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1
Introduction

Capital goods are systems that are used by businesses for providing services and
products to their customers (van Houtum and Kranenburg, 2015, p.1-2). Some
examples of capital goods are MRI scanners at hospitals, milking robots at farms,
lithography machines that are used to produce chips, and trains. Many business
operations cannot proceed without a functioning capital good. Downtime of a
capital good results in high direct and indirect costs to the business owners.

We focus on an example of capital goods: MRI scanners at hospitals. Imagine
you made an appointment for an MRI scan one month ago and the day you go
to the hospital, the MRI scanner is not functioning. Therefore, your appointment
is rescheduled to the next month because all slots are already booked until the
upcoming month. If you think about this situation from the point of view of
the hospital, there are many patients whose appointments should be rescheduled.
Also, MRI scans are important in diagnosing diseases; therefore, postponing them
also has an external cost to the patient’s well-being. As we demonstrate in this
example, an unplanned down of a capital good is costly to many parties. The longer
the downtime, the more patients are affected by the failure of the MRI scanner.
Therefore, the costs of the failure of an MRI scanner are increasing as a function of
the duration of the down.

Capital goods are systems that have many components. Maintenance operations
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mostly consist of replacing defective, failed components and components that are
about to fail (Arts, 2017). Corrective maintenance upon failure and preventive
maintenance are two common maintenance strategies used in practice. Corrective
maintenance tasks aim to bring a failed or faulty system into fully working
condition again. On the other hand, preventive maintenance tasks aim to maintain
the system preventively before observing a failure. Usually, the cost of corrective
maintenance actions is higher than the cost of preventive maintenance actions
because corrective maintenance costs consist of downtime cost, the cost of failure,
and the subsequent emergency replacement cost in addition to the cost of the
component. In this dissertation, we mainly focus on systems that are subject to
failures because of failing components. In order to repair the system, the failed
component has to be replaced by a new one.

Preventive maintenance policies can be classified into two as condition-based and
usage-based maintenance policies (Arts, 2017). Under a condition-based policy,
preventive maintenance decisions are taken based on the state of the component.
The state of the component can be observed with continuous monitoring or with
periodic inspections (Arts, 2017). Under usage-based maintenance, preventive
maintenance takes place based on the usage of the component. Time is one of
the most common measures that is used in practice to determine the usage of
the component. We refer the reader to Ahmad and Kamaruddin (2012) for a
more detailed overview of condition-based and time-based maintenance strategies.
Under time-based maintenance, preventive maintenance takes place based on failure
time analysis (Ahmad and Kamaruddin, 2012). The age of a component is an
important indicator of the remaining lifetime. Age-based maintenance, introduced
by Barlow and Hunter (1960), is a commonly used policy for determining when to
perform maintenance activities. Under this policy, a preventive maintenance action
is applied at a predetermined age. If a failure happens before the predetermined
age, a corrective maintenance action is applied. We refer the reader to Jardine and
Tsang (2013) and de Jonge and Scarf (2020) for a comprehensive overview of age-
based maintenance policies.

After-sales services are important to keep capital goods up and running. After-
sales service commitments are usually offered to the owners of capital goods
by maintenance service providers. Maintenance services can be provided by
an original equipment manufacturer (OEM) or a third-party maintenance service
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provider. We refer to them as service providers in the rest of this dissertation. The
agreed commitments are formalized in service level agreements (SLA) that are part
of the service contracts (Topan et al., 2020). A service provider is responsible for
maintenance services and spare parts management. Maintenance providers aim to
minimize the total cost of their operations while fulfilling the conditions of SLAs
with their customers. The operational cost of maintenance activities may involve
the costs of replacing spare parts, engineer visits, preventive maintenance actions,
regular and emergency shipments, and keeping spare parts in the inventory. In this
dissertation, we focus on the research objectives from the service provider’s point
of view.

Maintenance activities involve uncertainty by nature because most components
in systems fail randomly. Estimating a failure, the time of failure, or the type
of components that cause the system failure are important for determining the
optimal maintenance decision that minimizes operational costs. Most of the time,
the service provider must make decisions regarding maintenance activities and
spare parts shipments to the customer in real-time. Real-time decision-making
requires real-time coordination between different parties and data flows. Some
of these parties are multiple customers at different locations, service engineers,
and spare part warehouses. Industry 4.0 technologies enable the storage of a large
amount of data, continuous monitoring, and real-time data transfer. Internet of
things (IoT) technologies such as sensors, databases, and systems that are connected
to the internet or a local network create data-integrated environments for today’s
production and service facilities.

Integrating Industry 4.0 and IoT technologies enable more efficient maintenance
policies that result in economic and environmental benefits (Tortorella et al., 2021).
For example, the number of unnecessary preventive replacements can be decreased
by better failure predictions made by sensor readings. This will decrease the
number of spare parts that are consumed and scrapped. However, there are barriers
to integrating new technology into existing business practices (Tortorella et al.,
2021). One of the barriers is the industry’s lack of knowledge on adopting the
new technology. Motivated by this barrier, this research aims to create knowledge
on decision-making in data-integrated environments for maintenance optimization
and spare parts management. Another barrier is the cost of the adoption of new
technologies. This research also aims to provide insights to practitioners on the
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Figure 1.1: The data flow between a service provider and its customers.

(cost) benefits of adopting these new technologies. Different parties (i.e., customers,
local warehouses, service engineers) are often involved, and multiple resources
(i.e., spare parts, engineers) are controlled in maintenance planning and spare
parts management processes. For the purpose of managing different parties and
controlling the resources, the service provider needs to coordinate different data
flows in real-time. The concept of service control towers (SCT) has been developed
(Song et al., 2020) as a central decision-making actor that coordinates different data
flows, provides communication between different parties, and controls resources. In
this dissertation, we consider one service control tower that belongs to the service
provider.

The service control tower collects data regarding the maintenance activities (i.e.,
time of maintenance, type of maintenance) and spare parts used during these
activities from maintenance service reports for multiple customers. They use
data to improve future maintenance services. For example, time and type of
maintenance activities can be used to schedule the next planned maintenance
activity by estimating the remaining lifetime of a critical component. Similarly, the
type of parts used to resolve previous failures can provide information about future
demand for that type of spare part in a similar maintenance case. An example of
the data flow between the service provider and its customers via an SCT can be
seen in Figure 1.1.

However, these estimations involve some amount of uncertainty. The notion of
uncertainty is important in data-integrated decision-making because estimations
affect the decision, and therefore also the operational costs. Uncertainty may have
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different sources. So-called epistemic and aleatoric uncertainty are the two possible
sources of uncertainty. Epistemic uncertainty refers to the uncertainty caused by
the lack of data or knowledge. In order to predict outcomes or future events, it is
common to build predictive models based on historical data. Examples of predictive
models in a maintenance context are the models estimating the component failures
or the remaining lifetime of a component. Epistemic uncertainty focuses on the
uncertainty that is caused by the predictive model itself. This means epistemic
uncertainty can be reduced by collecting more data and learning. Aleatoric
uncertainty refers to randomness or variability in the outcome by the nature of
a stochastic event. Stochasticity in the process cannot be reduced by any additional
information (Hüllermeier and Waegeman, 2021). For example, a component can
have a lifetime distribution such that it fails at age 3 with 0.4 probability and it fails
at age 4 with 0.6 probability. This uncertainty is caused by the randomness of the
failure event itself and cannot be reduced by learning. In the rest of this dissertation,
we refer to epistemic uncertainty as model uncertainty and aleatoric uncertainty as
statistical uncertainty.

1.1. Maintenance optimization under model uncertainty

We focus on the model uncertainty in the domain of maintenance optimization
specifically for the lifetime distribution of the components. The life cycle of a capital
good has five phases: (1) determining the needs and requirements in the market,
(2) design of the capital good, (3) production of the capital good, (4) exploitation,
and (5) disposal of the capital good (van Houtum and Kranenburg, 2015, p.1-2).
Uncertainty regarding the maintenance decision is at its highest when a capital
good is newly designed because many components are also used for the first time
and there is a lack of historical data for the lifetime of these components.

Traditionally, maintenance literature assumes that the lifetime distribution follows
a known probability distribution and does not consider the availability of relevant
data that is necessary to use a maintenance decision-making model in real-life
applications (de Jonge and Scarf, 2020). However, in reality, there may exist
uncertainty concerning the lifetime distribution itself due to lack of data, affecting
the optimal replacement time; see Bunea and Bedford (2002); de Jonge et al. (2015a);
Fouladirad et al. (2018); de Jonge and Scarf (2020).
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One example of uncertainty in lifetime distributions is provided by van Wingerden
(2019) for lithography systems produced by ASML. When newly designed lithog-
raphy systems are introduced, some of the components are used for the first time,
therefore there is not any lifetime data at the beginning of the lifespan. Martinetti
et al. (2017) describe a case where maintenance service responsibilities of a specific
type of train are transferred from the component supplier to the Netherlands
railways. However, the data obtained from the component supplier is fragmented
at the beginning of the lifespan. This forms another reason for uncertainty with
respect to the lifetime distribution of the components.

When historical data is not available for the lifetime of a certain component, the
estimation of the lifetime distribution is mainly based on expert opinions and
technical data obtained from suppliers (van Wingerden, 2019, p.1-15). However,
obtaining detailed data from suppliers can be costly. Suppliers may only share
partial information because of strategic reasons (Martinetti et al., 2017). It is
also not straightforward to obtain the exact lifetime distribution from technical
specifications. These problems can lead to heterogeneous expert opinions on the
true lifetime distribution and result in uncertainty in the lifetime distribution.

1.1.1 Uncertainty in the lifetime distribution

The source of uncertainty in the lifetime distribution may vary. In the literature, one
type of lifetime model uncertainty is parameter uncertainty, where it is assumed that
the parameters of a lifetime model are unknown (see Drent et al. 2020, van Staden
et al. 2022, Deprez et al. 2022, Walter and Flapper 2017, Fouladirad et al. 2018).

Another type of model uncertainty is population heterogeneity. Under population
heterogeneity, there exist multiple population types for the components. The
lifetime distribution is known for each population type individually. However,
the uncertainty in the true population type induces uncertainty in the lifetime
distribution.

In practice, the characteristics of the components can be heterogeneous, repre-
senting the different expert opinions, the varying quality from different suppliers,
production at different manufacturing lines, or different causes of failure (Jiang
and Jardine, 2007). Population heterogeneity is a commonly studied topic in the
literature because of its practical relevance (see Jiang and Jardine 2007; Scarf et al.
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2009; Scarf and Cavalcante 2010, 2012; de Jonge et al. 2015a; Cavalcante et al. 2018;
van Oosterom et al. 2017; Abdul-Malak et al. 2019).

In Chapters 2 and 3, as the source of lifetime model uncertainty, we focus on
population heterogeneity for the components that are used for replacements. Please
note that we consider a ‘time-to-failure’ setting as the failure model. Therefore,
we use lifetime distribution and time-to-failure distribution interchangeably in
Chapters 2 and 3. We assume that a component is always supplied from the same
population (see de Jonge et al. 2015a). For example, for the lifetime distribution
of a component, two experts can have two different estimates, where in reality
only one of them may be the true distribution. Another example of population
heterogeneity is having different types of populations in the market, where each
supplier always provides from the same population. For example, due to different
production qualities, there can be two populations in the market: a weak and a
strong population. A weak component is more likely to fail earlier than a strong
component. Each supplier has components from either a weak or strong population
in their stocks. When a maintenance service provider makes an agreement with one
of the suppliers throughout the lifespan of a technical system, the components will
be always ordered from the same supplier, while the population type is unknown
to the service provider.

Please note that in the literature, the population heterogeneity may also imply that
there is an unknown mixture of populations for the components, where in each
replacement, a component is supplied from any of these populations (see van
Oosterom et al. 2017 and Abdul-Malak et al. 2019). For example, parts that are
printed with two different printing options can have different reliability levels (Lolli
et al., 2022).

1.1.2 Resolving the uncertainty by learning

Model uncertainty may mean either the uncertainty in model parameters or the true
model itself. But it is usually possible to formulate estimations on model parameters
or the true model. These uncertain estimations can be referred to as belief. A belief
can be updated as new data is collected, which is referred to as learning. Therefore,
it is possible to resolve model uncertainty by learning. According to Powell and
Ryzhov (2012), ‘any learning problem is a belief model’.
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Frequentist and Bayesian views are two learning approaches. The frequentist
approach only uses historical data to estimate the unknown parameters without
assuming any prior information on the belief or model parameters. On the other
hand, the Bayesian approach allows incorporating prior information on belief and
can update the belief with the available data (Powell and Ryzhov, 2012).

In Chapters 2 and 3, we focus on sequential decision-making problems with
Bayesian learning. ‘Exploration-exploitation’ trade-off and ‘data pooling’ are two
concepts that are addressed related to the learning problem.

Exploration-exploitation trade-off: In the context of a replacement problem with
model uncertainty in the lifetime distribution, the replacement decisions affect the
belief. If a replacement is done earlier than a failure, the real lifetime cannot be
observed exactly. This data point is right-censored (i.e., the time we observe is
less than or equal to the lifetime of the component). Therefore, the data is less
informative to learn the true population type. If we wait until a failure, then we
observe the true lifetime. In this way, the true population type can be learned
earlier, but we incur a higher corrective maintenance cost. This trade-off is known
as exploration-exploitation trade-off in optimal learning literature. Exploration means
explicitly considering the impact of current actions on future outcomes and being
willing to take risky actions in the short term with the aim of getting a higher cost
reduction in the longer term. On the other hand, exploitation refers to selecting
the action that minimizes the cost in the short term by ignoring the impact of the
current action on the information to be revealed in the future (Dezza et al., 2017;
Powell and Ryzhov, 2012).

Data pooling: Most of the time, multiple capital goods are dedicated to similar
business processes. These capital goods can be located at the same location such
as multiple milking robots at a farm or at different locations such as multiple MRI
machines at multiple hospitals. Each system has an identical critical component
that needs to be replaced. It is possible to collect failure data from each system to
learn the lifetime distribution. Collecting data from similar systems to increase the
number of data points is referred to as data pooling (Gupta and Kallus, 2022). A
service provider offers maintenance services to many similar systems and it can
pool data from these systems. It is also possible to optimize the maintenance
costs jointly for multiple systems because there is only one decision maker for the
replacement decision, the service provider.
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Figure 1.2: An example two-echelon spare parts inventory network with regular
shipments.

1.2. Spare parts management with advance demand

information

Complex technical systems contain multiple components. In many cases, a system
failure is caused by a failed component that should be replaced. This means each
failure may create a demand for spare parts that must be satisfied by the service
provider. In this section, we focus on spare parts inventory management problems.

1.2.1 Spare parts inventory control problem

Typically, a service provider has many customers located at geographically dis-
persed locations. Usually, spare parts are stored at many local warehouses and a
central warehouse. If possible, customers’ demand for spare parts is satisfied from
a local warehouse or a warehouse. In case of a stockout, customers’ demand may be
backordered, or satisfied either from another local warehouse by lateral shipment
or by an emergency shipment from the central warehouse or a third-party supplier
(van Houtum and Kranenburg, 2015). In Figure 1.2, we provide an example of two-
echelon spare parts inventory management network. For these networks, spare
parts inventory replenishment is an important problem to prevent long system
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downtimes, large costs of inventory holding, and emergency shipments. In this
sense, it is an inventory control problem.

In general, inventory control problems mainly focus on the questions of how often
the inventory status should be observed, when the inventory replenishment takes
place, and how large the replenishment order should be (Silver, 1981). Inventory
at local warehouses is reviewed usually either continuously or periodically (Zhang
et al., 2021). Some common inventory control policies under continuous review
are (s, S) and (s, Q) policies. Under the (s, S) policy, when the inventory position
drops to or below s, you place an order to increase the inventory position to the
order-up-to level S. Under the (s, Q) policy, when the inventory level drops to or
below s, the inventory is replenished with a fixed order quantity Q. A common
policy for periodic review is (R, S). An order is placed periodically at every R time
unit to complete the inventory position to the order-up-to level S. For more details
on inventory control and spare part inventory policies please see Silver (1981) and
Zhang et al. (2021).

In Chapter 4, we focus on a periodic review and periodic spare parts inventory
replenishment problem for a single warehouse. In this network, regular and
emergency shipments are used.

1.2.2 Repair kit problem

Each local service point is responsible for the delivery of spare parts to its customers
in case of a system failure. A system failure can be the result of a software failure,
which requires no spare parts but a system reboot might be sufficient. It can
be caused by a failure of only one critical component or multiple components.
Therefore, it is crucial for the service provider to determine which set of spare
parts should be shipped to customers to repair the system.

The set of spare parts carried by a service engineer during a maintenance visit is
called a kit. Before the service engineer visits the failed system, it is not precisely
known which spare parts are needed to repair the system. If all required parts are
present in the kit, the system can be repaired immediately, otherwise, follow-up
action is needed. This problem is known as repair kit problem (RKP) in the literature.
The RKP was first introduced by Smith et al. (1980) ‘for optimizing multi-item
inventories for the repair of field equipment based on (inventory) holding costs
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and the probability of job completion without stockout’.

It is possible that the failures of different components in a system are independent
or, alternatively, there is failure dependency between the components. For example,
due to excessive heating in a certain region, multiple components can be broken.
Another example is that a breaking component can break other components that
are in contact with it. Please see Olde Keizer et al. (2017) for more details on
dependencies between components.

In Chapter 5, we focus on an optimal spare part recommendation problem for
corrective maintenance, which is similar to classical RKP. For this problem, we
assume that it is possible to have failure dependency between components.

1.2.3 Uncertainty in spare parts demand

In order to deliver the required spare parts to the customer, it is important to
integrate data regarding demand predictions into decision-making. After the initial
phase in the lifetime of a capital good, data becomes abundant. There are various
predictive models and prediction methods for spare parts demand in the literature
(see Pinçe et al. 2021; Syntetos et al. 2012). Different sources of data can be
used as input for these predictive models, i.e., historical demand data for spare
parts for similar maintenance cases, sensor readings based on the condition of the
components, and failure codes generated by the system in the case of failure.

Demand forecasts, early or advance orders, or any signal providing information
regarding future demands can be viewed within the concept of advance demand
information (ADI) (Karaesmen, 2013). There may be various sources for spare parts
demand uncertainty. For example, the number of spare parts or the type of stock-
keeping units (SKUs) required to resolve a maintenance case can be unknown to
the decision-maker during the planning period. If the predictions provided by ADI
are equal to the realized demand, we refer to it as perfect ADI. However, in practice,
the predictive models do not resolve the uncertainty fully. Therefore, most of the
time we have imperfect ADI.

Most repair kit problems in the literature assume that the service provider does
not have any information regarding the source of failure reported by the customer
before a diagnostic visit (Rippe and Kiesmüller, 2023). However, the internet
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of things and developed sensor technologies thanks to Industry 4.0, provide
opportunities for monitoring the condition of a system remotely and generating
failure codes for possible causes of failures. Machine learning and natural language
processing techniques enable to compare data from different sources, i.e., textual
engineer reports, sensor readings, system log data, spare part usage data, etc. and
generate predictions for spare parts demand (see Rippe and Kiesmüller 2022, 2023;
Grishina et al. 2020).

In Chapters 4 and 5, we consider capital goods after the initial part of their lifespan,
and therefore, data is abundant. Thus, we do not consider an explicit learning
problem. Even though the data is abundant, the predictive models are not always
100% perfect. In Chapter 4, we investigate how the quality of prediction models
affects replenishment order decisions and the long-run expected costs related to the
spare parts inventory. In Chapter 5, we consider only statistical uncertainty but not
model uncertainty.

In Section 1.3, we discuss further details of problem descriptions and research
objectives for capital goods in data-integrated environments in the context of
maintenance optimization and spare parts management.

1.3. Problem descriptions and research objectives

In the first part of the research, we consider newly designed systems with a fixed
lifespan. Each system has a critical component that is subject to random failures
and requires replacement. A system cannot function if this component does not
work. The aim is to preventively replace a component before it fails in order
to prevent the costlier corrective maintenance upon failure. Therefore, the data
regarding the lifetime distribution of the component is important to determine the
optimal replacement time. Since this component is in use for the first time, there
is no historical data regarding the lifetime of the component. We assume there are
two different populations from which these components can come: a weak and a
strong population. Components are always provided from the same population
but the true population is unknown. There is an initial belief of the probability
of the component coming from the weak population. This belief is updated in a
Bayesian way with the data obtained during the system’s lifespan. We formulate
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a sequential decision-making problem with Bayesian learning. We formulate two
research objectives (RO) for this problem as follows.

Research objective 1: Balance exploration and exploitation optimally for age-based
maintenance with Bayesian learning.

For RO 1, we consider an age-based maintenance policy to schedule the next
optimal preventive maintenance time.

Research objective 2: Investigate the effect of data pooling and joint optimization
for multiple single-component systems on maintenance costs.

For RO 2, we consider a replacement policy such that at the beginning of every
time step we take either ‘do a preventive replacement’ or ‘do nothing’ action for
each system.

In the second part of the research, we focus on spare parts management for capital
goods. First, we consider multiple technical systems with a single SKU. The spare
parts for this SKU are stored at a local warehouse. The inventory in the local
warehouse is replenished periodically. During a period, a predictive algorithm
generates signals for possible failures. However, it is possible that a signal is not
generated for some of the failures (undetected failures) and some signals do not
result in failures (false signals). The time between the signals and failures is called
demand lead time. When a failure happens, the component is replaced from the stock
of the local warehouse directly. Stocks at the local warehouse are replenished by
the central warehouse periodically. In case of a stockout, an emergency shipment
takes place from the central warehouse directly. The model reliability is quantified
by precision and sensitivity. The precision of a predictive model denotes the fraction
of true signals among all signals. The sensitivity of a predictive model denotes
the fraction of detected failures among all failures. In the worst-case scenario,
sensitivity, precision, and demand lead time are zero. We formulate the research
objective for this problem as follows.

Research objective 3: Determine how the quality of failure predictions and the
duration of demand lead time affects the spare part stock and replenishment costs.

Next, we consider a spare part recommendation problem similar to RKP where
multiple SKUs might be required to resolve a corrective maintenance case. When
a technical system fails, the customer informs the service provider regarding the



14 Chapter 1. Introduction

failure with a failure code. This code is compared against historical maintenance
cases to match similar cases. A predictive algorithm generates a list with the total
set of spare parts used in similar cases and estimates the probability for each subset
of spare parts that precisely this subset is required to fix the system. The service
provider is responsible for sending an engineer for a diagnostic visit and making
a separate shipment of spare parts to resolve this maintenance case. When an
engineer makes a diagnosis of the system failure, all parts needed to fix the system
are known with certainty. It is also possible that no spare parts would be required.
If parts shipped simultaneously with the diagnostic visit are not used in repair, they
are sent back to the warehouse. If the system can be fixed with the parts sent to the
customer, the engineer fixes the system and the maintenance case is closed. If there
are parts required to repair the system but not shipped to the customer during the
diagnostic visit, another visit takes place the next day, where all remaining required
parts are shipped from the warehouse to the customer. Based on the operational
costs (i.e., shipment costs for spare parts, the cost of returning unused parts back,
the cost of an additional visit if the maintenance case is not resolved during the
diagnostic visit), and the probabilities generated by the predictive algorithm, the
service provider needs to decide the set of spare parts that will be sent to the
customer during the diagnostic visit. We develop the third research objective as
follows.

Research objective 4: Develop a spare parts recommendation model based on
historical data and operational costs.

1.4. Methodologies

In order to address ROs 1 and 2, we formulate partially observable Markov
decision process (POMDP) models with Bayesian learning. POMDP is a suitable
methodology to optimally balance the exploration and exploitation in learning
the true population type because POMDPs are sequential decision-making models
where the effect of the current action on the system is considered until the end of
the time horizon. In a POMDP, we have a belief state and other state variables
(e.g., the system’s remaining lifespan, and the component’s age). An action is
taken according to the state variables and the lifetime probability distribution of the
component. After the action, an observation is made (e.g. a failed or a functioning
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Figure 1.3: An overview of a general POMDP model with Bayesian updating.

component, or time between two replacements and the type of replacement). As
a result of the action and observation, an immediate cost incurs. Based on the
observations, and prior value of state variables, the state variables are updated.
The belief state is updated by using Bayes’ rule. We adopt the Bayesian learning
approach because it is suitable when historical data does not exist or is very
scarce. Bayesian learning has been used for multiple maintenance problems, see van
Oosterom et al. (2017), Droguett and Mosleh (2008), de Jonge et al. (2015a), Dayanik
and Gürler (2002), Elwany and Gebraeel (2008), and Walter and Flapper (2017).
In Figure 1.3, an overview of a general POMDP model with Bayesian updating is
demonstrated.

In order to address RO 3, we model a spare parts inventory management problem.
We aim to optimize the replenishment decisions with the objective of minimizing
the long-run average cost per period. For this reason, we built a discrete-time
Markov decision process (MDP) model. Similar to the POMDPs, MDPs are also
sequential decision-making models. This means we consider multiple sequential
periods in our decision-making rather than a policy that minimizes the average
costs only for a single period (i.e., a myopic policy). However, an MDP model
considers the effect of the on-hand inventory level at the end of a period for the
replenishment decision of the next period.

Finally, in order to address RO 4, we want to find the optimal set of spare parts by
minimizing the costs of a maintenance case with multiple possible SKUs. This is a
cost-minimization problem with multiple binary decision variables. We formulated
a binary integer linear program to model this problem. An integer programming
model involves decision variables that only can take integer values. In a binary
integer linear programming (ILP) model, the decision variables only can take 0 (no)
or 1 (yes) as values. All functions, including the objective function and constraints,
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are linear in a linear programming model. For more details of linear programming
models please see Dantzig and Thapa (1997).

1.5. Contributions and outline of the dissertation

In this section, we provide an outline of the dissertation and the contribution
of each chapter. We address RO 1 in Chapter 2. Chapter 2 is on the topic of
‘exploration and exploitation in age-based maintenance’, which is based on Dursun et al.
(2022b). We address RO 2 in Chapter 3. Chapter 3 is on ‘data pooling and joint
optimization for multiple systems’, which is based on Dursun et al. (2022c). We address
RO 3 in Chapter 4, where we study a problem on ‘spare parts replenishment at local
warehouses with ADI’. Chapter 4 is based on Dursun et al. (2022a). We address
RO 4 in Chapter 5, where we investigate ‘selecting the set of spare parts for corrective
maintenance’ topic. Chapter 5 is based on Dursun et al. (2022d). Finally, in Chapter
6, we revisit the research objectives and provide the conclusions and future research
directions for this dissertation.

This dissertation makes contributions in the area of maintenance optimization and
spare parts management for systems in data-integrated environments. We provide
a general overview of the characteristics of the models for each chapter in Table 1.1.

Now, we provide the contribution of each chapter in detail. In Chapter 2, we
develop an age-based maintenance model for a system with a finite lifespan and
a critical component under population heterogeneity. To the best of our knowledge,
this is the first study that balances exploration and exploitation optimally for this
specific problem. We build a POMDP model with Bayesian learning to minimize
the total maintenance cost over the lifespan of the system.

We analytically characterize the structure of the optimal cost as a function of the
belief regarding the component coming from a weak population and the remaining
lifespan of the system. By numerical analysis, we compare the optimal policy
against two benchmark heuristics from the literature, namely a myopic policy and
a threshold policy. A myopic policy minimizes the average expected cost per
maintenance cycle. Therefore, it does not take the effect of an action on the next
cycles into account. A threshold policy, which has been proposed by de Jonge
et al. (2015a), investigates the effect of exploration by considering a threshold on
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Table 1.1: Overview of the characteristics of the models for each chapter.
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1. Problem domain
Maintenance optimization X X
Spare parts management X X
2. Role of data
Resolving population heterogeneity in lifetime distribution X X
Estimating the demand of spare parts X X
3. Methodology
POMDP (with Bayesian learning) X X
ILP X
MDP X
4. Number of periods
Single X
Multiple X X X
5. Number of SKUs
Single X X X
Multiple X
6. Planning Horizon
Finite X X
Infinite X X

the belief regarding the population type, however, it does not optimally balance the
exploration and exploitation on learning. By comparing the optimal policy against
the benchmark heuristics, we generate insights about the benefit of following the
optimal policy. We introduce a lower bound function on the optimal cost. This
function denotes the costs when the true population type is known. Thus, we
calculate the value of resolving the uncertainty on the true population type at the
beginning of the system lifespan.

In Chapter 3, we consider multiple single-component systems with finite lifespans.
We investigate the effect of data pooling and joint optimization on the maintenance
cost of these systems under population heterogeneity. To the best of our knowledge,
this research is the first to study this specific problem. We formulate a POMDP
with Bayesian updating to find the optimal replacement policy that minimizes
the expected total cost of maintenance throughout the lifespan of the system.
We compare the cost of the optimal policy per system against two benchmark
heuristics that follow a single system optimal policy, with and without data pooling,
respectively. First, we consider a special case with deterministic lifetimes and
provide insights on the effect of the number of systems on the benefit of exploration.
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Then, we generate managerial insights on the effect of data pooling and joint
optimization with comprehensive numerical analysis. We show in our numerical
analysis that the majority of the cost reduction is due to data pooling, and a
relatively small part is due to optimizing the preventive replacement decisions for
multiple systems jointly. We examine the effect of input parameters on this result
with an extensive sensitivity analysis. We investigate the effect of the number of
systems on the benefits of data pooling. We show that the cost reduction due to
data pooling can be up to 5.6% for two systems and up to 14.8% for 20 systems.
Furthermore, the reduction in the cost per system decreases as a function of the
number of systems, i.e., we obtain 40% of potential cost reduction by pooling data
from two systems, 70% from five systems, and 80% from 10 systems. As the number
of systems that pool the data increases, the cost of maintenance converges to the
cost of maintenance under perfect information about the true population type for
the same lifespan. These results show practitioners that data integration between
only a few systems may help to obtain a large amount of potential cost reduction.

In Chapter 4, we consider a single SKU spare parts inventory problem for a
local warehouse that supports multiple systems. Signals generated for upcoming
failures constitute a form of imperfect ADI. We formulate an MDP model to find
the optimal replenishment decisions that minimize the long-run average cost per
period. We generate managerial insights about the effect of precision and sensitivity
of the signals and the demand lead time on optimal costs and order-up-to levels.
One important managerial insight for the developers of the predictive model is
as follows. Sensitivity and the demand lead time affect the optimal costs only
through their product, for a given precision level. This means both sensitivity and
demand lead time are equally important to reduce cost Furthermore, a low value
in sensitivity (demand lead time) will decrease the effectiveness of a high value
in demand lead time (sensitivity) on cost reduction. A significant cost reduction
compared to the worst case can be obtained for moderate values of precision.
On the other hand, it is required to have high values of sensitivity and demand
lead time for a significant reduction in optimal costs. We observe that, under a
perfect sensitivity and a perfect demand lead time, 30% perfectness in precision
(i.e., precision is equal to 30% of the perfect precision) brings a 70% reduction in
optimal costs compared to the worst-case optimal cost. Contrary to this, under
perfect precision, 70% perfectness in the product of sensitivity and demand lead
time (i.e., the product is equal to 70% of the product of perfect sensitivity and
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perfect demand lead time) brings only a 30% reduction in optimal costs compared
to the worst-case optimal cost. Finally, with respect to the spare part stock levels,
we find that even with high-quality predictive models, the spare parts inventory
stocks will not disappear completely.

In Chapter 5, we consider a set of spare part selection problems for corrective
maintenance cases. We formulate an ILP model to find the optimal set of spare parts
based on the probability estimation of a set of spare parts that might be required
and operational costs by minimizing the total expected cost of a maintenance case.
We allow failure dependency between SKUs in the modeling. We formulate a new
model for the so-called spare parts recommendation problem described in Grishina
et al. (2020). Additionally, we derive the optimal policy structure for problem
instances with one or two SKUs and we obtain partial results for the optimal policy
structure for problem instances with three or more SKUs. We compare the optimal
policy against the existing heuristic policies that are used in practice by a company
that manufactures and services high-tech capital goods. The optimal number of
SKUs that minimizes the total expected cost of resolving a maintenance case is not
fixed. Our model finds directly the optimal set of SKUs that should be shipped to
the customer.



20 Chapter 1. Introduction



2
Exploration and exploitation in

age-based maintenance

2.1. Introduction

In this chapter, we consider a system with a critical component that fails randomly
and requires maintenance during the lifespan of the system. Motivated by
the fact that capital goods often have a planned duration of service at the
time of acquisition (Jiang, 2009; Nakagawa and Mizutani, 2009; Cheng et al.,
2012; Lugtigheid et al., 2008), we assume that the system lifespan is finite and
known. The service control tower (SCT) of the service provider is responsible
to schedule a preventive replacement for the critical component at a given age
when it applies age-based maintenance. In case a failure happens before the
scheduled preventive replacement, the SCT is responsible for applying a corrective
replacement immediately. After a replacement, either preventive or corrective, the
component is ‘good-as-new’.

We consider that there are two population types (i.e., a weak and a strong type)
and all components necessary for replacements come from one of these two types.
But, the true population type is unknown. There exists an initial belief on the
true population, and this belief is updated over the course of the lifespan of the
system by using the data obtained under age-based maintenance. Specifically, every
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time that a failure or preventive maintenance is performed, the age of the current
component in the system is used to update the belief on the population type with
Bayes’ rule.

The use of Bayesian updates for uncertain model parameters is also useful to
address the trade-off between exploration and exploitation in a sequential decision-
making problem. In this chapter, we aim to strike the optimal balance between
exploration and exploitation in making age-based replacement decisions under
population heterogeneity. Further, we compare the optimal policy to two existing
heuristic policies: the myopic policy and the threshold policy (de Jonge et al., 2015a).

Specifically, we address the following research questions: 1) How is the structure
of the optimal age-based maintenance policy for a system with a finite lifespan
under population heterogeneity? 2) Under which scenarios is the total cost of the
optimal policy much lower than the cost of the existing heuristic policies? 3) What
is the value of resolving the uncertainty on population heterogeneity? 4) How does
the structure of the optimal policy differ from existing heuristic policies in terms
of exploration and exploitation? In order to answer these questions, we build a
discrete-time partially observable Markov decision process (POMDP) model that
includes a continuous belief state on the true type of the component population
and Bayesian updates of the belief state.

Our choice for adopting a discrete-time model is motivated by real-life situations,
where actions are taken at discrete time points (e.g., a failure that occurs during a
time period can only be fixed by a replacement with a new component that arrives
at the beginning of the next period).

We can summarize the contributions of this study as follows. To the best of our
knowledge, this work is the first to study the optimal balance of exploration and
exploitation for a system with a finite lifespan and a critical component under
population heterogeneity. We analytically show the structure of the optimal policy
as a function of the belief state and the time until the end of the system lifespan.
Furthermore, we establish a lower bound function on the optimal cost in order
to quantify the value of resolving the uncertainty on the true population type at
the beginning of the system lifespan. By performing a comprehensive numerical
analysis, we show that both the population heterogeneity and the time until the
end of the system lifespan have a significant effect on the structure of the optimal
policy. Specifically, the instances where the strongest exploration takes place
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under the optimal policy are observed when the variance of the time-to-failure
distribution is low and typically when the initial belief of a component coming from
a strong population is sufficiently high. For these instances, we also show that the
optimal policy learns the true type of the component population much faster and
more accurately than the myopic policy, which does not consider the exploration-
exploitation trade-off. Furthermore, we characterize when it is most beneficial to
resolve the uncertainty on the population type (i.e., to learn the component type
immediately) by using a lower bound function on the optimal cost.

The remainder of this chapter is organized as follows. Section 2.2 presents the
relevant literature, and Section 2.3 provides a formal description of the model.
The mathematical formulation of the POMDP model is presented in Section 2.4.
Section 2.5 presents the analytical results obtained from our analysis of the POMDP
model, and Section 2.6 characterizes the lower bound function on the optimal cost.
Section 2.7 presents our numerical analysis and insights. Section 2.8 concludes the
chapter.

2.2. Literature review

In this section, we review the previous studies in the maintenance literature
addressing uncertainty in a failure model. We organize our review by first
categorizing these studies based on whether their maintenance policies perform
exploration or not. Next, we will focus on the studies with exploration and further
classify them with respect to type of maintenance policy: age-based policies and
condition-based policies. An overview of all related studies is shown in Table 2.1.

Among the studies that address uncertainty in a failure model, a major distinction
is based on whether the current action considers the performance in the future in
a dynamic way. We refer to policies which perform such an exploration as forward-
looking policies. Otherwise, we clasify a policy as a myopic policy (e.g., Mazzuchi
and Soyer 1996; Dayanik and Gürler 2002; Fouladirad et al. 2018; Coolen-Schrijner
and Coolen 2004, 2007; Laggoune et al. 2010; Walter and Flapper 2017; Elwany and
Gebraeel 2008; de Jonge et al. 2015b). A myopic policy updates the unknown failure
model or its parameters with the most recent data but without explicitly considering
the decisions to be made in the future. To the best of our knowledge, the number of
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studies that consider failure model uncertainty and uses a forward-looking policy,
is limited (de Jonge et al., 2015a; van Oosterom et al., 2017; Abdul-Malak et al., 2019;
Drent et al., 2020).

Table 2.1: Summary of the previous studies addressing failure model uncertainty.
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1. Type of Maintenance
Age-based X X X X X X X X X X
Condition-based X X X X
2. Failure Model
Degradation State
Discrete State (2 states) X X X X X X X X X X X
Discrete State (3 states) X
Discrete State (>3 states) X
Continuous State X
Continuity of Time
Discrete Time X X X
Continuous Time X X X X X X X X X X X
3. Type of Model Uncertainty
Parameter Uncertainty X X X X X X X X
Population Heterogeneity X X X X
Distributional Uncertainty X X
4. Time Horizon
Finite X X X X X X
Infinite X X X X X X X X X
5. Type of Policy
Myopic X X X X X X X X X
Forward-looking X X X X X
6. Update of Model
Frequentist X X X X
Bayesian X X X X X X X X X X

The four studies on forward-looking policies can be further classified based on the
type of maintenance policy. de Jonge et al. (2015a) and Drent et al. (2020) consider
an age-based maintenance policy, while van Oosterom et al. (2017) and Abdul-
Malak et al. (2019) follow a condition-based maintenance policy. Thus, we now
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focus further on Drent et al. (2020) and de Jonge et al. (2015a).

There is a number of aspects that distinguishes our research from Drent et al. (2020).
First, we assume that the components always come from the same supplier who
has a single population (either a weak population or a strong population) but the
type of population is unknown. On the other hand, Drent et al. (2020) assume
that the components come from a supplier who has a mix of components with
different reliability levels. This main difference can also be described as follows.
In Drent et al. (2020), each realization can be drawn from a different probability
distribution. However, we consider a problem where the lifetime realizations in all
cycles come from one specific distribution, but it is not known what that distribution
is. Second, Drent et al. (2020) work on a component replacement problem under an
age-based policy where the scale parameter of a Weibull time-to-failure distribution
is unknown, while we assume a general time-to-failure distribution. Furthermore,
we explicitly consider a finite, fixed lifespan for the system, while Drent et al. (2020)
consider an age-based maintenance model with a finite number of maintenance
cycles.

Our work comes closest to de Jonge et al. (2015a), who study the same problem.
However, the main difference is that we propose an age-based maintenance policy
that optimally balances exploration and exploitation. While de Jonge et al. (2015a)
also address the trade-off between exploration and exploitation, they only provide
a heuristic policy to do so. Additionally, our optimal policy explicitly considers
the finite time horizon effect, while the policies of de Jonge et al. (2015a) do not
take into account that the time horizon is finite with the claim that the error is
acceptable if the length of the time horizon is large compared to the mean time
between failures. We also formally derive a lower bound function that allows us
to quantify the maximum amount that a decision-maker wants to pay to learn the
true population type (this corresponds to the so-called perfect information case;
this is considered in de Jonge et al. (2015a), but they do not show explicitly that this
constitutes a lower bound for the optimal cost function).
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2.3. Model description

We consider a system with a finite lifespan. The lifespan refers to the time from
the beginning of operating the system until it is taken out of service. The planning
horizon is equal to the lifespan of the system and we let the planning horizon consist
of discrete time steps. Without loss of generality, we scale time such that the length
of a time step is one time unit. The length of the planning horizon is expressed in
the number of time steps and is denoted by L ∈ N, where N is the set of positive
integers. The system has a critical component that fails randomly. If a failure occurs
during the x-th time step after the installation of a new component, then the lifetime
of the component is considered to be x. We let X denote the corresponding discrete
random variable that represents the lifetime of the component. The failure that
occurs during a time step is fixed by replacing the failed component with a new
one at the end of this time step. We note that our discrete-time model can also be
used to approximate a continuous-time model by taking the duration of a time step
sufficiently small compared to the lifetime of a component.

An age-based replacement policy is applied. This means that a component is
scheduled to be preventively replaced at a predetermined time with a cost Cp. If
the component fails before reaching this predetermined time, then it is correctively
replaced at cost C f . We assume Cp < C f because the cost of corrective replacement
includes the costs associated with an unplanned breakdown in addition to the costs
related to a replacement. The time interval between two consecutive replacements
is defined as a cycle. The beginning of a cycle is referred to as a decision moment
because the next preventive replacement time needs to be planned at the beginning
of each cycle. We let τn > 0 denote the time interval until the next planned
maintenance at cycle n ∈ N. An example of the planning horizon and decision
moments is shown in Figure 2.1, where τ1 and τ2 are both equal to 3. In the
first cycle, no failure is observed in the first three time steps, and the planned
replacement is performed at the end of the third time step. In the second cycle, a
failure occurs in the second time step, the component is replaced correctively at the
end of that time step, and a new cycle starts at the beginning of the sixth time step;
and so on.

