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A classical sampling strategy for load balancing policies is power-of-two, where any server pair is 
sampled with equal probability. This does not cover practical settings with assignment constraints 
which force non-uniform sampling. While intuition suggests that non-uniform sampling adversely 
impacts performance, this was only supported through simulations, and rigorous statements have 
remained elusive. Building on product-form distributions for redundancy systems, we prove the stochastic 
dominance of uniform sampling for a four-server system as well as arbitrary-size systems in light traffic.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Load balancing policies applying a power-of-d sampling strat-
egy assign a job to the ‘best’ among a randomly selected subset of 
d ≥ 2 parallel servers. These policies were originally investigated in 
a balls-and-bins context where it was shown that the maximum 
bin occupancy is exponentially reduced when instead of purely 
random assignment the least loaded bin among the d selected bins 
is chosen [4]. This concept was also shown to be highly effective in 
queueing contexts, in particular in the many-server regime where 
the above policy results in a doubly exponential improvement in 
terms of the queue length distribution per server compared to 
purely random assignment [19,26]. Moreover, power-of-d policies 
only involve a low implementation overhead and hence provide 
scalability, which is critical in large-scale systems such as data cen-
ters. More recently, power-of-d sampling policies have also been 
proposed in the context of redundancy scheduling where repli-
cas of each job are dispatched to a randomly selected subset of 
d servers [10]. We refer to [5] for further background on scalable 
load balancing algorithms.

In the classical power-of-d setup, it is implicitly assumed that 
the d servers are selected uniformly at random, with or with-
out replacement. This is a natural assumption when all jobs and 
servers are mutually exchangeable, and also mathematically con-
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venient (see the discussion of related literature below for further 
details). However, this assumption excludes situations with assign-
ment constraints, such as locality constraints or compatibility rela-
tions between jobs and servers, which force non-uniform server 
sampling. In the special case that d = 2 such assignment con-
straints can conveniently be visualized in a graph consisting of 
N nodes, one for each server. When a non-negative weight is as-
sociated with each edge, edges or server pairs can be sampled 
according to these weights. When server pairs are sampled uni-
formly at random, all edges receive a weight equal to 1/

(N
2

)
. This 

raises the following interesting question: How do non-uniform edge 
weights affect the system performance, as compared to uniform edge 
weights? One intuitively expects performance to benefit from more 
flexibility (i.e., more non-zero weights) and homogeneity (i.e., uni-
form edge weights). This intuition was supported through heuristic 
arguments and simulations for the Join-the-Shortest-Queue pol-
icy in specific topological settings, see for instance the thesis of 
Mitzenmacher [18], the seminal paper of Turner [25] and the more 
recent work of Gast [13]. However to the best of our knowledge, 
rigorous statements on the performance impact of assignment con-
straints in the power-of-choice setting have remained elusive so 
far.

In the present paper we establish stochastic comparison results 
which corroborate the above-mentioned ‘common wisdom’ in re-
dundancy systems, and prove in some specific settings that the 
classical uniform power-of-two policy outperforms any power-of-
two policy with assignment constraints. To establish these results 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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we employ the product-form expressions for the stationary occu-
pancy distribution obtained by Gardner et al. [12]. Unfortunately, 
the detailed job-level state description yields expressions that do 
not give immediate insight into the system performance. Careful 
inspection and further manipulation of the detailed product-form 
expressions, however, allows us to derive stochastic comparison re-
sults.

We first establish closed-form expressions for the stationary 
distribution of the total number of jobs for four-server systems, 
which we then use to show a stochastic ordering result for a ring 
graph compared to a complete graph, confirming the above in-
tuition. For systems of arbitrary size, closed-form expressions for 
the stationary distribution of the total number of jobs in the sys-
tem seem out of reach. However, focusing on a light-traffic sce-
nario allows us to extract the essential information to compare 
the stationary distributions of systems with different edge selec-
tion probabilities. This comparison gives rise to an optimization 
problem in terms of the edge selection probabilities for which the 
classical uniform power-of-two policy arises as the optimal solu-
tion. Moreover, the light-traffic comparison can be interpreted as a 
design guideline for an efficient weighted power-of-two policy in 
the presence of assignment constraints.

The literature focusing on the classical uniform power-of-d
sampling policy is extensive and vibrant as the inherent symme-
try of these policies lends itself well to asymptotic analysis in 
a many-server regime. Seminal results in such settings were ob-
tained by Mitzenmacher [19] and Vvedenskaya et al. [26] using 
fluid-limit techniques, and later closely related mean-field concepts 
were studied in [10,15–17].

As in [1,9,28], these techniques can also be used for the analysis 
of particular asymmetric assignment constraints where mutually 
exchangeable servers are clustered in a finite number of pools. 
However, fluid-limit and mean-field techniques are usually not 
well-suited to scenarios with asymmetric assignment constraints 
corresponding to a graph as mentioned above. Indeed, Gast [13]
and Turner [25] use an approximation scheme and simulations to 
demonstrate that the classical Join-the-Shortest-Queue(2) (JSQ(2)) 
policy outperforms a restricted JSQ(2) policy where the assignment 
is governed by a ring graph. In contrast, the results in [7,20,23,27]
establish conditions in terms of the assignment constraints that 
yield performance comparable to the classical uniform power-of-d
policies in a many-server regime.

