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Abstract: We initiate the study of the one-shot capacity of communication (coded) networks
with an adversary having access only to a proper subset of the network edges. We introduce the
Diamond Network as a minimal example to show that known cut-set bounds are not sharp in
general, and that their non-sharpness comes precisely from restricting the action of the adversary
to a region of the network. We give a capacity-achieving scheme for the Diamond Network that
implements an adversary detection strategy. We also show that linear network coding does not
suffice in general to achieve capacity, proving a strong separation result between the one-shot
capacity and its linear version. We then give a sufficient condition for tightness of the Singleton
Cut-Set Bound in a family of two-level networks. Finally, we discuss how the presence of nodes
that do not allow local encoding and decoding does or does not affect the one-shot capacity.

Keywords: Network coding, adversarial network, capacity, cut-set bound.

1. INTRODUCTION

As the prevalence of interconnected devices grows, vul-
nerable communication networks must be able to counter
the actions of malicious actors; a unified understanding of
the fundamental communication limits of these networks is
therefore paramount. The correction of errors introduced
by adversaries in networks has been studied in a number
of previous works. Cai and Yeung give generalizations
of some classical coding bounds to the network setting
in Yeung and Cai (2006); Cai and Yeung (2006). Other
bounds and related code constructions for adversarial net-
works are presented in, e.g., Yang and Yeung (2007); Jaggi
et al. (2007); Matsumoto (2007); Yang et al. (2007, 2008);
Ravagnani and Kschischang (2018). The work most closely
related to this paper is Ravagnani and Kschischang (2018),
where a unified combinatorial framework for adversarial
networks and a method for porting point-to-point coding-
theoretic results to the network setting are established. In
contrast to works that address random errors in networks,
or a combination of random and adversarial errors, Rav-
agnani and Kschischang (2018) focuses purely on adver-
sarial, or worst-case, errors. The results presented here
assume the same model in a single-use regime.

Problem formulation. In contrast to most previous
work, in this paper we concentrate on networks with an
adversary who can possibly corrupt only a proper subset
of the network edges. This paper is the first stepping stone

� A. B. K. is supported by the Dutch Research Council through
grant VI.Vidi.203.045. A. R. is supported by the Dutch Research
Council through grants VI.Vidi.203.045, OCENW.KLEIN.539, and
by the Royal Academy of Arts and Sciences of the Netherlands.

of a long-term project aimed at understanding how the
topology of the vulnerable region of a network determines
(or at least affects) its capacity. We focus on networks
whose inputs are drawn from a finite alphabet and whose
intermediate nodes may process information before for-
warding. We assume that an omniscient adversary can
corrupt up to some fixed number of alphabet symbols sent
along a subset of network edges. The one-shot capacity
of such an adversarial network measures the number of
symbols that can be sent with zero error during a sin-
gle transmission round. A universal approach to forming
cut-set bounds, which are derived by reducing the ca-
pacity problem to a minimization across cut-sets of the
underlying directed graph of the network, is presented in
Ravagnani and Kschischang (2018). Any coding-theoretic
bound may be ported to the networking setting, including
the famous Singleton Bound.

Our contribution. In this paper, we exhibit a minimal
example showing that known cut-set bounds for the one-
shot capacity of a network subject to adversarial noise
are not sharp in general. More precisely, we construct a
network for which the Singleton Bound gives the best es-
tablished upper bound on one-shot capacity, and show that
it is not tight (regardless of the size of the network alpha-
bet). The non-tightness of the bound comes precisely from
limiting the adversary to operation on a certain region of
the network. Our example, which we call the Diamond
Network, requires that a single symbol be sacrificed to the
task of locating the adversary within the network. Inter-
estingly, this requirement results in a non-integer-valued
one-shot capacity (which we are able to compute). We note
that the requirement that the receiver locate the adversary
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Abstract: We initiate the study of the one-shot capacity of communication (coded) networks
with an adversary having access only to a proper subset of the network edges. We introduce the
Diamond Network as a minimal example to show that known cut-set bounds are not sharp in
general, and that their non-sharpness comes precisely from restricting the action of the adversary
to a region of the network. We give a capacity-achieving scheme for the Diamond Network that
implements an adversary detection strategy. We also show that linear network coding does not
suffice in general to achieve capacity, proving a strong separation result between the one-shot
capacity and its linear version. We then give a sufficient condition for tightness of the Singleton
Cut-Set Bound in a family of two-level networks. Finally, we discuss how the presence of nodes
that do not allow local encoding and decoding does or does not affect the one-shot capacity.
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1. INTRODUCTION

As the prevalence of interconnected devices grows, vul-
nerable communication networks must be able to counter
the actions of malicious actors; a unified understanding of
the fundamental communication limits of these networks is
therefore paramount. The correction of errors introduced
by adversaries in networks has been studied in a number
of previous works. Cai and Yeung give generalizations
of some classical coding bounds to the network setting
in Yeung and Cai (2006); Cai and Yeung (2006). Other
bounds and related code constructions for adversarial net-
works are presented in, e.g., Yang and Yeung (2007); Jaggi
et al. (2007); Matsumoto (2007); Yang et al. (2007, 2008);
Ravagnani and Kschischang (2018). The work most closely
related to this paper is Ravagnani and Kschischang (2018),
where a unified combinatorial framework for adversarial
networks and a method for porting point-to-point coding-
theoretic results to the network setting are established. In
contrast to works that address random errors in networks,
or a combination of random and adversarial errors, Rav-
agnani and Kschischang (2018) focuses purely on adver-
sarial, or worst-case, errors. The results presented here
assume the same model in a single-use regime.

