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Summary

Traditional computers are optimized for high precision calculations, tasks which are
difficult for humans. However, there is a shift towards applications that operate more
like humans: processing unstructured and noisy data in real time, while adapting
to change. Nowadays we see many of these applications, such as self-driving cars,
problem solving tasks and facial and language recognition. This can be realized by
Artificial Intelligence (AI), supported by large artificial neural networks and while
powerful, these software-based learning algorithms are energy-inefficient. Our brain
on the other hand is extremely efficient in similar tasks. Unlike traditional computers
it allows for highly parallel computation, it is dynamic, reconfigurable and can learn
from experience. Neuromorphic computing aims to mimic several crucial concepts
of the brain to efficiently emulate AI tasks and apply learning at the hardware level.
While many technologies and materials are being currently investigated for applica-
tions in neuromorphic computing, this thesis particularly focuses on organic materials
that have significant advantages for applications at the interface with biology. At
the same time, the field of bioelectronics is also rapidly increasing and has made
enormous progress towards the development of devices capable of sensing, mon-
itoring, and controlling a biological environment. Nevertheless, fully autonomous
bioelectronic applications do not only demand the acquisition of biological signals,
but also require local low power operation, data processing and storage. In this thesis
we use organic materials as the building blocks for neuromorphic systems to advance
future intelligent bioelectronic applications.
Many hardware applications rely on training algorithms executed in software. Here
we demonstrate a smart biosensing platform that can be trained completely on-chip to
classify a model disease. It is based on organic neuromorphic devices as the synaptic
weights of a hardware neural network, its associated output classification hardware,
and sensors. The versatility of the neuromorphic system is highlighted via on-chip
retraining, by switching sensor input signals and by the formation of logic gates
on the same chip. This training algorithm represents the hardware analogue of the
software perceptron algorithm (that allows classification of linear separable binary
data). While it is the first demonstration of training fully in hardware, efforts have
been made to design hardware algorithms that allow for more complex classification
problems using a multilayer neural network that requires training with a backpropa-
gation algorithm. In this thesis we propose a novel updating sequence that enables
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backpropagation in hardware without the need to store the values of weights and
gradients throughout the learning phase which has been considered one of the greatest
challenges. In order to integrate these neuromorphic circuitries with true biological
systems we aim to bridge the gap by replicating the biological neuronal pathway. The
fundamental communication mechanism within the human body relies on the spiking
frequency of action potentials which can be modulated by neurotransmitters. In this
thesis we present a novel adaptive spiking circuit that replicates the key biological
functions of neurons and its synapses and their interdependent chemical synaptic
connection. We combine these functionalities to establish an artificial retinal pathway
and show the signal transduction from light stimulus to spiking frequency and to
dopamine-mediated plasticity. The chemically adaptive neuromorphic spiking circuit
constitutes a fundamental building block for programmable neural pathways that can
locally transduce and process both physical as well as physiological environmental
information, an essential step towards realizing processors at the biohybrid interface.
Advanced concepts enabling computing systems that can interact with the biological
environment clearly need stable materials that can operate at biological interfaces. We
consider various organic materials. We designed an n-type copolymer and systemati-
cally alter the length of its side chains in order to understand the structure-performance
relationship to allow for design of high-performance materials. One remarkable high-
performance material is highlighted due to its versatility. We show a tunable sensing
circuit constructed from this single material, based on a complementary logic inverter
combined with a neuromorphic memory element, and which can locally modulate
biologically relevant signals. The ability to preprocess signals locally is important
as (hardware) neural network applications require processed signals such as input
normalization.
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Publiekssamenvatting

De traditionele computersystemen zijn geoptimaliseerd in het heel precies uitvoeren
van berekeningen. Echter, we zien steeds meer toepassingen die acties van de mens
uitvoeren, zoals het leren en aanpassen aan een veranderende omgeving, zelfs in
real-time, en omgaan met ongestructureerde en imperfecte data. Dit zijn taken die
een stuk lastiger zijn voor de klassieke computers. Deze toepassingen zien we
bijvoorbeeld terug in zelf-rijdende auto’s, en gezichts- en taalherkenning, en zijn
gebaseerd op kunstmatige intelligentie (oftewel artificial intelligence). Kunstmatige
intelligentie bestaat uit grote neurale netwerken die erg succesvol zijn maar middels de
huidige computersystemen ook erg inefficiënt in het energieverbruik. Onze hersenen,
daarentegen, zijn juist heel efficiënt in het uitvoeren van dit soort complexe taken.
In tegenstelling tot de traditionele computersystemen, kan ons brein processen en
berekeningen tegelijkertijd uitvoeren en leren aan de hand van eerdere ervaringen.
Het vakgebied van Neuromorphic computing streeft er naar om de hersenen na te
bootsen met als doel deze toepassingen efficient uit te kunnen uitvoeren, slimme
toepassingen te realiseren die lokaal kunnen leren en zelfs een interactie tussen
machine en mens te creëren. Er zijn verschillende technologieën en materialen die
worden onderzocht, echter in deze thesis wordt er vooral gefocust op organische mate-
rialen, welke grote voordelen hebben voor slimme toepassingen die een raakvlak met
de biologie hebben. Het betreft geleidende organische polymeren, lange moleculen
die een elektrische stroom kunnen doorlaten. Ze kunnen hun weerstand aanpassen aan
de hand van negatief (elektronen) of positief (ionen) geladen deeltjes die het materiaal
binnenkomen of verlaten. Het materiaal onthoudt die aangepaste weerstand en kan
gezien worden als een geheugen functie. Veel communicatie in ons lichaam en in
onze hersenen verloopt ook via ionen. Dat maakt deze materialen dus zo geschikt,
niet alleen om de werking van cellen in ons brein te imiteren, maar ook om direct met
de cellen te communiceren. We onderzoeken verschillende organische materialen
die dienen als de bouwstenen voor neuromorfische systemen. Met deze materialen
maken we elektronische circuits die aspecten van het brein kunnen imiteren zoals het
communiceren tussen cellen, het leren en het verwerken van informatie. Zo willen we
toepassingen realiseren die autonoom en adaptief in een biologische omgeving zoals
het menselijk lichaam kunnen functioneren.
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Chapter1
Introduction to neuromorphic computing

Computers have become essential to all aspects of modern life and are every-
where all over the globe. The history of computing has been marked by constant
innovation and transformation, with new paradigms emerging as researchers
seek to overcome the limitations of existing technologies. Up until the 1960s the
most powerful computers were analog. Digital computers exploded to the scenes
with the advent of transistors and now, almost everything is digital. While digital
computing has been the dominant computing paradigm for several decades,
it is now facing new challenges that are driving the need for a new type of
computing. Neuromorphic, or brain-inspired, computing uses both analog and
digital computing to mimic the efficient information processing of the brain.
Combined with bioelectronics it has the potential to realize smart and adaptive
systems at the interface with biology.
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1.1 From analog to digital computers
The history of computing machines can be traced back to the earliest human civi-
lizations, who developed mechanical devices such as the abacus for performing basic
calculations. Over time, more sophisticated devices were developed, including slide
rules, logarithmic tables, and other tools that made it easier to perform complex
mathematical operations. However, it was not until the development of electronic
computers in the 20th century that computing truly became a technology that had a
profound and far-reaching impact. The first computers were analog machines that
used physical components such as gears, levers, and springs to perform calculations.
These machines were used primarily for scientific and engineering applications, such
as calculating the trajectory of artillery shells and predicting the weather.[1]
One of the most famous early analog computers was the Antikythera mechanism, an
ancient Greek device having gears that represent the motion of celestial objects that
was used to calculate astronomical positions and eclipses.[2] During World War II
analog computers were used extensively, particularly in the development of radar and
other military technologies. However, these were limited in their capabilities such
as speed and accuracy and were eventually superseded by digital computers. The
problem with analog computers is that the physical device is a model for the real
world. Therefore, any inaccuracy in the components translates into inaccuracy of the
computation. The important discovery made by Claude Shannon in 1936 opened the
door the the digital revolution. He showed that any numerical operation can be carried
out using the basic building blocks of Boolean algebra: two values true or false (one
or zero), and three operations, AND, OR, and NOT. This makes digital computers the
ideal versatile machines.[1, 3]
The first digital computers were developed in the 1940s and 1950s, and were based
on the binary number system, using only two digits (0 and 1) to represent all numbers
and operations. The first digital computer was the Electronic Numerical Integrator
and Computer (ENIAC), which used vacuum tubes to perform calculations and could
perform up to 5,000 additions per second.[4] Vacuum tubes were widely used in
electronic devices until the invention of the transistor in the 1950s, a fundamental
building block in modern electronic systems. Its invention revolutionized the field of
electronics. It was smaller, cheaper, and more reliable than the existing vacuum tubes.
It was only after the transistor and the subsequent development of the integrated circuit
in the 1960s that it became possible to build smaller and more powerful computers.
These were based on the so called von Neumann architecture which enabled to build
general-purpose devices, unlike analog computers which were an analog for only one
type of problem.[1] Furthermore, since they operate on symbols (ones and zeros)
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digital computers provide exact answers, and their operations are repeatable and far
more resilient to noise.[5] Moreover, almost any computation can be executed using
only a few components which allows those components to be fully miniaturized and
optimized. As a result, digital computing has been the dominant computing paradigm
for several decades. However, it is facing new challenges that are driving the need for
a new type of computing.

1.2 Neuromorphic computing: Best of both worlds
Digital computing has been highly effective in processing large amounts of data, but
it has its shortcomings. Moore’s Law, a prediction made by Gordon Moore which
states that the number of transistors on a chip doubles every two years, is reaching
its limit because transistors have now nearly the same size as atoms. Simultaneously,
data-intensive applications have placed a high demand on hardware performance as
advancements in machine learning are straining the capabilities of digital computers.
One of the biggest challenges faced by digital computing today is the growing demand
for more efficient and powerful computing systems. The computing systems based
on the von Neumann architecture have a physical separation between processing and
memory units and are therefore largely inefficient due to the relatively slow and energy
demanding data movement between these two units.[1, 6]
As a solution to these challenges, a new generation of computing has emerged that
takes its inspiration from the human brain: Neuromorphic computing (see Fig. 1.1).
Unlike conventional von Neumann computers the brain is extremely efficient in
dealing with complex, unstructured and noisy data and it can adapt in real-time. The
term "neuromorphic" was first used in the early 1990s by Carver Mead, to describe
a new approach to computing that was inspired by the information processing of the

Figure 1.1: Neural network architectures. Schematic representation of a) a biological neural network
as in the brain, b) an artificial software neural network used in digital computers and, c) an artificial
hardware neural network used in neuromorphic (brain-inspired) computing.
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brain.[7] One important aspect is that the computational and organizing principles of
the nervous system differ significantly from modern computers. In contrast to Boolean
logic and precise digital representations, nervous systems carry out robust and reliable
computation using hybrid analog/digital unreliable processing elements.[5, 8] The
term neuromorphic computing is somewhat flexible. It describes electronic process-
ing systems that emulate the bio-physics of real neurons and synapses, ranging from
reproducing neurophysiological principles with detailed synaptic chemical dynamics
to a more high-level brain-inspired representation such as the vector-matrix multipli-
cation.[6]
The goal of neuromorphic computing is to develop more efficient and powerful
computing systems that can perform complex tasks with greater speed and accuracy
than is possible with traditional digital computing. While promising, neuromorphic
computing is still in the early stages of development. Ongoing research focuses on
exploring neuromorphic algorithms and circuitry and developing new devices and
materials. Simultaneously, the field of applications for neuromorphic computing is
still growing. In this work we focus on applications that combine neuromorphic
computing with bioelectronics, with the potential to realize smart and autonomous
systems at the interface with biology. To achieve this, suitable materials that can
operate at biological interfaces are clearly needed. The success of many organic
bioelectronic applications results from reduced interface impedance and extraordinar-
ily high electrochemical transconductance (ion-to-electron transduction) in organic
mixed ionic–electronic conductors (OMIECs). These and other unique properties
such as biocompatibility, low voltage operation, simple fabrication processing, and
stretchability and flexibility of materials have opened a wide variety of possible
bioelectronic applications. Recently, these materials have also emerged in tunable
neuromorphic devices and biohybrid systems due to their dynamic range, the ability
to electrochemically dope these polymers and their interaction with neurotransmitters.

1.3 Thesis outline
In this thesis we discuss various aspects of organic neuromorphic computing that
are central for realizing smart and adaptive bioapplications. The thesis starts with a
perspective in chapter 2. Chapter 3 and 4 are dedicated to executing the conventional
software algorithms on hardware, while chapter 5 aims to mimic essential biological
functions as building blocks of artificial neuronal pathways. Chapters 6 and 7 continue
on neuromorphic materials and lastly chapter 8 concludes this thesis.
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In chapter 2, we highlight the recent∗ trends in organic neuromorphic devices and
organic bioelectronic sensing platforms. We discuss opportunities in merging these
two fields to further close the loop between sensing and stimulation/actuation for
smart bioelectronic applications. Materials and devices that exhibit memory and have
the potential to operate at the interface with biology can pave the way for novel data
classification paradigms with bio-inspired features in information processing. We
envision smart multi-modal sensor platforms and local neuromorphic processing to
enable fully autonomous applications in the future.
Chapter 3 demonstrates a programmable biosensor as a showcase for advanced
adaptive bioelectronic systems. We show the classification of the genetic disease
cystic fibrosis from artificial sweat using ion selective sensors. We highlight the
versatility of the organic neuromorphic chip by demonstrating multiple retraining
processes for various sets of input signals.
In chapter 4 we propose an alternative to the traditional backpropagation algorithm,
which can be executed fully in hardware to bypass the power-hungry alternative in
software. Importantly, this approach updates its layers progressively by propagating
the information back through the network which allows for expanding to multilayer
neural networks and does not require the storage of weight information. First, we show
with a neuromorphic circuit simulation that the layer-by-layer error backpropagation
approach yield similar accuracy compared to the software alternative. We further
demonstrate the working principle of the in situ error calculation and the proposed
progressive backpropagation method using a single and double layer hardware neural
network for binary and XOR classification.
In chapter 5 we present a novel adaptive spiking circuit that is able to replicate
various functionalities of neurons and their synapses. We emulate the afferent neurons
sensory coding from external physical stimuli and the neuromodulatory activity of in-
terneurons. We further demonstrate an interdependent chemical synaptic connection
by associating the spiking circuit with biohybrid synapses. The circuit constitutes
a fundamental building block for programmable neural pathways that can locally
transduce and process both physical as well as physiological environmental informa-
tion. Finally, we combine both functionalities to establish a full neuronal pathway
replicating the retina as a biological system model and show the signal transduction
from light stimulus to spiking frequency and to dopamine-mediated plasticity.
Chapter 6 demonstrates a novel high-performance material, P-3O, which allows
for the fabrication of a monolithically integrated adaptive sensor. We show the

∗Research after June 2019 is not included in this chapter.
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remarkable characteristics of this semiconducting polymer, including symmetric p-
and n-type transfer curves, high performance, and ambient stability. We fabricated
a tunable sensing circuit based on a complementary logic inverter combined with a
neuromorphic memory element constructed from this single material, and show that
it can modulate biologically relevant signals like electromyograms (EMGs) and elec-
trocardiograms (ECGs) locally. Finally, we demonstrate that a small neuromorphic
array based on this material yields high classification accuracy in heartbeat anomaly
detection.
Chapter 7 focuses on three non-fused, NDI-2Tz copolymers decorated with and
without hydrophilic TEG side chains. We demonstrate the transistor performance of
the materials in aqueous environment and relate this to the hydrophilicity and electron
affinity. We also show the transistor as well as their neuromorphic performance while
operating with a solid state electrolyte. This chapter contributes to the understanding
of the structure-performance relationship of these n-type materials and demonstrates
that non-fused donor-acceptor conjugated polymers can achieve high electron mobil-
ity and ion penetration capability simultaneously.
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2Chapter2
Towards organic neuromorphic devices for adaptive sensing and

novel computing paradigms in bioelectronics

Bioelectronics has made enormous progress towards the development of con-
cepts, materials and devices that are capable of sensing, monitoring and con-
trolling a biological environment, by incorporating concepts such as local drug
delivery and electrical, chemical or mechanical stimulation. Nevertheless, fully
autonomous bioelectronic applications demand not only the acquisition of bi-
ological signals, but also local low power data processing, storage and the ex-
traction of specific features of merit. Here, we present an overview of the latest
studies on organic neuromorphic and sensing devices. We also speculate on
the need for smart and adaptive sensing and highlight the potential of these
concepts to enhance the interaction efficiency between electronics and biological
substances.

This chapter is based on Towards organic neuromorphic devices for adaptive sensing and
novel computing paradigms in bioelectronics, Eveline R. W. van Doremaele, Paschalis
Gkoupidenis, Yoeri van de Burgt, Journal of Materials Chemistry C, 7, (41), 2019.
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2.1 Introduction
Traditional computing systems are unable to capture the capability of the brain in real world
information processing as evidenced by the anticipated end to Moore’s law. Organic (elec-
trochemical) materials have recently emerged as building blocks of neural processing[1] and
possess basic forms of neuroplasticity that are able to emulate brain-like functionality at the
device level [2] (see Fig. 2.1). Compared to inorganic materials, the excellent characteristics
of organic electronic materials, such as low energy operation and tunability, allow these
materials to be used as a first step towards efficient neuromorphic computing systems.[7] In
fact, devices based on organic-mixed conductors demonstrate good electrical stability (105 sec
retention time)[8] as well as excellent endurance (> 109 switching cycles)[6] and allow for
direct control of material characteristics. A recently demonstrated ionic floating gate concept
based on organic devices shows efficient parallel updating of a small array.[6] Small-scale
perceptron-based artificial neural networks have also been demonstrated.[9] Another concept
was recently presented based on an evolvable organic electrochemical transistor, where long-
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Figure 2.1: Recent examples of organic transistors in neuromorphic and sensing applications. (a)
Electrolyte-gate organic field effect transistor. A gate pulse forms a double layer between the electrolyte
and organic semiconductor, which turns the channel on. (b) Organic electrochemical transistor (OECT).
The electrolyte and ions penetrate the complete volume of the (semi)-conducting polymer, thereby
switching the channel on or off. (c) Internal ion-gated organic electrochemical transistor (IGT). Here,
contained mobile ions within the conducting polymer channel are responsible for the conductance
switching, which enables both volumetric capacitance and short ionic transit time. (d) Electrochemical
non-volatile organic device (ENODe). This device combines an OECT with a polymeric gate material,
to allow for non-volatile switching of the channel.[1] (e) pH sensor based on a charge-coupled device.[3]
(f) Wearable cortisol sensor based on an OECT channel.[4] (g) Example of a simple circuit based on IGT
devices.[5] (h) Simple neuromorphic array based on ENODe devices, that allows for parallel updating
by employing memristors as access devices.[6]
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term changes rely on the electro-polymerization of a conductive polymer between the device
terminals.[10] Apart from organic mixed conductors, ferroelectric organic neuromorphic
transistors have also been demonstrated recently.[11] These examples showcase the initial
efforts towards building blocks for the realization of small organic-based neural networks and
applications in local computation and feature extraction.
Due to their ability to operate in global or shared electrolytes, organic neuromorphic devices
have shown multi-terminal operations [12], global connectivity control[13] as well as phase-
dependent synchrony through global electrical oscillations.[14] The introduction of global
phenomena in organic neuromorphic devices demonstrates the effectiveness in mimicking
brain-like functionality in a more bio-plausible way. Indeed, in the brain, apart from local
neuronal development through synaptic potentiation and depression, the global electrochem-
ical environment of biological neural networks is essential for the network functionality.
Moreover, neuromorphic sensing implies a common electrochemical environment in which
the neuromorphic circuitry might be immersed. Therefore, besides local device training,
global electrochemical regulation of the circuitry can offer additional degrees of freedom that
are necessary for feature extraction. However, a challenge remains to develop organic devices
and architectures capable of reproducing neuro-inspired information processing functions
with the potential to actually operate at the interface with biology. Such architectures will have
significant impact in applications that span from brain–computer-interfaces and neuroscience
to bioinformatics and the definition of novel computational paradigms at the interface with
biology. Initial reports in this direction include time-dependent classification, by leveraging
the inherent global phenomena of organic electrochemical transistors in the framework of
reservoir computing.[15] However, the field is at an early stage and in need for novel materials,
devices and circuit concepts. Nevertheless, the rapid rise of sensing platforms based on
organic electrochemical transistors,[16] as well as novel concepts as building blocks for
bioelectronic circuits and devices[5], greatly enhance the validity of this field for smart or
even neuromorphic bio-signal processing.
To effectively enhance the operational ability of bioelectronics beyond sensing or stimulation,
a bi-directional coupling is essential. On the one hand, a biological process transfers a signal
to an organic electronic device where for instance an enzymatic reaction, changes the current
flow through the polymer transistor, see Fig. 2.2a. In the opposite direction, an organic
electronic device can trigger a biochemical reaction or biological process, for instance by
the application of electrical stimuli on a conducting polymer electrode, and the activity of
biological neural networks can be modulated.[17] This modulation can also be achieved
chemically by local drug delivery.[18] By merging both directions of coupling, a closed-
loop system can be implemented. Closed-loop systems can be found in for instance glucose
sensing for diabetes patients (see Fig. 2.2b), where temporal evolution of glucose release is a
multi-variable function that also depends on the activity history of the patient. Closed-loop
systems can also be found in less conventional but long-term applications, such as in control
and training of neurorobotic systems using neuronal cultures on multi-electrode arrays.[19]
In the future, to further advance the sustainability of bioelectronic platforms in a biological
environment, this bi-directional coupling should be smart, dynamic and adaptable, and rely
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on multiple input variables to improve the accuracy of the neuromorphic system, similar to
the working principles of neural networks (see Fig. 2.2c).
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Figure 2.2: Open-loop and closed-loop systems. (a) Schematic of an open-loop system that includes
a (bio)sensor and an actuator or stimulation. (b) A glucose sensor measures the blood glucose level,
which is compared with a reference level. The controller acts on the difference between the two levels
and operates the insulin pump. However, disturbances like sugar intake or exercise influence this. (c)
By combining multiple sensors with a neuromorphic system, the network can predict a blood glucose
level, which can improve the efficiency of the controller.

Traditional (organic) field effect transistors have been extensively implemented as bio-
sensors,[20] and can be operated in a liquid electrolyte, see Fig. 2.1a. Yet, in recent years,
organic electrochemical transistors (OECTs), have been increasingly reported to transduce
biological (ion- or chemical-based) signals into electronic signals.[16] To a large extent, this
trend results from the additional degrees of freedom that these electrochemical devices offer,
compared with passive (capacitive) sensors. An OECT consists of a semiconductor polymer
channel, a common example is poly(ethylenedioxythiophene):poly(styrene-sulfonate) (PE-
DOT:PSS), that can be gated through a solid or aqueous electrolyte, see Fig. 2.1b. By
applying a gate potential, anions or cations (depending on the polarity of the gate) in the
electrolyte are introduced into the organic semiconductor channel and dope/de-dope the entire
volume, changing its conductivity.[21] Typically, the electrolyte of OECT-based biosensors is
aqueous as they target biomarkers/ionic species in a biological solution (e.g. sweat or in-vivo).
Compared to standard potentiometric sensors, OECTs have the advantage of a significant
signal amplification with the potential to yield biosensors with a low detection limit and high
sensitivity, even in an interfering environment.[22] The high sensitivity is based on the high
transconductance, which results from the fact that the whole volume of the organic materials
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partakes in the channel switching (see Fig. 2.1b).[16] Smart designs of the electronic circuit,
such as the Wheatstone bridge layout, can even further improve the sensor sensitivity. This
layout also yields an inherent background subtraction, eliminating interference arising from
other factors.[23, 24] Using these concepts, a wide variety of sensors have been developed,
ranging from in vitro to in vivo or wearables. The latter is useful for non-invasive monitoring
of biomarkers such as long-term and continuous glucose monitoring[25] or pH sensing.[3]
Towards this direction, cheap and disposable devices were recently shown, such as a fully
inkjet-printed glucose sensor.[26] Apart from sensing in humans, glucose sensing with organic
devices is also used for real-time monitoring of biological processes in plants.[27]
Although originally OECTs transduce (biological) ion-based signals into electrical signals,
targeting of specific molecules can also be done using antibodies or enzymes as specific
recognition elements.[28, 29] These biosensors are label-free and require the immobilization
of the bioreceptor at one of the relevant device interfaces. Since these biosensors are often
vulnerable to interference from other ions present in the sample solutions, the use of a
molecularly imprinted polymer can be beneficial. By positioning this molecular selective
membrane in between the gate electrode and the channel, the ion flow is manipulated (blocked
in case of high target concentration) resulting in a change in the difference of the source–drain
current (Δ𝐼𝑆𝐷) which depends on the concentration of the target.[4, 30] This method also
allows for targets without electronic charge to be detected. An extended gate FET concept
can be used which has the advantage of separating the wet and dry environment. The sensing
part extends off chip and can be immersed into the solution without the transducer part.[20]
A similar concept was also reported for an organic electrochemical transistor-based sensor
system employing a floating gate[31] and was used to detect gluten.[32] Another concept that
has no direct contact between the active material and the electrolyte or analyte, is the internal
ion-gated transistor (IGT), see Fig. 2.1c. Compared to a regular OECT, where the speed is
limited by the travel time of ions between the electrolyte and the conducting polymer channel,
this device has a significantly faster time response.[5] The ionic transit time was shortened by
using contained mobile ions within the conducting polymer channel. In this way, the time that
these ions have to travel to participate in the (de)doping process is reduced. The authors further
demonstrate that these devices are of great potential for logic circuits, as the preloaded ions do
not require an external source of ions, see Fig. 2.1g. The above mentioned building blocks and
other simple circuits (for example differential measurements with Wheatstone bridges[23]),
are used as an essential first step towards smart processing.
Recent examples for (biological) stimulation or delivery of biological components, were
achieved by using an organic electronic ion pump (OEIP). An OEIP is an electrophoretic deliv-
ery device that transduces electronic signals into ionic fluxes. The polymer delivery channel is
a material with high ionic but low electronic conductivity that allows for the selective transport
of anions or cations. An advantage of this mechanism is that the electrophoretic transport does
not require liquid flow and only the charged particles are delivered to the target region. Not
only atomic ions can be transported but also larger molecules as demonstrated by the delivery
of an aromatic compound to a living plant model by using a dendrolyte-based OEIP.[33]
Charged compounds can also be released independently from several delivery points within
tens of milliseconds by adding control electrodes under each delivery point, resulting in
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vertical potential gradients through the device’s thin films. A bipolar membrane allows for
the control of the delivery as the resistance can be increased or decreased under reversed
or forward bias, respectively.[34] The main limitation of the OEIP for in vivo use is that
often high voltages are required for its operation. To overcome this limitation, a microfluidic
ion pump was designed to bring the drug molecules close to the delivery point, where they
can be pumped outward to the target (by electrophoresis), offering low-voltage operation.[18]
Combining this microfluidic ion pump with a conformable electrocorticography device with
recording cites embedded next to the drug delivery outlets, makes it possible to deliver drugs
and record local neural activity simultaneously on the surface of the brain.[35, 36]
The next step includes not only simultaneous sensing and actuation or stimulation, but also
local processing of data. This concept has been demonstrated in recent biomimetic application
examples, where artificial organs that sense relevant signals such as light, pressure or sound,
are used as the input.[37] An organic artificial afferent nerve was developed that can detect the
movement of objects[38] (see Fig. 2.3b). Another sensory device was reported to demonstrate
tactile learning.[40] Using light as the input to a photonic synapse can be used for artificial
retinas[41] as well as an input to organic optoelectronic sensorimotor synapses.[42] This
latter uses an organic optoelectronic synapse and a neuromuscular system based on a stretch-

a

b

c

Figure 2.3: Examples of transducing, sensing and actuation microsystems. (a) Bioelectronic neural
pixel with chemical stimulation and electrical sensing at the same site.[35] (b) Bioinspired flexible
organic artificial afferent nerve.[38] (c) Organic-transistor array-based multi-analyte sensing platform
for saliva testing.[39]
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able organic nanowire synaptic transistor (s-ONWST). The voltage pulses of a self-powered
photodetector triggered by optical signals drive the s-ONWST. The resulting informative
synaptic outputs can be used not only for optical wireless communication of human-machine
interfaces but also for light-interactive actuation of an artificial muscle actuator mimicking
the contraction of a biological muscle fiber.[42]
Ideally, complete systems and devices will include all three components locally: sensing,
processing and actuation, and operate in a closed-loop fashion. For that, the devices need
to be stable in an aqueous solution and operate with low-power consumption. Even with
current technologies, control parameters can already be tuned for optimization, but novel
systems can also be envisioned where a neuromorphic core is responsible for the prediction
and classification of relevant behavior and signals. These autonomous applications demand
operation in a real biological environment, where organic materials have an advantage, but
also require long term operation. In fact, many applications for the classification of signals
and relevant behaviour will require analysis in real time. These systems should be able to not
only classify anomalies in the time domain but also predict long-living (i.e. low frequency)
patterns.
Potentially the inter-correlation of multi-variables that influence the biological environment
can be adopted to increase the effectiveness. An example of a multi-analyte sensing platform
was demonstrated on saliva,[39] as shown in Fig. 2.3c. By combining such multi-sensor
information with local neuromorphic processing as well as stimulation, a dynamic smart and
adaptable device can be envisioned. By measuring and processing information locally with
an organic neuromorphic sensing platform relevant signals and information can be extracted.
The platform can thus be trained for classification applications, and as such does not require
extremely high-bandwidth signals (to be analyzed remotely), nor risks losing the essence of
the information at the source (when high-bandwidth is not possible).
A hypothetical application is show in Fig. 2.4, based on the bioelectronic neural pixel,[35]
where a device can both sense neuronal activity as well as release a drug (to reduce epileptic
seizures). However, in this previously demonstrated example the decision to release the
drug is done manually and at a remote location. Ideally, this should be done locally and in
situ. By combining multi-modal sensors at various locations, the neuromorphic core can be
trained to improve the analysis and classification of the signals and behavior of the biological
environment autonomously in a closed loop fashion. In this particular case, the platform could
start the drug release to counteract the seizures.
In summary, we have highlighted the recent trends in organic neuromorphic devices and
organic bioelectronic sensing platforms. We see opportunities in merging these two fields
to further close the loop between sensing and stimulation/actuation for smart bioelectronics
applications. Materials and devices that exhibit memory and have the potential to operate
at the interface with biology can pave the way for novel data classification paradigms with
bio-inspired features in information processing. These materials might thus offer promising
solutions for the manipulation and the processing of biological signals, spanning from novel
brain–computer-interfaces and adaptive prosthetics to bioinformatics and the definition of
novel computational paradigms at the interface with biology. For such applications, we
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Figure 2.4: Remote versus local and adaptive control for the detection of seizures. (a) A traditional
sensor acquires the electrical signal behavior of the brain which is analyzed and processed remotely.
The drug release is subsequently started manually. (b) A smart and adaptable system includes multiple
sensors that collectively form the input to a local neuromorphic unit that classifies the signals and starts
the drug release locally and autonomously.

envision smart multi-modal sensor platforms and local neuromorphic processing. Sensing
and processing will be tightly bound in a closed loop manner in order to reduce local data
volume and thus allow fully autonomous applications in the future.
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Chapter3
Retrainable neuromorphic biosensor for on-chip learning and

classification

Neuromorphic computing aims to mimic the brain in complex classification
tasks directly in hardware and has great potential for local edge computing in
applications such as smart wearable, implantable, and point-of-care devices.
Successful implementation requires straightforward training, low power oper-
ation, and facile sensor integration. Despite the emergence of organic materials
as building blocks for neuromorphic systems due to their low voltage operation
and excellent tunability, these systems still rely on external training in software.
Here we demonstrate a smart biosensing platform, based on an integrated array
of organic neuromorphic devices as the synaptic weights of a hardware neural
network, its associated output classification hardware, and sensors, completely
trained on-chip to classify a model disease. The versatility of the neuromorphic
system is highlighted via on-chip retraining, by switching sensor input signals
and the formation of logic gates on the same chip. These results pave the way for
advanced adaptive bioelectronic systems.

