

Challenges in Software Architecting

Citation for published version (APA):
Chaudron, M. R. V. (2023). Challenges in Software Architecting. Technische Universiteit Eindhoven.

Document status and date:
Published: 24/03/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/fa7e1003-e72d-48c6-bf89-ee349e14c6cf

 Challenges in Software Architecting I

INAUGURAL LECTURE

Challenges in
Software Architecting

Prof.dr. Michel Chaudron
March 24, 2023

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

PROF.DR. MICHEL CHAUDRON

Challenges in Software Architecting
Presented on March 24, 2023
at Eindhoven University of Technology

 Challenges in Software Architecting 3

1. Introduction

In this inaugural lecture I will explain the topic of my research: Software
Architecture. I will explain the challenges that arise when doing software
architecting in practice, the challenges in researching software architecting, and
describe how my recent and future research relates to this.

1.1. WHAT IS SOFTWARE?

Software is a structured collection of instructions that direct hardware-processors
on which actions to perform. Software is built in levels: the lowest level contains
very simple instructions that a processor can immediately perform (such as
addition and multiplication). More advanced software is built by building layers of
higher levels of abstractions on lower levels. In this way, the internet builds on the
layers of network protocols, operating systems and user-interaction-libraries.

Today, software is ubiquitous. It is embedded in many devices, such as mobile
phones, cars, pace-makers, microscopes, microwave-ovens, solar-panels, and much
much more. Altogether, software is indispensable to the running of companies,
governments and society.

The increasing capacities of hardware-processors have enabled them to store
and execute increasingly larger programs. For example, the software in a DVD
player contains around 5 million lines of instructions. The software in a Fighter Jet
contains around 25 million lines of code. The software in YouTube contains around
80 million lines of code. The software in a modern consumer car has around 100
million lines of code each with unique instructions. Imagine that you use A4 paper
to print all these instructions of the software of a car. The height of that stack would
be as tall as the length of four football-fields.

Researchers that have looked empirically at the evolution of software over time
(notably M. Lehman et.al. [6]) have formulated a number of ‘laws’ related to this.
Paraphrased (and slightly simplified) they state that:

4 Prof.dr. Michel Chaudron Challenges in Software Architecting 5

Figure 1.1. Increasing Size and Complexity of Software

1.2. WHAT IS SOFTWARE ARCHITECTURE?

Software architecture is the overall organisation of a software system. This
involves key decisions about the design and the operation of the software, such
as: the (hierarchical) decomposition into subsystems, the relationships between
subsystems, the ways in which subsystems interact, and the relationship between
the system and its environment. Because software systems are not static, but
evolve, there are also aspects of the organisation of software systems that go
beyond the implementation of the software, such as: the principles and guidelines
that govern the extension and evolution of the software.

In the next section we will explain that software architectures can serve many
uses during the development of software, and that a well-designed software
architecture can lead to a more successful and more efficient development
process.

As a slight aside on the history of software architecture: Some of the foundational
ideas that have contributed to the emergence of the notion of software
architecture can be traced to Edsger W. Dijkstra, who was a professor in Computer
Science at TU Eindhoven. In the 1970’s, he defined principles for the design of
software in terms of layers and abstractions, as well as principles for the grouping

• Software Changes Continuously: As society, business, or technology changes,
so must the underlying software.

• Software Always Grows: The functionality of software system must be
continually increased to maintain user satisfaction over its lifetime. Actually,
studies show that software tends to grow exponentially in size over time.

• Complexity of Software Increases: As software evolves, its complexity
increases unless work is done to maintain or reduce it.

Figure 1 illustrates these laws. It shows four pictures of the structure of a computer
game – each taken around two years apart. They illustrate the growth of the size
and complexity of software over a relatively short period of time. From this series
of snapshots it is clear that this growth quite quickly leads to many challenges.
Indeed, given these continuous growth and continuous changes, one can imagine
that the creation, understanding, and maintenance of such an enormous number
of parts requires special methods, tool and processes.

The increasing adoption of software together with its continuous growth and
maintenance make software development an incredibly large business worldwide.
The global software products market grew from 1333 billion USD in 2022 to 1500
billion USD in 2023 at a compound annual growth rate (CAGR) of 12.5%. Also, the
number of developers is increasing. According to the last available report from
Evans Data Corporation1, there were 27 million software developers in 2021 – a
number that is expected to grow to 29 million in 2024, and 45 million in 2030. In
the Netherlands there are around 500.000 people working in IT-jobs. This is more
than one in every 20 jobs (data: CBS).

Next, we explain the role that software architecture can play in this.

