included the chest, forearm, head, shin, thigh, upper arm, and waist.
In [10], different correction methods for sensor displacement were proposed, including
both a feature-based approach and an ML classifier in an attempt to make the HAR model
position independent. The proposed method was developed for a multi-sensor scenario.

As these studies showed, it is challenging to obtain representative data from multiple
positions and their possible displacements. For example, pending devices (pendants) make
the task difficult because of the countless movement combinations that could occur. In this
context, we hypothesized that data augmentation techniques could help in synthesizing
different sensors’ configurations to artificially explore a wide range of possible scenarios.

Nowadays, data augmentation is standard practice when dealing with ML applied to
images, to obtain additional information for the ML models and to avoid overfitting [15].
Typically applied image-augmentation techniques include geometric transformations, filter-
ing, mixing images, random erasing, and feature space augmentation [16]. Wearable sensor
data augmentation represents a less common approach field; however, it was shown to
positively affect time-series based computation and to provide potential improvements in
data-driven tasks such as HAR. The review from Zhang et al. [11] states that high quality
data augmentation techniques are necessary for the growth of HAR research. Augmen-
tation of wearable sensors data was firstly addressed by Ohashi et al. [17], proposing an
augmentation strategy that considers the physical constraints of the arms applied to a multi-
sensor scenario, including an accelerometer, a gyroscope, and an electromyography sensor.
Steven et al. [18] proposed an ensemble data augmentation to the spectral feature space to
improve activity recognition performances among only three classes (sitting, standing, and
walking), reaching an accuracy of 88.87%. The study by Um et al. [19] proposed a method to
classify the motor state of Parkinson’s Disease patients by using data augmentation, where
applying measurements rotation improved the performance compared to other techniques.
Wang et al. [20] stated how HAR sensor data annotation represents a challenging task. To
tackle it, they applied resampling augmentation of accelerometer data within a contrastive
learning framework. This newly proposed approach learns representations by contrasting
positive pairs, corresponding to the same sample augmentations, against negative pairs, or
unrelated separated samples, helpful when few training data are available [21,22].

Device orientation is an important determinant when a three-axial acceleration solu-
tion for HAR is considered. Accordingly, the aim of this research was to investigate the
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impact of changes in sensor orientation on a deep-learning (DL) HAR algorithm targeted
on patient-like activities, such as slow and aided walking and wheelchair. Ultimately, we
propose an orientation-independent HAR model that leverages data augmentation, and
that is trained with acceleration measurements recorded from five sensor locations on the
participant’s trunk.

2. Materials and Methods
2.1. Dataset

Two datasets were considered in this research. The first was represented by the
Wearing Position Study (WPS) acquired within Philips Research laboratories (2022). It
contains three-axis acceleration measurements from nineteen healthy volunteers, ten males
and nine females, while the second is the Simulated Hospital Study (SHS) acquired within
Philips Research laboratories (2019). The SHS includes ten male and ten female healthy
volunteers. Table 1 shows the age, weight, height, and BMI median and first and third
quartiles of both WPS and SHS participants. Before starting the test, each participant was
explained the protocol and afterwards was asked to signed an informed consent, obtained
from all participants involved. Both studies, according to the regulations in the Netherlands,
were waived as non-medical research, and therefore, approval by an IRB institution was
not needed. The Internal Committee for Biomedical Experiments at Philips approved both
studies. Each study was characterized by a specific protocol of activities to be followed
(see Table 2) by the participants. The protocol was performed under the guidance and
observation of two researchers, who annotated the start and end time for each activity.
Self-paced activities (i.e., self-paced walking and self-push wheelchair) were acquired along
a 30-meter corridor without obstacles.

In the WPS study, five GENEActiv (GA) accelerometers [23] were used. Two were
applied on the skin of the participant on the left lower rib (GA lower rib) and on the chest
(GA chest) using body tape, while the other three were applied on a rigid support that
simulates the position of a patient monitor device, with two of them pending from the neck
(GA front and GA side) and the third one placed inside the pocket of a clinical gown (GA
gown). In the SHS study, the sensors’ setting included the GA front only. Figure 1 shows
examples of a patient monitoring device usage in two different positions, front and side.
The sampling frequency of all accelerometers was set to 100 Hz with a dynamic range of
±8 g (1g = 9.8 m/s2).

Once data acquisition was completed, signals were synchronized to the annotations
based on the performed activities and synchronization patterns (i.e., three jumps at the
beginning and end of the session). Signals were down-sampled to 16 Hz and split into
windows of 6 s, with 4.5 s of overlap. No other preprocessing operation was applied; the
development and testing of the models used raw acceleration data as input.

Table 1. Median, first (Q1) and third (Q3) quartiles of the Wearing Position Study (WPS, left side)
and Simulated Hospital Study population (SHS, right side) characteristics: age, weight, height, and
Body Mass Index (BMI).

Age Weight
[kg]

Height
[cm]

BMI
[kg/m2]

Age Weight
[kg]

Height
[cm]

BMI
[kg/m2]

Median 41.5 71.5 174.5 23.05 44.5 75.0 175.0 25.34

Q1 25.8 61.2 167.8 21.32 32.8 68.5 166.5 23.77

Q3 53.3 79.5 184.8 25.12 54.3 86.5 182.0 26.28
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(a) (b) (c)

Figure 1. Patient monitoring device placement in the front (a) and side (b) positions [24,25]. (c) The
sensor settings for the Wearing Position Study data collection. Yellow squares are GENEActive
sensors: two in contact with the skin, two pending from the neck and one in the clinical gown pocket.