Problem formulation. In contrast to most previous
work, in this paper we concentrate on networks with an
adversary who can possibly corrupt only a proper subset
of the network edges. This paper is the first stepping stone
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of a long-term project aimed at understanding how the
topology of the vulnerable region of a network determines
(or at least affects) its capacity. We focus on networks
whose inputs are drawn from a finite alphabet and whose
intermediate nodes may process information before for-
warding. We assume that an omniscient adversary can
corrupt up to some fixed number of alphabet symbols sent
along a subset of network edges. The one-shot capacity
of such an adversarial network measures the number of
symbols that can be sent with zero error during a sin-
gle transmission round. A universal approach to forming
cut-set bounds, which are derived by reducing the ca-
pacity problem to a minimization across cut-sets of the
underlying directed graph of the network, is presented in
Ravagnani and Kschischang (2018). Any coding-theoretic
bound may be ported to the networking setting, including
the famous Singleton Bound.

Our contribution. In this paper, we exhibit a minimal
example showing that known cut-set bounds for the one-
shot capacity of a network subject to adversarial noise
are not sharp in general. More precisely, we construct a
network for which the Singleton Bound gives the best es-
tablished upper bound on one-shot capacity, and show that
it is not tight (regardless of the size of the network alpha-
bet). The non-tightness of the bound comes precisely from
limiting the adversary to operation on a certain region of
the network. Our example, which we call the Diamond
Network, requires that a single symbol be sacrificed to the
task of locating the adversary within the network. Inter-
estingly, this requirement results in a non-integer-valued
one-shot capacity (which we are able to compute). We note
that the requirement that the receiver locate the adversary
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is related to the problem of authentication in networks
(see, e.g. Kosut and Kliewer (2016); Sangwan et al. (2019);
Beemer et al. (2020)). In our capacity-achieving scheme for
the Diamond Network, one intermediate vertex must be
able to either sound an alarm (if the adversary is detected),
or decode correctly (when the adversary is absent). On the
other hand, in our presented scheme for a modification
of the Diamond Network, called the Mirrored Diamond
Network, the way in which intermediate vertices sound the
alarm must simultaneously serve as the way in which a
particular alphabet symbol is transmitted. This interplay
between authentication and correction is reminiscent of
the work in Beemer et al. (2020), and the connection
warrants further investigation.

Outline. This paper is organized as follows. In Section 2
we introduce necessary notation and background. Sec-
tions 3 and 4 together establish the exact one-shot capac-
ity of the Diamond Network, proving that the Singleton
Cut-Set Bound is not tight. In Section 5, we establish
the (bound-achieving) one-shot capacity of the Mirrored
Diamond Network. In Section 6 we compute the linear one-
shot capacity of the Mirrored Diamond Network, showing
that there is strong separation between the linear and the
non-linear one-shot capacities. Section 7 expands our focus
to the broader class of two-level networks, and gives a
sufficient condition for a network in this class to meet the
best cut-set bound. In Section 8 we include some examples
showing that the presence of damming nodes (see Section 7
for the definition) may or may not compromise the achiev-
ability of the Singleton Cut-Set Bound. We conclude with
future directions in Section 9.

2. PRELIMINARIES

We introduce the terminology and notation for the remain-
der of the paper. We start by formally defining communi-
cation networks as in Ravagnani and Kschischang (2018).

Definition 1. A (single-source communication) net-
work is a 4-tuple N = (V, E , S,T), where:

(A) (V, E) is a finite, directed and acyclic multigraph;
(B) S ∈ V is the source;
(C) T ⊆ V is the set of terminals.
(D) |T| ≥ 1 and S /∈ T;
(E) there exists a directed path from S to any T ∈ T;
(F) for every V ∈ V\({S}∪T) there exists a directed path

from S to V and from V to some terminal T ∈ T.

The elements of V are called vertices or nodes, and those
of E are called edges. The elements of V \ ({S} ∪ T) are
the intermediate vertices/nodes. The set of incoming
and outgoing edges of a vertex V are denoted by in(V )
and out(V ), respectively. Their cardinalities are the inde-
gree and outdegree of V , which are denoted by deg−(V )
and deg+(V ), respectively.

Our communication model is as follows: all edges of a
network N can carry precisely one element from a set A
of cardinality at least 2, which we call the alphabet. The
vertices of the network collect alphabet symbols over the
incoming edges, process them according to functions, and
send the outputs over the outgoing edges. Vertices are
memoryless and transmissions are delay-free. We model
errors as being introduced by an adversary A, who can

corrupt the value of up to t edges from a fixed set U ⊆ E .
An alphabet symbol sent along one of the edges in U can be
changed to any other alphabet symbol at the discretion of
the adversary. We focus on correcting any error pattern
that can be introduced by the adversary. We call the
pair (N ,A) an adversarial network.

