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Bayesian Approach to Micromechanical Parameter Identification
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Abstract

Micromechanical parameters are essential in understanding the behaviour of materials with
a heterogeneous structure, which helps to predict complex physical processes such as de-
lamination, cracks, and plasticity. However, identifying these parameters is challenging due
to micro-macro length scale differences, required high resolution, and ambiguity in bound-
ary conditions, among others. The Integrated Digital Image Correlation (IDIC) method, a
state-of-the-art full-field deterministic approach to parameter identification, is widely used
but suffers from high sensitivity to boundary data errors and is limited to identification
of parameters within well-posed problems. This article proposes a Bayesian approach to
micromechanical parameter identification which can resolve these issues, enabling the es-
timation of all micromechanical parameters and robust handling of boundary noise. To
this end, the Metropolis–Hastings Algorithm (MHA) is employed to estimate probability
distributions of bulk and shear moduli and boundary condition parameters using the Digi-
tal Image Correlation (DIC) method, considering a fibre-reinforced composite sample under
plane strain assumption. The performance and robustness of the MHA are compared to two
versions of deterministic IDIC method, under artificially introduced random and systematic
errors in kinematic boundary conditions. Although MHA is shown to be computationally
more expensive and in certain cases less accurate than BE-IDIC, it offers significant advan-
tages, in particular being able to optimize a large number of parameters while obtaining
statistical characterization as well as insights into individual parameter relationships. The
paper furthermore highlights the benefits of the non-normalised approach to parameter iden-
tification with MHA (leading, within deterministic IDIC, to an ill-posed formulation), which
significantly improves the robustness in handling the boundary noise.
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jan.havelka@fsv.cvut.cz (J. Havelka), ivana.pultarova@cvut.cz (I. Pultarová), jan.zeman@cvut.cz
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1. Introduction

Often the only way of correctly interpreting the behavior of real materials with a hetero-
geneous structure is by observing them on a microscopic level, so we can account for strain
localization, plasticity, delamination and cracks. The spatially heterogeneous character of
these phenomena prompts the need for non-intrusive full-field measurement techniques in ex-
perimental mechanics. Digital imaging enabled the development of a highly accurate method
called Digital Image Correlation (DIC) (Keating et al., 1975), which is used to assess the
spatial transformation between two images. In practice, DIC is implemented as a computer
program that automatically tracks regions of an object from one configuration to another,
from which displacements can be inferred. Affordability and availability of the equipment
and computer programs contributed to the popularity of this method (Avril et al., 2008;
Viggiani and Hall, 2008).

DIC technique is often used as an input for identifying model parameters, typically
material, leading to methods such as Integrated DIC (IDIC) (Leclerc et al., 2009). The
method relies on deterministic optimization of the least square difference between two or
more images of a sample captured during an experiment, i.e., in the reference and a deformed
configuration. This approach minimizes information losses and provides highly accurate
results.

IDIC, however, comes with a set of challenges, particularly when used in a multi-scale
setting. First of all, it requires a mechanical model with suitable constitutive relations and
boundary conditions. Because producing a test specimen on a sufficiently small scale is
involved, and the manufacturing process itself may influence the microscopic parameters, it
is highly preferential to use the actual (macro-scale) product in the measuring process. To
capture the microstructural displacements, the size of a digital pixel associated with DIC
must be sufficiently small, as well as of the applied speckle pattern (see, e.g., Hoefnagels
et al., 2019). While modern commercially available optical microscopes are able to provide
high resolution, the problem lies in the fact that it is too time-consuming to scan the whole
specimen with sufficient detail and then simulate it. For these reasons, only a subdomain
of the specimen is typically scanned within a microscopic Field Of View (FOV), Ωm

fov, see
Fig. 1, within which a Microstructural Volume Element (MVE), Ωm

mve, is considered and a
microstructural IDIC model is constructed and correlated inside a microscopic Region Of
Interest (ROI), Ωm

roi. Although beneficial, this reduction brings a two-fold complication: (i)
only material parameter ratios can be identified, because only Dirichlet boundary conditions
are applied, and (ii) those boundary conditions are not know and have to be identified
(from local deformations at the boundary of Ωm

mve), since macroscopically applied boundary
conditions (which are known) fall outside of the microscopic FOV, Ωm

fov. A potential solution
are “virtual boundaries” (Kremmer and Favier, 2001), which, however, may not be suitable
for highly heterogeneous microstructures. On the other hand, high accuracy in boundary
conditions prescribed to the MVE model is crucial (Rokoš et al., 2018, 2023), as even small
errors may significantly deteriorate accuracy of the identified parameters.

The most accurate way to establish MVE boundary conditions, according to Shakoor
et al. (2017), is to employ Global DIC (GDIC) (Besnard et al., 2006). In this method, the
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Figure 1: Scheme of the virtual experiment, microscale (top) and macroscale (bottom). Here, a macroscopic
specimen is subjected to a tensile load, by either prescribing Neumann (external force Fexp) or Dirichlet
(displacement vector uD) boundary conditions. Deformations of the microstructure Ωm

mve (captured within
the microscopic FOV Ωm

fov) are observed at the microscale with optical or scanning electron microscopy. The
micro-images are correlated on the microscopic ROI, Ωm

roi.

displacements are identified on the whole specimen and are subsequently interpolated as
boundary conditions for the microstructural IDIC. In general, GDIC introduces: (i) kine-
matic smoothing effects when large elements or globally supported interpolation functions
are used, and (ii) random errors when relatively small elements or locally supported inter-
polation functions are used. Because boundary conditions of the microstructure are kept
fixed during the IDIC parameter identification procedure, the microstructural model has to
compensate by adjusting its material parameters, causing the inaccurate identification of
these parameters (Ruybalid et al., 2017). The approach proposed by Rokoš et al. (2018),
referred to as the Boundary-Enriched IDIC (BE-IDIC), incorporates all Degrees Of Freedom
(DOFs) associated with the virtual boundaries as IDIC DOFs. The method significantly
improves accuracy of the identified parameters while maintaining robustness with respect
to the image noise. Although the improved accuracy comes with a price of higher compu-
tational and memory requirements, the main weak point of microstructural IDIC/BE-IDIC
is in dealing with the possible ill-posedness of the identification problem. For example, the
choice of Dirichlet boundary conditions leads to infinite linearly dependent solutions for the
material parameters. Because the aforementioned techniques rely on deterministic optimiza-
tion methods, such as the Gauss–Newton algorithm, only material parameter ratios can be
identified. This can typically be done by fixing one of the parameters to a predetermined
value, which subsequently needs to be normalized (see Rokoš et al., 2023, for an example
and more details).