This chapter is based on Retrainable neuromorphic biosensor for on-chip learning and
classification, Eveline R. W. van Doremaele, Xudong Ji, Jonathan Rivnay, Yoeri van de
Burgt. Under review.
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3.1 Introduction
Organic electronic materials have recently emerged as building blocks for brain-inspired
processing[1–3], as they possess favourable characteristics with respect to neuroplasticity and
memory tuning that are instrumental to low-power neuromorphic circuits [4, 5]. Besides low-
energy, linear and symmetric tuning [6], relatively high stability [7], and a large range of
accessible analogue conductance states, organic materials can take on unique form factors
and show potential for biocompatibility[8]. These characteristics allow for operation at
the interface with biological systems and dynamic biohybrid connections that interact with
the physiological environment[9] and biological systems[10]. Because of the volumetric
doping mechanism, this particular class of organic electronic materials – organic mixed
ionic-electronic conductors – allow for large transconductance [11] and high sensitivity [12]
and have been utilized in a wide variety of organic electrochemical transistor and sensor
applications [13–17]. Despite these notable examples, these applications often still require
some form of external monitoring, processing or control [18] to successfully operate, while
ideally smart point-of-care devices operate locally and autonomously [19, 20]. At the same
time, the requirements for point-of-care devices often differ considerably from person to
person while personalized healthcare demands that these devices can adapt to the patients’
needs. Neural networks can be used to overcome issues related to those variabilities but the
software algorithms that support them operate on external computers or on energy inefficient
and privacy-sensitive data centres in the cloud and cannot be trained autonomously and locally.
In contrast, the smart biosensor we present here, is a modular chip enabling standalone, local
operation, consisting of a sensor input layer, a network of organic neuromorphic devices
forming the hardware neural network and an output classification layer, see Fig. 3.1.
Though training of small neuromorphic arrays was recently demonstrated [4, 21, 22], some
form of external computing and control was still necessary, notably the crucial step in
determining the level of weight update – generally done via an error backpropagation soft-
ware algorithm [23]. In our standalone smart biosensor this weight update step is done in
hardware too, thus highlighting the versatility of low power organic neuromorphic arrays by
demonstrating on-chip training without the help of an external computer. We demonstrate
a specific use case by classifying the genetic disease cystic fibrosis from (modified) donor
sweat using ion selective sensors, followed by retraining after swapping sensor inputs into the
hardware neural network module. In this work, the application of cystic fibrosis is a proof of
concept; the sensor module can, in principle, be swapped out to retrain the network for other
applications in diagnostics or environmental monitoring.
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Figure 3.1: Modular neuromorphic biosensor chip. a, Illustration of the modular biosensor with the
distinct functions. b, Single layer neural network (perceptron) with sensor inputs and linear classification
for trained and retrained input values. c, Depiction of the ion selective OECT sensors manipulated with
and without ion selective membrane for measuring the K+ and Cl− concentration. Sensor output vs
ion concentration after the current-to-voltage and offset circuit module. d, EC-RAM as part of a small
neuromorphic array and the conductance values for the 3 EC-RAM devices used as synaptic weights.

3.2 Generating input signals from ion sensors
Cystic fibrosis is a hereditary disease that affects the lungs and digestive system and can be
detected through a sweat test. A high level of chloride anions in sweat (>60 mmol/L) indicates
that cystic fibrosis is likely to be diagnosed.[24–27] In the context of this work, it provides
a simplified proof-of-concept as diagnosis via available and existing analyte recognition
elements is well studied and requires a minimal set of sensors. We note that this proof of
concept is not tested for diagnostics of cystic fibrosis with real patient data. We measure the
concentration of chloride and to account for external biases in the system (including higher
concentrations due to evaporation) the concentration of potassium serves as a control. We
use both commercially available ion selective electrodes (ISEs) and ion selective organic
electrochemical transistors (IS-OECTs)[12, 28, 29] that can detect physiological levels of
potassium and chloride and will serve as the input signals to the hardware-implemented
neural network on the biosensor chip (see Supporting Information 3.8.1). Whereas the
commercially available ISEs enable an easy-to-use rapid test platform, the IS-OECTs allow us
to demonstrate the potential of a fully standalone biosensor chip. The use of multiple sensor
types further emphasizes the ability to readily implement various modalities of sensors. The
organic electrochemical transistor (OECT) is a three-terminal device comprising an organic
semiconducting polymer as the channel (with two metal contacts to establish an electric
current) that is in contact with an electrolyte in which a gate electrode is immersed[30]. Via a
gate potential, ions can be injected in the channel which changes the doping state of the film
and subsequently its conductivity. This mixed ionic-electronic conducting property within the
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whole volume of the material results in efficient sensing[31]. Additionally, to target specific
ions or biomarkers ion selective membranes can be added [32].

3.3 Training in hardware for on-chip classification
Classification is done according to the perceptron algorithm used for supervised learning of
binary data, where we define a set of “high” and “low” concentrations for chloride and potas-
sium to represent the labelled sweat samples (see Methods 3.7.3). It makes a classification
decision based on the value of a linear combination of the input with the set of weights 𝑤𝑖[33]. Since this algorithm requires only a single layer, it allows us to understand and visualize
the working principle. The adjustable weight is represented by the conductance of an organic
neuromorphic device (EC-RAM). Its conductance – or synaptic weight – is non-volatile and
can be adjusted (modulated to higher and lower values in an analogue matter) by applying a
gate voltage pulse (see Supporting Information 3.8.2 and Figs. 3.S9 and 3.S10) as previously
reported[6]. To account for negative weight values an inverted voltage signal is fed through
a reference resistor parallel to the neuromorphic device. According to this, the weight can be
described as the conductance difference between the neuromorphic device and the reference
resistor, resulting in a current output given by[34]:

𝐼 𝑙𝑗 =
𝑛
∑

𝑖=1
𝑉 𝑙−1
𝑖 (𝐺𝑖𝑗 𝐸𝐶𝑅𝐴𝑀 − 𝐺𝑖𝑗 𝑟𝑒𝑓 )

where 𝑉𝑖 represents the input voltage for layer 𝑙, and directly depends on the ionic concen-
tration of chloride and potassium in labelled (with and without the disease) sample sweat.
The feed-forward phase (inference-mode) directly computes the output signal in hardware
using Ohm’s law and Kirchhoff’s law [35] followed by a threshold activation function in
order to power light emitting diodes (LED). The threshold activation function converts any
current output greater than 0 to a positive voltage which lights up a green coloured LED
classifying the output as “healthy” i.e., a negative diagnosis. Any current output smaller than
0 is converted to a negative voltage such that a red coloured LED lights up to classify the
output as “diseased” i.e., a positive diagnosis (see Supporting Fig. 3.S15 for a picture of the
hardware neural network). In the learning phase, supervised training is done by correcting for
incorrect output decisions. In the case of an incorrect classification, an error feedback signal
is transmitted back by means of a pushbutton that results in a voltage applied at the gate of
each neuromorphic device, causing a weight update (see Fig. 3.2 and Supporting Information
3.8.3). The gate voltage, update value, depends on the error (𝑌𝑒𝑥𝑝 - 𝑌𝑜𝑢𝑡) multiplied by the
input and the duration, similar to the learning rate in software neural networks. Note that
this is the update value corresponding with the single layer perceptron algorithm. Since the
classification output is binary, the error is either positive (𝑌𝑒𝑥𝑝 > 𝑌𝑜𝑢𝑡) or negative (𝑌𝑒𝑥𝑝 < 𝑌𝑜𝑢𝑡)and by multiplying it with the input voltage, individual weight update values can be realized.
This supervised training cycle with labelled inputs is repeated until the circuit has been fully
trained and correctly classifies each sample.
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Figure 3.2: Hardware neural network principle. Schematic illustration showing the forward (I) and
back propagation (II) together with its hardware representation. In case of a correct classification output
from the forward propagation this step is repeated (with a different set of inputs). After an incorrect
classification output, the forward propagation is followed by a back propagation step.

3.4 Update behaviour of the neuromorphic circuit
To demonstrate the working principle of training the hardware-based neural network, the
weights, inputs, and output are monitored with a data acquisition device (DAQ, see Methods
3.7.4) during the training process (Fig. 3.3a-c and Supporting Fig 3.S3 for training using
the ISEs without offset circuit). The output of the chloride and potassium sensors (in this
case the ISEs) serve as inputs 1 and 2 for the hardware neural network, respectively. The
sensor output for high and low ion concentrations are extracted from sweat samples and are -
15mV for chloride and -90mV for potassium corresponding to a low concentration and -45mV
for chloride and -60mV for potassium for a high concentration (see Supporting Fig. 3.S1).
With an additional circuit the sensor output is offset and scaled such that the input voltage
is approximately ± 30 mV (see Supporting Fig. 3.S2). For further details see Supporting
Information 3.8.1 and 3.8.4. The bias represents input 3 and is set at a constant voltage of
60 mV. The weights, that ultimately determine whether a given set of inputs is classified as a
“positive” or “negative” diagnosis are randomly initialized, and in this case two weights start
at a positive value and one weight at a negative value (see Fig. 3.3a). Weight 1 and 2 represent
the weights corresponding to the chloride and potassium sensor (input 1 and 2) whereas the
third weight is connected to the bias.
The case of high chloride (-0.035V) and low potassium (-0.035V) concentration is labelled as
“positive” and should result in a negative output voltage, V<0, lighting up the red LED after
training (see Fig. 3.3d). For each measurement a randomized combination of high/low input
voltages – resembling labelled samples of a “positive” or “negative” diagnosis – is applied to
the neural network followed by an output decision. If the combination of inputs is correctly
classified (green LED for a “negative” and red LED for a “positive” sample), no update is
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Figure 3.3: Visualization of the synaptic weight update and corresponding classification line during
training. a, Values of the weights corresponding to b, the inputs representing the voltage output for
a high or low ion concentration measured with the ISEs. Measurements 26-28 show the input of a
negative sweat sample (indicted in blue) and measurements 29-31 show the input of a positive sweat
sample (indicated in red). c, The output for each measurement cycle, measured before the threshold
activation function triggering the LEDs. A negative voltage output corresponds to a positive diagnosis
and vice versa. d, 2-D graphical representation of the classification problem of cystic fibrosis where
the dashed lines show the decision boundary on every 5𝑡ℎ measurement. The solid lines correspond to
measurements (> 19) with lines showing a correct classification.

needed, and the neural network is presented with a new combination of inputs to start a new
measurement. In the case that the output gave an incorrect classification, the pushbutton is
pressed in order to update the weights. This is repeated in the next measurements until the
output is correct and new inputs can be selected. When all (four different) input combinations
give correct classification outputs, the network is considered fully trained (measurement >
19). We test the neural network by measuring sample sweat from healthy donors (negative
sample) and modified sample sweat to represent cystic fibrosis (positive sample, see Methods
3.7.3). Measurements 26-28 show the input of a negative sweat sample (indicted in blue) and
measurements 29-31 show the input of a positive sweat sample (indicated in red) both with
correct output classification (see Fig. 3.3b,c). See Supporting Fig. 3.S7 for the details of
each measurement corresponding to the training and Supporting Fig. 3.S8 for the link to a
recording of the training process as described here.
The solution to a single layer perceptron classification can be represented graphically by a
hyperplane depending on the number of inputs to the neural network. Figure 3.3d represents
the 1-dimensional solution of the perceptron neural network given by the weights at the first
and every 5𝑡ℎ measurement (dashed lines in Fig. 3.3d). This solution line can be written as:

𝑦 = −
𝑤1
𝑤2

𝑥 −
0.06 ⋅𝑤3

𝑤2
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where 𝑦 represents input 2 from the K+ sensor and 𝑥 input 1 from the Cl− sensor. Looking at
the last training measurements from 19 to 31, only the input combination of high Cl− and low
K+ concentrations, representing cystic fibrosis (measurement 21, 25, and 29-31), is classified
“positive" (output voltage 𝑌𝑜𝑢𝑡 < 0V), whereas the other inputs are correctly classified as a
“negative” diagnosis (output voltage 𝑌𝑜𝑢𝑡 > 0V). The solid lines constructed from the weights
at measurements 20, 25, and 30 show a correct classification (Fig. 3.3d), where all input
combinations above the line give a healthy, negative diagnosis (𝑌𝑜𝑢𝑡 > 0V) and below the line
a diseased, positive diagnosis (𝑌𝑜𝑢𝑡 < 0V), showing that the hardware based neural network
is fully trained.

3.5 On-chip retraining
To further demonstrate the versatility of the hardware neural network circuit and its poten-
tial as a modular neuromorphic biosensor, a fully trained system is retrained on-chip after
reorganizing the different inputs. The weights are re-tuned in order to solve the new problem
(see Fig. 3.4). To decrease the number of updates necessary to train the problem, the input

Figure 3.4: Display of various consecutive training cycles. Classifying: I. cystic fibrosis, II. cystic
fibrosis after switching the sensor inputs, III. AND logic gate and, IV. NOR logic gate. The panels show
the corresponding weights, input and output voltages, respectively, where updates are indicated in grey.

signals are scaled such that 0.1V represents a high and -0.1V represents a low input (see
Supporting Information 3.8.4). (The bias remains at the constant voltage of 60mV). During
the first training cycle (I) the chloride and potassium sensors represent inputs X1 and X2,
respectively, (similar to the previous example in Fig. 3.3). When the neuromorphic circuit is
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fully trained to correctly classify cystic fibrosis the neuromorphic devices have a conductance
such that the weights correctly separate the distinct cases. Directly after, during the second
training cycle (II) the sensors are connected to a different input of the neuromorphic circuit,
such that the potassium sensor represents input X1 and the chloride sensor to input X2. In this
case the system produces incorrect outputs again. The circuit should thus be further trained by
remodulating the weights until the disease can be correctly classified again and produces no
incorrect outputs for all input samples. This example demonstrates the versatility of on-chip
learning using any type of sensor (and in any order) in combination with labelled data and
can be further extended into classification of signals where separation of data is not obvious.
Similarly, the same neuromorphic circuit can be used to form arbitrary logic gates (such as
AND and NOR) based on their representative truth tables. In Fig. 3.4 we continue to train the
programming of several logic operators in sequence, meaning they are programmed to display
AND gate behaviour (cycle III) and subsequently reprogrammed to display the behaviour or a
NOR gate (cycle IV). Importantly, all training cycles are done without a computer or software
program and completely take place on the chip itself, highlighting the versatility of locally
programmable neuromorphic devices for classification tasks as well as dynamic logic circuits.

3.6 Conclusion
Neuromorphic circuits have shown excellent capabilities in classification tasks beyond tra-
ditional applications such as image recognition. The programmable biosensor we have pre-
sented here showcases a first demonstration of possibilities for locally trained and optimized
neural network applications in hardware operating autonomously. The training was done on-
chip using error signal feedback to modulate the conductance of organic neuromorphic devices
to correctly classify a model disease. We have shown the versatility of the organic neuromor-
phic chip with multiple retraining processes for various sets of input signals highlighting the
ability to retrain any arbitrary set of inputs for classifying linearly separable problems. The
neuromorphic circuit demonstrated the use of a single layer perceptron algorithm, though
expanding the neural network to multiple layers allows for classification beyond linearly
separable problems. Introducing additional inputs is straightforward and will further expand
the capabilities of hardware neuromorphic chips into more sophisticated biosensors and
classification circuits. Next to demonstrating the highly versatile nature of low-power and
easy-to-tune organic neuromorphic devices in true hardware arrays and circuits, this work
opens up a wide variety of opportunities in smart and reprogrammable applications capable of
local and continuous learning, optimizable edge-computing devices and adaptive biosensors.

3.7 Methods

3.7.1 EC-RAM fabrication

EC-RAMs were fabricated on patterned ITO slides (20 ohm/sq) purchased from Xinyan
Technology LTD. The slides were cleaned with soap, acetone, isopropanol and deionized
water followed by UV-ozone treatment before spin-coating the polymer layer. The com-
mercial PEDOT:PSS (Hereaus, Clevios PH 1000) aqueous solution was modified by adding
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15 vol% of the molecular de-dopant N-methyl-2,2’-diaminodiethylamine (DEMTA, Sigma
Aldrich), 6 vol% ethylene glycol (EG, Sigma Aldrich) to enhance the morphology, 1 vol%
(3-glycidyloxypropyl)trimethoxysilane (GOPTS, Sigma Aldrich) as a crosslinking agent to
improve mechanical stability. The de-doped PEDOT:PSS solution was filtered through a 0.45
µm polytetrafluoroethylene filter and spun on the patterned ITO substrate at 1500 RPM for
1 minute and baked at 120 ° C for 30 minutes. Thereafter the substrate was gently rinsed
in deionized water to eliminate residual contents and subsequently dried at 120 °C for 10
minutes. For the aqueous electrolyte gated EC-RAMs, a polymer was removed from the
substrate to define the 5 × 5 mm channel. A polydimethylsiloxane well was fixed to the
substrate to contain the aqueous electrolyte solution (100 mM NaCl) whereas for the solid
electrolyte gated EC-RAMs ion gel solution was drop casted on the channel and gate. The
ion gel solution was prepared by dissolving ionic liquid (EMIM:TFSI) and poly(vinylidene
fluoride-co-hexafluoropropylene) (4:1w/w) in acetone with the following proportions: 17.6
wt% ionic liquid, 4.4 wt% polymer, and 78 wt% solvent. The resulting ion gel solution was
stirred at 40 ◦C for at least 30 min.
3.7.2 Ion selective OECT fabrication

Cr (5nm) / Au (100 nm) electrodes were patterned on cleaned glass substrates by photolithog-
raphy and the subsequent lift-off process of the negative photoresist (AZ nLOF 2035). After
a surface treatment with the adhesion promoter Silane A-174, a 2 µm-thick parylene C was
deposited on the substrate to electrically isolate the electrodes. A diluted Micro-90 (2% v/v
in DI water) was spin-coated as an anti-adhesive layer, and subsequently, a sacrificial second
parylene C layer of 2 µm was deposited. The OECT channels, with a width of 100 µm and
length of 10 µm, and contact pads were opened through successive photolithography (AZ
P4620 photoresist) and reactive ion etching steps (Samco RIE-10NR). After surface activation
by UV ozone for 5 minutes, the PEDOT:PSS blend consisting of 5 vol% ethylene glycol
(EG), 1 vol% (3-glycidyloxypropyl)trimethoxysilane (GOPS), and 0.5 vol% dodecylbenzene
sulfonic acid (DBSA), filtered through a 0.45 µm polytetrafluoroethylene filter was spin-coated
on the sample at 2000 rpm. After brief thermal annealing at 90 °C for 2 minutes, the sacrificial
parylene layer was removed to pattern the OECT channels, followed by thermal crosslinking
at 140 °C for 60 min. The OECT device was then rinsed by DI water to remove any excess
compounds. The PSS:Na mixture was spin-coated on the PEDOT:PSS channels at 1000 rpm,
and then the polyelectrolyte film with GOPS was crosslinked by baking at 130 °C for 60 min
and subsequently immersed in a 0.1 M NaCl solution overnight to keep Na ions in the film.
Finally, the solution of K+ ion selective membrane (ISM) was spin-coated (1000 rpm, twice)
on PSS:Na film and dried at room temperature to make the K+ ISM film. All materials were
purchase from Sigma Aldrich unless otherwise indicated.
3.7.3 Sweat samples

Donor sweat (1 mL) from 3 healthy donors was purchased from Medix Biochemica. The sweat
of 2 donors was mixed to obtain the negative sweat sample and a 1mL solution (containing
1M NaCl and 1mM KCl) was added to the other donor sweat representing the positive sweat
sample with the same [K+] and a higher [Cl−] concentration than the negative sweat sample.
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Stock solutions for artificial sweat were prepared by dissolving 584.4 mg NaCl and, 745.5 mg
KCl in 100 mL deionized water (Milli-Q). 100 × 10−3 M NaCl and KCl solutions were diluted
to achieve the concentrations of interest (1, 20, 80, and 100 mM [NaCl] and [KCl]).
3.7.4 Data acquisition

An NI USB 6009 data acquisition device (DAQ) is used to monitor the inputs, output, and
weights during the training process using MATLAB. The input voltage of the hardware
neural network is multiplied by 10 using an operational amplifier (OPA4196) to increase the
sensitivity of the DAQ. Due to Kirchhoff’s and Ohms law the output of the hardware neural
network is represented by a current that drives either one of two LEDs. In order to monitor
the output, the current is converted to a voltage (1:1) to make it compatible with the DAQ. To
track the value of the weights each weight is paired with a small (1kΩ) resistor in series. The
voltage difference across the EC-RAM and the resistor in series (from which the current can
be determined) is measured. Using Ohms law, the conductance of the EC-RAM and thus the
weight can be calculated. (See Supporting Fig. 3.S16 for the electronic circuit design).

3.8 Supporting Information

3.8.1 Ion selective electrodes (ISE) and organic electrochemical transis-
tors (IS-OECT)

ISE
Commercially available ion selective electrodes (ISE, Mettler Toledo) were used for the
detection of [K+] and [Cl−] and calibrated using stock solutions 1, 10, 100 and 1000 mM KCl
(see Supporting Fig. 3.S1a). The training visualized in Fig. 3.3 is done using input values
extracted from the ISE sensor output when measuring sample sweat (Supporting Fig. 3.S1b).
These values are offset and scaled using an offset circuit (see Supporting Fig. 3.S2) such
that both sensors operate in the same range, and such that the high and low concentrations
are represented by positive and negative output values, to make the training more efficient
(see Supporting Information 3.8.4). A training cycle using ISE values that are not offset is
visualized in Supporting Fig. 3.S3 showing that training is possible but generally requires
more updates.
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Figure 3.S1: Voltage output as a function of the ion concentration in KCl including donor sweat. a,
Commercially available ion selective electrodes (ISE, Mettler Toledo) were used for the detection of
[K+] and [Cl−] and voltage output calibration, measured after an 11x amplification, with stock solutions.
Sweat samples from 3 donors were also measured and are indicated in the graph. b, Input voltage
(calculated before amplification) to define the values for high/low ion concentration used for training.
The negative sweat sample is obtained from the sweat of 2 healthy donors and the positive sweat sample
is based on the sweat of 1 healthy donor with additional NaCl. A low concentration corresponds to
-0.015V for chloride and -0.090V for potassium and a high concentration corresponds to -0.045V for
chloride and -0.060V for potassium.

Figure 3.S2: Offset circuit. a, Schematic of the offset circuit for a single sensor input and output. The
offset resistor is a potentiometer that can be increased or decreased to define the desired offset. b, Photo
of the offset circuit PCB for two inputs and outputs that can each be offset independently.
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Figure 3.S3: Visualization of the weight update during a training cycle using ion selective electrodes
without offset. a, Values of the weights corresponding to b, the inputs representing the voltage output
for a high (100 mM) or low (1 mM) ion concentration measured with the commercially available ISEs
(Supporting Fig. 3.S1). A low concentration (1mM) corresponds to 0.075V for chloride and -0.150V for
potassium and a high concentration corresponds to -0.050V for chloride and -0.015V for potassium. c,
The output for each measurement cycle, measured before the threshold activation function triggering the
LEDs. d, 2-D graphical representation of the classification problem of cystic fibrosis where the dashed
lines show the decision boundary on the first and every 10th iteration. The solid line corresponds to the
last (60th) measurement and shows a correct classification.

IS-OECT
IS-OECTs have the potential to be fabricated on-chip rather than the large ISEs. The conduc-
tance depends on the ion concentration (see Supporting Fig. 3.S4). To serve as the input of
the hardware neural network module the IS-OECT is implemented in a voltage divider circuit
to produce a voltage output dependent on the ion concentration (see Supporting Fig. 3.S5).
In this circuit a reference resistor 𝑅𝑟𝑒𝑓 is paired in series with the OECT channel. The output
voltage depends on the value of the resistance according to:

𝑉𝑜𝑢𝑡 = 𝑉𝑑𝑟𝑎𝑖𝑛 ⋅
𝑅𝐼𝑆−𝑂𝐸𝐶𝑇

𝑅𝑟𝑒𝑓 + 𝑅𝐼𝑆−𝑂𝐸𝐶𝑇

With the additional electronic offset circuit, an offset and multiplication are introduced,
realizing a sensor output between ±45 mV for both sensor modules (Supporting Fig. 3.S5c).
Training of the hardware neural network using the IS-OECT is visualized in Supporting Fig.
3.S6.
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Figure 3.S4: Characteristics of the potassium IS-OECT. a, b, Two transfer curves of the potassium
IS-OECT in 10-4 M KCl and 10-1 M KCl (VDS= -0.1V). c, Steady-state current response against KCl
with different concentration (VG= 0.4V, VDS= -0.1V).

Figure 3.S5: Sensor module for scaling sensor output. a, Circuit diagram of the IS-OECT in a voltage
divider configuration together with the offset circuit. In the voltage divider configuration Vdrain = -0.4
V and for the potassium selective sensor Vgate = 0.2V and R = 300 Ω and for the chloride selective
sensor gate is grounded and R = 91 Ω. The resistor in the offset circuit for the chloride sensor module is
𝑅𝑜𝑓𝑓𝑠𝑒𝑡 = 10kΩ and for the potassium sensor module is 𝑅𝑜𝑓𝑓𝑠𝑒𝑡 = 24kΩ. b, Shows the resulting voltage
output for both sensor modules without the offset circuit and c, with the offset circuit.

Figure 3.S6: Visualization of the synaptic weight update and corresponding classification line during
training with IS-OECTs. a, Values of the weights corresponding to b, the inputs representing the voltage
output for a high (100 mM) or low (1 mM) ion concentration measured with the IS-OECTs. c, The output
for each measurement cycle, measured before the threshold activation function triggering the LEDs. d,
2-D graphical representation of the classification problem of cystic fibrosis where the dashed lines show
the decision boundary on every 5th iteration. The solid line corresponds to the last (45th) measurement
and shows a correct classification. 33



3 Figure 3.S7: List with measurement details corresponding to the training cycle in Fig. 3.3. The list
shows the details during the training process visualized in Fig. 3.3 for each measurement step (1-31).
During each step the input corresponds to a solution with a high (HI) or low (LO) ion concentration (Cl
or K). All four different combinations are color-coded to better visualize the order. The next column
(Target) shows the classification target (Positive or Negative) corresponding to the input combination
with the validation of the output (Correct or Incorrect) in the last column (Output).

https://youtu.be/VwNFiUc9Yd4

Figure 3.S8: Video of the training process of the hardware neural network. A snap shot of the video
that shows the hardware neural network training process with the QR code on the right containing the
link to the video.

3.8.2 EC-RAM modulation and state retention

The EC-RAMs adopt a similar configuration as the OECT but have an 8MΩ resistor in series
with the gate to limit the gate current and work both with an aqueous electrolyte as well
as with a solid electrolyte (ion gel). In the neuromorphic circuit their gates are connected
to a switch in order to increase the state retention by preventing back flow of the current.
The active gate and channel material is a PEDOT:PSS blend dedoped with N-methyl-2,2’-
diaminodiethylamine (DEMTA). Keene et al. showed that by adding a small molecular weight
amines the threshold voltage shifts to negative values and lowers the channel current at Vgate
= 0V.[7] Introducing the DEMTA PEDOT:PSS mixtures into EC-RAMs allows for a more
linear conductance modulation, higher state retention and stability. The conductance of the
EC-RAMs was measured under a constant bias at the drain (Vdrain = -0.1V) while grounding
the source. Alternating positive and negative gate pulses with amplitude 5V and duration 1s,
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modulate the channel conductance to respectively lower or higher values (see Supporting Fig.
3.S9 and 3.S10).

Figure 3.S9: a, EC-RAM conductance modulation operated with aqueous electrolyte by applying
alternating positive (128x) and negative (128x) gate pulses with amplitude 5V and duration 1s (Vd
= -0.1V). b, An enlarged graph showing the individual conductance states.

Figure 3.S10: EC-RAM conductance modulation by applying alternating positive (64x) and negative
(64x) gate pulses with amplitude 5V and duration 1s (Vd = -0.1V) on the same device, once with an
aqueous and once with a solid electrolyte. When applying 128 pulses the maximum conductance range
is shown.

To account for negative weight values, every EC-RAM is paired with a complementary
resistor with a resistance value within its conductance range. The change in conductance,
ΔG, scales with the product of the gate voltage and pulse duration in the linear conductance
regime. A correct classification depends on the ratio between the weights and therefore the
state retention of the conductance (weights) determines the data retention of a trained system
(i.e. the time that a previously trained system is able to correctly classify data before is requires
another update due to drifting weight values). Supporting Fig. 3.S11 shows the state retention
of multiple conductance values and Supporting Fig. 3.S12 shows the data retention of a
trained system. Similar to Fig. 3.3, all weights have a negative conductance and are able
to correctly classify negative (blue) and positive (red) sweat samples (measurements 1-8).
After 30 min (measurement 9) and 60 min (measurements 10-22) the weights are still able to
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correctly classify the sample sweat, demonstrating a classification retention of more than 1h.
For facile device integration EC-RAMs using a solid state electrolyte are also investigated.
Their behaviour show similar performance to the aqueous operated EC-RAMs and can be
interchanged in hardware neural network application (see Supporting Fig. 3.S10 and 3.S11).

Figure 3.S11: a, EC-RAM state retention of multiple states in a potentiation and depression cycle
measured for 5 minutes of an aqueous electrolyte gated device and b, a solid electrolyte gated device.
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Figure 3.S12: a, Values of the weights corresponding to b, the inputs for negative (blue) and positive
(red) sample sweat. c, The output for each measurement cycle, measured before the threshold activation
function triggering the LEDs. A positive output voltage corresponds to a negative classification and
vice versa. The weights are pretrained showing a correct classification for the sample sweat (1-8).
Measurement 9 shows the weights after 30 minutes and measurements 10-22 show the classification
output 1 hour after training. The dark and light blue areas correspond to negative sweat samples and the
red to positive sweat sample.

3.8.3 Backpropagation in the neuromorphic circuit

When the classification is incorrect, manual feedback opens a switch to disconnect the input
from the feedforward circuit so that the sensor output can be used for backpropagation. By
means of a multiplier each input is multiplied with the error (equal to the binary output),
resulting in the update signal. The same action closes the circuit to the gate of the EC-RAMs
in series with a current limiting resistor (8MΩ). The error is the same for all weights, so the
difference in the update is caused by different input values (update = input x error x learning
rate). The update is analogous to the gate current, able to change the conductance of the EC-
RAMs. The learning rate therefore depends on the gate voltage and the duration of the update.
Besides the product of input and error, the scaling factor in the circuit determines the update
value. This scaling factor is fixed and depends on the EC-RAM properties. The update time
can either be fixed or a variable by simply changing the time of pressing the button. When
expanding to larger neural networks, these multipliers can be exchanged by another crossbar
array for more efficient updating.
3.8.4 Effect of different input values

In software neural networks it is standard to normalize input values, whereas in hardware
neural networks this is less straightforward. The input values have a strong impact on the
update mechanism of this algorithm and therefore choosing on how to normalize these can
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directly impact the training of the neural network. The perceptron algorithm computes its
update value according to the product of the error and input. Since the output is a binary
value there are three options for the error value: −𝑎, +𝑎 or 0, with 𝑎 equal to |𝑌𝑒𝑥𝑝 − 𝑌𝑜𝑢𝑡|.Therefore, the value that the error computes in case an update is needed is always the same
except the direction and thus the sign depending on the output. Hence the value of the update
strongly depends on the input voltage and is the most effective when the difference between
high and low input is large (see Supporting Fig. 3.S13). Ideally, a positive and negative
voltage input voltage should be used for the high and low input (Supporting Fig. 3.S13a),
although voltages of the same sign can also be considered (Supporting Fig. 3.S13b). This
often requires more update steps for the hardware neural network to be trained as the sign of
the updates depends only on the error which is equal for all weights. To independently update
the individual weights multiple updates steps are needed that exploit the difference in high
and low to influence the effective update direction. On the other hand, the input voltage is
also limited. Because the input voltage is directly connected to the drain of the neuromorphic
devices it can alter the conductance state of the device as this is determined by the ions in
the channel. A change in potential disturbs the equilibrium. In order to minimize this effect,
inherent to the electrochemical property of the neuromorphic device, the input voltage should
be as constant as possible. As a result, a trade-off should be found between the update efficacy
and the allowed fluctuation of the conductance and thus the variability of the weight value.