Table 2. Wearing Position Study and Simulated Hospital Study activities reported in
chronological order.

Activity Duration Activity Duration

Jump 3x (sync) ** Self-paced
Lying in bed ** 3 min Physioterapy on chair ** 2 min

Left side ** 30 s Patient transport in
wheelchair ** 1 min

Right side ** 30 s Wheelchair self-push Self-paced
Reclined ** 30 s Crutches ** Self-paced
Upright ** 30 s Anterior walker ** Self-paced

Sitting edge of the bed ** 30 s IV pole ** Self-paced
Standing ** 30 s 4-wheel rollator ** Self-paced
0.6 km/h ** 2 min Walk slow * Self-paced
0.8 km/h ** 2 min Walk normal * Self-paced
1.0 km/h ** 2 min Walk fast * Self-paced
1.5 km/h ** 2 min Intermittent walking * Self-paced
2.0 km/h ** 2 min Shuffling * Self-paced
3.0 km/h ** 2 min Upstairs one leg first ** Self-paced
4.0 km/h ** 2 min Downstairs one leg first ** Self-paced

4.0 km/h inclined * 2 min Stairs ascent ** Self-paced
Washing hands ** 1 min Stairs descent ** Self-paced

Reading ** 1 min Jump 3x (sync) ** Self-paced
*: Activities performed only in the Wearing Position Study (WPS); **: Activities performed in the Wearing Position
Study and in the Simulated Hospital Study (SHS).

2.2. Model Architecture

The implemented HAR model architecture is shown in Figure 2 and represents a
modified version of the DNN proposed by Fridriksdottir et al. [12]. The main difference
with the previous model consists of the substitution of the Long Short Time Memory
layer with a convolutional layer: this change in architecture was introduced to simplify
the model and it did not generate results significantly different from the previous DNN.
The model input consists of the X-, Y-, and Z- acceleration segments of shape (number of
segments, 96, 3). The model includes four 1D convolutional layers interspersed with four
batch normalization layers. Moreover, two max-pooling and dropout layers were added to
reduce overfitting risks. After the fourth batch normalization layer, a flattening layer was
added to reshape the data and to provide input for the final dense layer that computes the
prediction probabilities of five classes, by means of a softmax activation function [26].

The model uses categorical cross entropy as loss function, and the ‘Adam’ opti-
mizer [27], considering a batch size of 100 samples. The ’Balanced Batch Generator’ function
was used to fit the model: it is a Keras [28] function that allows creating balanced batches
during model training by specifying the desired sampler, where in this case a random
sampler was applied.
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Figure 2. Convolutional Neural Network model architecture composed of an input layer, four blocks
including multiple layers (B1, B2, B3, B4), flattening and ending softmax layer.

2.3. Data Augmentation

Data augmentation was used to synthesize different points of view relevant to the
same data [29]. A rotational matrix was applied to the original acceleration measurements
as in the Equation: acc′x

acc′y
acc′z

 = RxRyRz

accx
accy
accz

 (1)

In particular, (accx, accy, accz) are the original values and (acc′x, acc′y, acc′z) are the
computed acceleration values associated with the applied rotation. The chosen rotation
angle is α, in degrees units. The rotational matrixes are defined for each axis and correspond
to Rx, Ry, Rz:

Rx =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (2)

Ry =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 (3)

Rz =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (4)

2.3.1. Augmentation Setting for Training Data

The number and range of rotations applied to the accelerometer signals might affect the
success of data augmentation. Therefore, we initially tested which rotation pattern resulted
in the largest performance improvement for our model during cross-validation. Two
augmentation training datasets were considered: the first set consisted of seven rotations
between 0 and 90 degrees, while the second set consisted of seven rotations between 0 and
180 degrees. Rotations were applied separately along the frontal and sagittal axis of the
human body. The frontal axis splits the body into a dorsal and ventral parts, while the
sagittal axis splits the body into an upper and lower halves. To compare the two augmented
sets, tests were made for rotations from 0 to 360 degrees with a step of 5 degrees.

Based on this preliminary analysis, the final augmentation settings for the training
set of the augmented model consisted of ten rotations from 0 to 180, with a 20 degree
step on the frontal and sagittal axis separately. While all the original acceleration signals
were considered in the training data, only a randomly selected portion (11.1%) of these
signals was kept when applying a single rotation. The baseline model was trained using
the data collected by the five upper body sensors in the WPS dataset, including a total of
73,683 segments (windows of 6 s overlapped by 4.5 s). The resulting training size of the
augmented model was three times the size of the baseline training set.
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2.3.2. Augmentation Setting of Testing Data

The models were evaluated through three different test sets shown in Figure 3 and
reported below:

• Original: this test set did not have any data augmentation.
• Real-life test set: double-axis small rotations along the frontal and sagittal axis (respec-

tively X- and Z-axis). In particular: [[5, 5], [5, 2], [2, 5], [10, 10], [10, 5], [5, 10], [15, 15],
[15, 10], [10, 15]], unit of measurement in degrees.

• Fully-rotated test set: fifty-six rotations between 0 and 360 degrees applied along the
frontal, longitudinal, and sagittal axis (respectively, X-,Y-, and Z-axis) separately.