This article proposes a stochastic method for the parameter identification, namely the
Metropolis–Hastings Algorithm (MHA), for the minimization process, while using the DIC as
the measurement technique. In contrast to the described deterministic methods, stochastic
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inversion allows to infer probability distributions of the unknown model parameters instead
of single values, treating each iteration as an experimental measurement. The Markov chain
based method is also fit to overcome the ill-posedness of the inverse problem, because the
sampling depends only on the prior distribution and the previous state.

In the next section the relevant background on DIC and deterministic approaches is given,
followed by the description of the stochastic method in Section 3. Section 4 describes the
underlying mechanical model and employed virtual experiments. In Section 5, the MHA’s
sensitivity with respect to random and systematic errors in the boundary conditions are
quantified and compared to IDIC. The following Section 6 introduces the parametrization
of applied boundary conditions, and the resulting MHA with boundary DOFs is compared
to BE-IDIC. Section 7 studies the behavior of the non-normalized MHA and compares it
to the normalised version. The effect of the normalization choice in the BE-IDIC and the
post-processing of the non-normalized MHA are also examined. The takeaways from the
numerical experiments are finally summarized in the last section with the outlook on further
research.

Throughout this article, scalar variables are denoted using italic font, a, array variables
using sans serif font, u, vectors and tensors are rendered in a boldface font, v or A, single
contraction is denoted A · v = Aijvj, for a second-order tensor A and vector v, while ∇0

denotes the gradient operator with respect to the reference configuration, ∇0v =
∂vj
∂Xi
eiej,

where ei is a set of coordinate basis vectors. The hat (•̂) denotes arbitrary admissible values,
whereas the absence of hats indicates corresponding minimizers.

2. Deterministic Approach to Parameter Identification

A mechanical test is considered, as outlined in Fig. 1. DIC is used to assess spatial
transformations before and after the specimen is deformed. A region of a photographed
domain is tracked between the images, which allows to infer the displacement field upon
proper regularization (Roux and Hild, 2006). A camera has a static FOV, Ωm

fov, that contains
the MVE, Ωm

mve,—the sub-domain modelled with FEM—which in turn contains the Region
of Interest (ROI), Ωm

roi, which is used for correlating the images before and after deformation.
Although the MVE and ROI may coincide, the camera’s FOV is chosen such that the ROI
(or MVE, if necessary) remains within it even after deformation. The images are stored
as integer-valued arrays for both initial and deformed configuration, where each integer is
associated with a pixel and denotes its brightness.

The goal is to identify the set of micromechanical material parameters, i.e., to find a
vector λ ∈ Rnλ that minimizes the difference between the values in the reference image and
in the corresponding material points in the deformed image in the least squares sense, i.e.,

λ ∈ arg min
λ̂∈Rnλ

Rdic(λ̂). (1)

In Eq. (1), λ̂ is a column matrix that stores the sought material parameters or kinematic
DOFs at the boundary of MVE, Rnλ denotes an nλ-dimensional real space, and Rdic is a
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non-convex cost function given as

Rdic(λ̂) =
1

2

∫
Ωroi

[
f(X)− g(X + u(X, λ̂))

]2

dX, (2)

assuming that the brightness is conserved under this transformation. Here, u(X, λ̂) =

[u1(X, λ̂), u2(X, λ̂)]T is an approximate displacement field depending on the set of param-

eters λ̂, X = [X1, X2]T ∈ Ωmve ⊂ R2 stores the material coordinates in the reference

configuration, f(X) represents the initial image, whereas g(X + u(X, λ̂)) the deformed
image mapped onto the initial configuration.

2.1. Integrated Digital Image Correlation

IDIC is a method initially proposed by Roux and Hild (2006) for experimental identifica-

tion of parameters based on Eq. (1). The displacement field u(X, λ̂) is obtained by solving
the response of the underlying mechanical system governed by

∇0 · P T(u(X, λ̂), λ̂) = 0, X ∈ Ωmve,

u(X) = u∂Ωmve(X), X ∈ ∂Ωmve,
(3)

where ∇0 denotes the gradient operator in the reference configuration, P is the first Piola–
Kirchhoff stress tensor, and u∂Ωmve is a prescribed displacement on the boundary ∂Ωmve, see,
e.g., Tadmor et al. (2011) for more details on continuum mechanics. The solution is typically
discretized with the Finite Element Method (FEM). To minimize the objective in Eq. (2),

the standard Gauss–Newton algorithm is used, requiring the sensitivity fields ∂u(X, λ̂)/∂λ̂i,
often obtained numerically through finite differentiation.

2.2. Boundary Enriched Integrated Digital Image Correlation

BE-IDIC is an IDIC methodology that considers material parameters λ̂mat and the bound-
ary displacements λ̂kin as unknowns (Rokoš et al., 2018), i.e.,

λ̂ = [λ̂T
mat, λ̂

T
kin]T, (4)

where

λ̂mat = [G1, K1, . . . , GNmat , KNmat ]
T ∈ R2Nmat , (5)

λ̂kin = û∂Ωmve ∈ RNkin , (6)

and where Gi, Ki are micromechanical constitutive parameters of the i-th phase of a herein
assumed hyperelastic material model (cf. Section 4.2 below), and û∂Ωmve is an array storing
displacements of boundary nodes corresponding to chosen discretization of the boundary.
The number of kinematic parameters can be very large, depending on the coarseness of
this discretization. The cost functional Rdic(λ̂) of Eq. (2) is then minimized following the
standard procedure, i.e., using the Gauss-Newton method. Note that the number of required
sensitivity fields has to be expanded according to the number of kinematic parameters, so
the computational cost increases significantly. On the other hand, this method allows for a
higher precision, especially when the boundary data is noisy (Rokoš et al., 2018, 2023).
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3. Stochastic Approach to Parameter Identification

The deterministic IDIC approach is a relatively computationally inexpensive method that
provides a single value for identified parameters, i.e., it is a deterministic method. On the
other hand, obtaining precise enough MVE boundary conditions is a challenge on its own,
and the method using GDIC to first identify boundary conditions with subsequent IDIC step
(discussed, e.g., in Shakoor et al., 2017) hence may be overly sensitive to the accuracy of
the boundary conditions. This is mainly because the errors that occur during GDIC phase
become fixed and cannot be corrected for in the subsequent IDIC step.

For successful identification, one should separate uncertainties into two basic groups
(Oberkampf et al., 2002). The first group, called epistemic uncertainty, derives from lack of
knowledge of the system or the environment. Material parameters and boundary conditions
fall into this category in our case. This type of uncertainty is reducible by adding new
information. That is, by performing more tests with parameters λ̂, one can obtain better
estimates. The second group is called aleatory uncertainty, or simply variability, and is
irreducible. It represents an inherent variation associated with the physical system or the
environment under consideration. In our particular case, it corresponds to the image noise. It
is important to distinguish both classes of uncertainties from errors—modelling inaccuracies
stemming, e.g., from the assumed material models, identified geometry, FEM discretization,
solution approximation, or GDIC interpolation.