Let zn denote the remaining lifespan of the system at the beginning of cycle n.
Notice that z1 (i.e., the remaining lifespan of the system at the beginning of the first



2.3 Model description 27

Planning Horizon: 𝐿 time steps

PM CM

Decision 
Moment 1

Decision 
Moment 2

Decision 
Moment 3

One CM Cycle A time stepOne PM Cycle

……

PM: Preventive Maintenance
CM: Corrective Maintenance

Figure 2.1: Illustration of timeline for maintenance activities.

cycle) is equal to L. If τn is chosen to be equal to zn, it means no replacement activity
is planned during the remaining lifespan of the system. When the system reaches
its end of the lifespan (i.e. zn = 0), the maintenance activities are terminated and
no cost occurs at this moment or later because the system goes out of service at that
moment.

We assume that there are two types of populations for the critical component:
a weak and a strong population. That is, when a component is needed for a
replacement, it comes from either a weak population or a strong population. In
our context, we adopt the interpretation of de Jonge et al. (2015a) for population
heterogeneity, where the components used for replacements always come from the
same population, either a weak or a strong population, but the true type of the
population is unknown and there is a belief associated with it. This is the case,
for example, when the components are always ordered from the same supplier
and the supplier always provides components from the same population, while
the decision maker does not know whether the chosen supplier provides weak or
strong components.

At any moment, we let p ∈ [0, 1] denote the belief that the components belong to
a weak population (i.e., the probability that the components always come from the
weak population). Let Xj denote the lifetime random variable for component type
j, where j = 1 refers to the weak type and j = 2 refers to the strong type. Therefore,



28 Chapter 2. Exploration and exploitation in age-based maintenance

under belief variable p, the lifetime random variable X satisfies

X =

{
X1 with probability p,

X2 with probability 1− p.

For each population type, the time-to-failure distribution is assumed to be known.
Since we have a discrete-time model, Xj is defined as a discrete random variable for
j ∈ {1, 2}. Let Pj(·) and Fj(·) denote the probability mass function (pmf) and the
cumulative distribution function (cdf) of the random variable Xj for j ∈ {1, 2}. We
let P(·) and F(·) denote the pmf and cdf of the random variable X. For a given p,
it holds that P(x) = pP1(x) + (1− p)P2(x) and F(x) = pF1(x) + (1− p)F2(x) for
x ∈N.

We suppose that there is an initial belief p1 ∈ [0, 1], which represents the probability
that the components belong to the weak population at the beginning of the planning
horizon. For example, this belief can be set as the proportion of the suppliers
providing weak components. For n > 1, we let pn ∈ [0, 1] denote the belief at
the beginning of the n-th cycle, representing the probability that the components
belong to the weak population conditional on the data collected in the previous
n− 1 cycles. The belief at the beginning of cycle n + 1 is obtained by updating the
belief pn with the data collected at the end of the n-th cycle. We let (tn, dn) denote
the data collected at the end of the n-th cycle. Specifically, tn represents the length of
the n-th cycle (i.e., tn = min{xn, τn}) with xn the realization of the random variable
X in the n-th cycle, and dn = 1 and dn = 0 denote that the n-th cycle ends with
a corrective replacement and preventive replacement, respectively. The objective of
the decision maker is to determine the optimal age-based policy that minimizes the
expected total cost during the whole planning horizon.

2.4. Mathematical formulation

In this section, we provide a mathematical formulation of the model described
in Section 2.3. Specifically, Section 2.4.1 characterizes the expected total cost of
a given age-based replacement policy. This characterization can be used for the
performance evaluation of any given policy. Section 2.4.2 proposes a POMDP model
to determine an optimal age-based replacement policy that minimizes the expected
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total cost.

2.4.1 Performance evaluation of a preventive replacement policy

In our model formulation, the decision maker updates the belief variable at the end
of each cycle by using the most recent belief variable and the information from the
last cycle. To be specific, suppose that the decision maker starts the maintenance
cycle n with the belief variable pn and observes the data (tn, dn) in cycle n. It follows
from Bayes’ rule that the belief pn+1 at the end of the n-th cycle (or equivalently at
the beginning of cycle n + 1) can be recursively written as

pn+1 = g(pn, tn, dn) =


pnP1(tn)

pnP1(tn)+(1−pn)P2(tn)
if dn = 1,

pn [1−F1(tn)]
pn [1−F1(tn)]+(1−pn)[1−F2(tn)]

if dn = 0.
(2.1)

for n ∈ N. In Equation (2.1), notice that two types of events are distinguished. If
dn = 1 (i.e., the n-th cycle ends with a failure followed by a corrective replacement),
it is known that tn is exactly equal to the realized value of X in cycle n. Therefore,
for dn = 1, the likelihood of this realization is written as Pj(tn) for type j. On the
other hand, if dn = 0 (i.e., the n-th cycle ends with a preventive replacement), it is
known that the realized value of X would have been larger than tn. Therefore, for
dn = 0, the likelihood of this realization is written as ∑∞

i=tn+1 Pj(i), or equivalently
as 1− Fj(tn), for type j. By considering pn as the Bayesian prior probability that
the population is of weak type, Equation (2.1) follows from Bayes’ rule. We refer to
Gelman et al. (2013) for more details on Bayesian updating.

The remaining lifespan of the system at the beginning of cycle n + 1, which is
denoted as zn+1, can be obtained recursively (by using the cycle length tn realized
in the n-th cycle) as

zn+1 =

 zn − tn for zn > 0,

zn for zn = 0.
(2.2)

for n ∈ N, starting with the initial value z1 = L (i.e., the remaining lifespan
of the system in the beginning of the first cycle is equal to the system lifespan
L). Recall that tn is the length of the n-th cycle and equal to min{xn, τn}, where
xn denotes the realization of the lifetime random variable and τn denotes the
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preventive replacement age at cycle n. Since the cycle length, tn is a function of
the lifetime random variable, the variable zn+1 is random as well for each n > 1 (z1

is equal to L by definition and hence is deterministic). In Equation (2.2), the case
zn > 0 represents that the end of the system lifespan has not been reached yet at the
beginning of the n-th cycle. Thus, the remaining lifespan of the system decreases
by the realization of the length of the n-th cycle. Notice that zn = 0 means that the
system has already reached the end of its lifespan at the beginning of n-th cycle and
no planning needs to be done at (and beyond) the n-th cycle.

We let cj(τn, zn) denote the expected cycle cost for component type j, which is given
by

cj(τn, zn) =

 Fj(τn)C f + (1− Fj(τn))Cp if τn < zn,

Fj(τn)C f if τn = zn.
(2.3)

In Equation (2.3), notice that the expected cycle cost does not include the cost of a
possible preventive replacement for the case τn = zn. If τn is chosen equal to zn,
it means that preventive replacement is scheduled at the end of the lifespan of the
system. However, if the component does not fail until then and the system indeed
reaches the end of its lifespan, then there is no preventive replacement needed as
the system goes out of service at that moment. Therefore, the expected cycle cost
only includes the cost of a possible corrective replacement for the case τn = zn.

For a given age-based replacement policy π, let τπ(pn, zn) denote the planned time
interval until the next preventive replacement for a cycle starting with belief variable
pn and remaining system lifespan zn. The expected total cost for the entire lifespan
of the system under policy π can be characterized as

∞

∑
n=1

E[C(pn, zn, τπ(pn, zn))], (2.4)

where

C(pn, zn, τπ(pn, zn)) =

 pnc1(τ
π(pn, zn), zn) + (1− pn)c2(τ

π(pn, zn), zn) if zn > 0,

0 if zn = 0.

(2.5)
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Notice that zn′ = 0 for all n′ ≥ n once zn = 0 for a given n. Further, notice that,
besides zn, also the belief variable pn is a random variable for n > 1 since the
lifetime of the component is random. The expectation in (2.4) is taken with respect
to the randomness in the belief and remaining lifespan variables.

2.4.2 POMDP formulation

We formulate the problem of finding the optimal preventive replacement policy as a
POMDP model, where the true type of the components is unknown but represented
by a belief variable. We take a decision at the beginning of each cycle and the
state at that moment is described by (p, z) where p ∈ [0, 1] denotes the belief
that components belong to the weak population and z ∈ {0, 1, ..., L} denotes the
remaining lifespan of the system. Notice that z belongs to a finite set because we
have a discrete-time model for a system with a finite lifespan. It is important to note
that the two state variables p and z capture all information from past maintenance
cycles, meaning that it is sufficient for the decision maker to define a policy as a
function of these two variables. Let V(p, z) denote the total cost until the end of the
planning horizon under the optimal policy when the current state is (p, z). It holds
that V(p, 0) = 0 for all p ∈ [0, 1], since (p, 0) is an absorbing state, representing the
end of system lifespan, and the system stays in this absorbing state forever at no
cost.

In our model, it is guaranteed to reach an absorbing state in a finite number of
cycles, which is similar to a stochastic shortest path problem. Therefore, there is
a unique optimal cost vector that satisfies the Bellman equations (Bertsekas, 1995).
The Bellman equations are given by

V(p, z) = min
τ∈{1,2,...,z}

Ṽ(p, z, τ) (2.6)

for all p ∈ [0, 1] and z ∈ {1, ..., L}, where

Ṽ(p, z, τ) = C(p, z, τ) +
τ

∑
x=1

V(g(p, x, 1), z− x)
(

pP1(x) + (1− p)P2(x)
)

(2.7)

+V(g(p, τ, 0), z− τ)
(

p(1− F1(τ)) + (1− p)(1− F2(τ))
)

.

In the rest of the chapter, the function V(p, z) in Equation (2.6) is also referred
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to as the value function. In Equation (2.7), the term C(p, z, τ) is the expected
cost in the upcoming cycle, starting with state variables (p, z) and a preventive
replacement scheduled at component age τ. The second term on the right-hand
side of Equation (2.7) considers the scenarios where the upcoming cycle ends with
a corrective replacement (i.e., the time-to failure realization x is less than or equal
to the preventive replacement age τ), and takes the weighted average of the value
function at all the possible states the system can be at the start of the next cycle,
where the weights are equal to the likelihood of each possible state. Finally, the
last term on the right-hand side of Equation (2.7) considers the scenarios where
the upcoming cycle ends with a preventive replacement (i.e., the time-to failure
realization x is greater than the preventive replacement age τ), and is equal to the
value function evaluated at the state after the preventive replacement (i.e., at the
state with updated belief g(p, τ, 0) and remaining lifespan z − τ) multiplied with
the probability of the cycle ending with preventive replacement. The sum of these
three terms on the right-hand side of Equation (2.7) represents the expected cost
of a policy, which takes the preventive replacement decision τ at state (p, z) and
follows the optimal policy thereafter.

Example 2.1 Assume that the maintenance cost parameters are equal to: C f = 10
and Cp = 1. Further, let X1 follow a discrete uniform distribution with support
{1, 2} and X2 a discrete uniform distribution with support {1, 2, . . . , 10}. Then the
probability mass functions are as follows:

P1(x) =

 1
2 for x ∈ {1, 2},

0 for x ≥ 3.

P2(x) =

 1
10 for x ∈ {1, 2, . . . , 10},

0 for x ≥ 11.

Applying the POMDP formulation leads to the following functions for V(p, 1) and
V(p, 2):

V(p, 1) = V(p, 1, 1) = C f (pF1(1) + (1− p)F2(1)) = 1 + 4p, 0 ≤ p ≤ 1.

V(p, 2) = min{Ṽ(p, 2, 1), Ṽ(p, 2, 2)} = min{2 9
10

+ 7
3
5

p, 2
1

10
+ 10

2
5

p}
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=

 2 1
10 + 10 2

5 p for 0 ≤ p ≤ 2
7 ,

2 9
10 + 7 3

5 p for 2
7 ≤ p ≤ 1.

.

Remark 2.1 It is also possible to consider the beginning of each time step as a
decision epoch, and to choose either the replace or do-nothing action at each
decision epoch. This leads to an equivalent POMDP formulation. This equivalent
formulation is described in Appendix 2.C. In that appendix, we also show that this
alternative formulation leads to the same total cost function for Example 2.1. The
POMDP formulation as given here has two advantages compared to the alternative
formulation: (1) The current formulation updates the belief state only at the end of a
maintenance cycle (not at the end of each time step). In a numerical experiment, we
compared calculations under the current formulation with the calculations under
the alternative formulation. In both cases, the same optimal cost is obtained, but,
because of the more frequent updates of the continuous belief state, the alternative
formulation requires a finer discretization level to obtain equally accurate results as
for the current formulation. (2) The optimal policy under the current formulation
denotes directly for each decision epoch at which maintenance is executed, when
the next preventive maintenance action should take place. The optimal policy
under the alternative formulation contains this information as well, but additional
calculations are needed to retrieve that information.

Remark 2.2 Please notice that we assumed two populations in this chapter. It
would also be possible to assume K distinct populations that our components might
be coming from. Then the state description becomes (p, z), where p = (p1, . . . , pK)

and ∑K
k=1 pk = 1. That is, the belief state becomes a vector instead of a single

parameter (i.e., each point on the vector corresponds to a particular belief of having
a certain population type). The Bayesian update function then also returns a vector:

g(p, z, d) =
( p1(P1(t)d + (1− F1(t))(1− d))

∑K
k=1 pk(Pk(t)d + (1− Fk(t))(1− d))

, . . . ,

pK(PK(t)d + (1− F1(t))(1− d))

∑K
k=1 pk(Pk(t)d + (1− Fk(t))(1− d))

)
.
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2.5. Structural analysis

In order to derive the structural properties of the value function, we make
an ordering assumption regarding the time-to-failure random variables of the
component types. Specifically, we assume that the time-to-failure random variable
X2 for the strong type is greater than the time-to-failure random variable X1 for the
weak type in the sense of likelihood ratio order, where the likelihood ratio order is
defined as follows.

Definition 2.1 (Shaked and Shanthikumar, 2007). If P{Y2 = j}P{Y1 = i} ≥
P{Y1 = j}P{Y2 = i} for all i ≤ j, then Y2 is greater than Y1 in likelihood ratio
order, written as Y2 ≥lr Y1.

Assumption 2.1 X2 ≥lr X1.

Assumption 2.1 is equivalent to saying that the ratio P{X2 = x}/P{X1 = x} is non-
decreasing in x ∈ N, which reflects the fact that the time-to-failure realizations are
more likely to be high for strong components than for the weak components. Before
proceeding with our analysis, we first provide some implications of Assumption 2.1.

Lemma 2.1 (i) P{X1 = x}P{X2 > x} ≥ P{X2 = x}P{X1 > x}, ∀x ∈N.

(ii) P{X2 > x} ≥ P{X1 > x}, ∀x ∈N.
(iii) ∑∞

x=1 ϕ(x)P{X2 = x} ≥ ∑∞
x=1 ϕ(x)P{X1 = x} for any non-decreasing function

ϕ(·).

Lemma 2.1(i) and Lemma 2.1(ii) show that the likelihood ratio ordering implies
hazard-rate ordering and the usual stochastic order, respectively, and Lemma 2.1(iii)
follows from the usual stochastic ordering of the random variables X2 and X1;
see Shaked and Shanthikumar (2007) for more details. We next provide some
properties of the Bayesian update function g(p, t, d) that has been characterized
in Equation (2.1). These properties will be needed for establishing the monotonicity
properties of the value function later in this section.

Lemma 2.2 (i) For each given t ∈ N and d ∈ {0, 1}, g(p, t, d) is a non-decreasing
function of p. (ii) g(p, t, 1) is a non-increasing function of t for each given p ∈ [0, 1].
(iii) g(p, t, 1) ≥ g(p, t, 0) for each given p ∈ [0, 1] and t ∈N.
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In Lemma 2.2(i), it is shown that the updated belief variable increases as the
given belief increases. Lemma 2.2(ii) considers the updated belief in the case of
a corrective replacement, and shows that the updated belief gets smaller when the
realization of the cycle duration gets longer. Finally, Lemma 2.2(iii) shows that the
updated belief at the end of a cycle will always be lower if the cycle ends with a
corrective replacement instead of a preventive replacement, at a given prior belief
and cycle length. In other words, under the same p and t values, a cycle ending
with corrective replacement will lead to a higher updated belief of having a weak
population compared to a cycle ending with a preventive replacement.

Before we start our analysis of the value function, we first derive some properties for
the cost function C(p, z, τ), which represents the expected cycle cost as characterized
in Equation (2.5).

Lemma 2.3 (i) C(p, z, τ) is a non-decreasing function of z for a fixed p and τ.

(ii) C(p, z, τ) is a non-decreasing, linear function of p for a fixed z and τ.

For a fixed planned replacement interval, Lemma 2.3(i) shows that the expected
cycle cost becomes larger when there is a longer time left until the end of the system
lifespan. This can be explained by the non-decreasing likelihood of a corrective
replacement as the remaining lifespan increases. Lemma 2.3(ii) shows that the
expected cycle cost becomes larger as it becomes more likely that the population
of the components is of the weak type.

We introduce a new function that we need in the structural analysis of the value
function. This new function is denoted with V l(p, z), and it represents the minimum
expected total cost for a system that is currently at state (p, z) and for which the
cost accounting stops at either the end of the lifespan or after l cycles, whichever
of these time moments comes first. When l = 0, it means that the cost accounting
stops immediately and thus it holds that V0(p, z) = 0 for all p ∈ [0, 1] and z ∈
{0, 1, . . . , L}. For l ≥ 1, the function V l(p, z) can be obtained recursively. It holds
that

V l+1(p, z) = min
τ∈{1,2,...,z}

Ṽ l+1(p, z, τ)
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for l ∈N0, where N0 is the set of nonnegative integers, and

Ṽ l+1(p, z, τ) = C(p, z, τ) +
τ

∑
x=1

V l(g(p, x, 1), z− x)(pP1(x) + (1− p)P2(x))

+ V l(g(p, τ, 0), z− τ)

(
p(1− F1(τ) + (1− p)(1− F2(τ))

)
(2.8)

for all p ∈ [0, 1] and z ∈ {1, . . . , L}. Notice that a system at state (p, z) reaches the
end of its lifespan in at most z cycles. Therefore, it follows from the definition of the
function V l(p, z) that V(p, z) = V l(p, z) for z ≤ l. The idea behind our analysis is to
show first the structural properties of the function V l(p, z) in Theorem 2.1 and then
to use these properties for establishing the properties of the value function V(p, z)
in Corollary 2.1.

Theorem 2.1 For each l = 0, . . . , L, the following results hold:

(i) V l(p, z) is a non-decreasing function of z for each given p ∈ [0, 1].

(ii) V l(p, z) is a non-decreasing and concave function of p for each given
z ∈ {0, 1, . . . , L}.

Theorem 2.1(i) shows that the minimum expected cost of a system that reaches the
end of its lifespan in at most l cycles becomes higher as the remaining lifespan gets
larger. This is intuitive because maintenance costs accumulate over time, and the
longer the planning horizon, the more the total cost. Theorem 2.1(ii) shows that
the same function has monotonicity with respect to the belief variable. That is, as
the belief on having a weak population increases, the minimum expected cost of
a system having at most l cycles left in its lifespan becomes larger. This follows
from the higher likelihood of failure and associated costs for weak population.
Furthermore, the concavity implies that the rate of increase in this cost becomes
smaller as the belief increases.

It is known from Theorem 2.1 that the function VL(p, z) is non-decreasing in z for
a fixed p, and it is also non-decreasing and concave in p for a fixed z. Since we
already know V(p, z) = VL(p, z) for all z ≤ L, the structural properties of the
function VL(p, z) also hold for V(p, z). We formalize this result in the following
corollary.
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Corollary 2.1 (i) V(p, z) is a non-decreasing function of z ∈ {0, 1, . . . , L} for each given
p ∈ [0, 1].
(ii) V(p, z) is a non-decreasing and concave function of p ∈ [0, 1] for each given z ∈
{0, 1, . . . , L}.

2.6. Lower bound function

In this section, we present a lower bound on the minimum expected cost under
the optimal policy. This lower bound function is obtained by assuming that the
preventive replacement moments are determined under the assumption that the
true population type of the components is known. This is referred to as the perfect
information case. The optimal age-based maintenance policy under a finite planning
horizon with a known lifetime distribution has been studied by Lugtigheid et al.
(2008) and Belyi et al. (2017). They consider a single-component system (as we do)
to find an optimal preventive maintenance schedule for minimizing the total cost.
Both of these papers and the model we introduce in this section (to establish a lower
bound function to the optimal cost under failure model uncertainty) assume the
failure model is known, and therefore do not offer a mechanism to learn the failure
model sequentially over time. For each component type, the optimal age-based
replacement policy under perfect information can be found by a dynamic program
with a single state variable z, representing the remaining lifespan. Specifically, the
value function for component type j ∈ {1, 2} is given by

Wj(z) = min
τ∈{1,2,...,z}

(
cj(τ, z) +

τ

∑
x=1

Pj(x)Wj(z− x) + (1− Fj(τ))Wj(z− τ)

)

for z ∈ {1, 2, ..., L} and Wj(0) = 0. Similar to our analysis in Section 2.5, we define a
function W l

j (z) as the minimum expected total cost for a system that is currently at
state z and for which the cost accounting stops at either the end of the lifespan or
after l cycles, whichever of these time moments comes first. It holds that W0

j (z) = 0
for all z ∈ {0, 1, ..., L}. Furthermore, it holds that

W l+1
j (z) = min

τ∈{1,2,...,z}

(
cj(τ, z) +

τ

∑
x=1

Pj(x)W l
j (z− x) + (1− Fj(τ))W l

j (z− τ)

)
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for z ∈ {1, 2, ..., L} and l ∈ N0. Lemma 2.4 shows the monotonicity of the function
W l

j (z) for each component type j.

Lemma 2.4 For each l ∈ {1, . . . , L}, W l
j (z) is a non-decreasing function of z for j ∈

{1, 2}.

It follows from the definition of the function W l
j (z) that Wj(z) = W l

j (z) for any
l such that z ≤ l. Thus, the monotonicity of the function WL

j (z) also holds for
the value function Wj(z) of component type j in the perfect-information case. This
result is formalized in Corollary 2.2.

Corollary 2.2 Wj(z) is a non-decreasing function of z for j ∈ {1, 2}.

We introduce a function W(p, z) defined as

W(p, z) = pW1(z) + (1− p)W2(z) (2.9)

for p ∈ [0, 1] and z ∈ {0, ..., L}. The function W(p, z) can be interpreted as the
expected total cost if the belief on having a weak population is equal to p at state
z, and the information on the true type is revealed immediately with all preventive
replacement decisions set optimally by knowing the true component type in the
remaining lifespan z.

Theorem 2.2 W(p, z) ≤ V(p, z) for all p ∈ [0, 1] and z ∈ {0, ..., L}.

Theorem 2.2 shows that the function in (2.9) is always less than or equal to the
minimum expected cost under the optimal policy, and thus it forms a lower bound
function. This lower bound function corresponds to knowing the population of
components with certainty. There are certain benefits of knowing how the optimal
policy is under this perfect information case. First, we can compare the optimal
policy to the lower bound policy in order to see how uncertainty affects the
decision-making. The numerical results will be discussed in Section 2.7.1. Second,
V(p, z) −W(p, z) represents the value of uncovering the true population type in
state (p, z). This can be interpreted as the maximum cost that the policy maker
wants to pay in order to learn the true population. This is further elaborated in
our numerical study in Section 2.7.4. In real life applications, an inspection might
reveal the true component type with a certain cost. The difference between the
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lower bound and optimal cost determines how much we would be willing to pay
for a possible inspection.

2.7. Numerical study

In order to solve the Bellman equations in (2.6), we first discretize the belief space
and apply a dynamic programming algorithm with backward recursion. The details
of our discretization scheme and a pseudocode of the solution algorithm can be
found in the Appendix 2.A. In our numerical analysis, we set the discretization
level, which is denoted with ∆p in Algorithm 1, at 0.0025. This discretization level
is chosen because it is a sufficiently small value, i.e., the results reported in this
section do not change noticeably if the discretization level is further reduced.

For the numerical analysis, we assume that the lifetime random variable of each
component type has a discrete Weibull distribution. We denote the pmf and cdf
of a discrete Weibull distribution with P(x; λ, k) and F(x; λ, k), respectively, where
λ > 0 is the scale parameter and k > 0 is the shape parameter. Specifically, it follows

that P(x, λ, k) = exp
[
−
(

x−1
λ

)k
]
− exp

[
−
( x

λ

)k
]

and F(x, λ, k) = 1− exp
[
−
( x

λ

)k
]

for x ∈ N. This discrete Weibull distribution can be derived from the well-known
continuous Weibull distribution. To be specific, let X̂ denote a continuous Weibull
random variable with cumulative distribution function FX̂(x) = 1− exp[− (x/λ)k]

for x ≥ 0 given the scale parameter λ and shape parameter k. Similar to
Chakraborty (2015), the pmf follows from defining P(x, λ, k) as FX̂(x)− FX̂(x − 1)
for x ∈ N. We assume that the shape parameter is the same for both component
types but the scale parameters are different. The scale parameter λ is equal to 10

for the weak type and it is equal to 20 for the strong type. We consider two possible
values for the shape parameter: k ∈ {5, 10}. In Table 2.2, some distributional
properties of the resulting discrete Weibull distributions are provided. To address
our research questions, it appears that we can follow a similar test bed as in de Jonge
et al. (2015a). The remainder of this section is organized as follows. In Section 2.7.1,
the optimal policy structure will be discussed when the component type is perfectly
known. In Section 2.7.2, the optimal policy and cost structure are presented for a
specific problem instance under uncertainty in the component type. In Section
2.7.3, two different policies from the literature will be introduced as benchmarks
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Table 2.2: Distributional properties for discrete Weibull.

Scale (λ) Shape (k) Expectation Variance
Coefficient of

Variation
10 5 9.682 4.506 0.219

20 5 18.863 17.775 0.224

10 10 10.014 1.393 0.118

20 10 19.527 5.324 0.118

for the optimal policy. In Section 2.7.4, the costs under the optimal policy and the
benchmark policies and the lower bound on the optimal cost are compared to each
other. Finally, in Section 2.7.5, the structure of the optimal policy is compared with
the structures of the benchmark policies in order to provide managerial insights on
the exploration and exploitation trade-off in maintenance planning.

2.7.1 Perfect information case

In this section, we elaborate on how the optimal policy would look like if the
decision maker had known the component type perfectly; i.e., when there is no
population heterogeneity. We consider a problem instance with Cp = 0.1, C f = 1,
and L = 100. For each component type, Figure 2.2 plots the optimal action (i.e.,
the optimal amount of time until the next planned replacement) as a function of
the state variable z. In Figure 2.2(a) and Figure 2.2(b), we consider the case with
shape parameter k equal to 5 and 10, respectively. In both figures, τ∗(z) denotes the
optimal policy under a given z for the perfect information case.

Remark 2.3 In numerical experiments, we implicitly assume that the discretization
level for time is equal to ∆t = 1 (i.e., the length of each time step is one time
unit), where ∆t represents the discretization level for a continuous time Weibull
distribution. Please note that we would see a continuum of values as optimal actions
when ∆t would go to 0. However, the overall fluctuating behavior of optimal actions
would still exist. We can interpret these fluctuations as structural fluctuations that
are caused by the distributional properties of the time-to-failure random variable
and the finiteness of the planning horizon; see also the numerical experiment in
Appendix 2.D, in which we study the effect of a smaller time step.

Notice that the remaining time until the end of lifespan, z, is the only state variable
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Figure 2.2: Optimal actions under perfect information for Cp = 0.1, C f = 1 and L = 100.

under the perfect information case. We observe in Figure 2.2 that the behavior of
the optimal action can be split into three different patterns with respect to z: stable,
fluctuating, and linear. When the system is far from the end of its lifespan (i.e., large
z values), for both component types the optimal maintenance age τ∗(z) is stable at
the value that minimizes the long-run average cost rate, obtained by using renewal
theory under the assumption of an infinite time horizon. For example, we observe
in Figure 2.2(a) with large values of z that the optimal action τ∗(z) is stable at 5 for
the weak component, and it is stable at 10 for the strong component. This means
that when z is large, the effect of the finite horizon is not observed in the optimal
actions.

Optimal actions start to fluctuate as time passes (z becomes smaller). For example,
in Figure 2.2(a) for the weak component, fluctuations take place between z = 15 and
z = 8. When the system is close to the end-of-lifespan (z gets close to 0), the optimal
actions are equal to z (i.e., between z = 7 and z = 0 in Figure 2.2(a)). An optimal
action being equal to z means ‘no replacement’ (i.e., plan to do nothing in the rest
of the system lifespan). The fluctuations in the figure represent a transition phase
between stable optimal actions in the beginning of the lifespan (large z values) and
‘no replacement’ actions near to the end-of-lifespan (small z values). This can be
explained by the finiteness of the planning horizon, referred to as the finite horizon
effect. In the beginning of the lifespan, we obtain the action that minimizes the
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long-run expected cost rate as the optimal action. When the behavior of optimal
actions starts fluctuating, the optimal policy tries to balance the lengths of the
remaining cycles. While balancing, at certain points it becomes optimal to aim
at one cycle less when you come closer to the end of the horizon. At those points,
the optimal threshold value τ∗(z) jumps from a relatively low to a relatively high
value. At the end of the lifespan (i.e., z = 0) we do not have a replacement action
and the value function is equal to zero. As the system approaches the end of its
lifespan, the optimal policy selects ‘no replacement’ as the optimal action because
the model considers that the remaining lifespan of the system is not sufficiently long
to justify a replacement of the component, thus, avoiding an unnecessary preventive
maintenance cost.

Additionally, in Figure 2.2(b), where k = 10 (i.e., the lifetime of each component
is less variable compared to k = 5), the optimal actions and the fluctuations in
optimal actions are greater than their counterparts in Figure 2.2(a), where k = 5,
for both strong and weak parts. Lower variability in a component’s lifetime means
that it becomes more predictable what will happen till the end of the planning
horizon. We observe that this leads to a longer time interval with fluctuating
optimal actions. Finally, when we compare the weak and strong parts with the
same shape parameter, we see in both Figure 2.2(a) and (b) that the fluctuations
are less for the weak population and the optimal actions for the weak population
cannot exceed the optimal actions for the strong population.

2.7.2 Analysis of POMDP model for optimal cost and optimal
action

The objective of this section is to investigate the structure of the optimal policy when
there is population heterogeneity (i.e., the correct component type is unknown).
This helps us to answer the first research question introduced in Section 2.1. For
this purpose, we focus on a specific problem instance with L = 200, k = 5, Cp = 0.1,
C f = 1, and analyze the structure of the optimal cost and optimal policy via the
POMDP model. Figure 2.3(a) and Figure 2.3(b) illustrate the value function and
the optimal policy, respectively, with τ∗(p, z) denoting the optimal action at state
(p, z). The results for the value function are consistent with Theorem 2.1 presented
in Section 5. In particular, the monotonicity of V(p, z) with respect to p and z as



2.7 Numerical study 43

well as the concavity of V(p, z) with respect to p can be observed in Figure 2.3(a).

p

z

V(p, z)

(a) Optimal costs

p

z

τ∗(p, z)

(b) Optimal actions

p

z

τ∗(p, z)

(c) Optimal actions for z ≤ 50

Figure 2.3: Optimal costs and actions under the POMDP model for Cp = 0.1, C f = 1,
L = 200 and k = 5.

It is important to note in Figure 2.3(b) that the optimal action τ∗(p, z) is not
monotone with respect to p and z. However, there exists patterns in the optimal
action. For a more clear observation of these patterns, Figure 2.3(c) provides a
closer view of the optimal policy from Figure 2.3(b) for z ≤ 50. Specifically, at a
fixed p value, we observe a repetitive pattern in optimal actions if p is sufficiently
small: there are bell-shaped structures, especially as the system approaches the
end of its lifespan. In this bell-shaped pattern, the optimal action shows cycles
of first increasing then decreasing behavior as z changes. Notice that having a
strong component and having a weak component under the perfect information
case corresponds to p = 0 and p = 1, respectively, in the POMDP model. Also
recall from Section 2.7.1 that we observe more fluctuations for the strong component
in the perfect information case. This explains why there are more fluctuations in
Figure 2.3(b) for small values of p (i.e., as the components are more likely to be
coming from the strong population for small p).

2.7.3 Benchmark policies

In this section, we introduce two alternative policies from the literature and use
them as a benchmark for the optimal policy of the POMDP model to generate
insights on the benefits of the optimal policy. To be specific, we first provide the
definition of the so-called myopic policy and then the threshold policy (de Jonge
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et al., 2015a).

Myopic Policy. The myopic policy (MP) aims to minimize the long-run expected
cost per unit time. It is a commonly used policy in maintenance literature. In our
context, it uses the current estimate of the belief variable, say p̂, and determines the
time of the next planned replacement by the following equation:

τMP( p̂) = arg min
τ

{
p̂

C f F1(τ) + Cp(1− F1(τ))

∑τ
x=1(1− F1(x))

+ (1− p̂)
C f F2(τ) + Cp(1− F2(τ))

∑τ
x=1(1− F2(x))

}
.

(2.10)
It is referred to as a myopic policy because it ignores the effect of an action in
the current cycle on the information collected in the following cycles (i.e., how the
current action affects the belief variable in the future). The myopic policy is also
used by de Jonge et al. (2015a) as a benchmark to their proposed heuristic. Notice
that the myopic policy does not consider the finiteness of the planning horizon,
while our problem has a finite planning horizon. However, it still serves as a
natural benchmark due to its low computational complexity and relevance when
the planning horizon is sufficiently larger than the expected time between failures,
as stated in de Jonge et al. (2015a).

Threshold Policy. The threshold policy (TP) is proposed by de Jonge et al. (2015a).
The aim of this policy is to incorporate the effect of an action on the update of
the belief variable, and hence, to perform better in the future at the expense of
performing less good in the short term. This is done by deliberately postponing
a preventive replacement if the belief variable p is below a certain threshold.
Specifically, if p ≤ ω, where ω is the threshold value, the time until the next planned
replacement is selected as τ2, given by

τ2 = arg min
τ

C f F2(τ) + Cp(1− F2(τ))

∑τ
x=1(1− F2(x))

. (2.11)

On the other hand, if p > ω, the time until next planned replacement is set equal
to the value of τMP. This policy is implemented by using different values of the
threshold, and the total expected cost (in the finite planning horizon) is obtained via
simulation or the Bellman equations for each threshold value. The threshold value
that leads to the lowest cost is referred to as the optimal threshold, denoted by ω∗

(de Jonge et al., 2015a). Notice that the value of τ2 is the time until the next planned
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replacement that minimizes the long run expected cost rate if the component is
certainly of the strong type. Intuitively, the threshold policy delays the preventive
maintenance moment (by pretending that the component is of the strong type)
when the probability that the component is of the weak type is sufficiently small.
It is important to note that the threshold policy aims to address the exploration-
exploitation trade-off, but it is not necessarily the optimal policy. Also, notice that
the threshold policy is a function of the belief variable p, hence, we denote the
resulting action (i.e., time until next replacement) under the threshold policy with
τTP(p).

2.7.4 Numerical results

The objective of this section is to compare the minimum cost under the optimal
policy with the cost associated with the benchmark policies and the lower bound
on the optimal cost. Recall that p1 represents the initial belief that the population
is of the weak type at the beginning of the system lifespan. In our experiments, we
consider p1 ∈ {0.25, 0.5, 0.75}, meaning that the performance comparison will be
made for systems that start their lifespan at different initial beliefs. Furthermore,
we let L ∈ {100, 200}, k ∈ {5, 10}, C f = 1, and Cp ∈ {0.05, 0.1, 0.2}. This setup leads
to 36 problem instances in our experiment (see Table 2.3). It is important to note
that this testbed mimics the testbed of de Jonge et al. (2015a). As a slight difference,
we use discrete versions of the lifetime distributions considered in de Jonge et al.
(2015a) after multiplying their scale parameters by 10 (this is to scale the time
and make the lifetime realizations of the components suitable for our discrete-
time problem setting). Additionally, we calculate the expected cost of any given
policy via the Bellman equations while de Jonge et al. (2015a) use simulation to
approximate the costs of the myopic and threshold policies. Therefore, the results
reported in Table 2.3 are exact.

In Table 2.3, we compare the performance of the optimal policy with the perfor-
mance of the myopic policy and threshold policy. This will enable us answering the
second research question introduced in Section 2.1 (i.e., under which scenarios is
the total cost of optimal policy (OP) much lower than the cost of existing heuristic
policies?). The expected cost under the myopic policy is denoted with VMP(p1, L).
The difference and the relative difference in the expected costs under the myopic
policy and the optimal policy are denoted by ∆MP = VMP(p1, L) − V(p1, L) and
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∆rel
MP = ∆MP/V(p1, L), respectively. We denote the expected cost under the optimal

threshold policy with VTP(p1, L) and the corresponding optimal threshold with
ω∗. The difference and the relative difference in the expected costs under the
threshold policy and the optimal policy are denoted by ∆TP = VTP(p1, L)−V(p1, L)
and ∆rel

TP = ∆TP/V(p1, L). Furthermore, Table 2.3 compares the expected cost
under the optimal policy with its lower bound W(p1, L), which was obtained in
Section 2.6. This comparison will help us answering the third research question
introduced in Section 2.1 (i.e., determining the value of resolving the uncertainty
in the population heterogeneity). The difference and relative difference between
the expected cost under the optimal policy and its lower bound are denoted by
ΥLB = V(p1, L)−W(p1, L) and Υrel

LB = ΥLB/V(p1, L), respectively.

An immediate observation from Table 2.3 is that the expected costs for MP, TP and
OP decrease in k and increase in p1, Cp and L (i.e., the monotonicity of the expected
cost for OP with respect to the belief variable and the remaining time until the end
of the horizon was already proven in Section 2.5).

We start our detailed analysis by comparing OP with MP in order to assess the
benefit of using the optimal policy instead of the myopic policy. The difference in
expected costs can be interpreted as the value of optimally balancing exploration
and exploitation rather than acting only in a myopic way without any exploration
in maintenance planning. We make the following observations: (1) When looking
at the values of ∆rel

MP as a function of p1, we generally obtain the highest values
for p1 = 0.25 (the only exception is seen in the instances 34-36). That is, if the
population is more likely to be of the strong type, then it becomes more beneficial to
follow the optimal policy instead of the myopic policy. (2) As Cp increases from 0.05

to 0.2, ∆MP increases (except for instances 31 and 34). In our experimental design,
having a large Cp value means that the cost of preventive maintenance approaches
the cost of corrective maintenance, implying that exploration becomes relatively less
expensive (i.e., because the corrective maintenance becomes relatively less costly).
This results in learning the true type of the population earlier, leading to higher
∆rel

MP values. (3) ∆rel
MP is higher for k = 10 compared to k = 5 (with the exception

of instances 25 and 31, yet with a small difference). That is, we observe that as the
variability in the time-to-failure distribution of the component decreases (i.e., when
the shape parameter k increases from 5 to 10), the optimal policy becomes more
beneficial compared to the myopic policy. (4) We observe that the value of ∆MP for
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Table 2.3: Comparison of policies under different scenarios.

No. L Cp k p1 V(p1, L) ∆MP ∆TP ΥLB ∆rel
MP ∆rel

TP Υrel
LB ω∗

1 100 0.05 5 0.25 1.071 0.006 0.006 0.186 0.6% 0.6% 17.3% 0

2 100 0.05 5 0.5 1.250 0.002 0.002 0.179 0.2% 0.2% 14.3% 0

3 100 0.05 5 0.75 1.387 0.004 0.004 0.129 0.3% 0.3% 9.3% 0

4 100 0.1 5 0.25 1.721 0.063 0.037 0.215 3.7% 2.1% 12.5% 0.3
5 100 0.1 5 0.5 2.123 0.018 0.018 0.298 0.8% 0.8% 14.0% 0

6 100 0.1 5 0.75 2.334 0.006 0.006 0.188 0.3% 0.3% 8.1% 0

7 100 0.2 5 0.25 2.765 0.152 0.063 0.221 5.5% 2.3% 8.0% 0.15

8 100 0.2 5 0.5 3.403 0.103 0.049 0.314 3.0% 1.4% 9.2% 0.45

9 100 0.2 5 0.75 3.932 0.062 0.047 0.297 1.6% 1.2% 7.5% 0.5
10 100 0.05 10 0.25 0.768 0.020 0.020 0.228 2.7% 2.7% 29.6% 0

11 100 0.05 10 0.5 0.839 0.008 0.008 0.183 1.0% 1.0% 21.8% 0

12 100 0.05 10 0.75 0.867 0.003 0.003 0.095 0.3% 0.3% 10.9% 0

13 100 0.1 10 0.25 1.222 0.209 0.018 0.227 17.1% 1.5% 18.6% 0.4
14 100 0.1 10 0.5 1.536 0.038 0.038 0.318 2.5% 2.5% 20.7% 0

15 100 0.1 10 0.75 1.610 0.047 0.047 0.167 2.9% 2.9% 10.4% 0

16 100 0.2 10 0.25 1.984 0.444 0.115 0.166 22.4% 5.8% 8.4% 0.25

17 100 0.2 10 0.5 2.551 0.377 0.080 0.325 14.8% 3.1% 12.7% 0.5
18 100 0.2 10 0.75 2.934 0.102 0.102 0.300 3.5% 3.5% 10.2% 0

19 200 0.05 5 0.25 2.079 0.068 0.029 0.262 3.3% 1.4% 12.6% 0.3
20 200 0.05 5 0.5 2.545 0.011 0.011 0.354 0.4% 0.4% 13.9% 0

21 200 0.05 5 0.75 2.810 0.030 0.030 0.246 1.1% 1.1% 8.8% 0

22 200 0.1 5 0.25 3.405 0.140 0.048 0.297 4.1% 1.4% 8.7% 0.35

23 200 0.1 5 0.5 4.143 0.141 0.071 0.394 3.4% 1.7% 9.5% 0.3
24 200 0.1 5 0.75 4.764 0.026 0.026 0.376 0.6% 0.6% 7.9% 0

25 200 0.2 5 0.25 5.589 0.158 0.101 0.312 2.8% 1.8% 5.6% 0.25

26 200 0.2 5 0.5 6.768 0.135 0.070 0.399 2.0% 1.0% 5.9% 0.45

27 200 0.2 5 0.75 7.841 0.167 0.131 0.380 2.1% 1.7% 4.9% 0.6
28 200 0.05 10 0.25 1.376 0.201 0.028 0.256 14.6% 2.0% 18.6% 0.3
29 200 0.05 10 0.5 1.721 0.028 0.028 0.365 1.7% 1.7% 21.2% 0

30 200 0.05 10 0.75 1.777 0.018 0.018 0.186 1.0% 1.0% 10.5% 0

31 200 0.1 10 0.25 2.315 0.547 0.072 0.229 23.6% 3.1% 9.9% 0.25

32 200 0.1 10 0.5 2.952 0.211 0.066 0.422 7.1% 2.2% 14.3% 0.5
33 200 0.1 10 0.75 3.300 0.026 0.026 0.325 0.8% 0.8% 9.8% 0

34 200 0.2 10 0.25 3.990 0.453 0.135 0.181 11.4% 3.4% 4.5% 0.25

35 200 0.2 10 0.5 4.952 0.763 0.117 0.347 15.4% 2.4% 7.0% 0.5
36 200 0.2 10 0.75 5.880 0.194 0.111 0.478 3.3% 1.9% 8.1% 0.75

L = 200 is higher than its counterpart for L = 100 (with the exception of instances
15 and 33). That is, if there is more time to exploit the information that is obtained
by exploration, the optimal policy performs better than the myopic policy. In fact,
we observe that the highest values of ∆rel

MP are obtained at instances where L = 200
with p1 = 0.25. Specifically, the value of ∆rel

MP can be as high as 23.6% (see instance
31).