Figure 3.S13: Effect of the input voltage on the weight update during a training cycle. a, Training cycle
with high positive and negative input values of 0.1V and -0.1V for high and low ion concentrations,
showing training in 17 measurement steps and a weight value variation (Δ1) caused by the different input
values. b, Training cycle where the input values are scaled to the positive range resulting in 0.15V and
0.10V for high and low ion concentration, respectively. Compared to (a) this requires more measurement
steps (53) to get fully trained but shows less variation in the weight value (Δ2 <Δ1) caused by the input
voltage

Another consideration regarding the input values of hardware neural networks is noise. Unlike
in software executing the algorithm directly in hardware can give rise to variations in the
input values due to noise. While a lot of noise is intrinsically unwanted it does not always
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lead to problems. In Supporting Fig. 3.S14 the classification problem similar to Fig. 3.3 is
schematically shown with the addition of noise clouds. Although the training of the hardware
neural network remains the same in some cases the same input of sweat can lead to different
classification outputs due to noise on the input values, depending on the classification bound-
ary (see solid line in Supporting Fig. 3.S14). In this illustrative example, input II will most
of the time be correctly classified as ‘negative’ however in two cases an incorrect ‘positive’
classification occurs. By further training of incorrect classification outputs, the classification
boundary will update accordingly (dashed line) and is able to correctly distinguish the two
classes including input variations. When dealing with noise or other variations on the input,
declaring a neural network trained after one correct output for each input combination should
be done with care. In this case it is better to cycle multiple times through every input
combination to prevent that a trained classification boundary lies within a noise cloud. On the
other hand, training with input variations results in classification boundaries that lie further
from the true input, and consequently wrong classification outputs due to variations in the
weights (state retention) happen less frequently (see Supporting Information 3.8.2). When
considering the electrochemical property of the neuromorphic device and choosing input
combinations with a small difference, the effect of noise becomes critical. In case that the
noise clouds of the two input classes overlap, classification becomes impossible.

Figure 3.S14: Effect of noise of the input voltage on classification. 2-D graphical representation of
a classification problem example with noise clouds around the input values. The input combinations
I, II, and IV represent the negative class and the III the positive class. The solid line shows the
classification boundary that does not always classify input II correct. The dashed line corresponds to
another classification boundary that allows for a correct classification even with noise present on the
input.
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3.8.5 Hardware neural network circuit

Figure 3.S15: Hardware neural network. Photo of the hardware neural network PCB with relevant
components indicated.
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Figure 3.S16: Electronic circuit. Schematic of the electronic circuit design of the hardware neural
network PCB module as in Supporting Fig. 3.S15
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Chapter4
Novel implementation of the backpropagation algorithm for in

situ training of multi-layer hardware neural networks using
progressive gradient descent

The process of neural network training can be slow and energy-intensive due to
the transfer of weight data between digital memory and processor chips. Neu-
romorphic computing can accelerate neural networks by performing multiply-
accumulate operations in parallel using non-volatile analogue memory. How-
ever, the training algorithm (backpropagation) in multi-layer neural networks
requires information - and therefore storage - on the partial derivatives of the
weight values, which is undesired in hardware neural networks. Here we propose
a novel strategy of the backpropagation algorithm that progressively updates
each layer using in situ gradient descent avoiding the storage requirement. We
experimentally demonstrate the working principle of the in situ error calculation
and the proposed progressive backpropagation method using a single and double
layer hardware neural network. We show with simulations that the progressive
backpropagation method achieves the same classification accuracy compared to
conventional backpropagation in software. These results show that the novel
backpropagation strategy has the potential to enable fast and efficient training
in hardware neural networks without sacrificing accuracy.

This chapter is based on the manuscript titled Novel implementation of the backpropagation
algorithm for in situ training of multi-layer hardware neural networks using progressive
gradient descent, Eveline R. W. van Doremaele, Tim Stevens, Stijn Ringeling, Marco Fattori,
Yoeri van de Burgt. Manuscript in preparation.
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4.1 Introduction
Neural networks have become increasingly popular due to their ability to solve complex
problems and process and structure large amounts of data. However, their growing size
and complexity have resulted in an exponential increase in the computational power (and
energy) required to process the information. This has led to the limitations of traditional
computing architecture, where the processing and memory units are separated. To address
these limitations, neuromorphic computing has emerged as a promising alternative. This
brain-inspired architecture allows for efficient vector-matrix multiplications, and has been
successful in accelerating neural networks[1–3] using in-memory computing. The weights
of the neural networks are represented by the conductance of neuromorphic devices, which
have been demonstrated in a wide variety of materials and systems, ranging from PCM[4],
RRAM[5, 6], EC-RAMs[7–9], etc. Commonly, the neural network is trained in software (ex
situ) and subsequently the weights are transferred directly to the neuromorphic devices by
mapping conductance values. Importantly, to achieve an accuracy comparable to software
neural networks the weights need to be precisely programmed with the correct conductance
values. Various research has been reported on improved programming schemes to increase
the programming efficiency and accuracy [4, 5, 10–12].
However, hardware imperfections, such as defective devices and parasitic wire resistance
and capacitance are inevitable, and are the main cause of inferior hardware neural network
performance. In situ training on the other hand adapts the weights and compensates for
these imperfections automatically.[13, 14] Hybrid training methods can be used to adapt to
device imperfections and improve the overall system performance. After the ex situ trained
weights are transferred to the neuromorphic devices, the weights of one (or more) layers
are reprogrammed using the backpropagated gradients calculated from hardware-measured
outputs.[15] Another hybrid method uses the hardware measured outputs for training in
software to progressively program the weights layer-by-layer.[16]
While these strategies are efficient in mitigating accuracy loss due to hardware imperfections,
they still require computationally expensive training ex situ by calculating the weight update
and programming the update using software. In an effort to mimic the efficient learning
process of the brain, in situ learning methods such as the forward-forward algorithm,
have been developed.[17] While this algorithm has several advantages that allow for a
simpler hardware implementation, its performance is insufficient to replace the established
backpropagation algorithm. Methods to perform in situ backpropagation have been
investigated and simulated but are limited to a single layer[18, 19], require a binary update
step[20, 21] or binary weights[22, 23], or storage of weight values[24]. Backpropagation
using (stochastic) gradient descent allows to differentiate between the weights and update
them in proportion to their relative contribution to the error, ensuring maximum error
reduction. Compared to update mechanisms with the same magnitude, gradient descent
allows for more efficient weight updates and overall better neural network accuracy, but is
more complex to execute in hardware due to the required calculation of partial derivatives (for
multi-layer neural networks). Here we propose a novel approach to integrate backpropagation
directly on the chip using hardware-based stochastic gradient descent suitable for multi-layer
neural networks. We introduce a method to calculate the partial derivatives of the weights
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locally, which allows for efficient weight updates during the training (backpropagation) phase.

4.2 Hardware implementation gradient descent
The proposed mechanism works by calculating the weight change layer-by-layer and imple-
ment this directly in hardware. During feed forward (inference), the output 𝑧 of layer 𝐿 is
calculated through a vector-matrix multiplication of the input times the weights (𝑤(𝐿)) and an
activation function 𝑎(𝐿) = 𝜎(𝑧(𝐿)), with the input equal to 𝑎(𝐿−1). The weight update for each
weight is relative to its contribution to the error 𝐸 and calculated according to

Δ𝑤𝐿
𝑖𝑗 = −𝜂 𝜕𝐸

𝜕𝑤𝐿
𝑖𝑗
𝐸 (4.1)

where 𝜂 is the learning rate, a hyperparameter used for scaling the update step and the error
equals the output (𝑎(𝐿)) minus target (𝑦). For a single-layer neural network (e.g. perceptron)
this is relatively straightforward since the update only depends on the input and output that
are directly available in hardware and only the derivative of the activation function needs to
be calculated which is 1 or 0 (in the case of a ReLU) see 𝜕𝐸

𝜕𝑤1
in Fig.4.1a.

Figure 4.1: Backpropagation algorithm | a) Schematic illustration of the partial derivatives required for
backpropagation including the corresponding formulas b) Mechanism to update weight 2 in layer 𝐿− 1
that depends of the forward signal of layer 𝐿 − 2 and the backpropagated error through layer 𝐿.

However, in a multi-layer neural network the weight update is influenced by the surrounding
layers and depends on the activation of the previous neurons (𝑎(𝐿−2)) and the weights in poste-
rior layers (𝑤𝐿) for weights in layer 𝐿−1. As a result, the gradient descent algorithm typically
requires storing the values of the neuron activation (intermediate output) as well as the weight
values, which is undesirable for hardware neural networks. The implementation method we
propose here allows to circumvent this restriction by progressively updating a single layer. We
calculate the weight update by applying the feedforward and the backpropagation signal at the
same time (see Fig.4.1b). The feedforward signal travels downstream through the network
(representing 𝑎(𝐿−2)) until the layer (𝐿 − 1) that requires updating. The error propagates
backward (upstream) through the network until the layer 𝐿 − 1 and is therefore multiplied
by the weights (𝑤𝐿). To facilitate the multiplication for the updates we use a transistor of
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which the drain current is linearly proportional to the gate voltage (feed forward) and the
drain voltage (back flowing error), (see Supporting Information 4.6.1). The transistor at every
weight allows for efficient vector-vector multiplications and enable parallel weight updates for
each layer.

4.3 Results

4.3.1 Classification performance of parallel versus progressive update

While the progressive layer-by-layer update approach completely avoids the storage require-
ments and allows for efficient multiplication operations during backpropagation, the update
values deviate slightly from the perfect update values as calculated by traditional gradient
descent. After the error calculation, the last layer will get the ideal update step according
to the gradient descent algorithm. However, the layers before the last one will get a slightly
different backflowing error signal as the weights through which the error signal propagates
are already updated. Although this deviation is unfavorable, generally neural networks thrive
when using large datasets while doing very small update steps. The weight update (Δ𝑤𝐿

𝑖𝑗)after evaluating a single data point is small enough, that we assume that the value of the
weight before and after the update is (almost) equal (𝑤𝐿

𝑖𝑗 ≈ 𝑤𝐿
𝑖𝑗 + Δ𝑤𝐿

𝑖𝑗). We thus expect
that the impact of the imperfect backflowing error signal is minimal and does not significantly
contribute to any accuracy loss. We verify this by simulating the performance of the proposed
layer-by-layer backpropagation approach compared to the traditional parallel update method
in software.
We used Python to model the behavior of the software and hardware neural network with
the parallel and progressive gradient decent respectively. We chose a (2x7x1) neural network
structure with two layers to classify a binary data set. In principle, classification of the problem
can be done with only two neurons in the hidden layer. However, due to the inherent stochastic
behaviour of neural networks, the training could get stuck in local minima depending on
random weight initialization values. For robustness, we chose seven neurons in the hidden
layer to counteract the probability of ending up in a local minimum. The dataset consist of
data clusters, generated by sampling 100 individual data points from a Gaussian distribution,
𝑋 ∼ 𝑁(𝜇,𝜎2), with a given mean (µ) and standard deviation (σ). Because this dataset can be
easily visualized (two input features can be represented on a 2D plane) it allows for better com-
parison and analysis on a qualitative level. We use a ReLU and a Linear Sigmoid activation
function for the hidden and output layers, respectively, which can also be implemented directly
in hardware [21]. The model for the software and hardware neural network are the same except
for two important differences: First, the software model updates all layers in parallel (i.e.
storing partial derivatives with respect to the weights in memory), while the hardware model
updates layers progressively allowing slight deviations in error signals and consequently in
the update steps. Second, the weight values in software can be programmed completely
linear and exact, while the weights in the hardware model are retrieved from measurement
data which includes non-linearity and noise (see Supporting Information 4.6.3). All other
parameters and processes such as learning rate, number of epochs, weight initialization, data
pre-processing, network structure, activation functions, error function, and dataset are kept the
same. To demonstrate the effect of the transistor multiplication, the hardware model allows
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us to perform the update multiplication either in software or with the data of the transistor
multiplication. Figure 4.2 shows the training accuracy after every epoch for the software
neural network model and both hardware neural network models (with and without transistor
multiplication) for 100 cycles. The performance strongly depends on the (randomized) initial
weight values and varies cycle-to-cycle however both software and hardware models show
similar performance, by converging to 100% accuracy within 10 epochs (except for a few
cycles that were stuck in local minima).

Figure 4.2: Accuracy comparison for software vs hardware model. Training accuracy after every
epoch for the a) software model, b) hardware model without and c) hardware model with transistor
multiplication, showing 100 training cycles (with randomized initial weight values). The blue area
indicates the 25-75% boundaries and the red line the median.

Figure 4.3 shows the discrimination boundaries and corresponding weight convergence which
demonstrates similar learning characteristics between the hardware model, using the progres-
sive gradient descent approach and transistor multiplication, and the software model. When
comparing the discrimination boundaries (Fig.4.3 a and b), the added noise in the hardware
model is clearly visible - while the software model shows perfectly straight lines - however
does not impact the accuracy since the noise level is much smaller than the input features.
Furthermore, when inspecting the convergence of the weights (Fig.4.3 c and d) we see that the
behavior of the weights in the software and hardware model are identical on a qualitative level
and again show potential of the progressive gradient descent approach for hardware neural
networks. The stochastic nature of the backpropagation algorithm in combination with the
random weight initialization results in different learning cycles.
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Figure 4.3: Decision boundaries and weight convergence comparison for binary data. a) Discrimination
boundary for software model. b) Discrimination boundary for hardware model including the transistor
multiplication. c) Corresponding weight convergence for the software and d) hardware model. Weights
and biases corresponding to neurons of the same layer are indicated with the same color.

4.3.2 In situ hardware classification performance

To demonstrate the in situ hardware classification we fabricated the peripheral circuit of the
hardware neural network on a PCB using EC-RAMs as the weights (see Fig.4.4 and Methods
4.5.1), such that every PCB represents 1 layer (including the activation function) that can
be cascaded to construct multi-layer hardware neural networks. Figure 4.5 shows the PCB
designed to operate as a single crossbar (network layer) of size 2x2.

Figure 4.4: Photo of substrate
with EC-RAMs

Figure 4.5: Design of the PCB. Equivalent to one network layer
including the activation function (ReLU) and necessary control
operations for the inference task and backpropagation algorithm.
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This architecture requires 6 EC-RAMs, 4 that represent the weight values (𝑤𝐿
𝑖𝑗 ) connected to

the inputs and 2 that represent the bias (𝑏𝐿𝑗 ). The gates of EC-RAMs are each connected to a
transistor in order the perform the multiplication for the update (see Supporting Information
4.6.1), and both are being offset by a reference resistor which allows for negative conductance
values. The crossbar can operate in two directions, forward and backward. In feedforward
mode the output (𝐼𝐿𝑗 =

∑𝑛
𝑖=1 𝑉

𝐿−1
𝑖 𝑤𝐿

𝑗𝑖 + 𝑏, with 𝑤𝐿
𝑗𝑖 = (𝐺𝑗𝑖,𝐸𝐶𝑅𝐴𝑀 − 𝐺𝑗𝑖,𝑟𝑒𝑓 )) is converted

to a voltage signal and passed through the ReLU activation function (𝜙). The ReLu activation
function is implemented in hardware using a diode such that only positive output values go
through:

𝜙(𝑥) = 𝑚𝑎𝑥(0,𝑥) =
{

𝑥 𝑥 ≥ 0
0 𝑥 < 0

𝜙′(𝑥) =

{

1 𝑥 ≥ 0
0 𝑥 < 0

(4.2)

During forward operation a latch is controlled to store the gradient of the ReLU (𝜙′ = 0 or
1). In the backward mode the backflowing error (𝐼 (𝐿−1)𝑖 =

∑𝑚
𝑗=1 𝑉

𝐿
𝑗 𝑤𝐿

𝑗𝑖) travels in opposite
direction and is converted to a voltage multiplied by the derivative of the ReLU activation
function (𝜙′). The third mode of operation is the update mode and allows the board to use
both the feedforward and feedbackward signal from the adjacent layers in order to change the
weight values accordingly (as discussed in section 4.2). Similar to the model as described
in section 4.3.1, the activation function of the output layer is a Linear Sigmoid, calculated in
software, since it only affects the last layer.
First we demonstrate the behavior of a single crossbar using the transistor multiplication to
update the weights, by replicating a single-layer (2x1) neural network using only 1 output
column of a single crossbar with 3 weights. The dataset (𝑋 ∼ 𝑁(𝜇,0)) consist of two clusters
with 2 data points with 𝜇1 = (−0.3,0.3) and 𝜇2 = (0.3,−0.3), for class 1 (orange) and 0 (blue),
respectively. Figure 4.6 shows the decision boundaries for Epoch 0, 1 and 10.

Figure 4.6: Decision boundaries after weight initialization (Epoch 0) and after training Epoch 1 and
Epoch 10. For the evaluation of the decision boundaries the output values are recorded while sweeping
over the input values from -0.3V to 0.3V in a grid of 50x50. 𝜇1 = (−0.3,0.3) represents class 1 (orange)
and 𝜇2 = (0.3, − 0.3) class 0 (blue).

Epoch 0 represents the classification output when the weights are randomly initialized and the
network is not trained. We can clearly see that the values of the weights are close to zero, as
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the decision boundary of epoch 0 is curved. Note that a single-layer neural network (with 2
weights and a bias) only allows for a linear separation between classes. The curved decision
boundary is the effect of noise on the weights. Every epoch the network runs through all data
points and updates the weights accordingly. From the decision boundaries we can clearly see
the update mechanism works well since the accuracy of epoch 1 and 10 is 100% for this data
set. We also see that the contribution of noise is reduced after only 1 epoch. After 10 epochs
the networks shows an almost perfect classification boundary. The classification using 1 layer
shows that the update method using the transistor multiplication works as expected. However,
it only allows us to demonstrate the forward and update mode of the crossbar (and not the
backflowing error). To demonstrate the progressive update approach in hardware we cascade
two crossbars to classify an XOR dataset with a 2x2x1 neural network. The last layer (2x1) is
the same as the single-layer neural network described before but its input comes directly from
the output of the ReLU activation of the first crossbar (2x2 layer). We randomly initialize all
weights close to zero by discharging the gate of the EC-RAMs. Figure 4.7 shows the decision
boundaries for various epochs between 0 and 10. Epoch 0 shows that all the weights are close
to zero before training. One epoch means one cycle through the feedforward and progressively
update both layers from back to front for all data points (4 clusters with 𝜇1 = ([-0.2,0.2],[0.2,-
0.2]) for class 1 indicated in orange and 𝜇2 = ([-0.2,-0.2],[0.2,0.2]) for class 0 indicated in
blue and 𝜎 = 0.0015 with 20 data points per cluster).

Figure 4.7: Decision boundaries for a 2-layer classification after weight initialization (Epoch 0) and
after 9 consecutive epochs. For the evaluation of the decision boundaries the output values are recorded
while sweeping over the input values from -0.3V to 0.3V in a grid of 50x50. Blue and orange data points
represent class 0 and 1.

After the first two update cycles (epoch 1 and 2) all the weights have a value such that the
output class is 0 in all cases (accuracy = 50%). After a few more epochs the weights are further
updated and reach an accuracy of 100% at epoch 6. The weights continue to update leading
to sharper decision boundaries but quickly saturate as the error, and thus the update, becomes
zero. Due to the neural network structure, specifically the 2 neurons in the hidden layers, not
all weight initializations lead to a global minimum and result in a 100% output accuracy. In
Supporting Fig. 4.S9 we show another training process of the same neural network where
the weights have different initialization values which leads to a local minimum obtaining 75%
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accuracy. To reduce the probability of the neural network arriving in a local minimum, the
number of hidden neurons can be increased (as demonstrated with the hardware and software
simulations in Fig. 4.2). Still, the weight initialization step remains important and should
be random, free from any biases caused by device imperfections or offsets, non-linearity and
imperfections in the electronic circuit and components. Especially in the beginning of the
training when weight values are close to zero these imperfections become significant and can
skew the results. Although those imperfections cannot be completely avoided, the hardware
neural network can be further optimized by tuning amplification factors and offsets to reduce
its impact (see Supporting Information 4.6.6). Even in software neural networks, fine tuning
of the hyperparameters can have a large impact on the outcome. However, in software many
tools are available, such as normalization and regularization, whereas in hardware this still
requires manual optimization.

4.4 Conclusion
We introduced a novel strategy for the backpropagation algorithm that progressively updates
the neural network layers directly in hardware. This method allows to calculate the partial
derivative of the error with respect to the weight in situ to bypass the need to store information
of the weights. We showed using a simulation that the trade-off of the error signal propagating
through an already updated layer, has no impact on the classification accuracy for a 2-layer
neural network. We further demonstrated the classification of a single-layer hardware neural
network by efficient vector-vector multiplication of the update signal using a transistor at the
gate of the EC-RAMs. Finally, we executed training of a multi-layer neural network using
progressive gradient descent in hardware and obtained a classification accuracy of 100%.
These results show that the progressive backpropagation approach creates opportunities for
training large neural networks more efficient and enables further advancements in intelligent
computing systems.

4.5 Methods

4.5.1 EC-RAM fabrication

Cr (5nm) / Au (50 nm) electrodes were patterned on a SiOx substrate using photolithography
and the subsequent lift-off process of the negative photoresist (AZ nLOF 2035). After a
surface treatment with the adhesion promoter Silane A-174, parylene C was deposited (∼1.7
µm) on the substrate to electrically isolate the electrodes. A diluted Micro-90 (2% v/v in
DI water) was spin-coated as an anti-adhesive layer, and subsequently, a sacrificial second
parylene C layer (∼2 µm) was deposited. The EC-RAM channels, with a width of 200 µm
and length of 500 µm, and contact pads were opened through successive photolithography
(AZ10XT photoresist) and reactive ion etching steps (Nordson March RIE 1701). A PE-
DOT:PSS (Hereaus, Clevios PH 1000) solution containing 6 vol% ethylene glycol (EG, Sigma
Aldrich) to enhance the morphology, 1 vol% (3-glycidyloxypropyl)trimethoxysilane (GOPTS,
Sigma Aldrich) as a crosslinking agent to improve mechanical stability, was filtered through a
0.45 µm polytetrafluoroethylene filter and spin-coated on the patterned substrates (1500 RPM
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for 1 minute) and baked at 120 ° C for 10 minutes. Thereafter the substrate was gently rinsed in
deionized water to eliminate residual contents and subsequently dried at 120 °C for 60 minutes
after which the sacrificial parylne-C layer was removed. The ion gel solution was prepared by
dissolving ionic liquid (EMIM:TFSI) and poly(vinylidene fluoride-co-hexafluoropropylene)
(4:1 w/w) in acetone (17.6 wt% ionic liquid, 4.4 wt% polymer, and 78 wt% solvent) and stirred
at 40 °C for at least 30 min, after which it was drop casted on the EC-RAM substrate to define
the solid electrolyte.

4.6 Supporting Information

4.6.1 Transistor multiplication

For the multiplication of the feedforward and backflowing error (Supporting Fig.4.S1 we use
a normally semi-open JFET transistor operating in the linear region where the output current
𝐼𝐷 is proportional to:

𝐼𝐷 ∝ 𝑉𝐺𝑉𝐷 ⇔ |𝑉𝐺| >> |𝑉𝐷| (4.3)

We pair the transistor with a 100 Ω resistor to correct for the offset such that its conductance
is zero when 𝑉𝐺 = 0V. Supporting Fig.4.S2 shows the output current as a result of the voltage
multiplication. The linearity of this multiplication directly impacts the weight update and thus
the network performance.

Figure 4.S1: Update EC-
RAM by multiplying feedfor-
ward with backflowing error
using a transistor

Figure 4.S2: Transistor multiplication measurement. Side view a)
and top view b) of the transistor measurement for different drain and
gate voltages, using a reference resistor of 100 Ω for offsetting the
conductance. The colorbar represents the output current.

4.6.2 Weight modulation EC-RAM

We implemented a current source (Supporting Fig.4.S3a) in front of the EC-RAM gate to scale
the output current from the transistor (the result from the forward and backward multiplication)
to the desired update steps. The use of the current source allows for linear update steps and
facilitates to set the maximum and minimum conductance values by balancing the resistors to
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prevent device damage. Supporting Fig.4.S3b shows the conductance modulation by applying
alternating pulse trains of positive and negative voltage to the input of the current source.
When increasing the number of pulses we can see that the maximum and minimum values set
by the current source are reached (Supporting Fig.4.S3c).

Figure 4.S3: Weight modulation. a) Schematic of the current source used to tune the conductance
values of the EC-RAM. b) Conductance modulation of 3 EC-RAMS by applying 128 potentiation
and depression pulses with amplitude ±50mV and duration 20ms and delay 200ms. c) Conductance
modulation of EC-RAM 3 with 128 and 200 pulses demonstrating the capping behavior of the current
source.

4.6.3 Hardware neural network simulation

The simulation of the hardware neural network is done in Python where the neural network
is constructed from crossbars each containing EC-RAMs of which the experimental data is
provided (see Supporting Fig. 4.S4). The EC-RAM data of the conductance modulation
(Supporting Fig.4.S3b,c) is divided in a reset (potentiation) and set (depression) file containing
each 128 (or 200) states for all cycles (see Supporting Fig.4.S5).

Figure 4.S4: Hardware neural network model sim-
ulated with Python.

Figure 4.S5: Zoom in on the conductance
states of the reset pulse (-50mV, 20ms).
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The average conductance per state is defined as the average conductance of 10 data points per
state and the read noise is equal to the standard deviation (𝜎𝑟𝑛 = 8.3 ⋅ 10−8) of those points.
The average gradient for potentiation and depression per conductance state is calculated and
interpolated for conductance values in between. Since the update (change in conductance)
is proportional to the time and the voltage amplitude, the average gradient is divided by
the pulse duration (20ms) and gate voltage (±50mV). The write noise is determined by
the standard deviation between cycles (𝜎𝑤𝑛 = 2.6 ⋅ 10−5). Supporting Fig.4.S6 shows the
cumulative distribution function (cdf) of the mean conductance gradient versus conductance
for potentiation and depression of the conductance values.

Figure 4.S6: CDF plot of conductance modulation of a) depression (set) and b) potentiation (reset).

It shows that the updates are symmetric but slightly non-linear in the conductance range
𝐶 = 7 ⋅ 10−4 S to 𝐶 = 11 ⋅ 10−4 S. This is caused by the drain voltage (V𝐷=0.1V) during
the measurement. Below conductance values of 𝐶 = 7 ⋅ 10−4 S we see the capping effect
of the current source indicating conductance values close to its boundary preventing further
updates towards low conductance values. The offset value (to realize negative weight values)
is determined by the intersection of the increasing and decreasing gradient, preventing biases
introduced by different update values for increasing and decreasing states.
4.6.4 Hardware neural network testing

The PCB is able to execute all computations (except for the generation of input data and
the error calculation) depending on the mode of operation (MOO) and is controlled by an
NI multifunction I/O device (DAQ) using MATLAB software (see Supporting Fig.4.S7 and
Table 4.S1).
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Figure 4.S7: Hardware neural network testing

Table 4.S1: I/O channels: PCB to Na-
tional instrument

Channel PCB pins NI I/O
1 Input crossbar (1) AO
2 Input crossbar (2) AO
3 Bias crossbar AO
4 Backflowing error (1) AO
5 Backflowing error (2) AO
6 Mode of operation: Feedforward DO
7 Mode of operation: Feedbackward DO
8 Mode of operation: Update DO
9 Store ReLU gradient DO
10 Apply learning DO
11 Output crossbar (1) AI
12 Output crossbar (2) AI

From the perspective of the NI board, the first 5 channels are analogue outputs (AO),
responsible for input features and backflowing errors in the crossbar. Channel 6 through
8 are connected to digital outputs (DO) to control the mode of operation (feedforward,
feedbackward or update), referring the progressive backpropagation (Fig.4.1b). Channel 9
and 10 are also digital outputs (DO), which are used to store the gradient of the activation
function (0 or 1) during feedforward and to apply the update on the gate of the EC-RAMs,
respectively. The last two channels are analogue inputs (AI) used to measure the output of
the crossbar. Note that each additional crossbar comes with the same channel configuration
where the crossbar output can be connected directly to the input channels of the next crossbar
in order to create a multi-layer neural network. To classify an XOR dataset, 2 crossbars have
to be connected in series, representing a 2x2x1 hardware neural network, and progressively
need to change their mode of operation. Supporting Fig.4.S8 shows the control sequence of
the 2-layer hardware neural network.

Figure 4.S8: Signal sequence generated by software to evaluate one data point and update the hardware
layers accordingly.

During the first part of the signal sequence, both crossbars are set to the forward mode in order
to apply the input signals which will result in a network prediction, where after the gradient
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values for the ReLU activation functions are stored. The second and third part of the signal
sequence are responsible for updating crossbar 2 (CB2) and crossbar 1 (CB1), respectively.
The error, calculated in the first sequence, is propagated backwards through the crossbars by
applying the correct mode of operation. The update channels can then be used to apply the
update to each crossbar, using the signal duration as learning rate.
4.6.5 Impact weight initialization

Due to the stochastic behavior of the backpropagation algorithm the neural network is not
always able to find the global minimum and depends on the weight initialization. Supporting
Fig. 4.S9 shows the decision boundaries for various epochs between 0 and 10. Epoch 0
shows that all the weights are close to zero before training. After the first update cycle (epoch
1) all the weights have a value such that the output is always negative (accuracy = 50%)
classifying class 0. After a few more epochs the weights are updated and reach an accuracy
of 75% at epoch 5. The weights continue to update but after 10 epochs the output accuracy
remains 75% and the network is unable to correctly classify the data points at (-0.3,0.3) as
class 1. This inaccuracy is the results of the network being stuck in a local minimum. As
discussed in section 4.3.1, when dealing with a small number of neurons the probability that
the network encounters a local minimum is significant and the success of the neural network
training strongly depends on the weight initialization. In the simulation we decreased this
probability by increasing the amount of neurons in the hidden layer to 7 such that the network
is able to select the useful weights. Since we are limited by the dimensions of the designed
crossbar we can only use 2 neurons for this demonstration. Restarting the training process
and re-initializing of the weights can lead to different results such as in Fig. 4.7.