It is well-known that an acyclic directed graph (V, E)
defines a partial order on the set of its edges, E . More
precisely, e1 ∈ E precedes e2 ∈ E (in symbols, e1 � e2)
if there exists a directed path in (V, E) whose first edge
is e1 and whose last edge is e2. We may extend this partial
order to a total order on E , which we fix once and for all
and denote by ≤. Important to note is that the results in
this paper do not depend on the particular choice of ≤.

We now introduce the concept of a network code, which
describes how the messages are processed by the interme-
diate nodes of a network.

Definition 2. Let N = (V, E , S,T) be a network. A net-
work code F for N is a family of functions

{FV | V ∈ V \ ({S} ∪T)},
where FV : Adeg−(V ) → Adeg+(V ) for all V .

A network code F describes how the vertices of a net-
work N process the inputs received on the incoming
edges. There is a unique interpretation for these operations
thanks to the choice of the total order ≤.

Definition 3. Let N = (V, E , S,T) be a network and
let U ,U ′ ⊆ E be non-empty subsets. We say that U
precedes U ′ if every path from S to an edge of U ′ contains
an edge from U .

Our next step is to define outer codes for a network and
give conditions for decodability. We do this by introducing
the notion of an adversarial channel.

Definition 4. Let (N ,A) denote an adversarial network
with N = (V, E , S,T) and let U ,U ′ ⊆ E be non-empty
such that U precedes U ′. Let F be a network code for N .
For x ∈ A|U|, we denote by

Ω[N ,A,F ,U → U ′](x) ⊆ A|U ′| (1)

the set of vectors over the alphabet that can be exiting the
edges of U ′ when:

• the coordinates of x are the alphabet values entering
the edges of U ,

• vertices process information according to F and the
total order ≤.

Note that (1) is well-defined because U precedes U ′.
Furthermore, U ∩ U ′ need not be empty. We refer to the
discussion following (Ravagnani and Kschischang, 2018,
Definition 41, Example 42).

Example 5. Let (N ,A) be the network in Figure 1, where
the edges are ordered according to their indices. We
consider an adversary capable of corrupting up to one of
the dashed edges. Let FV1

be the identity function and FV2

be the projection onto the second coordinate of the input
pair. Then, for x = (x1, x2, x3) ∈ A3 we have that

Ω[N ,A,F , {e1, e2, e3} → {e4, e5}](x) ⊆ A2

is the set of vectors y = (y1, y2) ∈ A2 for which
dH((y1, y2), (x1, x3)) ≤ 1, where dH denotes the Hamming
distance.
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We now define error-correcting codes in the context of
adversarial networks.

Definition 6. An (outer) code for a network N =

(V, E , S,T) is a subset C ⊆ Adeg+(S) with |C| ≥ 1. If F
is a network code for N and A is an adversary, then we
say that C is unambiguous (or good) for (N ,A,F) if
for all x,x′ ∈ C with x �= x′ and for all T ∈ T we have

Ω[N ,A,F , out(S) → in(T )](x)∩
Ω[N ,A,F , out(S) → in(T )](x′) = ∅.

The last condition in the above definition guarantees that
every element of C can be uniquely recovered by every
terminal, despite the action of the adversary. Finally, we
define the one-shot capacity of an adversarial network.

Definition 7. The (one-shot) capacity of an adversarial
network (N ,A) is the maximum α ∈ R for which there
exists a network code F and an unambiguous code C
for (N ,A,F) with α = log|A| |C|. We denote this max-

imum value by C1(N ,A).

In Ravagnani and Kschischang (2018), a general method
was developed to “lift” bounds for Hamming-metric chan-
nels to the networking context. The method allows any
classical coding bound to be lifted to the network setting.
The next result states the lifted version of the well-known
Singleton Bound. Recall that an edge-cut between source S
and terminal T is a set of edges whose removal would
separate S from T .

Theorem 8. (The Singleton Cut-Set Bound). Let N be a
network with edge set E . Assume an adversary A can
corrupt up to t ≥ 0 edges from a subset U ⊆ E . Then
C1(N ,A) ≤ min

T∈T
min
E′

(|E ′ \ U|+max{0, |E ′ ∩ U| − 2t}) ,

where E ′ ⊆ E ranges over all edge-cuts between S and T .

3. THE DIAMOND NETWORK: ACHIEVABILITY

We present a minimal example of a network for which the
best known bound, namely the Singleton Cut-Set Bound, is
not sharp. The example will serve to illustrate the necessity
of performing partial decoding at the intermediate nodes
in order to achieve capacity.

Example 9. (The Diamond Network). Consider the net-
work D of Figure 1 and an adversaryAD able to corrupt at
most one of the dashed edges, and we call the pair (D,AD)
the Diamond Network.

S

V1

V2

T

e1

e2

e3

e4

e5

Fig. 1. The Diamond Network

Corollary 10. For the Diamond Network (D,AD),

C1(D,AD) ≤ 1.

