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CONVEX POLYGONS IN CARTESIAN PRODUCTS∗

Jean-Lou De Carufel †, Adrian Dumitrescu ‡, Wouter Meulemans §, Tim Ophelders §,
Claire Pennarun ¶, Csaba D. Tóth ‖, and Sander Verdonschot ∗∗

Abstract. We study several problems concerning convex polygons whose vertices lie in a
Cartesian product of two sets of n real numbers (for short, grid). First, we prove that every
such grid contains Ω(log n) points in convex position and that this bound is tight up to a
constant factor. We generalize this result to d dimensions (for a fixed d ∈ N), and obtain
a tight lower bound of Ω(logd−1 n) for the maximum number of points in convex position
in a d-dimensional grid. Second, we present polynomial-time algorithms for computing the
longest x- or y-monotone convex polygonal chain in a grid that contains no two points with
the same x- or y-coordinate. We show that the maximum size of a convex polygon with such
unique coordinates can be efficiently approximated up to a factor of 2. Finally, we present
exponential bounds on the maximum number of point sets in convex position in such grids,
and for some restricted variants. These bounds are tight up to polynomial factors.

1 Introduction

Can a convex polygon P in the plane be reconstructed from the projections of its vertices to
the coordinate axes? Assuming that no two vertices of P share the same x- or y-coordinate,
we arrive at the following problem: given two sets, X and Y , each containing n real numbers,
does the Cartesian product X × Y support a convex polygon with n vertices? We say that
X × Y contains a polygon P if every vertex of P is in X × Y ; and X × Y supports P if
it contains P and no two vertices of P share an x- or y-coordinate. For short, we call the
Cartesian product X × Y an n× n grid.

Not every n× n grid supports a convex n-gon. This is the case already for n = 5 (see
Figure 1). Several interesting questions arise: can we decide efficiently whether an n× n-grid
supports a convex n-gon? How can we find the largest k such that it contains (resp., supports)
a convex k-gon? What is the largest k such that every n× n grid supports a convex k-gon?
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How many convex polygons does an n× n grid contain, or support? We initiate the study
of these questions for convex polygons, and their higher dimensional variants for convex
polyhedra.

Our results. We first show that every n×n grid contains (resp., supports) a convex polygon
with (1−o(1)) log n vertices1; this bound is tight up to a constant factor: there are n×n grids
that do not contain convex polygons with more than 4(dlog ne+1) vertices. We generalize our
upper and lower bounds to higher dimensions, and show that every d-dimensional Cartesian
product

∏d
i=1Xi, where |Xi| = n and d is constant, contains Ω(logd−1 n) points in convex

position; this bound is also tight apart from constant factors (Section 2). Next, we present
polynomial-time algorithms to find a maximum supported convex polygon that is x- or
y-monotone. We show how to efficiently approximate the maximum size of a supported
convex polygon up to a factor of two (Section 3). Finally, we present tight asymptotic bounds
for the maximum number of convex polygons supported by an n× n grid (Section 4). We
conclude with open problems (Section 5).

Related work. Erdős and Szekeres proved, as one of the first Ramsey-type results in
combinatorial geometry [19], that for every k ∈ N, a sufficiently large point set in the plane
in general position contains k points in convex position. The minimum cardinality of a point
set that guarantees k points in convex position is known as the Erdős–Szekeres number, f(k).
They proved that 2k−2 + 1 ≤ f(k) ≤

(
2k−4
k−2

)
+ 1 = 4k(1−o(1)), and conjectured that the lower

bound is tight [17]. The current best upper bound, due to Suk [32], is f(k) ≤ 2k(1+o(1)). In
other words, every set of n points in general position in the plane contains (1− o(1)) log n
points in convex position, and this bound is tight up to lower-order terms.

In dimension d ≥ 3, the asymptotic growth rate of the Erdős–Szekeres number is
not known. By the Erdős–Szekeres theorem, every set of n points in general position in Rd
contains Ω(log n) points in convex position (it is enough to find points whose projections
onto a generic plane are in convex position). For every constant d ≥ 2, Károlyi and Valtr [22]
and Valtr [33] constructed n-element sets in general position in Rd in which no more than
O(logd−1 n) points are in convex position. Both constructions are recursive, and one of them
is related to high-dimensional Horton sets [33]. These bounds are conjectured to be optimal
apart from constant factors. Our results establish the same O(logd−1 n) upper bound for
Cartesian products, for which it is tight apart from constant factors. However, our results do
not improve the bounds for points in general position.

Algorithmically, one can find a largest convex cap in a given set of n points in R2

in O(n2 log n) time by dynamic programming [11], and a largest subset in convex position
in O(n3) time [8, 11]. The same approach can be used for counting the number of convex
polygons contained in a given point set [23]. While this approach applies to grids, it is
unclear how to include the restriction that each coordinate is used at most once. On the
negative side, finding a largest subset in convex position in a point set in Rd for dimensions
d ≥ 3 was recently shown to be NP-hard [18].

There has been significant interest in counting the number of convex polygons in
various point sets. Answering a question of Hammer, Erdős [16] proved that every set of

1All logarithms in this paper are of base 2.
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n points in general position in R2 contains exp(Θ(log2 n)) subsets in convex position, and
this bound is the best possible. Bárány and Pach [3] showed that the number of convex
polygons in an n× n section of the integer lattice is exp

(
O(n1/3)

)
. Bárány and Vershik [4]

generalized this bound to d-dimensions and showed that there are exp
(
O(n(d−1)/(d+1))

)
convex polytopes in an n× · · · × n section of Zd. Note that the exponent is sublinear in n
for every d ≥ 2. We prove that an n× n Cartesian product can contain exp(Θ(n)) convex
polygons, significantly more than integer grids, and our bounds are tight up to polynomial
factors.

Motivated by integer programming and geometric number theory, lattice polytopes
(whose vertices are in Zd) have been intensely studied; refer to [2, 5]. However, results for
lattices do not extend to arbitrary Cartesian products. Recently, several deep results have
been established for Cartesian products in incidence geometry and additive combinatorics [26,
27, 28, 31], while the analogous statements for point sets in general position remain elusive.

Definitions. A polygon P in R2 is convex if all of its internal angles are strictly smaller
than π. A point set in R2 is in convex position if it is the vertex set of a convex polygon; and
it is in general position if no three points are collinear. Similarly, a polyhedron P in Rd is
convex if it is the convex hull of a finite set of points. A point set in Rd is in convex position
if it is the vertex set of a convex polyhedron; and it is in general position if no d+ 1 points
lie on a hyperplane. The 1-skeleton of a polyhedron is the graph formed by its vertices and
edges. In Rd, we say that the xd-axis is vertical, hyperplanes orthogonal to the xd-axis are
horizontal, and the above-below relationship is understood with respect to xd coordinates.

We consider special types of convex polygons in the plane. Let P be a convex polygon
with vertices ((x1, y1), . . . , (xk, yk)) in clockwise order. We say that P is a convex cap if the x-
or y-coordinates are strictly monotone, and a convex chain if both the x- and y-coordinates
are strictly monotonic. We distinguish four types of convex caps (resp., chains) based on the
monotonicity of the coordinates as follows:

• convex caps come in four types {y, y,

y,

y

}. We have
P ∈y if and only if (xi)

k
i=1 strictly increases;

P ∈ y if and only if (yi)
k
i=1 strictly increases;

P ∈ y if and only if (xi)
k
i=1 strictly decreases;

P ∈

y

if and only if (yi)
k
i=1 strictly decreases;

• convex chains come in four types { , , , }. We have
= y ∩y, = y ∩

y

, = y∩ y, =

y

∩ y.

Initial observations. It is easy to see that for n ∈ {3, 4}, every n × n grid supports a
convex n-gon. However, there exists a 5× 5 grid that does not support any convex pentagon
(cf. Figure 1). Interestingly, every 6× 6 grid supports a convex pentagon.

Lemma 1. Every 6× 6 grid X × Y supports a convex polygon of size at least 5.

Proof. Refer to Figure 2 for illustration. Let x1, . . . , x6 and y1, . . . , y6 denote the vertices
of X and Y in increasing order. Consider first the 4× 4 subgrid obtained by omitting the

http://jocg.org/


JoCG 11(2), 205–233, 2020 208

Journal of Computational Geometry jocg.org

Figure 1: Maximum-size supported convex polygons of respective sizes 3, 4, 4, and 5 in n×n
grids, where n is between 3 and 6.

extremal values, that is, {x2, . . . , x5} × {y2, . . . , y5}. As the 2 × 2 grid {x3, x4} × {y3, y4}
consists of four corners of a rectangle, at least two of these points are not collinear with
(x2, y2) and (x5, y5); let (x′, y′) denote such a point and x′′ ∈ {x3, x4} and y′′ ∈ {y3, y4}
denote the unused coordinates. Now, P ′ = {(x2, y2), (x′, y′), (x5, y5)} is a supported convex
chain of the subgrid and thus of X × Y . By construction, P ′ is either in or ; without loss
of generality, assume the former.

x1 x2 x3 x4 x5 x6
y1

y2

y3

y4

y5

y6

Figure 2: A 6× 6 grid, in which the convex chain P ′ (red) has size 3, and it is extended to a
convex pentagon P (red and blue) supported by the grid.