Figure 4.S9: Decision boundaries for a 2-layer classification after weight initialization (Epoch 0) and
after various epochs. For the evaluation of the decision boundaries the output values are recorded while
sweeping over the input values from -0.3V to 0.3V in a grid of 50x50. Blue and orange data points
represent class 0 and 1 (𝜎 = 0).
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4.6.6 Discussion hardware classification performance

Successful operation of neural networks both hardware as well as software require fine tuning
of the hyperparameters. The first consideration is signal strength throughout multiple layers
(in software referred to as vanishing signals). While the input to the first layer is normalized
(in software) the output of the first layer is orders of magnitude lower due to the multiplication
of the weight value (∼ 0.1 mS range). In software the output signal in between layers can be
normalized, while in hardware we implemented an amplification factor that requires careful
tuning. If the amplification factor is too small the signals throughout the layers will vanish
and only noise will have an impact on the system. On the other hand, if the amplification
factor is too large the devices will break down. Furthermore, since the output value is an
accumulation of all the currents in the column the amplification depends on the amount of
neurons and on the conductance range of each EC-RAM. The same is true for the backflowing
error, which vanishes throughout the multi-layer neural network if the amplification between
layers is too small. The output of the backflowing error is accumulated over all currents in a
row, and its optimum amplification can thus be different from the forward signal amplification.
Another parameter that requires optimization is the activation function, in particular the one
of the output layer. We have implemented a linear sigmoid that scales the output values to
a prediction with a certain probability, and allows to differentiate between different error
strengths. We can define its boundaries such that the error of correct predictions contributes
more or less to the total error by increasing or decreasing the boundaries of the sigmoid,
respectively. For example by decreasing the boundaries the slope of the sigmoid increases
which means that small variations in the output results in a large impact on the error while
an output voltage (larger than defined boundary), results in a maximum output and if this
prediction is correct, does not contribute to the error. If the boundary is set too small (set
to zero it becomes a Heaviside step function), the error is unable to differentiate between
the output since after the activation function all outputs will be binary, resulting in either a
maximum error or no error value.

Author contributions
Eveline van Doremaele and TS initiated the idea. TS performed the experiments with active
involvement as well as experimental contribution of Eveline van Doremaele. Eveline van
Doremaele fabricated the devices. SR and MF designed the electronic circuit. TS performed
the simulations. YvdB supervised the project.
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Chapter5
Organic neuromorphic spiking circuit for retina-inspired

sensory coding and neurotransmitter-mediated neural pathways

The fundamental mechanisms of signal communication within the human body rely
on the spiking frequency of action potentials.[1, 2] Through biological receptors and
afferent neuronal cells, stimuli from the external world are encoded into a spiking
pattern and transmitted to the central nervous systems where they are processed via
interneurons. Replicating the interdependent functions of receptors, afferent neurons
and interneurons with spiking circuits [1], sensors[3] and biohybrid synapses[4] is an es-
sential first step towards merging neuromorphic circuits and biological systems, crucial
for computing at the biological interface. We present a novel adaptive spiking circuit that
replicates afferent neurons sensory coding from external physical stimuli. We emulate
the neuromodulatory activity of interneurons by associating the spiking circuit with
biohybrid synapses demonstrating an interdependent chemical synaptic connection. To
establish a full neuronal pathway, we combine these key biological functions, showing the
signal transduction from light stimulus to spiking frequency and to dopamine-mediated
plasticity: a retinal pathway primitive.

This chapter is based on Organic neuromorphic spiking circuit for retina-inspired sensory
coding and neurotransmitter-mediated neural pathways, Giovanni Maria Matrone∗, Eveline
R. W. van Doremaele∗, Sophie Griggs, Gang Ye, Iain McCulloch, Francesca Santoro, Yoeri
van de Burgt, In submission
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5.1 Introduction
Neuromorphic electronics is currently experiencing a huge increase in research activity. In-
spired by neuroscience, it aims to mimic the architecture of the human brain to enable parallel
computing with high energy efficiency[1, 2] and local processing[3], which advances edge-
computing[4], smart robotics[5, 6] and intelligent systems interfacing with the human body[7,
8]. However, establishing an active interaction with biological tissues, especially with the
central nervous system, requires adaptive computing systems that are not only able to receive
biologically encoded inputs but also to process and communicate these. The complex sensory
systems in the human body share a coding mechanism based on the frequency modulation of
action potentials[1]. The physical perception starts with millions of highly specific sensory
receptor cells which respond to definite stimuli at distinct locations on the body. The intensity
over time of an external stimulation is first converted into a receptor potential and then encoded
in the firing frequency of (afferent) neurons. The direct dependence of spikes frequency on the
magnitude of the stimulus is generally referred to as sensory coding. The sensory information
is then transmitted to the central nervous system where it is processed through a complex
network of inhibitory/excitatory interneurons that work as computing units by modulating
the spiking frequency in parallel. The circuital design of current spiking circuits is pre-
dominantly based on inorganic materials, particularly on silicon-based devices[9]. However,
neuromorphic applications operating at the biointerface clearly favour organic materials[2].
Next to their soft and flexible properties, high tunability and low operational voltage, organic
mixed ion-electron conductors conduct both electrons and ions[10]. This mixed conduction
allows organic materials to closely match the operating timescales of their biological counter-
parts[11] and mimic ion-based biological functions such as neuronal ion-flux communication
and neurotransmitter-receptor binding[2], which are required to interact with biological tissues
and to design adaptive bio-interfaces[12]. Recently, organic materials have been employed
to build electronic circuits that mimic the spiking behaviour of neurons[13, 14]. Despite
processing complex sensorial input[15], these systems still lack mechanisms to modulate the
encoded signal[16]. Organic materials can be used to recreate a neuronal network that in
nature relies on the cooperation of spiking elements (afferent neurons and interneurons) and
non-spiking elements such as mechano-chemical sensors (receptors), as well as neuromod-
ulator junctions (chemical synapses). We prove this concept by fabricating a neuromorphic
spiking circuit which comprises different bioelectronics devices to emulate the interwoven
biological functions of retinal sensory coding. The adaptable organic neuromorphic spiking
circuit (see Fig. 5.1a) is able to replicate the spiking activity of both afferent neurons (sensory
coding) as well as interneurons (neuromodulation). The circuit (see Fig. 5.1b) consists of an
organic capacitor (PEDOT:PSS[17]), a resetting electrochemical transistor (P-3O[18]) and a
pair of ambipolar inverters (p(C4-T2-C0-EG)[19]), comprising four organic electrochemical
transistors (OECTs). This system works both as an afferent neuron receiving external stimuli
such as light or pressure, as well as an interneuron by receiving input from a biohybrid
synapse[20]. This input potential activates the neuromorphic spiking circuit by charging the
capacitor. When the capacitor output reaches the transition voltage of the inverter pair, the
voltage inversion triggers the resetting OECT which allows the capacitor to discharge and start
the next cycle. The circuit and individual device characteristics can be found in Supporting
Information 5.S1.
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Figure 5.1: Neuromorphic spiking circuit emulating sensory coding and neuromodulation. a) Illustra-
tion representing sensory coding of visual (and tactile) senses by the afferent neuron and neuromodu-
lation using dopamine (and serotonin) by the interneuron. b) Schematic of the neuromorphic spiking
circuit consisting of a capacitor, inverter pair and switch with its corresponding active materials. For
sensory coding a physical receptor is connected and for neuromodulation a synaptic modulator circuit
is employed. c) Sensory coding of light using an ambient light sensor as physical receptor showing an
increasing spiking frequency output with increasing sensor output. Frequency output is with respect to
the first spiking frequency (0.08 Hz). d) Neuromodulation with dopamine using the synaptic modulator
circuit showing the modulation of spiking frequency depending on the dopamine concentration. The
frequency modulation is in percentage (top, high DA concentration and bottom, low DA concentration)
with respect to the spiking frequency of PBS (0.22 Hz)

Figure 5.1c demonstrates the sensory coding of light stimuli (see Supporting Information
5.3.2 for sensory coding of pressure stimuli). We connect a commercial light sensor that
replicates the function of the cones in the retina, transducing different light intensities to
specific receptor potentials that are used as the input to the neuromorphic circuit, thus
emulating afferent neurons. Each input generates a train of voltage spikes with a characteristic
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frequency ranging from 0.08 Hz to 0.18 Hz (Supporting Information 5.3.6) leading to a
maximum 115% modulation. Although afferent neurons are fundamental for sensory coding
they represent only a small proportion of human neurons, while interneurons represent the
99% of the total[21]. Besides being responsible for transmitting the signal between different
areas of the brain, their crucial task is to locally modulate the spiking pattern through different
neuromodulators at chemical synapses. Our neuromorphic spiking circuit is also able to
mimic neuromodulation by an interneuron using dopamine. Dopamine (DA) is a well-known
neuromodulator essential for motor control functions, rewards, and addiction[22]. In addition,
recent studies have addressed its involvement in information processing, neurogenesis and
diurnal patterns showing how this neurotransmitter influences sensory coding systems[23].
We replicate the interneuron connection to a neighbouring neuron by introducing an organic
neuromorphic device within a voltage divider circuit as a synaptic modulator (see Fig. 5.1a).
This neuromorphic device adopts an OECT-like configuration, as previously reported (see
Supporting Information 5.3.3), and its conductance can be modulated in a volatile way upon
ion injection by a train of gate voltage pulses. When an electro-active neurotransmitter, such
as dopamine or serotonin (5-HT), is present in the electrolyte, the oxidation of these species
leads to a non-volatile conductance modulation. To mimic dopamine mediated plasticity,
the synaptic modulator is connected to the neuromorphic spiking circuit. A voltage pulse
greater than the oxidation potential of dopamine (Vox𝐷𝐴 > 0.3V) is applied to the gate of
the OECT, a non-volatile change in conductance induced, resulting in a modulation of the
synaptic modulator output voltage. The spiking circuit receives this variable output voltage
and alters the spiking frequency accordingly. Figure 5.1d shows the modulation of the spiking
frequency over time for two different concentrations of dopamine, 0.025mM (light red) and
0.1mM (dark red), respectively. After 200s, dopamine is introduced in the system so that the
output of the synaptic modulator gradually increases from 0.35V to 0.40V, and as a result,
the spiking frequency shows a 36% increase at t=600s with a different temporal evolution
for the two concentrations. In contrast to the previous afferent neuron where a light stimulus
directly generates a spiking pattern, here the presence of dopamine regulates the frequency of
interneuronal spikes arriving from a previous neuron in the circuit. Furthermore, the temporal
modulation depends on the dopamine concentration similar to the biological mechanism of
synaptic plasticity[15]. Thus, this circuit is able to replicate the functions of a single neuron
and its chemical synapse. However, biological processors require a collective set of computing
elements (neurons) to operate. In the human brain, every single neuron computes the spikes
received from many interneuron connections and fires a spiking output if the sum of the input
stimuli has reached a specific threshold[21]. Neural pathways, the connections formed by
an axon and its synapse, link neurons from different locations and enable the transmission of
signals from one region of the nervous system to another[24]. We attempt to replicate a neural
pathway by coupling two interneuron synapses. The first synapse is located on the “sending
neuron” and receives an external signal that needs to be computed and transmitted to the
second synapse which is connected to the “receiving neuron” (see Fig. 5.2a). The input signal
consists of periodic voltage pulses and represents the spikes generated by the neuromorphic
spiking circuit (neuron) that activate the neuromodulation. We selected the neurotransmitters
dopamine and serotonin due to their well-known involvement in cognitive and behavioural
functions, including mood and reward. Moreover, dopaminergic and serotonergic neurons are
often interwoven through interneuron connections even if located in different brain areas[25].
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Here we prove that the connected synapses are able to replicate the dependency of dopamine
expression on the activity of serotonergic neurons[26]. The serotonin and dopamine mediated
synapses are connected through an electronic circuit, which adopts the same voltage divider-
configuration as the synaptic modulator (Fig. 5.1a) with the addition of an organic electronic
switch (see Supporting Information 5.3.4 and5.3.5). The switch in this circuit is a p(C4-T2-
C0-EG)-based OECT. The sending neuron (serotonin) receives the pre-synaptic input voltage,
and its output triggers the switch which regulates the signal transmission to the receiving
neuron (dopamine). Figure 5.2b visualizes the activity of the neural pathway by monitoring
the output of the sending neuron (Fig. 5.2bi), and the input voltage and the conductance of
the receiving neuron (Fig. 5.2b ii and iii).

Figure 5.2: Neural pathway of two coupled synapses. a) Illustration of the neural pathway between the
sending serotonergic neuron and receiving dopaminergic neuron. b) i. Output voltage of the sending
neuron, ii. Input voltage of the receiving neuron, iii. Conductance modulation of the receiving neuron

During the measurement (see Supporting Information 5.3.5 for data before t=140s) the
receiving neuron is placed in a dopamine-rich environment (0.025 mM) while the serotonin
concentration affecting the sending neuron is variable. In the first time-window (140-200s)
the serotonergic neuron is active (i.e., a voltage pulse train is applied to the gate of this device
to replicate neural spikes), but the neurotransmitter is absent in the microfluidic module. In
this initial condition, the output (0.3 – 0.32 V, Fig. 5.2bi) from the voltage divider (post-
synaptic pulses of the sending neuron) is below the turn-on voltage of the switch. As a result,
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the input signal received by dopaminergic synapse and its neuron is low (0.1 V, Fig. 5.2b ii)
and emulates the biological scenario where a serotonin neuron inhibits the modulation of the
dopamine synapse. At t=200s, a 0.05mM serotonin solution is introduced in the microfluidic
module of the first synapse. This activates the neural pathway excitatory functions as the
oxidation of serotonin causes a decrease in the conductance of the OECT which allows the
voltage divider output to increase (up to 0.44V, Fig. 5.2bi) and to turn on the switch. Now,
the periodic voltage pulses of 0.2 V (Fig. 5.2bii) trigger the partial oxidation of dopamine
on the receiving neuron and modulate the conductance of the synapse. After 300s, the
conductance modulation saturates, limited by the dynamic range of the OECT (Fig. 5.2biii).
This shows that the conductance modulation of the second synapse, mediated by dopamine,
is strictly controlled by the modulation of the serotonin mediated synapse as activated by
the sending neuron. The periodic voltage pulses (external input signal of sending neuron)
can be replaced with the voltage spikes from the neuromorphic spiking circuit, establishing
a full, direct connection that replicates the function of an interneuron or an afferent neuron.
To demonstrate the latter, we aim to combine both neuronal functionalities (sensory coding
and neuromodulation) in the organic neuromorphic circuit adopting the retina as a biological
system model. As shown in Fig. 5.1c the light intensity can be encoded in the spiking
frequency so it can be sent to higher order computing units (e.g., through the optic nerve
to the central nervous system). The power of the retina resides in its “in-sensor” functions,
performed by the close-interaction of bipolar cells and amacrine cells. This allows the signal
reaching the inner retina to be highly pre-processed, reducing the power consumption and
increasing computing performance[27]. Some crucial steps in the pre-processing of visual
information such as shape recognition and light adjustment mechanisms, only occur through
the local action of neuromodulators, including dopamine[21]. The synthesis and activity
of this neurotransmitter in dopaminergic amacrine cells (acting as interneurons), spike in
response to light onset[28]. To mimic this in our artificial retina prototype, the light-induced
spiking pattern modulates the synaptic plasticity of a chemical synapse that is mediated by
dopamine (Fig. 5.3a).
In Fig. 5.3bi the light sensor is exposed to two light conditions (low and high intensity) that
correspond to two levels of receptor potential which have been employed to trigger spike
trains of increasing frequencies (see Supporting Information 5.3.6). These spike patterns
induce a permanent plasticity modulation of the synapse through the mechanisms described in
Supporting Information 5.3.3 and 5.3.6, depending on the concentration of dopamine present
in the electrolyte (0.025 mM and 0.1 mM). To de-couple the role of dopamine concentration
on the spiking frequency, for each light condition, an input length triggering three spikes
have been selected. Both the concentration of dopamine and the intensity of light (spiking
frequency) affect the synaptic plasticity (Fig. 5.3b ii). In the low light condition the lowest
dopamine concentration (0.025 mM) leads to a 0.10 mS synaptic modulation, while the highest
dopamine concentration (0.1 mM) results in a 0.20 mS modulation (Fig. 5.3b ii). Increasing
the ambient light intensity, the synaptic modulations shift to 0.12 mS and 0.23 mS modulation
for the lowest and highest dopamine concentrations, respectively. The same set of light
conditions is repeated, proving that a similar synaptic modulation is achieved, even though
the baseline of the synaptic conductance has shifted due to the previous modulations. The
neuromorphic system enables the transduction of the ambient light intensities to a voltage
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Figure 5.3: Combining sensory coding and neuromodulation in a neuromorphic artificial retina. a)
Illustration of the neural pathway of the retina starting with photoreceptors transducing light intensity
to spiking frequency (sensory coding) followed by the frequency modulation (neuromodulation) at the
synapse mediated by dopamine. b) Voltage output of the light sensor (i) for different light conditions and
corresponding neuron output (ii) comparing 2 concentrations of dopamine (0.025mM light and 0.1mM
dark red).

potential and subsequently to a precise spike pattern which translates to specific synaptic
modulations. As such, this biohybrid synapse can retain the information it has received and is
able to adjust it based on the spiking pattern: a key to replicate the biological photic regulation
mediated by retinal dopamine.
The chemically-adaptive neuromorphic spiking circuit presented in this work constitutes a
fundamental building block for programmable neural pathways that can locally transduce and
process both physical as well as physiological environmental information, an essential step
towards realizing processors at the biohybrid interface. We envision integrating novel algo-
rithms to perform organ-specific computing functions realising adaptive biohybrid bridges
between (damaged) pre- and high order processing biological units.
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5.2 Methods

5.2.1 p(C4-T2-C0-EG) devices fabrication

The p(C4-T2-C0-EG) was synthesized by McCulloch group (see Supporting Information
5.3.1)[29]. The material solutions were prepared in chloroform at the concentration of 20
mg mL-1. As substrates, interdigitated microelectrodes IDA-Au-6 (channel length L 5 µm,
individual channel width, w, 1.8 mm, number of pairs 30, number of channels, n, 59, total
channels width, W = n × w = 10.62 cm) were purchased from MicruX technologies. The
interdigitated microelectrodes were pre-treated with UV ozone over 15 min. The polymer
solutions were spin-coated at 500 rpm for 60 s to fabricate the OECT comprising the inverter
of the spiking circuit. The polymer solutions were spin-coated at 200 rpm for 60 s (no post-
processing treatment) to fabricate the OECT comprising the switch element of the spiking
circuit.
5.2.2 P-3O devices fabrication

The P-3O was synthesized by Gang Ye and the material solutions were prepared in chloroform
at the concentration of 5 mg mL−1. As substrates, interdigitated microelectrodes IDA-Au-6
(channel length L 5 µm, individual channel width, w, 1.8 mm, number of pairs 30, number of
channels, n, 59, total channels width, W = n × w = 10.62 cm) were purchased from MicruX
technologies (SPAIN). The interdigitated microelectrodes were pre-treated with UV ozone
over 15 min. The polymer solutions were spin-coated at 1000 rpm for 30 s.
5.2.3 Biohybrid synapse and capacitor fabrication

The neuromorphic devices (constituting the biohybrid synapse and capacitor elements) were
fabricated on glass-ITO patterned substrates purchased from Xin Yan Technology Ltd. The
size of the glass square substrates is 25mm with patterned squares of ITO (20ohm sq−1) of
10 mm covering each corner. Substrates were cleaned through sonication in IPA (Sigma-
Aldrich, USA) for 20 min. Employing Kapton tape and using a PMMA master mask, 2 stripes
connecting opposed ITO squares (with fixed width 5mm) were traced for the deposition of the
polymer mixture. PEDOT:PSS (Hereaus, Clevios PH 1000) aqueous solution was prepared
by adding 6 vol.% ethylene glycol (Sigma-Aldrich, USA) to increase the PEDOT:PSS con-
ductivity, 0.1 vol.% dodecylbenzene sulfonic acid (Sigma-Aldrich, USA) as a surfactant, and
1 vol.% (3-glycidyloxypropyl)trimethoxysilane (Sigma-Aldrich, USA) as a crosslinking agent
to improve mechanical stability. PEDOT:PSS solution was spun on the selected areas of the
substrate at 1000 rpm for 2 min and baked at 120 °C for 20 min. Before operation the devices
were conditioned at least 20 min in PBS solution, in order to avoid swelling effects during
electrical measurements.
5.2.4 Neurotransmitters solutions preparation

Neurotransmitter solutions were freshly prepared by dissolving dopamine hydrochloride
(98%, Sigma-Aldrich, USA) and serotonin hydrochloride (98%, Sigma-Aldrich, USA) into
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Dulbecco’s Phosphate Buffered Saline (Modified, without calcium chloride and magnesium
chloride, Sigma-Aldrich, USA) at multiple concentrations ranging from 0.01mM to 0.1 mM.
5.2.5 Spiking circuit connections

The individual devices composing the spiking circuit (see also Supporting Information 5.3.1)
were connected using needle probes and the input/output voltage were coupled through direct
BNC cable connections. For connection with the 5 MicruX substrates i.e. the ambipolar
inverter pair (four p(C4-T2-C0-EG) OECTs) and the P-3O switch device, a commercial
contact box was employed, fabricated by MicruX technologies (SPAIN), to establish a reliable
contact to the source and drain. An Ag/AgCl pellet was used as the gate electrode.
5.2.6 Electrical measurements

The individual devices and the spiking circuit were characterized using ARKEO multichannel
developed by Cicci Research (Italy). The system comprises a thermal controlled stage, two
microfluidic pumps and eight-channel source meter units, respectively. Each device of the
circuit was operated and monitored through one of the available channels of this system.
Needle probes were used to access the ENODe’s gate and drain electrodes.

Figure 5.S1: Schematic illustrating the neuromorphic spiking circuits connections, highlighting the
different materials used to fabricate the different electronic components. In green the P-3O-based OECT
used as an electronic switch, in blue the PEDOT:PSS-based capacitor and in orange the p(C4-T2-C0-
EG)-based OECTs composing the inverter pairs.
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5.3 Supporting Information

5.3.1 Spiking circuit

In this section the devices and materials that compose the spiking circuits (Fig.5.1 and
Supporting Fig.5.S1) are presented and the single device voltage and transfer characteristics
are displayed (Supporting Figs. 5.S2 - 5.S5). The spiking circuit features a capacitor
(PEDOT:PSS OECT) which receives the external input in forms of voltage potential charging
from 0 to 0.26 V (see Supporting Fig.5.S5). A 330 kOhm resistor is used to connect the
capacitor to the Vin. The capacitor is connected to the ground through a switch device (series
connection through the channel terminal of this device). The switch (P-3O OECT) opens
and closes the ground connection of the capacitor depending on its resistance (Supporting
Fig.5.S4). The switch device is in ON/OFF state depending on the voltage applied to its gate
terminal and allows the capacitor to charge and discharge (Supporting Fig.5.S5). The inverter
pair of the neuromorphic circuits are constituted by four identical p(C4-T2-C0-EG) OECTs.
p(C4-T2-C0-EG) is an ambipolar material so the inverter of these OECTs can behave both as
n-type and p-type transistors (Supporting Fig.5.S2).

Figure 5.S2: p(C4-T2-C0-EG) transfer and output curves for both n-type and p-type behaviors. a) p-
type output curve VG from 0 to -0.8 V (step-size 0.1V). b) n-type output curve VG from 0 to 0.4 V
(step-size 0.1V). c) p-type transfer curve at VDS = -0.1 V. d) n-type transfer curve at VDS = 0.1 V.

To the first inverter a VDD1= 0.5V is applied, while on the second inverter VDD2 = 0.8V is
applied. The VDD unbalance was introduced to optimize the double-stage inverter realizing
a sharper inversion point (increasing the gain and the inversion range of the second inverter)
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which is key to replicate neural spikes. When the capacitor charge reaches the inverters
threshold (0.3 V) the first inverter characteristic voltage, due to the low VDD1, moves from
0.3 to 0 V (Supporting Fig.5.S3, top panel). The second inverter, receiving as input voltage
the output of the first inverter, displays a characteristic curve with an inversion point (0.26 V)
with the voltage moving from 0 to 0.7 V (Supporting Fig.5.S3, bottom panel). The output
terminal of the double stage inverter is connected to the gate terminal of the switch device
so that the voltage inversion (0 to 0.7 V) of this system modulate the change of the state of
the switch from OFF to ON (Supporting Fig.5.S4). When the switch is in the ON state the
connection to the ground is closed and the capacitor discharges to 0V, allowing a new cycle
to start.
Supporting Fig.5.S6 shows a frequency modulation experiment with relevant parameters
reported in Table 5.S1. In this case the capacitor was directly connected to an external voltage
supplier and the voltage input was increased from 0.3 to 0.6V (0.05 V step).

Figure 5.S6: The voltage spikes (bottom) generated by the neuromorphic circuit responding to different
voltages applied (top), through an external voltage supplier), directly to the capacitor element. In
between top and bottom panels, the spiking frequency change (in percentage) corresponding to each
spike pattern-voltage pair is reported.

Figure 5.S3: Ambipolar in-
verter characteristics for both
single and double stage invert-
ers.

Figure 5.S4: P-3O transfer
curve.

Figure 5.S5: Capacitor char-
acteristic.
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Table 5.S1: Spikes modulation data as extracted from the trace in Supporting Fig.5.S6.

Capacitor Input (V) Spikes timing (s) Frequency (Hz) Change (%)
0.3 7 0.14 0.00
0.35 6.9 0.145 1.45
0.4 6.8 0.15 2.94
0.45 6.4 0.16 9.38
0.5 5.9 0.17 18.64
0.55 5.4 0.19 29.63
0.6 4.8 0.21 45.83

5.3.2 Sensory coding with pressure sensor

In this section we describe in detail the mechanisms of coupling of the commercially available
force sensor (Grove-Round Force Sensor, FSR402, see Supporting Fig.5.S7) to the neuromor-
phic spiking circuit. The results of the spiking activity are presented in Supporting Fig.5.S8.
The pressure sensor is a force sensitive module with at the end a round force sensitive resistor
(R𝐹𝑆𝑅). This resistance depends on the pressure applied to this resistor: the greater the
pressure, the smaller the resistance. Output voltage is equal to: 𝑉𝑜𝑢𝑡 = 𝑅𝑀 ⋅𝑉𝐶𝐶

𝑅𝑀+𝑅𝐹𝑆𝑅
, where

the measuring resistor 𝑅𝑀 = 30 kΩ and the supply voltage 𝑉𝐶𝐶 = 1V.

Figure 5.S7: Figure of the
Grove-Round Force Sensor
(FSR402).

Figure 5.S8: Sensory coding of touch using the force sensor as phys-
ical receptor showing an increasing spiking frequency output with
increasing sensor output voltage.

We connect the force sensor that replicates the behavior of biological skin receptors by
transducing a set of pressure stimuli (i.e. the weight of four different objects) into voltage
potentials that are used as the input to the neuromorphic circuit (afferent neuron). Each
input generates a train of voltage spikes with a characteristic frequency as reported in Table
5.S2 .The spiking frequency (ranging from 0.14Hz to 0.35Hz) shows a linear response to the
pressure stimuli emulating the biological mechanism of conscious sensation on the skin of the
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hand where receptors are programmed to respond to different pressures by featuring specific
thresholds (Supporting Fig. 5.S9 and 5.S10).

Table 5.S2: Spikes modulation data as extracted from the trace in Supporting Fig. 5.S8.

Mass (g)
Pressure
Sensor
Output (V)

Spikes timing
(s)

Frequency
(Hz) Change (%)

55 0.3 7 0.14 0.00
67 0.41 5.6 0.18 25.00
87 0.59 4.7 0.21 48.94
116 0.69 4.1 0.24 70.73

Figure 5.S9: Relationship of the sensor output
voltage and the applied force after placing 4 ob-
jects with a weight varying from 55g to 116 g.

Figure 5.S10: Output spiking frequency of the
spiking neuron with depending on the pres-
sure sensor output voltage corresponding to the
weights ranging from 55g to 116 g.
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5.3.3 Bio-hybrid synapse and its synaptic modulation

Figure 5.S11: Overall bio-hybrid synapse layout (left) and layout of the glass-ITO substrate.

In Supporting Fig. 5.S11 the overall bio-hybrid synapse layout is depicted on the left of
the figure, showing the G (gate), S (source), D (drain) ITO electrodes, as reported in a
previous work. On the right the transparent glass is depicted where the grey areas represent
the ITO electrode, the blue rectangle are the PEDOT:PSS films used as gate and channel of the
transistor, the blue area corresponds to the microfluidic module. In Supporting Fig. 5.S12 the
bio-hybrid synapse conductance modulation is reported in case dopamine (left) and serotonin
(right) is employed. In this experiment the input voltage applied to the bio-hybrid gate consist
of three periodic voltage pulses of 300 mV (dopamine) and 400 mV (serotonin) with width
3s and delay of 10s. The conductance GD depends on the concentration of neurotransmitter
and on the number of voltage pulses applied (in these graphs only three). As more pulses are
applied the dynamic range of the device saturates (Fig.5.2b) and the conductance modulation
per pulse decreases.

Figure 5.S12: Bio-hybrid synapse characteristic with and without DA and 5-HT neurotransmitters
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5.3.4 Sensory coding with neurotransmitters dopamine and serotonin

In this section the strategy to employ the bio-hybrid synapse to modulate the spiking fre-
quency of the circuit is presented. The bio-hybrid synapse is included in a voltage divider
configuration (Supporting Fig.5.S13) connected in series with a 1kΩ resistor.

Figure 5.S13: Voltage divider configuration for exploiting the bio-hybrid synapse as a chemical receptor

The V𝑜𝑢𝑡 of this voltage divider depends on the ratio of the resistance of the two elements
comprising the circuit according to:

𝑉𝑜𝑢𝑡 =
𝑅𝑂𝑆

𝑅𝑂𝑆 + 𝑅1𝑘Ω
(5.1)

In the above equation we assume the bio-hybrid synapse to be a tunable resistor. The
resistance of the PEDOT:PSS-based synapse can be tuned by applying a gate potential >0V,
i.e. switching off the OECT. During the course of the experiments (Fig. 5.1d and Supporting
Fig. 5.S12) periodic voltage pulses are applied to the gate of the bio-hybrid synapse, matching
the oxidation potential of DA or 5-HT. In case of PBS (no neurotransmitter in solution) the
voltage applied to the gate biohybrid synapse enables a reversible modulation of its resistance,
so that the V𝑜𝑢𝑡 of the voltage divider does not change. When DA or 5-HT are introduced in
solution the oxidation of these molecules leads to an increase of the resistance of the bio-
hybrid synapse that depends on the number of pulses applied and on the concentration of
the neurotransmitters. This leads to an increase of the voltage divider output and is used as
input voltage to charge the capacitor of the spiking circuit. Hence, the spiking frequency is
modulated (increased) depending on the type of neurotransmitter used and on the pulsing time.
Supporting Fig. 5.S14 and 5.S15 report the spiking output trace at different time (Fig. 5.1d)
that have been used to extract the temporal evolution of the frequency modulation (Tables
5.S3, 5.S4).
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Figure 5.S14: Spiking output plot used to calculate the spiking frequency modulation as shown in Fig.
5.1 as a 0.025mM DA solution is set to flow in the microfluidic module of the biohybrid synapse. The
flow of DA solution starts at time 200s. The spiking frequency is extracted at time 0 (PBS), time 250 s
(yellow), time 450 s (green) and time 650 s (violet).