1 https://evansdata.com/reports/viewRelease.php?reportID=9, visited March 2023

Images from: Jonathan Blow
“Game Development: Harder Than You Think.”

ACM Queue, 2004

Version 0 Version 1

Version 2

Version 3

6 Prof.dr. Michel Chaudron Challenges in Software Architecting 7

° Catalyst for Eliciting Requirements and Rationale. One key aspect of the
process of constructing an architecture, is the need to bringing together
of all stakeholders for the system and engage them in sharing their needs
and wishes about the system. Architecture can be used for purpose such
as the elicitation of requirements and rationale for design decisions and
constraints. Diagrams of architectures, in particular, can be catalysts for such
discussions amongst stakeholders.

Figure 1.2. Conception/Ideation via Architecture Modeling: Guggenheim museum Bilbao,
Architect: Frank Gehry

• A Common View for Coordination and Communication.
 As stated before, software continuously grows, and as a consequence so does

the number of people that are needed to work on maintaining and extending
the software. As an example, let’s look at a software development organisation
in Torslanda in Gothenburg. This is a car manufacturer that is realizing the
growing importance of software. They have around 25 teams and each team
consists of around 15 persons, hence 375 software engineers at this location
of Volvo. And these are also collaborating with affiliated companies – such as
Polestar, with whom they share the software architecture, and with several tens
of suppliers of software for various subsystems. For such large teams, there is a
need to coordinate the continuously increasing and evolving knowledge about
the system. More specifically, these uses include the following:

of functionalities across different components (‘separation of concerns’). In the late
1990’s academics started to look into this topic, and a seminal book on Software
Architecture was published by Mary Shaw and David Garlan [9].

1.3. WHY SOFTWARE ARCHITECTURE?
USES AND PURPOSES

Software architectures serve a surprising number of uses in the development of
software:

• Supporting the Conception of Design: Modeling an architecture is a way
of supporting the conception of a design. To illustrate this, we can employ an
analogy between the architecting of software and the architecting of buildings.
Figure 2 shows four representations of different stages of the development
of the building that houses the Guggenheim museum in Bilbao. The top-left
is very sketch-like, but still captures initial directions and decisions about the
building to be. The top-right, then shows a representation in which these ideas
are crystallized further. The bottom-left shows very complete and very detailed
diagrams. This level of detail and completeness enables the engineering of
parts and the planning of the actual construction. The photo on the bottom-
right shows the actual built museum on the banks of the Nervio´n river in
the city of Bilbao. The first three diagrams show a progression of the ideas
and decisions in creating the design of the architecture. Arriving in the last
stage would not be possible without first going through a sketchier ideation
and exploration stage. Also, this sequence of stages illustrates the fact that
designing such large-scale systems requires both creative, analytic and
synthetic skills. Moreover, knowledge of the possible technologies available
for implementing a system is also of key influence as these constrain the
construction and thus the form of the ultimate system.

° Understanding of the Domain. Performing exploratory reasoning about
an architecture is a way of making sense of the functionality that is required
of the system. Grouping of functionalities can lead to an understanding of
the scope of the system, and can help in identifying missing or superfluous
functionalities.

8 Prof.dr. Michel Chaudron Challenges in Software Architecting 9

• A Tool for Project Management. Because architectures show the
decomposition of a system into components, they enable the planning,
estimation and management of the cost, time and effort for developing a
system.

The key point of this section is that architectures can serve many purposes in the
development of systems.

Given that there are so many purposes of architecture, maybe there are also many
benefits?

In practice, finding empirical evidence for the benefits of architecting has turned
out to be very challenging. We will explain some of the reasons why this has turned
out to be challenging in Section 4.

° Common Knowledge Base. One obvious use is that architectures provide
a common, ideally consistent, source of reference about what the system
should be like. Actually, organisations often have a representation of what
the system currently looks like (‘as is’) and a representation of what they
would like it to look like in the future (‘to be’). Such a standard reference
about the design of the system enables coordination of the work of large
teams of engineers, and enables concurrent development by assigning
work to independent teams/developers.

° Blueprint for Guiding Construction. Another common use of software
architecture is to serve as a blueprint for the development and maintenance
of software systems. The architecture shows which components need to be
constructed, which functionality must be implemented in which component
and how components should work together.

° Basis for Training/On-boarding. An architecture reflects the key design
decision about a system. As such, architectures are an appropriate means
to explain what the system is about to newcomers in a project. Given that
software tends to continuously grow, there is also a continuous need for the
onboarding of new employees. Moreover, the ICT-industry has a significant
turnover of staff that move on to other jobs or retire. As an example,
according to the NRC, the Dutch tax-office ‘Belastingdienst’ needs to
replace 30% of its IT-personel due to turn-over and retirements2.