Table 3 describes the selected participants and sensors used for training and testing
of both the baseline and augmented HAR models. Fifteen participants of the WPS were
considered when cross-validating the model: ten for training, two for validation, and three
for testing. The participants in the cross-validation procedure were randomly split and
performance for each fold was observed to see if there were any discrepancies between the
splits. On the other hand, four random participants of the WPS and all twenty participants
of the SHS were kept separated and considered only in the final testing as a holdout set
(i.e., external validation).

(a) (b) (c)

Figure 3. Augmented test set visualization. (a) The original sensor orientation compared to the
standing human body. (b) The applied rotations of the real-life test set along the frontal and sagittal
axis. (c) The three non-simultaneous rotations applied along the frontal, longitudinal, and sagittal
axis (r1, r2, r3) with the fully-rotated test set.

Table 3. Train and test settings for the baseline and the augmented model computation. The baseline
model training did not undergo data augmentation. The two models were tested in the same way by
means of three test sets.

Train/Test Participants Rotations Rotation Axis Sensors’ Location

Train
baseline
model

WPS—15 participants - -
Front, side,

gown, chest,
left lower rib

Train
augmented

model
WPS—15 participants 0 to 180 deg.

step 20
Frontal (X-axis),
sagittal (Z-axis)

Front, side,
gown, chest,
left lower rib

Test
holdout

WPS—4 holdout
participants Test sets:

Original, real-life, fully-rotated test sets

Front, side,
gown

SHS—20 participants Front

3. Evaluation of the Orientation Impact Model and HAR Performance

A five-fold cross-validation [30] was used to train both the baseline and the augmented
models. The cross-validation performance was used to determine the augmentation ap-
proach (i.e., the range of rotations), and the effect of the rotation on the baseline model.
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Each cross-validation fold used the WPS data of ten participants for training the model, the
data of two participants for early stopping, and the data of three participants to assess the
model performance.

The activity labels of the two holdout sets were estimated by a majority-voting en-
semble of the results of the five models obtained during cross-validation for baseline and
augmented models. The results of the original test sets were averaged over the considered
participants. The real-life and fully-rotated test sets’ results were averaged on the applied
external rotations and the considered f1-score was computed by micro-averaging obtained
predictions. The performance metrics that evaluated each class were the f1-score, precision,
recall, and specificity. Additionally, the Cohen’s Kappa (Kappa-score) was considered: it
represents an inter-rater agreement coefficient between two raters, as a function of the
probability that the two raters are in perfect agreement [31]. For statistical analysis, first
the Shapiro–Wilk [32] test was used to verify the normality of f1-score values. Then, the
Wilcoxon signed-rank and the t-test were applied to establish differences within perfor-
mance distributions. The Wilcoxon test is non-parametric, and therefore, does not require
normality of the observed data [33].

4. Results
4.1. Rotation Impact on the Baseline Model

The baseline model was tested by using data augmentation, in particular, by applying
rotations, from 0 to 180 degrees, on the frontal, longitudinal, and sagittal axis. Performances
between the five cross-validation splits were observed. In particular, a minimum Kappa-
score value of 0.87 and a maximal Kappa-score value of 0.92 were obtained when testing
the baseline model with the original test set. Thus, it could be concluded that the model
performance was not dependent on which recordings were included in the training set.
Figure 4 reports the percentage of wrong classifications according to multiple axis and
groups of activities. It is noticeable how the Y-axis, parallel to the participant’s frontal plane
and parallel to the Earth’s gravity acceleration, was the least impacted axis by orientation
changes. Moreover, because of the nature of the proposed activities, the static ones (Lying in
bed, Left side, Passive wheelchair, Right side, Reading, Reclined, Sitting on the edge of the
bed, Standing, Upright, Washing hands/brushing teeth) were the least affected compared
to the dynamic ones.

Figure 4. Percentage of misclassified segments when testing the baseline model with rotations from
0 to 180 degrees applied to each axis separately. Misclassified segments correspond to the amount of
false negative predictions for the specific label

Figure 5 shows the percentage of misclassified segments of selected groups of activities
when rotations were applied along the frontal, longitudinal, and sagittal axis (respectively,
X-, Y-, and Z-axis) separately; the performance is shown for each applied rotation from 0 to
180 degrees (0, 5, 10, 20, 25, 30, 40, . . . , 180 degrees). Two groups of activities are reported:
treadmill walking and static activities. As previously observed, major differences were
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noticeable in relation to the type of activity being considered and the axis to which the
rotation was applied. It is relevant to highlight that, within dynamic activities, the error
percentage increased rapidly even for low values of applied rotations. Activity distribution
from the WPS and SHS data, divided according to the label of our interest, were as follows:
stairs ascent 5.2%, stairs descent 4.9%, static 25.2%, walking 62.5%, wheelchair 2.3%.

Figure 5. Top panels show false negative percentage profiles of treadmill walking activities; bottom
panels report false negative percentage profiles of static activities. Rotations on the X-, Y-, and Z-axis
correspond to rotations applied along the frontal, longitudinal, and sagittal axis, respectively.

4.2. Augmentation Approach

The performance of models trained with two augmented training sets was observed to
determine which one would suit best. In particular, the comparison between the two ranges
of rotation was computed from 0 to 360 degrees, every five degrees, and results were
presented for each 90 degree range. As shown in Figure 6, the model trained with a range
of rotations that span from 0 to 180 had better results over three quarters out of four, in
terms of Kappa score.