Non-uniform selection of subsets of servers in a JSQ context 
has also been considered by He and Down [14] and Sloothaak 
et al. [24], where it is shown that the diffusion scaled queue 
length process coincides with that of a fully pooled system in a 
heavy-traffic regime. In [8] conditions in terms of the assignment 
constraints are established to draw a similar conclusion for redun-
dancy policies. Rather than imposing conditions on the assignment 
constraints, our results aim to connect and compare the perfor-
mance of systems operating under the classical uniform power-of-
two sampling policies and those with assignment constraints. We 
will focus on systems with a fixed number of servers in moderate 
or light traffic.

The remainder of this paper is organized as follows. In Section 2
we present a detailed model description and discuss some broader 
context and preliminaries. In Subsection 3.1 we set out to prove a 
stochastic comparison between two small systems. Next we con-
sider systems of arbitrary size in Subsection 3.2, and establish a 
light-traffic comparison between the classical uniform power-of-
two policy and weighted power-of-two policies. A discussion of 
the results and some pointers for further research are provided in 
Section 4.
700
2. Model description and preliminaries

2.1. Model description

Before elaborating on redundancy scheduling, we first define 
the power-of-two policies to sample server pairs subject to the as-
signment constraints. Jobs arrive according to a Poisson process 
with rate Nλ, with N the total number of parallel servers. When a 
job arrives, the server pair available for its assignment is {i, j} with 
probability p{i, j} , i, j, ∈ {1, . . . , N} and i �= j. For simplicity we re-
fer to such a job as a type-{i, j} job. Due to the properties of the 
Poisson process, one can equivalently take the view that type-{i, j}
jobs arrive according to a Poisson process with rate Nλp{i, j} .

As alluded to in the introduction, one can think of an un-
derlying simple graph structure with N nodes and (non-negative) 
edge weight p{i, j} for the edge {i, j}. Server pairs are then sam-
pled proportionally to these edge weights for each arriving job. 
Let E := {{i, j} | p{i, j} > 0, i, j = 1, . . . , N, i �= j} denote the set of 
all edges with a non-zero weight, or alternatively, all possible job 
types that can occur in the system. Without loss of generality we 
assume that 

∑
e∈E pe = 1, and refer to pe as the selection prob-

ability of the edge e. An example where this underlying graph is 
given by a ring graph is depicted in Fig. 1a.

The setting where p{i, j} ≡ 1/E for all i �= j, with E = (N
2

)
the 

total number of different server pairs, corresponds to the typical 
power-of-two setting with uniform sampling. We will henceforth 
refer to this setting as the classical power-of-two policy, while any 
setting with non-uniform sampling is referred to as a weighted
power-of-two policy.

Remark 1. When jobs can be assigned to d ≥ 2 servers, one can 
think of pe as the selection probability of hyper-edge e in a hy-
pergraph with N nodes where each hyper-edge is incident to d
distinct nodes. In the remainder of this paper we will focus on the 
case where d = 2.

For an arriving type-{i, j} job, under the redundancy policy, 
replicas are assigned to both servers i and j, with i, j, ∈ {1, . . . , N}
and i �= j. The service requirements of the two replicas are inde-
pendent and exponentially distributed with unit mean. Each server 
has speed μ > 0 and handles the assigned jobs in a First-Come-
First-Served manner. Once the first replica finishes service, the 
remaining replica will be discarded instantaneously.

As discussed in the introduction, it is intuitively plausible that 
uniform sampling outperforms non-uniform sampling. This intu-
itive notion is formalized in the following conjecture.

Conjecture 1. Let Q ∗ and Q (P ) denote the total number of 
jobs in stationarity in a redundancy system with N servers op-
erating according to the classical power-of-two policy and a 
weighted power-of-two policy with edge selection probabilities 
P = (p{i, j})i, j , respectively. Then, Q ∗ is stochastically smaller than 
Q (P ), i.e.,

Q ∗ ≤st Q (P ).

We will establish stochastic comparison results and light-traffic 
limits to support the above conjecture, building on the product-
form expressions for redundancy systems that will be outlined in 
the next subsection.

Remark 2. Conjecture 1 implicitly assumes both Q ∗ and Q (P ) to 
exist. As shown in [12] this is the case for Q ∗ if and only if λ < μ. 
It can be further deduced from [12] that the latter condition is also 
necessary for Q (P ) to exist. The sufficient condition requires the 
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Fig. 1. With the underlying graph structure as indicated in Panel (a) with N = 4 servers, Panels (b) and (c) give two different representations of the state 
c = ({1,2}, {4,1}, {2,3}, {4,1}). The notation ({i, j}, k) stands for the kth arrival of a type-{i, j} job.
aggregate arrival rate of any subset of edges to be strictly smaller 
than the aggregate service rate of the servers at its endpoints, i.e., 
for all S ⊆ E it must hold that Nλ 

∑
{i, j}∈S p{i, j} < μ| ∪{i, j}∈S {i, j}|.