We will prove in this section and the next that the
Diamond Network has capacity

C1(D,AD) = log|A|(|A| − 1). (2)

In particular, this shows that the best known cut-set
bound is not sharp. In order to achieve the capacity, one
alphabet symbol needs to be reserved to implement an
adversary detection strategy.

Proposition 11. For the Diamond Network (D,AD) we
have

C1(D,AD) ≥ log|A|(|A| − 1).

Proof. We isolate a symbol ∗ ∈ A and defineA′ = A\{∗}.
Consider the scheme where the source S can send any
symbol of A′ via a three-times repetition code over its
outgoing edges. Vertex V1 simply forwards the received
input, while vertex V2 proceeds as follows: If the two
received inputs coincide and are equal to a ∈ A′, then it
forwards a. Otherwise, it transmits ∗. It is not difficult to
check that any symbol from A′ can be uniquely decoded,
showing that the proposed scheme is unambiguous. �

The communication strategy on which the previous proof
is based reserves an alphabet symbol ∗ ∈ A to pass infor-
mation about the location of the adversary (more precisely,
the symbol ∗ reveals whether or not the adversary is
acting on the lower “stream”). The source is not allowed
to emit the reserved symbol ∗, rendering log|A|(|A|−1) the
maximum rate achievable by this scheme. It is natural to
then ask whether the reserved symbol ∗ can simultaneously
be a part of the source’s codebook, achieving a rate of 1 =
log|A| |A| message per channel use. In the next section,
we will formally answer this question in the negative; see
Proposition 12. In Section 5, we consider a modification
of the Diamond Network and present a scheme where
one symbol is reserved for adversary detection, but can
nonetheless also be used as a message symbol.

4. THE DIAMOND NETWORK: THE CONVERSE

In this section, we establish an inequality for the cardinal-
ity of any unambiguous code C for the Diamond Network.

Proposition 12. Let F be a network code for (D,AD)
and let C ⊆ A3 be an outer code. If C is unambiguous
for (D,AD,F), then |C|2+|C|−1−|A|2 ≤ 0. In particular,
we have |C| ≤ |A| − 1.

Proof. The argument is organized into various claims.
We denote by π : A3 → A the projection onto the first
coordinate.

Claim A. We have |π(C)| = |C|.

This follows from the fact that C ⊆ A3 must have mini-
mum Hamming distance 3 in order to be unambiguous, as
one can easily check. �

Claim B. The restriction of FV1
to π(C) is injective.

Suppose by contradiction that there exist x,y ∈ C
with π(x) �= π(y) and FV1

(π(x)) = FV1
(π(y)). Then

it is easy to see that the sets Ω[D,AD,F , out(S) →
in(T )](x) and Ω[D,AD,F , out(S) → in(T )](y) inter-
sect non-trivially. Indeed, if x = (x1, x2, x3) and y =
(y1, y2, y3), then the final output

(FV1(x1),FV2(x2, y3)) ∈ A2
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We now define error-correcting codes in the context of
adversarial networks.

Definition 6. An (outer) code for a network N =

(V, E , S,T) is a subset C ⊆ Adeg+(S) with |C| ≥ 1. If F
is a network code for N and A is an adversary, then we
say that C is unambiguous (or good) for (N ,A,F) if
for all x,x′ ∈ C with x �= x′ and for all T ∈ T we have

Ω[N ,A,F , out(S) → in(T )](x)∩
Ω[N ,A,F , out(S) → in(T )](x′) = ∅.

The last condition in the above definition guarantees that
every element of C can be uniquely recovered by every
terminal, despite the action of the adversary. Finally, we
define the one-shot capacity of an adversarial network.

Definition 7. The (one-shot) capacity of an adversarial
network (N ,A) is the maximum α ∈ R for which there
exists a network code F and an unambiguous code C
for (N ,A,F) with α = log|A| |C|. We denote this max-

imum value by C1(N ,A).

In Ravagnani and Kschischang (2018), a general method
was developed to “lift” bounds for Hamming-metric chan-
nels to the networking context. The method allows any
classical coding bound to be lifted to the network setting.
The next result states the lifted version of the well-known
Singleton Bound. Recall that an edge-cut between source S
and terminal T is a set of edges whose removal would
separate S from T .

Theorem 8. (The Singleton Cut-Set Bound). Let N be a
network with edge set E . Assume an adversary A can
corrupt up to t ≥ 0 edges from a subset U ⊆ E . Then
C1(N ,A) ≤ min

T∈T
min
E′

(|E ′ \ U|+max{0, |E ′ ∩ U| − 2t}) ,

where E ′ ⊆ E ranges over all edge-cuts between S and T .

3. THE DIAMOND NETWORK: ACHIEVABILITY

We present a minimal example of a network for which the
best known bound, namely the Singleton Cut-Set Bound, is
not sharp. The example will serve to illustrate the necessity
of performing partial decoding at the intermediate nodes
in order to achieve capacity.

Example 9. (The Diamond Network). Consider the net-
work D of Figure 1 and an adversaryAD able to corrupt at
most one of the dashed edges, and we call the pair (D,AD)
the Diamond Network.