Bayesian probability has been used for epistemic uncertainty, and it takes a subjective
view of probability as a measure of degree of belief in a hypothesis. Bayesian methods allow
us to update the probabilities as we gather more data (Bayesian inference). The final answer
to the parameter identification problem is then a posterior distribution, as opposed to a single
value obtained from the deterministic methods. Additionally, working with prior parameter
distributions regularizes ill-posed problems. This is why employing a stochastic method to
the problem of parameter identification is potentially beneficial and has been already used
in parameter identification of mechanical models, see, e.g., (Rosić et al., 2013; Blaheta et al.,
2018; Rappel et al., 2020; Janouchová et al., 2021).

3.1. Parameter Estimation in Bayesian Statistics

In the Bayesian statistics, parameter estimation is done by testing numerous hypotheses.
The data set will then consist of individual tests that result in images f(X) and g(X) ∈
[0, 255] observed in (virtual) experiments. Assuming that the brightness is conserved between
two images and omitting the interpolation error, the following relation (called brightness
conservation, or optical flow equation) holds

f(X) ∼= g(X + u(X, λ̂)),

recall also Eq. (2) for the deterministic approach. In practice, we work with the discretized
version of f and g, which we denote as real arrays f and g of Np elements, representing
individual pixels. Accounting for the measurement error (i.e., image noise) we have

f + η ∼= g(λ̂) + ζ, (7)
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where η and ζ are random vectors representing measurement errors, normally distributed
with zero mean and variance σ2

η, i.e., η, ζ ∈ N (0, σ2
η). Eq. (7) can be rewritten as

f ∼= g(λ̂) + ξ, ξ ∈ N (0, 2σ2
η). (8)

Because the measurement errors mostly stem from the image noise, we set ση to be 1% of
the dynamic range of f, g ∈ [0, 255] (Frank and Al-Ali, 1975).

According to the Bayes’ theorem, the posterior distribution π(λ̂) is proportional to

π(λ̂|f, g) ∝ π(λ̂mat)π(λ̂kin)π(f, g|λ̂), (9)

where π(λ̂mat) and π(λ̂kin) are the prior distributions of the material and kinematic param-

eters, and π(f, g|λ̂) is the likelihood function. We choose the prior distribution for material
parameters as a normal distribution N (λ̃1

mat, σ
2
prior), i.e.,

π(λ̂mat) =
1

σNmat
prior

√
(2π)2Nmat

exp

(
−1

2
· ||λ̂mat − λ̃1

mat||22
σ2

prior

)
, (10)

where λ̃1
mat is the initial guess and σ2

prior represents our confidence in it. Note that this

distribution can be adopted since the probability p(λ̂mat < 0) is sufficiently small to not cause
any numerical issues. For the kinematic parameters, we choose uniform prior distributions
with the mean of λ̃1

kin, λ̃1
kin,n ∈ U(λ̃1

kin,n − ebc, λ̃
1
kin,n + ebc), i.e.,

π(λ̂kin) =

Nkin∏
n=1

π(λ̂kin,n), (11)

π(λ̂kin,n) =

{
1

2ebc
if |λ̂kin,n − λ̃1

kin,n| ≤ ebc,

0 otherwise,
(12)

where ebc is the assumed amplitude of the noise in the boundary conditions. The likelihood
π(f, g|λ̂) is then computed using the probability density function of the noise ξ from Eq. (8)
as

π(f, g|λ̂) =
1

(2ση)Np
√
πNp

exp

(
−1

2
· ||f − g(λ̂)||22

2σ2
η

)
, (13)

where Np is the total number of pixels within ROI. Substituting Eqs. (10)–(13) into Eq. (9)
leads to the approximate posterior probability

π(λ̂|f, g) = C π(λ̂mat)π(λ̂kin)π(f, g|λ̂), (14)

where C is a suitable normalization constant.
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3.2. Metropolis–Hastings Algorithm

The problem (1) has two distinctive sets of parameters: the material parameters λmat

and boundary conditions λkin, recall Eq. (4). We are primarily interested in the estimation
of λmat, although λkin is important for the accuracy. To derive the marginal posterior
distribution π(λmat|f, g), and not the joint distribution π(λmat,λkin|f, g), the Markov Chain
Monte Carlo (MCMC) sampling is employed. The marginalization is performed as

π(λmat|f, g) =

∫
Dkin

π(λmat,λkin|f, g) dλkin, (15)

where Dkin is the domain of integration for λkin. To evaluate this integral, the Metropolis–
Hastings Algorithm (MHA) is used.

In MHA, see (Lee, 2012) and Alg. 1, we start with an initial sample λ̃i and set it as

the current state λ̂i = λ̃i. Then each new proposal λ̃i+1 is generated based on the proposal
distribution q, which must be symmetric in the sense that q(λ̂i|λ̃i+1) = q(λ̃i+1|λ̂i) for all

λ̂i, λ̃i+1 ∈ RM=2Nmat+Nkin . Typically, q is chosen as Gaussian, i.e., q ∈ N (λ̂i, σ2
q )

2Nmat+Nkin .
Its variance σ2

q , often referred to as the step size of the random walk, is chosen empirically

such that the acceptance rate is around 30%. The newly proposed state λ̃i+1 is accepted
with the probability of min(1, p), where

p =
π(λ̃i+1|f, g)

π(λ̂i|f, g)
. (16)

This procedure is usually implemented by generating a uniformly distributed random variable
κ ∈ U(0, 1). If κ < p, then λ̃i+1 is accepted, i.e., λ̂i+1 = λ̃i+1, otherwise λ̃i+1 is rejected, i.e.,

λ̂i+1 = λ̂i. Continuing this way, one obtains a sequence λ̂j, j = 1, 2, . . . , N . After discarding
the first N0 elements (the so-called burn-in), we finally obtain approximation of the marginal
(using Eq. (15)) or joint posterior distributions of identified parameters λ as distributions

of λ̂jm, j = N0 + 1, . . . , N , for m = 1, . . . ,M = 2Nmat +Nkin.

Algorithm 1: Metropolis–Hastings Algorithm (MHA) to sample posterior distributions of Eq. (15).