We now extend P ′ to a convex polygon P of size 5 by appending two vertices: (x6, y
′′)

and (x′′, y1). By construction, all five vertices of P have distinct coordinates. Moreover, the
points in P are in convex position, as each is an extreme point in P : (x2, y2) has the lowest
x-coordinate; (x5, y5) has the highest y-coordinate; (x6, y

′′) has the maximum x-coordinate;
and (x′′, y1) has the minimum y-coordinate. Finally, (x′, y′) is an extreme point in P ′, hence
P ′ has a supporting halfplane h whose boundary contains (x′, y′). Since P ′ ⊂ h, and we
have x2 < x′′ < x4 and y2 < y′′ < y4, the halfplane h contains (x6, y

′′) and (x′′, y1), as well,
(x′, y′) is an extreme point in P . Thus, we conclude that P is a supported convex polygon of
size 5 on X × Y .

Note that, although every pentagon supported by a grid lies on a 5× 5 subgrid, the
proof above does not work on a 5 × 5 grid. If we start with a 5 × 5 grid, and choose P ′

from an off-center 4× 4 subgrid, then we might not add be able to add two points from the
remaining 2× 2 subgrid. Specifically, the coordinates of the 4× t grid may force P ′ to be of
a specific type: the example in Figure 2 prevents P ′ from being in as all four central points

http://jocg.org/
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are above the dotted line. Starting with a 6× 6 grid, we know there are two extra points on
the outer boundary that can be added to P ′, regardless of the type of the chain P ′.

2 Extremal bounds for convex polytopes in Cartesian products

2.1 Lower bounds in the plane

In this section, we show that for every n ≥ 3, every n× n grid supports a convex polygon
with Ω(log n) vertices. The results on the Erdős–Szekeres number cannot be used directly,
since they crucially use the assumption that the given set of points is in general position. An
n× n section of the integer lattice is known to contain Θ(n) points in general position [15];
the maximum number of points in general position is conjectured to be π√

3
n(1+o(1)) [20, 34].

However, this result does not apply to arbitrary Cartesian products. It is worth noting that
higher dimensional variants for the integer lattice are poorly understood: it is known that an
n× n× n section of Z3 contains Θ(n2) points no three of which are collinear [25], but no
similar statements are known in higher dimensions. We use a recent result from incidence
geometry.

Lemma 2 (Payne and Wood [24]). Every set of N points in the plane with at most ` collinear,
where ` ≤ O(

√
N), contains a set of Ω(

√
N/ log `) points in general position.

Lemma 3. Every n× n grid supports a convex polygon of size (1− o(1)) log n.

Proof. Every n × n grid contains a set of Ω(
√
n2/ log n) = Ω(n/

√
log n) points in general

position by applying Lemma 2 with N = n2 and ` = n. Discarding points with the same x- or
y-coordinate reduces the size by a factor at most 1

4 , so this asymptotic bound also holds when
coordinates in X and Y are used at most once. By Suk’s result [32], this set of Ω(n/

√
log n)

points contains a convex polygon with at least (1− o(1))
(

log(n/
√

log n)
)

= (1− o(1)) log n
vertices, which have distinct x- and y-coordinates by construction, as required.

2.2 Upper bounds in the plane

For the upper bound, we construct n × n Cartesian products that do not support large
convex chains. For n = 8, such a grid is depicted in Figure 3.

Lemma 4. For every n ∈ N, there exists an n × n grid that contains at most dlog ne + 1
points in a convex chain; consequently, at most 4(dlog ne+ 1) points in convex position.

Proof. Let g(n) be the maximum integer such that for all n-element sets X,Y ⊂ R, the
grid X × Y supports a convex polygon of size g(n); clearly g(n) is nondecreasing. Let k
be the minimum integer such that n ≤ 2k; thus dlog ne ≤ k and g(n) ≤ g(2k). We show
that g(2k) ≤ 4(k + 1) and thereby establish that g(n) ≤ 4(k + 1).

Assume, without loss of generality, that n = 2k, and let X = {0, . . . , n − 1}. For
a k-bit integer m, let mi be the bit at its i-th position, such that m =

∑k−1
i=0 mi2

i. Let Y =

{
∑k−1

i=0 mi(2n)i : 0 ≤ m ≤ n − 1} (see Figure 3). Both X and Y are symmetric: X =

http://jocg.org/
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Figure 3: An 8 × 8 grid without convex chains of size greater than 4 = log 8 + 1, where
X = {0, 1, . . . , 7} and Y = {0, 1, 16, 17, 256, 257, 272, 273}. Two lines through pairs of grid
points are drawn in blue.

{max(X) − x : x ∈ X} and Y = {max(Y ) − y : y ∈ Y }. Thus, it suffices to show that no
convex chain P ∈ of size greater than k + 1 exists.

Consider two points, p = (x, y) and p′ = (x′, y′), in X × Y such that x < x′ and
y < y′. Assume y =

∑k−1
i=0 mi(2n)i and y′ =

∑k−1
i=0 m

′
i(2n)i. The slope of the line spanned

by p and p′ is slope(p, p′) =
∑k−1

i=0 (m′i −mi)(2n)i/(x′ − x). Let j be the largest index such
that mj 6= m′j . Then y < y′ implies mj < m′j , and we can bound the slope as follows:

slope(p, p′) ≥
(2n)j −

∑j−1
i=0 (2n)i

x′ − x
>

(2n)j − 2(2n)j−1

n− 1
= 2 · (2n)j−1,

slope(p, p′) ≤
∑j

i=0(2n)i

x′ − x
≤
∑j

i=0(2n)i

1
=

(2n)j+1 − 1

2n− 1
< 2 · (2n)j .

Hence, slope(p, p′) ∈ Ij , where Ij = (2 · (2n)j−1, 2 · (2n)j). Let us define the family of
intervals I0, I1, . . . , Ik−1 analogously, and note that these intervals are pairwise disjoint.
Suppose that some convex chain P ∈ contains more than k + 1 points. Since the
slopes of the first k + 1 edges of P decrease monotonically, by the pigeonhole principle,
there must be three consecutive vertices p = (x, y), p′ = (x′, y′), and p′′ = (x′′, y′′) of P
such that both slope(p, p′) and slope(p′, p′′) are in the same interval, say Ij . Assume that
y =

∑k−1
i=0 mi(2n)i, y′ =

∑k−1
i=0 m

′
i(2n)i, and y′′ =

∑k−1
i=0 m

′′
i (2n)i. Then j is the largest index

such that mj 6= m′j , and also the largest index such that m′j 6= m′′j . Because m < m′ < m′′,
we have mj < m′j < m′′j , which is impossible since each of mj , m′j and m

′′
j is either 0 or 1.

http://jocg.org/


JoCG 11(2), 205–233, 2020 211

Journal of Computational Geometry jocg.org

Hence, X × Y does not contain any convex chain in of size greater than k + 1.
Analogously, every convex chain in , , or has at most k + 1 vertices. Consequently,
X × Y contains at most 4(k + 1) points in convex position.

2.3 Upper bounds in higher dimensions

We construct Cartesian products in Rd, for d ≥ 3, that match the best known upper bound
O(logd−1 n) for the Erdős–Szekeres numbers in d-dimensions for points in general position.
Our construction generalizes the ideas from the proof of Lemma 4 to d-space.

Lemma 5. Let d ≥ 2 be an integer. For every integer n ≥ 2, there exist n-element sets
Xi ⊆ R for i = 1, . . . , d, such that the Cartesian product X =

∏d
i=1Xi contains at most

O(logd−1 n) points in convex position.

Before proving Lemma 5, we introduce some additional terminology and give a brief
overview of key ideas. Let d be a positive integer. Let ed be the standard basis vector
parallel to the xd-axis in Rd. For a point a ∈ Rd, let aproj denote the orthogonal projection
of a to the horizontal hyperplane xd = 0. Let P ⊂ Rd be a finite set in convex position;
refer to Figure 4. The point set P is full-dimensional if no hyperplane contains P . The
orthogonal projection of conv(P ) to the hyperplane xd = 0 is a convex polytope in Rd−1 that
we denote by conv(P )proj. The silhouette of P is the subset of points in P whose orthogonal
projection to xd = 0 lies on the boundary of conv(P )proj. Note that for every point p ∈ P
in the silhouette of P , the projection pproj is either a vertex of conv(P )proj or lies in the
relative interior of a face of conv(P )proj. Since no three points in P are collinear, at most
two points in P are projected to any point in the hyperplane xd = 0. A point p ∈ P is an
upper (resp., lower) vertex if P lies in the closed halfspace below (resp., above) some tangent
hyperplane of conv(P ) at p (a point in P may be both upper and lower vertex). For an
integer k ∈ {1, . . . , d}, a k-dimensional flat (for short, k-flat) is axis-aligned if it is parallel to
k coordinate axes; similarly, a k-dimensional polytope (k-polytope) is axis-aligned if its affine
hull is an axis-aligned k-flat. A k-flat or k-polytope is vertical if its affine hull is parallel to
the xd-axis; or equivalently if it contains a nondegenerate line segment parallel to the xd-axis.