Figure 6. Performances comparison of Kappa score between two differently augmented models.



Appl. Sci. 2023, 13, 4175 9 of 18

4.3. Holdout Data Results—External Validation

When rotations were applied on a single or double axis, the baseline model signifi-
cantly increased the errors when classifying what activity the participant was doing, thus
decreasing the performance. The augmented model maintained high performance even
when rotations were applied. This consideration was confirmed from testing outcomes
on both WPS holdout and SHS data, as external validation. Figure 7 reports the obtained
results for the baseline and the augmented model according to the three augmented test
sets in terms of f1-score and Kappa-score. Appendix A reports detailed numerical results,
such as the median and interquartile range referring to Figure 7 and single class results
according to each model, each testing set, and considered participants.

Statistical analysis was conducted on the f1-score and Kappa-score of the two models.
For all data (cross-validated participants, WPS holdout participants, and SHS external
validation), no significant difference was observed related to the original test set. The
paired t-test was applied to test real-life test set performances, obtaining a p-value smaller
than 0.01 for both holdout source sets. The Wilcoxon-rank test was used for the fully-rotated
test set, showing a p-value < 0.01 for each axis of the WPS holdout data. The SHS p-values
were below 0.01 for both the frontal and sagittal axis (X- and Z-axis), while for rotations
applied along the longitudinal axis (Y-axis), no significant difference was shown.

Figure 7. F1-score (top panels) and Kappa-score (bottom panels) of the baseline and the augmented
model for the three test sets: Original, real-life and fully rotated test sets. *: test sets obtained
statistically different results for the baseline and augmented model with a p-value < 0.01.

Additionally, Figure 8 highlights the covered area of false negative percentage profile
related to treadmill walking activities. The green area belongs to the baseline model and it
is generally wider than the one of the augmented model. Low-speed treadmill activities
(62.0 km/h) majorly contributed to the upper part of the green area. On the contrary,
high-speed treadmill activities (>2.0 km/h) had generally fewer false negatives (lower part
of the green area). This behavior was less visible in the profiles of the augmented model.
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Figure 8. False negative percentage profiles of treadmill activities (i.e., walking class) for rotations
applied to each axis separately for baseline and augmented models. The top line corresponds to
the maximum profile for that rotation; the bottom line corresponds to the minimum profile for that
rotation; the black dotted lines correspond to the profile median value.

5. Discussion

The context of HAR is broad and with multiple fields of application, making it hard,
sometimes, to compare studies due to the diversity in the selected activities, environment
conditions, target population, and chosen metrics [34].

Our study was focused on simulated activities that may characterize a hospitalized
patient wearing a device with freedom of movement (i.e., pendants or inside a pocket),
localized in the upper part of the patient’s body. Thanks to data augmentation, the HAR
model was able to learn additional configurations not provided by the initial dataset.
As Figure 8 shows, the false negative percentage red area covered by the augmented
model was significantly smaller compared to the green area belonging to the baseline
model. Additionally, the red area kept the error profile low and stable while the applied
rotations increased.

To choose the augmented rotation ranges to be applied to the training data, perfor-
mances obtained from two different sets, shown in Figure 6, were evaluated: despite
the seven rotations between 0 and 180 degrees being sparse, they allowed the model
to better learn device configurations characterized by higher applied rotations. In light
of these considerations, a rotation range from 0 to 180 degrees was chosen for training
data augmentation.

To the best of our knowledge, few research studies addressed data augmentation of
acceleration signals; therefore, expanding this research field and its potential applications
could be of relevant interest in this knowledge domain. The study by Ohashi et al. [17]
addressed data augmentation according to a specific physical constraint; in particular,
it allows sensor movement only on a certain trajectory dictated by the arm’s degrees of
freedom. In contrast, our applied augmentation does not follow physical constraints. In
fact, it includes rotations that could easily happen when using sensors pending from the
body in patient monitoring devices (i.e., the PortraitTM Mobile, by GE Healthcare [35], or
the IntelliVue MX40 by Philips [36]), such as for example: the up-side down flipping of
the device (i.e., 180 degrees on the frontal axis), inclined device due to body shape (i.e.,
small rotations along the frontal axis), and inclined device due to asymmetric position of
the pending rigid support (small rotations along sagittal axis).

Collecting data spanning from many orientation configurations is highly time- and
computationally expensive; from this perspective, data augmentation could represent an
optimal approach to deal with this aspect and to increase overall performance. In Table 4,
the main augmentation-related studies found in the literature are reported, along with
the considered sensors and their positions, the applied augmentations, and the identified
activities within the proposed framework.
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Table 4. Description of the most relevant studies related to wearable sensor data augmentation in the
context of HAR. Each study is described by its sensors’ positioning, applied augmentation, type of
sensor, and recognized activities.

Author
Sensors’
Position

Applied
Augmentation

Augmented
Sensors

Recognized
Activities

[17] Forearm Rotations around
X-axis

Accelerometer
Gyroscope

EMG *

Holding,
Twisting,
Folding

[18] Left wrist
Averaging,
combining,

shuffling

Spectral
features of

accelerometer
and gyroscope

Sitting,
Standing,
Walking

[19] Wrist

Rotation,
Permutation,

Time-warping,
Magnitude-warping

Accelerometer

Motor state of
Parkinson sbj:
Bradyiknesia,

Dyskinesia

[20] Mobile phone
pockets

Resampling for
contrastive learning

Accelerometer
Gyroscope

Magnetometer

UCI-HAR [37],
MotionSense [38],

USC-HAD [39]

Proposed
model

Body trunk Rotations around the
three axis separately

Accelerometer
Stairs up, Stairs down,

Static, Walking,
Wheelchair

*: augmented sensors that undergo different kind of augmentation than the one reported in the table.