1. Draw the initial state λ̃1 ∈ RM=2Nmat+Nkin .
Set λ̂1 = λ̃1.

2. For i = 2, 3, . . . , N do:

(a) draw the proposal λ̃i+1 ∼ N (λ̂i, σ2
q )

(b) set p = π(λ̃i+1|f, g)/π(λ̂i|f, g)
(c) draw κ ∼ U(0, 1)

(d) if κ < p, set λ̂i+1 = λ̃i+1 (i.e., accept λ̃i+1), else set λ̂i+1 = λ̂i (i.e., reject λ̃i+1)

3. Discard λ̂1, λ̂2, . . . , λ̂N0 (burn-in).

4. Estimate statistical parameter characteristics from λ̂N0+1, . . . , λ̂N (mean, standard de-
viation, etc.).
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4. Underlying Mechanical Model

4.1. Geometry

To compare performance of the deterministic and stochastic identification procedures, a
virtual experiment is performed on a specimen with prescribed material parameters λmat,ref .
The specimen is assumed to occupy a full-scale domain Ωdns, having the size of a 20 × 20
units of length, with a heterogeneous structure shown in Fig. 2a. The microstructure consists
of randomly distributed non-intersecting stiff circular inclusions with a diameter d = 1 unit
of length, and a surrounding compliant matrix. Although all geometric units and properties
are dimensionless, they can be scaled to µm.

4.2. Constitutive Model and Governing Equations

The material of the specimen is assumed to be nonlinear elastic. In particular, a com-
pressible Neo–Hookean hyperelastic material is adopted, specified by the following elastic
energy density

Wα(F ) =
1

2
Gα(I1(F )− 3) +

1

2
Kα(ln J(F ))2, (17)

where F = [I + ∇0u(X)]T is the deformation gradient tensor, ∇0u(X) is the gradient

of the displacement field, J(F ) = detF , and I1(F ) = J−
2
3 tr(C) is the first modified in-

variant of the right Cauchy–Green deformation tensor C = F TF . Individual materials are
distinguished by the subscript α, where α = 1 corresponds to the matrix and α = 2 to
the inclusions. The prescribed values of the material parameters λmat,ref = [G1, K1, G2, K2]
are presented in Tab. 1. Because Dirichlet boundary conditions are applied on the entire
boundary of the MVE, ∂Ωmve, the problem is ill-posed, and only material parameter ratios
can be obtained. In the IDIC procedure, one of the material parameters therefore needs to
be fixed to an arbitrary value (exact, in our case of virtual experiments) for normalization
purposes. The remaining parameters can be identified relative to that reference value. The
fixed material parameter can be estimated by other means, i.e., using a force-based mechani-
cal test or reliable experimental sources. Note that such a normalization can be performed in
multiple ways, influencing the resulting accuracy of the identification. In contrast to IDIC,
MHA does not require such normalization, as will be discussed more extensively below in
Section 7.

Table 1: Reference material parameters λref used in the virtual experiment.

Physical parameters
Matrix Inclusions
(α = 1) (α = 2)

Shear modulus, Gα 1 4
Bulk modulus, Kα 3 12

Poisson’s ratio, να = 3Kα−2Gα
2(3Kα+Gα)

0.35 0.35

9



The first Piola–Kirchhoff stress tensor P , introduced in the considered governing Eq. (3)
of solid mechanical systems, now attains the form

P (u(X)) = (1− χ(X))
∂W1(F )

∂F
[I + ∇0u(X)]T + χ(X)

∂W2(F )

∂F
[I + ∇0u(X)]T, (18)

where χ(X) is an indicator function of the inclusions, i.e., χ = 1 inside all inclusions and
χ = 0 inside the matrix. Note that the explicit dependence on the identified parameters λ
has been dropped for brevity.

4.3. Applied Boundary Conditions

Let us denote each side of the boundary of Ωdns, ∂Ωdns = Γ, as Γi, i = 1, . . . , 4, see
Fig. 2a. Two virtual mechanical tests are considered, one to introduce tension and another
to introduce shear. Both are referred to as Direct Numerical Simulations (DNS) and provide
the reference for the mechanical behavior of the system. The displacements prescribed at
the specimen’s boundary are

u(X) = (F − I)X, X ∈ Γ2 ∪ Γ4,

F = I + 0.1e1 ⊗ e1, for tension,

F = I + 0.1e2 ⊗ e1, for shear,

(19)

where e1 = [1, 0]T and e2 = [0, 1]T, while Γ1, Γ3 are left as free edges.

4.4. Numerical Solution and Discretization

The solution of the mechanical problem in Eq. (3) is determined using the standard non-
linear FEM, adopting the Total Lagrangian formulation (Borst et al., 2012). The evolution
of the system is solved incrementally, using the Newton–Raphson algorithm.

The displacement field û(X, λ̂) is hence discretized as

û(X, λ̂) ≈
nu/2∑
i=1

Ni(X)ûi(λ̂), (20)

where nu denotes the total number of DOFs, Ni(X) are the standard FE shape functions,

and ûi(λ̂) = [ûi1(λ̂), ûi2(λ̂)]T ∈ R2 stores the horizontal and vertical displacements of an
i-th node associated with a FE mesh. For later reference, these are stored in the array
û = [ûT1 , . . . , û

T
nu/2

]T ∈ Rnu .
For the FE solution, both Ωdns and Ωmve domains are discretized with the Gmsh mesh

generator (Geuzaine and Remacle, 2009), using quadratic isoparametric triangular elements
with the three-point Gauss quadrature rule to approximate the integrals appearing in the
weak form. All calculations were programmed and performed in MATLAB (MathWorks Inc.,
2018), using an in-house FEM library for hyperelastic materials with computationally heavy
parts implemented in external C/C++ mex files for efficiency reasons. For the DNS, the fine
mesh shown in Fig. 2c is used, whereas a coarser MVE triangulation is shown in Fig. 2d.
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Figure 2: The macroscopic domain Ωdns consists of stiff circular inclusions of diameter d = 1 unit of length,
embedded within a compliant matrix. (a) A sketch of the specimen’s full square domain Ωdns, microstructural
volume element Ωmve, and the FOV; (b) speckle pattern applied to Ωmve, and (c) close-up on the MVE domain
FEM mesh corresponding to the finely discretized full DNS system; (d) coarse discretization of the MVE
model Ωmve.

Because the reference Poisson’s ratios for both materials are significantly smaller than 0.5
(recall Tab. 1), and because deformations in the simulations are moderate, incompressibility
issues do not occur.

To track the deformation in a real life experiment, a speckle pattern needs to be applied
on the specimen (Jones and Iadicola, 2018). The reference image f, representing the applied
speckle pattern, has been adopted from (Bornert et al., 2009, “medium pattern size”), shown
in Fig. 2b. Its resolution is 512 × 512 pixels inside FOV, which corresponds approximately
to 340 × 340 pixels inside ROI, when ROI is set equal to MVE. The DNS displacements
obtained from all mechanical tests are interpolated from the FE mesh to the regular image
mesh by inversion of the elements’ isoparametric maps, and the resulting displacement fields
are used to map the deformed image g back into the reference configuration. The deformed
image is then interpolated at the pixel positions using the bi-cubic polynomial interpolation
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(Wang et al., 2009).