° Locus of Communication. Architectures can improve communication and
collaboration between team members. For example, an architecture can
point out that there are dependencies between components and therefore
suggest that the developers working on these different components talk to
each other in order to agree on how their components will interact. As such,
architecture aids in guiding communication across teams.

• A Tool for Reasoning and Analysis. The design of an architecture determines
to what degree the implemented system satisfies important quality properties
such as performance, security and maintainability. In order to assess that a
system will indeed satisfy such requirements, it must be possible to reason
about the architecture. For this, architectures need to be represented in such
a way that that they are amenable to various types of formal analyses and
reasoning.

2 Kabinetsbeleid loopt vast door ict-problemen bij de Belastingdienst, NRC Feb 21st, 2023

10 Prof.dr. Michel Chaudron Challenges in Software Architecting 11

juices, smoothies and more. They used the new areas of the growing garden to
plant new types of fruit-plants and they built different types of kitchens around the
garden that specialised in making different types of recipes.

As the garden continued to grow, the king realized that it needed organization to
manage its ever increasing complexity and to make it possible to continue to grow.
He asked the kobolds to dedicate different sections to different types of plants. In
this way, it would be easier to navigate the garden and to efficiently harvest and
transport the right kinds of fruits to the appropriate kitchens.

The kobolds did not stick to the plans of the king. Some kobolds did not
understand the plan, some did not like the plan, and sometimes the plan was
not a good fit with the new landscapes into which the garden grew. And new
kobolds that had just arrived did not even know of any plan. So some kobolds just
mixed plants in sections, created new paths, a few tunnels, removed barriers, and
rearranged the layout between sections as they saw fit. All the time more and more
kobolds and people were needed to manage the garden.

2. A Fairy Tale

Since its introduction, various metaphors have been used to explain software
architecture. In the next section, I would like to introduce a new metaphor through
means of a fairy tale.

2.1. GARDENING WITH KOBOLDS

Once upon a time, there was a king who had a dream of creating a beautiful
garden in which fruits would grow that would feed the people in his city. In reality,
there had been droughts for several years, and the fruits in his city’s garden did not
grow.

The king could not sleep from worrying about how he could help his people. At
night he would wander through the forest and through the mountains, trying to
think of ideas that could help. One night the king stumbled on a small area full of
many different types of berries and fruits. There was a kobold collecting the fruits
and eating them. The kobold explained that he knew of a secret way to make the
grounds fertile and of many wonderful recipes for preparing the fruits. The king
asked the kobold for help to make the city’s garden fertile. The kobold proposed a
pact: I will make your garden fertile if you allow me to live in the garden. The king
agreed and made a pact with the kobold.

The kobold did as promised: he turned the garden into fertile grounds and shrubs
and trees quickly started growing and producing fruits. The king called in people
from his city to help with the harvesting of the fruits. After a fortnight, the garden
had doubled in size as the kobold grew new shrubs and trees in all directions.
The kobold had called in a few of his family to help fertilize the new areas of the
garden. Both the people and the kobolds were happy with the growing garden:
they could harvest enough fruits to live from and even sell some on the markets.

All the time, the garden continued growing and growing. The king directed the
people to build roads and irrigation channels. The people saw the growing garden
as an opportunity: they realized that they could earn more money on the market
when they offered more types of products. So, they invented recipes for fruit-pies, Figure 2.1. Kobolds picking fruits in the garden

12 Prof.dr. Michel Chaudron Challenges in Software Architecting 13

3. Challenges in Applying Software
Architecture

Section 1.3 described that software architectures can serve a variety of purposes.
However, it turns out that it is very challenging for organizations to effectively
perform software architecting practices such that they cater for all their needs.
Some of the reasons for this include the following:

1. A Lack of Skilled Architects and Developers. Software architects need both
excellent soft skills (e.g., listening, presenting, negotiating) as well as a variety of
technical skills (analysing, abstracting). One of the distinguishing characteristics
of architects is that they can understand the system at all levels of abstraction
– from implementation and technology, to architecture, to business domain.
Architects typically have broad knowledge, yet also know relevant technical
details. Individuals that have all of these qualities are rare.

2. Diversity of Stakeholders Backgrounds and Disciplines. Often many
stakeholders that are involved in developing a system have not been trained in
software architecting. Software architects need to collaborate with a variety of
specialists, such as electrical engineers, mechanical engineers, user-interface
designers, and with people from the application domain, as well as with project
managers that may have limited technical knowledge. As such architects and
architecture models must try to bridge all of these different backgrounds and
disciplines.

