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Summary

Frequency domain estimation of spatially varying
transport coefficients

The quantification of transport phenomena that describe the exchange of energy,
charge, mass, or momentum, plays a key role in natural sciences and engineering.
The generalized mathematical model that describes these transport phenomena is
called the generic scalar transport model and belongs to the class of parabolic partial
differential equations (PDEs). Although transport models are often derived from
first principles, the corresponding quantities representing the key mechanisms of
transport are uncertain or unknown. As this is a common and important estimation
problem, various methods have been developed in the literature. Depending on the
field of application, the methodologies range from estimating constant coefficients
using the analytical solution of the PDE in the frequency domain, to estimating
spatially varying coefficient functions using numerical PDE approximation methods.
This thesis expands on both these approaches by extending and comparing different
frequency domain estimation approaches. The choice for frequency domain methods
is deliberate as it has numerous advantages over time-domain approaches. One of
the most important being the reduction of the PDE to a complex-valued ordinary
differential equation. Moreover, the information carrying spectral content of
perturbation experiments for PDEs is typically sparse which is exploited to its full
extend.

The first part of this thesis focuses on the extension of a maximum likelihood
estimator (MLE) for constant parameters in one spatial dimension (1D), which
allows to compare the effect of choosing different boundary conditions for the
analytical solution, namely the standard semi-infinite domain versus a locally
bounded domain. To be specific, this thesis extends both the locally bounded
and semi-infinite approach to allow for multiple arbitrary noisy measurements.
Consequently, the same (number of) measurements can be used in both approaches
allowing for fair comparison between the two. These methods applied to both
simulations and real experimental data from hydrology showing the merit of multi-
measurement estimation with local domains over the semi-infinite domain.



ii Summary

The second and largest part of this thesis focuses on developing methodologies for
estimating spatially varying coefficients for parabolic PDEs. The standard approach
is to minimize the output error, i.e. the difference between the measurements and
model value at the measurement locations. If the coefficients are unconstrained, the
estimated coefficients often contain large (non-physical) oscillatory artifacts due to
noise amplifications. Classically this is resolved by regularization, i.e. constraining
the unknown coefficients. This thesis avoids this (often) arbitrary regularization
on the unknown coefficients by minimizing the equation error, i.e. the difference
between the measured or estimated state and the state of the model. The approach
is as follows: 1) a discretization is applied to the spatial coordinate; 2) a linear
parameterization is applied to the unknown coefficients. The difference between the
degrees of freedom of this parameterization and the considered number of spatial
points directly reflects the amount of regularization applied to the estimation
problem. Moreover, the linear parameterization in combination with the equation
error results in a linear least squares problem that has a known closed-form solution.
This allows 3) direct calculation of the global optimum by solving a linear matrix
equality resulting in a low computational cost. This is an important improvement
as the estimation of spatially varying coefficients is normally associated with high
computational cost due to necessary iterative optimization methods. Hence, this
new methodology allows to quickly estimate and compare different coefficient
parameterizations in a machine learning like manner. Moreover, it allows for
estimating the spatially varying coefficients in multiple spatial dimensions, which
is typically computational heavy.

As further improvement of the 1D estimation method, the case where all
measurements contain noise is considered. Consequently, the closed-form solution
will become biased. Therefore, the methodology is extended by first determining
the probability density function of the state with Gaussian process regression and
then a MLE to find the transport coefficients.

The proposed methodologies are applied within two different fields. In the field
of hydrology, it used to estimate the mixing of groundwater and surface water
causing the exchange of contaminants affecting the water quality. While in the
field of nuclear fusion, it is used to estimate the heat and particle transport that
dictate the reactor efficiency. It is expected that these methods find their way to
more applications and help users to identify their transport models, and give rise
to a new perspective in transport coefficients estimation.
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1
Introduction

Abstract - The quantification of transport phenomena plays a key role in many
disciplines within natural sciences and engineering as transport phenomena, in its many
manifestations in physics, often affects the performance of (engineered) systems. This
thesis deals with the quantification of transport phenomena by inferring the key exchange
rates from measurements of the system dynamics. More specifically, the focus is on
spatially varying coefficient functions in the generic transport equation for a single scalar
variable, e.g., temperature. As the standard scalar transport equation is a parabolic partial
differential equation (PDE), the developed methods are generic. This will be demonstrated
by applying the methods to two examples from completely different domains that are
described by very similar equations, namely the heat transport in river stream-beds and
heat and particle transport in nuclear fusion reactors.
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1.1 Transport phenomena