In Table 2.4, we can see the average of ∆rel
MP and ∆rel

TP values for subsets of instances
with specific values of L, k, Cp and p1. We see that ∆rel

MP is higher for L = 200 than
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Table 2.4: Average of relative differences under parameters L, k, Cp and p1.

L ∆rel
MP ∆rel

TP k ∆rel
MP ∆rel

TP Cp ∆rel
MP ∆rel

TP p1 ∆rel
MP ∆rel

TP
100 4.6% 1.8% 5 2.0% 1.1% 0.05 2.3% 1.1% 0.25 9.3% 2.3%
200 5.5% 1.6% 10 8.1% 2.3% 0.1 5.6% 1.7% 0.5 4.4% 1.5%

0.2 7.3% 2.5% 0.75 1.5% 1.3%

its value for L = 100. But it is the other way around for ∆rel
TP values. Both ∆rel

MP and
∆rel

TP are higher for k = 10 than for k = 5. As Cp increases in the set of {0.05, 0.1, 0.2},
also ∆rel

MP and ∆rel
TP increase. Finally, as p1 increases in the set of {0.25, 0.5, 0.75}, ∆rel

MP
and ∆rel

TP decrease.

We next investigate the benefit of following the optimal policy instead of the
threshold policy. The relative difference ∆rel

TP in expected cost can be interpreted as
the percentage gain obtained from optimally balancing exploration and exploitation
instead of following the heuristic TP to strike this balance. We observe in Table 2.3
that ∆rel

TP varies from 0.2% to 5.8%. That is, following the threshold policy instead
of the optimal policy can lead to a cost increase of 5.8%.

Remark 2.4 It is known that the heuristic policies MP and TP do not explicitly
model the end of the planning horizon in obtaining the replacement age, while our
optimal policy does. As part of our side experiments, we investigated how adapting
these heuristics to a finite-horizon setting (by limiting the action space based on the
remaining lifespan of the system, i.e., by limiting the action space to τ ∈ {1, . . . , z})
would affect their performance. By using the same test bed, we observed for both
MP and TP that, when they are adapted to a finite-horizon setting, the decrease
in the relative distance to the optimal cost is very small (in 90% of the instances),
i.e., adapting the heuristics to a finite-horizon setting has a limited effect on their
performance. For more details on this side experiment, see Appendix 2.E .

Finally, we investigate the value of knowing the true type of the components.
Specifically, we focus on the reduction in the expected cost when the population
uncertainty is resolved at the beginning of the planning horizon. Recall that this
reduction is given by the value of ΥLB, and it can be argued that ΥLB is the maximum
amount someone would be willing to pay for an inspection activity to reveal the true
type of the component. We make the following observations: (1) Υrel

LB is typically
higher for k = 10 than k = 5. That is, we observe that as the variability in the
lifetime of the component is low, it generally becomes more beneficial to resolve the
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population heterogeneity at the beginning of the system lifespan. (2) Υrel
LB is lower

for L = 200 compared to L = 100. That is, in a longer lifespan of the system, there
is more time to exploit the knowledge obtained through learning under the optimal
policy, and thus, the relative gain from following the optimal policy is higher (i.e.,
the performance of the optimal policy is closer to the performance of the policy that
learns the true type as soon as the system starts its operation). (3) Υrel

LB is highest
for an initial belief p1 = 0.5 (except for instances 1-3 and 10-12), i.e. when we
have the highest uncertainty about the population type. This can be interpreted
as the situation where it is most important to learn the true component type by
alternative means such as an inspection. (4) For larger values of Cp, Υrel

LB is lower.
This can be argued as a result of exploration becoming relatively less expensive
with an increasing value of Cp.

2.7.5 Comparison of policy structures

In this section, the objective is to compare the structure of the optimal policy
with the structure of MP and TP in order to address the fourth research question
introduced in Section 2.1 (i.e. how does the structure of the optimal policy differ
from existing heuristics in terms of exploration and exploitation). For this purpose,
we focus on the case with Cp = 0.1, k = 10 and L = 200, where the values of ∆rel

MP
and ∆rel

TP are relatively high. Figure 2.4 illustrates the actions under the optimal
policy and the actions under MP and TP. As it is seen from Figure 2.4, OP adapts its
actions according to the remaining lifespan of the system where actions under MP
and TP are constant with respect to the remaining lifespan. This is mainly because
OP dynamically updates the action space with respect to the remaining lifespan
and it considers the effect of an action on the future cycles during decision making.

For an easier interpretation of Figure 2.4, we plot the relationship between the
actions of different policies in Figure 2.5. Specifically, Figure 2.5(a) shows in what
states the optimal action is greater, equal to, and less than the action under the
myopic policy. Similarly, Figure 2.5(b) compares the actions of the threshold and
myopic policies. It can be argued that exploration takes place at a state when
the optimal action is greater than the action under MP at that state; i.e., the time
until the next planned replacement is longer to better learn the true type of the
component population. We observe that exploration typically takes place when
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Figure 2.4: Illustration of the actions under the optimal policy, MP and TP for Cp = 0.1,
L = 200, and k = 10 (e.g., z = 200 and p1 = 0.25 correspond to the instance 31).
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Figure 2.5: Comparison of the actions under the optimal policy and the TP with the
actions under the MP for Cp = 0.1, L = 200, and k = 10.

the belief that the components come from the weak population is small enough
for both OP and TP. By comparing Figure 2.5(a) and Figure 2.5(b), we observe
that the optimal policy performs exploration at a larger number of states than TP
does. Also, Figure 2.5(c) directly compares the actions of the optimal and threshold
policies. As the system gets closer to the end of its lifespan (i.e., as z decreases),
the exploration decreases under the optimal policy. This can be associated with the
ability of the optimal policy to explicitly take the end of the lifespan into account.
To be specific, the optimal policy exploits the belief already learned close to the end
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Figure 2.6: Comparison of the actions under the optimal policy with the actions under
the MP for L = 200 and k = 10.

of the lifespan, while the threshold policy does not change its policy structure over
time. This is mainly because the threshold policy postpones maintenance activities
(for exploration purpose) based on a belief threshold that is fixed throughout the
lifespan. In Figure 2.6, we illustrate the states where the exploration takes place
under the optimal policy by considering different Cp values. Figure 2.6 shows that
exploration takes place at a larger number of states when Cp is relatively higher.
This is in line with our earlier interpretation of exploration being relatively cheaper
with an increasing value of Cp.

In the remainder of this section, we investigate how the belief variable evolves
under the optimal policy by performing simulation experiments. By comparison
with the evolution of the belief variable under the myopic policy, we aim to shed
further light on the role of exploration in learning the true type of the component
population. We choose to focus on instances 16 and 17 because ∆rel

MP takes relatively
large values in these instances. In each simulation run, we start with the initial belief
p1 (i.e., equal to 0.25 and 0.5 for instances 16 and 17, respectively) and generate a
large number of a series of realizations from the time-to-failure distribution of a
given population type. Specifically, we perform a total of 10000 simulation runs,
and the proportion of the simulation runs where the time-to-failure realizations
are generated from the weak population is equal to p1; e.g., for instance, 16 with
p1 = 0.25, we performed 2500 simulation runs by generating the time-to-failure
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realizations for a weak component and 7500 simulation runs by generating these
realizations for a strong component; each simulation run includes a sufficiently
large number of time-to-failure realizations so that the entire lifespan is covered in
each simulation run.

We apply the actions from the myopic policy and the actions from the optimal
policy against the same realizations of the failure times in each simulation run.
Notice that the actions under these two policies are potentially different, leading to
different realizations of the cycle lengths, and hence a potentially different evolution
of the belief variable p. Figure 2.7 illustrates examples on the evolution of the belief
variable over the system lifespan, by showing five sample paths of the updated
belief variables under both the myopic and optimal policies for the instances 16 and
17.

Recall that, under perfect information, the belief variable needs to be equal to 1

when the true component type is weak, and it needs to be equal to 0 when the
true component type is strong. In our simulation experiments, if the updated belief
variable gets a minimum value of 0.99 when the true component type is weak or
if it gets a maximum value of 0.01 when the true component type is strong, we
say that the belief variable has converged to its true value. We observe that the
belief variable converges faster under the optimal policy than the myopic policy in
most of the simulation runs, even though both policies start with the same initial
belief. Specifically, for the problem instance 16, the belief variable converges to its
true value in 92.84% of the sample paths under the optimal policy (i.e., in 9284

simulation runs out of 10000). Furthermore, for the problem instance 16, the belief
variable under the optimal policy converges to its true value on average in 15.47
time units for weak type (i.e., since the half-width of 95% confidence intervals turns
out to be less than 0.01 time units when the number of simulation runs is equal to
10000, we only report the average values from our simulation experiments in the
remainder of this section). The corresponding value for the strong type is 15.06 time
units. On the other hand, the belief variable converges to its true value in 92.78 %
of sample paths under the myopic policy. While this value is only slightly different
than for the optimal policy, we observe that belief variable converges to its true
value on average in 40.01 time units when the true population is weak and in 80.09
time units when the true population is strong, which are both substantially longer
than their counterparts under the optimal policy.
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Figure 2.7: Evolution of the belief variable p in five simulation sample paths under the
myopic policy (MP) and under the optimal policy (OP); a specific sample path in each
figure is denoted with a distinct symbol.

For problem instance 17, we observe that the belief variable converges to its true
value in 97.08% of the sample paths under the optimal policy. We also observe that
the belief variable converges to its true value on average in 10.55 time units when
the true population is weak and in 15.06 time units when the true population is
strong. On the other hand, under the myopic policy, the belief variable reaches to
its true value only in 33.47% of the sample paths. Furthermore, under the myopic
policy, we observe that the belief variable converges to its true value on average in
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58.62 time units when the true population is weak, while it fails to converge in any
of the sample paths when the true population is strong.

2.8. Conclusion

In this research, we have developed an optimal age-based maintenance policy under
population heterogeneity in a finite-lifespan setting. The initial belief about the true
population type is updated in a Bayesian way, and a POMDP model is formulated.
The model enables us to optimally balance exploration (i.e., deliberately delaying
the preventive replacement moments to better learn the unknown population type
for components) and exploitation (i.e., focusing only on the current maintenance
cycle without considering the future maintenance cycles) in our setting. We
compare the performance of the optimal policy to two heuristic policies (namely,
the myopic policy and the threshold policy) from the literature. In our numerical
experiments, we obtain that the threshold policy is up to 5.8% more costly compared
to the optimal policy. The myopic policy is up to 23.6% more costly compared to
the optimal policy. We also show that the true component type is learned much
faster and more accurately under the optimal policy due to the effective use of
exploration.

2.A. Solution algorithm

In this section, we provide an outline of the backward recursion algorithm that
we use to solve the Bellman equations provided in Equation (2.6). Since the belief
state is continuous, we perform a discretization of the belief space with ∆p as the
discretization step. Algorithm 1 presents the pseudocode for the solution algorithm,
where the updated belief state is adjusted in accordance with the value of ∆p

with ⌈·⌉ denoting the ceiling function that rounds a real number to above. The
data set generated for numerical experiments and the algorithm can be found at
https://git.io/JzEc1.
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Algorithm 1 Backward Recursion Algorithm
Initialize z = 1
V(p, 0)← 0 ∀p ∈ {0, ∆p, 2∆p, ..., 1}
while z < L + 1 do

for p ∈ {0, ∆p, 2∆p, ..., 1} do
for τ ∈ {1, ..., z} do

Ṽ(p, z, τ) ← C(p, z, τ) +
τ

∑
x=1

V(
⌈

g(p, x, 1)
1

∆p

⌉
∆p, z− x)(pP1(x) + (1− p)P2(x))

+V(
⌈

g(p, τ, 0)
1

∆p

⌉
∆p, z− τ)

(
p(1− F1(τ) + (1− p)(1− F2(τ))

)
end for
V(p, z)← minτ{Ṽ(p, z, τ)}

τ∗(p, z)← argminτ{Ṽ(p, z, τ)}

end for
z = z + 1

end for
return V(p, z), τ∗(p, z), ∀(p, z)

2.B. Proofs

Proof of Lemma 2.1
(i) Since X2 ≥lr X1 by Assumption 2.1, it is known that P{X2 = x}/P{X1 = x} is
non-decreasing in x. Thus, it follows that

P{X2 = x} ≥ P{X1 = x}P{X2 = t}
P{X1 = t}

for x ≥ t. Consequently, it can be written that

P{X2 = t}
∑∞

i=t+1 P{X2 = i} ≤ P{X2 = t}
∑∞

i=t+1 P{X1 = i}P{X2=t}
P{X1=t}

=
P{X1 = t}

∑∞
i=t+1 P{X1 = i}
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for any t ∈N. Since ∑∞
i=t+1 P{Xj = i} = P(Xj > t) for j ∈ {1, 2}, the result follows.

(ii) By using the arguments in the proof of Lemma 2.1(i), we first note that the
inequality

P{X1 = x}P{X2 ≥ x} ≥ P{X2 = x}P{X1 ≥ x} (2.12)

also holds for all x ∈N. By using conditional probabilities, it can be written that

P(X2 ≥ x) =
x−2

∏
i=0

P(X2 ≥ x− i|X2 ≥ x− i− 1)

=
x−2

∏
i=0

(
1− P(X2 = x− i− 1)

P(X2 ≥ x− i− 1)

)

≥
x−2

∏
i=0

(
1− P(X1 = x− i− 1)

P(X1 ≥ x− i− 1)

)
= P(X1 ≥ x),

for x ∈ {2, 3, . . .}, where the inequality follows from (2.12). The result is equivalent
to P(X2 > x) ≥ P(X1 > x) for all x ∈N.

(iii) Notice that Lemma 2.1(ii) implies the usual stochastic dominance. Thus, the
claim follows from Shaked and Shanthikumar (2007), p.4, 1.A.7. 2

Proof of Lemma 2.2
(i) For d = 0, in order to prove that g(p, t, 0) is a non-decreasing function of p, we
need to show that the inequality

p′[1− F1(t)]
p′[1− F1(t)] + (1− p′)[1− F2(t)]

≤ p′′[1− F1(t)]
p′′[1− F1(t)] + (1− p′′)[1− F2(t)]

(2.13)

holds for any 0 ≤ p′ < p′′ ≤ 1 and at a given t ∈ N. We first note that the
denominators in (2.13) could be zero if F2(t) = F1(t) = 1, but that contradicts with
ending a cycle with preventive maintenance after t time steps (i.e., to have d = 0).
So, both denominators of (2.13) are well-defined. Since the terms 1 − F1(t) and
1− F2(t) are always non-negative, it is easy to verify that the inequality (2.13) is
equivalent to p′ ≤ p′′, which always holds because it is known that p′ < p′′. So,
g(p, t, 0) is a non-decreasing function of p.
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For d = 1, in order to prove that g(p, t, 1) is a non-decreasing function of p we need
to show that the inequality

p′P1(t)
p′P1(t) + (1− p′)P2(t)

≤ p′′P1(t)
p′′P1(t) + (1− p′′)P2(t)

(2.14)

holds for any 0 ≤ p′ < p′′ ≤ 1 and at a given t ∈ N. Similar to our observation
above, the denominators in (2.14) could be zero if P1(t) = P2(t) = 0, but that
contradicts with ending a cycle with corrective maintenance after t time steps (i.e., to
have d = 1). So, both denominators in (2.14) are well-defined. Since the terms P1(t)
and P2(t) are always non-negative, the inequality (2.14) is equivalent to p′ ≤ p′′,
which holds because p′ < p′′. So, g(p, t, 1) is also a non-decreasing function of p.

(ii) We first note that g(0, t, 1) = 0P1(t)
0P1(t)+1P2(t)

= 0 and g(1, t, 1) = 1P1(t)
1P1(t)+0P2(t)

= 1 for
all t ∈ N. Thus, the result trivially holds for p = 0 and p = 1. For p ∈ (0, 1), we
rewrite g(p, t, 1) as

g(p, t, 1) =
pP1(t)

pP1(t) + (1− p)P2(t)
=

pP1(t)
pP1(t)

pP1(t)
pP1(t)

+ (1−p)P2(t)
pP1(t)

=
1

1 + (1−p)
p

P2(t)
P1(t)

.

Since X2 ≥lr X1 by Assumption 2.1, P2(t)/P1(t) is a non-decreasing function of t.
Therefore, g(p, t, 1) is a non-increasing function of t at any p ∈ (0, 1).

(iii) For all t ∈ N, notice that g(0, t, 1) and g(0, t, 0) are both equal to zero, and
g(1, t, 1) and g(1, t, 0) are both equal to one. Thus, the result holds for p = 0 and
p = 1. For p ∈ (0, 1), the result also follows by noting that, for all t ∈N,

g(p, t, 1) =
1

1 + (1−p)
p

P2(t)
P1(t)

≥ 1

1 + (1−p)
p

1−F2(t)
1−F1(t)

= g(p, t, 0),

where the inequality holds because P1(t)(1 − F2(t)) ≥ P2(t)(1 − F1(t)), ∀t, by
Lemma 2.1(i). 2

Proof of Lemma 2.3
(i) For z = 0, it is known from (2.5) that C(p, 0, τ) = 0 for any p and τ. For z > 0,
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it also follows from (2.5) that the function C(p, z, τ) is a weighted average of the
functions c1(τ, z) and c2(τ, z). For a given value of p ∈ [0, 1] and τ ∈ {1, 2, . . . , L},
notice from (2.3) that the functions c1(τ, z) and c2(τ, z) are defined at the values
of z ∈ {τ, τ + 1, . . . , L}. For z = τ, c1(τ, z) = F1(τ)C f . For z > τ, c1(τ, z) =

F1(τ)C f + (1 − F1(τ))Cp. Since (1 − F1(τ))Cp ≥ 0, c1(τ, z) is a non-decreasing
function in z. Similarly, it can be shown that c2(τ, z) is a non-decreasing function
in z. The result follows because a weighted average of non-decreasing functions is
also non-decreasing.

(ii) For z = 0, it is known from (2.5) that C(p, 0, τ) = 0 for any p at a given τ. So,
the result trivially holds. Suppose z > 0. For a fixed z > 0 and τ, taking the partial
derivative of C(p, z, τ) with respect to p leads to

∂C(p, z, τ)

∂p
=

 [C f − Cp][F1(τ)− F2(τ)] if τ < z,

C f [F1(τ)− F2(τ)] if τ = z.

Since F1(τ) ≥ F2(τ) for all τ (Lemma 2.1(ii)) and C f > Cp, it always holds that
∂C(p, z, τ)/∂p is constant and non-negative, and hence, the result follows. 2

Proof of Theorem 2.1
(i) We use induction as the proof technique. We first note that V0(p, z) = 0, ∀(p, z).
Thus, for l = 0, it is correct that the function V0(p, z) is non-decreasing in z for any
given value of p. Next, as the induction hypothesis, for l = k > 0, we assume that
Vk(p, z) is a non-decreasing function of z for any p. Under this assumption, our
objective is to show that for l = k + 1, Vk+1(p, z) = minτ∈{1,2,...,z} Ṽk+1(p, z, τ) is
also a non-decreasing function in z for any p.

We already know from Lemma 2.3(i) that C(p, z, τ) is a non-decreasing function in
z. It follows from the induction hypothesis that the function Vk(g(p, x, d(x)), z− x)
is non-decreasing in z because the term z − x is non-decreasing in z. Similarly,
Vk(g(p, τ, d(x)), z− τ) is also a non-decreasing function in z. Since the sum of non-
decreasing functions is non-decreasing, it follows that the function Ṽk+1(p, z, τ)

is non-decreasing in z for any p at a fixed τ. The minimum of non-decreasing
functions is also non-decreasing. Therefore, Vk+1(p, z) is also a non-decreasing
function in z. This concludes the proof.
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(ii) The proof consists of two parts. We first show the monotonicity and then the
concavity.

Monotonicity with respect to p:

Similar to part (i), we use induction as the proof technique to show that V l(p, z) is
a non-decreasing function of p. Since V0(p, z) = 0, ∀(p, z), it is correct for l = 0 that
the function V l(p, z) is non-decreasing in p for any given value of z. Next, as the
induction hypothesis, we assume for l = k > 0 that Vk(p, z) is a non-decreasing
function in p for any z. Under this assumption, our objective is to show that
Vk+1(p, z) = minτ∈{1,2,...,z} Ṽk+1(p, z, τ) is also a non-decreasing function in p for
any z. By reorganizing (2.8), we obtain

Ṽk+1(p, z, τ) = C(p, z, τ) +
∞

∑
x=1

Vk(g(p, min{x, τ}, d(x)), z−min{x, τ})

(pP1(x) + (1− p)P2(x)), (2.15)

where d(x) = 1 for 1 ≤ x ≤ τ, and d(x) = 0 for x > τ. We already know from
Lemma 2.3(ii) that C(p, z, τ) is a non-decreasing function in p. Next, we will show
that ∑∞

x=1 Vk(g(p, min{x, τ}, d(x)), z−min{x, τ})(pP1(x) + (1− p)P2(x)) is also a
non-decreasing function in p. This is equivalent to showing that

∞

∑
x=1

Vk(g(p′, min{x, τ}, d(x)), z−min{x, τ})(p′P1(x) + (1− p′)P2(x))

≤
∞

∑
x=1

Vk(g(p′′, min{x, τ}, d(x)), z−min{x, τ})(p′′P1(x) + (1− p′′)P2(x))

(2.16)

for any p′, p′′, where 0 ≤ p′ < p′′ ≤ 1.

It follows from the induction hypothesis that Vk(p, z) is a non-decreasing function
in p for any z. Also, by Lemma 2.2(i), g(p, t, d(x)) is a non-decreasing function in
p for any t. Therefore, Vk(g(p, min{x, τ}, d(x)), z−min{x, τ}) is a non-decreasing
function in p. Consequently, it follows that

Vk(g(p′, min{x, τ}, d(x)), z−min{x, τ}) ≤ Vk(g(p′′, min{x, τ}, d(x)), z−min{x, τ})
(2.17)
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for any 0 ≤ p′ < p′′ ≤ 1 and x ∈N. Inequality (2.17) implies that the inequality

∞

∑
x=1

Vk(g(p′, min{x, τ}, d(x)), z−min{x, τ})(p′P1(x) + (1− p′)P2(x))

≤
∞

∑
x=1

Vk(g(p′′, min{x, τ}, d(x)), z−min{x, τ})(p′P1(x) + (1− p′)P2(x))

(2.18)

holds for any 0 ≤ p′ < p′′ ≤ 1. As the next step, we note that

p′F1(x) + (1− p′)F2(x) ≤ p′′F1(x) + (1− p′′)F2(x)

for all x ∈ N at any 0 ≤ p′ < p′′ ≤ 1 because we already know from Lemma 2.1(ii)
that F1(x) ≥ F2(x) for all x ∈ N. That is, the random variable with pmf p′P1(·) +
(1− p′)P2(·) is larger than the random variable with pmf p′′P1(·) + (1− p′′)P2(·)
in the sense of usual stochastic dominance (Shaked and Shanthikumar, 2007). So,
if Vk(g(p, min{x, τ}, d(x)), z−min{x, τ}) is non-increasing in x for any p, then by
Lemma 2.1(iii), it holds that

∞

∑
x=1

Vk(g(p′′, min{x, τ}, d(x)), z−min{x, τ})(p′P1(x) + (1− p′)P2(x))

≤
∞

∑
x=1

Vk(g(p′′, min{x, τ}, d(x)), z−min{x, τ})(p′′P1(x) + (1− p′′)P2(x)),

(2.19)

and the inequality (2.16) holds from combining inequalities (2.18) and (2.19) (and
hence the function Ṽk+1(p, z, τ) in (2.15) is non-decreasing in p). Therefore, in
the remainder of the proof, we focus on showing that Vk(g(p, min{x, τ}, d(x)), z−
min{x, τ}) is non-increasing in x for any p.

For a fixed τ, we first note that the function g(p, min{x, τ}, d(x)) is non-increasing
in x. This can be verified as follows: If x ≤ τ, then d = 1 and we know g(p, x, 1) is
non-increasing in x from Lemma 2.2(ii). If x > τ, on the other hand, then d = 0, and
g(p, τ, 0) is constant. Since we know from Lemma 2.2(iii) that g(p, τ, 0) ≤ g(p, τ, 1)
for any τ, it can be concluded that g(p, min{x, τ}, d(x)) is non-increasing in x. From
Theorem 2.1(i), we know that Vk(p, z) is a non-decreasing function in z for a fixed p.
As a result, Vk(g(p, min{x, τ}, d(x)), z−min{x, τ}) is non-increasing in x for any p
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since both the functions g(p, min{x, τ}, d(x)) and z−min{x, τ} are non-increasing
in x.

Since Ṽk+1(p, z, τ) is non-decreasing in p, Vk+1(p, z) is also non-decreasing in p
because the minimum of non-decreasing functions is also non-decreasing. This
concludes the proof.

Concavity with respect to p:

We use induction as the proof technique to show V l(p, z) is a concave function of
p. Since V0(p, z) = 0 for all p at a given z, it is correct for l = 0 that the function
V l(p, z) is concave in p. As the induction hypothesis, we assume that V l(p, z) is
concave in p for l = k > 0. We need to show that Vk+1(p, z) is concave in p. Since the
minimum of concave functions is concave, we only need to prove that Ṽk+1(p, z, τ)

is concave. To be specific, according to Equation (2.8), if we show that C(p, z, τ),

∑τ
x=1 Vk(g(p, x, 1), z − x)(pP1(x) + (1 − p)P2(x)) and Vk(g(p, τ, 0), z − τ)

(
p(1 −

F1(τ)) + (1− p)(1− F2(τ))
)

are concave, then the concavity of Ṽk+1(p, z, τ) holds.

To start with, we note that C(p, z, τ) is linear in p (see Lemma 2.3(ii)), so it is concave.

Next, we want to show that Vk(g(p, x, 1), z− x)(pP1(x) + (1− p)P2(x)) is concave
in p for any x ≤ τ. Note that

g(p, x, 1) =
pP1(x)

pP1(x) + (1− p)P2(x)
.

So we can write for 0 ≤ p′ < p′′ ≤ 1 and α ∈ [0, 1] that

g(αp′ + (1− α)p′′, x, 1)

=
(αp′ + (1− α)p′′) P1(x)

(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

= α
p′P1(x)

(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

+(1− α)
p′′P1(x)

(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

=
α (p′P1(x) + (1− p′)P2(x))

α (p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))
g(p′, x, 1)

+
(1− α) (p′′P1(x) + (1− p′′)P2(x))

α (p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))
g(p′′, x, 1)

(2.20)
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Furthermore, it can be written that

Vk(g(αp′ + (1− α)p′′, x, 1), z− x) (2.21)

·
(
(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

)
= Vk

(
α (p′P1(x) + (1− p′)P2(x)) g(p′, x, 1)

α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))
(2.22)

+
(1− α) (p′′P1(x) + (1− p′′)P2(x)) g(p′′, x, 1)

α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))
, z− x

)
·
(
(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

)
,

where the equality in (2.22) follows from replacing g(αp′ + (1− α)p′′, x, 1) in (2.21)
with the right-hand side of Equation (2.20). Let

α̃ ≜
α (p′P1(x) + (1− p′)P2(x))

α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))
.

Also notice that

(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

= α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x)).

Then, the right hand side of (2.22) can be rewritten as

Vk (α̃ · g(p′, x, 1) + (1− α̃) · g(p′′, x, 1), z− x
)

(2.23)

·
(
α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))

)
.

It is known from the induction hypothesis that Vk(p, z) is concave in p. Thus, it
holds that

Vk (α̃ · g(p′, x, 1) + (1− α̃) · g(p′′, x, 1), z− x
)

≥ α̃ ·Vk (g(p′, x, 1), z− x
)
+ (1− α̃) ·Vk (g(p′′, x, 1), z− x

)
Since α(p′P1(x) + (1 − p′)P2(x)) + (1 − α)(p′′P1(x) + (1 − p′′)P2(x)) ≥ 0, it also
holds that

Vk (α̃ · g(p′, x, 1) + (1− α̃) · g(p′′, x, 1), z− x
)

(2.24)

·
(
α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))

)
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≥
(

α̃ ·Vk (g(p′, x, 1), z− x
)
+ (1− α̃) ·Vk (g(p′′, x, 1), z− x

))
·
(
α(p′P1(x) + (1− p′)P2(x)) + (1− α)(p′′P1(x) + (1− p′′)P2(x))

)
.

= α
(

p′P1(x) + (1− p′)P2(x)
)

Vk (g(p′, x, 1), z− x
)

+(1− α)
(

p′′P1(x) + (1− p′′)P2(x)
)

Vk (g(p′′, x, 1), z− x
)

.

By combining (2.21), (2.23), and (2.24), we obtain that

Vk(g(αp′ + (1− α)p′′, x, 1), z− x)

·
(
(αp′ + (1− α)p′′)P1(x) + (1− αp′ − (1− α)p′′)P2(x)

)
≥ α

(
p′P1(x) + (1− p′)P2(x)

)
Vk (g(p′, x, 1), z− x

)
+(1− α)

(
p′′P1(x) + (1− p′′)P2(x)

)
Vk (g(p′′, x, 1), z− x

)
.

This means that the function Vk(g(p, x, 1), z− x)(pP1(x) + (1− p)P2(x)) is concave
in p. Since the sum of concave functions is concave, the function

τ

∑
x=1

Vk(g(p, x, 1), z− x)(pP1(x) + (1− p)P2(x))

is also concave in p for any τ ≤ z. Finally, we need to show that Vk(g(p, τ, 0), z−
τ)
(

p(1− F1(τ) + (1− p)(1− F2(τ))
)

is concave in p. The proof is similar to the
previous one. Note that

g(p, τ, 0) =
p(1− F1(τ))

p(1− F1(τ)) + (1− p)(1− F2(τ))

So we can write for 0 ≤ p′ < p′′ ≤ 1 and α ∈ [0, 1],

g(αp′ + (1− α)p′′, τ, 0) (2.25)

=
αg(p′, τ, 0) (p′(1− F1(τ)) + (1− p′)(1− F2(τ)))

α(p′(1− F1(τ)) + (1− p′)(1− F2(τ)))) + (1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

+
(1− α)g(p′′, τ, 0) (p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

α(p′(1− F1(τ)) + (1− p′)(1− F2(τ))) + (1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

By Equation (2.25) and from the concavity of Vk(p, z) in p, the following inequality
holds:

Vk(g(αp′ + (1− α)p′′, τ, 0), z− τ) ·
(
(αp′ + (1− α)p′′)(1− F1(τ)) + (1− αp′ − (1− α)p′′)(1− F2(τ))

)
= Vk(g(αp′ + (1− α)p′′, τ, 0), z− τ)

·
(
α(p′(1− F1(τ)) + (1− p′)(1− F2(τ))) + (1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

)
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= Vk

(
g(p′, τ, 0)α(p′(1− F1(τ)) + (1− p′)(1− F2(τ)))

α(p′(1− F1(τ)) + (1− p′)(1− F2(τ)))) + (1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

+
g(p′′, τ, 0))(1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

α(p′(1− F1(τ)) + (1− p′)(1− F2(τ))) + (1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))
, z− τ

)
·
(
α(p′(1− F1(τ)) + (1− p′)(1− F2(τ))) + (1− α)(p′′(1− F1(τ)) + (1− p′′)(1− F2(τ)))

)
≥ αVk(g(p′, τ, 0), z− τ)

(
p′(1− F1(τ)) + (1− p′)(1− F2(τ)

)
+(1− α)Vk(g(p′′, τ, 0), z− τ)

(
p′′(1− F1(τ)) + (1− p′′)(1− F2(τ))

)
This proves Vk(g(p, τ, 0), z− τ)

(
p(1− F1(τ)) + (1− p)(1− F2(τ))

)
is concave in p

for a fixed τ. Since sum of the concave functions is concave, Vk+1(p, z) is concave
in p. This concludes the proof. 2

Proof of Lemma 2.4
We use induction as the proof technique. Let j ∈ {1, 2}. We first note that W0

j (z) =
0, ∀z. Therefore, for l = 0, W l

j (z) = 0 is non-decreasing in z. Next, for l = k > 0,
we assume that Wk

j (z) is a non-decreasing function of z. Under this assumption,

we aim to show that for l = k + 1, Wk+1
j (z) = minτ∈{1,2,...,z} W̃k+1

j (z, τ) is also non-

decreasing function of z, where W̃k+1
j (z, τ) = (cj(z, τ) +∑τ

x=1 Pj(x)W l
j (z− x) + (1−

Fj(τ))W l
j (z− τ)).

From the proof of Lemma 2.3, we know that cj(z, τ) is a non-decreasing function
of z for a fixed τ. Wk

j (z − x) and Wk
j (z − τ) are non-decreasing functions of z

under the assumption that Wk
j (z) is a non-decreasing function in z because z − x

and z − τ are non-decreasing functions in z. Therefore Wk
j (z − x) and Wk

j (z − τ)

are non-decreasing functions in z. W̃k+1
j (z, τ) is a non-decreasing function in z for a

fixed τ because sum of non-decreasing functions are non-decreasing. The minimum
of non-decreasing functions is also a non-decreasing function. Thus, Wk+1

j (z) is a
non-decreasing function in z. This concludes the proof. 2

Proof of Theorem 2.2
We first note that V(0, z) = W2(z) for all z ∈ {0, 1, . . . , L}. This is because if p = 0
then the updated belief variable g(p, t, d) = 0 for all t and d. That is, if the belief
variable is equal to 0, it always stays at 0. On the other hand, if p = 1 then the
updated belief variable g(p, t, d) = 1 for all t and d. That is, if the belief variable
is equal to 1, it always stays at 1. This implies that V(1, z) = W1(z) for all z ∈
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{0, 1, . . . , L}. Consequently, it holds that

V(p, z) ≥ pV(1, z) + (1− p)V(0, z)

= pW1(z) + (1− p)W2(z)

= W(p, z)

for all p ∈ [0, 1] and z ∈ {0, 1, . . . , L}, where the inequality follows from the
concavity of the value function V(p, z) in p at a fixed z. 2

2.C. Alternative POMDP formulation

We describe the alternative POMDP formulation in this appendix. In this
formulation we consider the beginning of each time period as a decision epoch
with two possible actions (i.e., ‘replace’ or ‘do nothing’).

Decision epochs: A decision is made at the beginning of each time period. As
introduced earlier, we let z ∈ {0, 1, 2, . . . , L} denote the number of remaining time
periods in the planning horizon.

States: The state of the system is described by (p, y), where p ∈ [0, 1] denotes the
current belief that the component population is of the weak type and y ∈ {0, 1, ..., L}
denotes the age of the component in the system. Note that the age of the component
can be as low as 0 (i.e., the component is new) and as high as L (i.e., the component
which is installed at the beginning of the lifespan has survived the entire lifespan
of the system).

Actions: At each decision epoch and at any state, there are two possible actions: ‘do
a preventive replacement’ and ‘do nothing’. These actions are denoted with a = 1
and a = 0, respectively.

State Transitions & Rewards: Suppose the do-nothing action is taken (i.e., a = 0).
The system starts the time period with the existing component, and there are two
possibilities: either the component fails (denoted with d = 0) or it stays in the
working condition (denoted with d = 1). In case of a failure, which occurs with
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probability

P(Xj ≤ (y+ 1)|Xj > y) =
P(Xj ≤ y + 1, Xj > y)

P(Xj > y)
=

Fj(y + 1)− Fj(y)
1− Fj(y)

=
P(Xj = y + 1)

1− Fj(y)

for population type j, the component is replaced correctively at cost C f and the next
period starts with a new component at age 0. If there is no failure, which occurs
with probability

P(Xj > (y + 1)|Xj > y) =
1− Fj(y + 1)

1− Fj(y)

for population type j, the age of the component increases by one.

Next, suppose that the replace action is taken (i.e., a = 1). The replacement is
immediate at cost Cp, and the system starts the current time period with a new
component at age zero. Similar to the case with the no-replacement action, the
component either fails (i.e., denoted with d = 0) or it stays in the working condition
(i.e., denoted with d = 1) in that period. The failure occurs with probability
P(Xj = 1) for population type j, the component is replaced correctively at cost
C f and the next period starts with a new component at age 0. On the other hand,
if the component does not fail and, the age of the component increases by one with
probability P(Xj > 1) for population type j.

At the end of each period (i.e., after the realization of d), Bayes’ rule can be used to
update the belief variable p. Specifically, the updated belief, which we denote by
the function g(p, y, d), is given by

p← g(p, y, d) =


pP(X1≤(y+1)|X1>y)

pP(X1≤(y+1)|X1>y)+(1−p)P(X2≤(y+1)|X2>y) if d = 1,

pP(X1>(y+1)|X1>y)
pP(X1>(y+1)|X1>y)+(1−p)P(X2>(y+1)|X2>y) if d = 0.

(2.26)

By using the notation for the cdf and pmf of the random variables X1 and X2

introduced in the main text, the updated belief in (2.26) can be rewritten as

g(p, y, d) =



p P1(y+1)
1−F1(y)

p P1(y+1)
1−F1(y)

+(1−p) P2(y+1)
1−F2(y)

if d = 1,

p 1−F1(y+1)
1−F1(y)

p 1−F1(y+1)
1−F1(y)

+(1−p) 1−F2(y+1)
1−F2(y)

if d = 0.
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The state variable y (i.e., the age of the component) is updated as follows depending
on the action a and the realized event d:

y←



y + 1 if a = 0 and d = 0,

0 if a = 0 and d = 1,

1 if a = 1 and d = 0,

0 if a = 1 and d = 1.

Bellman Optimality Equations: Let Vz(p, y) denote the optimal cost until the end
of the planning horizon when there are z time periods remaining in the planning
horizon and the current state is (p, y). We assume that V0(p, y) = 0 for all p ∈ [0, 1]
and y ∈ {0, 1, ..., L}.

The Bellman optimality equations are given by

Vz(p, y) = min
a∈{0,1}

Ṽz(p, y, a) (2.27)

for all p ∈ [0, 1], y ∈ {0, 1, . . . , L} and z ∈ {1, . . . , L}, where

Ṽz(p, y, 0) = (C f + Vz−1(g(p, y, 1), 0))
(

p
P1(y + 1)
1− F1(y)

+ (1− p)
P2(y + 1)
1− F2(y)

)
)

+ Vz−1(g(p, y, 0), y + 1)(
(

p
1− F1(y + 1)

1− F1(y)
+ (1− p)

1− F2(y + 1)
1− F2(y)

)
)
)

and

Ṽz(p, y, 1) = Cp + (C f + Vz−1(g(p, 0, 1), 0))
(

pP1(1) + (1− p)P2(1))
)

+ Vz−1(g(p, 0, 0), 1)(p(1− F1(1)) + (1− p)(1− F2(1)).

Example 2.2 Now, we apply the alternative POMDP formulation to Example 1. We
obtain:

V1(p, 0) = min{Ṽ1(p, 0, 0), Ṽ1(p, 0, 1)} = {1 + 4p, Cp + Ṽ1(p, 0, 0)} = 1 + 4p.
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Please notice that this function V1(p, 0) is equal to the function V(p, 1) of the original
formulation. Next, we obtain:

V1(p, 1) = min{Ṽ1(p, 1, 0), Ṽ1(p, 1, 1)} = min{11
9
+ 8

8
9

p, 2 + 4p}

=

 1 1
9 + 8 8

9 p for 0 ≤ p ≤ 2
11 ,

2 + 4p for 2
11 ≤ p ≤ 1.

Ṽ2(p, 0, 1) = Cp + Ṽ2(p, 0, 0) > Ṽ2(p, 0, 0).