The proof of Lemma 5 is constructive. For integers 0 ≤ i ≤ j, we recursively define a
2j× . . .×2j×2i grid in Rd, and denote it by Sd(i, j). For i ≥ 1, the grid Sd(i, j) is the disjoint
union of two translated copies of Sd(i− 1, j), one above the other. Then we prove that every
d-dimensional subset P ⊂ Sd(i, j) in convex position contains at most 2d(d+1) · i · jd−2 upper
(resp., lower) vertices. For i = j = log n, this implies that |P | ≤ 2·2d(d+1) ·jd−1 = Θ(logd−1 n).
The number of upper vertices in P can be bounded as follows (the case of lower vertices is
analogous). We partition the upper vertices in P into three subsets: (1) Upper vertices p ∈ P
such that pproj is a vertex of conv(P )proj in (d− 1)-dimensions. As pproj may be an upper
or a lower vertex in Sd−1(j, j), by induction, there are at most 2 · 2(d−1)d · jd−2 such points.
(2) Upper vertices p ∈ P such that pproj lies in the interior of conv(P )proj. We prove that
one of the two translated copies of Sd(i− 1, j) contains these points as upper vertices, and by
induction there are at most 2d(d+1) · (i− 1) · jd−2 such points. (3) Upper vertices p ∈ P such
that pproj lies on the boundary of conv(P )proj, but in the relative interior of some face of
conv(P )proj; see Figure 4 for examples. We show that only axis-aligned faces of conv(P )proj

http://jocg.org/
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Figure 4: A convex polyhedron conv(P ) in R3, whose projection conv(P )proj is a rectangle.
Seven points in P are projected onto the four vertices of conv(P )proj. Overall, the silhouette
of P contains twelve points, five of which project into the relative interior of some edges of
conv(P )proj. Red (blue) vertices are upper (lower); the purple point is both upper and lower.

can contain interior grid points. We can control the number of such faces and such interior
points by induction. Summation over axis-aligned faces of dimensions 1, . . . , d− 1 yields an
upper bound of (2d−1− 2)2(d−1)d+3 · jd−2 for such points. Summation over (1)–(3) yields the
desired upper bound 2d(d+1) · i · jd−2 for the number of upper (resp., lower) vertices.

Proof of Lemma 5. It is enough to prove the claim when n = 2j for integers j ≥ 0. For
integers d ≥ 3 and 0 ≤ i ≤ j, we recursively define the grid Sd(i, j) as a Cartesian product of
d sets of reals, where the first d− 1 sets have 2j elements and the last set has 2i elements. In
particular, |Sd(i, j)| = 2i+(d−1)j . We then show that Sd(i, j) does not contain the vertex set
of any full-dimensional convex polyhedron with more than 2(d

2+d+1) · i · jd−2 vertices.

To initialize the recursion, we define boundary values as follows: For every integer
j ≥ 0, let S2(j, j) be the 2j × 2j grid defined in the proof of Lemma 4 that does not
contain more than 4(j + 1) points in convex position. Note that every line that contains 3
or more points from S2(j, j) is axis-parallel (this property was not needed in the proof of
Lemma 4). Assume now that d ≥ 3, and Sd−1(j, j) has been defined for all j ≥ 0; and for
all k ∈ {1, . . . , d− 2}, if a point p ∈ Sd−1(j, j) lies in the relative interior of k-polytope F
whose vertices are in Sd−1(j, j), then F is axis-aligned.

Let j be a nonnegative integer. We now construct Sd(i, j) for all integers 0 ≤ i ≤ j
as follows. Let Sd(0, j) = Sd−1(j, j)× {0}. For i = 1, . . . , j, we define Sd(i, j) as the disjoint
union of two translates of Sd(i−1, j). Specifically, let Sd(i, j) = A∪B, where A = Sd(i−1, j)
and B = A+ λided, where λ

i
d > 0 is a (large) scalar satisfying the following two conditions.

(C1) For all p ∈ A ∪ B and Q ⊂ A ∪ B, if p is in the relative interior of conv(Q), then
conv(Q) is an axis-aligned polytope.

(C2) For all pa ∈ A, pb ∈ B, and Q ⊂ Sd(0, j) = Sd−1(j, j) × {0}, if both pproja and pprojb

are in the relative interior of conv(Q), then the line papb intersects the horizontal
hyperplane xd = 0 in the relative interior of conv(Q).

http://jocg.org/
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We show that a scalar λid satisfying both (C1) and (C2) exists. First, we may
assume that λid > 0 is sufficiently large so that A and B are separated by some horizontal
hyperplane. Consider a set Q ⊂ A ∪B such that Q contains points in both A and B. Let
F = conv(Q), Fa = conv(Q ∩ A), and Fb = conv(Q ∩ B). Since conv(Q) = conv(Fa ∪ Fb),
we have F ⊂ conv(Fa ∪B) and F ⊂ conv(A ∪ Fb). We set λid > 0 sufficiently large so that
every point in A∩ conv(Fa ∪B) is on a vertical line passing through a point in Fa, and every
point in B ∩ conv(A ∪ Fb) is on a vertical line passing through a point in Fb. Assume that
this condition holds for all Q ⊂ A ∪B, where Q ∩A 6= ∅ and Q ∩B 6= ∅.

We show that (C1) holds if λid is chosen as specified above. Let Q ⊂ A ∪B and let
p ∈ A ∪B be in the relative interior of conv(Q). Let F = conv(Q), Fa = conv(Q ∩A), and
Fb = conv(Q ∩ B), as above, and F is a k-dimensional polytope for some k ∈ {1, . . . , d}.
We distinguish between several cases based on the location of p. (1) If p is in the relative
interior of Fa (resp., Fb), then Fa (resp., Fb) is axis-aligned by induction, and it has the same
dimension as F , hence F is also axis-aligned. (2) Otherwise p is contained in the relative
interior of neither Fa nor Fb. By Carathéodory’s theorem [12], p is in the relative interior
of some simplex F ′ = conv(Q′) with vertex set Q′ ⊂ Q such that Q′ has vertices in both A
and B. By the choice of λid, point p is on the vertical line passing through a point in Q′ ∩A
or Q′ ∩ B. This implies that p lies on a vertical line segment contained in F ′, hence in F .
Consequently, F is parallel to the xd-axis, and F proj is a (k − 1)-polytope. If k = 1, this
already proves that F is axis-aligned. Assume that k > 1 and note that pproj ∈ Sd−1(j, j)
and it is in the relative interior of F proj. By induction, F proj is an axis-aligned (k − 1)-
polytope. Overall, F is parallel to the xd-axis and the k− 1 coordinate axes parallel to F proj,
consequently F is axis-aligned, as required.

To satisfy condition (C2), notice that for any pa ∈ A and pb ∈ B, the intersection
of the line papb and the hyperplane xd = 0 can be arbitrarily close to pproja if λid > 0 is
sufficiently large. This completes the definition of Sd(i, j) for d ≥ 3 and 0 ≤ i ≤ j.

Note, however, that in each iteration of the recursive contraction of Sd(i, j), we only
imposed lower bounds for the scalars λid, and different values of these parameters would yield
different point sets. For all integers d ≥ 1 and 0 ≤ i ≤ j, let Sd(i, j) denote the collection
of all 2j × . . .× 2j × 2i grids that can be obtained by the recursive construction above, in
particular every grid in Sd(i, j) satisfies both (C1) and (C2) in each iteration. Our proof
relies on the following relation between these constructions.

Claim 1. Let 2 ≤ ` ≤ d, let Sd(i, j) ∈ Sd(i, j), and let W be an axis-aligned vertical `-flat
such that Sd(j, j) ∩W 6= ∅. Then Sd(i, j) ∩W ∈ S`(i, j).

To prove Claim 1, note first that Sd(i, j) ∩W is a 2j × . . .× 2j × 2i grid. It can be
obtained by the recursive construction above with suitable parameters λid in the recursive
steps. Indeed, assume that Sd(i, j) = A ∪ B, where A = Sd(i − 1, j) and B = A + λided.
Then Sd(i, j) ∩W = (A ∩W ) ∪ (B ∪W ). As both (C1) and (C2) are formulated in terms of
the relative interior of a set Q ⊂ A ∪B, both conditions hold for Q ⊂ (A ∪B) ∩W , as well.
This completes the proof of Claim 1.

In the remainder of the proof, we establish the following claim by induction:
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Claim 2. Let 2 ≤ d and Sd(i, j) ∈ Sd(i, j). If P ⊂ Sd(i, j) is a d-dimensional set in convex
position, then P contains at most 2d(d+1) · i · jd−2 upper (resp., lower) vertices of conv(P ).

We prove Claim 2 by induction on d+ i. We focus on the number of upper vertices in
P , the case of lower vertices follows analogously (e.g., by reflection in a horizontal hyperplane).

In the base case, we have d = 2 and i = 0. Then the set Sd(0, j) = Sd−1(j, j)× {0}
lies in a horizontal hyperplane in Rd, and so a subset P ⊂ Sd(0, j) cannot be full-dimensional,
hence the claim vacuously holds for all P ⊂ Sd(0, j). We observe a key property for P (which
will be used in the case i = 1). If d = 2 and P ⊂ Sd(0, j) is a 1-dimensional set, then P has
precisely two extreme points in R2. If d ≥ 3 and P ⊂ Sd(0, j) is a (d− 1)-dimensional set,
then by induction it contains at most 2(d−1)d · j · jd−3 upper (resp., lower) vertices in Rd−1,
hence it has at most 2 · 2(d−1)d · jd−2 extreme points in Rd.

Assume next that i = 1, and either d = 2 or the claim holds for Sd−1(j, j). We
prove the claim for Sd(1, j). The set Sd(1, j) is the disjoint union of A = Sd(0, j) and
B = Sd(0, j) + λ1ded. Let P ⊂ Sd(1, j) be in convex position. Then every upper (resp.,
lower) vertex of P is an extreme vertex in P ∩ A or P ∩ B, hence P contains at most
2 · 2 · 2(d−1)d · jd−2 = 2d

2−d+2 · jd−2 ≤ 2d(d+1) · jd−2 = 2d(d+1) · 1 · jd−2 upper (resp., lower)
vertices.