3. Tailoring of architecting practices to a plurality of purposes. A plethora of
methods and techniques are available for software architecting. Organisations
must select which combination of these techniques to use, and how to tailor
these techniques to their specific context. Examples of tailoring include: which
notation to use (standardized notation or domain-proprietary notation), the
level(s) of abstraction to cover, the process of maintaining the architecture
(including versioning and how to communicate updates). This tailoring is a
further challenge because in any project, software architectures serve a mix of
stakeholders and purposes. Moreover, the degree to which architectures serve
their purposes changes over the course of a project [1]. Yet, the purposes and
uses of architectures are key forces in determining how architectures should be
represented and maintained.

While the king valued the talents of the kobolds in growing fruits, he made
drawings of his plans for organizing the garden and wrote down the principles that
guided the design (‘each section shall produce only one type of fruit’, ‘every section
shall be connected by a path to the relevant kitchen’). As the garden continued to
grow, the king needed higher and higher places to see an overview of his garden:
the top of a high tree, the highest tower of the castle, and then even the top of a
hill. From such height, the details of the garden could no longer be seen.

All the time, the king kept updating his map to be able to instruct the kobolds and
people of his city. Moreover, the king installed guards to ensure that the plans and
principles were actually followed. In the end, the garden thrived under the careful
guidance and wise leadership of the king.

Similarly, in software development, architects and programmers must work
together according to a common plan that allows for autonomy and creativity, yet
also ensures sustainable growth. By finding this balance, they can create software
that is both beautiful and maintainable.

14 Prof.dr. Michel Chaudron Challenges in Software Architecting 15

• Immature tools for Legacy Software. Many software projects do not start
from scratch. Indeed, a complicated landscape of software often exists and
needs to be maintained and evolved. For such cases, an architecture needs
to be (re-)created for an existing system. For this, some reverse engineering/
architecting tools are proposed that try to reconstruct an architecture from
source code. Currently, the results that these reverse engineering tools
produce look very different to what is made by human architects. While this
topic is not as sexy as AI and blockchains, this is a fundamental problem in
software development for which major research efforts are needed.

• Immature Tools for Distributed Software Sevelopment. When software
grows, so do the organizations that make the software. Such organizations
grow across multiple teams and possibly also across multiple geographic
locations. In such large distributed organizations, matters are complicated
because there is not a single repository that includes all of the source codes
that constitutes the system. This complicates creating a single consistent
overview of the system.

4. Integration of Architecting in the Development Process. Many organisations
are optimistic about the design of a software architecture at the start of
a project. Once the initial phases of development have passed – and
development teams are typically set up to work on their own components,
attention starts to drift to the implementation work and awareness of the
architecture starts to fade away. At this stage, the correspondence between
architecture and implementation starts to drift apart – making the software
architecture less and less useful for day-to-day development. This drift is due to
a poor integration of architecting practices in the day-to-day working processes
of software projects.

5. Priority-setting. Under time-pressure, managers and developers typically
prioritise the production of source code, and de-prioritize other practices –
such as architecting. Continuous attention to architecting practices, requires
management support, disciplined embedding of architecting practices in the
development process, and proper priority-setting in the activities of a software
development team.

6. Tools Immaturity. One particular factor that challenges the adoption of
architecting practices is the immaturity of the tooling for architecting and the
poor integration of this tooling with other software development tools.

• Immature Tools for Architecting. Modern software development is
organized in sprints in which developers focus on a user-visible feature,
and move this through several activities going from requirements, to
architecture/design, implementation, testing and deployment. There is a
trend to integrate implementation, testing and deployment in one highly
automated toolchain: the DevOps movement. However, the earlier stages,
requirements and architecture are not well integrated into this. We lack
tools for linking architectures to requirements as well as to source code and
to tests. Also, there are established Software Engineering practices, such
as quality-assurance and version-management that are commonly applied
to source code, but not to architectures. A further challenge is that the
implementation and the architecture tend to drift apart over time. However,
there are no mature tools that can automatically monitor (or better, maintain)
the consistency between architectures and their implementations.

16 Prof.dr. Michel Chaudron Challenges in Software Architecting 17

• Lack of Comparable Assessments. There is no universal way of measuring
the essential properties of software architectures. This start with the
observation that in different projects, architectures serve different purposes,
and that the quality of an architecture should be understood relative to
its purposes. This also relates to challenge C1. Next, one could look at
common quality properties in which stakeholders are interested, such as
maintainability/future-proofness and comprehensibility. Comprehensibility
turns out to be quite subjective; it depends on the experience, skill and
familiarity of developers with the systems and the patterns and technologies
used in its construction. The state-of-the-art methods for assessing
maintainability properties involve some types of prediction about likely
future changes In summary, because architectures are closely tied to
their context, so are the methods of assessing architecture. We therefore
lack objective methods of assessment of architectures that enable easy
comparison across projects.