Table 5.S3: Spikes modulation data as extracted from the trace in Fig. 5.1d for DA 0.025 mM
Time (s) Voltage Divider Output (V) Spikes timing (s) Frequency (Hz) Change (%)
0 0.34 5.00 0.2 0
250 0.37 4.76 0.21 5.1
450 0.38 4.35 0.23 15.3
650 0.41 3.85 0.26 30.2

Figure 5.S15: Spiking output plot used to calculate the spiking frequency modulation as shown in Fig.
5.1 as a 0.1mM DA solution is set to flow in the microfluidic module of the biohybrid synapse. The
flow of DA solution starts at time 200s. The spiking frequency is extracted at time 0 (PBS), time 250 s
(yellow), time 450 s (green) and time 650 s (violet).
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Table 5.S4: Spikes modulation data as extracted from the trace in Fig. 5.1d for DA 0.1 mM.
Time (s) Voltage Divider Output (V) Spikes timing (s) Frequency (Hz) Change (%)
0 0.34 5.00 0.2 0
250 0.39 4.35 0.23 5.05
450 0.40 4.00 0.25 15.25
650 0.41 3.83 0.26 30.3

As for DA in Fig. 5.1d, the same mechanism has been replicated with the use of two different
concentrations of 5-HT (0.01mM and 0.05mM). Indeed, Supporting Fig. 5.S16 is the replica
of Fig. 5.1d in case of 5-HT while Supporting Fig. 5.S17 shows the plots that have been used
to extract the frequency modulation (Tables 5.S5, 5.S6). In 5-HT case, the evolution of the
frequency modulation is faster and only the frequency at time >500s are reported.

Figure 5.S16: The spikes generated by the neuromorphic circuit responding to different concentrations
of the neurotransmitter serotonin (0.01mM pale blue, 0.05mM darker blue). On top, the voltage divider
output is plotted.

Figure 5.S17: Spiking output plot used to calculate the spiking frequency modulation as shown in
Supporting Fig. 5.S16 as 0.01mM (pale blue) and 0.05mM (darker blue) 5-HT solution are used to
modulate the resistance of the biohybrid synapse. The frequency values are extracted after 500s, when
the voltage divider output modulation is finished.

83



5

Table 5.S5: Spikes modulation data as extracted from the trace in Supporting Fig. 5.S16 5-HT 0.01
mM.

Time (s) Voltage Divider Output (V) Spikes timing (s) Frequency (Hz) Change (%)
0 0.33 4.55 0.22 0.00
>500 0.37 4.17 0.24 9.09

Table 5.S6: Spikes modulation data as extracted from the trace in Supporting Fig. 5.S16 5-HT 0.05
mM.

Time (s) Voltage Divider Output (V) Spikes timing (s) Frequency (Hz) Change (%)
0 0.33 4.55 0.22 0.00
>500 0.39 3.70 0.27 22.73

5.3.5 Voltage divider and switch circuit to connect the two bio-hybrid
synapses

The circuit presented in this section (referring to Fig. 5.2) has been designed to connect two
organic synapses, O.S.1 and O.S.2 (Supporting Fig. 5.S18a), that operate with 5-HT and DA
respectively without recurring to a neuromorphic spiking circuit. The combination of the
voltage divider and the switch block constitutes the "sending neuron". The broad scope of the
circuit is to provide a technological approach to transmit the signal of an O.S. (conductance
modulation) to multiple devices.

Figure 5.S18: Schematics of the circuit, comprising a voltage divider and a switch OECT, used to
connect organic synapse O.S.1 (working with 5-HT) with O.S.2 (working with DA). The combination
of the voltage divider and the switch block constitute the sending neuron. b) Transfer characteristic of
the p(C4-T2-C0-EG) based OECT used as a switch device.
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The operation of the switch device has been assessed before connecting this element to the
voltage divider. To create a voltage-controlled switch device, the channel of a p(C4-T2-
C0-EG)-based OECT has been connected in series with the gate of the O.S.2. Thus, the
voltage V𝐺2 applied on the O.S.2 depends on the state of the switch device (ON/OFF). The
p(C4-T2-C0-EG)-based OECT displays a sharp turn on voltage around 0.3V (Supporting Fig.
5.S18b). However, the device enters a completely ON-state around 0.4V which is needed
to sustain larger currents. Indeed, when V𝐺1 is externally controlled by a voltage supplier
(Supporting Fig. 5.S19a), applying 0.3V does not activate the switch device (black curve)
and leads to values of V𝐺2 below 0.1V (O.S.2 conductance reversible modulation is low).
When the voltage supplier sets V𝐺1 = 0.5V (red curves), V𝐺2 reaches 0.2V which trigger a
visible modulation of the O.S.2 conductance.

Figure 5.S19: a) Voltage and current characteristics of the switch element (in red) when VG2 is
externally connected to a controlled voltage supplier. b) Voltage and current characteristics of the voltage
divider (in black) connected to the switch element (red) under different input voltages.

For the voltage divider (Supporting Fig. 5.S18a in blue) a commercial resistor of 1kΩ has
been connected in series with the O.S.1 (as described in section 5.3.4, with O.S.1 the tunable
resistor in equation 5.1). Indeed, the resistance of the PEDOT:PSS-based O.S.1 can be tuned
by applying a gate potential > 0 V , i.e. switching off the OECT. In Fig. 5.2 this has been
achieved by using a 0.05mM 5-HT solution while pulsing the gate of the O.S.1 at 0.4 V.
However, in the preliminary experiments performed to check the characteristic of the voltage
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divider and presented in this section, a PBS solution has been used (Supporting Fig. 5.S19
black curves). In the starting condition (O.S. 1 is ON) the V𝑜𝑢𝑡=𝐺1

of this voltage divider is
around 0.3 V. If a 0.3 V pulsing input is applied to the gate of the O.S. 1 the V𝑜𝑢𝑡=𝐺1

oscillates
around 0.3 V (Supporting Fig. 5.S19b first two rows, black curves). To switch OFF (and
simulate the condition achieved in the manuscript by using 5-HT) the O.S.1 and tune the
V𝑜𝑢𝑡, the amplitude of the pulsing on the gate of O.S.1 is increased from 0.3 to 1 V. In this
condition, the V𝑜𝑢𝑡 (connected to the following element of the circuit and corresponds to V𝐺1in the same graph) moves from 0.3V to values above 0.4V. In the experiment presented in the
manuscript (Fig. 5.2), the resistance of O.S.1 is increased to the value that corresponds to a
V𝑜𝑢𝑡=𝐺1

≈ 0.4V by pulsing the gate at 0.4 V while using a 0.05mM 5-HT solution.
At this stage, the overall operation of the circuit (voltage divider + switch = sending neuron,
Supporting Fig. 5.S19b and 5.S20) has been assessed before operating the circuit with the
neurotransmitters DA and 5-HT. Again, the O.S.1 conductance modulation achievable with
the 5-HT, has been simulated by the application of a large gate input (1V) on O.S.1. As from
Supporting Fig. 5.S19b, a train of pulses of 0.3V on the gate of O.S.1 simulate the circuit
situation before the 5-HT is infused in the microfluidic module. Indeed, the voltage divider
output V𝑂𝑈𝑇 is around 0.3V corresponding to a V𝐺2 < 0.1V. As such, O.S.2 conductance is
poorly modulated. Increasing the amplitude of the train of pulses on the gate of O.S.1 to 1V
moves the voltage divider V𝑜𝑢𝑡 to values >0.4V. These values are enough to switch ON the
switch device. Hence, the input of the "receiving neuron", V𝐺2, reaches 0.2V which is enough
to appreciate a reversible modulation of O.S.2 conductance. As in Fig. 5.2, in presence of
DA in the microfluidic module of O.S.2, the increase of resistance of O.S.1 with 5-HT, by
moving the V𝐺2 from <0.1V to ≈0.2V trigger a partial oxidation of DA allowing to establish
a connection between the conductance modulation of the two O.S. devices.
Finally, Supporting Fig. 5.S20 represents the extended version of Fig. 5.2 including the time
window (0-140s) where (due to the start of the DA flow on the receiving neuron) the biohybrid
synapse conductance level experience a baseline change (conductance decrease).

Figure 5.S20: Complete voltage and conductance monitoring of the key elements of the circuit, showing
the initial (time 0-140s) baseline DA-dependent baseline change. (Extended version of Fig. 5.2).
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This is caused by the occurrence of a new equilibrium condition established between the
PEDOT:PSS OECT channel and electrolyte protons when passing from a PBS to a PBS+DA
solution. However, before the activation of the 5-HT flow and so the start of the neural
cascade, the conductance level of the receiving neuron has reached a stable baseline (140-
200 s).
5.3.6 Sensory coding with light

As reported in Fig. 5.1c, different light conditions have been employed to test the light
sensory coding capability of the neuromorphic circuit. Relevant parameters, extracted from
the spiking pattern of Fig. 5.1c, are reported in Table 5.S7.

Table 5.S7: Spikes modulation data as extracted from the trace in Fig. 5.1c.

Light sensor output(V) Spikes timing (s) Frequency (Hz) Change (%)
0.38 12 0.08 0.00
0.5 10 0.10 20.00
0.6 8.2 0.12 46.34
0.8 6.8 0.15 76.47
1 5.6 0.18 114.29

The light sensor we used is the DFRobot’s Analog Ambient Light Sensor (DFR0026) with
a voltage supply of 5V (Supporting Fig. 5.S21). The light sensor was shielded from the
ambient light except for a small opening on top of the sensor. This opening was fully or
partially covered to simulate various light conditions (low, high light intensity).

Figure 5.S21: Analog ambi-
ent light sensor (supply voltage
5V).

Figure 5.S22: The spikes generated by the neuromorphic circuit
corresponding to the light conditions used in Fig. 5.3.

In Fig. 5.3 we used two different light conditions to replicate a retinal neural pathway.
Calibration experiments are here reported (Supporting Fig. 5.S22) showing a modulation
of the spiking frequency from 0.14 Hz to 0.45 Hz, as extracted in Table 5.S8, when moving
from low light (0.3V light sensor output) to high light intensity (1.2 V sensor output).
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Table 5.S8: Spikes modulation data as extracted from the trace in Fig. 5.S22, comprising the light
sensor output, the time between each pair of spikes, the corresponding frequency and the percentage of
frequency change.

Light sensor
output(V)

Spikes timing
(s) Frequency (Hz) Change (%)

0.3 7 0.14 0.00
1.2 2.22 0.45 221.75
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Chapter6
Adaptive biosensing and neuromorphic classification based on

an ambipolar organic mixed ionic–electronic conductor

Organic mixed ionic–electronic conductors (OMIECs) are central to bioelectronic appli-
cations such as biosensors, health-monitoring devices, and neural interfaces, and have
facilitated efficient next-generation brain-inspired computing and biohybrid systems.
Despite these examples, smart and adaptive circuits that can locally process and optimize
biosignals have not yet been realized. Here, a tunable sensing circuit is shown that
can locally modulate biologically relevant signals like electromyograms (EMGs) and
electrocardiograms (ECGs), that is based on a complementary logic inverter combined
with a neuromorphic memory element, and that is constructed from a single polymer
mixed conductor. It is demonstrated that a small neuromorphic array based on this
material effects high classification accuracy in heartbeat anomaly detection. This high-
performance material allows for straightforward monolithic integration, which reduces
fabrication complexity while also achieving high on/off ratios with excellent ambient
p- and n-type stability in transistor performance. This material opens a route toward
simple and straightforward fabrication and integration of more sophisticated adaptive
circuits for future smart bioelectronics.

This chapter is based on Adaptive Biosensing and Neuromorphic Classification Based on
an Ambipolar Organic Mixed Ionic–Electronic Conductor, Yanxi Zhang*, Eveline R. W.
van Doremaele*, Gang Ye, Tim Stevens, Jun Song, Ryan C. Chiechi, Yoeri van de Burgt,
Advanced Materials, 34, (20), 2022.
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6.1 Introduction
The success of many organic bioelectronic applications results from reduced interface
impedance and extraordinarily high electrochemical transconductance (ion-to-electron trans-
duction) in organic mixed ionic–electronic conductors (OMIECs).[1, 2] These and other
unique properties such as biocompatibility, low voltage operation, simple fabrication process-
ing, and stretchable and flexible materials have opened a wide variety of possible bioelectronic
applications such as neural probes[1] and sensors for ions,[3] metabolites,[4] bacteria,[5] and
viruses[6] that benefit from the extensive capabilities in tailoring molecular structures and
functions via chemical synthesis. Furthermore, the dynamic range and ability to dope these
polymers electrochemically have produced tunable analog neuromorphic devices[7, 8] with
high stability,[9] resulting in proof-of-principle circuits[10, 11] as well as biohybrid systems
directly modulated by locally secreted neurotransmitters.[12]
Current organic bioelectronic applications are commonly based on commercially available
blends of poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS), which is a
p-type (hole) conductive polymer that operates in depletion-mode. This material is conductive
as-prepared and can be turned off by applying a gate potential. Enhancement-mode p-
type devices exist, by design,[13]or by the dedoping of PEDOT:PSS with small molecule
amines.[14] However, a combination of p- and n-type materials is required to form logic
gates and complementary circuits[15] and, to date, highly stable and high-performance n-
type materials are rare.[16] As a result, there is a clear need for stable materials that can
operate at biological interfaces and that are able to transduce ionic to electronic signals
effectively. In fact, despite the vast amount of information available at the physiological
level, thus far no smart and integrated bioelectronic circuits exist that can locally adapt to
and process information. At the same time, neuromorphic systems have proven successful in
typical classification tasks such as digital image recognition, but nevertheless (partly) rely on
software and are still outperformed by traditional software neural networks.[17] However, for
applications requiring the local, real-time processing of biological and physiological data,
the use of software is undesirable and can be problematic. Consequently, bioelectronic
circuits integrated with neuromorphic systems could provide the rapid on-site processing and
classification of biosignals without the need for external computation and signal analysis to
generate relevant optimized actions such as drug delivery or prosthetic movements.[18]
In this work, we show an adaptable circuit that can locally process and tailor biologically
relevant signals, such as electromyograms (EMGs) and electrocardiograms (ECGs), that serve
as inputs to a neuromorphic classification array and act directly as an in-sensor computing sys-
tem[19] (see Figure 6.1). Our system is based on a monolithically integrated semiconducting
polymer that forms both the ambipolar inverter for signal amplification and normalization, as
well as the neuromorphic memory element to tune the gain properties locally by modulation
of the conductance (or synaptic weight). The nonvolatile tuning of the neuromorphic elements
also allows for hardware neural network integration and the local classification of signals. The
use of a single polymer mixed conductor significantly reduces fabrication complexity, while its
unrivaled performance and ambient stability highlight a route toward long-term smart sensing
systems and chronic implants.
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Figure 6.1: Schematic of an adaptive neuromorphic biosensor. The adaptive organic electronic circuit
can locally process (for example, amplify, rectify, normalize, etc.) biosignals by tuning the gain peak
of the inverter using a neuromorphic element. Simultaneously, a hardware-based neural network could
classify input signals, for instance, to detect heartbeat anomalies. Both functionalities can be realized
using a single OMIEC (P-3O).

6.2 Results & Discussion
Electronic circuits operating at the interface with biology require both p-type and n-type
OMIECs. To date, the number of n-type semiconductors as well as their performance is
still inferior compared to their p-type counterparts. The key issues are that doped n-type
materials are generally unstable when exposed to air and achieving high electron mobilities has
proved more difficult than for their p-type counterparts. To reduce the fabrication complexity
ambipolar materials are desirable as it decreases the number of lithography steps. At the same
time, ambipolar materials impose the challenging constraint of being able to be doped by both
cations and anions as well as conducting both holes and electrons. One strategy to design
ambipolar polymer mixed conductors is copolymerizing an electron deficient moiety (accep-
tor), such as naphthalenediimide (NDI) or diketopyyrolopyrrole (DPP), with an electron rich
moiety (donor) like thiophene to obtain a narrow bandgap.[20, 21] These donor–acceptor (D-
A) polymers are modified with hydrophilic ethylene glycol (EG) type side chains for aqueous
electrolyte gated organic electrochemical transistors (OECTs). The EG chains support highly
efficient electrochemical doping within the whole volume and enables low voltage (<1 V)
operation, which is essential when using an aqueous electrolyte. These OECTs exhibit p-
and n-type characteristics, and are integrated into ambipolar inverters for logic circuits[21]
and biosignal amplifiers.[22] In order to operate stable OMIEC devices properly in n-type
mode in water, a lowest unoccupied molecular orbital (LUMO) level below -4 eV is required
to avoid side reactions with water and oxygen.[23] High-performance OMIECs additionally
require balancing ionic and electron/hole mobility, while maintaining unperturbed crystalline
structures upon electrochemical doping.[24] It has been reported that embedding sp2-N
into polymer backbones results in a more planar structure, enhancing the π–π stacking and
increasing the electron mobility.[25, 26] Capitalizing on these properties, the material we
present here is an NDI-bithiozale D–A copolymer (referred to as P-3O, shown in Figure 6.1)
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functionalized with EG side chains, which allows for a stable transistor operation both with a
solid electrolyte as well as in aqueous environments.
Ideally, a multi-sensor approach for on-site classification and personalized actions based on
biosignals requires a method for local signal processing. The ability to amplify low signal-to-
noise ratio biosignals is also important, particularly for small signals like EEG.[27] However,
any computational action such as a decision or classification is still made externally. In order
to judge and process a plethora of signals, local amplification, and normalization is needed.
At the same time, in-sensor computing requires the modulation of signals over a variety
of inputs, while ensuring that signals are correctly tuned to the synaptic weights for use in
(neuromorphic) classification algorithms.[19] Furthermore, relevant information could be lost
if signals from one sensor (e.g., ECG) outweigh others (e.g., EMG). Our proposed adaptive
neuromorphic circuit is schematically shown in Figure 6.1, where various electrophysiological
signals can serve as an input for local adaptive processing (such as normalization or rectifi-
cation). The circuit consists of an ambipolar inverter combined with an adaptive memory
element and is based entirely on the ambipolar material P-3O.
The ambipolar inverter comprises two complementary transistors, one operating in n-type
and one in p-type mode. An all-solid-state environment is desirable in applications associated
with electronic circuitry, logic circuits, and neuromorphic computing, as the operation of
circuits in aqueous environments can lead to interference with the surrounding electronics
and neighboring devices. From a technological point of view, the use of liquid electrolytes
limits the high-density integration of devices.[28] The solid electrolyte consists of an ionic
liquid (1-ethyl-3-methylimidazolium bis(trifluorosulfonyl)imide, EMIM:TFSI) within a poly-
mer matrix (poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP), [29] which has
been demonstrated to be able to operate at kHz frequencies.[30] Figure 6.2A shows the
architecture of the solid electrolyte gated device. The devices can be designed with a side gate,
which simplifies the fabrication by avoiding a complex layer-by-layer process to construct
a stacked structure. Figure 6.2B,C shows the output and transfer characteristic of the P-3O
OECT exhibiting near-symmetric ambipolar electrical behavior when operated in the ambient
environment with a solid gel-electrolyte. The polymer achieves an on∕off ratio of 104 and
stable operation for more than 20000 cycles for both p- and n-type in ambient conditions
(Figure 6.2D,E).
Since both the p- and n-type transfer curves have near-identical behavior (shown in Figure
6.2C), the ambipolar inverter can be constructed. An inverter is a fundamental building block
of electronic circuits and is used in both digital circuits such as logic gates, as well as in analog
circuits such as voltage amplifiers. It inverts the applied input voltage (Vin) from a high to low
voltage and vice versa (see Figure 6.2F,G). At the transition region, it shows a high gain which
makes organic inverters relevant for a wide variety of applications in several fields, including
printed electronics, imperceptible and wearable electronics, sensors and bioelectronics.[22,
31, 32] Figure 6.2F shows the performance of the solid-state ambipolar inverter with a gain of
12 at VDD = 0.8 V, along with Figure 6.2G presenting the logic NOT gate operation where a
high input results in a low output voltage.
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Figure 6.2: A) Schematic of the ion gel side-gated organic electrochemical transistor together with the
chemical structure of the ion gel. B) Ambipolar output curve. C) Ambipolar semilog transfer curve
carried out in ambient environment. D) n-type and E) p-type operational stability measurement of the
ion gel gated transistor. The drain current (Ids) is monitored when applying a 5 s gate voltage pulse
(|VG| = 0.8 V with an interval time of 5 s for 21600 pulse cycles (|Vds| = 0.1 V). F) Ambipolar inverter
behavior at different VDD voltages with below the corresponding gain (|𝜕𝑉 𝑜𝑢𝑡∕𝜕𝑉 𝑖𝑛|) and the inset
representing the schematic inverter circuit. G) Complementary logic gate behavior of a NOT gate with
VDD = 0.8 V and the input Vin pulsing between 0 and 0.9 V for 6 s.
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Pairing the P-3O ambipolar inverter with electrochemical random-access memory (ECRAM)
at the inverter gate allows for the construction of a neuromorphic inverter that can locally
tune the amplification of input signals (see Figure 6.3A). The P-3O EC-RAMs adopt a similar

Figure 6.3: A) Schematic of an adaptable inverter including an EC-RAM in series with the gate of
the ambipolar inverter. B) State retention of EC-RAM in a N2 environment for 5 min at different
conductance states over two orders of magnitude. C) The top panel shows the behavior of the neu-
romorphic inverter (VDD = 0.8 V) when tuning the EC-RAM to different conductance states and
bottom panel shows the corresponding gain. The dashed lines represent the experimental data, and
the two solid lines represent the simulated inverter behavior of two different EC-RAM conductance
states. State 1 resembles a neuromorphic inverter with a negligible EC-RAM resistance whereas State 2
represents one with a high EC-RAM resistance (C = 167 nS). D,E) The use of the neuromorphic inverter
applied to locally amplify EMG signals from two different gestures, wrist extension and clenching of
a fist, respectively. Each signal can be normalized between 0 and VDD, depending on the state of the
neuromorphic inverter.

configuration as the solid-state electrochemical transistor (Figure 6.2A) and maintain non-
volatile memory by employing an open gate circuit in combination with a current limiting
resistor. Figure 6.3B shows the excellent state retention of 6 representative memory states
across two orders of magnitude for 5 min in a nitrogen environment. By tuning the neuromor-
phic memory device to different conductance values, we can directly and locally tune the gain
of the adaptive inverter circuit (see Figure 6.3C), a characteristic feature used to extract, for
example, electrophysiological signals.[33] Lowering the conductance results in a shift in the
transition region to higher input voltages as well as a broadening of the transition region. The
opposite is true for an increase in the conductance, which moves the transition region to lower
input voltages and makes it narrower. As such, we can adjust the fully integrated adaptive
neuromorphic sensing circuit to modulate and normalize biosignals of different amplitudes
without increasing fabrication complexity, assuming signals with a sufficient signal-to-noise
ratio. Figure 6.3D,E demonstrates the signal normalization of EMG signals for two different
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gestures using the behavior of the neuromorphic inverter (see the Supporting Information
6.5.6). The signal envelope (an essential feature encompassing relevant information of the
gesture) of the wrist extension (Figure 6.3D) is correctly preserved after normalization using
adaptive state 1 whereas the signal envelope of a clenched fist is completely lost (Figure
6.3E, purple line). To correctly retrieve the signal envelope after amplification the signal of
a clenched fist should be normalized using adaptive state 2 (Figure 6.3E, red line). While the
two different gestures require a different amplification of the biosignals to correctly scale and
retrieve the signal envelope, the adaptive nature of the neuromorphic inverter makes it gen-
eralizable to local processing applications such as smart autonomous robotics,[34] in-sensor
classification and prosthetic motion control,[19] or for further processing and classification in
hardware-based neural networks.[18]
In fact, when integrated into large crossbar arrays (Figure 6.4A), P-3O EC-RAMs can be
used as the synaptic weights in an artificial neural network for local classification. In this
array, each weight in the hardware neural network is represented by the conductance of an
EC-RAM, which can be randomly accessed over a large range and in an analog fashion,
enabling parallel computation[10] and increasing energy efficiency. Organic EC-RAMs are
able to operate at low voltage and with high write speeds (20 ns pulse).[35] The P-3O EC-
RAMs operate in n-type mode (positive read voltage, ±5 V on the gate circuit with the
current limiting 1 GOhm resistor, writing speed less than 300 ms) and can access over
25 conductance states, in linear fashion, and with high state retention (see Figure 6.4B).
Operating in ambient conditions mandates encapsulation due to the presence of oxygen and
water (see Figures 6.S9 and 6.S10 in the Supporting Information). The state retention can be
further improved by optimizing the device geometry and purifying the ion gel. Furthermore, to
avoid possible crosstalk in neuromorphic array operation, other device geometries like vertical
gate architecture[36] or patterning ion gel[37] can be used. Our n-type P-3O-based EC-RAM
exhibits comparable performance to p-type polymer based EC-RAMs such as PEDOT:PSS,[9]
p(g2T-TT),[35] and P3HT.[36] Even though the P-3O polymer is ambipolar, in p-type mode
(negative read voltage) EC-RAM decays fast, even in nitrogen atmosphere (see Figure 6.S11 in
the Supporting Information), which might indicate that the energetic barrier for back diffusion
of the anions (TFSI−) is low,[38] and the generated holes are unstable due to the low-lying
HOMO (Table 6.S1, Supporting Information).[39] The linear and symmetric behavior of
potentiation and depression of the conductance (Figure 6.4B) results in efficient training and
inference of the neural network. To highlight this, we simulate the behavior of a neuromorphic
array based on the P-3O EC-RAM, in its performance to recognize and classify heartbeat
anomalies in ECG signals (see the Supporting Information 6.5.7). Figure 6.4C shows the five
different ECG classes serving as the input for the neural network depicted in Figure 6.4D. ECG
signals are generally very similar and known to be difficult to classify,[40] hindering real-
time diagnoses. Local processing and computation using a hardware-based neural network
could facilitate on-site real-time classification. Figure 6.4E shows that training an EC-RAM
based neural network approaches ideal numerical accuracy (over 70% training accuracy after
20 epochs), which is the theoretical limit for this algorithm. The corresponding confusion
matrix is presented in Figure 6.4F, demonstrating the successful classification of the five
ECG classes based on the EC-RAM hardware array. Note that increasing the complexity
of the neural network architecture can lead to higher accuracies. However, since in this work
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Figure 6.4: A) Schematic representation of a neuromorphic array based on P-3O EC-RAMs. B) 14
cycles of 32 conductance states showing linear potentiation and depression (pulse width 300 ms and
delay 500 ms). C) 5 different ECG classes represent the normal sinus rhythm (SNR) and 4 heartbeat
anomalies. D) Neural network architecture consisting of 125 input neurons, 1 hidden layer with 100
neurons and 5 neurons in the output layer. E) Classification accuracy as a function of the training
epochs for both the hardware neural network based on P-3O (red) and the ideal software limit (blue). F)
Confusion matrix for all 5 classes using the hardware-based network.
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we focus on hardware neural networks and specifically the EC-RAM functioning within a
neural network, we have chosen to restrict the neural network architecture to a single fully
connected layer with one hidden layer. On the other hand, this network structure still faces a
significant integration challenge which would benefit from down scaling the network structure
and sacrificing accuracy or implementing more complex neural network architectures (e.g.,
convolutional and pooling layers, or a recurrent neural network) or additional preprocessing
steps (e.g., Fourier transform).
Conventional complementary circuits based on a combination of a p- and n-type material
commonly require multiple or complex fabrication steps. Using our ambipolar conductive
polymer, we can significantly decrease this complexity by monolithic fabrication, including
the added neuromorphic traits. This expands the capabilities of the complementary circuits
in bioelectronics and sensors, in which OMIECs have already proven to be powerful due
to their large volumetric ionic capacitance, which allows for significant amplification when
transducing biological signals. In biological, aqueous environments, stable p-type OMIECs
are common, whereas high-performance n-type materials, in terms of stability and electrical
behavior, are not. However, for biosensors detecting anions or some metabolites like glucose,
stable n-type materials are crucial.
We studied the behavior of a 100 × 10−3 M NaCl aqueous electrolyte gated OECT using P-
3O as the active channel, and Ag/AgCl as the gate electrode (shown in Figure 6.5A). In this
configuration P-3O also exhibits ambipolar behavior in transistor performance (see Figure
6.5B,C for the output and transfer curves), which indicates that the polymer could also be
doped by both cations (Na+) and anions (Cl−). In n-type mode, the P-3O polymer works
exceptionally well with a stable on∕off ratio of approximately four orders of magnitude for
more than 21600 cycles, shown in Figure 6.5D. After continuously operating for more than 60
h, the on-current only exhibits a slight decrease (≈25%) but maintains the on/off ratio at similar
orders of magnitude (see Figure 6.S3 in the Supporting Information). The remarkable stability
is a result of the precise tailoring of the energy levels (LUMO -4.30 eV, see Figure 6.S1 and
Table 6.S1 in the Supporting Information) with respect to oxygen and water.[23] Despite the
extremely high stability of the p-type mode transistor using ion-gel, the material performance
in liquid electrolytes in p-type mode is less (see Figure 6.S5 in the Supporting Information),
showing a two order of magnitude on/off ratio for over two hours operation. The aqueous
electrolyte operated ambipolar inverter and the tuning of it using the EC-RAM is demonstrated
in Figures 6.S13 and 6.S15 in the Supporting Information. We further show the exceptional
n-type performance of the P-3O polymer in an aqueous environment by demonstrating its
behavior as a neurotransmitter sensor (see Figure 6.5E), which has potential in advanced
biohybrid systems.[12] We adopted the Au side-gated device configuration in Figure 6.2A and
monitored the drain current at a drain potential of Vds = 0.1 V, while oxidizing the dopamine
at the gate electrode by applying a gate potential of VG = 0.6V. A faradaic gate current was
observed when different concentrations of dopamine analyte were added (Figure 6.5E bottom
panel), which lowers the potential drop at the Au gate and electrolyte interface, leading to more
effective gating at the channel (see Figure 6.S6 in the Supporting Information). Meanwhile,
the drain current increases in response to increased dopamine concentrations (Figure 6.5E
top panel and Figures 6.S7 and 6.S8 in the Supporting Information). These results prove the
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Figure 6.5: A) Schematic of aqueous electrolyte gated OECT. B) Ambipolar P-3O OECT output curve.
C) Ambipolar P-3O OECT semilog transfer curve. D) N-type OECTs (VG = 0.8 V, Vds = 0.5 V)
operation stability in 100 mM NaCl aqueous electrolyte for 21600 pulse cycles. A gate voltage pulse
VG was applied for 5 s with an interval time of 5 s. E) Au side-gated OECTs for dopamine sensing.
The output drain current Ids, gate current Igs were monitored when adding different concentrations of
dopamine into the 100 mM NaCl (aq.) electrolyte at Vds = 0.1 V and VG = 0.6 V. A glass well was
glued to the device using poly(dimethylsilioxane) to retain the electrolyte. Starting with 40 µL 100 mM
NaCl aqueous solution. 10 µL analyte solution was added into the well each time.

interaction of P-3O as an excellent electron conductor with neurotransmitters like dopamine,
showing its potential in adaptive biohybrid applications.
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6.3 Conclusion
Due to the intrinsic ionic–electronic coupling, organic mixed ionic–electronic conductors
exhibit great potential not only in bridging electronics and biological systems, but also in
operating as non-volatile memory devices in hardware neural networks. In this work, we have
presented the capability to integrate individual devices into circuits for applications like adap-
tive biosensors and brain-inspired computing, utilizing the ambipolar NDI-bithiazole conju-
gated polymer P-3O. Though ambipolar materials do not always have better performance, the
remarkable characteristics of this semiconducting polymer, including symmetric p- and n-type
transfer curves, high performance, and ambient stability, allow for straightforward monolithic
fabrication and integration of single devices, including transistors, logic gates, neuromorphic
memory, and sensors. Though neural network simulations based on the experimentally
obtained behavior of P-3O EC-RAMs demonstrate the capabilities of local classification
of biosignals, full hardware integration remains a challenge. This is partly because of the
EC-RAM encapsulation requirements, but mostly due to the complexity in hardware-based
learning rules (e.g., gradient descent and activation function) and the hardware circuit design
(e.g., the peripheral circuit and the coupling of multiple network layers). Consequently,
smart local modulation and learning demonstrated by a monolithically integrated adaptive
sensor clearly highlight a path toward next-generation adaptive and personalized bioelectronic
applications.