In the general case, we assume that 2 ≤ i ≤ j, the claim holds for Sd(i− 1, j), and
either d = 2 or the claim holds for Sd−1(j, j), as well. We prove the claim for Sd(i, j). Recall
that Sd(i, j) is the disjoint union of two translates of Sd(i− 1, j), namely A = Sd(i− 1, j)
and B = Sd(i− 1, j) + λided. Let P ⊂ Sd(i, j) be a full-dimensional set in convex position.
We partition the upper vertices in P as follows. For every upper vertex p, we have pproj ∈
conv(P )proj, and pproj is either a vertex of conv(P )proj or lies in the relative interior of a
k-face of conv(P )proj for some k ∈ {1, . . . , d− 1}. Let P0 be the set of upper vertices p ∈ P
such that pproj is a vertex of conv(P )proj. For all k ∈ {1, . . . , d− 1}, let Pk ⊂ P be the set
of upper vertices of P such that pproj lies in the relative interior of a k-face of conv(P )proj.
Then

⋃d−1
k=0 Pk is the set of all upper vertices in P .

The orthogonal projection of Sd(i, j) to the hyperplane xd = 0 is Sd−1(j, j), and
the orthogonal projection of P0, denoted P

proj
0 ⊂ Sd−1(j, j), is the vertex set of a (d − 1)-

dimensional convex polyhedron. By induction, |P0| ≤ 2 · 2(d−1)d · j · jd−3 = 2(d−1)d+1jd−2.
To derive an upper bound on |Pk| for k ∈ {1, . . . , d− 1}, note that only axis-aligned faces of
conv(P )proj can contain grid points of Sd−1(j, j) in their relative interior by condition (C1).
In order to complete the proof of Claim 2, we prove the following.

Claim 3. For every axis-aligned face F of conv(P )proj, either A or B contains all upper
(resp., all lower) vertices that project to the relative interior of F .

Let F be an axis-aligned k-face of conv(P )proj for k ∈ {1, 2, . . . , d−1}. Let P (F ) ⊂ P
be the set of upper vertices p ∈ P such that pproj lies in the relative interior of F , and let
V (F ) be the vertex set of F . Since F is a face of the convex polytope conv(P )proj in the
horizontal hyperplane xd = 0, we have V (F ) ⊂ Sd−1(j, j) and V (F ) is in convex position.
Consider the point set P ′ = V (F ) ∪ P (F ), and observe that if P (F ) 6= ∅, then P ′ is the
vertex set of the (k + 1)-polytope conv(P ′), in which F is one of the facets.
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It remains to show that P (F ) ⊆ A or P (F ) ⊆ B. Suppose, for the sake of contradic-
tion, that P (F ) contains points from both A and B. Let pa be a vertex in P (F )∩A with the
maximum xd-coordinate. By construction, every point in B has higher xd-coordinate than
any point in A (including pa and all vertices of V (F )). The 1-skeleton of conv(P ′) contains
a xd-monotonically increasing path from pa to an xd-maximal vertex in P ′. Let pb be the
neighbor of pa along such a path. By the maximality of pa, we have pb ∈ B. Then papb is
an edge of conv(P ′), hence the line papb is disjoint from the interior of conv(P ′). However,
by condition (C2), the line papb intersects the relative interior of facet F of conv(P ′). This
contradiction completes the proof of Claim 3.

We can now finish the proof of Claim 2. We have seen that |P0| ≤ 2(d−1)d+1jd−2. It
remains to bound |Pk| for k ∈ {1, . . . , d− 1}. Note that conv(P )proj is a (d− 1)-dimensional
polytope. We can apply Claim 3 for k = d − 1 and F = conv(P )proj, and conclude
that either A or B contains all points in Pd−1. The points in Pd−1 are upper vertices of
conv(Pd−1). Since both A and B are translates of Sd(i − 1, j), the induction hypothesis
yields |Pd−1| ≤ 2d(d+1) · (i− 1) · jd−2.

For k ∈ {1, . . . , d−2}, the axis-aligned k-faces of conv(P )proj are partitioned into
(
d−1
k

)
equivalence classes. In each equivalence class, the k-faces F are parallel to the same coordinate
axes. In the projection to an orthogonal (d− k − 1)-dimensional space (of the hyperplane
xd = 0), they become vertices of a (d− k− 1)-polytope. By induction, the number of (upper
and lower) vertices of such a polytope is bounded above by 2 · 2(d−k−1)(d−k)j(d−k−1)−1 =
2(d−k−1)(d−k)+1jd−k−2; this is an upper bound on the size of the equivalence class. Each axis-
aligned k-face F of conv(P )proj is the orthogonal projection of some axis-aligned (k+ 1)-face
of conv(P ), that we denote by F . Claim 1 with ` = k + 1 ≤ d− 1 implies that the induction
hypothesis holds for F , and it yields an upper bound of 2(k+1)(k+2) · jk for the number of
upper vertices in F . Overall, we have

|Pk| ≤
(
d− 1

k

)
· 2(d−k−1)(d−k)+1jd−k−2 · 2(k+1)(k+2) · jk

≤
(
d− 1

k

)
· 2(d−1)d+3 · jd−2,

where we used that (d−k−1)(d−k)+1+(k+1)(k+2) = (d−1)d+2k(k+2−d)+3 ≤ (d−1)d+3
for all k ∈ {1, . . . , d− 2} and d ≥ 3. Altogether, the number of upper vertices is

d−1∑
k=0

|Pk| = |P0|+

(
d−2∑
k=1

|Pk|

)
+ |Pd−1|

≤ 2 · 2(d−1)d · jd−2 +

(
d−2∑
k=1

(
d− 1

k

)
2(d−1)d+3 · jd−2

)
+ 2d(d+1) · (i− 1) · jd−2

< 2d−1 · 2(d−1)d+3jd−2 + 2d(d+1) · (i− 1) · jd−2

< 2d(d+1)jd−2 + 2d(d+1) · (i− 1) · jd−2

= 2d(d+1) · i · jd−2,

as required, where we used the binomial theorem. This completes the proof of Claim 2.
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Claim 2 immediately implies Lemma 5 by taking n = 2j and X = Sd(j, j), since
2 · 2d(d+1) · jd−1 = Θ(logd−1 n) for every fixed d ≥ 2.

2.4 Lower bounds in higher dimensions

The proof technique in Section 2.1 is insufficient for establishing a lower bound of Ω(logd−1 n)
for d ≥ 3. Whereas a d-dimensional n× . . .×n grid contains Ω(nδ) points in general position
for some δ = δ(d) > 0 [7], the current best lower bound on the number of points in convex
position in any set of n points in general position in Rd is Ω(log n); the conjectured value
is Ω(logd−1 n). Instead, we rely on the structure of Cartesian products and induction on d.
Our main result in this section is the following.

Theorem 6. Every d-dimensional Cartesian product
∏d
i=1Xi, where |Xi| = n and d is fixed,

contains Ω(logd−1 n) points in convex position.

We say that a strictly increasing sequence of real numbers A = (a1, . . . , an) has the
monotone differences property (for short, A is MD) if

• ai+1 − ai > ai − ai−1 for i = 2, . . . , n− 1, or

• ai+1 − ai < ai − ai−1 for i = 2, . . . , n− 1.

Furthermore, the sequence A is r-MD for some r > 1 if

• ai+1 − ai ≥ r(ai − ai−1) for i = 2, . . . , n− 1, or

• ai+1 − ai ≤ (ai − ai−1)/r for i = 2, . . . , n− 1.

A finite set X ⊆ R is MD (resp., r-MD) if its elements arranged in increasing order form an
MD (resp., r-MD) sequence. These sequences are intimately related to convexity: a strictly
increasing sequence A = (a1, . . . , an) is MD if and only if there exists a monotone (increasing
or decreasing) convex function f : R→ R such that ai = f(i) for all i = 1, . . . , n. MD sets
have been studied in additive combinatorics [13, 21, 26, 30].

We first show that every n-element set X ⊆ R contains an MD subset of size Ω(log n),
and this bound is the best possible (Lemma 7). In contrast, every n-term arithmetic
progression contains an MD subsequence of Θ(

√
n) terms: for example (0, . . . , n−1) contains

the subsequence (i2 : i = 0, . . . , b
√
n− 1c). We then show that for constant d ≥ 2, the

d-dimensional Cartesian product of n-element MD sets contains Θ(nd−1) points in convex
position. The combination of these results immediately implies that every n × . . . × n
Cartesian product in Rd contains Ω(logd−1 n) points in convex position.

The following lemma gives a lower bound for MD sequences. It is known that a
monotone sequence of n reals contains a 2-MD sequence (satisfying the so-called doubling
differences condition [29]) of size Ω(log n) [6, Lemma 4.1]; see also [9, 14] for related recent
results.

http://jocg.org/


JoCG 11(2), 205–233, 2020 217

Journal of Computational Geometry jocg.org

Lemma 7. Every set of n real numbers contains an MD subset of size b(log n)/2c+ 1. For
every n ∈ N, there exists a set of n real numbers in which the size of every MD subset is at
most dlog ne+ 1.