In accordance with the literature, our initial results confirmed that device displacement
might cause significant performance loss when using sensor orientation-dependent models.
The error rate steeply rises even with small rotations (i.e., 5 degrees applied to the frontal
axis ≈ 10%; 10 degrees applied to the frontal axis ≈ 20% for 0.8 km/h from Figure 5).
False negative percentages of static activities did not increase when rotations were applied
(i.e., 5 and 10 degrees applied to the frontal axis ≈ 5% for “Sitting edge of the bed” from
Figure 5). As a result of the stable acceleration pattern, the model was able to recognize
and classify this behavior as static activity. On the other hand, treadmill-related activity
results showed an error rise as the applied rotation increased over the frontal and sagittal
axis (X- and Z-axis). This trend was probably due to the nature of the different treadmill
walking activities. In particular, high-speed walking activities had a low error profile. This
activity type showed high peaks during the heel-strike and toe-off gait phases, allowing
the model to predict it more easily. However, even for high-speed walking activities,
their error percentage increased when larger rotations were applied (≈90 degree on the
frontal axis). A possible reason for this could be that large rotations along the frontal
and sagittal axis (X- and Z-axis) implied switching the acceleration component parallel to
gravity that usually carries most part of the information. Figure 9 shows an example of
walking activities of 0.8 km/h and 4.0 km/h and their corresponding applied rotations of
twenty and sixty degrees. It was visible how slower walking had a smaller acceleration
range. On the other hand, faster walking acceleration range had more dynamism and the
information spanned a wider acceleration range.
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Figure 9. Walking activities of 0.8 km/h (top) and 4.0 km/h (bottom) and the corresponding applied
rotations of twenty and sixty degrees (g = 9.81 km/s2).

As shown in Figure 4, the static activities were the least affected by rotations on all
orientation axes, probably due to their low acceleration values. Considering the models’
performance differences among activities, another possible approach could be a tailored
augmentation to the activity itself. Future work might consider transformations applied
only to the classes that are majorly influenced by rotation, i.e., the classes with a high
dynamic range, in terms, for example, of acceleration magnitude. This way, redundancy
would be avoided and data would be augmented more efficiently.

Limitations and Future Work

Among the five prediction classes, further processing could be applied to the “wheelchair”
class. As a matter of fact, it was easy to misclassify it with static or walking activities, due
to acceleration pattern similarities. Our performance showed a low precision for the
original test set and a high value for recall of the wheelchair class (0.41 ± 0.23 precision,
0.92 ± 0.12 recall for SHS participants, original test set). Frequently, slow walking activities
were wrongly classified as wheelchair. A possible future improvement to “wheelchair”
precision could be to apply post-processing steps to the predicted “wheelchair” class. For
example, contextualizing the single “wheelchair” segment with the surrounding ones (i.e.,
within a certain number of consecutive “walking” segments, if “wheelchair” is detected,
that prediction will likely be wrong, and therefore, post-processed as “walking”). Fur-
ther steps could also consider prediction contextualization for all classes, either through
post-processing or by adding specific layers to the deep-learning model (i.e., recurrent
layer). Additionally, future studies should collect an higher amount of “wheelchair”,
“stairs ascent”, and “stairs descent” data, given the imbalance of such data classes used in
these studies.

Our application used accelerometer sensors; however, multiple studies have combined
together different sensor modalities belonging to Inertial Measurement Unit technology,
involving measurements of accelerometer, gyroscope, and sometimes, magnetometer data.
Jiang et al. [40] proposed a method that merges accelerometer and gyroscope data into an
activity image. They used CNN power and obtained outstanding accuracy performances
related to three different public datasets. Using these sensors could be helpful, respectively,
for different types of activities. For example, stairs ascending and descending performances
could be improved using gyroscope or barometer data, while more dynamic activities, such
as walking, rely on acceleration data. In most circumstances, acceleration measurements
primary lead the activity classification, while gyroscope data have a secondary support
role [41]. In spite of the fact that more signals and sensors could be integrated, we focused
our research on a single triaxial accelerometer-based solution. This approach has the
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advantage of being easily applicable to any device that contains an accelerometer, without
the need to re-design its components. Additionally, it maintains low power consumption.

The used model architecture, CNN, lies within the most common DNN-based ap-
proaches [11]. Despite many advantages and progresses made through DNN-based mod-
els, multiple challenges still apply to these techniques, such as their explainability and
generalization capabilities compared with models built on extracted features from the
respective knowledge domain [42]. Considering the SHS study, within the context of a
patient-monitoring solution, using DL capabilities proved to be effective and promising [12].
Through this study, we examined how rotations could impact DL algorithms and how data
augmentation address for this aspect. This challenge might be found also for other ML
approaches that are orientation-dependent (e.g., orientation dependent features, three-axis
acceleration). Future work should focus on comparing the augmented DL approach with
other techniques, such as HMM, or feature-based models [43,44].