V2(p, 0) = min{Ṽ2(p, 0, 0), Ṽ2(p, 0, 1)} = Ṽ2(p, 0, 0)

=

 2 1
10 + 10 2

5 p for 0 ≤ p ≤ 2
7 ,

2 9
10 + 7 3

5 for 2
7 ≤ p ≤ 1.

The function V2(p, 0) is equal to V(p,2) of the formulation in Section 2.3, which
shows that the total optimal cost remains the same under the alternative POMDP
formulation.

2.D. Effect of smaller time steps on the structure of the

optimal policy

In this appendix, we show the effect of the discretization level of time on the
structure of the optimal policy, the perfect information case (see also Remark 2.3).
We illustrate how the optimal actions compare under two distinct discretization
levels for the same continuous Weibull distribution. We compare the optimal
actions at discretization level ∆t = 1 with the optimal actions at discretization level
∆t = 0.5 (see Figures 2.8 and 2.9). If we select a smaller time step, we keep the length
of the time horizon expressed in time units at the same value. For discretization
level ∆t = 0.5, we say that the length of one period is equal to 0.5 time units.
Therefore, the set for z becomes {0, 0.5, 1, ..., L}. We also redefine the pmf of the
discretized Weibull distribution as follows: P(x, λ, k) = FX̂(x) − FX̂(x − 0.5) for
x ∈ {0.5, 1, 1.5, . . . }.

Please observe that the jumps in the optimal actions for ∆t = 0.5 are smaller than
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for ∆t = 1 at the majority of the time steps. However, the large jumps that we see
in Figures D.8(b) and D.9(b) remain equal in size (when the optimal actions are
expressed in time units). The last jump before the end of the horizon is obtained
because until a given time point, you plan for a last preventive replacement, while
after that time point, you plan for no further preventive replacement. The second
but last jump before the end of the horizon is obtained because until a given time
point, you plan for two preventive replacements in the rest of the time horizon,
while after that point, you plan for one last preventive replacement; and so on. If
the time step ∆t would be further reduced, we can expect that these large jumps
stay coming back in the pattern of the optimal actions.
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(a) ∆t = 0.5
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Figure 2.8: Optimal actions under perfect information for Cp = 0.1, C f = 1, k = 5 and
L = 200.

2.E. A comparison of infinite and finite horizon ap-

proaches for heuristics

In this appendix, we show the experiment results mentioned in Remark 2.4. We
introduced VMP(p1, L) and VTP(p1, L) as the finite-horizon (i.e., L-period) costs
under MP and TP, respectively, obtained under the implicit assumption that the
planning horizon is infinite. By explicitly considering the remaining lifespan of the
system, we adapt the range for τ such that τ ∈ {0, ..., z}. We denote the finite-
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(a) ∆t = 0.5
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Figure 2.9: Optimal actions under perfect information for Cp = 0.1, C f = 1, k = 10 and
L = 200.

horizon (i.e., L-period) costs under these finite-horizon adjusted formulations of
the myopic and threshold policies with VMPL(p1, L) and VTPL(p1, L), respectively.
In Table 3, we report ∆rel

MP and ∆rel
TP. Now, we additionally report the values “∆rel

MPL
”

and “∆rel
TPL

” next to them in Table 2.5 (please note that ∆rel
MPL

=
VMPL

(p1,L)−V(p1,L)
V(p1,L)

and ∆rel
TPL

=
VTPL

(p1,L)−V(p1,L)
V(p1,L) ). Comparing the values of “∆rel

MPL
” with “∆rel

MP”
shows the effect of incorporating the end of the planning horizon in the myopic
policy. Similarly, comparing the values of “∆rel

TPL
” with “∆rel

TP” shows the effect of
incorporating the end of the planning horizon in the threshold policy.

As it can seen from Table 2.5, only for instances 7, 16 and 17, these differences are
larger than 1%, and for all the other instances, they are below 1%. This shows
that incorporating the end-of-horizon effect in the heuristics indeed affects the
performance of the heuristics, but our analysis also shows that this effect is limited
for most of the instances.
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Table 2.5: The effect of incorporating the end of the planning horizon for MP and TP

No. L Cp k p0 ∆rel
MPL

∆rel
MP ∆rel

TPL
∆rel

TP
1 100 0.05 5 0.25 0.5% 0.6% 0.5% 0.6%
2 100 0.05 5 0.5 0.1% 0.2% 0.1% 0.2%
3 100 0.05 5 0.75 0.2% 0.3% 0.2% 0.3%
4 100 0.1 5 0.25 3.5% 3.7% 1.7% 2.1%
5 100 0.1 5 0.5 0.7% 0.8% 0.7% 0.8%
6 100 0.1 5 0.75 0.1% 0.3% 0.1% 0.3%
7 100 0.2 5 0.25 2.4% 5.5% 0.8% 2.3%
8 100 0.2 5 0.5 2.7% 3.0% 1.2% 1.4%
9 100 0.2 5 0.75 1.1% 1.6% 1.1% 1.2%

10 100 0.05 10 0.25 3.3% 2.7% 3.2% 2.7%
11 100 0.05 10 0.5 1.0% 1.0% 1.0% 1.0%
12 100 0.05 10 0.75 0.3% 0.3% 0.3% 0.3%
13 100 0.1 10 0.25 17.0% 17.1% 1.1% 1.5%
14 100 0.1 10 0.5 3.3% 2.5% 3.3% 2.5%
15 100 0.1 10 0.75 2.7% 2.9% 2.7% 2.9%
16 100 0.2 10 0.25 22.0% 22.4% 2.4% 5.8%
17 100 0.2 10 0.5 10.9% 14.8% 1.4% 3.1%
18 100 0.2 10 0.75 3.1% 3.5% 3.1% 3.5%
19 200 0.05 5 0.25 3.2% 3.3% 1.3% 1.4%
20 200 0.05 5 0.5 0.4% 0.4% 0.4% 0.4%
21 200 0.05 5 0.75 1.0% 1.1% 1.0% 1.1%
22 200 0.1 5 0.25 3.2% 4.1% 1.1% 1.4%
23 200 0.1 5 0.5 2.5% 3.4% 1.6% 1.7%
24 200 0.1 5 0.75 0.4% 0.6% 0.4% 0.6%
25 200 0.2 5 0.25 2.0% 2.8% 0.9% 1.8%
26 200 0.2 5 0.5 1.8% 2.0% 0.8% 1.0%
27 200 0.2 5 0.75 2.1% 2.1% 1.6% 1.7%
28 200 0.05 10 0.25 14.6% 14.6% 2.0% 2.0%
29 200 0.05 10 0.5 1.6% 1.7% 1.6% 1.7%
30 200 0.05 10 0.75 1.0% 1.0% 1.0% 1.0%
31 200 0.1 10 0.25 23.5% 23.6% 3.0% 3.1%
32 200 0.1 10 0.5 7.0% 7.1% 2.1% 2.2%
33 200 0.1 10 0.75 0.6% 0.8% 0.6% 0.8%
34 200 0.2 10 0.25 11.2% 11.4% 3.2% 3.4%
35 200 0.2 10 0.5 15.2% 15.4% 2.0% 2.4%
36 200 0.2 10 0.75 3.3% 3.3% 1.4% 1.9%
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3
Data pooling and joint optimization for

multiple systems

3.1. Introduction

In this chapter, we consider a similar problem setting as in Chapter 2. In Chapter 2,
we focus on only one system whereas, in this chapter, we consider multiple
newly designed single-component systems with a fixed lifespan. We approach this
problem from the perspective of a service provider of multiple systems at different
locations. MRI machines located in different hospitals or milking robots located at
different farms are examples of such systems. These systems are largely identical.
Hence, the service provider can pool the data from all systems to address the data
scarcity problem at the beginning of systems’ lifespan and optimize the replacement
decisions jointly for these systems.

The components in all systems are subject to the same random failure mechanism.
The aim is to preventively replace a component before it fails in order to
prevent the costlier corrective maintenance upon failure. We build a discrete-time
partially observable Markov decision process (POMDP) model to find the optimal
replacement policy for a critical component that occurs in multiple identical systems
with the objective of minimizing the total cost during the whole lifespan. Similarly
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Table 3.1: Literature review on (partially observable) Markov decision models under
failure model uncertainty.

Failure model
Source of

Failure model
uncertainty

No. of
systems Time-to-failure Degradation

Parameter
uncertainty

Single Drent et al. (2020)
Multiple van Staden et al. (2022) Drent (2022) (p.139-155)

Population
heterogeneity

Single Chapter 2
van Oosterom et al. (2017)
Abdul-Malak et al. (2019)

Multiple This paper

to Chapter 2, this is a sequential learning problem for which we apply a solution
approach (POMDP) that balances the trade-off between exploration and exploitation
optimally.

We position our research in the area of optimal learning with (partially observable)
Markov decision process models under failure model uncertainty. To the best of
our knowledge, the number of studies in this area is limited; see van Oosterom
et al. (2017), Abdul-Malak et al. (2019), Drent et al. (2020), Chapter 2, van Staden
et al. (2022), Drent (2022) (p.139-155). A classification of these studies is provided in
Table 3.1. Here, we classify the papers first according to the source of failure model
uncertainty, which can be either parameter uncertainty or population heterogeneity.
Then, we classify the papers according to the number of systems that they consider,
which can be either a single system or multiple systems. Finally, we classify the
papers based on the type of failure models. By a “time-to-failure” failure model, we
mean that there are only two degradation states (i.e., good-as-new and failed) where
the time until failure can follow any probability distribution. On the other hand, a
“degradation” failure model refers to a situation with more than two degradation
states (i.e., not just good-as-new and failed but also intermediate states such as
defective) and a Markov chain modeling the transition from one degradation state
to the next.

As stated above, the work in this chapter also considers population heterogeneity
under the assumption of a time-to-failure model but extends the work of Chapter
2 to multiple machines. Among the works that consider parameter uncertainty,
Drent et al. (2020) also focus on an age-based replacement policy for a single
system and follow a Bayesian approach to learn an unknown parameter of a specific
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form of a probability distribution for the lifetime of components. Similar to our
work, Drent (2022) (p.139-155) apply data pooling from multiple systems in a
Bayesian way to resolve the failure model uncertainty. However, the source of
uncertainty in their failure model is parameter uncertainty. By focusing on the
case with parameter uncertainty and a time-to-failure model, van Staden et al.
(2022) minimize the expected maintenance costs of a system over its finite contract
period and prescribe scheduled preventive maintenance interventions based on a
frequentist ‘first predict’ then ‘optimize’ approach.

Another related study is Deprez et al. (2022). This paper is not positioned in
Table 3.1 because its analysis is not based on optimal policies. However, Deprez
et al. (2022) is related to our work in its objective to build a myopic-type data-
driven maintenance policy for multiple systems by using historical data coming
from different systems. Deprez et al. (2022) aim to optimize the number of
preventive maintenance interventions for a machine during a finite time horizon.
Different from our work, they assume system heterogeneity (i.e. data is pooled from
machines operating in non-identical conditions) and adopt a frequentist estimation
approach. In our research, we resolve failure model uncertainty with Bayesian
updating and focus on the optimal policy by building a POMDP model.

In this research, we investigate the potential benefit of learning the true population
type from multiple similar systems at the same time. We define three policies in
order to quantify this benefit and generate further managerial insights. Specifically,
Policy I is the optimal policy for multiple systems with data pooling. Policy II
applies the policy which is known to be optimal in a single-system setting with
pooling the data from multiple systems (i.e. updating the belief regarding to the
true population type by using all the data coming from multiple systems). Policy
III also uses the optimal policy for a single-system setting but without data pooling
(in this case, we use the POMDP formulation as described in Remark 2.1 and obtain
the optimal policy for a single system from that formulation).

We address the following research questions: (1) How does the structure of the
optimal policy for a multi-system setting with data pooling (Policy I) look like and
how does it differ from the optimal single-system policy (Policy III)? (2) What is
the benefit of jointly optimizing the replacement policies of all systems with data
pooling instead of separately optimizing the replacement policy of each system
without data pooling (i.e. comparing Policy I and Policy III)? (3) How much of
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this benefit is due to data pooling (i.e. comparing Policy II and III) and how much
of this reduction is due to jointly optimizing the actions for multiple systems (i.e.
comparing Policy I and II)? (4) What is the effect of the number of systems, the
length of the lifespan, the coefficient of variation of the time-to-failure distribution,
the cost of maintenance activities, and the initial belief on the costs?

To the best to our knowledge, our research is the first to study how the true
population type can be learned optimally in a setting with multiple systems and
population heterogeneity. This research aims to provide insights on the potential
cost benefits of adopting technologies that enable data pooling. In our numerical
experiments, we show that cost reduction due to data pooling is up to 5.6% for two
systems and up to 14.8% for 20 systems. The majority of the cost reduction is due
to data pooling, and a relatively small part is due to optimizing the preventive
replacement decisions for multiple systems jointly. As the number of systems
that pool the data increases, the cost of maintenance converges to the cost of
maintenance under perfect information about the true population type. Also, the
reduction in the cost per system as a function of the number of systems is higher for
low numbers of systems and becomes smaller as the number of systems increases.

The remainder of this chapter is organized as follows. In Section 3.2 and Section 3.3,
the problem description and the mathematical formulation of the POMDP model
are provided, respectively. Section 3.4 presents the benchmark policies that will be
compared against the optimal policy of the POMDP model. Section 3.5 provides
structural results for a special case and presents insights based on this special ase.
Section 3.6 presents the results and insights from our computational experiments.
Finally, Section 3.7 concludes the chapter.

3.2. Problem description

We consider n single-component systems. Let i ∈ {1, . . . , n} denote the index of
a system. It is known that the systems are taken out of service at the same time,
and we refer to the time until that moment as the lifespan of the systems. The
time horizon of the problem is set equal to the lifespan of the systems, and we let
this time horizon consist of discrete time periods of equal length. Without loss of
generality, we scale time such that the length of each time period is one time unit.
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The length of the time horizon is expressed in the number of time periods and is
equal to L ∈ N, where N is the set of positive integers. Each system has a critical
component which fails randomly and independent of the components in the other
systems. If a failure occurs during the x-th time period after the installation of a new
component, then the component is replaced at the end of that time period and we
say the lifetime of the component is x. We let X denote the corresponding discrete
random variable for the lifetime of the component. At the beginning of each time
period, an action is taken for each system which is either to replace the component
preventively with a cost Cp or to do nothing with no cost. If a component fails
before reaching the next time period, then it is correctively replaced at cost C f .
If a component is replaced preventively at the beginning of a period, the system
starts that period with a new component. It holds that Cp < C f because the cost of
corrective replacement includes the costs associated with a breakdown in addition
to the costs related to a replacement. When a system reaches the end of the lifespan,
the maintenance activities are terminated and no cost occurs at this moment or later
because all systems go out of service at that moment.

We assume that there are two populations for the components: a weak and a strong
population. The components always come from the same population. However, the
true population type is unknown. We let p denote the belief that the components
belong to a weak population (i.e., the probability that the components always come
from the weak population) and p̂ denotes the initial belief at the beginning of the
lifespan.

Let Xj denote the lifetime random variable for component type j, where j = 1 refers
to the weak type and j = 2 refers to the strong type. Therefore, under the belief
variable p, the lifetime random variable X satisfies

X =

{
X1 with probability p,

X2 with probability 1− p.

For each population, the time-to-failure distribution is assumed to be known. The
objective of the decision maker is to determine the optimal replacement policy that
minimizes the expected total cost over the time horizon.
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3.3. Mathematical formulation

In this section, we provide a mathematical formulation of the problem described in
Section 3.2.

Decision epochs: A decision is made at the beginning of each time period. We let
z ∈ {0, 1, 2, . . . , L} denote the number of time periods remaining in the time horizon.
Note that z = 0 corresponds to the end of the time horizon (i.e., the moment the
final time period is completed).

States: At each decision epoch, the state is described as follows: p ∈ [0, 1] is the
current belief that the component population is of the weak type, and yi ∈ {0, 1, . . . }
denotes the age of the component in system i. Let y represent the age vector for
the components of all the systems: y = (y1, . . . , yn). The state of the model is
represented by (p, y).

Actions: At each decision epoch and at any state, there are two possible actions
for each system: ‘do a preventive replacement’ and ‘do nothing’. These actions are
denoted with ai = 1 and ai = 0, respectively, for system i. Let a denote the action
vector (a1, . . . , an), representing the actions for all the systems. Let A denote the set
of all possible action vectors. (Please note that Chapter 2 formulate the replacement
decisions as a scheduling problem; i.e., the actions describe when to perform the
preventive replacement of a component at the moment that a new component starts
its operation in the system. This way of describing the actions would lead to a much
larger action space than the alternative way used in this chapter.)

State Transitions & Rewards: Suppose that the do-nothing action is taken for
system i (i.e., ai = 0). The system starts the time period with the existing
component, and there are two possibilities: either the component fails (denoted
with di = 1) or it stays in the working condition (denoted with di = 0). The
components in all systems are subject to the same time-to-failure distribution, but
failures occur independently. Time-to-failure is represented by the random variable
X(i) for system i. In case of a failure, which occurs with probability

P(X(i)
j ≤ yi + 1|X(i)

j > yi) =
P(X(i)

j ≤ yi + 1, X(i)
j > yi)

P(X(i)
j > yi)

=
P(X(i)

j = yi + 1)

P(X(i)
j > yi)
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for population type j, the component installed in system i is replaced correctively
at cost C f and the next period starts with a new component at age 0. If there is no
failure, which occurs with probability

P(X(i)
j > yi + 1|X(i)

j > yi) =
P(X(i)

j > yi + 1)

P(X(i)
j > yi)

for population type j, the age of the component in system i increases by one.

Next, suppose that the replace action is taken for system i (i.e., ai = 1). The
replacement is immediate at cost Cp, and the system starts the current time period
with a new component at age zero. Similar to the case with the do-nothing action,
the component either fails (denoted with di = 0) or it stays in the working condition
(denoted with di = 1) in that period. If the component in system i fails, which
occurs with probability P(X(i)

j = 1) for population type j, the component is replaced
correctively at cost C f and the next period starts with a new component at age 0.
On the other hand, if the component does not fail, which occurs with probability
P(X(i)

j > 1) for population type j, the age of the component in system i increases
by one.

The updated age vector ŷ = (ŷ1, . . . , ŷn) under action a will be ŷ = y ◦ (e− a) with
‘◦’ denoting the element-wise multiplication (Hadamard product) of two vectors
and e denoting a vector with n elements where all elements are equal to 1. We let
d = (d1, . . . , dn) denote the vector of observations for all the systems. Note that
there are 2n possible distinct realizations of d. Let D = {d1, . . . , d2n} denote the set
of all these possible realizations. The probability that observation d occurs when
the state is (p, ŷ) is denoted by F(p, ŷ, d):

F(p, ŷ, d) = pl1(ŷ, d) + (1− p)l2(ŷ, d) (3.1)

where the expression lj(ŷ, d), which represents the likelihood of observing d at the
age vector ŷ for population type j, can be calculated as

lj(ŷ, d) =
n

∏
i=1

P(X(i)
j ≤ ŷi + 1|X(i)

j > ŷi)
di P(X(i)

j > ŷi + 1|X(i)
j > ŷi)

1−di

for j ∈ {1, 2}. At the end of each period (i.e., after the realization of d), Bayes’ rule
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can be used to update the belief variable p. Specifically, the updated belief variable,
which we denote as the function g(p, ŷ, d), is given by

g(p, ŷ, d) =
pl1(ŷ, d)

pl1(ŷ, d) + (1− p)l2(ŷ, d)
.

Finally, the age vector ŷ is updated to (ŷ + e) ◦ d.

Bellman Optimality Equations: Let Vz(p, y) denote the optimal cost until the end
of the time horizon with z time periods remaining in the time horizon given that the
current state is (p, y). It holds that V0(p, y) = 0 for all p ∈ [0, 1] and yi ∈ {0, 1, . . . }
with i ∈ {1, . . . , n}.

The Bellman optimality equations are given by

Vz(p, y) = min
a∈A

Ṽz(p, y, a) (3.2)

for all z ∈ {1, ..., L}, where

Ṽz(p, y, a) =
n

∑
i=1

Cpai (3.3)

+
|D|

∑
m=1

( n

∑
i=1

C f dm
i + Vz−1

(
g(p, y ◦ (e− a), dm), ((y ◦ (e− a)) + e) ◦ dm

))
× F(p, y ◦ (e− a), dm)

for all p ∈ [0, 1] and yi ∈ {0, 1, . . . } with i ∈ {1, . . . , n}. In the rest of the
chapter, the function Vz(p, y) in Equation (3.2) is also referred to as the value
function. We refer to the resulting optimal policy for this multi-system setting
with data pooling (i.e., observations collected from all systems are used to update
the belief state) as Policy I. We denote the actions under this policy by a∗I (p, y, z) =
(a∗I (p, y1, z), . . . , a∗I (p, yn, z)) for a given (p, y, z). The algorithm to solve the Bellman
equations is provided in Appendix 3.B.

Remark 3.1 Please notice that we assumed two populations in this section and
Section 3.2. It would also be possible to assume K distinct populations that our
components might be coming from. Then the state description becomes (p, y),
where p = (p1, . . . , pK) and ∑K

k=1 pk = 1. That is, the belief state becomes a
vector instead of a single parameter (i.e., each point on the vector corresponds to a
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particular belief of having a certain population type). The Bayesian update function
then also returns a vector:

g(p, ŷ, d) =

(
p1l1(ŷ, d)

∑K
k=1 pklk(ŷ, d)

, . . . ,
pK lK(ŷ, d)

∑K
k=1 pklk(ŷ, d)

)
.

3.4. Benchmark policies

In this section, we provide the benchmark policies to compare against Policy I and
each other in order to address the research questions introduced in Section 3.1.
We start in Section 3.4.1 with the optimal policy when the true population type is
certainly known. Section 3.4.2 and Section 3.4.3 describe the benchmark policies
obtained by using the optimal policy of a single system without and with data
pooling, respectively.

3.4.1 Perfect information setting

We consider a setting where the true population type is assumed to be known,
referred to as the perfect information setting. The difference between the cost
obtained under the perfect information setting and the optimal cost under Policy I
constitutes a base cost for the maximum amount the decision maker is willing to pay
to resolve the population heterogeneity. We formulate an MDP model to determine
the optimal policy in this setting. Note that the belief state is not needed anymore
since the true population type is known, and only the ages of the components in the
systems are considered as the state variables. Let W(j)

z (y) denote the optimal cost
until the end of the time horizon with z time periods remaining in the time horizon
given that the current state is y for population type j. We present Bellman optimality
equations for a single system because an optimal policy for each system can be
calculated independently, and therefore, it holds that W(j)

z (y) = ∑n
i=1 W(j)

z (yi). The
Bellman optimality equations for a single system are given by

W(j)
z (y) = min

a∈{0,1}
W̃(j)

z (y, a),
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where

W̃(j)
z (y, 0) = (C f + Wz−1(0))P(Xj ≤ y + 1|Xj > y)

+ Wz−1(y + 1)P(Xj > y + 1|X > y),

W̃(j)
z (y, 1) = Cp + (C f + Wz−1(0))P(X ≤ 1) + Wz−1(1)P(X > 1),

and W(j)
0 (y) = 0 for z ∈ {1, ..., L} and y ∈ {0, 1, ...}.

We introduce a function WL( p̂, y) defined as

WL( p̂, y) = p̂W(1)
L (y) + (1− p̂)W(2)

L (y) (3.4)

for p̂ ∈ [0, 1], for all yi ∈ {0, 1, ...} where i ∈ {1, . . . , n}. The function WL( p̂, y) can
be interpreted as follows. Suppose that the true component type is unknown and
an initial belief p̂ is available at the beginning of the lifespan as in the original
problem. However, different from the original problem, suppose that the true
component type is immediately revealed to the decision maker just before the
lifespan starts, and systems are operated in their entire lifespan by following
the optimal replacement policy corresponding to that true population type. The
function WL( p̂, y) represents the expected cost under this scenario just before
the true population type is revealed to the decision maker. Consequently, the
function VL( p̂, y)−WL( p̂, y) can be interpreted as the expected benefit of resolving
the uncertainty in the true population type (or the cost of not knowing the true
population type) at the beginning of the lifespan under the initial belief p̂ and age
y.

3.4.2 Single-system optimal policy without data pooling (Policy
III)

For convenience in presentation, we introduce the single-system optimal policy
without data pooling (Policy III) before introducing the single-system optimal
policy with data pooling (Policy II) as the optimal actions of Policy III will be used
by Policy II.

For Policy III, we assume that the true population type is learned without data
pooling. This means that each system is considered as isolated from others so that
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the replacement decision of the component in a system is independent of the other
systems and the belief on the true population type is updated by only using the
data collected from that particular system. Thus, each system can be analyzed
separately and we formulate the value function for a single system. The age of the
component in the system is y, the action space is {0, 1} and the set of observation
vectors reduces to {0, 1}. We define the Bayesian update function for this policy as
follows:

g̃(p, y, d) =


pP(X1 ≤ y + 1|X1 > y)

pP(X1 ≤ y + 1|X1 > y) + (1− p)P(X2 ≤ y + 1|X2 > y)
if d = 1,

pP(X1 > y + 1|X1 > y)
pP(X1 > y + 1|X1 > y) + (1− p)P(X2 > y + 1|X2 > y)

if d = 0.

The Bellman optimality equations are given by

VIII
z (p, y) = min

a∈{0,1}
ṼIII

z (p, y, a)

for all z ∈ {1, ..., L}, where

ṼIII
z (p, y, 0) = (C f + VIII

z−1(g̃(p, y, 1), 0))

×
(

pP(X1 ≤ y + 1|X1 > y) + (1− p)P(X2 ≤ y + 1|X2 > y)
)

+VIII
z−1(g̃(p, y, 0), y + 1)

×
(

pP(X1 > y + 1|X1 > y) + (1− p)P(X2 > y + 1|X2 > y)
)

,

ṼIII
z (p, y, 1) = Cp + (C f + VIII

z−1(g̃(p, 0, 1), 0))
(

pP(X1 ≤ 1) + (1− p)P(X2 ≤ 1)
)

+VIII
z−1(g̃(p, 0, 0), 1)

(
pP(X1 > 1) + (1− p)P(X2 > 1)

)
and VIII

0 (p, y) = 0 for all p ∈ [0, 1] and y ∈ {0, 1, . . . }. The optimal policy
that is obtained via these Bellman equations is referred to as Policy III. We
denote the optimal action under Policy III for state (p, y) and the remaining
number of time periods z with a∗III(p, y, z). We also denote a∗III(p, y, z) =

(a∗III(p, y1, z), . . . , a∗III(p, yn, z)) as the optimal policy vector for n systems for a given
(p, y) under Policy III.
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3.4.3 Single-system optimal policy with data pooling (Policy II)

In this section, we describe our benchmark policy (called Policy II) that is obtained
by applying the optimal action of Policy III in each system independently from
other systems, while updating the belief variable by using the data collected from
all the systems. We let aII(p, y, z) denote the action taken by Policy II at state (p, y)
and remaining number of time periods z. Thus, it follows that

aII(p, y, z) = a∗III(p, y, z) = (a∗III(p, y1, z), . . . , a∗III(p, yn, z)).

The value function under this policy is given as

VII
z (p, y) = ṼII

z (p, y, aII(p, y, z))

for all z ∈ {1, ..., L}, where

ṼII
z (p, y, aII(p, y, z)) =

n

∑
i=1

Cpa∗III(p, yi, z) +
|D|

∑
m=1

[ n

∑
i=1

C f dm
i

+ VII
z−1

(
g(p, y ◦ (e− aII(p, y, z)), dm),

(y ◦ (e− aII(p, y, z)) + e) ◦ dm
)]

× F(p, y ◦ (e− aII(p, y, z)), dm)

and VII
0 (p, y) = 0 for all p ∈ [0, 1] and yi ∈ {0, 1, . . . } for i ∈ {1, . . . , n}. Notice

that Policy II follows exactly the same actions as Policy III, however, it uses the data
collected from all the systems in a period to update the belief variable at the end of
that period.

3.5. Structural results for a special case with determin-

istic lifetimes

In this section, we introduce a special case with a deterministic lifetime distribution
for each population. For this special case, we can derive analytical results because in
this setting the population type is learned perfectly after one ‘do nothing’ action for
a component with an age that is one time unit less than the deterministic lifetime of
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a weak component (in that case, you find out in the upcoming time period whether
you have a weak component or a strong component). We limit the number of
scenarios such that at most two replacements would be needed for the weak and one
replacement would be needed for a strong component type. The proofs regarding
the propositions in this section can be found in Appendix 3.A.

Assumption 3.1 We assume we have n (> 1) systems. A component that comes
from the weak population fails at age t (≥ 4) and a component from the strong
population fails at age 2t. We let 2t < L < 3t− 3. The systems are newly installed,
therefore, y = 0 at the beginning of time horizon. Finally, we assume that p̂ = 0.5
and 2Cp < C f .

We introduce a new policy to examine the effect of joint optimization on the total
expected cost.

Definition 3.1 (Perfect learning policy) We define a ‘perfect learning policy’ as
follows: when the initial components reach age t − 1 (i.e. at z = L − (t − 1)),
we apply the ‘do nothing’ action for one of the systems and we apply the ‘do a
preventive replacement’ action for all other systems.

By this policy, we learn the true population perfectly at z = L − t and we limit
the risk of failure (i.e. high cost of corrective maintenance) of multiple systems to
only one system (e.g. risking failure for only one milking machine). After that, the
optimal policy is applied.

Proposition 3.1 The total expected cost under the perfect learning policy for n systems is
[ 3

2 n− 1
2 ]Cp +

1
2 C f .

We see that the preventive cost part ([ 3
2 n− 1

2 ]Cp) increases linearly with the number
of systems, but the corrective cost part ( 1

2 C f ) is a constant function of n and it is
shared among all systems. From z = L− t till the end of the lifespan, the optimal
policy can be followed for either the weak or the strong population.

Proposition 3.2 The total expected cost under Policy III for n systems is 2nCp.

The total expected cost under Policy III increases with the number of systems.
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Proposition 3.3 It is never optimal to apply the ‘do nothing’ action to more than one
system when the initial components reach age t− 1.

Proposition 3.3 shows that risking a failure is not desirable for more than one system
(e.g. risking the failure of two milking machines) under this special case.

Proposition 3.4 (i) The relative difference of Policy III with respect to the perfect learning

policy is
(n+1)Cp−C f
(3n−1)Cp+C f

. (ii) If (n + 1) >
C f
Cp

, then Policy I is the same as the perfect learning
policy. Otherwise, Policy I is the same as the Policy III.

Proposition 3.4 shows that the perfect learning policy is cheaper than Policy III if
and only if (n + 1) >

C f
Cp

. This implies that exploration is only beneficial for large

enough values of n. As n goes to infinity, this relative difference goes to 1
3 . For very

large values of n, the relative cost increase, when using the non-optimal Policy III
instead of the optimal Policy I (the perfect learning policy in that case), can become
1
3 .

3.6. Numerical results

In this section, we present our numerical study to address the research questions
introduced in Section 3.1. First, we determine a base instance which we introduce
in Section 3.6.1. We address research question (1) in Section 3.6.2 by showing
the structure of Policy I and compare it against the structure of Policy III. in
Section 3.6.3, we compare the total expected cost per system under each policy for
a test bed of 36 instances in order to answer research questions (2) and (3). Finally,
we answer research question (4) in Section 3.6.4 by executing a sensitivity analysis
to study how the total expected cost per system and the relative cost difference
between policies change with respect to the input parameters L, k, p̂, Cp and n.

3.6.1 Base instance

For our numerical analysis, we assume that the lifetime random variable of
each population type has a right-truncated discrete Weibull distribution. This
distribution is derived from the well-known continuous Weibull distribution with
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scale parameter λ and shape parameter k by first truncating it at a value u and then
by defining the probability mass function P(X = x) as P(X ≥ x)− P(X ≥ x − 1)

for x ∈ {1, 2, . . . , u}, where P(x ≥ x) =
1−exp[−(x/λ)k ]

1−exp[−(u/λ)k ]
. We assume that the shape

parameter is the same for both population types but the scale parameters are
different. The scale parameter λ is equal to 6 for the weak type and it is equal
to 12 for the strong type. For the shape parameter, we select k = 5. The value of
u is chosen equal to 22; it holds that exp[− (u/λ)k] becomes negligible for u > 22
under all the selected values of λ and k. The mean and coefficient of variation of the
lifetime of the weak type are equal to 6.009 and 0.215, respectively. For the strong
type, these values are equal to 11.518 and 0.221. This completes the description of
the lifetime distributions for the base instance. We set the other input parameters
as n = 2, L = 75, Cp = 0.1, C f = 1 and p̂ = 0.5 in the base instance. Notice that
for Cp and C f , only their relative difference matters. Hence, we can choose C f = 1
during all experiments w.l.o.g.

3.6.2 The structure of Policy I and its comparison against Policy
III

In this section, we answer the first research question by investigating the structure
of the optimal policy (Policy I), and comparing this against the structure of Policy
III. Let a∗I (p, y, z) denote the optimal action under Policy I at state variables p and
y and remaining lifespan z.

In Figure 3.1, we see how the optimal policy structure changes with respect to p and
y1 for some fixed values of y2. The optimal policy for the first system is not affected
by the age of the second system for most values of p and y1 (the same behavior has
also been observed for all other values of z). As p increases, the optimal action may
become ‘replace’ because the time-to-failure is stochastically smaller for the weak
population. Similarly, as y1 increases, the optimal action becomes ‘replace’. This is
because of the increasing failure rate of the time-to-failure distribution, making a
failure more likely as the age of a component increases.

In Figure 3.2, we fix the value of p and observe the change in the optimal policy
with respect to y1 and y2. Note that Figure 3.2(b) corresponds to the base instance
with initial belief 0.5. We see that the optimal action is almost symmetrical for the
two systems. For small values of the age of a component, the optimal action is ‘do
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p

y 1

(a) y2 = 0

p
y 1

(b) y2 = 3

p

y 1

(c) y2 = 10

Figure 3.1: Optimal action a∗I (p, y, 75) with y = (y1, y2).

nothing’. After an age limit, it becomes ‘replace’. Additionally, for larger values of
p the ‘do nothing’ area becomes smaller and the ‘replace’ area becomes larger.

In Figure 3.3, the change of the structure of optimal actions of Policy I with respect
to z is shown for a particular belief state (i.e., when the belief state is equal to 0.5 at
each z value). We observe that the optimal actions are the same for z = {50, 60, 75}
(see Figure 3.2 for z = 75). For z = 20, only a small area differs due to the end of
lifespan effect.
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y1

y 2

(a) p = 0.25

y1
y 2

(b) p = 0.5

y1

y 2

(c) p = 0.75

Figure 3.2: Optimal action a∗I (p, y, 75) with y = (y1, y2).

In the implementation of our solution approach for the base instance, we note
that there are 158,739,675 combinations of the variables p, (y1, y2) and z (see
Appendix 3.B for our solution approach including the details on the discretization
of the belief space). Only in 1.9% of these combinations, the action under Policy I
differs from the action under Policy III (the cost difference between these policies
will be provided in Section 3.6.3). In order to visualize at which states the two
policies differ, we introduce a metric defined as ∑L

z=1 1a∗I (p,y,z) ̸=a∗III(p,y,z) for a given
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y1

y 2

(a) z = 20

y1
y 2

(b) z = 50

y1

y 2

(c) z = 60

Figure 3.3: Optimal action a∗I (0.5, y, z) with y = (y1, y2).

(p, y), where

1a∗I (p,y,z) ̸=a∗III(p,y,z) =

 1, if a∗I (p, y, z) ̸= a∗III(p, y, z)

0, if a∗I (p, y, z) = a∗III(p, y, z).

In Figure 3.4, we visualize this metric, representing the number of times the Policy
I and Policy III take a different action in a particular state state p and y over all the
possible z values. That is, if the metric at state (p, y) is equal to zero, it means that
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the actions of Policy I and III are the same for all z values at this particular state. In
Figure 3.4, we see that the part of the state space where the actions of Policy I and
Policy III are different is limited to only a limited number of states. In particular,
the actions are different around specific age values which constitutes an age-limit
between ‘do nothing’ and ‘replace’ actions and this limit seems to be different for
Policy I and III.

y1

y 2

(a) p = 0.5

p

y 1

(b) y2 = 0

Figure 3.4: The number of times Policy I and Policy III take a different action for a
particular state p and (y1, y2) over all the possible z values.

3.6.3 Comparison of the expected cost per system under Policy I
against Policy II and Policy III

In this section, we address research questions (2) and (3) by comparing the expected
cost per system associated with each policy against each other. For this purpose,
we generate a test bed of 36 instances. For this test bed, we consider the parameter
values as follows: p̂ ∈ {0.25, 0.5, 0.75}, L ∈ {75, 150}, k ∈ {3, 5}, C f = 1, and
Cp ∈ {0.05, 0.1, 0.2}. We continue to use the truncated discrete Weibull lifetime
distribution with the scale parameters as in the base instance.

We let CI = VL( p̂,0)
n and CII =

VII
L ( p̂,0)

n denote the expected cost per system under
Policy I and Policy II, respectively, starting with a new set of components at age
zero. For notational convenience, we also introduce CIII = VIII

L ( p̂, 0) to denote
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the expected cost under Policy III. Note that CIII is not normalized with respect
to n, as it already represents the expected cost for a single system. In Table 3.2,
we denote the difference CII − CI with ∆II−I and the relative difference CII−CI

CI
100%

with ∆rel
II−I to compare Policy I and II. Similarly, we define ∆III−I = CIII − CI and

∆rel
III−I =

CIII−CI
CI

100% to compare Policy I and III, and we define ∆III−II = CIII − CII

and ∆rel
III−II =

CIII−CII
CII

100% to compare Policy II and III.

Table 3.2 shows that, for 34 out of 36 instances, the relative difference ∆rel
II−I between

Policy I and Policy II is less than or equal to 0.20%. For the two remaining instances,
it is less than or equal to 0.80%. This quantifies the maximum benefit that can be
obtained via jointly making the replacement decisions for multiple systems. The
relative difference ∆rel

III−II between Policy II and III is less than or equal to 1% for
six out of 36 instances. It is greater than 1% and smaller than 2% for 19 out of
36 instances, and it is is greater than 2% for the remaining 11 instances. Policy
III is up to 5.6% costlier than Policy II. This is the maximum benefit that can be
obtained due to data pooling in this test bed. Due to the small difference in the
expected cost per system between Policy I and Policy II, the statistics for ∆rel

III−I are
similar to ∆rel

III−II. Considering that the structures of the policies are mostly similar
for Policy I and Policy III, we can conclude that the reduction in costs by using
Policy I instead of Policy III is mostly due to the data pooling rather than jointly
making the replacement decisions for multiple systems.

3.6.4 Sensitivity analysis

In this section, we perform a sensitivity analysis around the base instance to answer
research question (4). We show how the costs and relative cost differences are
affected with respect to varying values of the input parameters L, k, Cp, p̂ and n.
When we study the effect of a specific input parameter, we assume all the other
input parameters are the same as in the base instance.

Effect of the lifespan. In Figure 3.5(a), we show how the relative difference in costs
changes with respect to L. We observe that the relative differences ∆rel

III−I and ∆rel
III−II

are the largest for 50 ≤ L ≤ 75, and the relative difference ∆rel
II−I is the largest for

35 ≤ L ≤ 50. The relative difference between policies gets smaller for the values
of L larger than 75. This is intuitive because a long lifespan leads to learning the
population type accurately, and beyond some point, the effect of not knowing the
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Table 3.2: Comparison of the policies for the instances in the test bed

Instance L Cp k p̂ CI ∆III−I ∆II−I ∆III−II ∆rel
III−I ∆rel

II−I ∆rel
III−II

1 75 0.05 3 0.25 2.05 0.04 0.00 0.04 2.0% 0.0% 2.0%
2 75 0.05 3 0.5 2.48 0.05 0.00 0.05 2.0% 0.0% 2.0%
3 75 0.05 3 0.75 2.84 0.01 0.00 0.01 0.4% 0.0% 0.4%
4 150 0.05 3 0.25 4.06 0.08 0.01 0.07 2.0% 0.2% 1.7%
5 150 0.05 3 0.5 4.9 0.10 0.01 0.09 2.0% 0.2% 1.8%
6 150 0.05 3 0.75 5.66 0.06 0.00 0.06 1.1% 0.0% 1.1%
7 75 0.1 3 0.25 3.12 0.06 0.00 0.06 1.9% 0.0% 1.9%
8 75 0.1 3 0.5 3.79 0.07 0.00 0.07 1.8% 0.0% 1.8%
9 75 0.1 3 0.75 4.4 0.05 0.00 0.05 1.1% 0.0% 1.1%
10 150 0.1 3 0.25 6.23 0.10 0.01 0.09 1.6% 0.2% 1.4%
11 150 0.1 3 0.5 7.54 0.13 0.01 0.12 1.7% 0.1% 1.6%
12 150 0.1 3 0.75 8.79 0.11 0.01 0.10 1.3% 0.1% 1.1%
13 75 0.2 3 0.25 4.61 0.08 0.00 0.08 1.7% 0.0% 1.7%
14 75 0.2 3 0.5 5.58 0.11 0.00 0.11 2.0% 0.0% 2.0%
15 75 0.2 3 0.75 6.5 0.08 0.00 0.08 1.2% 0.0% 1.2%
16 150 0.2 3 0.25 9.3 0.10 0.00 0.1 1.1% 0.0% 1.1%
17 150 0.2 3 0.5 11.19 0.15 0.00 0.15 1.3% 0.0% 1.3%
18 150 0.2 3 0.75 13.04 0.12 0.00 0.12 0.9% 0.0% 0.9%
19 75 0.05 5 0.25 1.25 0.07 0.00 0.07 5.6% 0.0% 5.6%
20 75 0.05 5 0.5 1.57 0.01 0.01 0.00 0.6% 0.6% 0.0%
21 75 0.05 5 0.75 1.76 0.00 0.00 0.00 0.0% 0.0% 0.0%
22 150 0.05 5 0.25 2.46 0.08 0.00 0.08 3.3% 0.0% 3.3%
23 150 0.05 5 0.5 3.04 0.13 0.00 0.13 4.3% 0.0% 4.3%
24 150 0.05 5 0.75 3.53 0.02 0.00 0.02 0.6% 0.0% 0.6%
25 75 0.1 5 0.25 2.04 0.08 0.00 0.08 3.9% 0.0% 3.9%
26 75 0.1 5 0.5 2.50 0.13 0.01 0.12 5.2% 0.4% 4.8%
27 75 0.1 5 0.75 2.91 0.02 0.02 0.00 0.7% 0.7% 0.0%
28 150 0.1 5 0.25 4.06 0.10 0.00 0.10 2.5% 0.0% 2.5%
29 150 0.1 5 0.5 4.92 0.15 0.01 0.14 3.0% 0.2% 2.8%
30 150 0.1 5 0.75 5.73 0.16 0.00 0.16 2.8% 0.0% 2.8%
31 75 0.2 5 0.25 3.37 0.08 0.00 0.08 2.4% 0.0% 2.4%
32 75 0.2 5 0.5 4.15 0.12 0.00 0.12 2.9% 0.0% 2.9%
33 75 0.2 5 0.75 4.86 0.11 0.01 0.10 2.3% 0.2% 2.1%
34 150 0.2 5 0.25 6.82 0.09 0.01 0.08 1.3% 0.1% 1.2%
35 150 0.2 5 0.5 8.31 0.15 0.01 0.14 1.8% 0.1% 1.7%
36 150 0.2 5 0.75 9.75 0.14 0.01 0.13 1.4% 0.1% 1.3%
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true population type disappears (i.e., policies converge to the policy under perfect
information setting).