Proof. Let X = (x0, . . . , xn−1) be a strictly increasing sequence. Assume, without loss of
generality, that n = 2` + 1 for some ` ∈ N. We construct a sequence of nested intervals

[a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [a`, b`]

such that the endpoints of the intervals are in X and the lengths of the intervals decrease by
factors of 2 or higher, that is, bi − ai ≤ (bi−1 − ai−1)/2 for i = 1, . . . , `.

We start with the interval [a0, b0] = [x0, xn−1]; and for every i = 0, . . . , `−1, we divide
[ai, bi] into two intervals at the median, and recurse on the shorter interval; see Figure 5.

a0

a1

a2

a3

a4

b0

b1

b2

b3

b4

m0

m1

m2

m3

b0

Figure 5: A sequence X of 17 elements and nested intervals [a0, b0] ⊃ . . . ⊃ [a4, b4].

By partitioning [ai, bi] at the median, the algorithm maintains the invariant that
[ai, bi] contains 2`−i + 1 elements of X. Note that for every i = 1, . . . , `, we have either
(ai−1 = ai and bi−1 > bi) or (ai−1 < ai and bi = bi−1). Consequently, the sequences
A = (a0, a1, . . . , a`) and B = (b`, b`−1, . . . , b0) both increase (not necessarily strictly), and at
least one of them contains at least 1 + `/2 distinct terms. Assume, without loss of generality,
that A contains at least 1 + `/2 distinct terms. Let C = (c0, . . . , ck) be a maximal strictly
increasing subsequence of A. Then k ≥ `/2 = b(log n)/2c.

We show that C is an MD sequence. Let i ∈ {1, . . . , k − 1}. Assume that ci =
aj = . . . = aj′ for consecutive indices j, . . . , j′. Then ci−1 = aj−1, ci = aj , and ci+1 = aj′+1.
By construction, ci ∈ [aj−1, bj−1] = [ci−1, bj ] such that ci − ci−1 ≥ bj − ci. Similarly,
ci+1 ∈ [aj′ , bj′ ] = [ci, bj′ ] such that ci+1 − ci ≥ bj′ − ci+1. However, [aj , bj ] ⊂ [aj−1, bj−1]. As
required, this yields

ci+1 − ci = aj′+1 − aj < bj − aj ≤
bj−1 − aj−1

2
≤ aj − aj−1 = ci − ci−1.

For the upper bound, consider the n × n grid {0, . . . , n − 1} × Y , defined in the
proof of Lemma 4, for which every chain in or supported by {0, . . . , n − 1} × Y has
at most dlog ne + 1 vertices. We claim that the size of every MD subset of Y ⊂ R is at
most dlog ne+ 1. Let {b0, . . . , b`−1} ⊂ Y be an MD subset such that b0 < . . . < b`−1. Then
{(i, bi) : i = 0, . . . , `− 1} ⊂ X × Y is in or . Consequently, every MD subset of Y has at
most dlog ne+ 1 terms, as claimed.
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a7a1 a2 a3 a4 a5 a6

b7

b1

b2

b3

b5
b6

b4

Figure 6: A 7× 7 grid {a1, . . . , a7} × {b1, . . . , b7}, where the differences between consecutive
x-coordinates (resp., y-coordinates) decrease by factors of 2 or higher. The point sets
{(0, 0)} ∪ {(ai, bj) : i+ j = k}, for k = 2, . . . , 8, form nested convex chains.

We show how to use Lemma 7 to establish a lower bound in the plane. While this
approach yields worse constant coefficients than Lemma 3, its main advantage is that it
generalizes to higher dimensions (see Lemma 10 below).

Lemma 8. The Cartesian product of two MD sets, each of size n, supports n points in
convex position.

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be MD sets such that ai < ai+1 and
bi < bi+1 for i ∈ {1, . . . , n− 1}. We may assume, by applying a reflection if necessary, that
ai+1 − ai < ai − ai−1 and bi+1 − bi < bi − bi−1, for i ∈ {2, . . . , n− 1}; see Figure 6.

We define P ⊂ A × B as the set of n points (ai, bj) such that i + j = n + 1. By
construction, every horizontal (vertical) line contains at most one point in P . Since the
differences ai − ai−1 are positive and strictly decrease in i; and the differences bn−i − bn−i−1
are also positive and strictly decrease in i, the slopes (bn−i − bn−i−1)/(ai − ai−1) strictly
decrease, which proves the convexity of P .

Lemma 9. The Cartesian product of three MD sets, each of size n, contains
(
n+1
2

)
points in

convex position.

Proof. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn} be MD sets, where the
elements are labeled in increasing order. We may assume, by applying a reflection in the x-,
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y-, or z-axis if necessary, that

ai+1 − ai < ai − ai−1, bi+1 − bi < bi − bi−1, ci+1 − ci < ci − ci−1,

for i = 2, . . . , n − 1. For i, j, k ∈ {1, . . . , n}, let pi,j,k = (ai, bj , ck) ∈ A × B × C. We can
now let P = {pi,j,k : i + j + k = n + 2}. It is clear that |P | =

∑n
i=1 i =

(
n+1
2

)
. We let

P ′ = P ∪ {p1,1,1} and show that the points in P ′ are in convex position.

By Lemma 8, the points in P ′ lying in the planes x = a1, y = b1, and z = c1 are each
in convex position. These convex (n + 1)-gons are faces of the convex hull of P , denoted
conv(P ). We show that the remaining faces of conv(P ) are the triangles T ′i,j,k spanned
by pi,j,k, pi,j+1,k−1, and pi+1,j,k−1; and the triangles T ′′i,j,k spanned by pi,j,k, pi,j−1,k+1, and
pi−1,j,k+1.

The projection of these triangles to an xy-plane is shown in Figure 6. By construction,
the union of these faces is homeomorphic to a sphere. It suffices to show that the dihedral
angle between any two edge-adjacent triangles is convex. Without loss of generality, consider
triangle T ′i,j,k, which shares an edge with (up to) three other triangles: T ′′i+1,j,k−1, T

′′
i,j+1,k−1,

and T ′′i+1,j+1,k−2. Consider first the triangles T ′i,j,k and T ′′i+1,j+1,k−2. They share the edge
pi+1,j−1,k+1pi−1,j+1,k+1, which lies in the xy-plane z = ck+1. The orthogonal projections
of these triangles to an xy-plane are congruent, however their extents in the z-axis are
ci+1− ci and ci− ci−1, respectively. Since ci+1− ci < ci− ci−1, their dihedral angle is convex.
Similarly, the dihedral angles between T ′i,j,k and T

′′
i+1,j,k−1 (resp., T

′′
i,j+1,k−1) is convex because

ai+1 − ai < ai − ai−1 and bi+1 − bi < bi − bi−1.

The proof technique of Lemma 9 generalizes to higher dimensions:

Lemma 10. For every constant d ≥ 2, the Cartesian product of d MD sets, each of size n,
contains Ω(nd−1) points in convex position.

Proof. We proceed by induction on d. For d = 2 and d = 3, Lemmas 8 and 9 prove the claim.
Assume that d ≥ 4, and the claim holds in lower dimensions. For every i ∈ {1, . . . , d}, let
Ai = {ai,1, . . . , ai,n} ⊂ R be an MD set such that ai,1 < . . . < ai,n. We may assume, without
loss of generality, that the differences between consecutive elements in Ai strictly decrease
for all i ∈ {1, . . . , d}.

For every vector v = (v1, . . . , vd) ∈ {1, . . . , n}d, let pv = (a1,v1 , a2,v2 , . . . , ad,vd) ∈∏d
i=1Ai. Let P = {pv :

∑d
i=1 vi = n + d − 1}. It is easy to see that |P | = Θ(nd−1). Let

P ′ = P ∪ {p1,...,1}. We show that the points in P ′ are in convex position. We define a
(d− 1)-dimensional piecewise linear manifold M as the union of (d− 1)-dimensional convex
polyhedra (facets). We show that M is homeomorphic to the sphere Sd−1. We also show that
M is the boundary of a convex polytope by verifying that the dihedral angle between any
two adjacent facets is convex. It follows that M is the boundary of conv(P ′), consequently
P ′ is in convex position.

For every i ∈ {1, . . . , d}, the points of P ′ lying in the hyperplane xi = ai,1 are in
convex position by induction, hence they each span a (d− 1)-dimensional facets of conv(P ′).
For every vector v ∈ {1, . . . , n − 1}d, consider the hyperrectangle rv =

∏d
i=1[ai,vi , ai,vi+1],
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pu

ru

pv

rv

pw

rw

fv

ai,j − ai,j−1 ai,j+1 − ai,j

fu

fwfv

Figure 7: Left: A rectangle rv in R3, and two possible locations for fv, depending on the
parity of v1 + v2 + v3. (In general, the position of fv in rv depends on

∑d
i=1 vi (mod d− 1).)