 This lack of standards makes it challenging to compare and contrast
architectures for different projects. Also, the diversity of approaches makes
it challenging to develop generic architecting tools that could be useful in
diverse organizations.

C3 Lack of Data. Recently, we have witnessed an acceleration of AI research. One
of the key fuels for this acceleration has been the enormous growth of data
that has become available for training AI systems. For research on software
architecture, there is very limited data available. Architectures are almost
never shared, because organizations consider their contents as sensitive for
their performance as a business. Architectures are therefore mostly treated as
company confidential information and are not shared with researchers.

 Moreover, studying impact on the quality of the implemented system and the
effectiveness of its development would require many complementary types
of information about the project context in which they are used, such as e.g.
the skill-levels of the developers, their experience with the system, the tools
used, the way of testing the software, the way of prioritising new features over
maintenance and refactoring, and much more. This challenge is linked to
challenge C1: architectures are tightly linked to many contextual factors.

4. Challenges in Researching Software
Architecture

Doing research into software architecture is challenging for a variety of reasons.
Some but certainly not all of these reasons include the following:

C1 Architectures are Tied to Context. Software architecture is difficult to study in
a university-lab: the practices of software architecting are very much driven by
the context in which they are applied. For example, a game for a mobile phone,
a banking system, or a medical imaging machine all have very different software
architectures. These systems differ in their types of users and in the key forces
that drive their architectural design. Moreover, they have different technological
ingredients that change at different paces and different organizations that
operate under different business models and legal constraints. In addition, the
use of architecture makes more sense for larger systems. Larger systems have
large numbers of developers working on these systems over longer periods
of time. Essentially, there are so many factors that link architectures to context,
that recreating this in a lab would either be an oversimplification or extremely
expensive.

 Software architecting shares these characteristics with disciplines that study
people in organisational- and social settings.

C2 Lack of Standardization. There are no standard ways of doing software
architecting:
• Lack of standard representation. There is no single standard way of

documenting or representing software architectures. There does exist a de
facto standard for representing software: the Unified Modeling Language
(UML) [8]. But, like all languages, this language can be used in many ways
to describe software systems. Instead there is a zoo of methods, views and
notations that projects can chose from. In practice, there are many ways that
projects tailor these to fit their own needs and expertise. In representing
architecture, projects highlight what is important to their project and their
audience – and this tends to differ from project to project.

18 Prof.dr. Michel Chaudron Challenges in Software Architecting 19

5. Directions in Researching Software
Architecture

In this section, I will describe the research that I have done, am doing, and plan
on doing – especially in relation to the challenges mentioned in the preceding
sections.

• Education in Software Architecting and Design

 The ‘personnel’ factor is [..] the most important pillar for the growth of
tech-companies.3

 I would like to develop courses and (online) teaching materials on the topics
Software Engineering and Software Architecture. I am actively researching how
to best teach software architecting and designing. Some recent and ongoing
efforts in this direction include the following: My PhD student Dave Stikkolorum
defended his thesis on didactic methods for software design. With my SET-
colleague Tom Verhoeff and Claire Stevenson from the Psychological Methods
group of the University of Amsterdam, I am now supervising a MSc student
who is developing methods for studying if we can test abstracting skills and
how this relates to software design. With colleagues at universities in Leiden
and Antwerp and at McGill in Montreal we are developing techniques for the
automated evaluation of software design models – in such a way that students
get constructive feedback while they are in the process of creating a design.

• Studying the Impact of Architecture
 A popular way of studying software engineering is through ‘mining’ software

repositories. Such studies focus on finding artefacts in software repositories. In
a way, these artefacts form a footprint of the activities that take place in software
development projects. However, far from all significant activities that take place
in a software development project are visible via this footprint. Indeed, for
software architectures, we may be able to see what they look like and when
they were made. But one of the key uses of architectures is to share knowledge
about the system. Typical in this is that architectures are made once but

3 translated from NRC, Feb 3rd, 2023

C4 Indirect Impact. While the benefits of architecting are manifold (better
communication and knowledge sharing, improved maintainability of the
software), these benefits are not directly measurable in tangible artefacts. Also,
these benefits are not guaranteed to manifest: the design of the architecture
can be very good, but the programmers can make many decisions that
lead to a poor implementation. For example, programmers may implement
functionality in an inefficient manner, or in a manner that is difficult to maintain,
or they may by-pass the delineations of the architecture and thereby increase
complexity and decrease maintainability. As an analogy: a good foundation (or
plan), does not guarantee a good building (or execution).