Remark 3. Note that Conjecture 1 contrasts with the universality 
result in [8, Theorem 1] in a heavy-traffic regime. In particular, it is 
shown in [8] that for a broad range of weighted policies the system 
in heavy traffic achieves complete resource pooling and exhibits 
state space collapse.

2.2. Product-form expressions

The system occupancy at time t of a system operating under 
the redundancy policy may be represented in terms of a vector 
(c1, . . . , cQ (t)), with Q (t) denoting the total number of jobs in the 
system at time t and cq ∈ E . One can think of the occupancy vector 
as a central queue where cq ∈ E indicates the type of the qth old-
est job in the system at time t . It is easily verified that the system 
occupancy evolves as a Markov process by virtue of the exponen-
tial traffic assumptions.

From a modeling perspective, the state description yields a sys-
tem that is equivalent to a system where replicas are positioned in 
two dedicated queues in front of the two selected servers. To il-
lustrate this, consider the graph structure depicted in Fig. 1a with 
N = 4 servers and assume that the state of the system is given by 
c = ({1, 2}, {4, 1}, {2, 3}, {4, 1}). Hence, the oldest job in the system 
is replicated to servers 1 and 2, the second oldest job is replicated 
to servers 1 and 4, etc. Fig. 1b represents the system with dedi-
cated queues at each of the servers, while Fig. 1c represents the 
system with a centralized queue. In the latter case a server that 
becomes idle scans this central queue and will initiate service of a 
replica of the first job it is compatible with.

It was shown in [12] that, under the stability conditions men-
tioned in Remark 2, the stationary distribution of the system occu-
pancy is

π(c1, . . . , cQ ) = C
Q∏

i=1

Nλpci

μ(c1, . . . , ci)
, (1)

with C a normalization constant and

μ(c1, . . . , ci) = μ|
i⋃

j=1

{c j}| (2)

the aggregate service rate of the system in the state (c1, . . . , ci). 
For instance, the stationary probability of state c depicted in Fig. 1
is given by π(c) = C( 4λ )4 · p{1,2} p{4,1} p{2,3} p{4,1} .
μ 2 3 4 4

701
3. Main results

We now use the product-form expressions to assess the perfor-
mance of various systems with respect to their assignment con-
straints. However, the detailed job-level state description ingrained 
in the product-form expressions does not provide much insight 
into the overall performance and does not allow a direct com-
parison. In order to make a meaningful comparison, we therefore 
consider the stationary distribution of the total number of jobs in 
the system, Q . This distribution may be expressed in terms of the 
detailed product-form expressions as

P {Q = q} =
∑
c∈Eq

π(c), (3)

with q ≥ 0. Hence, all |E |q states c = (c1, c2, . . . , cq) with ci ∈ E
for all i = 1, . . . , q must be aggregated to determine P {Q = q}. Be-
sides the fact that there are exponentially many terms, the various 
terms are also highly different. The difference between two terms 
is caused by the various job types that could occur but mainly by 
the order in which they appear.

However, for small systems we can enumerate all possible 
server rate sequences (|c1|, |c1 ∪ c2|, . . . , |c1 ∪ · · · ∪ cq|), which re-
sults in stationary distributions with particular underlying struc-
tures amenable for comparison as we will show in Subsection 3.1. 
Unfortunately, this enumeration strategy does not lead to tractable 
expressions for larger systems. Therefore we consider larger sys-
tems in a light-traffic regime to partially suppress the complexity 
(captured in the normalization constant), and reveal the essential 
dependence of the stationary distribution on the edge selection 
probabilities. In particular, the stationary probability in (3) reduces 
in a light-traffic regime to a polynomial of degree q in function 
of the selection probabilities. This again allows to compare sys-
tems with different underlying structures as will be demonstrated 
in Subsection 3.2.

3.1. Four-server systems

We will derive closed-form expressions for the summation 
in (3) for small systems, for which the computations are already 
quite tedious. The focus will be on the classical power-of-two pol-
icy and a particular subset of weighted policies, namely those poli-
cies governed by ring graphs. Let ε ∈ (0, 1) and N be even, and 
define the edge selection probabilities as

p{i,i+1} =
{

ε 2
N , if i is even

(1 − ε) 2
N , if i is odd

(4)

with i = 1, . . . N and p{1,N} = p{N,N+1} . Note that the example in 
Fig. 1a is a special case of this setting with N = 4 and ε = 3/4. 
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When ε = 1/2, all probabilities are equal to N−1. The average ar-
rival rate across all edges is given by λ and therefore this graph is 
referred to as the homogeneous ring. In all other cases we refer to 
this underlying graph as the heterogeneous ring.

