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Feedforward Control for an Interventional X-ray:
A Physics-Guided Neural Network Approach

Johan Koni,*, Dennis Bruijnenii, Jeroen van de Wijdeveniii, Marcel Heertjesi,ii, and Tom Oomeni,iv 1

1 Background

Interventional X-ray systems (IXs) are a key technology in
healthcare that improve treatment quality through visualiza-
tion of patient tissue. This enables minimally invasive ther-
apies, resulting in faster patient recovery. To guarantee both
high imaging quality as well as patient and operator safety,
accurate feedforward control is essential during operation of
an IX. A typical IX is visualized in Fig. 1.

2 Problem Formulation

The tracking performance of feedforward controllers based
on first-principles modeling is limited by hard-to-model dy-
namics in the IX, such as the configuration-dependent cable
forces and nonlinear friction characteristics in the guidance.

Instead, the goal of this work is to learn these hard-to-model
dynamics from input-output data of the IX through captur-
ing their contributions to the equations of motion using neu-
ral networks as flexible function approximators.

3 Physics-Guided Neural Network Feedforward

To compensate the hard-to-model dynamics, the feedfor-
ward controller is parametrized as a parallel combination of
a physical model and neural network gφ such that the feed-
forward f for reference θd is given by

f (θd(k)) = Mθ̈d(k)+mgh(θd(k))+gφ (T (θd(k)), (1)

where M and mgh(θ) represent the inertia and gravity con-
tribution derived from first-principles, and

T (θd(k)) =
[
θd(k) θ̇d(k) θ̈d(k) relay(θd(k))

]T (2)

represents is a physics-guided input transformation.

The parameters M,m,φ are learned from input-output data
{u(k),y(k)}N

k=1 through inverse system identification, i.e.,
by regressing the feedforward output f (y(k)) on u(k) as

∑N
k=1(u(k)− f (y(k)))2 +R(φ). (3)

R(φ) represents orthogonal projection-based regularization
[1] to ensure that gφ does not learn modeled effects, such
that the physical model remains interpretable.
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4 Results

The feedforward controller is validated experimentally on
the IX setup of Fig. 1. Fig. 2 shows the resulting track-
ing errors. The proposed feedforward controller ( ) com-
pensates almost all dynamics, resulting in a tracking error
of a few encoder counts. In contrast, the physical-model-
based feedforward controller ( ) improves upon the feed-
back only case ( ), but still contains predictable errors
from uncompensated dynamics. Overall, the tracking error
is reduced from 0.095 to 0.020 deg in mean absolute sense
by the inclusion of a neural network.
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Figure 1: Interventional X-ray system positioning the X-ray
source and detector through rotating, i.a., the roll axis.

Figure 2: Error signals for proposed ( ) and physical-
model-based ( ) feedforward controller compared to the
feedback only case ( ) with scaled velocity reference ( ).
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