S

V1

V2

T

e1

e2

e3

e4

e5

Fig. 1. The Diamond Network

Corollary 10. For the Diamond Network (D,AD),

C1(D,AD) ≤ 1.

We will prove in this section and the next that the
Diamond Network has capacity

C1(D,AD) = log|A|(|A| − 1). (2)

In particular, this shows that the best known cut-set
bound is not sharp. In order to achieve the capacity, one
alphabet symbol needs to be reserved to implement an
adversary detection strategy.

Proposition 11. For the Diamond Network (D,AD) we
have

C1(D,AD) ≥ log|A|(|A| − 1).

Proof. We isolate a symbol ∗ ∈ A and defineA′ = A\{∗}.
Consider the scheme where the source S can send any
symbol of A′ via a three-times repetition code over its
outgoing edges. Vertex V1 simply forwards the received
input, while vertex V2 proceeds as follows: If the two
received inputs coincide and are equal to a ∈ A′, then it
forwards a. Otherwise, it transmits ∗. It is not difficult to
check that any symbol from A′ can be uniquely decoded,
showing that the proposed scheme is unambiguous. �

The communication strategy on which the previous proof
is based reserves an alphabet symbol ∗ ∈ A to pass infor-
mation about the location of the adversary (more precisely,
the symbol ∗ reveals whether or not the adversary is
acting on the lower “stream”). The source is not allowed
to emit the reserved symbol ∗, rendering log|A|(|A|−1) the
maximum rate achievable by this scheme. It is natural to
then ask whether the reserved symbol ∗ can simultaneously
be a part of the source’s codebook, achieving a rate of 1 =
log|A| |A| message per channel use. In the next section,
we will formally answer this question in the negative; see
Proposition 12. In Section 5, we consider a modification
of the Diamond Network and present a scheme where
one symbol is reserved for adversary detection, but can
nonetheless also be used as a message symbol.

4. THE DIAMOND NETWORK: THE CONVERSE

In this section, we establish an inequality for the cardinal-
ity of any unambiguous code C for the Diamond Network.

Proposition 12. Let F be a network code for (D,AD)
and let C ⊆ A3 be an outer code. If C is unambiguous
for (D,AD,F), then |C|2+|C|−1−|A|2 ≤ 0. In particular,
we have |C| ≤ |A| − 1.

Proof. The argument is organized into various claims.
We denote by π : A3 → A the projection onto the first
coordinate.

Claim A. We have |π(C)| = |C|.

This follows from the fact that C ⊆ A3 must have mini-
mum Hamming distance 3 in order to be unambiguous, as
one can easily check. �

Claim B. The restriction of FV1
to π(C) is injective.

Suppose by contradiction that there exist x,y ∈ C
with π(x) �= π(y) and FV1

(π(x)) = FV1
(π(y)). Then

it is easy to see that the sets Ω[D,AD,F , out(S) →
in(T )](x) and Ω[D,AD,F , out(S) → in(T )](y) inter-
sect non-trivially. Indeed, if x = (x1, x2, x3) and y =
(y1, y2, y3), then the final output

(FV1(x1),FV2(x2, y3)) ∈ A2

belongs to both sets. �

To simplify notation, let Ω := Ω[D,AD,F , {e1, e2, e3} →
{e5}], which is well-defined because {e1, e2, e3} pre-
cedes e5; see Definition 3.

Claim C. There exists at most one codeword x ∈ C for
which the cardinality of Ω(x) is 1.

Towards a contradiction, suppose that there are x,y ∈
C with x �= y and |Ω(x)| = |Ω(y)| = 1. We
write Ω′ := Ω[D,AD,F , {e1, e2, e3} → {e2, e3}] and ob-
serve that |FV2

(Ω′(x))| = |FV2
(Ω′(y))| = 1. Let x =

(x1, x2, x3), y = (y1, y2, y3). Since (x2, x3), (x2, y3) ∈ Ω′(x)
and (y2, y3), (x2, y3) ∈ Ω′(y), we have

FV2
(x2, x3) = FV2

(x2, y3) = FV2
(y2, y3).

By observing that the adversary may corrupt the symbol
sent on e1, this implies that the sets Ω[D,AD,F , out(S) →
in(T )](x) and Ω[D,AD,F , out(S) → in(T )](y) intersect
non-trivially, a contradiction. �

To simplify further, denote the transfer from S to T by

Ω′′ := Ω[D,AD,F , {e1, e2, e3} → {e4, e5}].
Since C is unambiguous, we have∑

x∈C

|Ω′′(x)| ≤ |A|2. (3)

For all x ∈ C, write Ω′′(x) = Ω′′
1(x) ∪ Ω′′

2(x), where

Ω′′
1(x) = {z ∈ Ω′′(x) | z1 = FV1

(x1)},
Ω′′

2(x) = {z ∈ Ω′′(x) | z2 = FV2
(x2, x3)}.

By definition, we have |Ω′′(x)| = |Ω′′
1(x)| + |Ω′′

2(x)| − 1.
Summing over all x ∈ C and using Claims A, B and C we
find ∑

x∈C

|Ω′′(x)| ≥ 1 + 2(|C| − 1) +
∑
x∈C

|C| − |C|

= 2|C| − 1 + |C|2 − |C|
= |C|2 + |C| − 1.