Lemma 1. The stationary distribution of the total number of jobs in a 
system with the uniform complete graph structure on N = 4 servers is 
given by

P {Q ∗
4 = q} =1

9
(1 − ρ) (3 − ρ) (3 − 2ρ)

×
{
−4

(
2ρ

3

)q

+ 1

2

(ρ

3

)q + 9

2
ρq

}
,

with q ≥ 0 and ρ := λ
μ < 1.

Lemma 2. The stationary distribution of the total number of jobs in a 
system with the heterogeneous ring structure on N = 4 servers is given 
by

P {Q het
4 (ε) = q} = (1−ρ)(1−(1−ε)ρ)(1−ερ)(3−2ρ)

3−2ρ+(1−ε)ερ2 ·{
6ε(1−ε)

2−9ε(1−ε)

(
2ρ
3

)q + (1−ε)2

ε(2−3(1−ε))
((1 − ε)ρ)q

+ ε2

(1−ε)(2−3ε)
(ερ)q + 1+ε(1−ε)

ε(1−ε)
ρq

}
,

(5)

with q ≥ 0, ε ∈ (0, 1) and ρ := λ
μ < 1.

Note that the stationary distribution (5) is symmetric around 
ε = 1/2, reflecting the symmetry in the edge selection probabili-
ties. The derivations of the results in Lemmas 1 and 2 are deferred 
to the online appendix.

The next proposition proves a partial version of Conjecture 1 for 
systems with N = 4 servers and weighted policies that correspond 
to homogeneous ring graphs.

Proposition 1. Let Q ∗
4 and Q hom

4 denote the total number of jobs in 
stationarity in a system with a uniform complete graph structure and a 
homogeneous ring, respectively, with N = 4 servers and λ < μ. Then, 
Q ∗

4 is stochastically smaller than Q hom
4 , i.e.,

Q ∗
4 ≤st Q hom

4 . (6)

The proof of Proposition 1 uses Lemmas 1 and 2 and can 
be found in the online appendix. A numerical comparison of the 
above derived stationary distributions is depicted in Fig. 2. Al-
though the figure clearly supports the result in Proposition 1, 
it also suggests that the absolute differences between the vari-
ous distributions are fairly small. Furthermore, the above-described 
settings are compared to a setting where the ring structure is dis-
connected by choosing ε = 0 or ε = 1. This system is equivalent 
to two independent single-server queues with arrival rate 2λ and 
service rate 2μ. Hence, the total number of jobs in the system is 
determined by a sum of two independent and geometrically dis-
tributed random variables with parameter ρ := λ/μ, resulting in a 
negative binomial distribution. Alternatively, it can be seen that (5)
indeed converges to (q + 1)(1 − ρ)2ρq when ε ↓ 0 or ε ↑ 1.

Moreover, from (5) it can be deduced that the probability of an 
empty system, i.e., P {Q het

4 (ε) = 0}, decreases the more ε deviates 
from 1/2 (the online appendix). While considering Fig. 2, it can be 
observed that P {Q het

4 (ε) ≥ q} increases for any fixed q the more 
ε deviates from 1/2, revealing a degradation of the system per-
formance the more the selection probabilities of the ring structure 
differ from the uniform probabilities.
702
Fig. 2. The stationary distributions of the total number of jobs compared for various 
power-of-d policies with N = 4 servers and ρ = 0.8: classical power-of-4 policy, 
classical power-of-2 policy, weighted power-of-2 policies governed by a homoge-
neous ring and heterogeneous rings with ε = 0.7, ε = 0.9 and ε ↑ 1. (For interpre-
tation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

In addition, a setting where a job can be replicated to all 
N = 4 servers is considered, so d = 4 instead of d = 2. This fully 
pooled scenario is equivalent in performance to a single-server 
queue with arrival rate 4λ and service rate 4μ, and yields the 
stochastically smallest total number of jobs in the system. Indeed, 
the service rate in this system is always equal to 4μ when there 
are jobs present, while in all other cases the service rate is at most 
equal to 4μ.

The challenges with the detailed product-form expressions 
mentioned at the beginning of this section could be overcome by 
judicious state aggregation for scenarios with a small number of 
servers and weighted policies that correspond to ring graphs, al-
though the expressions were already rather unwieldy in this case. 
The stationary distributions (and their normalization constants) in 
Lemmas 1 and 2 for larger values of N become more intricate, 
let alone their comparison for different edge selection probabili-
ties. This makes it complicated to extend Proposition 1 for larger 
system sizes, though it is assumed the hold for any fixed N as 
illustrated by means of simulation in the online appendix. Alter-
natively, the stationary distribution of the total number of jobs 
in a system with N servers operating under the classical power-
of-d policy could be derived using a similar approach as outlined 
in [10, Section 4.2.2], implicitly relying on the corresponding gen-
erating function. For any q ≥ 1,

P {Q ∗
N = q} = C

ρq

(N−1
d−1

)q

∑
n∈R(q)

(−1)|n|+q(|n|)!
q∏

j=1

F j(N,d)n j

n j ! .