L

%

(a) Relative difference in expected cost per system.

L

%

(b) Relative difference between the expected cost per
system of a policy and the expected cost for a single
system under perfect information.

Figure 3.5: Effect of the lifespan length L on costs; L = 75 corresponds to the base
instance.

To better see this, in Figure 3.5(b), we compare the expected costs under Policy I
and Policy III against the cost under perfect information. For a long lifespan such
as L = 1000, the costs of both policies approach the cost under perfect information.
This means both policies (with and without data pooling) learn the true population
type well for a sufficiently large lifespan. We further see that the cost of Policy
I converges to the perfect information cost earlier than Policy III. This can be
interpreted as the effect of data pooling under Policy I.

Effect of the coefficient of variation of the time-to-failure distributions. We
consider that the shape parameter k of the time-to-failure distribution (which is
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common for both population types) takes values from the set {3, 3.5, 4, 4.5} in
addition to 5, which was the value of k in the base instance. As the shape parameter
k increases, the expectation of the time-to-failure distribution increases a little
bit while its variance (and hence coefficient of variation) decreases significantly.
Table 3.3 provides the distributional properties of the time-to-failure distributions
corresponding to the selected parameters.

Table 3.3: Properties of time-to-failure distributions (with u equal to 22).

Shape (k) Scale (λ) Expectation Variance
Coefficient of

Variation
3 6 5.858 1.969 0.336

3 12 11.189 3.867 0.346

3.5 6 5.898 1.733 0.294

3.5 12 11.294 3.424 0.303

4 6 5.938 1.553 0.261

4 12 11.377 3.065 0.269

4.5 6 5.975 1.410 0.236

4.5 12 11.451 2.776 0.242

5 6 6.009 1.294 0.215

5 12 11.518 2.540 0.221

Figure 3.6 shows how the shape parameter k affects the expected cost per system
under each policy and the relative cost differences between policies. As k increases
(i.e. the coefficient of variation decreases), we observe that the expected cost per
system under all policies decreases and the relative difference between the costs of
Policy I and Policy III increases (the relative difference between the costs of Policy
II and Policy III behaves similarly). This also shows that the benefit of data sharing
is higher as k increases. The relative difference between the costs of Policy I and II
continues to be small and does not vary much.

Effect of initial belief. We choose p̂ ∈ {0, 0.025, . . . , 0.975, 1} for the sensitivity
analysis with respect to the initial belief p̂. Figure 3.7 shows how the expected cost
per system associated with each policy and the relative differences between them
change with respect to the initial belief on the true population type. We observe
that the expected cost per system increases for all the policies as p̂ increases. This is
due to the fact that the expected number of failures is higher when the components
come from the weak population rather than the strong population. Therefore, it
results in more replacement activities and increases the expected cost per system.
The relative cost difference between policies III-I and III-II is the largest when the
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(b) Relative difference in expected cost per system

Figure 3.6: Effect of the shape parameter k on costs; k = 5 corresponds to the base
instance.

uncertainty for the true type of population is high (i.e., for p̂ around 0.5). This is
when the benefit obtained by resolving the population-type uncertainty early (via
data pooling) is also high.

p̂

co
st

(a) Expected cost per system

p̂

%

(b) Relative difference in expected cost per system.

Figure 3.7: Effect of the initial belief on costs; p̂ = 0.5 corresponds to the base instance.

Effect of the cost of preventive maintenance. We choose Cp ∈ {0.05, 0.1, 0.2, 0.25}
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to study the effect of preventive replacement cost Cp on the expected costs (see
Figure 3.8). Naturally, the expected cost under each policy increases as the cost of
preventive replacement increases. Figure 3.8 also shows that the relative difference
in costs between Policies II and III and between Policies I and III also decreases as
the cost of preventive replacement increases (excluding the case Cp = 0.05). The
instance with Cp = 0.05 is an exception because policies require a larger lifespan
to learn the true population type when the preventive replacement cost is that low
(i.e., the preventive maintenance is so inexpensive that the components are always
replaced preventively in an early phase of their lifetime, preventing to distinguish
between weak and strong population with the historical data). Thus, we end up
with three policies that perform very closely.

Cp

co
st

(a) Expected cost per system.

Cp

%

(b) Relative difference in expected cost per system.

Figure 3.8: Effect of the preventive maintenance cost on the costs; Cp = 0.1 corresponds
to the base instance.

Effect of the number of systems. We compare the costs associated with the three
policies in Figure 3.9 for n ∈ {2, 3}. We observe that the expected cost per system
under Policies I and II slightly decreases when we go from n = 2 to n = 3. On
the other hand, the relative cost differences between policies I and III and between
policies II and III increase in this case.

In order to better see how the number of systems affect the decrease in expected
cost per system for Policies I and II (the decrease in cost is because of increased
data pooling with higher number of systems under these policies), we increase n
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(b) Relative difference in expected cost per system.

Figure 3.9: Effect of the number of systems n on costs; n = 2 corresponds to the base
instance.

up to 20. As expected, the state space of the POMDP becomes too large to be
able to efficiently solve the Bellman equations characterized in Section 3.3 in order
to obtain Policy I. Therefore, we do not report the performance of Policy I from
now on for n greater than 2. Instead, we use the optimal policy under the perfect-
information setting (see Section 3.4.1) as a benchmark to quantify the maximum
benefit that could have been obtained by Policy I. Notice that the optimal expected
cost in the perfect-information setting can be interpreted as a lower bound on the
expected cost under Policy I. Thus, it allows us to quantify the maximum reduction
in expected cost per system via data pooling.

We let CPI denote the expected cost for a single system in the perfect-information
setting at the beginning of the lifespan and at belief state p̂ and component age
zero, i.e., CPI = WL( p̂, 0). Furthermore, we introduce the notation ϕω = Cω − CPI

and ϕrel
ω = Cω−CPI

CPI
100% to denote the difference and the relative difference between

the expected cost per system under policy ω ∈ {I, II, III} and the expected cost for
a single system in the perfect-information setting, respectively. In Table 3.4, we list
these differences for the test bed of Section 3.6.3.

The relative difference ϕrel
I between Policy I and the perfect information setting is

greater than 1% and less than 3% for 13 out of 36 instances. For the remaining
instances, it is greater than 3%. The largest relative difference between Policy I
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Table 3.4: Comparison of the costs of Policy I, II and III against the cost under perfect-
information setting (n = 2).

Instance ϕI ϕI I ϕI I I ϕrel
I ϕrel

I I ϕrel
I I I

1 0.11 0.11 0.15 5.7% 5.7% 7.7%
2 0.14 0.14 0.19 6.0% 6.0% 8.1%
3 0.10 0.10 0.11 3.6% 3.6% 4.0%
4 0.13 0.14 0.21 3.3% 3.6% 5.3%
5 0.17 0.18 0.27 3.6% 3.8% 5.7%
6 0.14 0.14 0.20 2.5% 2.5% 3.6%
7 0.11 0.11 0.17 3.7% 3.7% 5.6%
8 0.15 0.15 0.22 4.1% 4.1% 6.0%
9 0.13 0.13 0.18 3.0% 3.0% 4.2%

10 0.12 0.13 0.22 2.0% 2.1% 3.6%
11 0.17 0.18 0.30 2.3% 2.4% 4.1%
12 0.16 0.17 0.27 1.9% 2.0% 3.1%
13 0.10 0.10 0.18 2.2% 2.2% 4.0%
14 0.14 0.14 0.25 2.6% 2.6% 4.6%
15 0.14 0.14 0.22 2.2% 2.2% 3.5%
16 0.11 0.11 0.21 1.2% 1.2% 2.3%
17 0.15 0.15 0.30 1.4% 1.4% 2.7%
18 0.15 0.15 0.27 1.2% 1.2% 2.1%
19 0.11 0.11 0.18 9.6% 9.6% 15.8%
20 0.16 0.17 0.17 11.3% 12.1% 12.1%
21 0.09 0.09 0.09 5.4% 5.4% 5.4%
22 0.12 0.12 0.20 5.1% 5.1% 8.5%
23 0.18 0.18 0.31 6.3% 6.3% 10.8%
24 0.14 0.14 0.16 4.1% 4.1% 4.7%
25 0.13 0.13 0.21 6.8% 6.8% 11.0%
26 0.19 0.20 0.32 8.2% 8.7% 13.9%
27 0.20 0.22 0.22 7.4% 8.1% 8.1%
28 0.15 0.15 0.25 3.8% 3.8% 6.4%
29 0.21 0.22 0.36 4.5% 4.7% 7.6%
30 0.23 0.23 0.39 4.2% 4.2% 7.1%
31 0.11 0.11 0.19 3.4% 3.4% 5.8%
32 0.16 0.16 0.28 4.0% 4.0% 7.0%
33 0.15 0.16 0.26 3.2% 3.4% 5.5%
34 0.10 0.11 0.19 1.5% 1.6% 2.8%
35 0.15 0.16 0.30 1.8% 2.0% 3.7%
36 0.14 0.15 0.28 1.5% 1.6% 2.9%

and the perfect information setting is 11.3% at instance 20. This means that the
population heterogeneity leads to an 11.1% increase in expected cost (i.e., this can
be interpreted as the cost of not knowing the true population type). If Policy III is
used instead of Policy I, this additional cost can be up to 15.8%.
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The expected total cost of Policy I and II are close to each other in all numerical
experiments. However, the size of the discretized state space that belongs to the
POMDP model associated with Policy I becomes much larger than the one that
corresponds to Policy II as the number of systems increases. We evaluate the
expected cost per system under Policy II for n ∈ {5, 10, 15, 20} via simulation and
compare it against the expected costs per system under Policy III and the perfect
information setting. For this purpose, we perform 5000 simulation runs and report
the results in Table 3.5. We only report the average value from these simulations
because the half width of the 95% confidence interval (CI) built around the average
value is not greater than 0.00 for any instance.

In Table 3.5, we see that as the number of systems increases the expected cost
per system comes closer to the cost under perfect information. When there are 20

systems, for five out of 36 instances, the relative difference ∆rel
III−II is more than 2%

and less than 3%. For 17 of these instances, it is greater than or equal to 3% and
less than or equal to 5.3%. For the remaining instances, it is between 5.6% to 14%.
That is, the largest benefit obtained by data pooling is for 20 systems and equal to
14%. For 20 systems, when we compare the cost of Policy II against the cost under
perfect information, we see that relative difference ϕrel

II is less than 1% for 27 out of
36 instances. It is greater than or equal to 1% and less than or equal to 1.7% for the
remaining instances. That is, the cost under data pooling from 20 systems differs
from the cost under perfect information by no more than 1.7%. As the number of
systems increases, the total expected cost per system decreases for Policy II and
gets closer to the cost under perfect information. This shows that even when the
replacement decisions are made independently for multiple systems, data pooling
is effective in cost reduction.

Note that the maximum cost reduction that can be obtained by data pooling is
CIII − CPI. We refer to this as potential cost reduction. The actual reduction obtained
by data pooling is CIII − CII. We introduce the performance measure γ, defined as
CIII−CII
CIII−CPI

100%, to quantify the percentage of the potential cost reduction obtained by
data pooling. We calculate γ for each instance based on the average cost obtained
from simulation. In Figure 3.10, we show the distribution of these γ values for
n ∈ {5, 10, 15, 20}. On average, data pooling from five systems achieves around
70% of the potential cost reduction. This is on average above 90% for 20 systems.

Finally, we show the effect of the number of systems on the expected cost per system
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Table 3.5: Comparison of the costs of Policy II and III against the cost under perfect-
information setting (n > 2)

CII n = 20
Instance CIII n = 5 n = 10 n = 15 n = 20 CPI ∆rel

III−II ϕrel
II

1 2.09 2.00 1.97 1.96 1.96 1.94 6.7% 1.0%
2 2.53 2.42 2.38 2.37 2.37 2.34 6.9% 1.2%
3 2.85 2.81 2.78 2.77 2.76 2.74 3.2% 0.8%
4 4.14 3.98 3.95 3.96 3.95 3.93 4.9% 0.4%
5 5.00 4.80 4.77 4.75 4.75 4.73 5.3% 0.4%
6 5.72 5.59 5.56 5.56 5.54 5.52 3.3% 0.3%
7 3.18 3.06 3.03 3.03 3.02 3.01 5.2% 0.4%
8 3.86 3.72 3.67 3.67 3.66 3.64 5.6% 0.4%
9 4.45 4.34 4.30 4.29 4.29 4.27 3.8% 0.4%

10 6.33 6.17 6.14 6.13 6.12 6.11 3.4% 0.2%
11 7.67 7.45 7.41 7.39 7.39 7.37 3.8% 0.2%
12 8.90 8.69 8.67 8.65 8.64 8.63 3.0% 0.2%
13 4.69 4.56 4.54 4.52 4.52 4.51 3.8% 0.2%
14 5.69 5.50 5.48 5.46 5.45 5.44 4.5% 0.1%
15 6.58 6.42 6.39 6.38 6.36 6.36 3.4% 0.0%
16 9.40 9.24 9.22 9.21 9.19 9.19 2.2% 0.0%
17 11.34 11.09 11.07 11.06 11.05 11.04 2.6% 0.1%
18 13.16 12.95 12.92 12.90 12.91 12.89 2.0% 0.1%
19 1.32 1.21 1.17 1.17 1.16 1.14 14.0% 1.6%
20 1.58 1.50 1.45 1.44 1.43 1.41 10.2% 1.7%
21 1.76 1.74 1.71 1.69 1.69 1.67 4.2% 1.1%
22 2.54 2.40 2.38 2.36 2.35 2.34 8.2% 0.3%
23 3.17 2.96 2.92 2.90 2.89 2.86 9.6% 1.2%
24 3.55 3.47 3.43 3.42 3.41 3.39 4.2% 0.5%
25 2.12 1.98 1.95 1.93 1.93 1.91 9.9% 1.0%
26 2.63 2.41 2.37 2.35 2.34 2.31 12.4% 1.3%
27 2.93 2.81 2.76 2.75 2.74 2.71 7.1% 1.0%
28 4.16 3.98 3.94 3.93 3.92 3.91 6.0% 0.3%
29 5.07 4.81 4.76 4.75 4.73 4.71 7.1% 0.5%
30 5.89 5.63 5.57 5.54 5.54 5.50 6.3% 0.7%
31 3.45 3.30 3.29 3.27 3.28 3.26 5.3% 0.5%
32 4.27 4.06 4.01 4.01 4.00 3.99 6.9% 0.1%
33 4.97 4.78 4.74 4.72 4.72 4.71 5.3% 0.3%
34 6.91 6.76 6.73 6.73 6.73 6.72 2.7% 0.1%
35 8.46 8.24 8.19 8.18 8.17 8.16 3.6% 0.1%
36 9.89 9.67 9.63 9.62 9.62 9.61 2.8% 0.1%
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Figure 3.10: Percentage of the potential cost reduction obtained by Policy II.

in Figure 3.11, where all input parameters are the same as in the base instance but
the value of n varies. We report the costs for n ∈ {2, 3, . . . , 20}. In Figure 3.11(a),
we visualize how the expected cost per system decreases for Policy II as a function
of n. Clearly, the marginal cost reduction due to data pooling is non-increasing in
n. In Figure 3.11(b), we visualize the value of the percentage of the potential cost
reduction achieved by data pooling.

There are two main insights on the benefit of data pooling. First, the Bayesian
updates are the same for all policies, therefore the number of data points required
for learning the true population would also be the same. However, by pooling data
from multiple systems, we can obtain the same number of data in a shorter time
span. Second, as the number of systems increases, the cost of learning (exploration)
per system decreases (similarly to the special case analyzed in Section 3.5).
Therefore, we exploit the learned information regarding the population type by
a higher number of systems.

3.7. Conclusion

We have studied the optimal replacement policy for multiple single-component
systems with a fixed lifespan under population heterogeneity. For this purpose,
we built a POMDP model with Bayesian updating. We investigated the benefit
of data pooling and jointly making the component replacement decisions on the
expected cost per system. As a benchmark to the optimal policy, we introduced



3.7 Conclusion 103

n

co
st

n

γ
(%

)

Figure 3.11: Effect of the number of systems on the expected cost per system for Policy II
(left) and on the percentage of the potential cost reduction obtained by Policy II (right).

two other policies that allow us to quantify these benefits. We further introduced a
policy under which the true population type is known; this policy gives an upper
bound on the maximum benefit that can be gained by data pooling. For a test
bed with 36 problem instances for two systems, the maximum reduction in total
expected cost per system that is obtained via joint optimization is 0.80% and the
maximum reduction in total expected cost per system that is obtained via data
pooling is 5.6%. These results indicate that data pooling is more effective reducing
the expected costs than jointly making the replacement decisions. Considering the
computational complexity of the POMDP model for multiple systems and with data
pooling, applying the policy by considering the optimal policy of a single system
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but with data pooling is a favorable approach in practice with many systems. We
investigated how the reduction in expected cost per system increases as the number
of systems increases. For 20 systems, the maximum cost reduction obtained by data
pooling is up to 14% (the upper bound for the cost reduction in this particular
instance is 15.8%). Insights on the cost benefits of data pooling also provide
managerial insights to practitioners regarding their investments in adopting new
technologies that enable data pooling.

3.A. Proofs

Under Assumption 3.1, the Bayesian update function simplifies to

g(p, ŷ, d) =



p if 0 ≤ ŷi ≤ t− 2 and di = 0 for all i ∈ {1, . . . , n},

1 if ŷi = t− 1 and di = 1 for one or more systems i ∈ {1, . . . , n},

0 if ŷi = t− 1 and di = 0 for one or more systems i ∈ {1, . . . , n},

0 if ŷi ≥ t, for any di ∈ {0, 1} for at least one i ∈ {1, . . . , n},

p ∈ [0, 1]. Please note that, g(0, ŷ, d) = 0 and g(1, ŷ, d) = 1. Please also note that
for each system i, it holds that age ŷi with 0 ≤ ŷi ≤ t− 2 or t ≤ ŷi ≤ 2t− 2 implies
di = 0, age ŷi = t− 1 allows di = 0 and di = 1, and age ŷi = 2t− 1 implies di = 1
(hence, not all combinations of the vectors ŷ and d are possible).

For any system i, if yi ≤ t− 2 or t ≤ yi ≤ 2t− 2, the optimal action is ‘do nothing’
for that system because the probability of failure during the next time period is
equal to zero. In this age interval, no cost incurs. For any system i, if yi = 2t− 1,
the optimal action is ‘do a preventive replacement’ for that system because the
probability of failure during the next time period is equal to one. In this case, a cost
Cp is incurred.

Under the perfect learning policy, after the true population is learned at z = L− t,
the perfect learning policy follows the perfect information setting. If the component
is coming from the weak population, the age will be zero for the failed component,
and it should be replaced only one more time after t − 1 time units (i.e., at z =

L− 2t− 1). At this moment, the age of all preventively replaced components will
be one. They should be replaced only one more time after t − 2 time units (i.e.,
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z = L − 2t − 2). If the true population type is strong, the age of the component
for which the ‘do nothing’ action was applied will be t and it should be replaced
one time after t− 1 time units (i.e., at z = L− 2t− 1). The age of the preventively
replaced components will be one. We do not need to replace these components
again because the component will fail 2t− 1 time units later (which is after the end
of the lifespan of the system).
Proof of Proposition 3.1
We apply one ‘do nothing’ action when the components in the systems reach age
t− 1. Let vector ei be the vector with the ith element equal to one and with all other
elements equal to zero. Let us assume that the ‘do nothing’ action is applied for a
given system i at z = L− (t− 1). Then we obtain the following total expected cost

ṼL−(t−1)

(
0.5, (t− 1)e, e− ei

)
= (n− 1)Cp + 0.5(C f + VL−(t−1)−1(1, e− ei))

+ 0.5VL−(t−1)−1(0, e + (t− 1)ei)

= (n− 1)Cp + 0.5(C f + nCp) + 0.5Cp,

where VL−t(1, e− ei) = nCp and VL−t(0, e + (t− 1)ei) = Cp. 2

Proof of Proposition 3.2
The expected total cost under Policy III for the lifespan of a system is

VIII
L (0.5, 0) = VIII

L−(t−1)(0.5, t− 1)

= min{ṼIII
L−(t−1)(0.5, t− 1, 1), ṼIII

L−(t−1)(0.5, t− 1, 0)}

= min{Cp + VIII
L−t(0.5, 1), 0.5[C f + VIII

L−t(1, 0)] + 0.5VIII
L−t(0, t)}

= min{Cp + min{Cp, 0.5C f }, 0.5[C f + Cp] + 0.5Cp}

= min{min{2Cp, 0.5C f + Cp}, 0.5C f + Cp}

= min{2Cp, 0.5C f + Cp} = Cp + min{Cp, 0.5C f },

where VIII
L−t(0, t) = Cp, VIII

L−t(1, 0) = Cp, and the following result is used in the third
step

VIII
L−t(0.5, 1) = VIII

L−t−1(0.5, 2) = VIII
L−t−2(0.5, 3) = · · · = VIII

L−(2t−2)(0.5, t− 1)

= min{ṼIII
L−(2t−2)(0.5, t− 1, 1), ṼIII

L−(2t−2)(0.5, t− 1, 0)}

= min{Cp + VIII
L−(2t−1)(0.5, 1), 0.5[C f + VIII

L−(2t−1)(1, 0)] + 0.5VIII
L−(2t−1)(0, t)}
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= min{Cp, 0.5C f }.

Please also note that VIII
L−(2t−1)(0.5, 1) = VIII

0 (0.5, L − 2t + 2) = 0, because L −
2t + 2 < t − 1. Additionally, VIII

L−(2t−1)(1, 0) = 0, and VIII
L−(2t−1)(0, t) = 0. Under

Assumption 3.1, the formula for the total expected cost under Policy III for n
systems simplifies to 2nCp. 2

Proof of Proposition 3.3
We choose a policy such that we apply the ‘do nothing’ action to n′ (> 0) systems
when the components reach age t − 1 for the first time. We denote a vector en′

where its ith elements corresponding to these selected n′ systems are equal to one
and the rest is equal to zero. In this case, we have the following total expected cost
at the beginning of the lifespan of the systems.

ṼL−(t−1)

(
0.5, (t− 1)e, e− en′

)
= (n− n′)Cp + 0.5(n′C f + VL−(t−1)−1(1, e− en′))

+ 0.5VL−(t−1)−1(0, e + (t− 1)en′)

= (n− n′)Cp + 0.5(n′C f + nCp) + 0.5n′Cp

= 1.5nCp + 0.5n′(C f − Cp),

We see that 1.5nCp + 0.5n′(C f − Cp) is a non-decreasing function of n′. Therefore,
a policy where n′ > 1 is never optimal. 2

Proof of Proposition 3.4
The difference between the expected total costs of Policy III and the perfect learning
policy is 2nCp −

(
[ 3

2 n − 1
2 ]Cp + 1

2 C f

)
= 1

2 [(n + 1)Cp − C f ] for n systems. The
relative difference of Policy III with respect to the perfect learning policy is equal to
1
2 [(n+1)Cp−C f ]

[ 3
2 n− 1

2 ]Cp+
1
2 C f

=
(n+1)Cp−C f
(3n−1)Cp+C f

. It holds that limn→∞
(n+1)Cp−C f
(3n−1)Cp+C f

= 1
3 .

Suppose (n+ 1) >
C f
Cp

. Under Policy I (= the optimal policy), the ‘do nothing’ action
is taken at z = L, L− 1, . . . , L− (t− 2). At z = L− (t− 1), it is never optimal to
apply the ‘do nothing’ action for more than one system (cf. Proposition 3.3). Hence,
it is optimal to apply preventive maintenance for n or n− 1 systems. If preventive
maintenance is applied for n− 1 systems at z = L− (t− 1), then one follows the
perfect learning policy at z = L− (t− 1) and also during the rest of the lifespan.

Now, let us first apply preventive maintenance for n systems at z = L− (t− 1), the
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optimal policy after that. We apply the ‘do nothing’ action for z = L− t, . . . , L−
(2t − 3). In this case, the next decision time is at z = L − (2t − 2). With the
same reasoning as for Proposition 3.3, at time z = L − (2t − 2), we obtain that it
is never optimal to apply the ‘do nothing’ action for more than one system. If we
apply the ‘do nothing’ action only for 1 system at this moment, then the expected
total cost is nCp + (n − 1)Cp + 0.5[C f + VL−(2t−1)(1, e − ei)] + 0.5VL−(2t−1)(0, e +

(t − 1)ei) = (2n − 1)Cp + 0.5C f . If we follow Policy III at z = L − (t − 1) and
z = L− (2t− 2), the expected total cost is equal to 2nCp. Under Assumption 3.1
(2Cp < C f ), (2n − 1)Cp + 0.5C f > 2nCp. Therefore, if preventive maintenance
is applied for n systems at time z = L − (t − 1), then one follows Policy III at
z = L− (t− 1) and also during the rest of the lifespan.

Hence Policy I is equal to either the perfect learning policy or Policy III during
the whole lifespan. If (n + 1) >

C f
Cp

, then the perfect learning policy is cheaper than
Policy III, and thus Policy I is equal to the perfect learning policy. Otherwise, Policy
I is equal to Policy III.

2

3.B. Solution approach

In this section, we provide an outline of the backward recursion algorithm that we
use to solve for the Bellman optimality equations characterized in Section 3.3. Since
the belief state is continuous, we apply a grid-based discretization approach with
linear interpolation of the value function (see Algorithm 2).

We denote the discretization level of the belief state by ∆p. The belief is
rounded up by using the function gRU(p, y, d) and rounded down by using the
function gRD(p, y, d). The round-up function is calculated as gRU(p, y, d) =⌈

g(p, y, d) 1
∆p

⌉
∆p and the round-down function is calculated as gRD(p, y, d) =⌊

g(p, y, d) 1
∆p

⌋
∆p, where ⌈·⌉ is the ceiling function that gives the least integer greater

than or equal to its argument as output, and ⌊·⌋ is the floor function that gives
the greatest integer less than or equal to its argument as output. In order to
approximate the updated belief and the value function, linear interpolation is used
(Hauskrecht, 2000). For this purpose, the ratio corresponding to the distance of
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gRD(p, y, d) to the updated belief g(p, y, d) is calculated as α = g(p,y,d)−gRD(p,y,d)
∆p

.
The ratio that corresponds to the distance of gRU(p, y, d) to the updated belief is
then equal to 1− α. We approximate the value function at the updated belief state
g(p, y, d) as

V̂z(g(p, y, d), y) = αVappr
z (gRD(p, y, d), y) + (1− α)Vappr

z (gRU(p, y, d), y),

where Vappr
z (p, y) is a function that represents an approximation of the optimal

expected cost for systems with the component-age vector y when the remaining
number of periods in the lifespan is z and the belief state is p ∈ {0, ∆p, 2∆p, . . . , 1}.
Note that the original value function Vz takes any value of belief in [0, 1] as an input
while the function Vappr

z only takes the belief values from a discrete belief space
determined by ∆p.

It is important to choose the discretization parameter ∆p small enough to have
a good approximation. The finer the discretization level is (in other words, as
∆p decreases), the better the approximation is. Note that the number of states

is equal to
(

1
∆p

+ 1
)
(u + 1)n. As ∆p decreases, the number of states increases,

which increases the memory requirement and solution time. The number of states
increases exponentially under Policy I. During the value iteration, every possible
policy is evaluated for each possible state. The number of states also determines
the time complexity of the algorithm. For Policy III the number of states is equal
to
(

1
∆p

+ 1
)
(u + 1), which does not depend on the number of systems. Please

note that under Policy II, we apply directly Policy III but we update the Bayesian
function jointly for each system. In numerical experiments, we have 92,023 states
(required 2.11 GB RAM space) for n = 1 (Policy III), 2,116,529 states (required
2.23 GB RAM space) for n = 2 and 48,680,167 states for n = 3. We needed
to reduce the number of states for n = 3 by removing the states that are never
visited during the value iteration. This required a long preprocessing of the data
beforehand. After preprocessing, we have 18,716,828 states (required 10.02 GB RAM
space). The experiments are done on a computer with an Ubuntu Desktop 20.04

operating system, 64 GB RAM, and 16 core AMD EPYC processor (1996.249 MHz).
The computation times for L = 75 of the value iteration algorithm are 17.430 sec
for n = 1, 405.915 sec for n = 2 (Policy I) and 944.929 sec for n = 3 (Policy I).
However, please note that data preparation times before the value iteration are
not reported here. The preparation times increase significantly as the number of
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systems increase. Please also note that computation times increase linearly as a
function of L, and they are insensitive for the Cp, C f , k and p̂ values.

Figure 3.12 shows the behavior of the approximate value function as a function of
∆p for Cp = 0.1, k = 5, L = 200 and n = 1. In Figure 3.12, there are three points
for each ∆p value. The middle point shows the approximate value of VIII

L ( p̂, 0)
returned by the algorithm when the interpolation of the approximate value function
is performed as described above. The lower point shows the approximated value
of VIII

L ( p̂, 0) if the algorithm were implemented with α = 1, and the upper point
shows the approximated value of VIII

L ( p̂, 0) if it were implemented with α = 0.

For our numerical experiments, ∆p = 0.00025 is selected due to fact that the change
in approximation compared to ∆p = 0.00005 is sufficiently small (for instance, it
is less than 0.3% for Cp = 0.1, k = 5, L = 200, y = 0 and n = 1). Notice that
the rounding error accumulates through backward recursion, therefore, the error is
largest for L = 200.
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Figure 3.12: Behavior of VIII
L ( p̂, 0) with respect to ∆p for Cp = 0.1, k = 5, L = 200 and

n = 1.
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Algorithm 2 Backward Recursion Algorithm with Linear Interpolation of Belief
State

Initialize z = 1
Vappr

0 (p, y)← 0 ∀y and p ∈ {0, ∆p, 2∆p, . . . , 1}.
while z < L + 1 do

for all y and p ∈ {0, ∆p, 2∆p, . . . , 1} do
for all a ∈ A do

Ṽappr
z (p, y, a) =

n

∑
i=1

Cpai

+
|D|

∑
m=1

[( n

∑
i=1

C f dm
i + V̂z−1(g(p, (y ◦ (e− a), dm), (y ◦ (e− a) + e) ◦ dm)

)
F(p, y ◦ (e− a), dm)

]
end for
V̂z(p, y)← mina{Ṽappr

z (p, y, a)} .

a∗I (p, y, z)← argmina{Ṽ
appr
z (p, y, a)}

end for
z = z + 1

end while
return V̂z(p, y) as the approximation of the original value function Vz(p, y) and
the corresponding optimal policy as , a∗I (p, y, z), ∀(p, y, z).
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4
Spare parts replenishment at local

warehouses with ADI

4.1. Introduction

In this chapter, we investigate a spare part replenishment problem. We consider
a setting with multiple technical systems that have a single critical stock-keeping
unit (SKU). These systems are supported by a local warehouse with spare parts.
The inventory at the local warehouse is replenished with periodic reviews. When
a system requires a spare part, it is directly shipped from the local warehouse. If
there is not any available spare part, a part can be delivered via an emergency
shipment from the central warehouse. However, the technical system is then down
for a longer time, which is costly, and the emergency shipment itself is generally
also expensive. However, keeping stock for spare parts results in inventory holding
costs, which involves opportunity costs, warehousing costs and/or costs of spare
parts becoming obsolete (van Wingerden, 2019, p.1-15). Prediction of demand for
spare parts becomes crucial to balance the trade-off between inventory holding costs
and costs of emergency shipments. A signal can be generated in advance of a
failure. Based on the total number of signals, replenishment takes place at the
beginning of a period. These signals constitute advance demand information (ADI)
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for the spare parts stock (see Hariharan and Zipkin (1995) and Karaesmen (2013)
for more details on ADI).

The ideal situation for the maintenance of technical systems is that all failures
are predicted, no false predictions are generated, and the predictions are made
sufficiently far in advance. In that case, for all upcoming failures, a spare part
can be sent to the system from a central location and the failing component can
be replaced from the stock immediately. There would be no expensive local stocks
of spare parts and no emergency shipments. However, ADI is not always perfect
in practice. Signals are imperfect. That means false positive signals (i.e., a signal
not leading to a failure) and false negative signals (i.e., unpredicted failures) are
possible. We refer to the time between the generation of the signal and the actual
failure as the demand lead time. The fraction of signals that are true positive is
called precision, and the fraction of failures for which a signal is generated is called
sensitivity. In the worst case, we have no predictions at all (zero precision), no useful
signals (zero sensitivity), or each failure happens at the same moment as when the
signal is generated (zero demand lead time).

The Internet of Things and Artificial Intelligence (AI) can bring us closer to the
ideal situation of having perfect ADI. But how close do we need to be to that ideal
situation in order to have sufficiently low spare parts and low costs? In this chapter,
we mainly investigate this problem.

We formulate a Markov decision process model with precision, sensitivity, and
demand lead time as input parameters. We derive an optimal policy for the spare
parts inventory that minimizes the long-run average cost per period. Next, we
compare the optimal costs for a given precision, sensitivity, and delay time against
the optimal costs in the worst-case situation. Subsequently, we analyze how the
optimal costs and the optimal spare parts stock reduce as precision, sensitivity, and
demand lead time approach from the worst case to the ideal case.

We summarize the main findings of this study as follows: (1) For a given precision
level, the optimal costs depend on the sensitivity and the demand lead time only
through the product of these two terms (see Proposition 4.1). (2) The Pareto
principle holds for precision, e.g., 30% perfectness in precision (i.e., precision
is equal to 30% of the perfect precision) brings 70% reduction in optimal costs
compared to the worst case optimal costs. (3) The opposite of the Pareto principle
holds for the product of sensitivity and demand lead time, e.g., 70% perfectness in
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the product of sensitivity and demand lead time (i.e., the product is equal to 70%
of the product of perfect sensitivity and perfect demand lead time) brings only 30%
reduction in optimal costs compared to the worst case optimal costs. (4) We analyze
the combined effect of precision and the product of sensitivity and demand lead
time on optimal costs and inventory levels. To obtain a significant cost reduction,
having a high sensitivity and a high demand lead time is needed while the precision
can be moderate.

We organize the rest of the chapter as follows. In Section 4.2, we provide the
literature review on the related work. In Section 4.3, we present the model
description. In Section 4.4, we provide a reduction of the main problem (cf. main
finding (1)). In Section 4.5, we formulate an MDP model for this reduced problem.
In Section 4.6, we analyze two special cases of the reduced problem. This section
is followed by computational experiments and sensitivity analysis in Section 4.7.
Finally, in Section 4.8, we conclude the chapter.

4.2. Literature review

There are two streams of literature on inventory control problems related to our
work with imperfect ADI. The first stream concerns single-item, infinite-horizon
inventory control problems with imperfect ADI. The second stream focuses on spare
parts inventory control problems with ADI that is obtained from condition-based
monitoring of the machines installed in the field.

In the first literature stream, we have the following papers: van Donselaar et al.
(2001), Thonemann (2002), Tan et al. (2007), Liberopoulos and Koukoumialos (2008),
Tan (2008), Tan et al. (2009), Gayon et al. (2009), Benjaafar et al. (2011), Song and
Zipkin (2012), Bernstein and DeCroix (2015), Topan et al. (2018), Zhu et al. (2020).
van Donselaar et al. (2001) study the effect of imperfect ADI for inventory systems in
a project-based supply chain. Thonemann (2002) investigates the effect of sharing
imperfect ADI within the supply chain on average costs, mean basestock levels
and variations of the production quantities for a multi-echelon system. Results
are shown for the value of ADI as a function of order probability and information
quality, and ADI for single items is compared to aggregate ADI for a group of items.
Tan et al. (2007) consider an inventory control problem where imperfect ADI signals
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are generated for future demands. They show that the optimal policy is of the
order-up-to type and the order level is a function of the number of imperfect ADI
signals. Liberopoulos and Koukoumialos (2008) investigate how the uncertainty in
ADI affects the performance of a make-to-stock supplier. They assume a single-item
system with two customer classes. The first customer class does not provide any
ADI and places immediate orders. The second customer class provides cancelable
reservations on a requested due date. Tan (2008) considers a demand forecasting
problem in a make-to-stock system. Information provided by customers on their
future demand, which is subject to change in future, constitutes imperfect ADI
for the decision maker. Tan et al. (2009) consider an inventory problem with
two customer classes having different priorities. Available stock is reserved for
the future demand of preferred customers at the expense of losing the current
orders of lower class customers. Future demand estimations of preferred customers
constitutes imperfect ADI for the decision maker. Gayon et al. (2009) study
an inventory-production system with multiple customer classes where customers
provide imperfect ADI on the due date of their orders. Benjaafar et al. (2011)
consider a production-inventory system where customers provide imperfect ADI
for their orders. In this problem, customers provide updates on their orders but
the times between the consecutive updates are random. Song and Zipkin (2012)
analyze a capacity/inventory planning problem under imperfect ADI for a single
product with seasonal demand. Bernstein and DeCroix (2015) consider a multi-
product system where the decision maker receives imperfect signals for the demand
volume (i.e., signals for the total aggregate demand) or mixed demand (i.e., signals
revealing information about the market shares for each product). Topan et al. (2018)
focus on a spare parts management problem with imperfect ADI and the option of
returning inventory. Zhu et al. (2020) assume a single-item, periodic-review setting
for a spare parts management problem under imperfect ADI. They use planned
maintenance tasks to forecast spare part demand.

Among these studies, Song and Zipkin (2012), Gayon et al. (2009), Benjaafar et al.
(2011), Topan et al. (2018), and Zhu et al. (2020) assume that demands are lost or
satisfied via emergency shipments in stockout situations. Our study comes closest
to Topan et al. (2018). They consider a single-item, single-location, periodic-review,
infinite-horizon inventory control problem, where imperfect signals are generated
for future demands. Signals are generated for a fraction of all demands, signals
can be false, and the actual demand occurs a stochastic time after the signal was
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generated. They derive the structure of the optimal ordering and return policy,
and they show the value of the imperfect ADI in a computational experiment. We
assume a simpler model, but explicitly characterize how the optimal costs behave
as a function of the precision, sensitivity and the demand lead time of the imperfect
demand signals.

The second stream of literature is about condition monitoring in spare parts
management. The condition of a component can be used to predict when the
component fails. In that way, also advance demand information is obtained. Within
this second stream, we have the following studies: Deshpande et al. (2006), Li and
Ryan (2011), Lin et al. (2017), Eruguz et al. (2018). Deshpande et al. (2006) use
the part-age information to model the degradation of aircraft spare parts at the
U.S. Coast Guard. Li and Ryan (2011) exploit the real-time condition monitoring
information for the inventory control of spare parts. They assume a Wiener process
as the degradation model. Lin et al. (2017) consider a single critical component of
multiple installed machines in the field. The installed components follow a Markov
degradation process and that information is used for optimizing the spare parts
inventory. Eruguz et al. (2018) study an integrated maintenance and spare part
optimization problem for moving assets where the degradation level of a single
critical component is observable. They model the degradation of the component by
a continuous-time Markov chain. These studies all assume that the condition of the
components can be observed perfectly. Hence, these papers implicitly assume that
both precision and sensitivity are perfect. Only the moments that the failures occur
are uncertain.

To the best of our knowledge, our study is the first that provides analytical insights
on the effect of precision, sensitivity, and the demand lead time on the optimal costs
and inventory levels in a spare parts management problem setting.

4.3. Model description

In this section, we provide the detailed description of the model to address the
problem introduced in Section 4.1. We consider a setting where a significant number
of technical systems is supported by a local warehouse that keeps spare parts on
stock. These spare parts are needed to execute maintenance actions. The technical
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Figure 4.1: Generation of predictions.

systems are operated during a time horizon that is assumed to be infinite. The
local warehouse is part of a service network consisting of a central warehouse and
multiple local warehouses.