Combining this with (3), we find |C|2 + |C| − 1 ≤ |A|2,
which is the desired inequality. �

We can now compute the capacity of the Diamond Net-
work by combining Propositions 11 and 12.

Theorem 13. For the Diamond Network (D,AD),

C1(D,AD) = log|A|(|A| − 1).

The Diamond Network is admittedly a small example.
However, we believe that it will provide valuable insight
into the general behavior of the one-shot capacity of larger
networks.

5. THE MIRRORED DIAMOND NETWORK

It is interesting to observe that by adding a single vulner-
able edge from S to V1 in the Diamond Network (as in
Figure 2), the capacity will be exactly the one predicted
by the Singleton Cut-Set Bound of Theorem 8. We call
this new network the Mirrored Diamond Network.
The adversary can corrupt at most one edge from the
four exiting S. The notation for the network-adversary pair
is (S,AS).

Proposition 14. We have C1(S,AS) = 1.
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V1

V2
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e3

e4

e5

e6

Fig. 2. The Mirrored Diamond Network.

Proof. By Theorem 8, C1(S,AS) ≤ 1, so we only need to
prove achievability. Select ∗ ∈ A, and consider the scheme
where the source S sends any symbol of A via a four-times
repetition code. Vertices V1 and V2 both proceed as follows:
If the two received inputs coincide and are equal to a ∈ A,
the vertex forwards a; otherwise it transmits ∗. At T , if the
received symbols match and are equal to a ∈ A, decode
to a. Otherwise, decode to the symbol that is not equal
to ∗. It is clear that any symbol from A can be uniquely
decoded, including ∗. �

As in the proof of Proposition 11, the above scheme uses
an alphabet symbol to pass information about the location
of the adversary. In strong contrast with the Diamond
Network however, in the Mirrored Diamond Network this
strategy comes at no cost, as the “reserved” alphabet
symbol can be used by the source like any other symbol.

6. LINEAR CAPACITY

It is well-known that in the context of adversarial network
coding capacity can be achieved by combining a rank-
metric (outer) code with a linear network code; see Silva
et al. (2008); Dikaliotis et al. (2011). This result applies to
an adversary capable of corrupting any t network edges.
In this section we argue that the same result is far from
being true when the adversary is restricted to operate on
a proper subset of the network edges. More precisely, we
establish a strong separation result between the capacity
and the “linear” capacity.

Definition 15. Following the notation of Definition 2, we
say that F is a linear network code if A is a finite field
and each function FV is linear.

We next define the linear version of the one-shot capacity.

Definition 16. The linear one-shot capacity of an ad-
versarial network (N ,A) is the maximum α ∈ R for which
there exists a linear network code F and an unambiguous
code C for (N ,A,F) with α = log|A| |C|. We denote this

maximum value by Clin
1 (N ,A).

Note that, in the definition of linear one-shot capacity, we
do not require that C is a linear code.

In Proposition 14 we proved that the one-shot capacity
of the Mirrored Diamond Network is equal to 1. The
next result shows that its linear capacity is 0, exhibiting
an example of strong separation between the one-shot
capacity and its linear version, in the sense that the
capacities are separated asymptotically in alphabet size.

Theorem 17. We have Clin
1 (S,AS) = 0.
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Proof. Fix any linear network code F for (S,AS) and
let C be a good code for (S,AS ,F). Suppose that |C| ≥ 2
and let x, a ∈ C with x �= a. Write

x = (x1, x2, x3, x4), a = (a1, a2, a3, a4)

and

FV1
(u, v) = λ1u+ λ2v, FV2

(u, v) = λ3u+ λ4v,

where λr ∈ A for 1 ≤ r ≤ 4 and u, v ∈ A. We
let Ω := Ω[D,AD,F , {e1, e2, e3, e4} → {e5, e6}] to simplify
the notation throughout the proof.

We start by observing that λ1, λ2 can not be both equal
to 0. Similarly, λ3, λ4 can not be both equal to 0. Indeed,
is easy to see that the adversary can create a collision
otherwise. Therefore, without loss of generality, we shall
assume λ1 �= 0 and λ3 �= 0. Define:

• y = (x1, x2, a3 + λ−1
3 λ4(a4 − x4), x4),

• b = (x1 + λ−1
1 λ2(x2 − a2), a2, a3, a4).

Observe that dH(x, y) = dH(a, b) = 1, which implies(
2∑

r=1

λryr,

4∑
r=3

λryr

)
∈ Ω(x)

and (
2∑

r=1

λrbr,

4∑
r=3

λrbr

)
∈ Ω(a).

However, by definition we have(
2∑

r=1

λryr,

4∑
r=3

λryr

)
=

(
2∑

r=1

λrbr,

4∑
r=3

λrbr

)
,

which shows that Ω(x) ∩ Ω(a) �= ∅. This contradicts the
assumption that C is a good code for (S,AS ,F). �

The previous result implies that the linear capacity of the
Diamond Network is equal to 0, as well.

Corollary 18. We have Clin
1 (D,AD) = 0.