In the above formula, we define R(q) := {n ∈ Nq : 1 · n1 + 2 · n2 +
· · ·+q ·nq = q}, |n| := n1 +n2 +· · ·+nq and C as in [10, Theorem 2]. 
Moreover,

F j(N,d) =
∑

k∈R̃ j(N,d)

N∏
i=d

(
i − 1

d − 1

)ki−d+1

,

where R̃ j(N, d) ⊂ {0, 1}N−d+1 contains all binary vectors with pre-
cisely j entries equal to 1. Although the above expressions are 
presented in closed form, they are unwieldy. This would be exacer-
bated in case the occupancy probabilities of the weighted power-
of-two policy would be derived using the explicit expression for 
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the generating function obtained in [8, Proposition 1], hence a gen-
eral comparison between the stationary distributions seems out of 
reach.

Coupling arguments are commonly used as an alternative 
method to establish stochastic dominance properties, when the ac-
tual distributions are not tractable. However, this approach seems 
out of reach because the systems under consideration do not 
necessarily have the same number of job types or equal arrival 
probabilities for mutual job types. Also, coupling arguments would 
yield a stronger stochastic comparison result for the entire process 
over time, which may in fact not hold. This implies that a coupling 
approach might just be doomed to fail regardless.

3.2. Light-traffic results

As discussed in the above paragraph, stochastic dominance re-
sults in full generality do not seem within reach. As we now 
proceed to demonstrate however, this degree of generality can be 
tackled if we consider a light-traffic regime.

Let Q λ(P ) be a random variable with the stationary distribution 
of the total number of jobs in the system with an underlying graph 
structure with edge selection probabilities P = (p{i, j})i, j . With C
the normalization constant in (1) equal to P {Q λ(P ) = 0} it can 
easily be seen that

P {Q λ(P ) = q} = P {Q λ(P ) = 0} · αq(P ) ·
(

Nλ

μ

)q

, (7)

with q ≥ 1. Define

αq(P ) :=
∑
c∈Eq

q∏
i=1

pci

|
i⋃

j=1
{c j}|

, (8)

which only depends on the edge selection probabilities and not 
on the total arrival rate Nλ or the server speed μ. Obviously, 
the probability of an empty system, P {Q λ(P ) = 0}, tends to one 
when λ approaches zero. Note that α1(P ) is always equal to 1/2
since |{c}| = 2 for all c ∈ E . The value αq(P ) for any q ≥ 2 de-
pends on the edge selection probabilities, for instance, |{c1} ∪ {c2}|
is equal to 2, 3 or 4 whenever the edges c1 and c2 are either 
the same, have one common endpoint, or no common endpoints, 
respectively. Therefore, αq(P ) will determine how various under-
lying structures will perform compared to each other when λ ap-
proaches zero as formalized in the following theorem.

Theorem 1. For any q ≥ 1, if P ′ = (p′
{i, j})i, j and P = (p{i, j})i, j are two 

sets of edge selection probabilities such that αq(P ′) ≤ αq(P ), then

lim
λ↓0

P {Q λ(P ′) ≥ q}
P {Q λ(P ) ≥ q} ≤ 1.

The following lemma allows us to establish Theorem 1.

Lemma 3. Let P ′ = (p′
{i, j})i, j and P = (p{i, j})i, j be two sets of edge 

selection probabilities, then for any q ≥ 0

P {Q λ(P ′) ≥ q}
P {Q λ(P ) ≥ q} = αq(P ′) + o(1)

αq(P ) + o(1)
(9)

as λ ↓ 0.

Proof. The Taylor expansion of P {Q λ(P ) = 0} near λ equal to zero 
yields
703
P {Q λ(P ) = 0} =
∞∑

k=0

1

k!
(

Nλ

μ

)q dk

dxk
P {Q λ(P ) = 0}|λ↓0, (10)

with x := Nλ/μ. Combining (10) with the observations in (7) and 
(8) gives P {Q λ(P ) = q} = αq(P )(Nλ/μ)q + o(λq) from which (9)
follows. �

From Theorem 1 it can be deduced that Conjecture 1 holds in 
a light-traffic regime once we are able to establish an inequal-
ity relation for the αq(P ) values involved. More precisely, none of 
the weighted power-of-two policies achieves better performance 
than the classical power-of-two policy when it can be shown that 
the uniform edge selection probabilities yield the smallest values 
of αq(P ) for all q ≥ 1. So, proving Conjecture 1 in a light-traffic 
regime boils down to an optimization problem in terms of αq(P )

as a function of the edge selection probabilities P = (p{i, j})i, j . Note 
that αq(·) is a multivariate polynomial of degree q, hence it is con-
tinuous. Moreover, the set of edge selection probabilities is com-
pact in RE , with E = (N

2

)
, implying that αq(·) must attain its global 

minimum. With the above observations in mind, we now present 
the following conjecture.