5. Robustness of MHA with Respect to Fixed Errors in Applied Boundary Con-
ditions

This section presents several experiments that quantify the robustness of the proposed
MHA in comparison with the IDIC method (Leclerc et al., 2009; Ruybalid et al., 2017; Buljac
et al., 2017; Shakoor et al., 2017) with respect to errors in the applied boundary conditions.
The kinematic degrees of freedom λkin are fixed with an error, so the effect of the error on
the material parameter identification can be directly observed. The systematic errors, like
the smoothing of kinematic fields by the GDIC, are studied first, followed by the effect of
the uncorrelated random noise, which is typically observed in the local DIC or the global
DIC with a very fine discretization (see Rokoš et al., 2018, for a similar study).

5.1. Sensitivity with Respect to Systematic Errors

The GDIC with a coarse interpolation can have a smoothing effect on the boundary
conditions (Leclerc et al., 2012). To quantify the effect of smoothed boundary conditions on
the identification of the material parameters, the Dirichlet boundary conditions used in the
identification are obtained by interpolating the DNS displacements at the nodal positions
of the MVE boundary ∂Ωmve, and the resulting exact displacement field is smoothed with a
pillbox-shaped kernel hε as

ũdns(X) =

∫
Ωdns

udns(Y )hε(Y −X) dY , (21)

where ε ≥ 0 is a dimension-less diameter (normalized by the inclusion’s diameter d = 1).
The smoothing effect for the extreme kernel ε = 5 can be observed in Fig. 3a. The smoothed
data are then prescribed as the boundary conditions to the FEM MVE model, i.e.,

umve(X) = ũdns(X), X ∈ ∂Ωmve. (22)

In Eq. (22), ũdns(X),X ∈ ∂Ωmve, is a column of displacements of ũdns evaluated at the MVE
boundary nodes. For easier implementation, the integral in Eq. (21) is calculated at discrete
pixel positions numerically, while the corresponding displacements at the MVE boundary
are linearly interpolated. The bulk modulus of the matrix K1 is chosen as the normalization
parameter in both IDIC as well as MHA, so it is fixed at its reference value. Therefore,
the dimension of the MHA sampling is reduced only to the remaining material parameters
λmat, so the sampling is performed in a three-dimensional space. The maximum number of
steps for the MHA was set to N = 8 000 with 75% burn-in. The prior distributions for the
material parameters were chosen as normal with mean values set to the initial guess 0.9λref,i

and variances σ2
mat,prior = 1. The step size σq was set as 1% of

λref,i∑N
j=1 λref,j

σmat,prior.

12
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Figure 3: Examples of applied boundary conditions. (a) Smoothed boundary conditions using the pillbox-
shaped kernel (red line), ε = 5, cf. Eq. (21), and (b) with superimposed noise according to Eq. (23) with
the amplitude σbc = 0.1. The scalar coordinate ξ specifies the position at the boundary according to Fig. 2a.
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Figure 4: Normalized material parameters λmat,n/λmat,n,ref identified by the stochastic MHA method com-
pared against the deterministic IDIC method. Boundary displacements are smoothed using the pillbox-
shaped kernel with the parameter ε and fixed according to Eq. (21) for (a) tensile and (b) shear tests.
Parameters identified by MHA correspond to N = 8 000 steps and burn-in N0 = 6 000 steps. Parameter K1

is fixed to the reference value to ensure uniqueness.

Fig. 4 shows obtained results for the tension and shear tests from 50 Monte Carlo (MC)
runs, and compares them to the IDIC method. Here we first observe that the MHA with
fixed boundary conditions performs almost identically to the IDIC, when the modes of the
resulting posterior distributions are compared with the IDIC values. A slight difference
between the MHA and IDIC can be observed in the bulk modulus of the inclusions K2 in
the shear test. The resulting MHA intervals within one standard deviation from the mean
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are invisible in the scale of the figure, their widths ranging from 5 ‰ to 1% of the identified
value. Next, in accordance with previous observations, see (Rokoš et al., 2018), smoothing of
the boundary conditions has a considerable negative impact on the identification accuracy.
We can therefore conclude that both approaches provide practically identical results for this
particular test and show comparable accuracy and robustness.

5.2. Random Errors in Applied Boundary Conditions

The GDIC can also introduce random errors to the boundary conditions, for too fine
meshes. To quantify the effect of random noise in boundary conditions, the following test is
performed. Uncorrelated random noise is superimposed on the exact boundary displacement,
i.e.,

umve(X) = udns(X) + σbc max
Y ∈∂Ωdns

(||udns(Y )||2)U(−0.5, 0.5), X ∈ ∂Ωmve, (23)

where umve(X) is a vector that stores nodal displacements of the MVE boundary nodes,
udns(Y ) does the same for the DNS boundary nodes, U(−0.5, 0.5) is the corresponding column
of independent and identically distributed random variables with a uniform distribution over
[−0.5, 0.5], and σbc ∈ [0, 0.1] is the standard deviation of the prescribed random noise.

All three material parameters are identified again for both the tensile and shear tests,
using 50 MC realizations of the noise for each value of σbc. An example of boundary data
with σbc = 0.1 is shown in Fig. 3b. The number of steps for the MHA is set to N = 8 000
with 75% burn-in, with the rest of hyper-parameters and prior parameter distributions set
the same as in the previous example. The boundary conditions are kept fixed with K1 used
as the normalization parameter again.
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(a) Tensile test.
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(b) Shear test.

Figure 5: Normalized material parameters λmat,n/λmat,n,ref identified by MHA for the fixed random noise
in boundary conditions, cf Eq. (23), with a noise of standard deviation σbc for (a) tensile and (b) shear
tests. The means across all sampled values of all iterations (after burn-in) are plotted with solid lines and
are complemented with ± standard deviations (dashed lines) with N = 8 000 and burn-in N0 = 6 000 steps.
Parameter K1 is fixed to the reference value to ensure uniqueness.
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Figure 6: Comparison of the normalized identified (a, d) matrix shear modulus G1, (b, e) fibre shear modulus
G2, and (c, f) fiber bulk modulus K2 obtained from the tensile (top) and shear (bottom) tests under fixed
boundary conditions with applied noise according to Eq. (23) of standard deviation σbc for the IDIC (black)
and the MHA (color) methods. The means across all sampled values of all iterations (after burn-in) are
plotted with solid lines and are complemented with ± standard deviations (dashed lines). The results
correspond to all 50 MC realizations with N = 8 000 and burn-in N0 = 6 000 steps. Parameter K1 is fixed
to the reference value to ensure uniqueness.

For each of the resulting posterior distributions, the mode was again taken as the measure
of the identified parameters and then averaged across all 50 realizations with the same noise
amplitude. The derived mean values for all the material parameters are shown in Fig. 5 with
thick lines, while the standard deviations are superimposed over the mean values (dashed
lines). Similarly to the previous example the confidence intervals for each iteration are
negligible.