6.4 Experimental Section

6.4.1 Materials

The P-3O synthesis details and characterization are described in the Supporting Information of
the manuscript [41]. Chloroform, 1-ethyl-3-methylimidazolium bis(trifluorosulfonyl)imide,
poly(vinylidene fluoride-co-hexafluoropropylene), and dopamine hydrochloride are pur-
chased from Sigma-Aldrich and used as received. The ion gel solution was prepared following
the reported method[29] without further baking the ionic liquid. Ionic liquid (EMIM:TFSI)
and poly(vinylidene fluoride-co-hexafluoropropylene) (4:1 w/w) were dissolved in acetone
with the following proportions: 17.6 wt% ionic liquid, 4.4 wt% polymer, and 78 wt% solvent.
The resulting ion gel solution was stirred at 40 °C for at least 30 min. The interdigitated
microelectrodes IDA-Au-6 (channel length L 5 µm, individual channel width, w, 1.8 mm,
number of pairs 30, number of channels, n, 59, total channels width, W = n × w = 10.62 cm)
are purchased from MicruX technologies.
6.4.2 Device Fabrication and Characterization

The polymer solutions were prepared in chloroform at the concentration of 5 mg mL−1.
The interdigitated microelectrodes were treated with UV ozone over 15 min, following spin-
coating the polymer solutions at 1000 rpm for 30 s. The samples were annealed on the hotplate
at 100 °C for 30 min. For side gate devices, the gate and active channel were separated
by excimer laser ablation. The ion gel solution was drop-casted on top of the active area
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and dried in the fume hood. For EC-RAM measurements, the devices were stored in the
nitrogen atmosphere glovebox. The electrical characterization of OECTs is recorded by a
Keithley sourcemeter SMU 2602B, which is controlled by the software Arkeo developed by
Cici research. The EC-RAMs are recorded by Keithley 2602B with Labview and the inverter
data is acquired with a NI DAQ USB-6363 and with Keithley SMU 2636B controlled with
Matlab software.

6.5 Supporting Information

6.5.1 Material characterization

Figure 6.S1: Cyclic voltammograms of the conjugated polymer P-3O thin films deposited on the glass
carbon working electrode in CHCN3 solution containing Bu4NPF6 electrolyte

Table 6.S1: Optical and electrochemical data for the polymer P-3O.

Polymer 𝜆𝑓𝑖𝑙𝑚𝑚𝑎𝑥
(nm)

𝜆𝑓𝑖𝑙𝑚𝑜𝑛𝑠𝑒𝑡(nm)
𝐸𝑜𝑝𝑡
𝑔

∗
(eV)

HOMO†
(eV)

LUMO‡
(eV) 𝐸𝑜𝑥

𝑜𝑛𝑠𝑒𝑡 (V) 𝐸𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡 (V) 𝐸𝑒𝑐

𝑔 (eV)
P-3O 973 1225 1.01 -5.53 -4.30 0.43 -0.80 1.23

∗ 𝐸𝑜𝑝𝑡
𝑔 =1240/𝜆𝑓𝑖𝑙𝑚𝑜𝑛𝑠𝑒𝑡

† HOMO = -(5.10 + 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡) eV

‡ LUMO = -(5.10 + 𝐸𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡) eV
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Figure 6.S2: Comparison of P-3O ion gel OECT n-type transfer curve (Vds=0.1V) before and after
bias stress stability over 21600 cycles (pulse 5s, interval 5s, over 60 hours). a) Linear plot, b) Semi-log
plot.

Figure 6.S3: Comparison of P-3O ion gel OECT p-type transfer curve (Vds=-0.1V) before and after
bias stress stability over 21600 cycles (pulse 5s, interval 5s, over 60 hours). a) Linear plot, b) Semi-log
plot.
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Figure 6.S4: Comparison of P-3O 100mM NaCl aqueous OECT transfer curve (Vds=0.6V) before and
after bias stress stability over 21600 cycles (pulse 5s, interval 5s, over 60 hours). a) Linear plot, b)
Semi-log plot.

6.5.2 OECTs

Figure 6.S5: P-type (Vg=-0.7V, Vds=-0.1V) OECTs operation stability in 100mM NaCl aqueous
electrolyte. A gate voltage pulse Vg was applied for 5 s with an interval time of 5 s. The device became
unstable after 950 cycles and broke down eventually.
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6.5.3 Dopamine sensing

Figure 6.S6: Dopamine (DA) can be electrochemical oxidized to its quinone form (DQ). This schematic
illustrates the potential drop across the Au gate OECTs system. When a gate potential (higher than
the oxidation potential of DA is applied, Dopamine is oxidized electrochemically at the Au gate
electrode. The oxidation of DA generates Faradaic currents, which lower the potential drop across the
Au/electrolyte interface, leading to more effective gating at the active channel.

Figure 6.S7: Comparison of P-3O Au side-gated OECT transfer curve (Vds=0.1V) with and without 1
M dopamine in 100mM NaCl aqueous electrolyte.

107



6

Figure 6.S8: Comparison of P-3O Au side-gated OECT output curve a) with 1 M dopamine, b) without
dopamine in 100mM NaCl aqueous electrolyte.

6.5.4 EC-RAM

Figure 6.S9: Linear plot of P-3O EC-RAMs n-type conductance state retention over time (5 mins).
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Figure 6.S10: The retention time comparison of P-3O EC-RAM devices n-type operation in ambient
and N2 atmosphere glovebox. The conductance state decays faster when oxygen and water present
(Vds=0.1V).

Figure 6.S11: The retention time of P-3O EC-RAM devices p-type operation in N2 atmosphere
glovebox.The conductance state decays very fast (Vds=-0.1V).

6.5.5 Ambipolar inverter

The ambipolar inverter is realized by connecting two single ion-gated transistors with a shared
ion gel or aqueous electrolyte. One of the two channels of the Keithley SMU 2636B is used
to supply the input voltage (Vin) whereas the other channel is used for the potential at VDD.
Each of these voltages including the output voltage (Vout) is recorded with a DAQ NI USB-
6353. The operation with either a solid ion gel or aqueous electrolyte shows the transition
from a high to low output at a different input value. This correlates to the different values
of the threshold voltage obtained from the transfer curve (Figure 6.S2 and 6.S4). The higher
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gain for aqueous electrolyte gated inverters can be explained by the higher on/off ratio for the
individual OECT devices. Due to the increased conductance at the gate-electrolyte interface
the voltage drop across this interface is reduced and the gating at the channel is more effective
compared to the ion-gel gated equivalent.

Figure 6.S12: Solid state ambipolar inverter be-
havior for increasing VDD (0.65V to 0.80V). In-
put voltage Vin is scanned from -0.3V to 1.1V and
back (0.01V/s).

Figure 6.S13: Aqueous gated ambipolar inverter
behavior for increasing VDD (0.70V to 0.80V).
Input voltage Vin is scanned from -0.2V to 0.5V
and back (0.01V/s).

The neuromorphic ambipolar inverter is configured in a similar fashion as the regular ambipo-
lar inverter, with the difference that the EC-RAM channel is in series with the gate (previously
Vin) of the regular inverter. The conductance state of the EC-RAM is modified with Keithley
SMU 2602B using LabView software.

Figure 6.S14: Solid-state neuromorphic inverter
behavior for VDD =0.70V, VDD =0.75V, and
VDD =0.80V with each scan a decreasing EC-
RAM conductance. Input voltage Vin is scanned
from -0.3V to 1.0V and back (0.01V/s). For the
sweep at the lowest conductance value Vin is
scanned to 1.4V in order to completely turn the
inverter output off.

Figure 6.S15: Aqueous neuromorphic inverter
behavior for VDD =0.70V, VDD =0.75V, and
VDD =0.80V with each scan a decreasing EC-
RAM conductance. Input voltage Vin is scanned
from -0.1V to 0.5V and back (0.01V/s).
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6.5.6 Neuromorphic inverter simulation for EMG signal processing

The experimental results of the neuromorphic inverter, Vout as a function of the input voltage,
are fitted by

𝑉 𝑜𝑢𝑡(𝑉 𝑖𝑛) = 𝐵∕(1 + 𝑒(𝑉 𝑖𝑛−𝑉 𝑚)𝐴 ) + 𝐶 (6.1)

where the constants B and C, 0.76 and 0.02 respectively, determine the range of Vout. Vm is
the voltage at the maximum gain and A describes the slope at the transision region. For the
neuromorphic inverter at state 1, Vm = 0.844 and A = 64.8, resembling an inverter with a
negligible EC-RAM resistance at the gate. For state 2, Vm = 1.115 and A = 15, simulating
the neuromorphic inverter with an EC-RAM conductance value of 169 nS.The EMG data
is obtained from gestures data set[42] and the signals used are measured through channel 1
while person 1 makes two gestures, hand clenched into a fist and second wrist extension. The
baseline is considered to be the signal while the hand is in rest position. The root-mean-
square (RMS) envelope of the EMG signal is calculated using a moving window of 50 bins.
The EMG signals from the database are multiplied by 200 and given an offset equal to Vm in
order to compute the output from the neuromorphic inverter.
6.5.7 EC-RAM based neural network simulation

In order to verify the EC-RAM’s ability to function as the weight in a hardware neural network,
the classification performance of an array of these devices is examined. A model of a crossbar
array is simulated using a customized Python script. The network architecture consists of 3
layers (125 x 100 x 5) and is used to classify 5 different heartbeat waveforms: normal sinus
rhythm (NSR), atrial fibrillation (AFIB), premature ventricular contraction (PVC), ventricular
bigeminy (Bigeminy), left bundle branch block beat (LBBBB) from the MIT-BIH Arrhythmia
database[43]. The data is processed by down sampling to 125 Hz, cut at 1s intervals and nor-
malized before applying it to the neural network. The experimental weights are extracted from
the conductance modulation measurement (Figure 6.4B) with 14 potentiation and depression
cycles of 32 measured states. To introduce negative weight values, the weights are offset by
-5.02⋅10−7 S ensuring an equal gradient value ΔG for potentiation and depression at G=0.
The dataset is trained for 50 epochs with a ReLU activation function for the hidden layer
and a piecewise linear activation function for the output layer. The piecewise linear function
maps input values between 0 and 1 over a linear domain between the boundaries of -1 and 1.
Between the layers the output is multiplied by 7.69⋅105 and 1 ⋅106, respectively, to correct for
the low conductance value and scaled to the layer size, preventing the signals to vanish. To
validate the efficacy of the EC-RAM based crossbar array the experimentally derived weights
are compared to the ideal numeric weights. The numeric analyses simulate the perfect EC-
RAM, i.e. no read/write noise and no non-linearity. The read/write noise and non-linearity
that are used in the experimental analyses are directly derived from the measurements where
potentiation and depression cycles are separated. The update value (conductance) consists of
the average update step (ΔG0) over multiple cycles plus the contribution of the write noise
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which is characterized as the standard deviation (𝜎𝑤𝑟) of the mean (ΔG0) and then sampled
from a Gaussian distribution  (0,𝜎2). The non-linearity of the device is included as well
since the average update step (ΔG0) changes over the conductance domain. The read noise
is also implemented as a standard deviation (𝜎𝑟𝑑) with the assumption that state retention
decays linearly. In this way, the measurement data accounts for both read/write noise and
non-linearity (see Table 6.S2).
Table 6.S2: Read and write noise, and offset for both potentiation and depression used to simulate the
EC-RAM based neural network

Potentiation Depression
Read noise (𝜎𝑟𝑑) 4.60⋅10−10 4.27⋅10−10
Write noise (𝜎𝑤𝑟) 6.64⋅10−10 8.61⋅10−10
Offset 5.02⋅10−7 5.02⋅10−7
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Chapter7
High-performance organic electrochemical transistors and

neuromorphic devices comprising
naphthalenediimide-dialkoxybithiazole copolymers bearing

glycol ether pendant groups
Organic electrochemical transistors (OECTs) have emerged as building blocks for low
power circuits, biosensors, and neuromorphic computing. While p-type polymer ma-
terials for OECTs are well developed, the choice of high-performance n-type polymers
is limited, despite being essential for cation and metabolite biosensors, and crucial for
constructing complementary circuits. N-type conjugated polymers that have efficient
ion-to-electron transduction are highly desired for electrochemical applications. In
this contribution, three non-fused, planar naphthalenediimide (NDI)-dialkoxybithiazole
(2Tz) copolymers, which systematically increase the amount of polar tri(ethylene glycol)
(TEG) side chains: PNDI2OD-2Tz (0 TEG), PNDIODTEG-2Tz (1 TEG), PNDI2TEG-
2Tz (2 TEG), are reported. It is demonstrated that the OECT performance increases
with the number of TEG side chains resulting from the progressively higher hydrophilic-
ity and larger electron affinities. Benefiting from the high electron mobility, excellent
ion conduction capability, efficient ion-to-electron transduction, and low-lying lowest
unoccupied molecular orbital energy level, the 2 TEG polymer achieves close to 105 on-
off ratio, fast switching, 1000 stable operation cycles in aqueous electrolyte, and has a
long shelf life. Moreover, the higher number TEG chain substituted polymer exhibits
good conductance state retention over two orders of magnitudes in electrochemical
resistive random-access memory devices, highlighting its potential for neuromorphic
computing.

This chapter is based on High-Performance Organic Electrochemical Transistors and Neuro-
morphic Devices Comprising Naphthalenediimide-Dialkoxybithiazole Copolymers Bearing
Glycol Ether Pendant Groups, Y. Zhang, ..., Eveline R.W. van Doremaele, et al., Advanced
Functional Materials, 32, (27), 2022. Main contribution to this work is in device fabrication
and characterization.
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7.1 Introduction
Organic electrochemical transistors (OECTs) are ion-gated devices operated by modulating
the bulk conductivity of organic (semi)conductors. [1] This electrochemical doping process
allows OECTs to operate at low voltage (<1 V) and achieve high transconductance,[2] key
features and advantages of OECTs compared with field-effect transistors. OECTs are ideal
devices for a wide variety of applications, including printed logic circuitry,[3] bioelectron-
ics,[4] neural signal recording,[5] and neuromorphic computing.[6, 7] The active OECT
channel material is an organic mixed ionic-electronic conductor (OMIEC), which effec-
tively transports and couples ionic and electronic charges.[8] To develop high-performance
OMIECs, it is crucial to understand the structure-properties relationship of the polymers
in all aspects of molecular engineering, such as backbone, side chains, and substituents
on the molecular structures.[9] Biological applications require stable OECT operation in
aqueous environments, which means that water and oxygen should not deteriorate the organic
semiconductors/conductors under electrical stress. During device operation, ions migrate
from the aqueous electrolyte into the polymer thin films driven by a gate voltage, followed
by electrochemically doping/de-doping of the polymers resulting in the modulation of the
bulk conductivity. Organic p-type semiconducting/conducting polymers, which conduct
holes, have been studied intensively,[10] including the widely used commercial conducting
polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The devel-
opment of n-type semiconducting polymers has been driven by the expansion of organic
electronic applications as they are indispensable components combined with p-type materials
for complementary logical circuits and energy storage.[11] Moreover, n-type semiconductors
are essential for enhancement-mode biosensors for anions and metabolites.[12]
The molecular design strategy for OECT channel materials revolves around improving the
ion-to-electron transduction between semiconductor and electrolyte, which is usually referred
to as the OECT transconductance 𝑔𝑚 (𝑔𝑚 = 𝜕𝐼𝑑∕𝜕𝑉𝐺 = 𝑊 𝑑

𝐿 𝜇𝐶∗(𝑉𝑔 − 𝑉𝑇ℎ)), which
is proportional to µC*. Here, µ is the charge carrier mobility and C* is the volumetric
capacitance. Ordinary n-type conjugated polymers cannot be directly applied to aqueous
electrolyte-gated OECTs due to the low ion transport into and throughout the film. This
incompatibility is ostensibly due to the hydrophobic (alkyl) side chains that are commonly
used to impart solubility in organic solvents and are not an intrinsic property of n-type polymer
backbones. To test this hypothesis, we replaced the hydrophobic side chains with hydrophilic
polar tri(ethylene glycol) (TEG). TEG substituted naphthalenediimide (NDI)-bithiophene
(2T) conjugated polymers have previously been shown to function in n-type OECTs.[13]
On the other hand, a follow-up study revealed that the electron mobility of that NDI-2T
based polymer drops significantly from 0.132 to 0.00184 𝑐𝑚2𝑉 −1𝑠−1 as the fraction of glycol
chains (to alkyl chains) increases.[14] Moreover, the localization of charge carriers leads to the
low electron mobility of NDI-2T donor-acceptor type conjugated polymer.[15, 16] Flexible
polymer backbones exacerbate this problem by distorting in response to the intercalation of
ions.[17] It is thus challenging to design a polymer that exhibits both high ionic and electronic
mobility across a useful range of ionic doping levels. At the same time, the retention of a
highly ordered crystalline structure during ionic doping is ideal for high-performance OECTs
by retaining a high mobility µ as well as high volumetric capacitance C*. For example, the
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OECT performance of the NDI-2T based polymer P-90 has been further improved via solvent
engineering to increase crystallinity.[18] It has been demonstrated that the fused, electron-
deficient ladder-type polymer, poly(benzimidazobenzophenanthroline) (BBL), not only has a
highly planar and rigid backbone but also has highly delocalized charge carriers,[19] performs
well in n-type OECTs.[20] Based on this concept, polymers with highly planar and rigid
backbones, such as the fully-fused, electron-deficient lactam-based PgNaN[21] and fused
bithiophene imide dimer-based f-BTI2TEG-FT,[22] have been developed to enhance charge
mobility.
Although fused conjugated polymers have achieved significant progress, they have a
synthetically-limited library that makes it increasingly difficult to develop better materials
for n-type OECT to match the high performance of their p-type counterparts. There are
more choices for building blocks to construct non-fused conjugated polymers, but they must
be designed carefully to avoid localizing carriers and attenuating mobility. It is possible to
approach the coplanar and rigid polymer backbones by manipulating intramolecular interac-
tions (such as S–O interaction and F–H bonding).[23] Moreover, TEG side chains favor dense
molecular packing with decreased π–π stacking distances in diketopyrrolopyrrole (DPP) based
polymers.[24] Hence, we propose that non-fused n-type planar and rigid conjugated polymers
accompanying TEG side chains can simultaneously realize high ion transport capability as
well as electron mobility for electrochemical applications.

PNDI2OD-2Tz (0 TEG) PNDIODTEG-2Tz (1 TEG) PNDI2TEG-2Tz (2 TEG) 
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Figure 7.1: Chemical structures of NDI-2Tz based D–A copolymers with different substituted EG side
chains: PNDI2OD-2Tz (0 TEG), PNDIODTEG-2Tz (1 TEG) and PNDI2TEG-2Tz (2 TEG).

In this contribution, we investigate non-fused planar naphthalenediimide (NDI)-
dialkoxybithiazole (2Tz) based copolymers for electrochemical applications (shown in
Figure 7.1). We opt to control the density of the polar tri(ethylene glycol) (TEG) side
chains to achieve high electron mobility and ion penetration capability simultaneously.
Owing to the high planarity and rigidity of the backbone and higher density of TEG
chains, conjugated polymer PNDI2TEG-2Tz (2 TEG) led to n-type OECTs achieving
a high µe of 3.16 × 10−3 cm2V−1s−1, a good C* of 367 Fcm−3, and high µC* 1.16
Fcm−1V−1s−1, close to 105 on-off ratio, fast switching (within 0.1s), 1000 stable operation
cycles in aqueous electrolyte, and long shelf life. Moreover, PNDI2TEG-2Tz (2 TEG) and
PNDIODTEG-2Tz (1 TEG) also exhibit p-type performance due to their matched energy
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levels. We also developed OECT based complementary inverters with a maximum gain
of 23.4. Notably, PNDI2TEG-2Tz (2 TEG) exhibits good conductance state retention
over 2 orders of magnitudes in electrochemical resistive random-access memory devices
(EC-RAMs), highlighting its potential for neuromorphic computing. This work demonstrates
that non-fused donor-acceptor conjugated polymer can achieve high electron mobility and ion
penetration capability simultaneously for OECT. And it contributes to a deep understanding
of the relationship between the polymer structures and the n-type OECT performance, which
opens a window to design high-performance n-type OECT materials.

7.2 Results and discussion

7.2.1 Molecular Design and Characterization

N-type conjugated polymers that simultaneously have high electron mobility and efficient
ion transport properties are highly desired and are ideal candidates for channel materials in
OECTs. Generally, the mobility of conjugated polymers is governed by the backbone that
controls the electronic structure.[25–28] Previous research has demonstrated that incorpora-
tion of hydrophilic TEG side chains onto the conjugated backbone can enhance the aqueous
ions uptake and transport.[8, 29–32] A rational combination of a proper conjugated backbone
and TEG side chain could achieve both high electron mobility and efficient ion transport
properties. NDI-2T based conjugated polymers have been demonstrated to have a planar and
rigid backbone due to the reduced steric repulsions between bithiazole and the adjacent NDI
core. In addition, the electron-deficient nature of bithiazole enhances the polymer electron
affinity which would be beneficial for electrochemical doping and charge carrier mobility.[15,
33]
Figure 7.1 shows the chemical structures of non-fused NDI-2Tz copolymers: PNDI2OD-2Tz
(abbreviated as 0 TEG), PNDIODTEG-2Tz (abbreviated as 1 TEG), and PNDI2TEG-2Tz
(abbreviated as 2 TEG). The NDI-2Tz based polymers were synthesized by a palladium-
catalyzed typical Stille cross-coupling polymerization of dibromo-NDI based monomers with
distannyl-alkoxybithiazole based monomer after refluxing the polymerization mixture for
three days. After polymerization, the resulting polymers were purified and low-molecular-
weight fractions were removed by successive Soxhlet extraction with methanol and hexane.
The purified high-molecular-weight polymers were extracted with chloroform, precipitated
in methanol, and further dried under vacuum. The relative molecular weights M𝑛, M𝑤and polydispersity (PDI) of these three NDI-2Tz based polymers were determined by high-
temperature gel permeation chromatography (GPC) analysis against polystyrene standards
using trichlorobenzene as the eluent at 150 °C.
The thermal properties of these three NDI-2Tz based conjugated polymers were evaluated by
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The temper-
ature of 5% weight loss was selected as the onset point of decomposition. All the polymers
exhibited excellent stability with decomposition temperatures beyond 330 °C. We did not
observe any thermal transition for these polymers from the differential scanning calorimetry
analysis in the range of –20 to 300 °C.
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Optical properties of all NDI-2Tz based polymers were measured by UV–vis-near-infrared
absorption in dilute chloroform solution and thin film state, and the spectra are shown in
Figure 7.S2 (Supporting Information) with the corresponding parameters summarized in
Table 7.1. All NDI-2Tz polymers exhibit a strong absorption in the range of 600–1000 nm in
solution due to intramolecular charge transfer between the acceptor NDI unit and the donor
dialkoxybithiazole unit. The less pronounced π–π* transition absorption (300–500 nm) in the
NDI-2Tz based polymers indicate the highly planar backbone. When going from solution to
film, we observed no obvious redshifts for the λ𝑚𝑎𝑥 peaks, indicating high backbone rigidity
for these three copolymers. The band-tail absorption increases as the density of the EG side
chain in thin films increases. Because of the higher density of the tri(ethylene glycol) side
chains, the polarizability around the polymer backbone increases. This phenomenon can be
regarded as the solid-state equivalent of solvatochromism, which affects the charge-transfer
band.[34] Based on the thin film absorption onsets, the optical band gaps are calculated to be
1.05, 1.00, and 0.97 eV for 0 TEG, 1 TEG, and 2 TEG, respectively.
Table 7.1: Optical properties, electrochemical properties, energy levels, and water contact angle (θ) of
the TEG series polymers

Polymer 𝜆𝑜𝑛𝑠𝑒𝑡 𝑓 𝑖𝑙𝑚 (nm) 𝐸𝑜𝑝𝑡
𝑔 (eV)∗ HOMO (eV)† LUMO (eV) ‡ 𝐸𝑜𝑥

𝑜𝑛𝑠𝑒𝑡 (V) 𝐸𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡 (V) 𝜃

0 TEG 1177 1.05 -5.81 -4.05 0.711 -1.049 104.2 ± 5.5
1 TEG 1238 1.00 -5.68 -4.24 0.581 -0.855 97.6 ± 1.0
2 TEG 1280 0.97 -5.63 -4.35 0.533 -0.746 83.3 ± 1.4

∗ Optical bandgap calculated using the onset of the thin film absorption spectra (𝐸𝑜𝑝𝑡
𝑔 = 1240/λ𝑜𝑛𝑠𝑒𝑡)

† Onset of CV oxidation recorded in a CHCN3 solution containing Bu4NPF6 electrolyte. HOMO = – (5.10+ 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡) eV.

‡ Onset of CV reduction recorded in a CHCN3 solution containing Bu4NPF6 electrolyte. LUMO = – (5.10+ 𝐸𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡) eV.

The cyclic voltammetry (CV) characterization of all NDI-2Tz based polymers was carried
out to investigate the effects of TEG side-chain density on the energy level. As shown in
Figure 7.S3 (Supporting Information), all polymers exhibit distinctive reduction and oxidation
peaks in a CHCN3 solution containing 0.1 M Bu4NPF6 electrolyte. The highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy
levels of these three polymers are calculated from the onset of oxidation and reduction
potentials using the equation E𝐻𝑂𝑀𝑂 = –(5.10 + E𝑜𝑥

𝑜𝑛𝑠𝑒𝑡) eV and E𝐿𝑈𝑀𝑂 = –(5.10 + E𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡) eV,

respectively. The onset reduction potentials of 0 TEG, 1 TEG, and 2 TEG relative to the half-
wave potential of ferrocene/ferrocenium (Fc/Fc+) were -1.05, -0.86, and -0.75 V, respectively,
which correspond to estimated LUMO energies of -4.05, -4.24, and -4.35 eV. The relatively
deep LUMO levels are the result of the strong electron affinity of the acceptor monomer
naphthalenediimide (NDI) and the electron-deficient nature of bithiazole (2Tz). The LUMO
levels decrease with the density of the TEG side chain which indicates the glycol ethers have
inductive effects on the electronic structure.[35, 36] The onset oxidation potentials of 0 TEG,
1 TEG and 2 TEG relative to Fc/Fc+ redox were 0.71, 0.58, and 0.53 V, respectively, which
correspond to estimated HOMO energies of –5.81, –5.68, and –5.63 eV. The increased HOMO
energy level also benefits the hole transport, which results in ambipolar OECT operation.
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7.2.2 Aqueous Electrolyte Gated OECTs

Following polymer synthesis and characterization, we fabricated OECTs by employing in-
terdigitated electrodes as source and drain (channel length of 5 um, MicruX technologies)
and using these polymers as the channel material and evaluated their OECT performance,
as illustrated in Figure 7.2. The conjugated polymers were deposited by spin coating using
chloroform as a solvent without additives or further annealing steps. The device fabrication
details are provided in the supporting information. We subsequently investigated the device
performance employing an aqueous 100 mM NaCl solution electrolyte and an Ag/AgCl gate
electrode. The transfer characteristics of these polymers are shown in Figure 7.2b and the
corresponding OECT parameters are summarized in Table 7.2. Both 1 TEG and 2 TEG exhibit
ambipolar OECT character with n-type dominated performance and increasing current with
increasing VG indicating that the devices operate in accumulation mode. The solely alkyl
chain substituted polymer 0 TEG is unable to be gated (i.e., no turn-on current when applying
gate voltage). 2 TEG, which has the highest density of TEG side chains, exhibits the highest
on-current among these three polymers. A detailed comparison between 1 TEG and 2 TEG in
OECT performance is presented in Figure 7.2c–h. 2 TEG exhibits a large on-off ratio close to
105 (9.2× 104, Figure 7.2f) while 1 TEG displays≈ 104 ratio (Figure 7.2c) in semi-log transfer
curves, compared with NDI-bithiophene based polymers that have a reported on-off ratio of
≈ 103,[37] and BBL which has an on-off ratio of 6 ×103.[20] The maximum transconductance
of 2 TEG based OECTs is attained at a VG of 0.8 V with an average value of 51.8 mS, which is
four times higher than that of 1 TEG (average value of 12.3 mS, at VG = 0.8 V). 1 TEG shows
a much larger hysteresis in both transfer and output curves (Figure 7.2c,d) than 2 TEG (Figure
7.2f,g), indicating that ion motion in 1 TEG is much slower than in 2 TEG. To evaluate the
response speed of 1 TEG and 2 TEG OECTs, the transient response time of 1 TEG is extracted
by an exponent fit to the source-drain current under pulsed gate voltage in Figure 7.2e. 1 TEG
is slow with time constants 𝜏𝑜𝑛∕𝑜𝑓𝑓 = 5.7/0.56 s for ON and OFF. 2 TEG switches on and
off in <100 ms (Figure 7.2h, the measurement is out of instrument resolution and therefore
cannot be fitted).

Table 7.2: Aqueous electrolyte-gated OECT characteristics of the polymers.
Polymer 𝑑 (nm) 𝑔𝑚(mS) On/Off 𝑉𝑇ℎ (V) 𝜇𝑂𝐸𝐶𝑇

𝑒 (𝑐𝑚2𝑉 −1𝑠−1) § 𝐶∗ (𝐹𝑐𝑚−3) 𝜇𝐶∗ (𝐹𝑐𝑚−1𝑉 −1𝑠−1)
PNDI2OD-2Tz 61.7±13.0 N/A N/A N/A N/A N/A N/A

PNDIODTEG-2Tz 56.0± 3.8 12.3 ± 3.7 ≈ 104 0.75 N/A N/A N/A
PNDI2TEG-2Tz 49.4 ± 9.8 51.8±2.5 ≈ 105 0.54 3.16×10−3 ≈ 367 1.16±0.28

To gain insight into the differences in performance of the polymers in OECTs, we investigated
the influence of the side chains on the non-fused NDI-2Tz polymers’ wettability, electrochem-
ical properties, and molecular packing. Being able to interact with electrolytes is essential for
OECTs and thus the wettability of the polymer film is critical for ion penetration and transport.
The hydrophilicity of the polymers is studied by water contact angle (Figure 7.S1, Supporting
Information), indicating that the contact angle decreases as the amount of TEG side chains
increases. The 2 TEG polymer has the highest amount of TEG side chains, featuring the best
wettability that enables efficient ion diffusion and electrochemical doping, while 0 TEG has
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Figure 7.2: a) Cross-sectional schematic of OECT device. b) Comparison of OECT performance of the
polymers with various number of TEG sidechains in 100 mM NaCl aqueous solution. Ambipolar linear
transfer curves of 0 TEG, 1 TEG and 2 TEG. The on-current of OECTs increases with the hydrophilicity
of the semiconducting polymers. Semi-log transfer curve of c) 1 TEG and f) 2 TEG. Output curve of d)
1 TEG and g) 2 TEG. Transient response of e) 1 TEG and h) 2 TEG.

only hydrophobic alkyl side chains, which prevents ions to approach the conjugated polymer
backbones for electrochemical doping and therefore cannot be gated.
We carried out Cyclic Voltammetry (CV) measurements of the polymers on indium tin oxide
(ITO) in a 100 mM NaCl aqueous solution to investigate the effect of side-chain substitution on
the reduction potential in film. As shown in Figure 7.3a, we clearly observed that the reduction
onset potentials gradually shift from –0.30 V for 0 TEG to –0.29 V for 1 TEG to –0.17 V for
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2 TEG, indicating that the most hydrophilic 2 TEG is easiest to be reduced electrochemically
in aqueous electrolyte (doped by cations).
(a) (b) (c)

(d) (e) (f)
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PNDI2OD-2Tz (0 TEG) PNDIODTEG-2Tz (1 TEG) PNDI2TEG-2Tz (2 TEG) 

Figure 7.3: a) Cyclic voltammetry of polymer thin films (0 TEG, 1 TEG, and 2 TEG) on ITO substrates
in 100 mM NaCl aqueous solution with the negative potential (reduction, n-type doping, scan rate 20
mVs−1). Electrochemical spectroscopy of b) 1 TEG and c) 2 TEG with the negative potential versus
Ag/AgCl in 100 mM NaCl aqueous solution (reduction, n-type doping). 2D GIWAXS patterns of d) 0
TEG, e) 1 TEG, and f) 2 TEG thin films.