Conjecture 2. Let α∗
q := αq(P ′) with P ′ = (p′

{i, j})i, j such that 
p′

{i, j} ≡ 1/
(N

2

)
for all i and j, i �= j, then

α∗
q = min

{
αq(P ) | P = (

p{i, j}
)

i, j

}
,

for all q ≥ 0.

The above conjecture was shared in personal communication 
with Brosch, Laurent and Steenkamp, who showed that αq(P ), as 
a function of P = (p{i, j})i, j , is a convex polynomial for q = 2 and 
3. Hence, choosing all edge selection probabilities to be uniform 
will minimize αq(·) [6, Theorem 2]. Polak later extended this con-
vexity result to q ≤ 9 [21, Theorem 1.1]. In [21] convexity is estab-
lished once the Hessian matrix of αq is positive semidefinite via 
a symmetry reduction. Proving semidefiniteness of the obtained 
lower-dimensional matrices increases in complexity as it becomes 
computationally harder to obtain the matrix coefficients for larger 
values of q. Combining [21, Theorem 1.1] with Theorem 1 results 
in the following corollary.

Corollary 1. Let Q ∗
λ and Q λ(P ) denote the total number of jobs in sta-

tionarity in a system with N servers operating according to the classical 
power-of-two policy and a weighted power-of-two policy with edge se-
lection probabilities P = (p{i, j})i, j , respectively. Then, for q ≤ 9,

lim
λ↓0

P {Q ∗
λ ≥ q}

P {Q λ(P ) ≥ q} ≤ 1.

Table 1 gives a comparison between α∗
q and αq(P ) for sev-

eral values of q and when the underlying structure is a ring. We 
observe that for a fixed number of servers N , in analogy to the 
observations in Subsection 3.1, the performance of the system gov-
erned by the homogeneous ring is closer to the performance of 
the uniform case than the heterogeneous rings as α∗

q /αq(P ) in this 
case is closer to 1.

Computing αq for a given set of edge selection probabilities 
P = (p{i, j})i, j is time-consuming as it requires summation over 
|E |q terms, and also formed the bottleneck to prove the convexity 
results in [21] for values of q ≥ 10. However, the above numerical 
results support the statement in Conjecture 2.

Remark 4. The condition αq(P ′) ≤ αq(P ) in Theorem 1 is not suf-
ficient to establish the stochastic dominance result in Conjecture 1
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Table 1
The fraction of α∗

q /αq(P ) for various values of q when the edge selection probabilities P correspond to a ring 
structure. Lemma 3 implies that this fraction corresponds to P {Q ∗

λ ≥ q}/P {Q λ(P ) ≥ q} when λ ↓ 0.

N = 4 N = 8

q = 2 q = 4 q = 10 q = 16 q = 2 q = 4 q = 10

hom. ring 0.9804 0.9432 0.9046 0.9004 0.9754 0.8947 0.6586
het. ring ε = 0.7 0.9713 0.9055 0.8957 0.7850 0.9700 0.8707 0.5831
het. ring ε = 0.9 0.9448 0.8063 0.5481 0.4509 0.9543 0.8051 0.4095
for any fixed value of λ, even when this inequality could be shown 
to hold for all q ≥ 1, which is due to the behavior of the normal-
ization constant. However, a sufficient condition would be

αq−1(P ′)
αq(P ′)

≥ αq−1(P )

αq(P )
(11)

for all q ≥ 1, which also implies the condition in Theorem 1. The 
fact that Q (P ′) ≤st Q (P ) once condition (11) is fulfilled for all 
q ≥ 1 follows from a direct comparison of the respective stationary 
distributions in (7). Details of the proof are deferred to the online 
appendix.

Remark 5. We used the product-form distributions to establish the 
light-traffic result in Theorem 1, while usually a light-traffic ap-
proach is only considered when explicit formulas are lacking, and 
then based on the powerful framework developed by Reiman and 
Simon [22]. The latter framework outlines an approach to deter-
mine the coefficients of the Taylor expansion in (10). To derive 
these coefficients, one has to take into account the arrival and de-
parture times of individual jobs, as well as the exact service rate at 
each moment in time, which is complicated by the fact that multi-
ple servers can be processing a replica of the same job. Hence, it is 
notationally and computationally more convenient to leverage the 
product-form expressions which directly furnish the desired coef-
ficients in terms of (8).

4. Discussion

4.1. Design implications

In Section 3.2 we proved a partial version of Conjecture 1 im-
plying that non-uniform edge selection probabilities cannot yield 
better performance than uniform ones in a light-traffic regime. In 
many situations however, strictly uniform edge selection probabili-
ties may simply not be feasible because of assignment constraints. 
Theorem 1, in conjunction with Lemma 3, then provides a specific 
guideline for the design of an efficient assignment policy subject 
to these constraints as we will now illustrate.