Fig. 6 shows that the MHA (color lines) and the IDIC (black lines) again deliver almost
identical results. The slight deviation for the values of σbc > 0.05 in the shear test can be
explained by the insufficient convergence of the MHA for the given number of steps.

We conclude that the MHA with fixed errors in boundary conditions has the same ro-
bustness as the IDIC method, and that the error in boundary conditions has a significant
effect on the values of the identified material parameters, especially in the shear test.
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6. MHA with Relaxed Boundary Conditions

One of the benefits of the MHA is that the number of sampled parameters can be increased
to include boundary conditions with no direct additional computational effort, as compared
to the case with fixed boundary conditions. A straightforward way to implement new DOFs is
to set the boundary condition parameters λkin as displacements in the FE nodes along ∂Ωmve.
For the configuration described in Section 4 (and used for all numerical experiments), this
would mean adding extra 2×244 parameters, considering that 244 FE nodes (on a randomly
generated domain) store displacements along the horizontal and vertical directions. We
expect this approach to provide more accurate estimates for the material parameters, since
it also minimizes the error in the boundary conditions. On the other hand, this approach is
generally expected to introduce the so-called “curse of dimensionality” (Au and Beck, 2001;
Katafygiotis and Zuev, 2008). Even though calculating the solution of the mechanical system
for each new sample requires the same computational effort for any number of the employed
DOFs, the algorithm might require more steps to find the high probability region, as the
number of sampled parameters grows. One way to address this problem is to reduce MHA
sampling to manageable dimensions by approximating boundary conditions with some basis
functions, e.g., using Fourier transform or Karhunen–Loève expansion, both widely used in
signal enhancement (Hermus et al., 2007). However, the MHA sampling in the resulting
spaces is not uniform and thus requires substantial additional tuning. That is why, for the
purpose of this paper, a simple reduction of nodes in the FE basis was ultimately chosen,
where only some of the existing DOFs on the boundary ∂Ωmve were used to reduce the
parameters’ dimension. The rest of the parameters are dependent on those parameters (by
interpolation). The initial MVE boundary mesh was constructed by assigning nodes at equal
intervals with displacements interpolated from the DNS, and every n-th node is then used for
the boundary approximation. The displacement error of the boundary condition is quantified
as

εbc
rel =

||utmve(X)− udns(X)||2
||udns(X)||2

, X ∈ ∂Ωmve, (24)

where utmve(X) is the boundary approximation with 2 × t DOFs, and udns(X) is the exact
boundary displacement obtained by the DNS.

The boundary condition parameter λkin can be accordingly relaxed in the MHA sampling.
The number of total employed kinematic DOFs was 2 × 61 (25%), 2 × 122 (50%), 2 × 183
(75%), and 2 × 244 (100%). To examine the MHA’s robustness with respect to the noise
in the initial applied boundary conditions, the initial guess of the kinematic parameter λ̃1

kin

was assumed with an increasing noise amplitude σ̃bc. The starting point for the material
parameter λ1

mat was assumed as λref,i, i = 1, . . . , 4, so the influence of the relaxed boundary
conditions can be assessed. The bulk modulus of the matrix K1 was used as the normalization
parameter. The prior distributions for the material parameters were again chosen as normal,
with the mean values set to their reference value as the initial guess λref,i, with the variances

σ2
mat,prior = 1. The material parameter step size σq,i was set as 5‰ of

λref,i∑N
j=1 λref,j

σmat,prior. The

prior distributions for the kinematic parameters were set as uniform according to Eq. (11),
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where ebc = 0.1 max
Y ∈∂Ωmve

(||udns(Y )||2) is the maximum possible error of the initial guess for

the boundary node coordinate. The kinematic parameter step size was then chosen relative
to the material parameter step size as 0.4% of

∑N
i=1 σq,i. The total number of steps was

set as N = 24 000 with 92% burn-in (chosen during post-processing) in all experiments for
practicality.

6.1. Tensile Test

In the tensile test (Fig. 7) the resulting error in the material parameters was decreased at
least twofold for all the considered numbers of the kinematic DOFs, compared to the fixed
boundary MHA (cf. Fig. 5; note also the difference in scale between the two figures). The
starting boundary error still has a considerable negative impact on the overall accuracy. It
should be noted that the chosen fixed number of steps of MHA, although relatively high,
was insufficient, as the convergence was not reached in most of the random chains for the
starting noise amplitude σ̃bc ≥ 0.04 in the experiments with the number of kinematic DOFs
equal to 50, 75, and 100% of the total, and σ̃bc ≥ 0.06 for the 25% of the total kinematic
DOFs.

To better illustrate the mutual influence of the material and kinematic parameters, each
parameter’s average relative error for a given step across all iterations is shown in Fig. 8.
For brevity, we focus only on the cases with either minimum or maximum noise, with the
relative number of kinematic nodes equal to 100% and 25%. For the material parameters
the error is calculated as

εn,irel =
λ̂in − λn,ref

λn,ref

, n = 1, . . . , nmat, (25)

while for the kinematic DOFs as

εbc,i
rel =

||λ̂ikin − λkin,ref ||2
||λkin,ref ||2

, (26)

where the hatted variables with index i denote i-th accepted sample.
For the zero starting noise in the boundary conditions, the material parameters in the

experiment with the full number of DOFs converge very fast to a high-likelihood region
close to the initialization point (i.e., to the reference material values, see Figs. 8a, 8b). The
average error in the boundary conditions slightly grows throughout the experiment. This is
caused by the numerical errors in the process, such as image interpolation. The experiment
with the reduced number of DOFs starts with a higher error in the boundary conditions
due to the interpolation error, and after a period of linear growth stabilizes. The growth
of the average error in the boundary conditions in this experiment coincides with the rapid
spread in the material parameters that stabilize in local optima around the same time as the
kinematic parameters.

In the experiment with the highest starting noise, σ̃bc = 0.1, shown in Figs. 8c and 8d,
the initial average boundary condition error is roughly the same in both cases with full and
reduced number of kinematic DOFs. The higher regularity of the boundary, that results
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(a) t = 2× 244 DOFs (100% of total).
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(b) t = 2× 183 DOFs (75% of total).
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(c) t = 2× 122 DOFs (50% of total).
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(d) t = 2× 61 DOFs (25% of total).