We focus on a single critical component that is part of all technical systems. All
components are identical and have the same failure behavior. We assume that a
component has an exponentially-distributed lifetime. A certain amount of time
before a failure (i.e., the end of a component’s lifetime), a signal is generated by a
predictive model. After this signal generation, the component still functions, but it
is known that the component may fail soon. The time from the signal generation
until the end of the lifetime is referred to as demand lead time and is denoted by D.
The demand lead time is deterministic and relatively short compared to the lifetime
of the component (Figure 4.1).

We assume that the technical systems operate continuously. Therefore, interrupting
their operation for a preventive replacement is equally expensive as a corrective
replacement. Hence, we assume that replacements are only executed when a
component fails. The technical systems are at a close distance from the local
warehouse and we assume that a spare part is provided to a technical system within
such a short time that it does not cause extra downtime of the technical system.

Spare parts of the critical component are kept in stock at the local warehouse. The
local warehouse is replenished periodically (e.g., every week). Hence, we divide
the time horizon in periods of length one, and the periods are numbered as 0, 1, . . ..
The beginning of a period t is called time t. The local service point is replenished by
the central warehouse, which is assumed to have ample stock. The corresponding
replenishment lead time is short and is assumed to be 0. Hence, ready-for-use parts
are ordered at the beginning of each period t, and they arrive immediately.

The generated signals for upcoming failures are subject to false positives and false
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negatives. Let p ∈ [0, 1] denote the precision of the generated signals, and let
q ∈ [0, 1] denote the sensitivity. If p = 1 and q = 1, we have perfect signals. If p = 0
or q = 0, the signals are useless.

If the demand lead time D is at least one period, there is at least one replenishment
moment during the demand lead time and at the last replenishment moment a
part can be ordered via a regular replenishment (and that part can be used for a
corrective replacement as soon as the failure occurs). This implies that having a
value of D that is larger than 1 is equally good as having D equal to 1. Therefore,
without loss of generality, we limit ourselves to values of D ∈ [0, 1]. If D = 1,
there is always precisely one replenishment moment during the demand lead time
of a failing component and that moment is used to order a spare part in order
to replace the component as soon as the failure occurs. If D = 0, the signal and
the corresponding failure of a component occur at the same time, and hence the
generated signals are useless.

In each period t, we have the following order of events. First, at the beginning
of the period, based on the active number of signals (collected during the time
interval (t − D, t)) and the on-hand spare parts stock, a replenishment order for
ready-for-use spare parts is placed and delivered. Next, during the whole period,
replacements of failed parts are executed. Replacements are also executed for
failures of systems for which no signal was generated. The replacements can be
executed without any delay as long as spare parts are on stock. When the on-hand
stock is 0 and a failure occurs, a spare part is delivered from the central warehouse
via an emergency shipment. This leads to a short delay for the execution of the
replacement and hence to a downtime cost for the involved system. In addition,
we have an extra cost for the emergency shipment. The corresponding costs are
captured in the cost factor cem. For every failure, a spare part is sent to the local
warehouse via a regular replenishment or via an emergency shipment. Hence, the
unit costs for the delivered parts are constant under any reasonable policy. Hence,
these costs are excluded in our model (they are also excluded in the cost factor cem).
For parts that are on stock at the end of a period, we have inventory holding costs
ch per part. The order of events in period t is summarized in Figure 4.2.

Notice that the moments at which failures of technical systems occur are indepen-
dent of each other and the spare parts provisioning. Given the lifetime distribution
that we have, the failures for all technical systems together occur according to a
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Figure 4.2: Order of events in period t.

Poisson process with a constant rate. That rate is denoted by λ (> 0). Correct
signals will be generated for a fraction q of these failures. That means that correct
signals (true positives) occur according to a Poisson process with rate qλ. Let λ̂

be the rate of the Poisson process with which signals arrive; i.e., λ̂ is the rate with
which true positives and false positives arrive. The rate with which true positives
arrive is pλ̂. Since we already know the true positives arrive at rate qλ, it follows
that λ̂ = qλ

p (we take this rate equal to ∞ when p = 0).

At the beginning of each period, we have to decide how many parts must be
replenished. The objective is to minimize the long-run average costs per period,
which consist of inventory holding costs and costs related to emergency shipments
(recall that the latter costs include system downtime costs). The minimal costs are
denoted by C̃(p, q, D). We include the precision p, sensitivity q, and demand lead
time D as parameters because later we are interested in how these minimal costs
behave as a function of p, q, and D.

We require the assumption of exponential lifetime distribution to provide analytical
and numerical insights. But we would like to add a remark on the lifetime
distribution because we assume that a signal can be generated before a failure.

Remark 4.1 The exponential lifetime distribution and a deterministic demand lead
time as assumed in this section can be seen as a variant of the so-called delay time
model in the literature. In a delay time model, we can consider a setting with a long
exponential time-to-defect and a short deterministic delay time until failure. When
the time-to-defect is too long (e.g., 2 years) compared to a short delay time (e.g., 3

days), the lifetime distribution looks like it is exponential. Hence, our assumptions
are almost the same as assuming a delay time model with a long exponential time-
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to-defect and a short deterministic delay time.

4.4. Reduction of the main problem

In this section, we reduce the main problem with a cost function having three
parameters (i.e. p, q and D) into a problem with a cost function that has two
parameters (i.e. p and r, where r = qD). During a period t, a signal that occurs
in the first 1 − D time units will result in a failure before the end of the period
(in case of a true positive) or it vanishes before the end of the period (in case of
a false positive). For the signals that occur in the last D time units, the failure
occurs in period t + 1. For a fraction q of these failures, a signal is generated, and
the required spare parts can be ordered at the beginning of period t + 1. Overall,
for all failures occurring in period t + 1, qD is the fraction for which signals are
generated in period t and 1− qD is the fraction for which no signals are generated
(see Figure 4.3).

Figure 4.3: Fraction of usable signals.

The above reasoning shows that the number of predicted failures in a given period
t + 1 is Poisson distributed with rate qDλ, and the number of unpredicted failures
in that period t + 1 is Poisson distributed with rate (1− qD)λ. This latter amount is
denoted by Xu. For the predicted failures, the corresponding number of signals in
the preceding period t is Poisson distributed with rate qDλ/p. These signals are all
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active at the beginning of period t + 1. We denote this Poisson distributed amount
by Xs.

Let us now consider the dynamics in period t + 1 and how the demand behaves in
that period. At the beginning of that period, we have a number of active signals
that is a realization of Xs. Let us denote this amount by a. For a given a, the
number of predicted failures in period t + 1 is Binomially distributed with a trials
and success probability p. This Binomially distributed amount is denoted by Xp(a).
The number of unpredicted failures in period t + 1 is given by Xu. Hence, the total
demand in period t + 1 equals Xp(a) + Xu. The parameters of the distributions of
Xp(a) and Xu only depend on q and D via their product qD. Because q and D
play no role in other aspects of our inventory model, this leads to the following
proposition.

Proposition 4.1 For each p ∈ [0, 1], the optimal policy and optimal costs C̃(p, q, D) only
depend on the product of the sensitivity q and demand lead time D.

This proposition implies that a sensitivity q = α ∈ [0, 1] and demand lead time
D = β ∈ [0, 1] lead to the same optimal policy and optimal costs as a sensitivity
q = β and demand lead time D = α. That is, it is equally important to have a high
value for the sensitivity q as having a high value for the demand lead time D. Based
on Proposition 4.1, the optimal costs function C̃(p, q, D) is simplified to the function
C(p, r) with r = qD (notice that r represents the fraction of failures for which usable
signals are generated).

4.5. MDP formulation

In this section, we provide the MDP formulation for the reduced problem presented
in Section 4.4. We need this MDP formulation because decisions in subsequent
periods depend on each other. This can be seen as follows. At the beginning of a
period, the stock will be increased to a certain amount, and with that amount the
demands Xu and Xp(a) have to be covered. The larger the number of signals, the
larger the level to which the inventory position will be increased, but if this level is
chosen relatively high and the number of realized demands from the active signals
is low, then a relatively large stock is left at the end of the period, and that may lead
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to a larger stock than desired in the next period. That means that a simple myopic
policy that minimizes the costs in the current period will not be optimal.

For the MDP, the state at the beginning of a period is described by (y, a), where y is
the on-hand stock and a is the number of active signals. The state space is given by
S = {(y, a) | y, a ∈ N0}. At the beginning of a period, based on the state (y, a), the
on-hand stock is increased by a replenishment order. We describe the action by the
level z ≥ y to which the inventory position is increased. The replenishment order
arrives immediately, and thus the on-hand stock becomes also immediately equal
to z. Given action z, the direct expected costs are

d(z, a) =
z

∑
x=0

(z− x)P{Xu + Xp(a) = x}ch +
∞

∑
x=z+1

(x− z)P{Xu + Xp(a) = x}cem.

If the total demand is x, then the on-hand stock at the beginning of the next period
is (z− x)+. The number of active signals â at the beginning of the next period is
a realization of Xs. This results in the following formulas for the n-period costs
Vn(y, a):

Vn+1(y, a) = min
z≥y

V̂n+1(z, a), (y, a) ∈ S , (4.1)

where

V̂n+1(z, a) = d(z, a) +
∞

∑̂
a=0

P{Xs = â}
(

P{Xu + Xp(a) ≥ z}Vn(0, â)

+
z−1

∑
x=0

P{Xu + Xp(a) = x}Vn(z− x, â)

)

and V0(y, a) = 0 for all (y, a) ∈ S . Appendix 4.B presents how the contributions
of the inventory holding costs and emergency shipment costs to Vn(y, a) are
calculated by using the MDP formulation. The optimal costs C(p, r) are obtained by
C(p, r) = limn→∞

Vn(0,0)
n . In order to see the effect of p and r on the optimal costs,

we compare C(p, r) with respect to the worst-case situation where p = 0 (i.e., we
have no predictions at all) and r = 0 (i.e., we have no useful signals and each failure
happens at the same moment as when the signal is generated). Optimal costs under
the worst-case situation provide an upper bound on the costs. For this purpose, we
define Ĉ(p, r) = C(p,r)

C(0,0) . Then, Ĉ(0, 0) = 1 and Ĉ(p, r) denotes how close we are to

the worst-case situation at each point (p, r). For example, Ĉ(p, r) = 0.8 means that
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we have 80% of the costs associated with the worst-case situation.

4.6. Special cases

In this section, we study two special cases of our model and provide analytical and
numerical results. For this purpose, we first define a base instance with parameters
λ = 0.2 (failures/demands per period), ch = 1 (Euro per part per period), and cem =

104 (Euro per emergency shipment). Please note that the emergency shipment cost
also includes the system downtime costs. The value for λ is a common value for
the demand rate at a local warehouse for one component. The value for ch can be
chosen w.l.o.g.; a value of 1 Euro per part per period would correspond to roughly
50 Euro per part per year and that could correspond to a part with a price of 250-
500 Euro. The value of cem includes the costs for executing an emergency shipment
and the costs for extra downtime of the involved system while it is waiting for
the delivery of the part. Normally an emergency shipment takes multiple hours
and then the downtime costs can be significant. Hence, 10,000 Euro as costs for an
emergency shipment is a quite common number in practice.

4.6.1 Special case 1: Perfect precision

Consider the model of Section 4.4 for the special case with precision p = 1. We
then know that every active signal at the beginning of a period will result in an
actual failure and it is optimal to take one part on stock per active signal. The
number of unpredicted demands Xu is Poisson distributed with rate (1 − r)λ.
The optimal amount of stock for the unpredicted failures is like the optimal base
stock level in a basic model with only unpredicted failures. This basic model is
described in Appendix 4.A. In this case, we have a basic model instance with a
Poisson distributed demand with rate (1− r)λ, and with cost parameters ch and
cem for inventory holding and emergency shipments. The optimal base stock level
is denoted by S∗((1− r)λ), and this denotes the optimal stock for the unpredicted
failures. For the predicted and unpredicted failures together, it is optimal to increase
the on-hand stock to z∗(y, a) = a + S∗((1− r)λ), when being in state (y, a) at the
beginning of a period. If this rule is followed in every period, then the on-hand
stock y at the beginning of a period will never exceed S∗((1− r)λ) and hence is
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never larger than a + S∗((1− r)λ). This leads to part (1) of the following lemma.
Parts (2) and (3) of this lemma follow directly from Lemma A1.

Lemma 4.1 For precision p = 1, it holds that:

1. It is optimal to increase the on-hand stock to z∗(y, a) = a + S∗((1 − r)λ) at the
beginning of each period when being in state (y, a). The base stock level S∗((1− r)λ)
is non-increasing as a function of r;

2. The base stock level S∗((1− r)λ) equals 0 if and only if (1− r)λ ≤ ln(1+(ch/cem));

3. If (1− r)λ ≤ ln(1 + (ch/cem)), then the optimal costs are equal to (1− r)λcem.

In the best case, r = 1. Then all failures are predicted and for each failure a part can
be ordered at the first order moment after a signal occurs. In that case, the optimal
costs are equal to zero and no parts have to be kept on stock for unpredicted failures.
These observations lead to the following corollary.

Corollary 4.1 For precision p = 1, it holds that: If in addition r = 1, then the optimal
costs are equal to 0 and S∗((1− r)λ) = 0.

Next, we investigate the behavior of the optimal costs and the average on-hand
inventory (at the end of a period) for the base instance. In Figure 4.5(a-b), we show
how Ĉ(1, r) and C(1, r) change as a function of r. Figure 4.5(a-b) suggests that costs
are non-increasing and piecewise convex functions as a function of r. We also see
an inverse Pareto principle: 70% perfectness for r leads to only a 35% reduction
in optimal costs. In Figure 4.5(c), we illustrate the share of emergency shipment
costs and inventory holding costs in C(1, r) as a function of r. We see that costs
of emergency shipments decrease as r increases until a certain point. This can be
explained by the average on-hand inventory which is depicted in Figure 4.4(d).
For low values of r, the costs of emergency shipments are relatively high. As r
increases, the costs of emergency shipments decrease until the point where the base
stock level S∗((1− r)λ) is decreased from 3 to 2. At that point, the average on-
hand inventory decreases with a large jump, and the costs of emergency shipments
increase. After that point, a similar behavior is obtained until a second jump point,
and that behavior is also obtained in the interval between that second jump point
and r = 1.
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Figure 4.4: Average on-hand inventory as a function of r for the base instance with p = 1.

In Figure 4.6, we provide the optimal order-up-to levels z∗(y, a) for the base instance
with two different values of r. The optimal order-up-to level z∗(y, a) is increasing
as a function of a for a given y, and the other way around. We also see that, in all
states, z∗(y, a) is smaller for r = 0.6 than for r = 0.5 (which is in line with Lemma
4.1(1)).
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Figure 4.5: Change in costs for the base instance with p = 1.
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(a) For p = 1 and r = 0.5.
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(b) For p = 1 and r = 0.6.

Figure 4.6: Optimal actions z∗(y, a) for the base instance.
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4.6.2 Special case 2: Perfect sensitivity and perfect timing of
predictions

In this special case, we assume both a perfect sensitivity and a perfect demand lead
time (i.e. r = 1). We again investigate the behavior of the optimal costs and the
average on-hand inventory for the base instance. In Figure 4.8(a-b), we observe that
Ĉ(p, 1) and C(p, 1) are non-increasing in p. We further note that the decreasing
behavior of the cost functions is different than what we observed in Figure 4.5(a-
b). Specifically, the optimal costs decrease fastly for low values of p, while they
decrease slowly for large values of p. Further, we now observe a Pareto principle:
30% perfectness for the precision p brings 70% reduction for the optimal costs.

We illustrate the share of emergency shipment costs and inventory holding costs
in C(p, 1) as a function of p in Figure 4.8(c) and the average on-hand inventory in
Figure 4.7. For very low values of p, the costs of emergency shipments are relatively
high. After that, they quickly decrease to zero. The inventory holding costs and the
average on-hand inventory are first non-decreasing for very low values of p and
they decrease on the rest of the interval [0,1].

p

A
ve

ra
ge

in
ve

nt
or

y

Figure 4.7: Average on-hand inventory as a function of p for the base instance with r = 1.

In Figure 4.9, we provide the optimal order-up-to levels z∗(y, a) with respect to on-
hand inventory levels y and the number of active signals a. Even though we have a
relatively low level of p (i.e. p = 0.5), it holds that z∗(y, a) = min{a, y} at all points
in this figure. For all active signals at the beginning of a period, a spare part is
taken on stock, which explains having zero emergency shipment costs in this case
(see Figure 4.8(c)).
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in C(p, 1) as a function of p.

Figure 4.8: Change in costs and inventory levels for the base instance with r = 1.
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Figure 4.9: Optimal actions z∗(y, a) for the base instance with p = 0.5 and r = 1.

4.7. Computational experiments

In this section, we provide the results of our computational experiments for varying
values of p and r. We also perform a sensitivity analysis on the parameters of the
base instance.

4.7.1 Computational experiments for the base instance for a gen-
eral precision and sensitivity

The goal of this section is to generate further insights on the effect of a general p and
r on Ĉ(p, r), the average on-hand inventory, and the average number of emergency
shipments (per period) for the base instance. In Table 4.1, we observe how Ĉ(p, r)
changes with respect to p and r for the base instance. For a constant r > 0, Ĉ(p, r)
decreases in p. We observe the Pareto principle in each row of Table 4.1. For
example, for r = 1, Ĉ(p, r) decreases 65% when p is only 20% of the perfect level.
This effect can be seen more clearly in Figure 4.10(a). We also see that the larger r,
the stronger Ĉ(p, r) decreases as a function of p. On the other hand, for a constant
p > 0, we see the inverse Pareto principle. For example, for p = 1, in order to
achieve an about 40% decrease in Ĉ(p, r) (i.e., Ĉ(p, r) equal to 59.2%), the value of
r should be 90%. This behavior can also be observed in Figure 4.10(b). Table 4.1
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and Figure 4.10 also show that a large value for r is needed to obtain a signifcant
reduction in optimal costs, while for p a moderate value suffices.

Table 4.1: Ĉ(p, r)(%) for the base instance.

r\p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.1 100.0 97.7 96.1 95.6 95.3 95.1 95.0 94.9 94.8 94.8 94.7
0.2 100.0 96.2 94.3 93.1 92.4 91.9 91.7 91.4 91.3 91.2 91.1
0.3 100.0 94.3 93.5 91.9 90.8 90.2 89.7 89.3 89.1 88.8 88.7
0.4 100.0 93.3 91.1 90.8 90.2 89.3 88.7 88.2 87.8 87.5 87.3
0.5 100.0 92.2 89.4 88.6 88.3 88.2 88.1 87.8 87.4 87.0 86.7
0.6 100.0 89.0 85.4 83.3 82.2 81.7 81.4 81.2 81.1 81.0 80.9
0.7 100.0 85.2 78.1 74.2 71.9 70.5 69.6 68.9 68.4 68.1 67.8
0.8 100.0 82.1 74.1 70.0 67.4 65.4 64.0 63.0 62.3 61.7 61.3
0.9 100.0 75.8 67.0 64.3 63.6 63.4 62.3 61.3 60.5 59.8 59.2
1 100.0 56.3 34.9 26.9 21.6 17.4 13.6 10.0 6.6 3.2 0.0

In Table 4.2, we show how the average on-hand inventory changes as a function of
p and r. In the worst case scenario, the average on-hand inventory is 2.80 units. It is
a non-monotonic function of p for a fixed r and a non-monotonic function of r for
a fixed p. In general, the average on-hand inventory is non-increasing as a function
of p and r.

Table 4.2: Average on-hand inventory for the base instance.

r\p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80

0.1 2.80 2.98 2.89 2.86 2.85 2.84 2.83 2.83 2.83 2.82 2.82

0.2 2.80 2.86 2.98 2.92 2.90 2.88 2.87 2.86 2.85 2.84 2.84

0.3 2.80 2.92 2.84 2.98 2.94 2.92 2.90 2.89 2.88 2.87 2.86

0.4 2.80 2.99 2.86 2.83 2.98 2.95 2.93 2.91 2.90 2.89 2.88

0.5 2.80 2.88 2.89 2.85 2.83 2.82 2.82 2.93 2.92 2.91 2.90

0.6 2.80 2.61 2.38 2.20 2.11 2.05 2.01 1.98 1.96 1.95 1.93

0.7 2.80 2.72 2.35 2.26 2.16 2.09 2.04 2.01 1.99 1.97 1.95

0.8 2.80 2.36 2.40 2.24 2.20 2.13 2.08 2.04 2.01 1.99 1.97

0.9 2.80 2.45 2.10 1.96 1.90 1.87 2.07 2.04 2.04 2.01 2.00

1 2.80 1.81 1.18 0.91 0.73 0.59 0.46 0.34 0.22 0.11 0.00

In Table 4.3, we show how the average number of emergency shipments behaves
as a function of p and r. In the worst case, the average number of emergency
shipments is 0.59× 10−4. Due to the relatively high cost of an emergency shipment,
the average number of emergency shipments is in general low under the optimal
policy. Similar to the average on-hand inventory, the average number of emergency
shipments is a non-monotonic function of p and r. We see that the average number
of emergency shipments can be less than or equal to 0.1× 10−4 for p ≥ 0.1 with
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p
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)

(a) Change in Ĉ(p, r) as a function of p for varying values of
r.

r

Ĉ
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,r
)

(b) Change in Ĉ(p, r) as a function of r for varying values of
p.

Figure 4.10: Combined effect of p and r on Ĉ(p, r).

r = 1 and for p ≥ 0.6 with r ≥ 0.8. Again, in Table 4.3, we see that focusing on
having large values of r is more crucial than focusing on having large values of p
for a low average number of emergency shipments.

Finally, in Figure 4.11, we show the values of the optimal order-up-to level z∗(y, a) as
a function of the state variables a and y for p = 0.8 and r = 0.8. The value of z∗(y, a)
is at least 2 in all states (y, a). In fact, we observe that z∗(y, a) = min{2 + a, y} at all
points in this figure. That means that in all states one spare part is taken on stock
for each active signal and that a stock of (at least) 2 is kept for the unpredicted
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failures.

Table 4.3: Average number of emergency shipments (×10−4) for the base instance.

r\p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59

0.1 0.59 0.33 0.37 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39

0.2 0.59 0.40 0.22 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25

0.3 0.59 0.28 0.33 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15

0.4 0.59 0.17 0.23 0.24 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0.5 0.59 0.24 0.14 0.15 0.16 0.17 0.17 0.04 0.05 0.04 0.04

0.6 0.59 0.40 0.52 0.63 0.68 0.72 0.75 0.77 0.79 0.80 0.81

0.7 0.59 0.18 0.30 0.26 0.28 0.30 0.31 0.33 0.33 0.34 0.34

0.8 0.59 0.42 0.11 0.14 0.09 0.09 0.09 0.10 0.10 0.10 0.10

0.9 0.59 0.12 0.17 0.22 0.25 0.28 0.04 0.04 0.01 0.01 0.01

1 0.59 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

y

a

Figure 4.11: Optimal action z∗(y, a) for the base instance, where p = 0.8 and r = 0.8.

4.7.2 Sensitivity analysis

In this section, we perform a sensitivity analysis for the parameters λ and cem by
considering λ ∈ {0.1, 0.2, 0.5} and cem ∈ {102, 104, 106}. In Table 4.4, we show how
Ĉ(p, r) changes for varying values of λ and cem as a function of r and p. Similar to
our earlier observations for the base instance, we see that the Pareto principle holds
for an optimal costs reduction in terms of p and an inverse Pareto principle holds
in terms of r for different values of λ and cem. Observations regarding the Pareto
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and inverse Pareto principles are insensitive to the failure rate and the cost of an
emergency shipment.

Table 4.4: Ĉ(p, r) (%) for varying values of λ and cem as a function of r and p.

λ = 0.1 and cem = 102 λ = 0.2 and cem = 102 λ = 0.5 and cem = 102

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.25 100.0 91.7 89.2 88.3 87.8 100.0 99.6 99.2 99.1 99.1 100.0 92.5 89.8 88.7 88.1
0.5 100.0 88.7 83.3 81.3 80.3 100.0 82.4 77.5 75.6 74.7 100.0 86.3 81.2 77.5 75.2
0.75 100.0 81.1 80.0 78.6 77.1 100.0 76.0 67.6 63.7 61.6 100.0 79.4 69.1 65.5 64.1

1 100.0 58.8 35.9 17.1 0.0 100.0 53.0 30.7 14.6 0.0 100.0 61.5 33.7 15.8 0.0

λ = 0.1 and cem = 104 λ = 0.2 and cem = 104 λ = 0.5 and cem = 104

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.25 100.0 89.5 88.8 88.7 88.6 100.0 93.0 90.9 90.1 89.7 100.0 92.2 89.8 88.8 88.3
0.5 100.0 77.3 74.7 73.8 73.3 100.0 88.9 88.2 87.6 86.7 100.0 86.3 83.9 83.5 82.1
0.75 100.0 72.9 70.6 69.0 68.2 100.0 73.6 67.3 65.0 63.8 100.0 76.1 70.2 66.4 64.0

1 100.0 27.8 17.0 8.1 0.0 100.0 30.3 17.4 8.3 0.0 100.0 38.3 19.5 9.1 0.0

λ = 0.1 and cem = 106 λ = 0.2 and cem = 106 λ = 0.5 and cem = 106

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.25 100.0 99.3 99.3 99.3 99.1 100.0 92.1 91.1 90.8 90.7 100.0 91.0 89.6 88.6 88.1
0.5 100.0 83.3 81.4 80.8 80.5 100.0 86.3 83.4 82.2 81.6 100.0 83.3 79.5 77.6 76.7
0.75 100.0 78.0 76.9 75.8 75.2 100.0 72.6 68.0 66.4 65.7 100.0 73.2 67.1 64.1 62.6

1 100.0 20.6 12.5 6.0 0.0 100.0 21.0 12.1 5.7 0.0 100.0 27.2 13.8 6.5 0.0

In Table 4.5, we do a sensitivity analysis for C(p, r) for varying values of λ and cem.
We see that C(p, r) is non-decreasing both in the failure rate and in the cost per
emergency shipment for any (p, r) pair. Similarly, for the worst case (i.e., p = 0 or
r = 0), the average on-hand inventory is non-decreasing both in λ and in cem (see
Table 4.6). The average number of emergency shipments in the worst-case scenario
is non-monotonic in λ and cem. However, we cannot directly observe a monotonic
behavior for the average on-hand inventory (see Table 4.6) and the average number
of emergency shipments (see Table 4.7) for varying values of λ and cem.
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Table 4.5: C(p, r) for varying values of λ and cem as a function of r and p.

λ = 0.1 and cem = 102 λ = 0.2 and cem = 102 λ = 0.5 and cem = 102

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 1.39 1.39 1.39 1.39 1.39 1.92 1.92 1.92 1.92 1.92 2.70 2.70 2.70 2.70 2.70

0.25 1.39 1.27 1.24 1.23 1.22 1.92 1.91 1.91 1.91 1.91 2.70 2.49 2.42 2.39 2.38

0.5 1.39 1.23 1.16 1.13 1.11 1.92 1.58 1.49 1.45 1.44 2.70 2.33 2.19 2.09 2.03

0.75 1.39 1.13 1.11 1.09 1.07 1.92 1.46 1.30 1.23 1.18 2.70 2.14 1.86 1.77 1.73

1 1.39 0.82 0.50 0.24 0.00 1.92 1.02 0.59 0.28 0.00 2.70 1.66 0.91 0.42 0.00

λ = 0.1 and cem = 104 λ = 0.2 and cem = 104 λ = 0.5 and cem = 104

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 2.94 2.94 2.94 2.94 2.94 3.39 3.39 3.39 3.39 3.39 4.65 4.65 4.65 4.65 4.65

0.25 2.94 2.63 2.61 2.61 2.60 3.39 3.15 3.08 3.06 3.04 4.65 4.29 4.18 4.13 4.11

0.5 2.94 2.27 2.20 2.17 2.16 3.39 3.02 2.99 2.97 2.94 4.65 4.02 3.90 3.89 3.82

0.75 2.94 2.14 2.07 2.03 2.00 3.39 2.50 2.28 2.20 2.17 4.65 3.54 3.26 3.09 2.98

1 2.94 0.82 0.50 0.24 0.00 3.39 1.03 0.59 0.28 0.00 4.65 1.78 0.91 0.42 0.00

λ = 0.1 and cem = 106 λ = 0.2 and cem = 106 λ = 0.5 and cem = 106

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 3.98 3.98 3.98 3.98 3.98 4.88 4.88 4.88 4.88 4.88 6.57 6.57 6.57 6.57 6.57

0.25 3.98 3.95 3.95 3.95 3.94 4.88 4.49 4.45 4.43 4.42 6.57 5.98 5.88 5.82 5.78

0.5 3.98 3.32 3.24 3.22 3.20 4.88 4.21 4.07 4.01 3.98 6.57 5.47 5.22 5.09 5.03

0.75 3.98 3.10 3.06 3.02 2.99 4.88 3.54 3.32 3.24 3.20 6.57 4.80 4.40 4.21 4.11

1 3.98 0.82 0.50 0.24 0.00 4.88 1.03 0.59 0.28 0.00 6.57 1.78 0.91 0.42 0.00

Table 4.6: Average on-hand inventory for varying values of λ and cem as a function of r
and p.

λ = 0.1 and cem = 102 λ = 0.2 and cem = 102 λ = 0.5 and cem = 102

r \p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 0.90 0.90 0.90 0.90 0.90 1.80 1.80 1.80 1.80 1.80 2.50 2.50 2.50 2.50 2.50

0.25 0.90 1.02 0.98 0.96 0.95 1.80 1.82 1.81 1.81 1.80 2.50 1.94 1.79 1.71 1.67

0.5 0.90 1.12 1.04 1.01 1.00 1.80 1.21 1.09 1.02 0.99 2.50 1.82 1.95 1.88 1.81

0.75 0.90 0.96 0.92 1.06 1.04 1.80 1.35 1.16 1.12 1.08 2.50 1.65 1.45 1.24 1.13

1 0.90 0.81 0.50 0.24 0.00 1.80 1.02 0.59 0.28 0.00 2.50 1.61 0.91 0.42 0.00

λ = 0.1 and cem = 104 λ = 0.2 and cem = 104 λ = 0.5 and cem = 104

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 2.90 2.90 2.90 2.90 2.90 2.80 2.80 2.80 2.80 2.80 4.50 4.50 4.50 4.50 4.50

0.25 2.90 2.00 1.95 1.94 1.93 2.80 2.98 2.90 2.87 2.85 4.50 3.90 3.75 3.67 3.63

0.5 2.90 2.08 2.00 1.97 1.95 2.80 2.86 2.82 2.93 2.90 4.50 3.78 3.61 3.79 3.75

0.75 2.90 1.94 2.04 2.00 1.98 2.80 2.28 2.11 2.01 1.96 4.50 3.16 3.08 3.01 2.89

1 2.90 0.82 0.50 0.24 0.00 2.80 1.03 0.59 0.28 0.00 4.50 1.78 0.91 0.42 0.00

λ = 0.1 and cem = 106 λ = 0.2 and cem = 106 λ = 0.5 and cem = 106

r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0 3.90 3.90 3.90 3.90 3.90 4.80 4.80 4.80 4.80 4.80 6.50 6.50 6.50 6.50 6.50

0.25 3.90 3.91 3.90 3.90 3.93 4.80 4.00 3.90 3.87 3.85 6.50 5.61 5.72 5.67 5.63

0.5 3.90 3.10 3.00 2.97 2.95 4.80 4.13 4.00 3.93 3.90 6.50 5.21 4.98 4.83 4.75

0.75 3.90 2.94 3.04 3.00 2.98 4.80 3.37 3.10 3.00 2.95 6.50 4.53 4.24 4.00 3.88

1 3.90 0.82 0.50 0.24 0.00 4.80 1.03 0.59 0.28 0.00 6.50 1.78 0.91 0.42 0.00
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Table 4.7: Average number of emergency shipments for varying values of λ and cem as a
function of r and p.

λ = 0.1 and cem = 102 (×10−2) λ = 0.2 and cem = 102 (×10−2) λ = 0.5 and cem = 102 (×10−2)
r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.48 0.48 0.48 0.48 0.48 0.12 0.12 0.12 0.12 0.12 0.19 0.19 0.19 0.19 0.19

0.25 0.48 0.25 0.26 0.27 0.27 0.12 0.09 0.10 0.10 0.10 0.19 0.55 0.63 0.68 0.71

0.5 0.48 0.11 0.12 0.12 0.12 0.12 0.37 0.40 0.43 0.45 0.19 0.50 0.24 0.21 0.22

0.75 0.48 0.17 0.19 0.03 0.04 0.12 0.11 0.14 0.11 0.11 0.19 0.49 0.42 0.53 0.60

1 0.48 0.01 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.19 0.04 0.00 0.00 0.00

λ = 0.1 and cem = 104 (×10−4) λ = 0.2 and cem = 104 (×10−4) λ = 0.5 and cem = 104 (×10−4)
r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.04 0.04 0.04 0.04 0.04 0.59 0.59 0.59 0.59 0.59 0.15 0.15 0.15 0.15 0.15

0.25 0.04 0.63 0.66 0.67 0.68 0.59 0.17 0.18 0.19 0.19 0.15 0.39 0.43 0.46 0.48

0.5 0.04 0.19 0.19 0.20 0.20 0.59 0.15 0.17 0.04 0.04 0.15 0.23 0.29 0.10 0.07

0.75 0.04 0.20 0.03 0.03 0.03 0.59 0.22 0.17 0.19 0.20 0.15 0.38 0.18 0.08 0.09

1 0.04 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00

λ = 0.1 and cem = 106 (×10−6) λ = 0.2 and cem = 106 (×10−6) λ = 0.5 and cem = 106 (×10−6)
r\p 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07

0.25 0.08 0.05 0.05 0.05 0.02 0.08 0.50 0.55 0.56 0.57 0.07 0.37 0.16 0.15 0.16

0.5 0.08 0.22 0.24 0.25 0.25 0.08 0.07 0.07 0.08 0.08 0.07 0.26 0.24 0.26 0.28

0.75 0.08 0.16 0.02 0.02 0.02 0.08 0.17 0.22 0.24 0.25 0.07 0.28 0.17 0.21 0.23

1 0.08 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
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4.8. Conclusion

We have studied the spare parts inventory problem of a single critical component
that is kept on stock in a single local warehouse. For upcoming failures of the
component in the supported technical systems, signals are generated. For these
signals, we distinguish the factors precision, sensitivity, and demand lead time,
and we investigated how the average inventory and costs for inventory holding,
emergency shipments, and system downtime depend on these three factors under
optimal inventory control of the spare parts stock. This optimal control is obtained
via a Markov decision process. Our investigation gives directions for the trade-
off between precision, sensitivity, and demand lead time for developers of these
signals. We found that optimal inventory control and optimal costs only depend
on the sensitivity and the demand lead time via their product. This implies that,
when developing signals, getting a high value for sensitivity is equally important as
getting a high value for the demand lead time. Further, we found that both factors
need to have a high value in order to get a significant reduction in optimal costs and
average inventory in comparison to the situation without signals. For precision, a
significant cost reduction is obtained for high values but also for moderate values.
So, it is much better to develop signals with a moderate value for precision and
high values for sensitivity and demand lead time than the other way around.

4.A. Basic model for unpredicted demand

In this section, we consider a basic model for unpredicted demand that we will
use as a building block for the analysis of the general model of Section 4.3. For
this basic model, everything is the same as for the model of Section 4.3, but we
assume that no signals are generated (i.e., q = 0 can be assumed) and that failures
occur according to a Poisson process with rate µ. We introduce a new parameter
for this rate because we will use this basic model for different demand rates. For
the emergency shipment costs and the inventory holding costs, we still use the cost
parameters cem and ch.

For this basic model, the demand per period is denoted by X, which is Poisson
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distributed with rate µ. Hence,

P{X = x} = µx

x!
e−µ, x ∈N0.

Consider the replenishment decision at the beginning of period 0. The initial
inventory level is 0. Suppose that the on-hand inventory is increased to S (by
ordering S units), then the expected cost in period 0 is equal to

G̃(µ, S) =
S

∑
x=0

(S− x)P{X = x}ch +
∞

∑
x=S+1

(x− S)P{X = x}cem.

This function G̃(µ, S) is similar to the cost function for a newsvendor problem. It is
convex as a function of S, and is minimized at the lowest S for which

P{X ≤ S} ≥ cem

cem + ch
.

This optimal S is denoted by S∗(µ). Let the corresponding minimal costs for period
0 be denoted by G(µ) = G̃(µ, S∗(µ)).

Let us now look at the whole time horizon. It is not possible to get strictly lower
expected costs per period than G̃(µ, S∗(µ)). By following a base stock policy with
base stock level S∗(µ) (i.e., by increasing the on-hand inventory at the beginning of
each period to S∗(µ)), we get expected costs G̃(µ, S∗(µ)) in each period, and thus the
resulting average costs per period are also equal to G̃(µ, S∗(µ)). That implies that
the base stock policy with base stock level S∗(µ) is optimal, and the corresponding
minimal costs are equal to G(µ) = G̃(µ, S∗(µ)). The following results hold for S∗(µ)
and G(µ).

Lemma A1 1. S∗(µ) is non-decreasing as a function of µ.

2. S∗(µ) = 0 if and only if µ ≤ ln(1 + (ch/cem)).

3. If µ ≤ ln(1 + (ch/cem)), then G(µ) = µcem.

First, we prove Lemma A1(a). A rate µ leads to the optimal inventory level S∗(µ).
Let us assume another rate µ + δ, where δ > 0 is a small increment. Then
Xµ+δ stochastically dominates Xµ, where they respectively represent the random
variables of a Poisson distribution with rate µ + δ and µ. This results in S∗(µ)
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being the smallest value for which P{Xµ ≤ S∗(µ)} ≥ cem
cem+ch

and S∗(µ + δ) being
the smallest value for which P{Xµ+δ ≤ S∗(µ + δ)} ≥ cem

cem+ch
. Because Xµ+δ

stochastically dominates Xµ, it holds that P{Xµ ≤ S} ≥ P{Xµ+δ ≤ S} for all
S. Therefore P{Xµ ≤ S∗(µ + δ)} ≥ P{Xµ+δ ≤ S∗(µ + δ)} ≥ cem

cem+ch
and hence

S∗(µ) ≤ S∗(µ + δ). This proves that S∗(µ) is non-decreasing as a function of µ.

Next, we prove Lemma A1(b). It holds that S∗(µ) = 0 if and only if

P{X ≤ 0} ≥ cem

cem + ch
⇔ e−µ ≥ cem

cem + ch

⇔ −µln
(

cem

cem + ch

)
⇔ µ ≤ ln

(
1 +

ch
cem

)
.

Lemma A1(c) follows directly from the observation that all demands are satisfied
by an emergency shipment if no parts are kept on stock. 2

4.B. Value iteration algorithm

In this section, we show how the inventory holding and emergency shipment
costs under the optimal policy are calculated by solving the MDP formulation.
Algorithm 3 provides a pseudocode of our algorithm. We let dh(z, a) = ∑z

x=0(z−
x)P(Xu + Xp(a) = x)ch denotes the direct expected costs of inventory holding and
dem(z, a) = ∑∞

x=z+1(z− x)P(Xu + Xp(a) = x)cem denotes the direct expected costs
of emergency shipments. The direct expected costs d(z, a) are equal to the sum
of the direct expected costs of inventory holding and the direct expected costs of
emergency shipments, i.e., d(z, a) = dh(z, a)+ dem(z, a). By splitting direct expected
costs into two, we can calculate the costs contribution of each into the total costs
separately. For this purpose, we introduce V̂h

n+1(z, a) and V̂em
n+1(z, a) denoting the

so-called value functions for inventory holding and emergency shipment costs,
respectively. We calculate these function by a value iteration algorithm. At each
iteration, we calculate V̂h

n+1(z, a) and V̂em
n+1(z, a) independently, then we sum them

up to update the value of V̂n+1(z, a) for all (z, a), and then we calculate the optimal
value of Vn+1(y, a) for all (y, a). The value iteration algorithm stops when the long-
run average cost per period (i.e., value of Vn(y, a)/n) converges to a constant at
some sufficiently large value of n. The convergence is checked by comparing the
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deviation of the average cost per-period in two subsequent steps of the algorithm
to a small number ϵ (=0.01).