Right: Two adjacent facets fu, fw ∈ F in two adjacent hyperrectangles ru and rw.

where [ai,vi , ai,vi+1] is the i-th extent of rv. All vertices of each rv are in
∏d
i=1Ai, and

the hyperrectangles jointly tile the bounding box
∏d
i=1[ai,1, ai,n]. For every rv, let Fv =

conv(P ∩ rv), that is, the convex hull of vertices of rv that are in P ; see Figure 7(left).
By construction, every Fv is at most (d− 1)-dimensional (possibly empty). Let F be the
set of (d − 1)-dimensional polyhedra Fv, where v ∈ {1, . . . , n − 1}d, we call them facets.
By construction, the union of the facets in F , together with the facets in the hyperplanes
xi = ai,1 for all i ∈ {1, . . . , d}, is homeomorphic to Sd−1. Consider two facets fu, fw ∈ F
that share a (d− 2)-dimensional face; see Figure 7(right). Then fu and fw lie in two adjacent
hyperrectangles, say ru and rw, whose common boundary is (d− 1)-dimensional, and it is
contained in a hyperplane xi = ai,j for some i ∈ {1, . . . , d} and j ∈ {2, . . . , n− 1}. The facet
fu (resp., fw) is parallel to the (d− 1)-simplex spanned by the d vertices of ru (resp., rw)
adjacent to pu (resp., pw). Since Ai is MD, we have ai,j+1 − ai,j < ai,j − ai,j−1. Note that
ai,j+1 − ai,j and ai,j − ai,j−1 are the i-th extents of ru and rw, respectively; and ru and rw
have the same extent in the remaining d− 1 coordinates. Consequently, the dihedral angle
between fu and fw is convex, as required.

Now Theorem 6 follows from Lemma 7 and Lemma 10.

3 Algorithms

In this section, we describe polynomial-time algorithms for (i) finding convex chains and caps
of maximum size; and (ii) approximating the maximum size of a convex polygon; where these
structures are supported by a given grid. The main challenge is to ensure that the vertices of
the convex polygon (resp., chain) have distinct x- and y-coordinates. The coordinates of a
point p ∈ X × Y are denoted by x(p) and y(p).

As noted in Section 1, efficient algorithms are available for finding a largest convex
polygon or convex cap contained in a planar point set. We briefly review these results as
they provide an algorithm for the case of maximum chains supported by a grid, since the
points in a convex chain have distinct x- and y-coordinates.

Given a set P of N points in the plane, Edelsbrunner and Guibas [11, Thm. 5.1.2] use
the dual line arrangement and dynamic programming to find the maximum size of a convex
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cap contained in y in O(N2) time and O(N) space; the same bounds hold for y, y, and
y

.
A convex cap of maximum length can be also computed in O(N2 logN) time and O(N logN)
space. Their method sweeps the dual line arrangement, in which each vertex (intersection of
two dual lines) corresponds to a line segment pq for p, q ∈ P , p 6= q. Specifically, for every
pair of points p, q ∈ P , let L(p, q) be the maximum length of a chain in y whose last two
vertices are p and q, respectively. Similarly, let R(p, q) be the maximum length of a chain
in y whose first two vertices are p and q, respectively. The sweepline algorithm in [11]
computes the values L(p, q) (or all values R(p, q)) for all p, q ∈ P , p 6= q, in O(N2) time.

The following observation allows us to adapt the algorithm in [11] to find the maximum
size of a convex cap in (alternatively, to report a longest such chain) within the same time
and space bounds. Analogous observations hold for , , and .

Observation 11. Let P be a finite set of points in the plane, and let p, q ∈ P such that
x(p) < x(q). If slope(pq) > 0, then L(p, q) is the maximum length of a chain in whose last
two vertices are p and q.

Consequently, the maximum length of a chain in is maxL(p, q), where the maximum
is taken over all pairs p, q ∈ P where x(p) < x(q) and y(p) < y(q). Since x- and y-coordinates
do not repeat in a convex chain, we obtain the following result.

Theorem 12. In a given n× n grid, the maximum size of a supported convex chain can be
computed in O(n4) time and O(n2) space; and a supported convex chain of maximum size
can be computed in O(n4 log n) time and O(n2 log n) space.

3.1 Convex caps

In order to compute the maximum size of a convex cap in y, we must be careful to use each
y-coordinate at most once. We solve the more general problem of computing the maximum
total size of two chains A ∈ and B ∈ that use distinct y-coordinates. Note that in
contrast to the chains constituting a convex cap, the chains A and B may cross, or can have
overlapping x-projections.

We present below a dynamic program to solve this problem, essentially building up
solutions from bottom to top. To define the appropriate subproblem, we need to be able
to refer to the last segment on the upper side of a chain. Hence, we refer to the last two
vertices of A as l1 and l2, setting l2 := l1 if A is to consist of the single vertex l1. Similarly,
we refer to the first two vertices of B as r1 and r2, setting r2 := r1 if B is to consist of the
single vertex r1. The subproblem C(l1, l2, r1, r2) then expresses the maximum total size of
two chains A ∈ and B ∈ with the given end vertices for A and start vertices for B. We
claim that C(l1, l2, r1, r2) as defined below yields the desired quantity, or −∞ if no such
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r1

r2

l1

l2

r1 = r2
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(a) (b)

r1

r2

l1

l2

v

r1

r2

l1

l2

(c) (d)

Figure 8: Illustration for the cases of C(l1, l2, r1, r2). (a) Invalid configuration, as y(r2) = y(l2).
(b) r1 = r2 is a single point above l2, so we look for the longest chain ending in (l1, l2).
(c) Removing the topmost point (l2 in this case), testing all valid possible v to find the
longest chain. Note that the left and right chain may not complete to a cap – this is checked
separately. (d) We need test only whether (l1, l2) and (r1, r2) combine to make a cap (purple
dotted line) to check whether the entry (l1, l2, r1, r2) should be considered.

chains A and B exist.

C(l1, l2, r1, r2) =



−∞ if l1 6= l2 and (l1, l2) /∈ , or
r1 6= r2 and (r1, r2) /∈ , or
{y(l1), y(l2)} ∩ {y(r1), y(r2)} 6= ∅

2 else, if l1 = l2 and r1 = r2
L(l1, l2) + 1 else, if r1 = r2 and y(l2) < y(r1)
R(r1, r2) + 1 else, if l1 = l2 and y(l2) > y(r1)

max
(v,l1,l2)∈ or v=l1

C(v, l1, r1, r2) + 1 else, if y(l2) > y(r1)

max
(r1,r2,v)∈ or v=r1

C(l1, l2, r2, v) + 1 else, y(l2) < y(r1).

Informally, the first clause of the definition of C(l1, l2, r1, r2) gets rid of invalid
arguments, for which no such chains A ∈ and B ∈ exist; see also Figure 8. The
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second clause is the base case where A and B each have one vertex. The third and fourth
clause handle the case where the topmost chain consists of a single vertex—it can thus not
interfere with the other (longer) chain anymore. Here, L(p1, p2) (resp., R(p1, p2)) denotes
the size of a largest convex chain P in (resp., ), ending (resp., starting) with vertices p1
and p2, or P = (p1) if p1 = p2. We can use the dynamic programming algorithm of [11]
to compute L(p1, p2) and R(p1, p2). The final two clauses deal with the case where the
topmost chain consists of at least one edge, looking for the largest pair of chains that can
be constructed by adding the topmost vertex to a ‘lower’ pair of chains. We prove the
correctness of the formula in Lemma 15, using the following general observations.

Observation 13. If a supported convex polygon P is in a set , , , , y,

y

, y, or y,
then every subsequence of P is in the same set. That is, these classes are hereditary.

Lemma 14. Let A = (a1, . . . , ak) and B = (b1, . . . , bk′) with k, k′ ≥ 2, ak−1 = b1 and
ak = b2. If A and B are both in the same set of , , , or , then their concatenation
D = (a1, . . . , ak, b3, . . . , bk′) is in the same set.

Proof. Consider the case that A and B are in ; the other cases are analogous. This means
that both x-coordinates and their y-coordinates strictly increase in A and B. As ak = b2,
we know that x(ak) < x(bi) and y(ak) < y(bi) for all i > 2. Therefore, the concatenation
D = (a1, . . . , ak, b3, . . . , bk′ has strictly increasing x- and y-coordinates. Except for its
endpoints, each vertex of D is an interior vertex of A or B. Since A and B are convex, this
readily implies that all interior vertices of D are convex and hence D is convex. Thus, D is
in as well.

Lemma 15. Let k be the maximum total size of two chains A ∈ and B ∈ that use
distinct y-coordinates, subject to the constraints that A ends in a given edge (l1, l2) (or A = (l1)
if l1 = l2) and B starts in a given edge (r1, r2) (or B = (r1) if r1 = r2), or let k = −∞ if no
such chains exists. Then C(l1, l2, r1, r2) = k.

Proof. Suppose that A ∈ and B ∈ realize the maximum total size over all chains with
distinct y-coordinates under the given constraints. If the y-coordinates of {l1, l2} and {r1, r2}
are not disjoint, then A and B do not use distinct y-coordinates, so C(l1, l2, r1, r2) correctly
returns −∞. So suppose that the y-coordinates differ. If l1 = l2 and r1 = r2, then A and B
both have size 1, and we correctly return 2.

If l1 6= l2 and A ∈ , then by Observation 13 we must have (l1, l2) ∈ , so we correctly
return −∞ if (l1, l2) 6∈ . Similarly, if r1 6= r2 and (r1, r2) 6∈ , we correctly return −∞.

For the remaining cases, the point of {l1, l2, r1, r2} with maximum y-coordinate will be
either l2 or r1. If y(l2) < y(r1) and r1 = r2, then B has size 1 and A has only y-coordinates at
most that of l2. Since y(l2) < y(r1), any chain of that ends in (l1, l2) will have y-coordinates
distinct from B, so A has the maximum size over all chains of ending in (l1, l2), as given
by L(l1, l2). Therefore we correctly return L(l1, l2) + 1. Symmetrically, if y(r1) < y(l2)
and l1 = r2, we correctly return R(r1, r2) + 1.