The shift in reduction onset likely stems from the difference in electron affinity and ease of ion
diffusion into the bulk film during electrochemical redox doping. The ion doping process of
the polymer was monitored by spectroelectrochemistry measurements that were also carried
out in the 100 mM NaCl aqueous solution. Here the films were electrochemically reduced
and oxidized using an Ag/AgCl electrode (Figure 7.3, Figures 7.S4 and 7.S5, Supporting
Information). Figure 7.3b,c show the absorbance spectra of 1 TEG and 2 TEG films in the
reduced states at various bias potentials (from 0 to –0.9 V) displaying the reduced states.
Upon increasing the reducing potential, the main neutral intramolecular charge transfer (ICT)
absorption (around 950 nm) gradually diminishes while new absorbing species emerge at
around 550 and 1200–1300 nm due to a polaronic (and/or bipolaronic) absorption. 2 TEG
exhibits a higher ratio (polaronic/ICT absorption) than that of 1 TEG at a given bias, indicating
a higher electrochemical doping efficiency due to the higher number of TEG side chains,
improving the ion-penetration capability. No polaron generation was observed in the 0
TEG spectra (Figure 7.S8, Supporting Information). These results confirm the importance
of introducing TEG side chains to the polymer backbone to enhance ion transport. The
volumetric capacitance C* is extracted from electrochemical impedance spectroscopy (EIS)
in 100 mM NaCl aqueous solution (Figure 7.S10, Supporting Information). The capacitance
values are obtained from fits of EIS data to an equivalent circuit of Rs(Rp||C) at each potential.
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Only 2 TEG shows an increased capacitance with applying potential, while 0 TEG and 1 TEG
do not increase (resembling the bare gold electrode) (Figure 7.S11, Supporting Information).
The estimated C* of 2 TEG is 367 Fcm−3, which is similar to the reported NDI-2T based
polymers. The OECT electron mobility was calculated using µC* = 1.16 Fcm−1V−1s−1
(extracted from the slope of the linear fitting in the plot of gm versus OECT channel geometry,
Figure 7.S19, Supporting Information) and measured C*. The OECT mixed ionic and
electronic charge carrier mobility of 2 TEG is calculated to be 3.16 × 10−3 cm2V−1s−1,
which is on par with the well-performing n-type OECT polymers, like the NDI-thiophene
based P-90[14] and BBL.[20] We next explore how the TEG side chains impact the charge
mobility in non-fused NDI-2Tz backbone polymers. As previously shown in the literature,[14]
introducing TEG side chains might result in a significant drop in electron mobility. We
investigated the charge transport properties of pristine 0 TEG, 1 TEG, and 2 TEG using bottom
contact/top gate field-effect transistors (Figure 7.S6, Supporting Information). The field-effect
electron mobility for 0 TEG, 1 TEG, and 2 TEG, was determined to be ≈10−2 cm2V−1s−1 at
room temperature. The reported 2 TEG field-effect mobility is 3.5 × 10−2cm2V−1s−1.[34]
Unfortunately, due to relatively high gate leakage currents, we are unable to determine the
field-effect mobility accurately, though the order of magnitude remains the same, see Figure
7.S6 (Supporting Information). The polymers exhibit the ambipolar properties both in OFETs
and in OECTs (Figure 7.S6, Supporting Information). These results indicate that non-fused
NDI-2Tz backbone-based 2 TEG are able to achieve both high electron mobility and efficient
ion transport properties at the same time, which is essential for effective OECT performance.
The aqueous electrolyte-gated OECT is summarized in Table 7.2.
To understand how the TEG side chains influence the polymer film crystallinity and molecular
packing and how this correlate to the device performance, grazing incidence wide-angle X-
ray scattering measurements on polymer films were carried out. The results are shown in
Figure 7.3d–f and Figure 7.S12 (Supporting Information) includes the corresponding line cuts.
Though all these polymers have the same NDI-2Tz backbone, replacing alkyl chains with TEG
side chains results in significant differences in the microstructure and molecular packing. The
0 TEG chain shows a bimodal orientation with both face-on and edge-on fractions: a (100)
peak at qxy = 0.25 Å−1 and (010) peaks at qz = 1.65 Å−1 and was observed together with a
(100) peak at qz = 0.28 Å−1. On the contrary, both 1 TEG and 2 TEG chains tend to adopt
monoidal orientation. 1 TEG shows a predominant face-on orientation with an improved
crystallinity (compared with 0 TEG), exhibiting lamellar diffractions up to the third-order
(300) at qxy = 0.71Å−1 in the in plane (IP) direction together with the (010) peak at qz =
1.67 Å−1 in the out of plane (OOP) direction. 2 TEG appears to pack mostly with an edge-on
orientation relative to the substrate, exhibiting lamellar diffractions progressing to the third
order (300) at qz = 0.75 Å−1 in the IP direction together with an (010) peak at qz = 1.71 Å−1

in the OOP direction. This polymer further exhibits a preferential edge-on oriented molecular
packing, which is known to be favorable for charge carrier transport in OFET devices. Based
on the (010) diffraction, the π–π stacking was calculated to be 3.81Å for 0 TEG, 3.76Å for 1
TEG, and 3.67Å for 2 TEG, respectively, showing gradual reduced distance with increased
amounts of TEG side chains. We also calculated the crystal coherence lengths (CCLs) to
be 24.74Å for 0 TEG, 28.82Å for 1 TEG, and 33.60Å for 2 TEG, respectively, implying the
crystallinity is enhanced. The increased crystallinity and preferential edge-on orientation of 2
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TEG are the main contributing factors to the improved charge carrier transport in OECT and
OFET devices.
To assess device operation performance, stability is a key factor that needs to be taken into
account for successful applications. Figure 7.4a shows the stability of n-type drain current
(Vds = 0.6 V) upon consecutive gate voltage pulsing (5s with VG = 0.9 V and 5s of delay).
The device was stable, and no degradation was observed until 1000 cycles. The on current
decreases to ≈25% after 4000 cycles, but still displays the same on-off ratio (Figure 7.S23a,
Supporting Information). The device eventually broke down at the 4887th cycle (Figure
7.S23, Supporting Information). Reproducibility of individual device performance is essential
for integrated circuits and arrays. We repeated the OECT characterization measurements on
different devices (as well as with different dimensions of interdigitated microelectrodes), and
we find almost no variation among devices (Figure 7.S20, Supporting Information). The 2

Vin

Vdd

p-type

n-type
Vout

(a)

(c)

(b)

(d)

Figure 7.4: a) Operation stability measurement of 2 TEG OECT. 1000 pulse cycles of Drain current (Ids)
were monitored when a gate voltage pulse VG = 0.9 V was applied for 5s with an interval time of 5s (Vds
= 0.6 V). b) The schematic of the inverter c) The complementary inverter input-output characteristics
using Pg2T-TT as p-type channel and 2 TEG as n-type channel, 100 mM NaCl as electrolyte. d) The
corresponding inverter gain (|𝜕𝑉𝑜𝑢𝑡∕𝑉𝑖𝑛|).
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TEG based OECTs can also operate in phosphate buffered saline (PBS) (Figure 7.S20d, Sup-
porting Information), which has the potential for bio-applications like metabolite sensing.[12]
Additionally, we performed a shelf-life stability test where the devices were stored in ambient
condition. Even though the current degraded by over 40% after 1 month, the current remains
at a ≈mA magnitude (Figure 7.S21, Supporting Information). In fact, only a very minor
decrease in the on-off ratio is observed, which is still over 104 for all four devices (Figure
7.S22, Supporting Information). We combined our n-type 2 TEG based OECT with a p-
type Pg2T-TT based OECT to form an inverter for logic circuits often used as an amplifier
for biosignals[38] (see Figure 7.4b). The inverter shows small hysteresis and a maximum
gain (|𝜕𝑉 𝑜𝑢𝑡∕𝜕𝑉 𝑖𝑛|) of 23.4 at Vdd = 0.6 V (see Figure 7.4c,d). We also show the aqueous
OECT operation of 2 TEG using devices made with lithography and parylene liftoff [39]
(Figure 7.S26, Supporting Information). In general, we find that TEG side chains improve the
OECTs performance with respect to the on-off ratio, transconductance, and operation speed
by facilitating ion transport and ion coupling while introducing the nitrogen to the polymer
backbone improves electron mobility. Together these two factors make for the high operating
performance of the 2 TEG in aqueous electrolyte-gated OECTs.
7.2.3 Ion Gel Gated Electrochemical Transistors and Resistive Random-

Access Memory Devices (EC-RAMs)

To demonstrate the versatility of the material, we also investigated ionic liquid-gated elec-
trochemical devices. Ionic liquids are used in electrolyte-gated transistors because they
have a larger electrochemical window compared to water,[40] a high capacitance, and can
be printed.[41] Moreover, it has been previously reported that water can introduce traps in
organic semiconductors and hinder OFETs performance during operation.[42–44] The ionic
liquid - 1-ethyl-3-methylimidazolium bis(trifluorosulfonyl)imide (EMIM:TFSI) - is blended
with poly(vinylidene fluoride-co-hexafluoropropylene) to prepare the ion gel solid electrolyte,
as described in previous reports.[45] For ion gel gating we adopted a side gate architecture,
which simplifies fabrication using lithography. Figure 7.5a shows the schematic of the organic
electrochemical resistive random-access memory devices (EC-RAMs), which are also able
to operate as conventional side-gated OECTs. The device microscope image is shown in
Figure 7.S28 (Supporting Information). We first characterized the ion gel gated OECTs
performance of 0 TEG, 1 TEG, and 2 TEG in ambient conditions. The n-type OECT transfer
characteristic of these three polymers is shown in Figure 7.5b. 1 TEG shows the highest
on-current among the three polymers, while no source-drain current is measured in 0 TEG
devices (similar to aqueous electrolyte gating). The on-off ratio of 1 TEG is about two orders
of magnitudes higher than 2 TEG in both p- and n-type transfer curves shown in Figure
7.S30 (Supporting Information). 1 TEG polymer film shows larger porous structures in the
AFM image (Figure 7.S7, Supporting Information), which we speculate is to allow the large
ionic liquid ions (larger than Na+ and Cl−) to penetrate the polymer film easier, resulting in
enhanced doping efficiency. Both 1 TEG and 2 TEG exhibit ambipolar properties, like in
the aqueous electrolyte case (shown in Figure 7.S16, Supporting Information). EC-RAMs
typically operate at a low voltage and display numerous accessible non-volatile conductance
states.[7] These conductance states could be implemented as synaptic weights in hardware-
based artificial neural networks (ANNs). For these networks state retention is important.[46]
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Figure 7.5: a) Schematic of the ion gel side-gated EC-RAMs including chemical structures of the ionic
liquid (EMIM:TFSI) and PVDF-HFP. b) Linear transfer curves of 0 TEG, 1 TEG, and 2 TEG measured
in ambient conditions (scan rate 10 mVs−1). c) The state retention of 1 TEG and 2 TEG over 5 min while
the gate is in open circuit. Measured in a nitrogen atmosphere. d) 2 TEG EC-RAM linear potentiation
and depression programming individually with 32 or 64 conductance states (pulse width 300 ms and
delay time 500 ms with a 1 GOhm series resistor. +10 V for potentiation and -3 V for depression).
Measured in a nitrogen atmosphere.

We compared 1 TEG and 2 TEG based EC-RAM state retention over time in n-type mode
(positive drain and gate voltage) when the gate is in an open circuit (shown in Figure 7.5c).
The conductance states of 2 TEG show good state retention in all conductance ranges in the
nitrogen atmosphere. 2 TEG exhibits 50% decrease in the conductance at a level of 10−5 S
while that of 1 TEG decays over 80% in 5 min. At a low conductance level of 10−7 S, 1 TEG
decays over an order of magnitude in 5 min, and 2 TEG decays <30% while remaining in the
same order of magnitude. The state retention indicates that 2 TEG is better equipped to hold
the cations and prevent the cation diffusion back to the electrolyte than 1 TEG. We hypothesize
that TEG chains coordinate (or crown) cations such that the rate of their exfiltration from the
film is inversely proportional to the density of TEG chains. Hardware-based ANNs (like
parallel arrays) require that the accessible conductance states of each EC-RAM is linearly
programable by external write voltages.[47] Meanwhile, each state should be distinguishable.
The linear programming cycles of 2 TEG based EC-RAM with 32 and 64 potentiation and

130



7

depression steps are shown in Figure 7.5d. As illustrated in Figure 7.5a, a series resistor is
used to control the gate current and prevent the loss of the conductance state.[48] A voltage
pulse (amplitude +10 V for potentiation and -3 V for depression, width of 300 ms) is applied
at the gate. The inset is a zoom-in image clearly showing the individual conductance states
during 500 ms. Although the number of required conductance states is hard to predict a priori,
being strongly dependent on application, devices with 10-100 clearly distinct states often lead
to sufficiently high ANN accuracy.[46] More importantly, the 2TEG EC-RAM allows for
linear and symmetric programming, demonstrating its potential for neuromorphic computing
applications. In summary, in ion gel gating, 1 TEG exhibits a higher on-off ratio than 2 TEG in
transistor operation, while 2 TEG is a better candidate for EC-RAM applications based on the
enhanced state retention. It is important to consider the application when designing a material
and, for that, to understand the structure-property relationship. Currently, the mechanisms
underlying the observed state retention of 1 TEG and 2 TEG remain unclear, requiring further
investigation.

7.3 Conclusion
We have developed a series of non-fused, planar NDI-2Tz copolymers decorated with and
without hydrophilic TEG side chains, and investigated their OECT performance in aqueous
electrolyte and ionic liquid, as well as their EC-RAM performance. Compared to the non-
TEG side-chain substituted or mono-TEG side-chain substituted polymers, the polymer with
two TEG side chains (PNDI2TEG-2Tz, 2 TEG) exhibits the highest OECT performance in
the merits of transconductance, µC*, on-off ratio and operation speed in aqueous electrolyte,
owing to improved ion conductivity and volumetric capacitance. In addition, benefiting
from the highly planar and rigid backbone, favorable backbone orientation and low-lying
LUMO energy level, PNDI2TEG-2Tz (2 TEG) achieved electron mobility up to 3.16 × 10−2
cm2 V−1 s−1 in OECT and ≈10−2 cm2 V−1 s−1 in OFET operation. Moreover, the double
TEG chain substituted polymer exhibits good conductance state retention over 2 orders of
magnitudes in electrochemical resistive random-access memory devices (EC-RAMs), high-
lighting its potential for neuromorphic computing. This work demonstrates that non-fused
donor-acceptor conjugated polymers can achieve high electron mobility and ion penetration
capability simultaneously, an essential characteristic for OECTs. The work contributes to a
deeper understanding of the relationship between the polymer structure and the performance
of n-type OECTs, opening a window toward designing even higher performance n-type OECT
materials.

7.4 Experimental Section

7.4.1 Materials

The synthesis details of the NDI-2Tz based D–A copolymers are described in the Sup-
porting Information. Chloroform, 1-ethyl-3-methylimidazolium bis(trifluorosulfonyl)imide,
poly(vinylidene fluoride-co-hexafluoropropylene) are purchased from Sigma-Aldrich and
used as received. The interdigitated microelectrodes IDA-Au-1, IDA-Au-5, IDA-Au-6 are
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purchased from MicruX technologies. The parameters of interdigitated microelectrodes are
summarized in Table 7.S2 (Supporting Information).
7.4.2 Device Fabrication and Characterizations

The polymer solutions were prepared in chloroform (5 mg mL−1). The interdigitated mi-
croelectrodes were treated with UV ozone for more than 15 min, following spin-coating the
polymer solutions at 1000 rpm for 30 s. For ion gel side gated devices, the Au gate electrode is
placed next to the interdigitated electrodes. The polymers were spun cast on top, followed by
laser ablation to separate the gate and the active channel. The ion gel electrolyte spans over the
gap. The electrical characterization of OECTs is recorded by a Keithley sourcemeter 2602B,
which is controlled by the software Arkeo developed by Cici research. The fabrication of
patterned N-type polymer OECTs is described in the Supporting Information. The thickness
of spun polymer thin films was characterized by a Veeco Dektak 150 profilometer.
7.4.3 Cyclic Voltammetry (CV) and Electrochemical Impedance Spec-

troscopy (EIS)

Cyclic voltammetry measurements were performed using a Biologic SP-150 potentiostat with
a standard three electrodes configuration in 100 mM NaCl aqueous solution. Polymer thin
films were spun on an ITO glass used as a working electrode, together with a platinum wire as
the counter electrode and an Ag/AgCl electrode as the reference electrode. Electrochemical
Impedance Spectroscopy was also performed with the three electrodes system in a 100 mM
NaCl aqueous solution. The polymers were spun on SU-8 patterned 2.5 × 2.5 mm Au
electrodes used as working electrode, together with a platinum wire as the counter electrode
and an Ag/AgCl electrode as the reference electrode.
7.4.4 UV–vis-NIR Electrochemical Spectroscopy

The measurements were carried out following a previously reported method.[49] The polymer
thin films were deposited on ITO glass, and then immersed into a cuvette which is filled
with 100 mM NaCl aqueous electrolyte, together with Ag/AgCl electrode. The UV–vis-NIR
transmission of polymer films was monitored in situ at different voltages (vs Ag/AgCl) to
probe the neutral and charged states during electrochemical doping.
7.4.5 GIWAXS

Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements were performed
using a MINA X-ray scattering instrument built on a Cu rotating anode source ( = 1.5413Å).
2D patterns were collected using a Vantec500 detector (1024 × 1024 pixel array with pixel
size 136 × 136 µm) located 122 mm away from the sample. The films were placed in reflection
geometry at certain incident angles with respect to the direct beam using a Huber goniometer.
GIWAXS patterns were acquired using incident angles from 0.2° in order to probe the thin
film structure. The direct beam center position on the detector and the sample-to-detector
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distance were calibrated using the diffraction rings from standard silver behenate and Al2O3
powders.

7.5 Supporting Information

7.5.1 Water contact angle

Figure 7.S1: Water contact angle of PNDI2OD-2Tz (0 TEG), PNDIODTEG-2Tz (1 TEG) and
PNDI2TEG-2Tz (2 TEG).

7.5.2 UV-vis-NIR Absorption Spectroscopy

Figure 7.S2: The UV-vis-NIR absorption of PNDI2OD-2Tz (0 TEG), PNDIODTEG-2Tz (1 TEG) and
PNDI2TEG-2Tz (2 TEG) in dilute CHCl3 (10−5 M) and thin film state.
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7.5.3 Cyclic voltametry

Figure 7.S3: Cyclic voltammograms of the conjugated polymer PNDI2OD-2Tz (0 TEG),
PNDIODTEG-2Tz (1 TEG) and PNDI2TEG-2Tz (2 TEG) thin films deposited on the glassy carbon
working electrode in CHCN3 solution containing Bu4NPF6 electrolyte.

Figure 7.S4: Cyclic voltammetry of polymer
films (0 TEG, 1 TEG, 2 TEG) on ITO substrates
in 100 mM NaCl aqueous solution with positive
potential (oxidation, p-type doping).

Figure 7.S5: Cyclic voltammetry of polymer
thin films (0 TEG, 1 TEG, 2 TEG) on ITO sub-
strates in 100 mM NaCl aqueous solution with
both positive potential (p-type doping) and neg-
ative potential (n-type doping). The positive po-
tential and negative potential were scanned indi-
vidually with a scan rate of 20 mV/s.
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7.5.4 Organic Field-Effect Transistor (OFET) Fabrication and Perfor-
mance of Polymers. OFET fabrication and characterization

The top-gate/bottom-contact organic field-effect transistors (OFETs) were fabricated to inves-
tigate the charge transport properties of all polymers. Source/drain electrodes (3 nm Cr and
30 nm Au) were patterned on borosilicate glass by photolithography. The substrates were
cleaned by sonication in acetone and isopropanol followed by UV-ozone and oxygen plasma
treatment. The semiconductor layers (PNDI2OD-2Tz (0 TEG), PNDIODTEG-2Tz (1 TEG)
and PNDI2TEG-2Tz (2 TEG)) were dissolved in chloroform and were spin-coated from 5
mg/mL solutions at 1500 rpm, and then they were thermally annealed at 120 °C temperatures
for 10 min. The CYTOP-M material was purchased from Asahi Glass Co. Ltd., Japan. It was
diluted in CT-SOLV180 solvent (volume ratio 2:1, CYTOP-M:CT-SOLV180) prior to use for
dielectric coating. After spin-coating on the substrate, the dielectric layers were annealed
at 100 °C for 10 min. The thickness of the dielectric layer is around 400 nm measured
by profilometer and the area capacitance is calculated to be ca. 4.4 nF cm−2. Finally, 50
nm Al was evaporated on top as the gate electrode to complete the devices. The channel
length is 10 µm and the width is 5 mm. The devices were characterized with a Keithley
4200 semiconductor characterization system. All device fabrication and characterization were
carried out in N2-filled glove box.

Figure 7.S6: Output and transfer characteristics of top-gate/bottom-contact OFET of (a, d) PNDI2OD-
2Tz (0 TEG) and (b, e) PNDIODTEG-2Tz (1 TEG), and (c, f) PNDI2TEG-2Tz (2 TEG). L = 10 µm
and W = 5 mm for all devices.
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7.5.5 Atomic force microscopy

Figure 7.S7: AFM images of polymer films PNDI2OD-2Tz (0 TEG), PNDIODTEG-2Tz (1 TEG) and
PNDI2TEG-2Tz (2 TEG) with or without annealing.

7.5.6 UV-vis-NIR Electrochemical Spectroscopy

Figure 7.S8: Electrochemical spectroscopy measurement of PNDI2OD-2Tz (0 TEG) under negative
potential versus Ag/AgCl in 100 mM NaCl aqueous solution (n-type doping).
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Figure 7.S9: Electrochemical spectroscopy measurement of PNDI2OD-2Tz (0 TEG), PNDIODTEG-
2Tz (1 TEG), and PNDI2TEG-2Tz (2 TEG) under positive potential versus Ag/AgCl in 100 mM NaCl
aqueous solution (p-type doping).

Figure 7.S10: Bode plot a) and phase angle b) of PNDI2OD-2Tz (0 TEG, thickness 181.8 nm),
PNDIODTEG-2Tz (1 TEG, thickness 125.3 nm), PNDI2TEG-2Tz (2 TEG, thickness 79.0 nm) deposited
on SU-8 patterned with Au as working electrodes (area 2.5 mm×2.5 mm, a layer of 5nm Cr followed
by 50 nm Au was deposited on glass) in 100 mM NaCl aqueous solution. Potentials from 0 V to -0.9 V
were applied at the working electrode.
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Figure 7.S11: The plot of the capacitance versus the potential. The capacitance values are obtained from
fits of EIS data to an equivalent circuit of Rs(Rp||C) at each potential in the Biologic EC-lab software.
The volumetric capacitance C* of 2 TEG is calculated from the maximum capacitance at -0.9 V divided
by the polymer thin film volume.

7.5.7 Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS)

Figure 7.S12: The GIWAXS horizontal (in-plane) a) and vertical (out-of-plane) b) linecuts for 0 TEG,
1 TEG, and 2 TEG thin films.
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Table 7.S1: Peak positions, estimated spacing and orientation for PNDI2OD-2Tz (0 TEG),
PNDIODTEG-2Tz (1 TEG), and PNDI2TEG-2Tz (2 TEG) thin films from GIWAXS linecuts.

Polymer PNDI2OD-2Tz
(0TEG)

PNDIODTEG-2Tz
(1TEG)

PNDI2TEG-2Tz
(2TEG)

100 in plane 0.25 0.24 0.24
010 in plane 1.71
100 out of plane 0.28 0.27
010 out of plane 1.65 1.67 1.74
Orientation Mixed face-on and

edge-on Relative face-on Relative edge-on
𝜋−𝜋 distance (Å) 3.83 3.76 3.61
Crystal coherence
length (Å) 24.74 28.82 33.60

7.5.8 Organic Electrochemical Transistors (OECTs)

Aqueous electrolyte

Figure 7.S13: The semi-log plot of OECT
transfer curves of PNDI2OD-2Tz (0 TEG),
PNDIODTEG-2Tz (1 TEG) and PNDI2TEG-
2Tz (2 TEG) fabricated on IDA-Au-6 electrodes.
Using 100 mM NaCl aqueous solution as the
electrolyte.

Figure 7.S14: The semi-log plot of OECT trans-
fer curves of PNDI2TEG-2Tz (2 TEG) including
the gate current fabricated on IDA-Au-6 elec-
trodes. Using 100 mM NaCl aqueous solution
as the electrolyte.
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Figure 7.S15: The OECT characteristic (100 mM NaCl aqueous solution as the electrolyte) of
PNDI2OD-2Tz (0 TEG) fabricated on interdigitated electrodes with different dimensions: IDA-Au-1
(electrode width=10 um, gap=10 um), IDA-Au-5 (electrode width=10 um, gap=5 um), and IDA-Au-6
(electrode width=5 um, gap=5 um). a) Output curves. b) Transfer curves.

Figure 7.S16: OECT (100 mM NaCl aqueous solution as the electrolyte) ambipolar output curve of a)
PNDIODTEG-2Tz (1 TEG) and b) PNDI2TEG-2Tz (2 TEG) fabricated using IDA-Au-6 electrode.
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Figure 7.S17: OECT (100 mM NaCl aqueous solution as the electrolyte) transfer curves of PNDI2TEG-
2Tz (2 TEG) fabricated on interdigitated electrodes with different dimensions a) linear plot; b) semi-log
plot.

Figure 7.S18: Ids1∕2 vs Vgs plots of PNDI2TEG-2Tz (2 TEG). The threshold voltages are extracted from
the x-intercept: VTh=0.63±0.02 V (IDA-Au-1, electrode width=10 µm, gap=10 µm); VTh=0.58±0.02
V (IDA-Au-5, electrode width=10 µm, gap=5 µm); VTh=0.54±0.01 V (IDA-Au-6, electrode width=5
µm, gap=5 µm), respectively. Using 100 mM NaCl aqueous solution as the electrolyte. The extracted
values of VTh are used to calculate µC* in Figure 7.S19.

Figure 7.S19: Plot of maximum transconductance versus OECT channel geometry and operation
parameters of PNDI2TEG-2Tz (2 TEG). The µC* is extracted from the slope with the linear fitting.
Using 100 mM NaCl aqueous solution as the electrolyte.
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Figure 7.S20: The semi-log transfer plots of multiple OECT devices of PNDI2TEG-2Tz (2 TEG) on
different dimensional electrodes showing the reproducibility. a) IDA-Au-1 gating with 100 mM NaCl
aqueous solution. b) IDA-Au-5 gating with 100 mM NaCl aqueous solution. c) IDA-Au-6 gating with
100 mM NaCl aqueous solution. d) IDA-Au-6 gating with phosphate buffered saline (PBS).

Shelf-life stability

Figure 7.S21: The OECT transfer curves of PNDI2TEG-2Tz (2 TEG) (on IDA-Au-6 electrodes) over
time describing the self-life stability. The devices were stored in ambient environment. The devices
were characterized immediately after fabrication, one week later, and four weeks later, respectively. 100
mM NaCl aqueous solution was used as gating electrolyte.
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Figure 7.S22: The semi-log OECT transfer curves of PNDI2TEG-2Tz (2 TEG) (on IDA-Au-6 elec-
trodes) with time showing the shelf-life stability. The devices were stored in ambient environment.
The devices were characterized immediately after fabrication, one week later, and four weeks later,
respectively. 100 mM NaCl aqueous solution was used as gating electrolyte.

Operational stability

Figure 7.S23: N-type operation stability measurement of the OECT in 100 mM NaCl aqueous solution.
Drain current (Ids, Vds=0.6 V) was monitored when a gate voltage pulse VG=0.9 V was applied for 5 s
with an interval time of 5 s. a) Semi-log plot of drain current versus time. b) linear plot of drain current
versus time. c) The breakdown of the device at the 4887th cycle.
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Figure 7.S24: N-type operation stability measurement of the OECT in 100 mM NaCl aqueous solution.
Drain current (Ids, Vds=0.6 V) was monitored when a gate voltage pulse VG=0.9 V was applied for 5 s
with an interval time of 5 s. a) Transfer curve before pulsing. b) Transfer curve after 5000 s. c) Transfer
curve after 10000 s. d) Output curve before pulsing. e) Output curve after 5000 s. f) Output curve after
10000 s. g) first 5000 s and h) second 5000 s drain current versus time when the gate voltage pulse was
applied.

Figure 7.S25: P-type operation stability measurement of the OECT in 100 mM NaCl aqueous solution.
10 cycles of drain current (Ids, Vds=-0.6 V) were monitored while a gate voltage pulse VG=-0.9 V was
applied for 5 s with an interval time of 5 s.
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Patterned N-type Polymer Devices Fabrication

Devices were fabricated following a protocol specified previously[39]. Standard microscope
glass slides (75 mmx25 mm) were sonicated first in a soap bath (Micro-90) and then in a 1:1
(vol/vol) solvent mixture of acetone and isopropanol. The cleaned glass slides were patterned
with source, drain and gate gold electrodes for two types of devices using photolithography.
A positive photoresist (S1813) was used. A chromium layer was used to achieve better
adhesion of the gold on glass. Two layers of parylene-C that were separated by a layer of
soap (Micro-90 soap solution, 1% vol/vol in deionized water) were deposited. An adhesion
promoter (silane A-174 (gamma-Methacryloxypropyltrimethoxysilane)) was added to the
lower layer of parylene-C to prevent removal. This layer insulates the gold electrodes. In
a second photolithography step (with positive photoresist AZ 9260), the channel and lateral
gate dimensions are outlined. Reactive Ion Etching (RIE) with O2/CF4 plasma was used to
open up the channel and corresponding gates.The channel dimensions for type 1 devices are:
W x L = 80 µm x 240 µm with a lateral gate of the same size (80 µm x 240 µm) and 450 µm
distance between gate and channel. Type 2 devices have the following dimensions: W x L =
80 µm x 480 µm with a lateral gate of 2000 µm x 2000 µm and 450 µm distance between gate
and channel. The upper parylene-C layer was sacrificed in a peel-off process after spin-coating
the 2 TEG polymer.

Figure 7.S26: a) Microscope images of patterned 2 TEG polymer film as OECTs active channel with
size of W x L = 80 µm x 480 µm and 80 µm x 240 µm. b) Transfer curve of patterned 2 TEG OECTs
using 100 mM NaCl aqueous electrolyte and Ag/AgCl gate electrode.
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Figure 7.S27: The semi-log OECT transfer curves of p-type Pg2T-TT (IDA-Au-6 electrodes). 100 mM
NaCl aqueous solution was used as gating electrolyte, and an Ag/AgCl electrode as gate.

7.5.9 Ion gel electrolyte side-gated OECTs

Figure 7.S28: A microscope image of a 2 TEG polymer film deposited on IDA-Au-6 interdigitated
electrodes with ion gel on top. The gate and active channel are separated by excimer laser ablation.