Assume that there are K different job types with arrival rates 
λ1, . . . , λK and 

∑K
k=1 λk = Nλ. In the system design one has to 

choose (once and for all) for each job type k = 1, . . . , K which 
server pair (or edge) e ∈ E is eligible for assignment. For exam-
ple, the various job types may correspond to requests for different 
data objects, which each can only be stored at two servers. The 
assignment policy can thus be represented in terms of binary de-
cision variables (xe,k)e,k , which are equal to 1 if job type k can be 
assigned to the servers at the endpoints of edge e, and 0 other-
wise. The aim is to find values for the variables x = (xe,k)e,k yield-
ing edge selection probabilities P (x) = (pe(x))e that stochastically 
minimize the number of jobs in the system. The edge selection 
probabilities may be expressed in terms of the decision variables 
as

pe(x) = 1

Nλ

K∑
λkxe,k for all e ∈ E . (12)
k=1

704
Recalling that P {Q (P (x)) ≥ q} = αq(P (x)) · (Nλ/μ)q + o(λq) for 
q ≥ 1 and α1(P (x)) ≡ 1/2, Lemma 3 and Theorem 1 suggest that 
the following minimization problem should be solved in order 
to obtain the ideal distribution of the various types as captured 
by (12):

min α2 (P (x)) =
∑
c∈E2

pc1(x)

2

pc2(x)

|{c1} ∪ {c2}|
s.t.

∑
e∈E

xe,k = 1

for all k = 1, . . . , K , (13a)

Nλ
∑
e∈I

pe(x) =
K∑

k=1

λk

∑
e∈I

xe,k < μ(I)

for all I ⊆ E, (13b)

xe,k ∈ {0,1} for all (e,k) ∈ |E| × K .

In the above optimization problem, (13a) guarantees that each job 
type k gets assigned to precisely one server pair or edge. More-
over, (13b) ensures that the system is stable, with μ(I) as defined 
in (2), in accordance with the stability conditions identified in [12].

Remark 6. A feasible solution x = (xe,k)e,k ∈ {0, 1}|E |×K cannot be 
constructed for all arrival rate vectors {λk}k . This is for instance the 
case when the sufficient conditions to guarantee stability, stated 
in Remark 2, are not satisfied, even if the necessary condition 
Nλ = ∑K

k=1 λk < Nμ is met. A simple counter example can be con-
structed in a system with N = 4 servers and K = 2 job types with 
arrival rates λ1 = (2 + δ)μ and λ2 = (2 − 2δ)μ for any δ ∈ (0, 1). 
Even though λ < μ, there exists no allocation of the two job types 
that yields a stable system as λ1 ≥ 2μ.

4.2. Other load balancing policies

The broader theme of the present paper is comparing the per-
formance of weighted power-of-d policies with that of the classical 
power-of-d policy. As mentioned earlier, the notion that the per-
formance of the latter policy serves as an upper bound for the 
performance of the former policies was supported through heuris-
tic arguments and simulations by Gast [13], Mitzenmacher [18]
and Turner [25] in a JSQ context. We proved that this property 
indeed holds for redundancy policies both in small systems and 
in systems of arbitrary size in the light-traffic regime. We focused 
on redundancy policies in view of the explicit product-form dis-
tributions, but we expect that the stochastic comparison results 
extend to load balancing policies beyond redundancy policies. This 
introduces interesting directions for further research as the above 
methods cannot directly be applied to analyze these alternative 
policies.

The redundancy policy described in Section 2 is often referred 
to as the redundancy cancel-on-completion (c.o.c.) policy. A natu-
ral policy to investigate as well is the redundancy cancel-on-start
(c.o.s.) policy. Instead of discarding the redundant replicas once 
one of them finished service, redundant replicas are now discarded 
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Fig. 3. A comparison between the stationary distributions of the total number of jobs for four-server systems with a uniform complete graph and a homogeneous ring as 
underlying structures.
once one of them starts service. Hence, the job is served at the 
server where its replica encountered the smallest workload, yield-
ing an alternative implementation of the Join-the-Smallest-Workload
(JSW) policy [2,3]. Whenever several replicas find idle servers upon 
arrival, the job will undergo service at the server that has been idle 
for the longest time, referred to as Assign-to-Longest-Idle-Server 
(ALIS).

The system occupancy at time t is given by (c1, . . . , cQ ′(t);
u1, . . . , uL(t)) with Q ′(t) the total number of waiting jobs in the 
system at time t and cq ∈ E denoting the qth oldest waiting job 
in the system. There are L(t) idle servers at time t and server 
ul ∈ {1, . . . , N} is the lth longest idle server in the system. Note 
that it is not feasible to have simultaneously waiting type-{i, j}
jobs and either server i or j idle. It was shown in [2,3] that, un-
der suitable stability conditions, the stationary distribution of the 
system occupancy is

π c.o.s.(c1, . . . , cQ ′ ; u1, . . . , uL)

= C ′
Q ′∏

i=1

Nλpci

μ(c1, . . . , ci)

L∏
l=1

μ

λC(u1,...,ul)

, (14)

with C ′ the normalization constant, μ(c1, . . . , ci) as defined in (2)
and

λC(u1,...,ul) = Nλ
∑

e∈E : e∩{u1,...,ul}�=∅
pe

the total arrival rate of jobs that can be served by the idle servers 
{u1, . . . , ul}. Comparing this product-form expression with (1) for 
the redundancy c.o.c. policy reveals that obtaining stationary prob-
abilities at an aggregate level is now also affected by the servers 
that are idle and the relative times they became idle.