Two (symmetric) cases remain: either y(l2) < y(r1) and r1 6= r2, or y(r1) < y(l2)
and l1 6= l2. We use induction on the maximum y-coordinate to prove that C(l1, l2, r1, r2) = k
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in these cases. We show the case where y(l2) < y(r1) and r1 6= r2, the argument for the other
case is symmetric. Removing the point r1 from chain B results in a chain B′ ∈ of size one
less than that of B. The chain B′ starts in r2, and its y-coordinates are still disjoint from
those of A. Since B had at least one edge, B′ consists either of a single vertex (namely r2),
or it starts with an edge (r2, v) for which (r1, r2, v) ∈ . Since these are exactly the terms we
take the maximum over in the last clause of the definition of C(l1, l2, r1, r2), we by induction
return at least k.

It remains to show that, C(l1, l2, r1, r2) ≤ k. For this, let A” ∈ and B” ∈
be two chains that realize the maximum total size over all pairs of chains with distinct y-
coordinates, where A” ends in (l1, l2) and B” consists either of the single vertex r2, or it
starts with an edge (r2, v) for which (r1, r2, v) ∈ (if no such chains exist, we correctly
return −∞ + 1 = −∞). It suffices to show that adding r1 in front of chain B” yields a
chain of with y-coordinates distinct from those of A”. Indeed, since y(r1) is greater than
all other y-coordinates, the y-coordinates remain distinct. Moreover, if B” consists of the
single vertex r2, adding r1 in front of it yields (r1, r2), which we have already verified to lie
in (we would have returned −∞ otherwise). If B” ∈ instead starts in an edge (r2, v)
for which (r1, r2, v) ∈ , then the chain with r1 in front also lie in , by Lemma 14.
Hence, C(l1, l2, r1, r2) returns at most k, and hence exactly k.

Lemma 16. The value of C for all inputs can be computed in O(n10) time and O(n8) space.

Proof. Deciding the applicable clause for an input takes constant time. Each clause takes at
most O(n2) time to compute, assuming that the referenced terms C, L, and R are already
computed. For the third and fourth clauses, we can precompute all L(l1, l2) and R(r1, r2)
within the desired time and space. The last two clauses of the equation reference O(n2)
inputs of C recursively, but with a smaller maximum y-coordinate, so this recurrence is
well-defined. There are O(n8) possible inputs to C, each of which takes constant additional
space and O(n2) time to compute, which gives the desired bounds.

Any cap (of size at least 2) can be split into two chains A ∈ and B ∈ with
distinct y-coordinates by removing the topmost edge. Since unless n = 1, the largest cap has
size at least 2, we can compute the size of the largest cap using C by taking the maximum
over all inputs for whose concatenation (omitting l1 if l1 = l2 and r2 if r1 = r2) lies in y, as
shown in Lemma 17.

Lemma 17. Suppose that A = (l1, . . . , la) ∈ and B = (r1, . . . , rb) ∈ use distinct y-
coordinates, and let D be the concatenation of the last two vertices (or single vertex if A has
size 1) of A and the first two vertices of B (or single vertex if B has size 1). If D ∈y, then
the concatenation D′ = (l1, . . . , la, r1, . . . , rb) of A and B lies in y.

Proof. Since D ∈y, we have x(la) < x(r1), so the x-coordinates of D′ are strictly increasing,
and the y-coordinates are distinct. Except l1 and rb, every vertex of D′ is a non-endpoint
vertex of A, B or D. Since these are convex, the vertex is convex in D′ as well; the entire
concatenation is convex as a result. Thus, D′ lies in y.

Testing if an input of C results in a cap takes constant time, so Theorem 18 follows.
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Theorem 18. For a given n × n grid, a supported convex cap of maximum size can be
computed in O(n10) time and O(n8) space.

3.2 Convex n-chains and n-caps

If we are solely interested in deciding whether the grid X × Y , where |X| = |Y | = n,
supports a convex chain or cap with precisely n vertices, we can improve upon the previous
algorithms considerably. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} with xi < xi+1

and yi < yi+1. To test whether there is a chain of size n in , it suffices to test whether the
chain ((x1, y1), . . . , (xn, yn)) is in , in O(n) time.

To test whether there is a supported convex cap of size n in y, we adapt the algorithm
of Theorem 18. Suppose P is a cap of y of size n, with AP and BP its maximal components
in and in respectively. Then P uses all coordinates of X, which restricts the types of
chains AP and BP considerably. In particular C(l1, l2, r1, r2) can be modified to consider
only edges l and r that use consecutive x-coordinates.

For 1 < k < n consider the subchains Ak ∈ and Bk ∈ of AP and BP consisting
only of vertices with y-coordinate at most yk. These chains have length k in total and use
all of the coordinates {y1, . . . , yk}. Let (l1, l2) be the last edge of Ak and let (r1, r2) be the
first edge of Bk. Then the coordinates yk−1 and yk are used by l, or by r, or by l2 and r1.
Moreover, since the total length of Ak and Bk is k, there are n− k unused X-coordinates
between l2 and r1, so if l2.x = xi, then r1.x = xi+n−k+1. So for a fixed value of k, we need
only consider O(|Y |2|X|) inputs for C(l1, l2, r1, r2). Moreover, the recursive calls in the last
two cases need only consider O(|Y |) values of v.

This implies that there are O(|Y |3|X|) possible inputs to C(l1, l2, r1, r2) over all k.
As an entry now depends on O(|Y |) subproblems and each is evaluated in constant time,
the corresponding values can be computed in O(|Y |4|X|) = O(n5) time and O(n4) space.
Similarly, we can test whether there is a cap of size n in y within the same time and space.

3.3 Approximations

Although computing the maximum size of a supported convex polygon remains elusive,
we can easily devise a constant-factor approximation algorithm by eliminating duplicate
coordinates as follows. Compute a maximum size convex polygon P (possibly with duplicate
coordinates) in a given n× n grid in O(n6) time and O(n2) space [11, Thm. 5.1.3]. Define
a conflict graph on the vertices of P , where two vertices are in conflict if they share an x-
or y-coordinate. Since each conflict corresponds to a horizontal or vertical line, the conflict
graph has maximum degree at most 2 and contains no odd cycles, hence it is bipartite. One
of the two sets in the bipartition contains at least half of the vertices of P without duplicate
coordinates, and so it determines a supported convex polygon. Since P has O(n) vertices,
the conflict graph can be computed in O(n) time. Overall, we obtain a 1

2 -approximation
for the maximum supported convex polygon in O(n6) time and O(n2) space. The same
strategy provides an 1

2 -approximation for the maximum supported polygon in y, y, y, andy

in O(n4) time and O(n2) space using [11, Thm. 5.1.2].
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4 The maximum number of convex polygons

Let F (n) be the maximum number of convex polygons that can be present in an n × n
grid, with no restriction on the number of times each coordinate is used. Let G(n) be this
number where all 2n grid lines are used (i.e., each grid line contains at least one vertex of
the polygon). Let F̄ (n) and Ḡ(n) be the corresponding numbers where each grid line is used
at most once (so F̄ (n) counts the maximum number of supported convex polygons). By
definition, we have F (n) ≥ G(n) ≥ Ḡ(n) and F (n) ≥ F̄ (n) ≥ Ḡ(n) for all n ≥ 2. We prove
the following theorem, in which the Θ∗(.) notation hides polynomial factors in n.

Theorem 19. The following bounds hold:

F (n) = Θ∗(16n), F̄ (n) = Θ∗(9n), G(n) = Θ∗(9n), Ḡ(n) = Θ∗(4n).

4.1 Upper bounds

We first prove that F (n) = O(n · 16n) by encoding each convex polygon in a unique way,
so that the total number of convex polygons is bounded by the total number of encodings.
Recall that a convex polygon P can be decomposed into four convex chains P , P , P , P ,
with only extreme vertices of P appearing in multiple chains. Let yP = P ∪ P and

y

P = P ∪ P . To encode P , we assign the following number to each of the 2n grid lines `
(see Figure 9 for an example): 0 if ` is not incident on any vertex of P , 3 if ` is incident on
multiple vertices of P , 1 if ` is incident on one vertex of P and that vertex lies on yP if ` is
horizontal, or on y

P if ` is vertical, and 2 otherwise.

In addition, we record the index of the horizontal line containing the leftmost vertex
of P (pick the topmost of these if there are multiple leftmost points).

Since each of the 2n grid lines is assigned one of 4 possible values, and there are n
horizontal lines, the total number of encodings is O(n · 42n) = O(n · 16n). All that is left to
show is that each encoding corresponds to at most one convex polygon.

First, observe that if P is a convex chain, say in , then the set of grid lines containing
a vertex of P uniquely defines P : since both coordinates change monotonically, the i-th

0

0

3

0

2

1

1

1

1

111001130

Figure 9: Encoding the grid lines.
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vertex of P must be the intersection of the i-th horizontal and vertical lines. So all we need
to do to reconstruct P is to identify the set of lines that make up each convex chain.

Since we know the location of the (topmost) leftmost vertex of P , we know where P

starts. Every horizontal line above this point labelled with a 1 or 3 must contain a vertex of
P ; let k be the number of such lines. Since the x-coordinates are monotonic as well, P

ends at the k-th vertical line labelled with a 2 or 3. The next chain, P , starts either at the
end of P , if the horizontal line is labelled with a 1, or at the intersection of this horizontal
line with the next vertical line labelled with a 2 or 3, if this horizontal line is labelled with a
3. We can find the rest of the chains in a similar way. Thus, F (n) = O(n · 16n).