The good performances of the augmented model obtained during cross-validation
were confirmed by the holdout data results. This indicates that our model can well gen-
eralize using unseen data, i.e., participants. However, holdout data belong to the same
study (WPS) or to a similarly acquired one (SHS) compared to training data, and while the
participants were different between the sets, the activities performed were similar. This
might have partially biased the performance of the classification algorithms that still needs
to be confirmed in a real-life scenario. Despite this, the SHS was a different research study
compared to the WPS and added additional holdout data. Moreover, many activities of the
protocols were self-paced, meaning that each participant could choose their own walking
speed (i.e., slow, fast, normal walk, and the aided-walking activities), and thus, adding
data variability. Studies that include acceleration measurements whose source is a clinical
population would help better define the generalization capabilities of the model.

6. Conclusions

This research investigated the effects of device displacement on a DNN-based HAR
model performance and proposed an orientation-independent HAR model. Further rele-
vant steps might relate to model testing on a real clinical population and to wearable sensor
data augmentation using other approaches, such as activity-tailored augmentation.

By applying HAR to wearable devices, it is possible to monitor and classify the
activities performed by a patient. Device displacement is among the biggest challenges
related to wearable sensors. A primary analysis showed how displacement, even of small
entity, could negatively impact HAR algorithm performance. Ultimately, we developed an
orientation-independent model that classified five pre-defined activities within a range of
actions likely to happen in a clinical environment. Through this research, a possible solution
was proposed for device displacement in HAR, and new challenges were highlighted to
broaden this field and get closer to better activity monitoring solutions for clinicians
and patients.
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Appendix A

Here, we report numerical performances related to the baseline and augmented model
in particular, as referred to in Figure 4 (Table A1) and Figure 7 (Table A2) .

Table A1. Median and IQR of false negative percentages according to different activity groups.

X-Axis Y-Axis Z-Axis

Static (static) 1.43 (1.58) 7.14 (1.45) 7.11 (4.19)
Treadmill walking (walking) 47.69 (18.02) 5.01 (0.62) 33.71 (28.74)

Stairs ascent (stairs ascent) 75.67 (41.21) 18.34 (4.6) 58.99 (56.78)
Stairs descent (stairs descent) 57.71 (32.85) 20.32 (2.78) 30.69 (16.24)

Walking aids (walking) 84.13 (16.58) 8.9 (0.75) 56.65 (39.47)
Intermittent shuffling(walking) 86.38 (19.42) 9.09 (1.0) 63.63 (46.32)
Active wheelchair(wheelchair) 49.33 (38.33) 42.62 (25.06) 32.41 (43.6)

Table A2. Median and IQR of f1-score and Kappa-score according to the two holdout sets and three
test sets.

Test Set Mdl Original Real-Life Fully-Rotated

f1-Score

WPS
Holdout

Base. 0.96 (0.01) 0.80 (0.15) 0.78 (0.38)
Aug. 0.96 (0.02) 0.92 (0.03) 0.92 (0.03)

SHS Base. 0.92 (0.08) 0.84 (0.09) 0.77 (0.24)
Aug. 0.92 (0.07) 0.87 (0.03) 0.88 (0.03)

Kappa-score

WPS
Holdout

Base. 0.93 (0.01) 0.80 (0.20) 0.66 (0.51)
Aug. 0.92 (0.02) 0.87 (0.04) 0.88 (0.05)

SHS Base. 0.85 (0.13) 0.72 (0.12) 0.61 (0.35)
Aug. 0.85 (0.11) 0.77 (0.04) 0.78 (0.05)

Following the numerical results of the baseline and augmented models of holdout
data, each of the three proposed test sets were divided in subsections.

Appendix A.1. Original Test Set Results for Individual Classes

Table A3 reports the results of the original test set referring to the WPS holdout
participants. Table A4 reports the same results but referring to the SHS participants.

Table A3. Single class results of baseline and augmented model for the original test set. Considered
data: WPS holdout participants.

Mdl Metric Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.89 ± 0.03 0.99 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.70 ± 0.13
recall 0.88 ± 0.02 0.86 ± 0.06 0.96 ± 0.03 0.97 ± 0.02 0.93 ± 0.06Base. f1-score 0.89 ± 0.02 0.92 ± 0.04 0.97 ± 0.01 0.97 ± 0.01 0.79 ± 0.1

specificity 0.99 ± 0.0 1.00 ± 0.0 0.99 ± 0.0 0.95 ± 0.02 0.99 ± 0.01

precision 0.88 ± 0.09 0.94 ± 0.05 0.9 ± 0.07 0.97 ± 0.01 0.41 ± 0.23
recall 0.89 ± 0.09 0.88 ± 0.12 0.94 ± 0.04 0.89 ± 0.09 0.92 ± 0.12Aug. f1-score 0.88 ± 0.06 0.90 ± 0.08 0.92 ± 0.03 0.92 ± 0.05 0.53 ± 0.23

specificity 1.00 ± 0.0 1.00 ± 0.0 0.99 ± 0.0 0.93 ± 0.02 0.98 ± 0.01
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Table A4. Single class results of baseline and augmented model for the original test set. Considered
data: SHS participants.