Given the above challenges, the most promising approach to study architecting
is in it’s ‘natural habitat’, i.e., inside organizations that develop software. Often,
qualitative case studies do the most justice to the highly context-dependent nature
of software architecting. While this type of research method is becoming more
familiar in the field of software engineering, these methods also run into resistance
in the field of computer science where many researchers come from fields that are
more grounded in formal mathematical methods. For further advancement of this
field, researchers in software architecture need to learn how to perform case study
research and in particular how to aggregate, combine and generalise results across
case studies.

20 Prof.dr. Michel Chaudron Challenges in Software Architecting 21

 Moreover, such a dataset has provided to be an important source for various
types of AI and machine learning studies, such as for creating ‘intelligent
modeling and design assistants’.

• Improving Tools for Software Architecting
 One of the challenges described in section 3 was that of immature tooling

for software architecting. I aim to improve on this by working in the following
directions:

° In a joint project with ThermoFisher we aim to develop methods for
monitoring and maintaining consistency between architecture and
implementation. In this project we aim to uncover patterns in the
abstractions that are bidirectional mappings between the implementation
and the architecture. We will consider both structural and behavioural views
of the system. We have two vacancies for PhD students to start working on
this.

° In the last month, a number of different practising architects have
expressed the same need: software developers need support for seamless
navigation across abstraction levels. Sometimes developers need to look up
information in the architecture model and then move to the implementation
to perform some change. Currently there are separate tools for finding
information in the architecture models and for finding information in
the source code. The project with ThermoFisher feeds into this by (re)
constructing mappings between implementation and architecture. Yet there
is an additional need to visualise the software at multiple abstraction levels
so as to easily navigate between them.

° Inferring higher-level semantics for software. Nowadays, tools exist that can
analyse the implementation of software: the source code. It is our ambition
to infer higher-level design characteristics of components in software
designs. Recent examples of such research include: the identification of
responsibility-stereotypes [5] and the use of graph-mining for discovering
recurring patterns in software designs [7] with Frank Takes and Xavier
Rademakers from Leiden University. This sensemaking of higher-level
design concepts can aid developers in comprehending software. A long
term goal here is to create software that can automatically explain a given
software system and answer questions about why this software is designed
the way it is.

used often. Yet this use of architectures cannot be derived from any of the
artefacts in project repositories. Hence, in addition to the study of architecture-
artefacts, I would like to perform more empirical research on the use of
architectures. Examples of questions I would like to look into include:

° How are architectures used to share knowledge about software systems?
Who uses the architecture for what purpose? We know that programmers
use architectures differently to designers and to testers. They probably
need different types of information from the architecture for their tasks and
navigate the architecture in different ways.

° Longitudinal studies How do the uses of architecture and its impact change
over time? How do architectures evolve over time? What patterns occur in
the evolution of architectures?

 As an example of a study in this direction, my PhD student Ana Fernandez
performed a year-long in-vivo case study at KLM [2]. Her research showed an
intricate network of different actors and artefacts in which actors contribute
and consume different pieces of architecture-information for a variety of tasks
in software development. Based on this research, we aim to develop methods
that can aid organizations in systematically analysing the business case for
software architecting and to develop methods to aid organisations in tailoring
architecting practices to their context.

• Better Datasets for Empirical Studies on Software Architecture and Design
 In 2015 I stared a collaboration with professor Gregorio Robles from Madrid,

Spain. He is an expert in large scale mining of software repositories. Repository
mining studies have focussed on mining source code and related artefacts. I
reached out to Gregorio to ask if he could help in mining software designs –
especially in the form of UML diagrams. In a joint 18-month effort with a team
of colleagues and students from both Madrid and Gothenburg, we managed to
mine GitHub to create a dataset of close to 100,000 UML models from around
20,000 software projects [3]. In 2016, this was the first large scale dataset of
models of software designs. In a recent impact analysis we found that more
than 35 papers have performed studies using this dataset and another 25 have
built on the research methods and techniques that we developed. Still, there
are many ways in which we can improve the dataset and make it useful for
empirical studies: for example by offering better functionality for searching and
selection and richer meta-data.

22 Prof.dr. Michel Chaudron Challenges in Software Architecting 23

 With my PhD student Satrio Rukmono, I have started working on this vision.
And I am happy that several colleagues are collaborating on various parts of
this vision: on the topic of information- extraction from source code, I am
co-supervising two M.Sc. students together with Prof. Jurgen Vinju of the CWI.
On the topic of software visualisation, I have co-supervised some M.Sc.-projects
together with Stef van der Elzen of the Visualisation group. To all colleagues
in the field, I express my invitation to work on this jointly. I believe that we can
achieve more by working together.