The upper bounds for F̄ (n), G(n), and Ḡ(n) are analogous, except that certain labels
are excluded. For the number of supported convex polygons F̄ (n), each grid line is used at
most once, which means that the label 3 cannot be used. Thus, F̄ (n) = O(n ·32n) = O(n ·9n).
Similarly, for G(n), all grid lines contain at least one vertex of the polygon, so the label 0
cannot be used. Therefore G(n) = O(n · 32n) = O(n · 9n). Finally, for Ḡ(n), every grid line
contains exactly one vertex of the polygon, so neither 0 nor 3 can be used as labels. This
gives Ḡ(n) = O(n · 22n) = O(n · 4n) possibilities.

4.2 Lower bounds

Assume that n = 2m+ 4, where m ∈ N satisfies suitable divisibility conditions, as needed.
All four lower bounds use the same grid, constructed as follows (see Figure 10).

X = {1, . . . , n− 1} Y − = {y1, . . . , ym+2}, where yi = ni

Y = Y − ∪ Y + Y + = {z1, . . . , zm+2}, where zi = 2 · ym+2 − yi

Note that this results in an (n− 1)× (n− 1) grid, since ym+2 = zm+2. To obtain an n× n
grid, we duplicate the median grid lines in both directions and offset them by a sufficiently
small distance ε > 0. The resulting grid has the property that any three points p, q, r in the
lower half X × Y − with x(p) < x(q) < x(r) and y(p) < y(q) < y(r) make a left turn at q.
To see this, suppose that y(p) = ni, y(q) = nj , and y(r) = nk, for some 1 ≤ i < j < k ≤ n.

c

b

a

d
y

x

Figure 10: The n× n grid defined in Section 4.2, with n = 9 = 2m+ 3 for m = 3, before
doubling the median lines (red). The segments (parts of grid lines) incident to vertices are
drawn in blue.
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Then the slope of pq is strictly smaller than the slope of qr, since

slope(qr) =
nk − nj

x(r)− x(q)
≥ nj+1 − nj

n− 1
= nj >

nj − ni

1
≥ nj − ni

x(q)− x(p)
= slope(pq).

Thus, any sequence of points with increasing x- and y-coordinates in the lower half is in .
By symmetry, such a sequence in the upper half X × Y + is in . Analogously, points with
increasing x-coordinates and decreasing y-coordinates are in if they are in the lower half
and if they are in the upper half.

We first derive lower bounds on Ḡ(n) and G(n) by constructing a large set of convex
polygons that use each grid line at least once. Then we use these bounds to derive the
bounds on F̄ (n) and F (n). The polygons we construct all share the same four extreme
vertices, which lie on the intersections of the grid boundary with the duplicated median grid
lines. Specifically, the leftmost and rightmost vertices are the intersections of the duplicate
horizontal medians with the left and right boundary, and the highest and lowest vertices are
the intersections of the duplicate vertical medians with the top and bottom boundary. Since
each of these median lines now contain a vertex, we can choose additional vertices from the
remaining 2m grid lines in each direction.

To construct each polygon, select m/2 vertical grid lines left of the median to
participate in the bottom chain, and do the same right of the median. Likewise, select m/2
horizontal grid lines above and below the median, respectively, to participate in the left
chain. The remaining grid lines participate in the other chain (top or right). This results in
a polygon with m/2 vertices in each quadrant of the grid (excluding the extreme vertices).
The convexity follows from our earlier observations. The total number of such polygons is

(
m
m
2

)4

= Θ

((
m−

1
2 2m

)4)
= Θ(m−224m) = Θ(n−222n) = Θ(n−24n) = Θ∗(4n).

The first step uses the following estimate, which can be derived from Stirling’s formula for
the factorial [10]. Let 0 < α < 1, then

(
n

αn

)
= Θ(n−

1
2 2H(α)n), where H(α) = −α log2 α− (1− α) log2(1− α).

For the lower bound on G(n), the only difference is that we now allow grid lines
to contain vertices in two chains. We obtain a maximum when we divide the grid lines
evenly between the three groups (bottom chain, top chain, both chains). Thus, we select
m/3 vertical grid lines left of the median to participate in the bottom chain, another m/3
to participate in the top chain and the remaining m/3 participate in both. We repeat this
selection to the right of the median and on both sides of the median horizontal line. As
before, this results in a convex polygon with the same number of vertices in each quadrant
of the grid—exactly 2m/3 this time. The number of such polygons is
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(
m
m
3

)4(2m
3
m
3

)4

= Θ

((
m−

1
2 2H( 1

3
)m ·m−

1
2 2H( 1

2
) 2m

3

)4)
= Θ

(
m−424m(log2 3− 2

3
+ 2

3
)
)

= Θ
(
n−422n log2 3

)
= Θ

(
n−49n

)
= Θ∗ (9n) .

To translate these bounds to bounds on F̄ (n) and F (n), where some grid lines may
contain no vertices of the polygon, we observe that the arguments for the bounds above
also work for a subgrid of X × Y , provided that the subgrid includes the boundary and
medians and has the same number of grid lines on each side of the median in both directions.
For F̄ (n), we select 2m/3 grid lines on each side of each median (balancing the number of
vertices with the two different chains) to make up our subgrid and plug in the bound on
Ḡ(n), which yields

(
m
2m
3

)4

Ω∗(4
2n
3 ) = Ω∗(22n(H( 2

3
)+ 2

3
)) = Ω∗(22n log2 3) = Ω∗(9n).

Finally, for the bound on F (n), we select 3m/4 grid lines on each side of each median
(balancing the number of vertices with the three different options for a grid line in the proof
of G(n)), to make up our subgrid and plug in the bound on G(n), giving

(
m
3m
4

)4

Ω∗(9
3n
4 ) = Ω∗(22n(H( 3

4
)+ 3

4
log2 3)) = Ω∗(24n) = Ω∗(16n).

4.3 The maximum number of weakly convex polygons

Let W (n) denote the maximum number of weakly convex polygons that contained in an
n × n grid. A polygon P in R2 is weakly convex if all of its internal angles are less than
or equal to π. Here we identify each polygon by its set of boundary vertices, so different
polygons may have identical convex hulls. Since W (n) ≥ F (n), we have W (n) = Ω∗(16n).
In fact, a slightly better lower bound trivially holds even for the n× n section of the integer
lattice Z0 = [n]× [n]. Consider all polygons whose vertices are the four extreme vertices of
Z0, and an arbitrary subset of the remaining 4n − 8 grid points in ∂conv(Z0). There are
24n−8 = Ω(16n) such subsets, and the lower bound W (n) = Ω(16n) follows.

To show that W (n) = O∗(16n), we modify the previous encoding used to show that
F (n) = O∗(16n). While the four grid lines along the boundary of the bounding box of P
can be incident to arbitrarily many vertices, we still use at most two vertices for each such
line, namely at most two extreme vertices. For each weakly convex polygon P , record the
at most 8 extreme vertices incident to ∂B together with a vector (sequence) of length 2n:
n elements corresponding to the horizontal lines (from the lowest to the highest), and n
elements corresponding to the vertical lines (from left to right). As previously, we encode
each grid line by an element of {0, 1, 2, 3}, where 3 stands for a line incident to at least two
vertices. By (weak) convexity, a grid line can be incident to 3 or more vertices of P only if it
is one of the four lines along the bounding box of P .

http://jocg.org/
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From the recorded information, we can reconstruct a weakly convex polygon in the
n× n grid. Consequently, the number of convex polygons in the grid is bounded from above
by the number of encodings, namely W (n) = O(n8 · 42n) = O(n8 · 16n) = O∗(16n). We
summarize the bounds we have obtained in the following.

Theorem 20. Let W (n) denote the maximum number of weakly convex polygons that can be
present in an n× n grid. Then W (n) = Ω(16n) and W (n) = O∗(16n).

5 Conclusions

We studied combinatorial properties of convex polygons (resp., polytopes) in Cartesian
products in d-space. Similar questions for point sets in general position or for lattice polygons
(resp., polytopes) have been previously considered. We showed that every n × . . . × n
Cartesian product in Rd contains Ω(logd−1 n) points in convex position, and this bound is
the best possible. Our upper bound matches previous bounds [22, 33] for points in general
position, which are conjectured to be tight. Our lower bound, however, does not yield any
improvement for points in general position. In contrast, an n× . . .× n section of the integer
lattice Zd contains significantly more, namely Θ(nd(d−1)/(d+1)), points in convex position [1].

The maximum number of convex polygons in an n× n Cartesian product is F (n) =
Θ∗(16n). This bound is tight up to polynomial factors, and is significantly larger than the
corresponding bound in an n × n section of the integer lattice [3]. In contrast, n2 points
in convex (hence general) position trivially determine 2n

2 − 1 convex polygons. Erdős [16]
proved that the minimum number of convex polygons determined by n points in general
position is exp(Θ(log2 n)). Determining (or estimating) the minimum number of convex
polygons in an n× n Cartesian product and in higher dimensions remain as open problems.

Our motivating problem was the reconstruction of a convex polygon from the x- and
y-projections of its vertices. We presented a 1

2 -approximation for computing the maximal
size of a convex polygon supported by a grid X × Y . Finding an efficient algorithm for the
original problem, or proving its hardness, remains open. As our dynamic program does not
directly extend to d ≥ 3, approximation algorithms in higher dimensions are also of interest.

Acknowledgments. We are grateful to the anonymous referees for their careful reading of
the paper that helped clarify several subtle details in the inductive proof in Section 2.
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