Proof. Every pair (F , C), where F is a linear network
code for the Diamond Network (D,AD) and C is good
for (D,AD,F), naturally gives a pair (F ′, C ′) for the
Mirrored Diamond Network, where F ′ is linear, C ′ is good
for (S,AS ,F ′) and |C| = |C ′|. We conclude by applying
Theorem 17. �

7. TWO-LEVEL NETWORKS

In this section we initiate a systematic study of communi-
cation with restricted adversaries. Since a global treatment
is out of reach at the moment, we start by concentrating
on a small but sufficiently interesting family of highly
structured networks. These are defined as follows.

Definition 19. A two-level network is a network N =
(V, E , S, {T}) with a single terminal T such that any path
from S to T is of length 2.

By applying the Singleton Cut-Set Bound of Theorem 8 to
two-level networks with vulnerable edges restricted to the
first level (outgoing edges of S), we establish the following.

Theorem 20. Consider a two-level network N where the
adversary A can act on up to t edges of the first level.
Then, C1(N ,A) is upper bounded by the following value:

min
V1,V2

( ∑
Vi∈V1

deg+(Vi) + max

{
0,

∑
Vi∈V2

deg−(Vi)− 2t

})
,

where the minimum is taken over all 2-partitions V1,V2 of
the set of intermediate vertices {V1, . . . , Vn}.

To understand when the Singleton Cut-Set Bound is
achievable in a two-level network, we introduce the fol-
lowing terminology.

Definition 21. Consider a network where an adversary
can act simultaneously on up to t edges. We call an
intermediate vertex in the network damming if

deg+(Vi) + 1 ≤ deg−(Vi) ≤ deg+(Vi) + 2t− 1.

Notice that such a vertex is present in both the Diamond
Network and the Mirrored Diamond Network.

The next result gives a sufficient condition for the achiev-
ability of the Singleton Cut-Set Bound in a family of
two-level networks. The proof will appear in the extended
version of this work.

Theorem 22. In a two-level network where an adversary
can act on up to t edges of the first level, and where
no intermediate vertex is damming, the Singleton Cut-Set
Bound is achievable for sufficiently large alphabet size.

Note that the results of Section 5 demonstrate that the
converse of Theorem 22 does not hold. Indeed, both
intermediate vertices of the Mirrored Diamond Network
are damming but its capacity is as predicted by the
Singleton Cut-Set Bound; see Proposition 14.

8. SOME DAMMING NODE EXAMPLES

In this section we include examples to illustrate that the
presence of damming nodes in a two-level network may
or may not compromise the achievability of the Singleton
Cut-Set Bound (which is the best known cut-set bound
for sufficiently large alphabets). These examples illustrate
that the presence of damming nodes alone unfortunately
does not determine whether or not the Singleton Cut-Set
Bound is achievable. The phenomenon we wish to illustrate
is already visible in two-level networks with just two
streams. Therefore we focus there for ease of exposition.
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Fig. 3. The network for Example 23.

We start by observing that Theorem 22 shows that the
Singleton Cut-Set Bound is achievable if both intermediate
nodes are not damming. The Diamond Network is an
example where only one of the two intermediate nodes
is damming, and where the Singleton Cut-Set Bound
is not achievable. The Mirrored Diamond Network, on
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Proof. Fix any linear network code F for (S,AS) and
let C be a good code for (S,AS ,F). Suppose that |C| ≥ 2
and let x, a ∈ C with x �= a. Write

x = (x1, x2, x3, x4), a = (a1, a2, a3, a4)

and

FV1
(u, v) = λ1u+ λ2v, FV2

(u, v) = λ3u+ λ4v,

where λr ∈ A for 1 ≤ r ≤ 4 and u, v ∈ A. We
let Ω := Ω[D,AD,F , {e1, e2, e3, e4} → {e5, e6}] to simplify
the notation throughout the proof.

We start by observing that λ1, λ2 can not be both equal
to 0. Similarly, λ3, λ4 can not be both equal to 0. Indeed,
is easy to see that the adversary can create a collision
otherwise. Therefore, without loss of generality, we shall
assume λ1 �= 0 and λ3 �= 0. Define:

• y = (x1, x2, a3 + λ−1
3 λ4(a4 − x4), x4),

• b = (x1 + λ−1
1 λ2(x2 − a2), a2, a3, a4).

Observe that dH(x, y) = dH(a, b) = 1, which implies(
2∑

r=1

λryr,

4∑
r=3

λryr

)
∈ Ω(x)

and (
2∑

r=1

λrbr,

4∑
r=3

λrbr

)
∈ Ω(a).

However, by definition we have(
2∑

r=1

λryr,

4∑
r=3

λryr

)
=

(
2∑

r=1

λrbr,

4∑
r=3

λrbr

)
,

which shows that Ω(x) ∩ Ω(a) �= ∅. This contradicts the
assumption that C is a good code for (S,AS ,F). �

The previous result implies that the linear capacity of the
Diamond Network is equal to 0, as well.

Corollary 18. We have Clin
1 (D,AD) = 0.