Figure 7.S29: Linear ambipolar transfer
curves of 0 TEG, 2 TEG ion gel side-gated
OECTs (interdigitated electrodes, IDA-Au-6)
measured in ambient.

Figure 7.S30: Semi-log ambipolar transfer
curves of 0 TEG, 1 TEG, and 2 TEG ion gel
side gated OECTs (interdigitated electrodes,
IDA-6) measured in ambient.
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Table 7.S2: Dimensions of the interdigitated electrodes.

Length
(um)

Individual channel
width (mm)

Number
of pairs

Number of
channels n

Total width of
channels W
(W=n×w) (cm)

d(nm) Wd/L(cm) WdL
(µm3)

IDA-Au-1 10 1.8 15 29 5.22 49.4 2.58×10−2 25786.8
IDA-Au-5 5 1.8 20 39 7.02 49.4 6.94×10−2 17339.4
IDA-Au-6 5 1.8 30 59 10.62 49.4 1.05×10−1 26231.4

Table 7.S3: Transconductance and threshold voltage of PNDI2TEG-2Tz (2 TEG).

V𝑇ℎ (V) V𝑔
(V) g𝑚𝑚𝑎𝑥

(mS)
𝑔𝑚𝑚𝑎𝑥 ⋅𝐿
𝑊 ⋅𝑑(S⋅cm−1)

Peak current
(mA)

𝑃𝑒𝑎𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑊 ⋅𝑑⋅𝐿)

(µA⋅µm−3)
IDA-Au-1 0.63±0.02 0.87 19.27±3.15 0.747 3.04±0.26 0.118
IDA-Au-5 0.58±0.02 0.90 30.73±2.72 0.443 5.79±1.22 0.334
IDA-Au-6 0.54±0.01 0.87 51.78±2.50 0.493 11.46±0.48 0.437

Author Contributions
YZ and GY, initiated the idea. YvdB supervised the project. GY, JS, and RCC designed the
polymer. GY synthesized the polymer. YZ, GY and TvdP characterized the polymer. Eveline
van Doremaele and YZ characterized the devices. Eveline van Doremaele, YZ, IK and PG
fabricated devices. JD and GP performed the GIWAXS. YL performed the DFT calcultation.
YZ, GY and YvdB wrote the manuscript.
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Chapter8
Conclusion

Neuromorphic computing has emerged as a new type of computing to overcome lim-
itations of traditional computing methods. Neuromorphic computing is based on the
principles of the human brain and nervous system, which can perform complex com-
putations extremely efficiently. By mimicking these biological processes, neuromorphic
computing has the potential of creating more intelligent and energy-efficient computing
systems. Especially in the field of bioelectronics, organic neuromorphic computing has
the capability to make a significant impact and drive further advancement towards
realizing intelligent healthcare systems interfacing with biology.
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8.1 Conclusions
Bioelectronics has made enormous progress towards the development of concepts, materials
and devices that are capable of sensing, monitoring and controlling a biological environment,
enabling concepts such as local drug delivery and electrical, chemical or mechanical
stimulation. However, to achieve fully autonomous bioelectronic applications, it is necessary
not only to acquire biological signals but also to process and store data locally and with
low power, and to extract particular relevant features. Organic neuromorphic devices can
address these requirements to further advance the field of bioelectronics. In chapter 2 of
this thesis, we have presented an overview of trends in organic neuromorphic devices and
organic bioelectronic sensing platforms. We discussed the potential of merging these two
fields. Neuromorphic materials and devices that exhibit memory and have the potential
to operate at the interface with biology can pave the way for novel data classification
paradigms with bio-inspired features in information processing. These materials might
offer promising solutions for the manipulation and the processing of biological signals, and
enable applications spanning from novel brain–computer-interfaces and adaptive prosthetics
to bioinformatics and the definition of novel computational paradigms at the interface with
biology. For such applications, we envision a central role of smart multi-modal sensor
platforms and local neuromorphic processing.

We presented a smart biosensing platform in chapter 3 that could pave the way for such
adaptive bioelectronic systems. Importantly, this biosensor can be trained locally to classify
cystic fibrosis as an example disease, without the aid of software. The classification of cystic
fibrosis from human sweat samples serves as proof-of-principle. The sensor module can,
in principle, be replaced by another sensor to retrain the network for other applications in
diagnostics or environmental monitoring. We have shown the versatility by varying the
input signals and demonstrated the on-chip retraining. The training was done using an
error signal feedback to modulate the conductance of organic neuromorphic devices that
represent the weights in a software neural network. The training of the neural network is
a direct translation of the software single layer perceptron algorithm executed in hardware.
Expanding the neural network to multiple layers allows for more complex classification tasks
beyond linearly separable problems but requires a new strategy for the backpropagation in
hardware, as presented in chapter 4.

In chapter 4 we discussed a novel approach of the backpropagation in hardware, that is
executed layer-by-layer. The essence of this strategy is that the weights of only one layer
are updated every training cycle, and every next cycle the layer before will be updated. The
update is the product of the backflowing error and the feed forward input signal, an efficient
vector multiplication at the gate of the neuromorphic devices representing the weights. Due
to this method, no information regarding the state of the weights needs to be remembered
to update the weights, which is the bottleneck of the traditional backpropagation algorithm
limiting its speed and energy-efficiency. We have demonstrated using simulations that the
novel backpropagation approach does not impact the accuracy when classifying the two layer
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XOR problem. We have implemented this approach fully in hardware to demonstrate the
principle of neuromorphic backpropagation using progressive gradient descent. We showed
that this strategy allows to execute the training of neuromorphic circuits fully in hardware
leveraging the efficient multiply-accumulate operations not only during inference but also
during backpropagation allowing for updating the weights in parallel. These results pave
the way for training large neural networks with higher speed and energy-efficiency than the
software alternatives.
While the previous chapters focused on the brain-inspired hardware implementation of soft-
ware neural network algorithms, chapter 5 targets the information processing and communi-
cation of the nervous system. A fundamental difference with chapters 3 and 4 is that (sensor)
inputs are encoded in a spiking frequency analogous to the sensory systems in the human
body, rather than a voltage amplitude. We fabricated a neuromorphic spiking circuit that can
facilitate the encoding of sensor inputs, such as pressure and light, into a frequency of spikes,
and subsequently modulate the frequency using neurotransmitters (dopamine and serotonin)
mimicking two essential biological functions of neurons and their synapses, sensory coding
and neuromodulation. Computing in the brain requires a collective set of neurons and central
to efficient computation are the connections. Neural pathways link neurons from different
locations and enable the transmission of signals from one region of the nervous system to
another. We demonstrated such pathway by connecting two artificial synapses through an
electronic circuit and showed that the connected synapses are able to replicate the dependency
of dopamine expression on the activity of serotonergic neurons. Moreover, we replicated
a full neuronal pathway inspired by the retina that mimics the biological photic regulation
mediated by dopamine. We demonstrated a fundamental building block for programmable
neural pathways, which enables computing systems to interact with the biological environment
and facilitates adaptive biohybrid connections between distinct biological processing units.
Advanced concepts enabling computing systems that can interact with the biological envi-
ronment clearly need stable materials that can operate at biological interfaces. In chapter
6 the material P-3O stood out due to the various high-performance functionalities. In this
chapter, we demonstrated several properties in both aqueous and solid state environment, such
as the high on/off ratios that can be achieved with excellent ambient p- and n-type stability
in transistor performance. This allowed us to fabricate a tunable sensing circuit, based on a
complementary logic inverter combined with a neuromorphic memory element constructed
from the single polymer. We demonstrated the tuning of the gain of the sensing circuit and
showed the local signal normalization of electromyograms (EMGs) of two different gestures.
Furthermore, we showed that a small neuromorphic array based on this material results in
a high accuracy in classifying heartbeat anomalies. While this material exhibits exceptional
performance and allows for a monolithically integrated adaptive sensor, research in developing
improved materials remains an ongoing effort.
In order to effectively design higher performance materials, chapter 7 contributes to a deeper
understanding of the relationship between the polymer structure and the performance of n-type
OECTs. We developed a series of non-fused, planar NDI-2Tz copolymers decorated with and
without hydrophilic TEG side chains, and investigated their OECT performance in aqueous
electrolyte and ionic liquid, as well as their EC-RAM performance. We demonstrated that the
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transistor performance in terms of transconductance, µC*, on-off ratio and operation speed,
in an aqueous environment, increases with the number of TEG chains, owing to an increase
in the hydrophilicity and electron affinity improving the ion conductivity and volumetric
capacitance. We showed that the polymer with two TEG side chains achieves an electron
mobility up to 3.16 × 10−3 cm2V−1s−1 in OECT and ≈10−2 m2V−1s−1 in OFET operation,
which we attributed to the highly planar and rigid backbone, favorable backbone orientation
and low-lying LUMO energy level.

8.2 Outlook
In this work, we have demonstrated novel neuromorphic algorithms, concepts and materials
that can further advance the field of organic neuromorphic computing for bioelectronic
applications. Part of the work presented serves as a proof-of-principle. In chapter 3 we
showed a programmable biosensor which could be trained and retrained fully in hardware
eliminating the need for software. As a result calculations supporting the training were done
on the hardware itself improving the performance in speed, energy and accuracy. The neural
network considered here is very small, replicating the software perceptron algorithm that
consists of 1 layer with 2 inputs and a bias. Its output is binary, true or false. This directly
limits the possible applications to classification problems that are linearly separable. In order
to broaden the range of applications, the neural network structure has to scale up and the
size of the individual components has to decrease accordingly. While in this work we have
used relatively large components for demonstration purposes, many could be made smaller.
However, the performance of the organic neuromorphic devices, the ECRAMs we use, is
strongly related to their size. Shrinking the volume of the material reduces the range and thus
reduces the available states that represent the values of the weights in the neural network. At
the edges (maximum and minimum) of the conductance range the state retention typically
worsens, which reduces the stability of the neural network. Therefore, ongoing research is
needed on alternative materials and devices, such as 3D-architectures, to reduce the footprint
and encapsulation methods to improve the stability. Scaling up the size of the neural network
structure presents an additional challenge of adapting to different algorithms, particularly
with regards to the updating mechanism, such as backpropagation. In chapter 4 we discussed
a strategy that allows the neural network to increase in the number of layers and performing
the backpropagation in hardware. Although all the computational expensive multiplications
are executed in hardware, still some software was used to enact the training, particularly
the data generation, controlling of the switches and, the sigmoid and error calculation. The
sigmoid function used here is an approximation that can be executed in hardware. The
controlling of the switches as well as the error calculation, which merely subtracts the output
value from its target value, can be done without software, if full hardware neural networks
are desired. These functionalities impact only the front-end (data input) and the back-end
(output and error), and are independent of the amount of layers. Efficient labeling of the input
data and assigning its output, will be a notable challenge for supervised learning entirely in
hardware. While finding a suitable solution is feasible, it is closely tied to the application of
interest.

158



8

In chapter 5 we successfully demonstrated neuromorphic circuits that exhibit functionalities
similar to those found in biological neuronal pathways. While other researchers have shown
partial integration with biology, sensing, actuation and tuning based on environmental cues,
a hybrid artificial/biological neuronal pathway has not been established. A logical next step
would be to integrate biological cells with the neuromorphic circuitry. In order to replace
(damaged) biological parts, the whole neuromorphic system needs to be compatible with
and roughly of the same size as the biological cells and synapses. Currently, the complete
system is based on connected individual devices. However, down scaling of the components
and fabrication on a single substrate is an improvement that can be easily achieved. Via
encapsulation and patterning methods, device electrolytes that interfere with each other can
be separated. Similarly, the devices in the adaptive circuit of chapter 6 could benefit from
single substrate integration and encapsulation. Furthermore, the tuning of the adaptive circuit
was now driven by manually tuning the neuromorphic element (ECRAM) to the desired
conductance state to correctly normalize the different signals, while ideally this tuning is done
automatically. Future adaptive circuits could realize automatic normalization by incorporating
a feedback-loop where the normalized output controls the tuning of the ECRAM conductance
value. However, dealing with these types of biosignals in real-time remains a challenge.
We hope that the work presented in this thesis helps to advance the field of organic neuromor-
phic computing and provides building blocks for future real-life intelligent bioapplications.

159



S

160



S

Scientific Output

Publications

Organic neuromorphic spiking circuit for retina-inspired sensory coding and
neurotransmitter-mediated neural pathways, G. Matrone*, E. van Doremaele*, S.
Griggs, G. Ye, I. McCulloch, F. Santoro, Y. van de Burgt. In submission.
*Equal contribution

Retrainable neuromorphic biosensor for on-chip learning and classification, E. van
Doremaele, X. Ji, J. Rivnay, Y. van de Burgt. Under review.
Adaptive Biosensing and Neuromorphic Classification Based on an Ambipolar Or-
ganic Mixed Ionic–Electronic Conductor, Y. Zhang*, E. van Doremaele*, G. Ye, T.
Stevens, J. Song, R. Chiechi, Y. van de Burgt, Advanced Materials, 34, (20), 2022.
*Equal contribution

High-performance organic electrochemical transistors and neuromorphic devices
comprising naphthalenediimide-dialkoxybithiazole copolymers bearing glycol ether
pendant groups, Y. Zhang, G. Ye, T. van der Pol, J. Dong, E. van Doremaele, I.
Krauhausen, Y. Liu, P. Gkoupidenis, G. Portale, J. Song, R. Chiechi, Y. van de Burgt,
Advanced Functional Materials, 32, (27), 2022.
Towards organic neuromorphic devices for adaptive sensing and novel computing
paradigms in bioelectronics, E. van Doremaele, P. Gkoupidenis, Y. van de Burgt,
Journal of Materials Chemistry C, 7, (41), 2019.

In preparation

Novel backpropagation approach for in situ training of multilayer hardware neural
networks using progressive gradient descent, E. van Doremaele, T. Stevens, S.
Ringeling, M. Fattori, Y. van de Burgt. In preparation.
The influence of the ethtylene glycol sidechain length on Naphthalenediimide-
Dialkoxybithiazole Copolymers based electrochemical transistors, inverters, and
memory devices, Y. Zhang*, E. van Doremaele*, G. Ye*, J. Li, T. van der Pol, R.
Chiechi, Y. van de Burgt. In preparation.
*Equal contribution

161



S

Unrelated to this thesis

Effect of plasma on gas flow and air concentration in the effluent of a pulsed cold at-
mospheric pressure helium plasma jet, E. van Doremaele, V. Kondeti, P. Bruggeman,
Plasma Sources Science and Technology, 27, (9), 2018.

Conference contributions

Contributed talks

Adaptive neuromorphic biosensing and artificial neuronal pathways, Oral presenta-
tion.
Workshop on Neuromorphic Organic Devices, 2022. Crete, Greece.
On-site trainable biosensor and locally adaptive sensing based on organic neuromor-
phic circuits, Oral presentation.
MRS, 2022. Honolulu, USA.
Smart and adaptable biosensor based on an organic neuromorphic circuit, Oral
presentation.
MRS, 2021. Boston, USA.

Contributed posters

Trainable organic neuromorphic biosensors, Poster.
E-MRS, 2019. Warsaw, Poland.
Neuromorphic engineering and hardware-based A.I. for adaptive sensing and point-
of-care health monitoring, Poster.
EAISI symposium, 2019. Eindhoven, The Netherlands.
Trainable organic neuromorphic biosensors, Poster.
Asilomar, 2019. Pacific Grove, USA.

162



C

Curriculum Vitae

Eveline van Doremaele was born in Sittard, the Nether-
lands on the 20th of March in 1994. Her pre-university
education involved both Science & Technology and Sci-
ence & Health profiles and included the study of Latin
and Greek. Thereafter she moved to Eindhoven to study
Applied Physics at the Eindhoven University of Techol-
ogy. After completing her Bachelor in 2015 on the topic
of magnetization reversal in cobalt wires supervised by
prof.dr. Bert Koopmans, she continued her physics Mas-
ter interested in various topics. In particular drawn to the medical applications of
physics she did a research internship at the Swinburne University of Technology in
Melbourne, Australia, where she studied the cell uptake of ligand functionalized gold
nanospheres using high-order image correlation spectroscopy supervised by prof.
James Chon. For her graduation project she went to the University of Minnesota
in Minneapolis, USA, to the group of prof.dr.ir.lic. Peter Bruggeman to investigate
the morphology and the effect of plasma on the gas flow in cold atmospheric pressure
plasma jets impinging on a substrate. In 2018 she obtained her MSc Applied Physics
including both the Honors certificate and the Research certificate.
She got excited by the combination of research and the application of technology
for medical purposes and joined the neuromorphic engineering group of dr.ir. Yoeri
van de Burgt in January 2019 as a PhD candidate. Her PhD project is part of
BIOMORPHIC with the goal to create a microfluidic chip with integrated sensors
able to detect and classify biological cells using machine-learning. The results of her
research are presented in this thesis.

163



A

164



A

Acknowledgements

Like many things in life, it is all about the people around you that help you to grow,
achieve your goals and enjoy it. During my PhD I was lucky to be around so many
great people that have supported me and to which I like to dedicate this section.
First of all, I want to thank my promotor Yoeri van de Burgt. You are always positive
and excited about new ideas or results. Your enthusiasm is contagious. Every time
after our meeting I was even more inspired to get new results. I really admire your
optimistic view and skills to make from something that I - with my often too critical
mindset - deem ’okay-ish’ to something great and amazing. I truly appreciate all the
freedom that you gave me to explore everything that I thought was interesting, to travel
as much as possible and, to guide students my own way. You taught me how to be an
independent researcher and that learning Illustrator for making figures is worth it! I
am grateful for your connections and efforts that allowed me to visit Stanford. It is
my honor to be your first PhD student to graduate.
Next, I want to thank my second promotor Jaap den Toonder. Thank you for
welcoming me in the Microsystems section and for making my time in this group so
nice by facilitating many group activities such as Glow and the annual Microsystems
lunches. Even when the group started to grow exponentially you always found the
time to have a regular meeting with me. I learned a lot during our meetings and I
admire your ability to always ask the right questions whether the topic is in your field
or not.
Thanks to all members of the committee for being part of my defense and for their
time to read the thesis. Bert Meijer, thank you for your insight and the discussion we
had about the dilemma for a job in academics or industry. George Malliaras, thank
you for always being very kind when we talked at conferences. Jonathan Rivnay,
thank you for your valuable input during our meetings. Simone Fabiano, thank you
for trusting me in finding a nice restaurant in Honolulu. Francesca Santoro, thank
you for sharing your name badge at MRS. Leon Govaert, thank you for chairing the
defense.
I would like to thank the members of the Microsystems section that made my time
here so enjoyable. First of all the other staff members. Regina Luttge, thank you
for inviting me to the conference in Minneapolis and for actively promoting women

165



A

in science! Hans Wyss, thank you for being the dedicated photographer during all
the group outings. Ye Wang, thank you for the interesting discussions in the lunch
rooms about all kinds of topics, scientific and non-scientific, and of course for giving
me Sha.
Sha-lalala, my first office mate! It was a pleasure to share the office with you (even
though you really liked to work in the dark). Together we also shared the girls’ office
with Yagmur and Bhavana. Thanks Yagmur for working early in the mornings too!
Bhavana, thank you for the nice talks and laughs in the office and sharing frustrations
every once in a while. Thank you too, Kalpit. Maybe you forgot, but we also shared
the girls’ office briefly before you became our neighbour. Although you left the office,
you still made the coffee and lunch breaks enjoyable. Emma, thank you for filling
the empty desk when Sha left. Besides being an amazing office mate, you are also a
wonderful labmember. You are always looking to help out with various tasks in the
lab! I enjoyed our many discussions and brainstorm sessions to improve our Illustrator
and Origin skills to make the best figures as possible. While not all afternoons were
as productive as it could be, it was always super gezellig. I am very thankful for you
to be my paranymph.
Thanks to all the NeuroGoats! Star, Setareh, it was great to have you by my side at
the conferences and in the lab. Especially in the beginning when we had to develop
all protocols and try everything to fabricate our devices without the RIE. Imke and
Charles, thank you for joining the group and the fresh energy you brought with you.
It was nice to share the fabrication frustrations together and for the time in Boston.
I will never forget Wizard! Simone, thank you for introducing me to fuzzy and for
continuing with my projects. It’s been great picking your brain. Benn, thank you
for your enthusiasm on 3D printing and all of you for your great support during
the presentation stress. Thank you Gianmaria, for your continuous effort on our
manuscript, the delicious Limoncello that you surprised me with and the fun Mario
Kart parties. And last, professor Yanxi. Thank you for the work we did together, the
coca-cola celebrations and your amazing laugh. I enjoyed our many discussions and
your efforts to explain me my chemistry questions.
When I started in the Microsystems there were many people who gave me a warm
welcome that have already left. Thank you Jelle, for sharing the same humour.
You and Andreas were my go-to persons if I needed inspiration for new fabrication
approaches and always happy to help. Both of you were very active organizing
activities and in helping managing the lab, thereby setting a great example for new
members, including myself. Alex, your PhD defense was the first I ever attended.
I was so nervous! Thank you for the many talks we had. Shuai, thank you for
giving me the introductions to the spin and sputter coater and showing me how to
be a superuser. Marvelous, James! With you it is always a mystery. You were the
person I needed to avoid during group outings since you were the best in capturing the

166



A

funny pictures of someone. Thank you for your adventures on fighting crocodiles and
providing perspective by sharing your culture. Thank you Sophia, for making me feel
at home right from the start and for having me as your paranymph. I am grateful for
the conversations we had both science related and not. It’s great to see how successful
you already are, and I am sure it is not done yet. Please continue to inspire people
with your excitement and enthusiasm! Tanveer (Tan-4), you also started before me
but I am happy to have you still around! Thank you for being always available to
help out and endure so many discussions I had with Yanxi. Jiajing, thank you for
always smiling. Sertan, thank you for all your knowledge on impedance spectroscopy.
During my time at Microsystems the section has been growing a lot which resulted in
a diverse group with many nice personalities that each contributed to making my PhD
unforgettable. Thanks to all (in no particular order): Joey, for accepting your new
name for you warm hugs; Rahman, for always being kind and interested; Gülden,
for organizing a beautiful calendar together with Alex, Tanveer, Suzanne and Jia-
Jun; Suzanne, for the interesting conversations in the short time we met; Jia-Jun,
for always smiling, being super kind and convincing me to go bouldering with the
’Monks’: Jia-Jun, Kalpit, Imke, Charles, Mohammad and Sofia. Imke, for being
the coach; Sofia, for showing me how it’s actually done; Inês, for sharing doubts
about what to do next; Sevda, for discussing chloride and glucose sensors; Zhiwei,
for making me instantly happy by waving from a far distance in the hallways; Roel,
for sharing our passion for playing the saxophone; Emiel, for trying new stuff; Jordy,
for helping the lab and being the milling expert. Thanks also to Tongsheng, Pan,
Yiqing, Wei, Hossein, Jing, Oscar, Yangu, Chris, for always being kind.
Mamali, Mohammad! Oops, I almost forgot you. Good thing that you kept remind-
ing me. (And not only because you asked, but) here is my special thanks for you. You
were around for most of my PhD and you truly are one-of-a-kind. You introduced
me to foosball and always loved to make a wager (which almost caused you to go
bald). You shared books that you know I would like and initiated many discussions
on various interesting and/or debatable topics. We shared many laughs. I am very
grateful that you were around, just being you. Thank you!
I also like to thank my students which each contributed to my own development: Car-
los, for being my first student; Bob, for taking on the challenge of an online project;
Karen, for being very receptive; Tom, for being very independent; Joris, for being
super enthusiastic; Pranshu, to keep on going even when things are difficult; Gijs, to
explore all the possibilities with ordyl; Ibrahim and Roy, for your determination to
really understand the project. Unfortunately, I cannot supervise the project until the
end but I wish you all the best. You are in great hands. Last but not least, Tim, thank
you for staying around after your graduation. I think we achieved very nice results.
Who knows, maybe one day we will build those jetpacks.

167



A

Many thanks for the labmanagers of the Microfab/Lab! Willie, for showing me all
the equipment; Irene and Jaapie, for your continuous effort on making the lab an
enjoyable place for everyone and claiming the new space including Turing (which I
often considered my lab). Thank you, for always willing to help out. Sjoukje and
Katherine, for making sure that we work safely with chemicals. Also thanks to Erik
for helping me with ’talking’ to the Keithley, and teaching me the saying that it is very
time-efficient if you start at the last minute.
I would also like to thank Liesbeth and Joceline, for ensuring the administration was
in order, time sheets were filled in correctly and on time, and found time in Jaap’s busy
calendar. Thank you for organizing the social activities with the group. Liesbeth, I
enjoyed the talks we had when I came looking for coffee and that you made sure I had
a pen in every color.
I am thankful for the opportunity I had to work in other labs and facilities. Thank you,
Tjibbe, for your help with the dirty RIE in the NanoLab. Paul at EPC, I appreciate
that you were willing to help me with designing the neuromorphic circuit even though
you really preferred the simple digital components over our organic devices. Marco,
thank you for giving me access to the cage in the electrical engineering department. I
enjoyed working together and I hope that even more results will follow. Tom van der
Pol, thank you for introducing me to the equipment in the physics and chemistry lab.
You are very kind, smart and always happy to help. Thank you, Vahid, for making the
4𝑡ℎ floor interesting and challenging Mohammad with foosball. Hamid, you make
the best cocktails!
I also like to thank the Salleo Lab, especially Alberto Salleo and Scott. Thank you
for showing me around and really introducing me to research. It has been a wonderful
time and a great experience.
These four years would not have been possible with the opportunity to relax and
unwind supported by many different people. I like to start with thanking my other
paranymph, Tumi, Niki. We have been friends since we were Sjaarsen studying
Applied Physics. I deeply appreciate our friendship that has grown stronger through-
out the years. Thank you for always being there, for your unconditional support
when times were difficult and enthusiasm to celebrate the good times! Also thanks
to all the other study friends, the parallellepipedo’s. I enjoyed all the boardgame
nights and pubquizes, our annual trips and the Christmas dinners that often took place
somewhere in April. Thank you for still keeping in touch.
Big thanks to all my teammates of BC Bumpers! Basketball has always been an
important part of my life and especially during the busy times it was great to be able
to clear my mind. Nevertheless, the friendship among all of us is the best part. Some
of you I know for more than 15 or even 20 years! Thanks for the drive buddies and

168



A

jonkies, and in particular Maritti and Beks who traveled all over the world to visit
me! You were always there for me. I am very grateful for our friendship. Joleintje,
I loved our snowboots trips and I am very happy with you and lucky shadow and the
best nights evahrr. Loesje, Marloes, I am so glad that we found each other in high
school. We are so different and yet so alike (exactly like a club sandwich). Thank you
for all your support throughout the years. Denise, who I also met in high school, I am
grateful that we are always there for each other, even when we don’t see each other too
often. Despite being in different phases of our life our friendship has never changed.
Thank you!
Dankjewel pap en mam! Bedankt voor het stimuleren om niet op te geven en het
vertrouwen in mezelf te hebben, me uit te dagen om zo het beste uit mezelf te halen,
me te accepteren dat ik altijd waarom vraag, het mij lekker zelf laten proberen en
mijn perfectionisme af en toe te temperen. Mam, jouw "Maar wat héb je er nu aan?"
speelt nog altijd een belangrijke rol. Het is fijn om thuis te komen in Mtown, want
het is daar eigenlijk altijd gezellig, zeker als we er allemaal zijn. Joost en Koen,
dankjewel kleine broertjes. Het was af en toe zwaar met mij als zus maar ik waardeer
de band die we hebben opgebouwd heel erg. Bedankt voor de koffiemomentjes, de
telefoongesprekken, de autoritjes en er altijd voor me te zijn. Thanks bro’s!
Tot slot Gabje, my love. Ik ben blij dat je er voor me was toen ik corona had, al wist
je meteen dat het dat niet was. Dankjewel voor je onvoorwaardelijke liefde, steun, en
vertrouwen in mij. Je hebt mij geholpen om het beste uit mezelf te halen en het soms
iets rustiger aan te doen maar me altijd de ruimte gegeven om het op mijn manier te
doen. Ik ben je dankbaar dat je dit avontuur met mij hebt willen delen.

169



A

170


	Summary
	Publiekssamenvatting
	Table of contents
	Introduction to neuromorphic computing
	From analog to digital computers
	Neuromorphic computing: Best of both worlds
	Thesis outline
	Bibliography

	Towards organic neuromorphic devices for adaptive sensing and novel computing paradigms in bioelectronics
	Introduction
	Bibliography

	Retrainable neuromorphic biosensor for on-chip learning and classification
	Introduction
	Generating input signals from ion sensors
	Training in hardware for on-chip classification
	Update behaviour of the neuromorphic circuit
	On-chip retraining
	Conclusion
	Methods
	EC-RAM fabrication
	Ion selective OECT fabrication
	Sweat samples
	Data acquisition

	Supporting Information
	Ion selective electrodes (ISE) and organic electrochemical transistors (IS-OECT)
	EC-RAM modulation and state retention
	Backpropagation in the neuromorphic circuit
	Effect of different input values
	Hardware neural network circuit

	Bibliography

	Novel implementation of the backpropagation algorithm for in situ training of multi-layer hardware neural networks using progressive gradient descent
	Introduction
	Hardware implementation gradient descent
	Results
	Classification performance of parallel versus progressive update
	In situ hardware classification performance

	Conclusion
	Methods
	EC-RAM fabrication

	Supporting Information
	Transistor multiplication
	Weight modulation EC-RAM
	Hardware neural network simulation
	Hardware neural network testing
	Impact weight initialization
	Discussion hardware classification performance

	Bibliography

	Organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways
	Introduction
	Methods
	p(C4-T2-C0-EG) devices fabrication
	P-3O devices fabrication 
	Biohybrid synapse and capacitor fabrication
	Neurotransmitters solutions preparation 
	Spiking circuit connections
	Electrical measurements

	Supporting Information
	Spiking circuit
	Sensory coding with pressure sensor
	Bio-hybrid synapse and its synaptic modulation
	Sensory coding with neurotransmitters dopamine and serotonin
	Voltage divider and switch circuit to connect the two bio-hybrid synapses
	Sensory coding with light

	Bibliography

	Adaptive biosensing and neuromorphic classification based on an ambipolar organic mixed ionic–electronic conductor
	Introduction
	Results & Discussion
	Conclusion
	Experimental Section
	Materials
	Device Fabrication and Characterization

	Supporting Information
	Material characterization
	OECTs
	Dopamine sensing
	EC-RAM
	Ambipolar inverter
	Neuromorphic inverter simulation for EMG signal processing 
	EC-RAM based neural network simulation 

	Bibliography

	High-performance organic electrochemical transistors and neuromorphic devices comprising naphthalenediimide-dialkoxybithiazole copolymers bearing glycol ether pendant groups
	Introduction
	Results and discussion
	Molecular Design and Characterization
	Aqueous Electrolyte Gated OECTs
	Ion Gel Gated Electrochemical Transistors and Resistive Random-Access Memory Devices (EC-RAMs)

	Conclusion
	Experimental Section
	Materials
	Device Fabrication and Characterizations
	Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS)
	UV–vis-NIR Electrochemical Spectroscopy
	GIWAXS

	Supporting Information
	Water contact angle
	UV-vis-NIR Absorption Spectroscopy 
	Cyclic voltametry
	Organic Field-Effect Transistor (OFET) Fabrication and Performance of Polymers. OFET fabrication and characterization
	Atomic force microscopy
	UV-vis-NIR Electrochemical Spectroscopy
	Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS)
	Organic Electrochemical Transistors (OECTs)
	Ion gel electrolyte side-gated OECTs

	Bibliography

	Conclusion
	Conclusions
	Outlook

	Scientific Output
	Curriculum Vitae
	Acknowledgements