Finally, we define the costs of inventory holding and emergency shipments as

Ch(p, r) = lim
n→∞

Vh
n (0, 0)

n

and
Cem(p, r) = lim

n→∞

Vem
n (0, 0)

n
,

respectively. If we divide Ch(p, r) by ch, we obtain the average on-hand inventory
level for a given (p, r). Similarly, if we divide Cem(p, r) by cem, we obtain the average
number of emergency shipments per period.
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Algorithm 3 Value Iteration Algorithm

Initialize V0(y, a)← 0, Vh
0 (y, a)← 0, Vem

0 (y, a)← 0∀(y, a) ∈ S, n = 0, Stop=False

while Stop=False do

for ∀(y, a) ∈ S do

for ∀z ≥ y do

V̂h
n+1(z, a) = dh(z, a) +

∞

∑̂
a=0

P{Xs = â}
(

P{Xu + Xp(a) ≥ z}Vh
n (0, â)

+
z−1

∑
x=0

P{Xu + Xp(a) = x}Vh
n (z− x, â)

)

V̂em
n+1(z, a) = dem(z, a) +

∞

∑̂
a=0

P{Xs = â}
(

P{Xu + Xp(a) ≥ z}Vem
n (0, â)

+
z−1

∑
x=0

P{Xu + Xp(a) = x}Vem
n (z− x, â)

)
V̂n+1(z, a) = V̂h

n+1(z, a) + V̂em
n+1(z, a)

end for

Vn+1(y, a)← minz≥y{V̂(z, a)}

z∗(y, a)← argminz≥y{V̂(z, a)}

Vh
n+1(y, a) = V̂h

n+1(z
∗(y, a), a)

Vem
n+1(y, a) = V̂em

n+1(z
∗(y, a), a)

end for

if n > 0 and max∀(y,a)∈S{|
Vn+1(y,a)

n+1 − Vn(y,a)
n |} ≤ ϵ then

Stop=True

n = n + 1

end while



5
Selecting the set of spare parts for

corrective maintenance

5.1. Introduction

In this chapter, we consider a spare part selection problem under imperfect advance
demand information (ADI) and develop a decision-support model for the service
control tower (SCT) of the service provider. The SCT is responsible for determining
the set of spare parts that will be sent to the customer for corrective maintenance.
The problem setting is as follows. Upon system failure, a customer reports it to the
service provider and a maintenance case is opened by the service provider. These
systems are installed at geographically dispersed locations. A service engineer
conducts a diagnostic visit to a customer’s location when a failure is observed in
the system and reported to the service provider. At this visit, the engineer executes
a maintenance process to bring the system into a fully functioning state. During the
maintenance process, a set of spare parts may be required to repair the system. It is
also possible that the system can be fixed without any part replacement. Spare parts
are stocked in a central warehouse. Simultaneously with the diagnostic visit, a set of
spare parts can be sent to the customer’s location directly from this warehouse. The
engineer diagnoses which spare parts are required to fix the system with certainty
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during a visit. If the system is fixed during the diagnostic visit, then the case is
closed. If there is at least one spare part needed to resolve the maintenance case
and the required part(s) are not sent during the diagnostic visit, a second engineer
visit is scheduled. The required spare parts are sent to the customer’s location from
the central warehouse. On the other hand, if some shipped parts are not needed
during the diagnostic visit, they are shipped back to the central warehouse. In this
research, we focus on the problem of selecting the set of spare parts that will be
shipped during the diagnostic visit.

If a set of spare parts is needed to resolve a failure, we can consider that there
is a demand for this set of spare parts. Therefore, we consider a setting with
imperfect ADI, where a probability estimate is available for each possible set of
parts. In this setting, ADI is obtained as follows. The service provider stores
information about successfully resolved maintenance cases and the demanded
stock-keeping units (SKU) for resolving earlier failures. When there is a system
failure, the customer shares information by specifying a failure code, such as a
“high cryocompressor temperature” warning that the customer might get from
a cooling system of purchased equipment. SKUs used in resolved maintenance
cases that have similar failure codes could serve as a basis for predicting the spare
parts that might be required for the resolution of a new maintenance case. We
assume a predictive algorithm is available that generates a list of sets of spare parts
and corresponding probabilities that a set of spare parts may be demanded. This
algorithm is based on the failure codes and the spare part usage in the historically
resolved maintenance cases.

Grishina et al. (2020) introduce a spare part recommendation framework by using
natural text similarity metrics. Their framework has two steps: (i) The service
provider enters the failure code as a query. Similar maintenance cases are retrieved
from the database of resolved cases and a text similarity metric finds matching
words between the failure code and cases in the database. A list of parts that are
demanded in previous cases is generated with their usage frequency. (ii) Parts
mentioned in these reports are ranked based on the frequency of part use. The
service provider selects the set of spare parts that will be shipped to the customer
from this ranked list.

In this study, we extend the spare part recommendation problem introduced by
Grishina et al. (2020) by proposing an optimal selection model for the set of spare



5.1 Introduction 145

parts. Our model uses the operational costs (i.e., engineer’s visit cost, spare part
shipment costs, and send-back costs) and the corresponding probability for each
set of spare parts that may be required. Our study does not aim to develop an
algorithm that predicts the probability distribution on sets of required spare parts
for corrective maintenance. The aim of this study is to find the set of spare parts
that minimizes the total expected cost of a maintenance case. For this purpose, we
formulate an integer linear programming model (ILP).

We compare the optimal policy against the two benchmark heuristics that have
been used in practice by a high-tech capital goods service provider. We define
the heuristic policies as follows. (Policy 1) During the diagnostic visit to the failed
system, no parts are sent. The maintenance process starts with a diagnostic visit by
an engineer to the customer site to determine which parts are needed for corrective
maintenance. Then the required set of parts is brought on-site after which the failed
system is repaired with a second engineer visit. (Policy 2) If a service provider fully
trusts the part recommendation generated based solely on the frequency of part use,
a fixed number of the top recommended parts can be shipped to the customer’s site
simultaneously with the diagnostic visit. The fixed number of top recommended
parts can be optimized and if the value of this is equal to zero, then this policy is
equivalent to Policy 1. These heuristics are easily implementable for practitioners
however deciding on the fixed number of parts or choosing between Policy 1 and
Policy 2 is still a challenge in terms of determining the least costly policy. The main
motivation behind proposing an optimal policy for this problem is to overcome this
challenge.

The main contributions of this chapter are as follows. (1) We formulate a new model
for the so-called spare parts recommendation problem. (2) We derive the optimal
policy structure for problem instances with one or two SKUs and we obtain some
analytical results on the structure of the optimal policy structure for the problem
instances with a general number of SKUs. (3) We compare the optimal policy
against the two heuristic policies.

The remainder of the chapter is organized as follows. We discuss the studies in
the literature that are relevant to our work in Section 5.2. We provide a detailed
problem description in Section 5.3. Section 5.4 presents the ILP formulation. In
Section 5.5 and Section 5.6, we present the results for structural analysis and
numerical analysis, respectively. Section 5.7 concludes the chapter.
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5.2. Literature review

The spare part recommendation problem described in Section 5.1 aims to bring
the right parts on-site to avoid a second visit and minimize operational costs. Our
spare part recommendation problem to determine the optimal kit is related to the
so-called repair kit problem (RKP) in the literature (Teunter, 2006). In this section, we
position our chapter in the RKP literature and we provide Table 5.1 as an overview
of RKP literature and our work.

In RKP, the main trade-off is between the cost of holding parts in the kit and service
level costs. There are two kinds of models in the literature to model this trade-off:
cost models (introduced by Smith et al. (1980)) and service models (introduced by
Graves (1982)). In cost models, the holding cost is minimized, where not completing
a job during the first time is penalized with a cost (see Smith et al. (1980); Mamer
and Smith (1982); Mamer and Shogan (1987); Teunter (2006); Bijvank et al. (2010);
Saccani et al. (2017); Karabağ et al. (2020); Neves-Moreira et al. (2021)). In service
models, the holding cost is minimized subject to a service level constraint (see
Graves (1982); Mamer and Shogan (1987); Heeremans and Gelders (1995); Teunter
(2006); Bijvank et al. (2010); Prak et al. (2017); Rippe and Kiesmüller (2022)). The first
papers in the literature assume that a repair kit is used for a single job (Smith et al.,
1980; Graves, 1982; Mamer and Smith, 1982; Mamer and Shogan, 1987). Heeremans
and Gelders (1995) are the first to relax the single job assumption by introducing
a multi-job model. In a multi-job model, multiple on-site visits can be done with
the same kit (see, Heeremans and Gelders (1995); Teunter (2006); Bijvank et al.
(2010); Saccani et al. (2017); Prak et al. (2017); Neves-Moreira et al. (2021); Rippe
and Kiesmüller (2022)).

The first papers assume that at most one unit from each stock-keeping unit (SKU)
is needed during a single job (Smith et al., 1980; Graves, 1982; Heeremans and
Gelders, 1995). Mamer and Smith (1982) relaxed this assumption by introducing
a multi-unit model. Mamer and Smith (1982) are also the first to relax the
assumption of independency between the failure behavior of different SKUs by
defining representative job types. When the failure behavior of SKUs is dependent,
demand for these SKUs during a corrective maintenance visit is also dependent.
Therefore, we refer to this as demand dependency. Similar to Mamer and Shogan
(1987); Teunter (2006); Karabağ et al. (2020), we also assume demand dependency
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between SKUs. Different from Teunter (2006); Mamer and Smith (1982); Mamer
and Shogan (1987); Karabağ et al. (2020), we do not define specific job types but
consider the probability for each possible part combination that can appear for a
maintenance case. We refer to this as a full dependency.

Our problem is an extension of the RKP. In our problem, the maintenance sites
are located at geographically dispersed locations. Field engineers travel on-site
without any parts, and parts are sent per job from a central warehouse. The service
control tower decides which parts will be sent to the customer according to ADI
provided to the service control tower and historical data. The list of SKUs and
the probabilities of SKUs and the set of SKUs for resolving a maintenance case is
specific to that case based on the provided ADI. Similar to our problem, Karabağ
et al. (2020); Rippe and Kiesmüller (2022, 2023) study the RKP with ADI. The source
of ADI is the sensors that monitor the condition of a subset of parts, in the research
of Karabağ et al. (2020); Rippe and Kiesmüller (2022). The error code provided by
the customer regarding the failure is the source of ADI in the paper of Rippe and
Kiesmüller (2023). In their modeling, Karabağ et al. (2020); Rippe and Kiesmüller
(2022, 2023) consider ADI for the demand probability distribution per SKU. They
do not have an explicit assumption of demand dependency between SKUs. We
consider ADI for the demand probability per set of SKUs. Additionally, our model
takes retrieval cost, sending back cost of SKUs, and fixed delivery cost into account
in the objective function. Similar to our objective function, Karabağ et al. (2020)
include an emergency order cost (fixed transportation cost), and return (sending
back) cost. Additionally, the fixed ordering (retrieval) cost per item is considered
by Prak et al. (2017), fixed transportation cost is considered by Saccani et al. (2017),
and sending back cost is considered by Rippe and Kiesmüller (2023).

5.3. Problem description

We consider a maintenance service provider who is fully responsible for addressing
the failures encountered in the systems operated by its customers. Suppose that a
customer reports a system failure to the service provider on day t. At this moment,
the service provider creates a corrective-maintenance case in its case-management
system and enters a text query into the system to determine the spare parts that
have been used in similar maintenance cases. Suppose that in total N different
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Table 5.1: Literature review.
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1. Number of jobs per tour
Single X X X X X X X
Multiple X X X X X X X X
2. Number of units needed per SKU per job
Single X X X X X X
Multiple X X X X X X X X
3. Failure dependency between different SKUs
No dependency X X X X X X X X X
Dependency via job types X X X X
Full dependency X
4. Model characteristic
Service model X X X X X X X X
Cost model X X X X X X X X X X
5. Additional features
Fixed transportation cost X X X
Sending back cost X X X
Sending missing items cost X
6. Advance demand information per failure
Probability per SKU X X X
Probability per set of SKUs X

SKUs are demanded in matching cases. This means that the system failure can be
caused by the (possibly joint) failure of N different SKUs, and the replacement of
up to N SKUs may be needed to fix the system failure. We let I = {1, 2, . . . , N}
denote the set of SKUs. We assume that at most one part is needed for each
SKU to successfully complete the corrective maintenance of the system. The main
challenge in practice is not knowing upfront which SKUs require replacement for
the corrective maintenance of the system. The SKUs that require replacement can be
certainly known only upon having a physical examination of the system by a service
engineer. On the other hand, by considering the historical cases of system failures,
the service provider can establish a probability distribution on the set of SKUs
needed for corrective replacement. In the most general case, notice that there are 2N

possible sets of SKUs that require replacement during the corrective maintenance.
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Let M = {0, . . . , 2N − 1} denote the collection of indices for these sets. Specifically,
we index each possible set with m ∈ M and sm = (s1m, ..., sim, . . . , sNm) denotes the
binary vector indicating the SKUs needed in set m, where sim = 1 denotes SKU i
is in set m and sim = 0 denotes otherwise. The indices are ordered such that they
represent a situation where the binary vectors sm are ordered lexicographically. If
N = 2, for example, then s0 = (0, 0), s1 = (0, 1), s2 = (1, 0), and s3 = (1, 1).
We let p̂m denote the probability that the set of SKUs that require replacement
during corrective maintenance is equal to set m. By using these probabilities, it is
possible to calculate the probability of SKU i being needed during the corrective
maintenance. We denote this probability with pi, and it holds that

pi = ∑
m∈M

sim p̂m, ∀i ∈ I. (5.1)

Once the corrective-maintenance case is created and the probability distribution
{ p̂m}m∈M, is established, the corrective maintenance process starts. In Figure 5.1,
we provide a diagram that summarizes this corrective maintenance process. The
execution of a corrective maintenance process by the service provider has two
ingredients: the on-site visit of the service engineer and the shipment of spare parts
to the system. The first on-site visit, referred to as the diagnostic visit, takes place
in any case, meaning that an engineer must visit the system upon the receipt of a
failure report from the customer. The cost of the engineer going to the site is fixed
and denoted by D (e) (> 0). In parallel, a set of SKUs is identified and their spare
parts are sent to the site (note that this can be an empty set, meaning that no spare
part is sent to the customer). The selected spare parts are picked from the OEM
warehouse. Retrieving one spare part for SKU i from the warehouse and including
it in the shipment to the customer incurs a cost ri (e/unit) (> 0).

The spare parts are shipped to the customer overnight as one batch with a fixed
transportation cost F (e) (> 0), and they become available on the site at the
beginning of day t+ 1. On day t+ 1, the diagnostic visit of the field service engineer
also takes place. At that moment, the problem is identified and the failed parts are
replaced with the corresponding spare parts.

If all required spare parts are already sent to the site (or it turns out the failure is not
because of a failed component and thus no spare part is needed), the maintenance
case is completed on day t + 1. It is possible that not all the spare parts that are
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sent to the site are actually required on day t + 1. The engineer collects and returns
unused parts to the warehouse. However, an additional cost related to checking
and possibly re-packing the unused parts arises. Also, the shipment of a part from
the warehouse decreases the availability of that SKU by one unit until it is returned
back to the warehouse. We introduce the cost parameter bi (e/unit) (> 0) to capture
these costs for SKU i. In such a return process, the parts are typically placed at a
return point. Therefore, we do not have a fixed cost for returning parts; we only
have variable return costs for each unit.

In case the system cannot be brought back to the functioning state during the
diagnostic visit because not all the required spare parts are available, the missing
parts are ordered on the same day (i.e., day t + 1), based on the diagnosis of the
service engineer. Similar to earlier, a variable cost of ri for sending a spare part
of SKU i from the warehouse to the customer, and the fixed transportation cost F
must be charged. In addition, a follow-up visit must be performed by the service
engineer for resolving the case during a second visit with the correct spare parts on
the next day. The cost of the follow-up visit is the same as the cost of the diagnostic
visit. On day t + 2, the maintenance is completed with the second on-site visit.

The problem is to determine the optimal set of SKUs for which a spare part is sent to
the customer site to make it available during the first diagnostic visit of the engineer.
The objective is to minimize the expected total cost of resolving a reported failure.
One extreme policy is that spare parts for all of the SKUs are sent to the site. This
guarantees that the follow-up visit of the service engineer is not needed, but can
incur a lot of retrieval and return costs for the unused spare parts. Another extreme
policy is that no spare part is sent to the site, avoiding all unnecessary retrieval
and return costs but this most likely leads to a costly follow-up visit. Both extreme
policies can be optimal for specific problem instances, but generally, an in-between
policy will be optimal. In the next section, we show how an optimal policy can be
obtained.

5.4. ILP formulation

In this section, we provide an ILP model to identify the optimal solution for the
problem described in Section 5.3.
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Customer reports a failure to service provider.

No

Will at least
one part
be sent

to the site?

Service provider sends an engineer to the visit. 

Are all
parts used?

Service provider opens a new maintenance case.

Service provider determines the usage frequency for each set of
parts and decides which parts will be sent to the site.

Warehouse retrieves selected parts with retrieval cost  for SKU
 and sends them to the site with a �xed transportation cost .

Yes

Are all
required parts

 on-site?

Case is closed.

Historical cases

Unused parts are sent back with cost  for SKU .

The service provider sends an engineer with a �xed cost  for a
follow-up visit. The warehouse sends missing required parts with

�xed transportation cost  and retrieval cost  for SKU .

Yes

Yes

No

No

Figure 5.1: Process diagram of corrective maintenance.

Decision Variables

We let x = (x1, . . . , xi, . . . , xN) denote the decision variables that indicate whether a
spare part from a particular SKU is made available for the service engineer during
the diagnostic visit. Specifically, xi = 1 denotes that a spare part from SKU i is
selected to be sent to the customer site so that it can be used during the diagnostic
visit of the service engineer, and xi = 0 otherwise. We introduce the binary variable
z to indicate whether at least one part is sent, i.e., z = 1 means at least one SKU
is chosen to make its spare part available during the diagnostic visit of the service
engineer, and z = 0 means no SKU is chosen. We use z ≥ xi, ∀i ∈ I as a constraint
to indicate the relation between decision variables z and xi.
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To describe the costs related to a possible second visit, we consider all possible
sets m ∈ M that might be required to resolve the maintenance case. Here, we
only consider sets of SKUs m ∈ M with a strictly positive probability p̂m, and we
denote these sets with M′ ⊆ M. This reduces the number of variables and hence
the computation time when solving the ILP. The vector sm = (s1m, . . . , sNm) defines
a set of spare parts that can be shipped during the diagnostic visit. If for some
i ∈ I, the part is needed (i.e. sim = 1) but the part is not shipped for the diagnostic
visit (i.e. xi = 0), then a part of SKU i will be needed for the second engineer
visit. Whether an SKU i should be shipped with a second engineer visit or not, is
described by a binary variable uim, for which we require uim ≥ sim − xi. If sim = 1
and xi = 0, then uim will be forced to be 1 and uim = 0 in all other cases. For
example, suppose that N = 2 and a spare part from SKU 2 is not made available
for the diagnostic visit. Then, u21 = 1 because we know s1 = (0, 1) (i.e., SKU 2 is
needed for corrective maintenance in scenario m = 1) but SKU 2 is not available
during diagnostic visit. Finally, the variable ûm is 0 if uim = 0 for all i ∈ I and 1

otherwise. This variable denotes whether a second visit is needed if set m is the
true set of parts. For the same example where SKU 2 is not made available for the
diagnostic visit, u1 = 1 and u3 = 1 because s1 = (0, 1) and s3 = (1, 1) (i.e. SKU 2 is
needed for corrective maintenance in scenarios m = 1, 3).

Objective function

Now, we introduce the objective function of the ILP model. The objective function
has three parts. The first part,

(
Fz + ∑i∈I rixi

)
, represents the total cost related

to the diagnostic visit which consists of the fixed transportation cost and variable
transportation cost of parts. The fixed cost D is excluded because it always
occurs and does not play a role in determining the optimal policy. The second
part,

(
∑i∈I bixi(1 − pi)

)
, is the expected cost for returning parts. These costs

are incurred for unused parts during the diagnostic visit. The third part,
(
(D +

F)(∑m∈M′ ûm p̂m) + ∑i∈I ri(1 − xi)pi

)
, is the expected cost for a second engineer

visit if any required parts for maintenance are not brought during the diagnostic
visit. The overall objective function is

C(x) =
(

Fz + ∑
i∈I

rixi

)
+
(

∑
i∈I

bixi(1− pi)
)
+
(
(D + F)( ∑

m∈M′
ûm p̂m) + ∑

i∈I
ri(1− xi)pi

)
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and it can be simplified as

C(x) = Fz + ∑
i∈I

(ri + bi)(1− pi)xi + (D + F)( ∑
m∈M′

ûm p̂m) + ∑
i∈I

ri pi.

For brevity in notation, we denote ri + bi with ci. We also remove the term ∑i∈I ri pi

from the objective function because it is a constant. Then, the objective function is
further simplified into

C(x) = Fz + ∑
i∈I

ci(1− pi)xi + (D + F)( ∑
m∈M′

ûm p̂m)

ILP model

The complete ILP model is formulated as follows:

min
x

C(x) = Fz + ∑
i∈I

ci(1− pi)xi + (D + F)( ∑
m∈M′

ûm p̂m)

s.t.

z ≥ xi, ∀i ∈ I (5.2)

uim ≥ sim − xi, ∀i ∈ I, ∀m ∈ M′ (5.3)

ûm ≥ uim, ∀i ∈ I, ∀m ∈ M′ (5.4)

xi ∈ {0, 1}, ∀i ∈ I (5.5)

z ∈ {0, 1} (5.6)

uim ∈ {0, 1}, ∀i ∈ I, ∀m ∈ M′ (5.7)

ûm ∈ {0, 1}, ∀m ∈ M′ (5.8)

5.5. Structural analysis

In this section, we execute a structural analysis for the optimal policy. First, we
have the analysis for N = 1, then for N = 2, and finally for a general N. Proofs of
structural results can be found in Appendix 5.A.
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5.5.1 Optimal policy structure for N = 1

For N = 1, x = (x1) and we denote the optimal policy with x∗1 . We derive the
optimal policy structure in Proposition 5.1.

Proposition 5.1 For N = 1, the solution x1 = 0 is optimal for p1 ∈ [0, p̌1] and the
solution x1 = 1 is optimal for p1 ∈ [ p̌1, 1], where p̌1 = F+c1

D+F+c1
. Both actions are optimal

at the threshold value p1 = p̌1.

Proposition 5.1, says that a part of SKU 1 should be sent to the system for the
diagnostic visit if and only if the probability p1 that this part is needed exceeds the
threshold p̌1. The optimal policy structure for N = 1 is shown in Figure 5.2. As the
cost of a second visit, D, increases, the optimality region for bringing a part of SKU
1 increases. For high values of F+c1

D , p̌1 is close to one (limF+c1→∞ p̌1 = F+c1
D+F+c1

= 1).

For low values of F+c1
D , p̌1 is close to zero (limF+c1→0 p̌1 = limF+c1→0

F+c1
D+F+c1

= 0

and limD→∞ p̌1 = limD→∞
F+c1

D+F+c1
= 0).

p1 = 0 p1 = 1p1 = F+c1
D+F+c1

x∗1 = 1x∗1 = 0

Figure 5.2: Optimal policy structure for N = 1.

5.5.2 Optimal policy structure for N = 2

In this section, we characterize the optimal policy structure for N = 2. We
reformulate the demand distribution of SKUs as a bi-variate Bernoulli distribution
to see the effect of demand dependency between the two SKUs more explicitly. Let
X be a Bernoulli random variable that represents the quantity demanded from SKU
1 to resolve the maintenance case with mean E[X] = P(X = 1) = p1. Let Y be a
Bernoulli random variable that represents the quantity demanded from SKU 2 to
resolve the case with mean E[Y] = P(Y = 1) = p2. Then the covariance between X
and Y is

σ1,2 = E[(X− p1)(Y− p2)]

= E[XY− Xp2 −Yp1 + p1 p2]
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= E[XY]− p1 p2 = p̂3 − p1 p2, (5.9)

where E[XY] = P(X = 1, Y = 1) = p̂3. Then, we can formulate p̂3 as p1 p2 + σ1,2.
Please note that covariance σ1,2 being equal to zero means X and Y are independent
variables, i.e. there is no demand dependency between SKU 1 and SKU 2. Let
S = (X, Y) be a bi-variate Bernoulli variable. S can have four possible values:
s0 = (0, 0) (i.e. no parts are required for the maintenance activity), s1 = (0, 1) (i.e.
only SKU 2 is required for the maintenance activity), s2 = (1, 0) (i.e. only SKU 1 is
required for the maintenance activity) and s3 = (1, 1) (i.e. both SKU 1 and SKU 2

are required for the maintenance activity). Then, we can characterize the probability
distribution of S as (by using the relations between p̂m and pi and (5.9)).

P(S = s0) = p̂0 = (1− p1)(1− p2) + σ1,2

P(S = s1) = p̂1 = (1− p1)p2 − σ1,2

P(S = s2) = p̂2 = p1(1− p2)− σ1,2

P(S = s3) = p̂3 = p1 p2 + σ1,2,

where p̂0 + p̂1 + p̂2 + p̂3 = 1 and 1 ≥ p̂0, p̂1, p̂2, p̂3 ≥ 0 (Teugels, 1990). Please also
note that

min{p2 − p1 p2, p1 − p1 p2} ≥ σ1,2 ≥ max{p1 + p2 − p1 p2 − 1,−p1 p2} (5.10)

because of the domain of p̂0, p̂1, p̂2, p̂3. The maximum possible value of σ1,2 is 1 and
the minimum possible value of σ1,2 is -1.

As a next step, we want to show the structure of the optimal policy. We define six
points and three functions in (p1, p2) to describe the optimal policy structure for
N = 2.

Definition 5.1 (i) We define four points such that

• (p1, p̄2) =
(

c1
D+F+c1

, (F+c2+(D+F)σ1,2)(D+F+c1)
(D+F+c1)(D+F+c2)−(D+F)c1

)
,

• ( p̄1, p2) =
(

(F+c1+(D+F)σ1,2)(D+F+c2)
(D+F+c1)(D+F+c2)−(D+F)c2

, c2
D+F+c2

)
,

• p̃1 =
F+c1+(D+F)σ1,2

D+F+c1
, and

• p̃2 =
F+c2+(D+F)σ1,2

D+F+c2
.
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(ii) We define three functions in p1 such that

• f (p1) = −
F+c2+(D+F)σ1,2
c2+(1−p1)(D+F) ,

• g(p1) =
(F+c1+c2+(D+F)σ1,2)−(D+F+c1)p1

(D+F+c2)−(D+F)p1
, and

• h(p1) =
F+c1+(D+F)σ1,2−(D+F+c1)p1

D+F .

Lemma 5.1 For σ1,2 = 0, it holds that 0 < p1 < p̃1 < p̄1 and 0 < p1 < p̃1 < 1.
Similarly, it holds that 0 < p2 < p̃2 < p̄2, and 0 < p2 < p̃2 < 1.

Theorem 5.1 For N = 2, we characterize the optimal policy for σ1,2 = 0.

(i) Solution (x1, x2) = (0, 0) is optimal in region R1 = {(p1, p2) ∈ [0, 1]2|p1 ∈
[0, p1], p2 ≤ f (p1)} ∪ {(p1, p2) ∈ [0, 1]2|p1 ∈ [p1, p̄1], h(p1) ≤ p2 ≤ g(p1)}.

(ii) Solution (x1, x2) = (0, 1) is optimal in region R2 = {(p1, p2) ∈ [0, 1]2|p1 ∈
[0, p1], p2 ≥ f (p1)}.

(iii) Solution is (x1, x2) = (1, 1) is optimal in region R3 = {(p1, p2) ∈ [0, 1]2|p1 ∈
[ p̃1, p̄1], p2 ≤ h(p1)} ∪ {(p1, p2) ∈ [0, 1]2|p1 ∈ [ p̄1, 1], p2 ≤ p2}.

(iv) Solution is (x1, x2) = (1, 0) is optimal in region R4 = {(p1, p2) ∈ [0, 1]2|p1 ∈
[p1, p̄1], g(p1) ≤ p2} ∪ {(p1, p2) ∈ [0, 1]2|p1 ∈ [ p̄1, 1], p2 ≥ p2}.

In Figure 5.3, the optimal policy regions are shown for σ1,2 = 0, F = 100, D =

100, c1 = 20 and c2 = 20. In Figure 5.4, some examples to observe the effect of
operational costs on the optimal policy regions are given. We see in Figure 5.4(a)
that an increased cost of the second engineer visit D increases the region where
(x1, x2) = (1, 1) is optimal. In Figure 5.4(b), it is shown that increasing the value
of the fixed transportation cost F increases the region where (x1, x2) = (0, 0) is
optimal. In Figures 5.4(c-d), we observe that the optimal policy regions for bringing
only SKU i increases as the variable cost cj of SKU j, j ̸= i, gets closer to the values
of F and D.

Finally, in Figure 5.5, we provide a numerical example for the change in the optimal
policy regions under a positive demand dependency between the two SKUs (i.e.
σ1,2 > 0). Please note we derive these regions by using Definition 5.1 (similarly
to Theorem 5.1), however, the possible values of σ1,2 is limited in the interval [-
1,1]. This limits the possible values of p1 and p2 due to (5.10). The region where
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p1

p 2

Figure 5.3: Optimal policy regions for σ1,2 = 0, F = 100, D = 100, c1 = 20, c2 = 20.

it is not possible to have the particular value for σ1,2 > 0 is shaded in Figure 5.5.
In this example, we see that only solutions (x1, x2) = (0, 0) and (x1, x2) = (1, 1)
can be optimal. Also, this figure shows that the curve that divides the optimality
region of these solutions shifts towards the optimality region of (x1, x2) = (1, 1)
as the covariance increases from 0.05 to 0.1 for this particular example. When
the covariance increases from 0.05 to 0.1, (0, 0) tends to be optimal more often
than (1, 1). In this particular example, having a larger covariance makes having a
diagnostic visit without part shipment more preferable.

5.5.3 Characterization of the dominating and dominated solutions
for a general N value

In this section, we show analytical results that determine the dominance between
two neighboring solutions. Let us assume we decide to bring an SKU set I′ ⊆ I
to the maintenance site for the diagnostic visit. Any set I′′ that is equal to I′ \ {l},
where l ∈ I′, or I′ ∪ {l} ⊆ I, where l ∈ I \ I′ is a neighbouring set of I′. We denote



158 Chapter 5. Selecting the set of spare parts for corrective maintenance

p1

p 2

(a) F = 100, D = 500, c1 = 20, c2 = 20

p1

p 2

(b) F = 500, D = 100, c1 = 20, c2 = 20

p1

p 2

(c) F = 100, D = 100, c1 = 100, c2 = 100

p1

p 2

(d) F = 100, D = 100, c1 = 20, c2 = 100

Figure 5.4: Optimal policy regions for 2 SKUs with independent demand (σ1,2 = 0) (R1,
R2, R3 and R4 are defined as the regions between the same colored lines as in Figure 5.3).
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p1

p 2

(a) σ1,2 = 0.05

p1

p 2

(b) σ1,2 = 0.1

Figure 5.5: Optimal policy regions for F = 100, D = 100, c1 = 20, c2 = 20 with
dependent demand (The shaded (purple) area denotes which combination of p1 and p2
are not possible. The white area denotes which combinations of p1 and p2 are possible
under the given σ1,2 > 0. In the white area, below the continuous blue line the optimal
policy is (0, 0), and above the continuous blue line, the optimal policy is (1, 1)).
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this solution with xI′ = (x′1, . . . , x′N) where

x′i =

 1 if i ∈ I′

0 if i ∈ I\I′.

Definition 5.2 A solution xI′ is dominated by another solution xI′′ if C(xI′) >

C(xI′′). We refer to xI′ as dominated solution and xI′′ as dominating solution.

The probability of a second engineer visit will be required under the solution xI′ is
hI′ = ∑m∈M′ ûm(I′) p̂m, where

ûm(I′) =

{
0 if I′ contains all SKUs that are in sm

1 otherwise.

Lemma 5.2 Let l ∈ I, I′ ⊂ I\{l}. It holds that hI′∪{l} ≤ hI′ . It also holds that the
difference, hI′ − hI′∪{l}, is a non-decreasing function of I′ on I\{l}.

Lemma 5.2 shows that the difference in the probability of a second engineer visit
for a set I′ and I′ ∪ {l} is greater than or equal to the difference in the probability
of a second engineer visit for a subset of I′ and the union of that subset with SKU
{l}. Lemma 5.2 is helpful to provide results for the structure of the optimal policy
for a general N number of SKUs.

Remark 5.1 Please note that hI = 0 and hI′ − hI = pi, for any I′ = I\{i}.
Additionally, the followings hold if the demands of SKUs are independent: h∅ −
hI = 1 − ∏i∈I(1 − pi). Similarly, for any set I′ ⊆ I and I′′ = I′\{i}, where
I′, I′′ ̸= ∅, hI′′ − hI′ =

(
∏j∈I\I′′(1 − pj)

)
. Finally, for a set I′ = {i} and a set

I′′ = ∅, h∅ − hI′ =
(

∏j∈I\{i}(1− pj)
)

.

Lemma 5.3 We derive some conditions to determine dominating and dominated solutions.

(i) Solution x∅ dominates the solution xI if and only if

F + ∑
i∈I

ci(1− pi)− (D + F)h∅ > 0. (5.11)
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(ii) For any set {i} ∈ I′ ⊆ I and I′′ = I′\{i}, where I′, I′′ ̸= ∅, xI′′ dominates xI′ if

ci(1− pi)− (D + F)(hI′′ − hI′) > 0. (5.12)

As a special case, solution xI′ , where I′ = I\{i}, dominates solution xI if

ci
D + F + ci

> pi. (5.13)

(iii) For a set I′ = {i} and a set I′′ = ∅, xI′′ dominates xI′ if

F + ci(1− pi)− (D + F)(h∅ − hI′) > 0.

Lemma 5.3 provides some conditions to determine the better solution among two
solutions. These conditions depend on the cost parameters and the estimated
demand probabilities of SKUs and the sets of SKUs.

Theorem 5.2 If the solution xI′\{i} is a better solution than xI′ , then the solution xI′′\{i}
is a better solution than xI′′ , where I′′ ⊂ I′ and i ∈ I′′, also holds.

According to Theorem 5.2, if removing an SKU i from a set I′ is better than not
removing, this also holds for any subsets of I′ that contain SKU i.

Corollary 5.1 For an optimal solution x∗, it will hold that x∗i = 0 if (5.13) holds.

Corollary 5.1 limits the solution space by only checking whether (5.13) holds or not,
which can be easily implemented in practice.

5.6. Numerical analysis

In this section, we aim to show how the optimal policy and optimal cost change with
respect to parameters p̂m, c = (c1, . . . , cN), D, and F. Then, we compare the costs
under the optimal policy against Policy 1 and Policy 2. Recall that no parts are sent
during the diagnostic visit under Policy 1. If any part is required to fix the system
failure, they are sent with an additional shipment and an additional engineer visit
will take place. On the other hand, a fixed number of top recommended parts will
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Table 5.2: Scenario settings for the spare parts demand distributions.

(p1, p2, . . . , p10)
Demand

dependency
p̂m

0.09 for m ∈ {6, 24, 96, 384, 513},
A 0.135, ∀i ∈ I Yes 0.045 for m ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512},

0.1 for m = 0,
0 otherwise

B 0.135, ∀i ∈ I No ∏i∈I

(
pisim + (1− pi)(1− sim)

)
for m ∈ {0, . . . , 210 − 1}

C (0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05) Yes 0.05 for m = 293,
0.1 for m ∈ {390, 448},
0.2 for m = 392,
0.25 for m ∈ {544, 592},
0 otherwise

D (0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05) No ∏i∈I

(
pisim + (1− pi)(1− sim)

)
for m ∈ {0, . . . , 210 − 1}

be sent during the diagnostic visit from a list, where SKUs are sorted in decreasing
order of pi, ∀I ∈ I under Policy 2.

In the numerical analysis, we consider instances with N = 10 SKUs. We use
Gurobi 9.1.2 to solve the ILP models. For this purpose, we created two test
beds, where F ∈ {25, 50, 100}, D ∈ {100, 200, 400}. For the first test bed, c
is equal to c′ = (20.13, 17.65, 10.51, 12.87, 10.49, 10.44, 14.38, 17.3, 14.5, 24.86); where
each cost parameter is generated from a uniform distribution in the interval [10,25].
Four spare parts demand distribution scenarios are generated for the first test
bed. We refer to them as scenarios A, B, C, and D with details provided in
Table 5.2. One factor that may affect the optimal solution is the marginal demand
probability distribution for SKUs. Therefore, in Scenarios A and B, we choose
the marginal demand probabilities for SKUs identical. In Scenarios C and D, we
choose varying values between 0.05 to 0.5 for the marginal demand probabilities.
Another factor that may impact the optimal solution is the existence of demand
dependency between SKUs. Therefore, demand dependency is added as a factor in
the experimental design.

The optimal solution and optimal cost for each instance are given in Table 5.3. In
10 out of 36 instances, the optimal policy is the same as Policy 1. In 13 out of
36 instances, the optimal policy is equal to the ‘send all parts’ solution. For the
remaining instances, the optimal number of parts that should be sent during the
diagnostic visit is between seven and nine. We observe only ‘send no parts’ or
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‘send all parts’ solutions under Scenarios A and B, where the marginal demand
probabilities of SKUs are equal. The optimal solution is ‘send no parts’ when the
second engineer visit cost D is relatively low in comparison to fixed transportation
cost F, and the optimal solution is ‘send all parts’ when D is relatively high in
comparison to F.

We observe other optimal solutions than ‘send no parts’ and ‘send all parts’ under
Scenarios C and D, where the variance among the marginal probabilities for SKUs
is high. The marginal probability of an SKU is an important factor to have the SKU
in the optimal solution or not.

We also compare the optimal cost against the cost of Policy 1 and Policy 2. In Policy
1, x = 0, i.e. this is the solution ‘send no parts’. In Policy 2, we select the first k
parts for the diagnostic visit from a list of SKUs that are ranked from the highest
to the lowest based on the marginal probabilities (notice that we have already done
this when defining Scenarios A, B, C, and D). We denote the cost of Policy 1 by C1,
the cost of Policy 2 for a given k ∈ {1, . . . , N} (referred to as Policy 2(k)) by C2(k),
and the cost of the optimal policy by Copt. The relative difference C1−Copt

Copt
100% is

denoted by ∆1 and the difference C2(k)−Copt
Copt

100% is denoted by ∆2(k).

The cost comparison between policies for instances 1-36 is given in Table 5.4. In this
table, for each instance, we see that either Policy 1 or Policy 2(k) for a given k finds
the optimal policy. However, one particular heuristic policy cannot find the optimal
solution in all problem instances. The best heuristic policy (i.e., Policy 2(10)) is
12.2% costlier than the optimal policy on an average of 36 instances.

Next, we create a second test bed for instances 19-36 to see the effect of cost ci on the
optimal solution. In this new test bed, the cost vector c is equal to a new cost vector
c′′, where the cost of SKU 4 is significantly higher than the cost of other SKUs. The
only difference between vectors c′ and c′′ is that c′′4 is equal to 121.87 instead of
12.87. In Table 5.5, we see the optimal solution and cost for instances 19-36 and
c = c′′. In the first test bed for instances 22 and 31, we see that SKU 4 is in the set of
parts that are sent to the customer. We see that the heuristic policies cannot always
find the optimal solution in the second test bed, where the cost of SKU 4 is high.
We focus on instance 22 to investigate the effect of demand dependency on optimal
costs. Under Scenario C, s544 involves SKUs 1, 4, 6 with p̂544 = 0.25. We see that
SKU 4 is not in the optimal set of spare parts due to the high cost of c4. We also
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Table 5.3: Optimal solution and cost for problem instances 1-36 and c = c′.

Instance F D Scenario Optimal Solution Optimal Cost
1 25 100 A (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 112.5
2 50 100 A (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 135.0
3 100 100 A (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 180.0
4 25 200 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
5 50 200 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
6 100 200 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 232.5
7 25 400 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
8 50 400 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
9 100 400 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 232.5

10 25 100 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 95.7
11 50 100 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 114.8
12 100 100 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 153.1
13 25 200 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
14 50 200 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
15 100 200 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 229.6
16 25 400 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
17 50 400 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
18 100 400 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 232.5
19 25 100 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 104.9
20 50 100 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 133.6
21 100 100 C (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 190.0
22 25 200 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 119.9
23 50 200 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 148.6
24 100 200 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 203.9
25 25 400 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 135.1
26 50 400 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 161.4
27 100 400 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 212.5
28 25 100 D (1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 118.9
29 50 100 D (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 145.1
30 100 100 D (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 193.4
31 25 200 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 125.1
32 50 200 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 151.4
33 100 200 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 203.9
34 25 400 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 135.1
35 50 400 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 161.4
36 100 400 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 212.5
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Table 5.4: Comparison of optimal policy against Policy 1 and 2 for problem instances
1-36 and c = c′.