Mdl Metric Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.83 ± 0.09 0.94 ± 0.05 0.92 ± 0.06 0.97 ± 0.01 0.39 ± 0.21
recall 0.92 ± 0.07 0.88 ± 0.12 0.92 ± 0.04 0.89 ± 0.09 0.91 ± 0.15Base. f1-score 0.87 ± 0.06 0.90 ± 0.07 0.92 ± 0.03 0.92 ± 0.05 0.51 ± 0.23

specificity 0.99 ± 0.01 1.0 ± 0.0 0.97 ± 0.02 0.94 ± 0.02 0.95 ± 0.06

precision 0.88 ± 0.09 0.94 ± 0.05 0.90 ± 0.07 0.97 ± 0.01 0.41 ± 0.23
recall 0.89 ± 0.09 0.88 ± 0.12 0.94 ± 0.04 0.89 ± 0.09 0.92 ± 0.12Aug. f1-score 0.88 ± 0.06 0.90 ± 0.08 0.92 ± 0.03 0.92 ± 0.05 0.53 ± 0.23

specificity 1.0 ± 0.01 1.0 ± 0.0 0.96 ± 0.03 0.94 ± 0.03 0.95 ± 0.06

Appendix A.2. Real-Life Test Set Results for Individual Classes

Table A5 reports the results of the real-life test set referring to the WPS holdout
participants. Table A6 reports the same results but referring to the SHS participants.

Table A5. Single class results of the baseline and augmented model for the real-life test set. Considered
data: WPS holdout participants.

Mdl Metric Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.88 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.23 ± 0.12
recall 0.87 ± 0.03 0.84 ± 0.03 0.96 ± 0.0 0.79 ± 0.12 0.88 ± 0.03Base. f1-score 0.87 ± 0.02 0.9 ± 0.02 0.97 ± 0.0 0.86 ± 0.08 0.35 ± 0.15

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.95 ± 0.0 0.88 ± 0.08

precision 0.94 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.95 ± 0.0 0.41 ± 0.09
recall 0.81 ± 0.01 0.83 ± 0.01 0.98 ± 0.0 0.92 ± 0.03 0.93 ± 0.0Aug. f1-score 0.87 ± 0.01 0.90 ± 0.01 0.98 ± 0.0 0.94 ± 0.02 0.56 ± 0.09

specificity 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.93 ± 0.0 0.96 ± 0.02

Table A6. Single class results of the baseline and augmented model for the real-life test set. Considered
data: SHS participants.

Mdl Metric Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.80 ± 0.02 0.95 ± 0.02 0.92 ± 0.01 0.97 ± 0.0 0.13 ± 0.04
recall 0.91 ± 0.01 0.84 ± 0.02 0.93 ± 0.0 0.79 ± 0.06 0.93 ± 0.01Base. f1-score 0.85 ± 0.01 0.89 ± 0.02 0.92 ± 0.0 0.87 ± 0.04 0.23 ± 0.07

specificity 0.99 ± 0.0 1.0 ± 0.0 0.97 ± 0.0 0.95 ± 0.01 0.88 ± 0.05

precision 0.84 ± 0.01 0.93 ± 0.0 0.91 ± 0.0 0.97 ± 0.0 0.18 ± 0.03
recall 0.88 ± 0.01 0.83 ± 0.02 0.94 ± 0.0 0.85 ± 0.02 0.93 ± 0.01Aug. f1-score 0.86 ± 0.01 0.88 ± 0.01 0.92 ± 0.0 0.90 ± 0.01 0.30 ± 0.04

specificity 0.99 ± 0.0 1.0 ± 0.0 0.97 ± 0.0 0.94 ± 0.0 0.92 ± 0.02

Appendix A.3. Fully-Rotated Test Set Results for Individual Classes

Table A7 reports the results for the baseline and augmented models of the fully-rotated
test sets referring to the WPS holdout participants. Table A8 reports the same results but
referring to the SHS participants.
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Table A7. Single class results of baseline and augmented model for the fully-rotated test set on every
axis. Considered data: WPS holdout participants.

Mdl Ax Metric
Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.34 ± 0.32 0.40 ± 0.34 0.99 ± 0.01 0.53 ± 0.23 0.43 ± 0.29
recall 0.66 ± 0.23 0.56 ± 0.31 0.58 ± 0.23 0.91 ± 0.06 0.33 ± 0.29

f1-score 0.37 ± 0.3 0.39 ± 0.3 0.70 ± 0.16 0.65 ± 0.17 0.32 ± 0.27X

specificity 0.99 ± 0.02 0.97 ± 0.06 0.69 ± 0.21 0.93 ± 0.05 0.92 ± 0.1

precision 0.84 ± 0.03 0.79 ± 0.05 0.95 ± 0.01 0.96 ± 0.02 0.66 ± 0.17
recall 0.85 ± 0.04 0.97 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.55 ± 0.2

f1-score 0.84 ± 0.03 0.87 ± 0.03 0.95 ± 0.01 0.96 ± 0.01 0.57 ± 0.13Y

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.94 ± 0.01 0.98 ± 0.02

precision 0.43 ± 0.32 0.65 ± 0.21 0.98 ± 0.02 0.57 ± 0.23 0.48 ± 0.3
recall 0.61 ± 0.2 0.59 ± 0.24 0.73 ± 0.26 0.95 ± 0.03 0.19 ± 0.15

Base.