Proof. Every pair (F , C), where F is a linear network
code for the Diamond Network (D,AD) and C is good
for (D,AD,F), naturally gives a pair (F ′, C ′) for the
Mirrored Diamond Network, where F ′ is linear, C ′ is good
for (S,AS ,F ′) and |C| = |C ′|. We conclude by applying
Theorem 17. �

7. TWO-LEVEL NETWORKS

In this section we initiate a systematic study of communi-
cation with restricted adversaries. Since a global treatment
is out of reach at the moment, we start by concentrating
on a small but sufficiently interesting family of highly
structured networks. These are defined as follows.

Definition 19. A two-level network is a network N =
(V, E , S, {T}) with a single terminal T such that any path
from S to T is of length 2.

By applying the Singleton Cut-Set Bound of Theorem 8 to
two-level networks with vulnerable edges restricted to the
first level (outgoing edges of S), we establish the following.

Theorem 20. Consider a two-level network N where the
adversary A can act on up to t edges of the first level.
Then, C1(N ,A) is upper bounded by the following value:

min
V1,V2

( ∑
Vi∈V1

deg+(Vi) + max

{
0,

∑
Vi∈V2

deg−(Vi)− 2t

})
,

where the minimum is taken over all 2-partitions V1,V2 of
the set of intermediate vertices {V1, . . . , Vn}.

To understand when the Singleton Cut-Set Bound is
achievable in a two-level network, we introduce the fol-
lowing terminology.

Definition 21. Consider a network where an adversary
can act simultaneously on up to t edges. We call an
intermediate vertex in the network damming if

deg+(Vi) + 1 ≤ deg−(Vi) ≤ deg+(Vi) + 2t− 1.

Notice that such a vertex is present in both the Diamond
Network and the Mirrored Diamond Network.

The next result gives a sufficient condition for the achiev-
ability of the Singleton Cut-Set Bound in a family of
two-level networks. The proof will appear in the extended
version of this work.

Theorem 22. In a two-level network where an adversary
can act on up to t edges of the first level, and where
no intermediate vertex is damming, the Singleton Cut-Set
Bound is achievable for sufficiently large alphabet size.

Note that the results of Section 5 demonstrate that the
converse of Theorem 22 does not hold. Indeed, both
intermediate vertices of the Mirrored Diamond Network
are damming but its capacity is as predicted by the
Singleton Cut-Set Bound; see Proposition 14.

8. SOME DAMMING NODE EXAMPLES

In this section we include examples to illustrate that the
presence of damming nodes in a two-level network may
or may not compromise the achievability of the Singleton
Cut-Set Bound (which is the best known cut-set bound
for sufficiently large alphabets). These examples illustrate
that the presence of damming nodes alone unfortunately
does not determine whether or not the Singleton Cut-Set
Bound is achievable. The phenomenon we wish to illustrate
is already visible in two-level networks with just two
streams. Therefore we focus there for ease of exposition.
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e7
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e9

Fig. 3. The network for Example 23.

We start by observing that Theorem 22 shows that the
Singleton Cut-Set Bound is achievable if both intermediate
nodes are not damming. The Diamond Network is an
example where only one of the two intermediate nodes
is damming, and where the Singleton Cut-Set Bound
is not achievable. The Mirrored Diamond Network, on

the other hand, shows that there are networks where
both intermediate vertices are damming, and where the
Singleton Cut-Set Bound is achievable. The next example
provides a network where only one of the intermediate
nodes is damming, and where the Singleton Cut-Set Bound
is achievable.

Example 23. Consider the network of Figure 3 and an
adversary able to corrupt at most two of the dashed edges.
The Singleton Bound reads as 1 and it can be checked that
is met with equality.

The network of the next example has two damming nodes,
but the Singleton Cut-Set Bound is not achievable.

Example 24. The network of Figure 4 is a two-level net-
work with vulnerable edges confined to the first level. We
consider an adversary able to corrupt at most two of the
dashed edges.
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Fig. 4. The network for Example 24.

It can be shown that the Singleton Cut-Set Bound, equal
to 1, is not achievable. The proof is omitted here.

9. DISCUSSION AND FUTURE WORK

We considered the problem of determining the one-shot ca-
pacity of communication networks with adversarial noise.
In contrast with the typical scenario considered in the
context of network coding, we allow the noise to affect only
a subset of the network’s edges. This restriction potentially
increases the capacity of the adversarial network at hand.

We then defined the Diamond Network and computed its
capacity, illustrating that previously known cut-set bounds
are not sharp in general. We also studied the family of two-
level networks, giving a sufficient condition under which
the Singleton Cut-Set Bound is sharp over a sufficiently
large alphabet.
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Fig. 5. An example of an adversarial network.

The problem of computing the capacity of a general
network with restricted adversarial noise remains wide
open and will be addressed in the extended version of this
work. A very interesting unsolved example is provided by
the network of Figure 5 for particular adversarial patterns.
If the adversary is not restricted, the capacity predicted by
the Singleton Bound is met with equality. However, when
the adversary can corrupt at most one of the dashed edges
in Figure 5, the predicted capacity by the Singleton Bound
increases and can be proven that it is not achievable. The
exact one-shot capacity of this network, to the best of our
knowledge, is unknown.
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