Instance ∆1 ∆2(k)
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

1 0.0% 32.7% 41.2% 34.4% 39.3% 32.4% 35.4% 31.4% 39.7% 35.8% 40.0%
2 0.0% 45.0% 51.3% 43.0% 46.2% 37.9% 39.6% 33.9% 39.9% 34.2% 35.2%
3 0.0% 60.2% 63.7% 53.8% 54.9% 45.0% 45.0% 36.9% 40.2% 32.2% 29.2%
4 28.6% 49.1% 52.4% 38.9% 39.5% 26.0% 25.3% 13.9% 17.0% 5.7% 0.0%
5 23.3% 54.1% 56.3% 42.8% 42.7% 29.2% 28.0% 16.3% 18.4% 6.7% 0.0%
6 16.1% 60.9% 61.6% 48.1% 47.1% 33.5% 31.7% 19.6% 20.2% 8.2% 0.0%
7 142.9% 157.7% 155.2% 124.6% 119.5% 88.8% 82.4% 53.9% 51.2% 22.8% 0.0%
8 121.9% 147.8% 145.0% 116.8% 111.8% 83.5% 77.3% 50.8% 47.9% 21.5% 0.0%
9 93.5% 134.4% 131.3% 106.2% 101.3% 76.1% 70.4% 46.7% 43.4% 19.8% 0.0%

10 0.0% 39.5% 49.9% 53.1% 57.4% 58.3% 57.8% 59.5% 61.9% 59.7% 64.6%
11 0.0% 53.9% 61.7% 63.2% 65.6% 64.9% 62.9% 62.3% 62.2% 57.8% 58.9%
12 0.0% 71.9% 76.4% 75.9% 75.8% 73.2% 69.2% 65.9% 62.5% 55.5% 51.9%
13 9.4% 31.1% 34.7% 33.5% 32.5% 29.0% 23.9% 19.3% 14.3% 5.7% 0.0%
14 4.9% 36.8% 39.4% 37.6% 36.0% 32.1% 26.6% 21.5% 15.8% 6.7% 0.0%
15 0.0% 46.3% 47.5% 45.0% 42.5% 37.9% 32.0% 26.0% 19.3% 9.5% 1.2%
16 106.6% 123.6% 121.9% 114.5% 106.3% 94.4% 79.7% 64.1% 46.3% 22.8% 0.0%
17 88.8% 116.7% 114.6% 107.6% 99.7% 88.5% 74.8% 60.1% 43.5% 21.5% 0.0%
18 64.6% 107.3% 104.7% 98.1% 90.8% 80.6% 68.2% 54.8% 39.5% 19.8% 0.0%
19 13.3% 46.6% 56.0% 62.0% 58.0% 35.2% 12.9% 0.0% 14.0% 14.6% 31.1%
20 6.7% 51.6% 58.9% 63.6% 58.6% 36.1% 13.8% 0.0% 11.0% 9.6% 21.6%
21 0.0% 57.9% 63.1% 66.4% 60.2% 37.8% 15.6% 0.6% 8.3% 4.7% 11.8%
22 78.3% 107.5% 115.7% 120.9% 109.1% 68.3% 27.9% 0.0% 12.3% 4.4% 14.7%
23 59.8% 100.2% 106.8% 111.0% 99.8% 62.7% 25.9% 0.0% 9.9% 1.9% 9.4%
24 39.8% 93.8% 98.5% 101.6% 91.0% 57.8% 24.9% 1.1% 8.3% 0.0% 4.2%
25 198.8% 224.8% 232.0% 236.6% 211.4% 138.2% 65.3% 11.0% 21.8% 0.0% 1.8%
26 164.9% 202.1% 208.1% 212.0% 189.3% 124.2% 59.3% 10.7% 19.8% 0.0% 0.7%
27 123.5% 175.3% 179.9% 182.9% 163.3% 107.9% 52.8% 11.1% 18.0% 0.7% 0.0%
28 1.7% 27.7% 30.2% 27.2% 23.0% 15.4% 6.7% 1.1% 0.0% 1.0% 15.6%
29 0.0% 38.0% 39.1% 35.3% 30.0% 21.6% 11.9% 4.8% 1.7% 0.9% 12.0%
30 0.0% 53.5% 53.0% 48.1% 41.3% 31.6% 20.6% 11.5% 5.9% 2.8% 9.8%
31 73.9% 96.1% 94.2% 85.0% 72.4% 54.8% 34.9% 18.0% 6.6% 0.0% 9.9%
32 59.7% 94.0% 91.5% 82.6% 70.5% 53.8% 34.9% 18.6% 7.1% 0.0% 7.3%
33 42.3% 91.5% 88.4% 79.8% 68.2% 52.5% 35.0% 19.2% 7.6% 0.0% 4.2%
34 204.3% 219.9% 210.3% 189.9% 162.5% 126.8% 86.9% 49.7% 20.2% 0.0% 1.8%
35 169.7% 197.8% 188.8% 170.6% 146.0% 114.1% 78.4% 45.0% 18.4% 0.0% 0.7%
36 127.6% 171.7% 163.7% 148.0% 126.7% 99.4% 68.9% 40.1% 16.8% 0.7% 0.0%

Average 57.4% 95.0% 96.9% 90.6% 83.1% 62.5% 44.6% 27.2% 24.8% 13.5% 12.2%
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Table 5.5: Optimal solution and cost for problem instances 19-36 and c = c′′.

Instance Optimal Solution Optimal Cost
19 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 118.8
20 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 142.5
21 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 190.0
22 (1, 1, 1, 0, 1, 0, 1, 0, 0, 0) 183.7
23 (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 220.8
24 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 276.0
25 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 207.3
26 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 233.5
27 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 284.6
28 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 120.9
29 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 145.1
30 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 193.5
31 (1, 1, 1, 0, 1, 1, 1, 1, 1, 0) 192.9
32 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 223.5
33 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 276.0
34 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 207.3
35 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 233.5
36 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 284.6

see that SKU 6 is not in the optimal solution due to high demand dependency with
SKU 4 and low marginal demand probability (i.e., p6 = 0.25). On the other hand,
SKU 1 is still in the optimal solution because its marginal demand probability is
comparatively higher than SKU 4 and 6 (i.e., p1 = 0.5). In the first test bed, x∗i = 1
is for some i under instances 19, 20, and 28. However, in the second test bed, the
optimal solution is ‘send no parts’ in these instances. When the shipment and the
send-back cost is high for an SKU that has a high marginal demand probability, we
observe a more conservative optimal solution (i.e., first having a diagnostic visit,
then shipment of SKUs).

In Table 5.6, we see the comparison of the cost of the optimal policy against Policy
1 and 2. The optimal policy in the second test bed is equal to Policy 1 in more
instances and equal to ‘send all parts’ in fewer instances than in the first test bed.
For two problem instances, none of the heuristic policies finds the optimal policy
in the second test bed. For instance 22, the best heuristic solution (i.e., Policy 2(7))
is 4.5% costlier than the optimal policy. For instance 31, the best heuristic solution
(i.e., Policy 2(9)) is 2.3% costlier than the optimal policy. On average of 18 instances
in the second test bed, the best heuristic policy (Policy 2(9)) is 17.8% costlier than
the optimal policy.



5.6 Numerical analysis 167

Table 5.6: Comparison of cost of optimal policy against Policy 1 and 2 for problem
instances 19-36 and c = c′′.

Instance ∆1 ∆2(k)
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

19 0.0% 29.5% 37.7% 43.0% 99.2% 80.1% 60.4% 49.1% 61.4% 61.9% 76.5%
20 0.0% 42.2% 49.0% 53.4% 98.5% 78.2% 57.4% 44.4% 54.7% 53.3% 64.6%
21 0.0% 57.9% 63.1% 66.4% 97.5% 75.7% 53.6% 38.6% 46.3% 42.6% 49.8%
22 16.3% 35.4% 40.7% 44.1% 75.0% 49.1% 22.8% 4.5% 12.5% 7.4% 14.1%
23 7.6% 34.8% 39.2% 42.0% 66.6% 42.2% 17.4% 0.0% 6.7% 1.3% 6.3%
24 3.3% 43.2% 46.7% 48.9% 66.8% 42.7% 18.4% 0.8% 6.2% 0.0% 3.1%
25 94.8% 111.7% 116.4% 119.4% 137.1% 90.1% 42.5% 7.1% 14.2% 0.0% 1.2%
26 83.1% 108.8% 113.0% 115.7% 130.3% 85.8% 41.0% 7.4% 13.7% 0.0% 0.5%
27 66.9% 105.6% 109.0% 111.2% 121.5% 80.6% 39.4% 8.3% 13.5% 0.5% 0.0%
28 0.0% 25.6% 28.1% 25.1% 79.6% 73.2% 64.7% 59.1% 58.1% 59.1% 73.4%
29 0.0% 38.0% 39.1% 35.3% 78.8% 71.3% 61.7% 54.6% 51.4% 50.6% 61.7%
30 0.0% 53.5% 53.0% 48.1% 77.9% 68.9% 57.9% 48.8% 43.2% 40.1% 47.1%
31 12.9% 27.2% 26.0% 20.0% 48.6% 37.8% 24.9% 13.9% 6.6% 2.3% 8.7%
32 8.2% 31.4% 29.8% 23.7% 47.2% 36.4% 23.7% 12.6% 4.8% 0.0% 5.0%
33 5.1% 41.4% 39.2% 32.8% 49.9% 38.8% 25.8% 14.2% 5.6% 0.0% 3.1%
34 98.3% 108.5% 102.2% 89.0% 105.3% 82.6% 56.6% 32.4% 13.2% 0.0% 1.2%
35 86.4% 105.8% 99.7% 87.1% 100.4% 78.9% 54.2% 31.1% 12.7% 0.0% 0.5%
36 69.9% 102.8% 96.8% 85.1% 94.2% 74.2% 51.4% 30.0% 12.6% 0.5% 0.0%

Average 30.7% 61.3% 62.7% 60.6% 87.5% 65.9% 43.0% 25.4% 24.3% 17.8% 23.1%

5.6.1 Service level constraint extension

In SLAs, there might be constraints on the minimum service level for the service
provider. We introduce a service level constraint

1− ∑
m∈M′

ûm p̂m ≥ α, (5.14)

to ensure the probability of resolving a maintenance case during the diagnostic visit
is at least at the desired level α. Note that ∑m∈M′ ûm p̂m is the probability that all of
the required parts are sent to the site. We let Cα

opt be the cost of the optimal solution
with the service level constraint under a given α.

We denote the percentage difference between the optimal cost without a service
level constraint and the optimal cost with a service level constraint under a given

α > 0 as ∆α =
Cα

opt−Copt

Copt
%. In Table 5.7, we present ∆α for instances 1-36 for α = 0.9

and c = c′.
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Table 5.7: ∆α values for instances 1-36 under α = 0.9 and c = c′.

1 2 3 4 5 6 7 8 9 10 11 12

41.4% 36.3% 30.0% 1.0% 0.9% 0.7% 1.0% 0.9% 0.7% 66.2% 60.3% 52.9%
13 14 15 16 17 18 19 20 21 22 23 24

1.0% 0.9% 1.9% 1.0% 0.9% 0.7% 15.8% 10.5% 5.3% 5.5% 2.7% 0.6%
25 26 27 28 29 30 31 32 33 34 35 36

1.0% 0.8% 0.6% 2.1% 1.8% 3.5% 1.0% 0.8% 0.6% 1.0% 0.8% 0.6%

A service constraint with a service level α = 0.9 increases the optimal cost from
0.6% up to 66.2%. We choose instances 21 and 30 to show how the optimal solution
and optimal cost behave as a function of α ∈ {0, 0.5, 0.8, 0.9}, see Table 5.8. For
both instances 21 and 30, we have the same cost parameters (F = 100 and D = 100)
and the same distribution for marginal probabilities pi (i.e., Scenarios C and D).
However, the demand for SKUs is dependent in instance 21, where it is independent
for instance 30. First, we see that demand dependency between SKUs affects the
optimal solution. For instance, the number of SKUs in the optimal solution for
instance 20 is less for α ∈ {0.5, 0.8} than the number of SKUs in the optimal solution
for instance 30. Next, the optimal cost increases by 5.3% for instance 20, and 3.5%
for instance 30 under a high service level (i.e., α = 0.9) (please see Table 5.8).

Table 5.8: Optimal solution and cost of instances 21 and 30 under service constraint for
varying values of α and c = c′.

α Instance Optimal Solution Optimal Cost
0 21 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 190.0

0.5 21 (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 192.4
0.8 21 (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 192.4
0.9 21 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 200.2
0 30 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 193.5

0.5 30 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 200.2
0.8 30 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 200.2
0.9 30 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 200.2

5.7. Conclusion

In this chapter, we consider a spare part recommendation problem from the point of
view of a maintenance service provider. We develop a decision support model for
the selection of spare parts to resolve a maintenance case based on historical cases
and operational costs. For this aim, we formulate an ILP model that minimizes
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the total cost of a maintenance case by selecting the optimal set of spare parts.
We provide results on the structure of the optimal policy for the problem instances
with one and two SKUs, and partial results for the structure of the optimal policy for
problem instances with a general number of SKUs. Finally, we compare the optimal
policy against two benchmark heuristics used in practice. In this comparison, we
see that heuristics from practice cannot always find the optimal policy. This results
in up to 12.2% and 17.8% costlier maintenance operations for the best heuristic
policies compared to the optimal policy for the two defined test beds.

5.A. Proofs for structural results

Proof of Proposition 5.1
For N = 1, there are two solutions for the ILP: x1 = 1 and x1 = 0. The costs under
these solutions are

C(1) = F + c1(1− p1)

C(0) = (D + F)p1.

Note that C(1) is strictly decreasing as a function of p1 and C(0) is strictly
increasing. Let p̌1 be the point where the cost under both solutions is equal. Then:

C(1)− C(0) = 0 ⇐⇒ F + c1(1− p̌1)− (D + F) p̌1 = 0

⇐⇒ p̌1 =
F + c1

D + F + c1

When C(1) ≥ C(0) (i.e. F+c1
D+F+c1

≤ p̌1), solution x1 = 0 is optimal. When C(1) <

C(0) (i.e. F+c1
D+F+c1

≥ p̌1), solution x1 = 1 is optimal.

2

Proof of Lemma 5.1
We assume that σ1,2 = 0. Then, p̃1 = F+c1

D+F1+c1
, and p̄1 = (F+c1)(D+F+c2)

(D+F+c2)(D+F+c1)−(D+F)c2
=

F+c1

(D+F+c1)−
(D+F)c2
D+F+c2

. Obviously, 0 < c1
D+F+c1

< F+c1
D+F1+c1

< F+c1

(D+F+c1)−
(D+F)c2
D+F+c2

. Hence,

0 < p1 < p̃1 < p̄1. Additionally, 0 < p1 < p̃1 < 1. It also holds that
0 < p2 < p̃2 < p̄2 and 0 < p2 < p̃2 < 1 from symmetry. 2



170 Chapter 5. Selecting the set of spare parts for corrective maintenance

Proof of Theorem 5.1
Assume that σ1,2 = 0 and N = 2. There are four possible solutions: x0 = (x1, x2) =

(0, 0), x1 = (x1, x2) = (0, 1), x2 = (x1, x2) = (1, 0) and x3 = (x1, x2) = (1, 1). Let
h̃m be the probability of a second engineer visit if combination xm is chosen for
the repair kit. h̃0 = p1 + p2 − p1 p2, h̃1 = p1, h̃2 = p2 and h̃3 = 0. From these
probabilities we calculate costs under each solution (x1, x2) as

C(0, 0) = (D + F)(p1 + p2 − p1 p2)

C(0, 1) = F + c2(1− p2) + (D + F)p1

C(1, 0) = F + c1(1− p1) + (D + F)p2

C(1, 1) = F + c1(1− p1) + c2(1− p2).

We define ω1(p1, p2) as the cost difference between the solutions (0, 0) and (1, 1).

ω1(p1, p2) = C(0, 0)− C(1, 1)

= (D + F)(p1 + p2 − p1 p2)− (F + c1(1− p1) + c2(1− p2))

= (D + F + c1)p1 + (D + F + c2)p2 − (p1 p2)(D + F)− (F + c1 + c2)

We define ω2(p1, p2) as the cost difference between the solutions (1, 1) and (1, 0).

C(1, 1)− C(1, 0) = F + c1(1− p1) + c2(1− p2)− (F + c1(1− p1) + (D + F)p2)

= c2 − p2(D + F + c2)

We define ω3(p1, p2) as the cost difference between the solutions (1, 1) and (0, 1).

C(1, 1)− C(0, 1) = F + c1(1− p1) + c2(1− p2)− (F + c2(1− p2) + (D + F)p1)

= c1 − p1(D + F + c1)

We define ω4(p1, p2) as the cost difference between the solutions (1, 0) and (0, 0).

C(1, 0)− C(0, 0) = F + c1(1− p1) + (D + F)p2 − ((D + F)(p1 + p2 − p1 p2))

= F + c1 + (D + F)(p1 p2)− p1(D + F + c1)
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We define ω5(p1, p2) as the cost difference between the solutions (0, 0) and (0, 1).

C(0, 1)− C(0, 0) = (F + c2(1− p2) + (D + F)p1)− (D + F)(p1 + p2 − p1 p2)

= F + c2 + (D + F)(p1 p2)− p2(D + F + c2)

We define ω6(p1, p2) as the cost difference between the solutions (1, 0) and (0, 1).

C(0, 1)− C(1, 0) = F + c2(1− p2) + (D + F)p1 − (F + c1(1− p1) + (D + F)p2)

= (c2 − c1)− p2(c2 + D + F) + p1(c1 + D + F)

i. Solution x = (0, 0) is optimal if and only if ω1(p1, p2) ≤ 0, ω4(p1, p2) ≥ 0 and
ω5(p1, p2) ≥ 0.

ii. Solution x = (0, 1) is optimal if and only if ω3(p1, p2) ≥ 0, ω5(p1, p2) ≤ 0,
and ω6(p1, p2) ≤ 0 .

iii. Solution x = (1, 1) is optimal if and only if ω1(p1, p2) ≥ 0, ω2(p1, p2) ≤ 0 and
ω3(p1, p2) ≤ 0.

iv. Solution x = (1, 0) is optimal if and only if ω2(p1, p2) ≥ 0, ω4(p1, p2) ≤ 0,
and ω6(p1, p2) ≥ 0.

Please note that if ω2(p1, p2) ≥ 0, then ω5(p1, p2) ≤ 0. If ω4(p1, p2) ≤ 0 and
ω5(p1, p2) ≤ 0, then ω6(p1, p2) ≥ 0. So, solution x = (1, 0) is optimal if and
only if ω2(p1, p2) ≥ 0 and ω4(p1, p2) ≤ 0. Therefore, condition ω6(p1, p2) ≥ 0 is
redundant. Similarly, if ω3(p1, p2) ≥ 0, then ω4(p1, p2) ≥ 0. If ω4(p1, p2) ≥ 0 and
ω5(p1, p2) ≤ 0, then ω6(p1, p2) ≤ 0. Therefore, solution x = (0, 1) is optimal if
and only if ω3(p1, p2) ≥ 0 and ω5(p1, p2) ≤ 0. The condition ω6(p1, p2) ≤ 0 is
redundant.

In order to derive the structure of optimal policy, we determine the intersection
points of ωk(p1, p2) = 0, k ∈ {1, 2, 3, 4, 5}. We first calculate the intersection of
ω2(p1, p2) = 0 and ω4(p1, p2) = 0. If ω2(p1, p2) = 0, then p2 = c2

D+F+c2
. We first

plug p2 into ω4(p1, p2) = 0.

F + c1 − p1

[
(D + F + c1)−

c2

D + F + c2
(D + F)

]
= 0

⇐⇒ (F + c1)(D + F + c2)
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− p1

[
(D + F + c2)(D + F + c1)− c2(D + F)

]
= 0

⇐⇒ p1 =
(F + c1)(D + F + c2)

(D + F + c2)(D + F + c1)− (D + F)c2
=

(F + c1)

(D + F + c1)− (D+F)c2
D+F+c2

.

We characterize the intersection point of ω2(p1, p2) = 0 and ω4(p1, p2) = 0 as
( p̄1, p2).

Next, we determine the intersection point of ω1(p1, p2) = 0 and ω2(p1, p2) = 0. We
also plug the point p2 = c2

D+F+c2
in ω1(p1, p2) = 0:

(D + F + c1)p1 +
(D + F + c2)c2

D + F + c2
− (D + F)c2 p1

D + F + c2
− (F + c1 + c2) = 0

⇐⇒ (D + F + c1)p1 + c2 −
(D + F)c2 p1

D + F + c2
− σ1,2(D + F)− (F + c1 + c2) = 0

⇐⇒ (D + F + c1)p1 −
(D + F)c2 p1

D + F + c2
− (F + c1) = 0

⇐⇒ p1

(
(D + F + c1)−

c2

D + F + c2
(D + F)

)
= F + c1

⇐⇒ p1 =
(F + c1)(D + F + c2)

(D + F + c2)(D + F + c1)− (D + F)c2

We characterize the intersection point of ω1(p1, p2) = 0 and ω2(p1, p2) = 0 as
( p̄1, p2). We see that ω1(p1, p2) = 0, ω2(p1, p2) = 0 and ω4(p1, p2) = 0 intersects
at the same point. From symmetry, the same holds for the intersection point of
ω1(p1, p2) = 0, ω3(p1, p2) = 0 and ω5(p1, p2) = 0. We characterize this point with
(p1, p̄2) where (p1, p̄2) =

(
c1

D+F+c1
, (F+c2)(D+F+c1)
(D+F+c1)(D+F+c2)−(D+F)c1

)
.

At point ( p̄1, p2) solutions (1,1), (1,0) and (0,0) are all optimal. At point (p1, p̄2)

solutions (1,1), (0,1) and (0,0) are all optimal. ω4(p1, p2) cuts the p1-axis at the point
p̃1 = F+c1

D+F1+c1
. ω5(p1, p2) cuts the p2-axis at p̃2 = F+c2

D+F+c2
. We describe these points

in Definition 5.1 and we demonstrate them in Figure 5.6.

Finally, we derive Theorem 5.1 from the following results. First, we reformulate
ω5(p1, p2) = 0 as f (p1) = p2, reformulate ω1(p1, p2) = 0 as g(p1) = p2 and
reformulate ω4(p1, p2) = 0 as of h(p1) = p2 (please see Definition 5.1). Then we
formulate the Theorem 5.1.

(i) We let R1 define a region where ω1(p1, p2) ≤ 0, ω4(p1, p2) ≥ 0 and
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Figure 5.6: Points defined in Definition 5.1.

ω5(p1, p2) ≥ 0. Therefore, the solution (0, 0) is optimal in region R1.

(ii) We let R2 define a region where ω5(p1, p2) ≤ 0 and ω3(p1, p2) ≥ 0. In region
R2 the solution (0, 1) is optimal.

(iii) We let R3 define a region, where ω3(p1, p2) ≤ 0, ω1(p1, p2) ≥ 0, and
ω2(p1, p2) ≤ 0. The solution (1, 1) is optimal in region R3.

(iv) We let R4 define the region, where ω4(p1, p2) ≤ 0, and ω2(p1, p2) ≥ 0. The
solution (1, 1) is optimal in the region R4.

2

Proof of Lemma 5.2
First, we show that hI′ ≥ hI′∪{l}. Hence, we have to show

hI′ − hI′∪{l} = ∑
m∈M′

(ûm(I′1)− ûm(I′1\{l})) p̂m ≥ 0. (5.15)

It holds that

ûm(I′)− ûm(I′ ∪ {l}) =

{
1 if SKU l in sm and I′ contains all other SKUs from sm,

0 otherwise.

Hence, (5.15) holds. Next, we need to show that hI′1
− hI′1∪{l}

≤ hI′2
− hI′2∪{l} where
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I′1 ⊂ I′2 ⊆ I\{l}. This is equivalent to showing that

∑
m∈M′

(ûm(I′1)− ûm(I′1 ∪ {l})) p̂m ≤ ∑
m∈M′

(ûm(I′2)− ûm(I′2 ∪ {l})) p̂m.

It holds that

ûm(I′1)− ûm(I′1 ∪ {l}) =

{
1 if SKU l in sm and I′1 contains all other SKUs from sm,

0 otherwise.

ûm(I′2)− ûm(I′2 ∪ {l}) =

{
1 if SKU l in sm and I′2 contains all other SKUs from sm,

0 otherwise.

Notice that ûm(I′1)− ûm(I′1∪{l}) = 1 implies that ûm(I′2)− ûm(I′2∪{l}) = 1 because
I′1 ⊂ I′2. Hence, (5.16) will hold. 2

Proof of Lemma 5.3

(i) Cost of bringing all parts is C(xI) = F + ∑i∈I ci(1− pi). The cost of bringing
no parts is C(x∅) = (D + F)h∅. Their difference is C(xI) − C(x∅) = F +

∑i∈I ci(1− pi) − (D + F)h∅. If this difference is greater than zero, (i.e. F +

∑i∈I ci(1− pi)− (D + F)h∅ > 0), then the solution x∅ dominates the solution
xI .

(ii) Now, we write the condition for removing a part i from any set I′, where
the new set is I′′ = I′\{i}. The cost of solution, xI′ is C(xI′) = F +

∑j∈I′ cj(1− pj) + (D + F)hI′ and the cost of taking solution, xI′′ is C(xI′′) =

F + ∑j∈I′′ cj(1− pj) + (D + F)hI′′ . The solution xI′′ dominates the solution xI′

if the following holds.

C(xI′)− C(xI′′) = F + ∑
j∈I′

cj(1− pj) + (D + F)hI′

− F− ∑
j∈I′′

cj(1− pj)− (D + F)hI′′

= ci(1− pi)− (D + F)(hI′′ − hI′) > 0.
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As a special case, the condition for removing part i from the solution I is

C(xI)− C(xI\{i}) = ci(1− pi)− (D + F)pi > 0,

which can be rewritten to condition (5.12).

(iii) Let assume I′ = {i} and I′′ = ∅. Solution x∅ dominates the solution x′I if the
following holds.

C(xI′)− C(x∅) = F + ci(1− pi)− (D + F)(h∅ − hI′) ≥ 0,

where h∅ − hI′ > 0.

2

Proof of Theorem 5.2
Let assume I′\{i} is a better solution than I′. I′\{i} is a better solution than I′, if
and only if F1{I′\{i}̸=∅} + ci(1− pi)− (D + F)(hI′\{i} − hI′) > 0 holds. We need to
show that xI′′\{i} is a better solution than xI′′ , therefore, C(xI′′) − C(xI′′\{i}) > 0,
to complete the proof. Please note that (hI′\{i} − hI′) ≥ (hI′′\{i} − hI′′) holds by
Lemma 5.2.

C(xI′′)− C(xI′′\{i}) = F1{I′′\{i}̸=∅} + ci(1− pi)− (D + F)(hI′′\{i} − hI′′)

≥ F1{I′\{i}̸=∅} + ci(1− pi)− (D + F)(hI′\{i} − hI′) > 0.

This shows that xI′′\{i} is a better solution than xI′′ . 2

Proof of Corollary 5.1
Let x∗ be an optimal solution and suppose that (5.13) holds. Then, we need to show
that x∗i = 0. First consider a set I′, where i ∈ I′. Then the cost of the solution xI′

is C(xI′) = F + ci(1− pi) + ∑j∈I′\{i} cj(1− pj) + (D + F)hI′ . In order to show that
xi = 0 is a better solution than xi = 1, we need to show that C(xI′)− C(xI′\{i}) > 0.

C(xI′)− C(xI′\{i}) = F1{I′\{i}̸=∅} + ci(1− pi)− (D + F)(hI′\{i} − hI′)

≥ F1{I′\{i}̸=∅} + ci(1− pi)− (D + F)pi

> F1{I′\{i}̸=∅} + ci(1−
ci

ci + D + F
)− (D + F)

ci
ci + D + F
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= F1{I′\{i}̸=∅} +
ci(D + F)
ci + D + F

− ci(D + F)
ci + D + F

= F1{I′\{i}̸=∅} > 0.

Please note that from Remark 5.1 and Lemma 5.2 it holds that (hI′\{i} − hI′) ≤ pi.
2



6
Conclusion

Capital goods require maintenance and part replacements in order to continue
functioning. This dissertation focuses on problems in the domain of maintenance
optimization and spare parts management for capital goods in data-integrated
environments.

In Chapter 2, we considered a problem on ‘exploration and exploitation in age-
based maintenance’. In Chapter 3, we have studied an extension of the problem
considered in Chapter 2, which is ‘data pooling and joint optimization for multiple
systems’. We studied a problem on ‘spare parts replenishment at local warehouses
with advance demand information(ADI)’ in Chapter 4. We investigated the topic
of ‘selecting the set of spare parts for corrective maintenance’ in Chapter 5. We
addressed these problems in order to meet four research objectives. In this chapter,
we revisit these research objectives and provide future research directions. Then, we
elaborate on the potential implications of the main findings on businesses, society,
and the environment.
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6.1. Main findings and future research

Research objective 1: Balance exploration and exploitation optimally for age-based
maintenance with Bayesian learning.

We address RO 1 in Chapter 2, where we focus on a newly designed system with
a finite lifespan. There is uncertainty in the lifetime distribution of the critical
component in the system. We consider an age-based replacement policy for this
component and the population heterogeneity as the source of model uncertainty.
We formulate a partially observable Markov decision process (POMDP) model with
Bayesian learning to minimize the total cost of maintenance throughout the lifespan
of the system. This model finds the optimal balance between the cost of learning
and the cost of maintenance activities (i.e., the so-called exploration-exploitation
trade-off).

The main findings of Chapter 2 are as follows. First, we characterize the behavior
of the optimal cost as a function of state variables. Then, we compare the
optimal policy against two benchmark heuristics, namely a myopic policy and a
threshold policy. A myopic policy does not consider exploration in learning the
true population type. A threshold policy considers the exploration in learning,
however, it does not optimally balance the exploration and exploitation. Under
the optimal policy, we observe the strongest exploration when the variance of the
lifetime distribution is low and the belief that the component is coming from the
strong population is high. In the instances where the exploration is high, the true
population type is learned much faster than using the myopic policy. The myopic
policy and the threshold policy are up to 23.6% and 5.8% costlier than the optimal
policy, respectively.

Finally, we formulate a lower bound function that represents the optimal cost if the
model uncertainty would immediately be resolved at a given state. The difference
between the optimal cost under population heterogeneity and the lower bound
function provides insights on the value of learning and the cost of resolving the
uncertainty immediately (e.g., by inspection) for the service provider.

In Chapter 2, we consider an age-based replacement setting. A future re-
search direction is to investigate a similar research objective for a condition-
based maintenance setting. The problem can be formulated in a way that the
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degradation levels of two populations with different degradation processes can
be monitored. The objective can be reformulated as learning the true population
type while determining the optimal degradation threshold for the condition-based
replacement.

Research objective 2: Investigate the effect of data pooling and joint optimization
for multiple single-component systems on maintenance costs.

We address RO 2 in Chapter 3. We consider an extended version of the problem
of Chapter 2 for multiple systems. We define three policies: the optimal policy for
multiple systems with data pooling, the single-system optimal policy with data
pooling, and the single-system optimal policy without data pooling. We build
a POMDP model with Bayesian learning to find the optimal policy. This policy
optimally balances the exploration and exploitation for the multiple-system setting.

The main findings of this research are as follows. We show that the cost reduction
due to joint optimization can be up to 0.8% and due to data pooling up to 5.6% for
two systems. We also investigate the effect of the number of systems on the costs.
We show that as the number of systems increases, the cost of exploration (learning)
per system decreases. This is due to the fact that learned information regarding
the true population is exploited for a high number of systems. The maximum
cost reduction due to the data pooling can be up to 14% for the problem instances
with 20 systems, where the maximum potential reduction is 15.8% for this specific
instance.

Investigating the effect of the number of systems on joint optimization is limited due
to the increase in the number of states and actions as a function of the number of
systems. A more detailed analysis is provided for joint optimization under a special
case with deterministic lifetimes. Under this setting, the true population type can
be learned perfectly by risking only one failure. Risking a failure (exploration) is
not desirable for more than one system and exploration under the optimal policy is
only beneficial for a large enough number of systems.

There might be cases where maintenance costs differ for different systems for
various reasons (e.g., different numbers of users for each system). This results in
heterogeneous systems. In future research, we can relax the assumption of identical
systems by considering heterogeneous systems and we can investigate how much
heterogeneous systems can benefit from data pooling and joint optimization.
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Furthermore, it is possible to investigate the effect of the number of populations
on the obtained insights.

Research objective 3: Determine how the quality of failure predictions and the
duration of demand lead time affects the spare part stock and replenishment costs.

We address RO 3 in Chapter 4. We consider a spare parts inventory replenishment
problem for a local warehouse, where a predictive model provides imperfect
advance demand information (ADI) for the demand for spare parts. We build
a Markov decision process model with precision and sensitivity of the predictive
model and the demand lead time as input parameters.

We show that the optimal cost depends on the sensitivity and the demand lead time
only through their product. From a practitioner’s point of view, this means that a
low value in one of them can be compensated by increasing the other (if possible).
Additionally, the Pareto principle holds for precision under a fixed value of the
product of sensitivity and demand lead time (e.g. 30% perfectness in precision
provides a 70% reduction in optimal costs compared to the worst-case optimal
costs). The opposite of the Pareto principle holds for the product of sensitivity
and demand lead time under a fixed value of precision (e.g. 70% perfectness
in the product of sensitivity and demand lead time provides a 30% reduction in
optimal costs compared to the worst-case optimal costs). Furthermore, we show
that in order to obtain a significant cost reduction, a moderate value of precision is
sufficient, however high values of sensitivity and demand lead time are needed.

Finally, we show that in most cases (when input parameters are not perfect), we
have average on-hand inventory levels greater than zero. Therefore, this shows that
on-hand inventories will continue to exist even for having moderate or high-quality
predictive models and high values of the demand lead time.

As future work, we can consider the following extensions for the problem studied
in Chapter 4. Currently, we assume that systems are operating continuously.
Therefore, the cost of preventive maintenance is equally high as the cost of
corrective maintenance. In future research, we can consider other settings where
this assumption does not hold (e.g., where systems are not operating during some
time slots in the period). In such a setting, the costs of preventive replacements will
be lower than the costs of corrective replacements because preventive replacements
do not cause extra downtime. This also brings an extra challenge when the precision
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is less than one. In this case, having a preventive replacement cost that is less than
the corrective replacement cost may result in unnecessary replacements. This leads
to a trade-off between the cost of failure and the cost of unnecessary replacements.
Another possible extension is to investigate the effect of stochastic lead times on the
costs. Additionally, we can allow returns of spare parts from the local warehouse
to the central warehouse, either for free or against a return cost.

Research objective 4: Develop a spare parts recommendation model based on
historical data and operational costs.

We address RO 4 in Chapter 5. We consider a setting where the service provider
is responsible for maintenance visits and spare part shipments, if needed, when a
failure is reported for a system. A failure code provided by a customer is used to
generate the sets of spare parts that may be required and a probability estimate for
each possible set of parts. The output of this predictive model constitutes a form
of imperfect ADI on the demand distribution of the sets of spare parts. We build
an ILP model that finds the optimal set of spare parts that will be sent during the
diagnostics visit. We provide the structure of the optimal policy for problems with
one and two stock-keeping units (SKUs). We provide examples of how the cost
parameters and the demand dependency between two SKUs affect the structure of
the optimal policy.

We generate results on the structure of the optimal policy for problem instances
with a general number of SKUs. We formulate conditions for removing an SKU
from or adding an SKU to the selected set of spare parts. Furthermore, we compare
the optimal policy against two benchmark heuristics used in practice. The first
heuristic policy considers having a diagnostic visit only, then shipping the required
parts to the customer with a second visit if necessary. The second heuristic policy
considers shipping a fixed number of top-recommended parts during the diagnostic
visit. This results in having a different policy for a different selection of this fixed
number. We observe that one specific heuristic policy cannot find the optimal policy
for all problem instances. By considering the average of all problem instances in a
particular test bed, the best heuristic policy is 12.2% costlier than the optimal policy.
In some settings (e.g., a high shipment cost for one particular SKU with a demand
dependency between this SKU and the other SKUs), the average cost of the best
heuristic among all problem instances can be 17.8% costlier than the optimal policy.

Finally, we extend the problem with a service level constraint. This constraint
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is useful if the service provider promises a minimum service level (i.e., the
probability of resolving a failure during a diagnostic visit should be greater than a
predetermined value) to its customers. We show that a high service level (i.e., 90%)
may increase the costs up to 66.2%.

In Chapter 5, we assume the only source of uncertainty is due to data but we do not
consider uncertainty in the predictive model itself. In reality, the predictive models
are not perfect. It is also interesting to consider uncertainty in the predictive model
on the demand probability distribution of the set of spare parts. As a future research
direction, the effect of model uncertainty on the optimal costs and actions can be
investigated.

6.2. Effects on businesses, society, and environment

Problems in this dissertation are motivated by practical problems encountered in
industry. Improvements in IoT, sensor, and data storage technologies enable the
collection of data easier than in the past. There is an abundance of data in terms
of log data, and maintenance service data. The industry is in the phase where they
preprocess the data and interpret the data. The second phase of the application
is to develop decision-support tools based on this data (Olsen and Tomlin, 2020).
Integrating new technologies into existing business practices requires an investment
of new knowledge and economic investment. This dissertation is motivated by
addressing these two barriers in front of the adoption. This dissertation aims to
provide examples of decision-making models that will be used in decision-support
tools and provide insight to the practitioners on the cost benefits of adopting the
new technologies.

In order to provide real-life connections to the solutions provided in this disser-
tation, we adopt the service control tower (SCT) concept. Service control towers
are a concept for managing service operations that involve many parties from
a central place (Song et al., 2020). A service provider with multiple customers
must coordinate different data flows and plan the resource allocation (i.e., service
engineers and spare parts) for maintenance activities mostly in real-time. The
models developed in this dissertation aim to provide a basis for the decision-
support tools that are utilized in these conceptual SCTs. These models can be used
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by maintenance service providers that have customers in geographically dispersed
locations. With efficient maintenance operations, businesses prevent unnecessary
costs of downtime, maintenance costs, shipment cost of spare parts, and inventory
holding costs.

Maintenance activities have also societal effects. Each capital good is used to
provide either service or products. There is an end-party that uses these services
or goods, e.g., patients going for an MRI scan, passengers using a train, or
governments buying computer chips to produce IDs and passports. It is not always
easy to quantify the cost of delay in accessing a service or a product for these
parties. However, decreasing the downtime of capital goods improves the quality
and timeliness of the services or the products that are received by these end parties.

Maintenance activities also affect spare parts usage and the useful lifespan of capital
goods. Environmental resources (e.g., electricity, gas, metal, water) are used in the
production and disposal of capital goods. Increasing the time that the capital good
is exploited (the capital good that is useful) increases the productivity per unit of
the used resources. Additionally, each spare parts shipment costs energy and emits
CO2. Efficient shipment of spare parts reduces the energy and carbon footprint
of the process. Finally, if excess inventory is stocked or spare parts are shipped
unnecessarily due to poor planning, there is a risk of these parts being scrapped or
obsolete. This causes inefficient use of natural resources for both production and
disposal of these parts. For the current models, it is possible to implicitly add the
societal and environmental costs into the existing cost parameters. For example,
we can add a cost for CO2 emission into the fixed shipment cost in Chapter 5. It
is also a possible future research direction to study the societal and environmental
externalities of the maintenance activities explicitly.
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Summary
Maintenance optimization and spare parts management in

data-integrated environments

Capital goods are crucial for the continuation of production and services. Many
business operations are dependent on a functioning capital good. The efficiency
of maintenance operations is important to keep these systems functioning. Main-
tenance service providers (SPs) are responsible to provide maintenance services
and spare parts to their customers according to service level agreements. The first
part of this dissertation (Chapters 2 and 3) is on maintenance optimization policies
under the so-called time-to-failure model uncertainty and the second part of this
dissertation (Chapters 4 and 5) is on spare parts management by using advance
demand information (ADI) from the point of view of an SP of capital goods.

In Chapters 2 and 3, we consider newly designed systems with a fixed lifespan.
In all systems, the same critical component occurs that is subject to random
failures. The component can be replaced preventively to avoid a costly failure. This
component always comes from either a weak population or a strong population.
This is known as population heterogeneity. The true population type is unknown to
the decision-maker, but there is a belief with respect to the probability of having
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a weak population. This belief is updated with a Bayesian approach by using the
data collected over the lifespan of the system.

In Chapter 2, we focus on a single system. We build a partially observable
Markov decision process (POMDP) model to find the optimal replacement policy
that minimizes the total cost over the lifespan of the system. It optimally balances
the trade-off between exploration, i.e., the cost of learning the true population type
(via deliberately delaying the preventive replacement time), and exploitation, i.e.,
the cost of maintenance activities. We generate insights on the optimal policy and
its structure and we compare its performance with existing heuristic approaches
from the literature, namely a myopic policy (i.e., a heuristic that does not consider
exploration) and a threshold heuristic (i.e., a heuristic that considers exploration). In
the numerical analysis, we observe that the true population type is learnt much
faster under high exploration. Additionally, the myopic policy and the threshold
policy are up to 23.6% and 5.8% costlier than the optimal policy, respectively.

In Chapter 3, we consider multiple identical systems. We investigate the effect of so-
called data pooling by updating the belief with the data collected from all systems.
We build a discrete-time POMDP model to find the optimal replacement policy
which minimizes the expected total cost throughout the lifespan. We compare
the cost per system under the optimal policy with the cost per system under two
benchmark heuristics that follow the single-system optimal policy with and without
data pooling, respectively. We investigate the effect of joint optimization and data
pooling, and the number of systems on the cost per system. In our numerical
experiments, we show that the cost reduction relative to the worst benchmark
heuristic (i.e., the benchmark heuristic without data pooling) can be up to 5.6%
for two systems, and this increases up to 14% for 20 systems.

In Chapter 4, we study multiple technical systems that are supported by a local
stock point. We consider a single critical component that occurs in each system
and is subject to random failure. After a failure, a replacement takes place. Signals
for possible failures are generated by predictive models, which constitute ADI for
the spare parts inventory. However, signals might be imperfect. We assume a
periodic-review replenishment policy. We formulate a Markov decision process
model to find the optimal inventory replenishment policy that minimizes the long-
run average cost per period. We investigate the effect of precision (i.e., the fraction
of signals that are true positive), sensitivity (i.e., the fraction of failures for which a
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signal is generated), and the demand lead time (i.e., the time between the signals
and failures) on the optimal costs. We show that a significant cost reduction can
be obtained for a moderate value of precision. For the sensitivity and demand lead
time, you always need high values in order to get a significant cost reduction.

In Chapter 5, we consider an SP that organizes maintenance visits and spare part
shipments to a customer when a failure code is reported. This code constitutes a
form of ADI. We formulate a mixed integer linear programming model to find the
optimal set of spare parts that will be sent to a customer site to resolve the failure.
The optimal set minimizes the total costs consisting of shipment costs, costs for the
return of parts that are not needed, and costs for a required second visit if the set
does not contain all parts to solve the failure. We derive analytical results for the
structure of the optimal policy. We compare the policy generated by our model to
existing benchmark policies. In an extensive numerical study, we observe that one
specific benchmark policy cannot find the optimal policy for all problem instances.
The best benchmark policy is on average 12.2% costlier than the optimal policy.
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