f1-score 0.46 ± 0.28 0.58 ± 0.19 0.81 ± 0.19 0.69 ± 0.18 0.23 ± 0.18Z

specificity 0.98 ± 0.01 0.95 ± 0.05 0.79 ± 0.26 0.95 ± 0.04 0.90 ± 0.09

precision 0.74 ± 0.07 0.71 ± 0.13 0.98 ± 0.01 0.95 ± 0.02 0.91 ± 0.04
recall 0.91 ± 0.03 0.96 ± 0.03 0.96 ± 0.03 0.93 ± 0.02 0.59 ± 0.17

f1-score 0.82 ± 0.05 0.81 ± 0.1 0.97 ± 0.01 0.94 ± 0.02 0.70 ± 0.12X

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.90 ± 0.03 0.98 ± 0.02

precision 0.75 ± 0.04 0.81 ± 0.02 0.96 ± 0.0 0.97 ± 0.01 0.89 ± 0.04
recall 0.92 ± 0.02 0.97 ± 0.02 0.98 ± 0.0 0.94 ± 0.01 0.64 ± 0.13

f1-score 0.83 ± 0.03 0.88 ± 0.02 0.97 ± 0.0 0.96 ± 0.01 0.74 ± 0.07Y

specificity 0.99 ± 0.0 1.0 ± 0.0 0.99 ± 0.01 0.94 ± 0.01 0.98 ± 0.02

precision 0.70 ± 0.08 0.79 ± 0.06 0.97 ± 0.01 0.92 ± 0.03 0.93 ± 0.02
recall 0.93 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.93 ± 0.02 0.42 ± 0.09

Aug.

f1-score 0.79 ± 0.06 0.86 ± 0.04 0.97 ± 0.0 0.93 ± 0.02 0.57 ± 0.08Z

specificity 0.98 ± 0.01 0.95 ± 0.05 0.79 ± 0.26 0.95 ± 0.04 0.90 ± 0.09

Table A8. Single class results of baseline and augmented model for the fully-rotated test set on every
axis. Considered data: SHS participants.

Mdl Ax Metric
Stairs
Ascent

Stairs
Descent Static Walking Wheelchair

precision 0.40 ± 0.30 0.40 ± 0.31 0.98 ± 0.03 0.64 ± 0.13 0.40 ± 0.32
recall 0.53 ± 0.24 0.49 ± 0.30 0.61 ± 0.17 0.96 ± 0.03 0.17 ± 0.17

f1-score 0.41 ± 0.26 0.40 ± 0.28 0.73 ± 0.11 0.76 ± 0.09 0.20 ± 0.18X

specificity 0.99 ± 0.02 0.99 ± 0.02 0.75 ± 0.14 0.94 ± 0.04 0.94 ± 0.07

precision 0.89 ± 0.02 0.81 ± 0.02 0.91 ± 0.01 0.90 ± 0.02 0.70 ± 0.24
recall 0.80 ± 0.03 0.93 ± 0.02 0.90 ± 0.02 0.96 ± 0.01 0.24 ± 0.09

f1-score 0.84 ± 0.02 0.87 ± 0.02 0.91 ± 0.01 0.93 ± 0.01 0.34 ± 0.09Y

specificity 0.99 ± 0.0 1.0 ± 0.0 0.97 ± 0.01 0.92 ± 0.01 0.96 ± 0.02

precision 0.44 ± 0.36 0.68 ± 0.17 0.96 ± 0.04 0.63 ± 0.13 0.65 ± 0.31
recall 0.56 ± 0.16 0.62 ± 0.25 0.72 ± 0.21 0.98 ± 0.01 0.15 ± 0.10

Base.

f1-score 0.42 ± 0.28 0.61 ± 0.17 0.80 ± 0.14 0.76 ± 0.09 0.18 ± 0.08Z

specificity 0.99 ± 0.01 0.98 ± 0.03 0.82 ± 0.19 0.97 ± 0.02 0.89 ± 0.09

precision 0.80 ± 0.05 0.72 ± 0.11 0.94 ± 0.02 0.86 ± 0.03 0.86 ± 0.08
recall 0.81 ± 0.08 0.84 ± 0.07 0.88 ± 0.04 0.96 ± 0.01 0.24 ± 0.10

f1-score 0.80 ± 0.06 0.77 ± 0.09 0.91 ± 0.02 0.91 ± 0.02 0.37 ± 0.10X

specificity 0.99 ± 0.0 1.0 ± 0.0 0.95 ± 0.02 0.93 ± 0.01 0.94 ± 0.03

precision 0.84 ± 0.03 0.81 ± 0.02 0.92 ± 0.01 0.90 ± 0.02 0.81 ± 0.09
recall 0.88 ± 0.02 0.91 ± 0.02 0.90 ± 0.01 0.96 ± 0.0 0.26 ± 0.04

f1-score 0.86 ± 0.02 0.86 ± 0.02 0.91 ± 0.01 0.93 ± 0.01 0.38 ± 0.04Y

specificity 1.0 ± 0.0 1.0 ± 0.0 0.96 ± 0.0 0.92 ± 0.01 0.96 ± 0.01

precision 0.79 ± 0.05 0.80 ± 0.05 0.93 ± 0.01 0.85 ± 0.02 0.92 ± 0.01
recall 0.86 ± 0.04 0.89 ± 0.04 0.89 ± 0.02 0.96 ± 0.0 0.19 ± 0.03

Aug.

f1-score 0.82 ± 0.04 0.84 ± 0.03 0.91 ± 0.01 0.90 ± 0.02 0.31 ± 0.04Z

specificity 1.0 ± 0.0 1.0 ± 0.0 0.96 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
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