For small systems it is possible to obtain the stationary distri-
bution of the total number of jobs in the system from (14). The 
next two lemmas mirror the results in Subsection 3.1.

Lemma 4. The stationary distribution of the total number of jobs in a 
system with the uniform complete graph structure on N = 4 servers op-
erating under the redundancy c.o.s. policy is given by

P {Q *,c.o.s. = q}
4
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= C *,c.o.s.
4

{
20ρq + 4

33

(ρ

3

)q − 5 · 25

33

(
2ρ

3

)q}
, (15)

with q ≥ 1, ρ := λ
μ < 1 and

C *,c.o.s.
4 = (1 − ρ) (3 − ρ) (3 − 2ρ)

(1 + ρ) (3 + ρ) (3 + 2ρ)
.

Lemma 5. The stationary distribution of the total number of jobs in a 
system with the homogeneous ring structure on N = 4 servers operating 
under the redundancy c.o.s. policy is given by

P {Q hom,c.o.s.
4 = q} = Chom,c.o.s.

4

{
5ρq + 1

3

(ρ

2

)q − 2

(
2ρ

3

)q}
,

(16)

with q ≥ 1, ρ := λ
μ < 1 and

Chom,c.o.s.
4 = 48 (1 − ρ) (2 − ρ) (3 − 2ρ)

−2ρ3 + 55ρ2 + 121ρ + 66
.

The proofs of Lemmas 4 and 5 are given in the online appendix. 
A comparison between the two stationary distributions in Lem-
mas 4 and 5 for various values of ρ can be found in Fig. 3a, which 
suggests that an equivalent result as in Proposition 1 holds for the 
redundancy c.o.s. policy, namely, Q ∗,c.o.s.

4 ≤st Q hom,c.o.s.
4 .

Remark 7. In Fig. 3a it can be seen that the difference between 
the cumulative distributions of Q hom,c.o.s.

4 and Q *,c.o.s.
4 , though still 

positive, narrows for values of λ approaching μ. This observation 
is in line with the heavy-traffic results in [8, Theorem 1] for both 
redundancy c.o.c. and c.o.s. policies, showing that (1 − λ/μ)Q (P )

converges in distribution to an exponentially distributed random 
variable with unit mean for any set of edge selection probabilities 
that do not create local bottlenecks when λ ↑ μ.

A crucial difference between the product-form distributions for 
redundancy c.o.c. and c.o.s. is the fact that the normalization con-
stant of the former corresponds to the probability that the system 
is completely idle, while for the latter it corresponds to the prob-
ability that there are no waiting jobs in the system and all servers 
are occupied. From this it immediately follows that the normaliza-
tion constant will not tend to 1 in a light-traffic regime, implying 
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that a direct generalization of the reasoning in Subsection 3.2 is 
not applicable. It is worthwhile to note that there exist alternative 
state descriptors for which the normalization constant does coin-
cide with the probability that the system is completely idle, see for 
instance [11, Theorem 3.10]. However, the corresponding product-
form stationary distribution is inherently more complex than the 
one in (14), which would yield additional challenges when proving 
an equivalent formulation of Theorem 1 for the redundancy c.o.s. 
policy.

As mentioned earlier, the notion that non-uniform sampling 
cannot yield better performance than uniform sampling is a quite 
natural one and expected to apply more broadly for load balancing 
policies beyond JSQ and redundancy strategies.

We will now numerically illustrate this for the so-called Join-
the-Idle-Queue (JIQ) policy, which has attracted significant atten-
tion in the load balancing literature recently. The JIQ policy assigns 
an arriving job to an idle (compatible) server, if any. Otherwise, 
the job is assigned to a randomly selected (compatible) server. 
Since no expressions are available for the stationary distribution, 
we used simulations to compare the empirical distributions of sys-
tems with a homogeneous ring and a uniform complete graph 
for N = 4 servers for various values of ρ . From Fig. 3b it can 
again be observed that the stochastic ordering result holds, i.e., 
Q ∗,JIQ

4 ≤st Q hom, JIQ
4 . The comparison in Fig. 3b is based on 50 sim-

ulation runs per value of ρ , each run consisting of 10 000 000 
events. Besides the average difference between the cumulative dis-
tributions of Q hom,JIQ

4 and Q *,JIQ
4 , also its 95% confidence intervals 

are plotted.
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