The above research feeds into the plans for a Software Engineering Lab, and a
collaborative research infrastructure for software research:

• TU Eindhoven Software Engineering Lab
 At the TU Eindhoven, we are in the process of building a Software Engineering

Lab. This lab will be used to develop our research tools, to offer team-work
projects to students and to demonstrate projects of the Software Engineering
and Technology group to stakeholders. In developing this lab, we are designing
it such that it can be one hub in a collaborative research infrastructure and also
can connect to other labs at the TU Eindhoven, such as the Digital Twins-lab and
the High-Tech-Systems-Lab.

• Collaborative Research Infrastructure for Software Research
 There are a large number of academic tools for software research – going

well beyond software architecture. By and far, these tools are developed by
individual research groups. I believe that there is much value in establishing
a joint infrastructure that enables collaboration across research groups. My
vision on this is described in more detail in this paper [4]. A joint research
infrastructure such as this would enable researchers to better build on
the tools developed at other research groups. Moreover, it would enable
transparency and the replication of scientific workflows. I envision such research
infrastructure as including the following:

° A variety of tools for extracting information from various artefacts (such
as source code, UML models, requirements, execution traces) in software
repositories.

° An integrated knowledge-based representation of software systems.
This knowledge-based representation would act as a hub for integrating
knowledge from a variety of sources.

° An online collaborative editor for defining scientific analysis workflows on
top of the data.

° A collection of tools for interactive visualisation and exploration of the
results of these workflows.

24 Prof.dr. Michel Chaudron Challenges in Software Architecting 25

7. Acknowledgements

I would like to thank the TU Eindhoven and in particular the Software Engineering
group for their confidence in me – especially the former dean Professor Johan
Lukkien. The journey here would not have been possible and would certainly
not have been as enjoyable without the collaboration with many students and
especially my PhD students.I thank you all: Giovanni Russello, Mohammad
Mousavi, Christian Lange, Werner Heijstek, Ariadi Nugroho, Ramin Etemaadi,
Ana Fernández-Sáez, Bilal Karasneh, Hafeez Osman, Ho Quang Truong, Rodi
Jolak, Arif Nurwidyantoro, Dave Stikkolorum, Satrio Rukmono. I would like to thank
my own Ph.D.-supervisor: Frans Peters, who made my visit to the Programming
Research Group of Oxford University possible as a M.Sc. student and for hiring
me as a Ph.D. student. Both have been instrumental to my choice for a career in
academia and to my development as an academic.

I would like to thank Dieter Hammer for hiring me into his group and introducing
me to software architecture. I thank my colleagues and friends in Gothenburg:
Regina, Imed, Eric, Jan-Philip, Miroslaw and Jan. I am grateful for the friends I
have made through their willingness to collaborate with me in research and in
organizing conferences: Gregorio, Yann-Gaël, Jon, Ivan, Engineer, Xavier, Foutse,
Stefan, Rafael, Peter v.d. Putten, Guus, Claire, Niklas, Kenneth, Stefan, Rick, Onur,
Carmine, Helena, Andreas. I would like to thank my family and friends. Annemieke,
David and Vincent: I am very proud of you.

AI image generation system Midjourney was used for creating the illustrations of
the fairy tale.

6. Concluding words

In this inaugural lecture, I explained the topic of my research: Software
Architecture. I explained the challenges that arise when doing software
architecting in practice, and the challenges in researching software architecting.
Also I described how my recent and future research relates to this.

I enjoy doing research in this field of software engineering and software
architecting because it combines many different facets:

• Software architecting builds on mathematical/logical/analytical skills, such as
in distilling the essence of a problem, and in modeling a system in a systematic
and consistent manner.

• Methods and tools in software engineering need to be aware of people’s
cognitive skills and processes: the essence of software development is
knowledge sharing and knowledge-processing by large teams. We look at the
best ways to form software so that it can most easily be understood. We look at
the best ways to represent software through diagrams so that they best convey
the design of software yet are also easy to create and maintain.

• Software engineering requires creativity and synthetic skills: as a software
designer you create new systems out of ‘thin air’ – and because the laws of
physics hardly constrain the design of software, one is limited only by one’s
imagination. These aspects of software architecting link to the arts and artistic
aspects of design.

• Software engineering is a social/team activity: only when developers work
together effectively as a team can they solve problems together.