Figure 7: Identified normalized material parameters λmat,n/λmat,n,ref for relaxed boundary conditions, cf.
Eq. (23), with the standard deviation σ̃bc of the starting noise for the tensile test. The means across all
sampled values of all iterations (after burn-in) are plotted with solid lines and are complemented with ±
standard deviations (dashed lines) with N = 24 000 and burn-in N0 = 22 000 steps. Parameter K1 is fixed
to the reference value to ensure uniqueness.

from the interpolation, has a different effect on each material parameter: while the highly
correlated matrix and inclusions shear moduli G1 and G2 reach a higher interim error in
the experiment with the full number of kinematic DOFs, the parameter K2 on average
stabilizes faster than for the reduced number of kinematic DOFs, although with a high
variance between the chains. At first, the boundary error decreases faster for the reduced
number of DOFs, but it starts increasing around the halfway of the total running time. The
boundary error in the experiment with full boundary DOFs decreases linearly. It is unclear
if it would show a similar behavior as its counterpart, as the error at the final (25 000th)
step of the non-reduced problem was comparable to the one observed for the reduced system
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(a) t = 2× 244 (100% of total), σ̃bc = 0. (b) t = 2× 61 (25% of total), σ̃bc = 0.

(c) t = 2× 244 (100% of total), σ̃bc = 0.1. (d) t = 2× 61 (25% of total), σ̃bc = 0.1.

Figure 8: The evolution of the relative error in the identified material parameters and boundary conditions,
cf. Eqs. (25) and (26), as a function of MHA step i for the tensile test. The means across all sampled values
of all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard deviations
(dashed lines). Parameter K1 is fixed to the reference value to ensure uniqueness.

around the 12 500th step.
Finally, all the converged chains from the above experiments (those with a lower amount

of initial noise) are congregated to estimate the posterior probability density functions for
the material parameters. Those, in turn, can be compared with the results obtained by
the deterministic BE-IDIC method. In Figs. 9a and 9b it is shown that all the resulting
posterior distributions are approximately normal, with the experiments with reduced number
of boundary nodes resulting in a slightly narrower confidence intervals. Solutions provided
by the deterministic method (denoted by black dots) tend to coincide with the modes of
the histograms (or means of the estimated PDFs), except for the parameter K2, where the
average of the stochastic method is slightly closer to the true parameter value in both cases.
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(a) t = 2× 244 kinematic DOFs (100% of total). (b) t = 2× 61 kinematic DOFs (25% of total).

Figure 9: Posterior probability distributions for the material parameters identified by MHA from the tensile
test, and point estimations given by BE-IDIC (shown as black dots). Parameter K1 is fixed to the reference
value to ensure uniqueness.

6.2. Shear Test

The shear test behaves quite differently from the tensile test for all numbers of the
kinematic DOFs, see Fig. 10. This test seems to have an overall low sensitivity to the bulk
modulus of the inclusions K2. The accuracy decreases for the rest of the material parameters
as well. Nevertheless, Fig. 11 shows that the average relative error in boundary conditions
decreases at the same rate as for the analogous tensile experiments.

For the shear test, the histograms and estimated uni- and multi-variate posterior prob-
ability distributions obtained from the converged chains are shown in Figs. 12a and 12b.
The reduced number of kinematic DOFs results in a higher systematic error than for the
tensile test, as well as wider confidence intervals. The means of the posterior distributions
are less accurate as the estimators of the material parameters than the solution obtained by
the deterministic BE-IDIC method.

7. Application in Ill-Posed Problems

As was discussed earlier, the inverse problem with the Dirichlet boundary conditions
requires one of the parameters to be fixed at its reference value, so the deterministic op-
timizers can only find the correct ratios of the material parameters. The choice of such
normalization parameter influences the final accuracy of the identification (cf. Rokoš et al.,
2018). This, however, is not necessary for the MHA, and the normalization can be done
in the post-processing step. The sampling can be performed in all four material parameter
dimensions instead of three, with the same kinematic parameters if needed. To compare
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(a) t = 2× 244 DOFs (100% of total).
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(b) t = 2× 183 DOFs (75% of total).
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(c) t = 2× 122 DOFs (50% of total).
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(d) t = 2× 61 DOFs (25% of total).

Figure 10: Identified normalized material parameters λmat,n/λmat,n,ref for relaxed boundary conditions, cf.
Eq. (23), with the starting noise standard deviation σ̃bc for the shear test. The means across all sampled
values of all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard
deviations (dashed lines) with N = 24 000 and burn-in N0 = 22 000 steps. Parameter K1 is fixed to the
reference value to ensure uniqueness.

the accuracy of the identification between the ill-posed and the normalized problems, the
results from the non-normalized MHA are also normalized in the post-processing step by
the parameter K1, which is not fixed at a given value this time, but is updated concurrently
with the other parameters. All the other hyper-parameters remain the same, such as mate-
rial and kinematic parameter step sizes and the prior distributions. After the same number
of steps (24 000) and burn-in (92%), the identification accuracy of material parameters is
generally much higher for the non-normalized MHA, see Figs. 13 and 16, where convergence
of all material parameters is achieved for a much higher starting noise in the same number
of steps.
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(a) t = 2× 244 (100% of total), σ̃bc = 0. (b) t = 2× 61 (25% of total), σ̃bc = 0.

(c) t = 2× 244 (100% of total), σ̃bc = 0.1. (d) t = 2× 61 (25% of total),σ̃bc = 0.1.

Figure 11: The evolution of the relative error in the identified material parameters and boundary conditions,
cf. Eqs. (25) and (26), as a function of MHA step i for the shear test, the means across all sampled values of
all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard deviations
(dashed lines). Parameter K1 is fixed to the reference value to ensure uniqueness.

7.1. Tensile Test

The convergence speed is higher for all the considered parameters, including the boundary
conditions, where the minimum achieved average error is roughly two times smaller than in
the normalized version of MHA, see Fig. 14.

The most interesting feature of the non-normalized MHA is that the posterior distribu-
tions can be obtained for all the parameters by choosing any of the remaining parameters
as the normalization factor, as shown in Fig. 15, where the estimated posterior probability
distribution resulting from the chosen normalization parameter is color-coded, as well as the
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(a) t = 2× 244 kinematic DOFs (25% of total). (b) t = 2× 61 kinematic DOFs (25% of total).

Figure 12: Posterior probability distributions for the material parameters identified from the shear test, and
point estimations given by BE-IDIC (shown as black dots). Parameter K1 is fixed to the reference value to
ensure uniqueness.
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(a) t = 2× 244 DOFs (100% of total).
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(b) t = 2× 61 DOFs (25% of total).

Figure 13: Identified normalised material parameters λmat,n/λmat,n,ref for relaxed boundary conditions, cf.
Eq. (23), with the starting noise standard deviation σ̃bc for the tensile test. The means across all sampled
values of all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard
deviations (dashed lines) with N = 24 000 and burn-in N0 = 22 000 steps. Identified parameter K1 is used
as a normalization factor, and is not fixed during identification.

points given by the deterministic BE-IDIC with the same choice for the fixed parameter.
The probability density estimations for each of the parameters differ in bias and variance,
based on the choice of the normalization parameter. Similarly to the normalized MHA, a re-
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(a) Normalized MHA, σ̃bc = 0. (b) Non-normalized MHA, σ̃bc = 0.

(c) Normalized MHA, σ̃bc = 0.1. (d) Non-normalized MHA, σ̃bc = 0.1.

Figure 14: The evolution of the relative error in the identified material parameters and boundary conditions,
cf. Eqs. (25) and (26), as a function of MHA step i for the tensile test, the means across all sampled values
of all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard deviations
(dashed lines), t = 2 × 244 (100% of total). Identified parameter K1 is used as a normalization factor, and
is not fixed during identification.

lationship between the results of the deterministic method and the modes of the probability
distributions can be observed, as they generally appear in the same order. Indeed, in prac-
tical applications, one might not have estimates for all the material parameters beforehand
to be as free in the choice of the normalization. However, the parameter ratios can still be
effectively established with the non-normalized MHA.
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(a) t = 2× 244 (100% of total). (b) t = 2× 61 (25% of total).

Figure 15: Posterior probability distributions for the material parameters for the non-normalized MHA and
the shear test, compared to the point estimations given by BE-IDIC (denoted by dots), depending on the
choice of the normalization parameter color coded according to the legend at the top.
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(a) t = 2× 244 DOFs (100% of total).
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(b) t = 2× 61 DOFs (25% of total).

Figure 16: Identified normalized material parameters λmat,n/λmat,n,ref for relaxed boundary conditions, cf.
Eq. (23), with the starting noise standard deviation σ̃bc for the shear test. The means across all sampled
values of all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard
deviations (dashed lines) with N = 24 000 and burn-in N0 = 22 000 steps. Identified parameter K1 is used
as a normalization factor, and is not fixed during identification.
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7.2. Shear Test

The shear test continues to be not sensitive enough to correctly establish the parameter
K2 (see Fig. 16), even though the identification accuracy in other material parameters and
boundary conditions increased significantly compared to the normalized version, as shown in
Fig. 17. The resulting material parameter estimates have a wider confidence interval than in
the tensile test, and at the same time the biases remain comparable to those of BE-IDIC, see
Fig. 18b. The distributions of the parameter K2 are omitted because of the low sensitivity.

(a) Normalized MHA, σ̃bc = 0. (b) Non-normalized MHA, σ̃bc = 0.

(c) Normalized MHA, σ̃bc = 0.1. (d) Non-normalized MHA, σ̃bc = 0.1.

Figure 17: The evolution of the relative error in the identified material parameters and boundary conditions,
cf. Eqs. (25) and (26), as a function of MHA step i for the shear test, the means across all sampled values of
all iterations (after burn-in) are plotted with solid lines and are complemented with ± standard deviations
(dashed lines), t = 2 × 244 (100% of total). Identified parameter K1 is used as a normalization factor, and
is not fixed during identification.
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(a) t = 2× 244 kinematic DOFs (100% of total). (b) t = 2× 61 kinematic DOFs (25% of total).

Figure 18: Posterior probability distributions for the material parameters for the non-normalized MHA and
the shear test, compared to the point estimations given by BE-IDIC (denoted by dots), depending on the
choice of the normalization parameter color coded according to the legend at the top.

8. Summary and Conclusions

In this contribution, the performance and the probabilistic robustness of the Metropolis–
Hastings algorithm (MHA) is compared to the deterministic Integrated Digital Image Corre-
lation (IDIC) method. To this end, a heterogeneous microstructural specimen with a random
distribution of circular inclusions have been subjected to two virtual mechanical tests under
plane strain conditions, one to primarily introduce tension, the other to introduce shear. The
goal was to identify parameters of two distinct groups: materials and applied boundary con-
ditions. The effect of errors in the applied boundary conditions was studied. First, the MHA
that only identifies the material parameters with fixed boundary conditions was considered,
and its sensitivity with respect to random and systematic errors in the boundary conditions
was quantified and compared to the IDIC. MHA’s parameter field was then expanded with
two different ways of approximating the boundary conditions, and the method was compared
to the Boundary Enriched IDIC (BE-IDIC). The experiments have shown a similar behavior
of MHA with fixed boundary conditions to IDIC for both the systematic as well as random
error in the applied boundary conditions.

A possible way of reducing the dimensionality of the boundary condition parameters
were suggested: substituting the employed discretization mesh on the boundary with a
coarser one. The robustness test for the random error in the boundary conditions shown a
higher convergence rate for the price of introducing a small systematic error in the material
parameters.
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The deterministic approach requires one of the material parameters to be fixed at the
exact value, because the inverse problem with Dirichlet boundary conditions is inherently
ill-posed. The benefit of the stochastic approach, on the other hand, is that this normaliza-
tion, while possible, is unnecessary. It was shown that the non-normalized approach to the
parameter identification, where none of the material parameters is fixed, converges faster
and is more robust with respect to the initial boundary noise. As a result, this version of the
algorithm was able to handle high-fidelity boundary conditions burdened with noise more
efficiently than the normalized version. The material parameter estimates can then be ob-
tained in the post-processing step from the material ratios established by MHA, which allows
solving ill-posed or weakly conditioned structural optimization problems such as parameter
identification in laminates (e.g., Chen et al., 2021), where deterministic methods are not
applicable.

Overall, MHA with relaxed boundary conditions proved to be slightly less accurate and
more computationally costly than BE-IDIC in finding the high probability region. However,
both normalized and non-normalized versions of MHA can identify the material parameters
with the accuracy similar to the deterministic methods in the tensile test. The irreducible
errors in both the stochastic and deterministic method stem from the same source and affect
the results almost equivalently. The stochastic approach was shown to have a few advantages:
the relative ease of implementation (low number of hyper-parameters, usually set according
to a rule-of-thumb), ability to optimize a large number of parameters that can also be
dependent, as well as statistical data allowing more insight in the relationships between the
parameters. The main downside is the high computational cost and lower precision than
for the existing deterministic methods, which can be potentially remedied with an adaptive
approach and the use of surrogate models.
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Gaynutdinova) and No. 19-26143X (O. Rokoš, J. Havelka, and J. Zeman)), and the Student
Grant Competition of CTU (projects No. SGS21/004/OHK1/1T/11 (I. Pultarová) and No.
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Avril, S., Bonnet, M., Caro-Bretelle, A., Grédiac, M., Hild, F., Ienny, P., Latourte, F.,
Lemosse, D., Pagano, S., Pagnacco, E., Pierron, F., 2008. Overview of identification meth-
ods of mechanical parameters based on full-field measurements. Experimental Mechanics
48. doi:10.1007/s11340-008-9148-y.

Besnard, G., Hild, F., Roux, S., 2006. Finite-element displacement fields analysis from digital
images: Application to portevin–le châtelier bands. Experimental Mechanics 46, 789–803.
doi:https://doi.org/10.1007/s11340-006-9824-8.
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