As a Software Engineering community, I believe that we should try to work together
and build on each other’s expertise and tools. Other disciplines (astronomy,
physics, biology) would never have been able to achieve what they have had they
not established large national and international consortia to establish research
infrastructures. The time is ripe to also do this for software engineering.

26 Prof.dr. Michel Chaudron Challenges in Software Architecting 27

8. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Object Technology Series. Addison-Wesley,
Boston, MA, 2 edition, 2004.

9. Mary Shaw and David Garlan. Software Architecture: perspectives on an
emerging discipline. Prentice- Hall, Inc., 1996.

8. References

1. Michel R. V. Chaudron, Ana Fernandes-Saez, Regina Hebig, Truong Ho-
Quang, and Rodi Jolak. Diversity in UML modeling explained: Observations,
Classifications and Theorizations (Invited Keynote Lecture). In A Min Tjoa,
Ladjel Bellatreche, Stefan Biffl, Jan van Leeuwen, and Jirí Wiedermann, editors,
SOFSEM 2018: Theory and Practice of Computer Science - 44th International
Conference on Current Trends in Theory and Practice of Computer Science,
Krems, Austria, January 29 - February 2, 2018, Proceedings, volume 10706 of
Lecture Notes in Computer Science, pages 47–66. Springer, 2018.

2. Ana M. Fernández-Sáez, Michel R. V. Chaudron, and Marcela Genero. An
industrial case study on the use of UML in software maintenance and its
perceived benefits and hurdles. Empirical Software Engineering Journal,
23:3281–3345, 2018.

3. Regina Hebig, Truong Ho Quang, Michel R.V. Chaudron, Gregorio Robles, and
Miguel Angel Fernandez. The quest for open source projects that use UML:
mining GitHub. In Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems (MODELS), pages 173–
183, 2016.

4. Truong Ho-Quang, Michel R.V. Chaudron, Gregorio Robles, and Guntur Budi
Herwanto. Towards an infrastructure for empirical research into software
architecture: Challenges and directions. In 2019 IEEE/ACM 2nd International
Workshop on Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE), pages 34–41, 2019.

5. Truong Ho-Quang, Arif Nurwidyantoro, Satrio Adi Rukmono, Michel R. V.
Chaudron, Fabian Fröding, and Duy Nguyen Ngoc. Role stereotypes in software
designs and their evolution. Journal of Systems and Software, 189:111296,
2022.

6. M.M. Lehman. On understanding laws, evolution, and conservation in the large-
program life cycle. Journal of Systems and Software, 1:213–221, 1979.

7. Xavyr T. Rademaker, Michel R. V. Chaudron, and Frank W. Takes. Automatic
identification of component roles in software design networks. In Luca Maria
Aiello, Chantal Cherifi, Hocine Cherifi, Renaud Lambiotte, Pietro Lió, and Luis M.
Rocha, editors, Complex Networks and Their Applications VII, pages 145–157,
Cham, 2019. Springer International Publishing.

28 Prof.dr. Michel Chaudron

Curriculum Vitae

Prof.dr. Michel R.V. Chaudron was appointed full-time professor of
Software Engineering at the Department of Mathematics and Computer
Science at Eindhoven University of Technology (TU/e) on July 1, 2020.

Michel Chaudron obtained MSc and PhD degrees in Computer Science from
Leiden University. After working as a professional system/software engineer with
CMG Advanced Technology in The Hague (now part of CGI), he joined the group
of Professor Dieter Hammer at Eindhoven University of Technology to work in
the field of Software Architecting. He was the principle investigator in several
ITEA projects that developed methods and frameworks for dynamic distributed
component-based systems for low-resourced systems. He moved to Leiden
University (LIACS) to direct the ICT in Business MSc program from 2008 to 2012.
In 2012 he became full professor and group leader of the Software Engineering
division at the department of Computer Science and Engineering, which is shared
between Chalmers and Gothenburg University in Sweden. In 2020 he returned to
Eindhoven University of Technology where he now is a professor in the Software
Engineering and Technology cluster.

Colophon

Production
Communication Expertise
Center

Cover photography
Bart van Overbeeke
Photography, Eindhoven

Design
Grefo Prepress,
Eindhoven

Digital version:
www.tue.nl/lectures/

Visiting address
Building 1, Auditorium
Groene Loper, Eindhoven
The Netherlands

Navigation
De Zaale, Eindhoven

Postal address
PO Box 513
5600 MB Eindhoven
The Netherlands
Tel. +31 (0)40 247 9111
www.tue.nl/map

	_bookmark5
	_bookmark19
	_bookmark20
	_bookmark21
	_bookmark22
	_bookmark23
	_bookmark24