The study of transport phenomena concerns the exchange of energy, charge, mass,
species, or momentum from one region (spatially defined location) to another
within systems that are constituted by a very large number of particles, such as
molecules and atoms (Mauri 2015). Transport phenomena play a key role in many
disciplines within natural sciences and engineering as transport phenomena, in
its many manifestations in physics, often affects the performance of (engineered)
systems. Examples are the transport in nuclear fusion reactors of particles, heat,
and momentum which determine the reactor’s efficiency (Ryter et al. 2010); the
mixing of groundwater and surface water that cause the exchange of contaminants
affecting the water quality (Boano et al. 2014; Schneidewind et al. 2016); medical
treatments such as local hyperthermia therapy that use heat to damage and destroy
cancer cells while causing minimal damage to normal tissues (Deuflhard et al.
2012); industrial mixing of fluids such as polymers and food by (laminar) flow
reorientation to improve mixing/heating rates (Paul et al. 2003); movement of heat
and moisture through buildings that can result in mold growth and decay of the
building (Havinga and Schellen 2019). Where engineers are mainly focused on
manipulating the systems using the transport models, scientist are more interested
in understanding the underlying processes causing transport phenomena, e.g.,
complex flow patterns caused by turbulence.

The most accurate way to describe these transport phenomena is by mathe-
matical models that capture the underlying conservation principles. As a result,
models across different disciplines share a very similar mathematical framework
such that tools in the analysis of one field can directly applied to others. However,
the common challenge among all disciplines considering transport is identifying
the (physical) coefficients in these mathematical models representing the different
exchange rates. Even though the models are often derived from first principles, the
physical coefficients, in most applications, are uncertain, unknown, or only partially
known. As the coefficients often depend on many other system variables and its
environment, the coefficient cannot be isolated and measured separately. Therefore,
the exact coefficients for these mathematical models need to be simultaneously
identified from the system evolution over time and space or calculated with high
fidelity modeling taking fundamental physical mechanisms into account. This is
possible as each of the coefficients affects the evolution of the system differently.
The effect of the four most important exchange rates (diffusion, convection, re-
action/damping, and source/sink) on the evolution of the considered transport
variable ζ, e.g. temperature or density, is shown in Figure 1.1. Hence, by measuring
the evolution of the transport variable, either during a designed experiment or
natural operation, it is possible to identify the different coefficients.
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Figure 1.1. The effect of the different (constant) transport coefficients on the transport
variable ζ as a function of time t and space x. For a fixed initial condition ζ0, the response
of ζ as a function of space is shown at different time stamps. The arrow and change in
gray scale indicate the evolution of time.

1.1.1 Perturbation studies to analyze transport
Transport can be either analyzed in steady state, i.e., without temporal changes, or
by perturbing the transport variable. When studying transport in steady state, the
different transport coefficients, such as diffusion and convection, contributing to the
steady state cannot be distinguished. Only for some special case, e.g., diffusion only
or with prior knowledge of other transport coefficients, the transport coefficient
can be determined (Lopes Cardozo 1995; Anibas et al. 2009). As this is generally
not the case, temporal dynamics are required to provide the additional information
to quantify the different transport phenomena. To measure the temporal dynamics,
the transport variable is perturbed such that it deviates from its steady state. This
is often done by modulating the (boundary) input of the system. If this perturbation
is sufficiently small, the dynamics of a nonlinear model can be accurately described
by a linear model that is obtained after linearization around the point of interest.
The general equation for the linearization of a multivariable function f(ζ) at the
operating point ζ0 is

f(ζ) ≈ f(ζ0) +∇ζf |ζ0
·(ζ − ζ0), (1.1)

where ζ ∈ Rp is the vector of p transport variables, e.g., density and temperature.
Here, only the perturbation ζ̃ = ζ − ζ0 is of our interest as this represents the
dynamics close to ζ0 and can be described by a linear model. For transport, this
often results in a parabolic partial differential equation of the following form (Lopes
Cardozo 1995):

∂

∂t
ζ̃ = A∇2

xζ̃ +B∇xζ̃ + Cζ̃ + Sζ̃ , (1.2)

where ζ̃ is a function of the spatial variable x ∈ X ⊂ Rn and the temporal variable
t ∈ T := [t0,∞). The gradient with respect to x is given by ∇x. The sink/source
vector Sζ̃ can be time and space dependent and the matrices A, B and C contain
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the transport coefficients. The matrix elements can also be functions depending on
many different terms including the values at the operating point of the transport
variables and their derivatives. Generally, only one transport variable is perturbed
and studied, i.e., one element from the vector of transport variables ζ. Therefore,
the focus is on the quantification of transport coefficients for a single scalar transport
variable.

1.1.2 Generic scalar transport

For scalar transport, i.e., one element from the vector of transport variables ζ̃

represented by the scalar variable ζ̃ : X× T → R, the transport equation is often
expressed as

∂

∂t
ζ̃ = −∇x ·

(
Ṽ ζ̃ − D̃∇xζ̃

)
+ K̃ζ̃ + P̃ φ̃, (1.3)

which is also known as the generic scalar transport model or equation (Banks and
Kunisch 1989; Baukal et al. 2000; Kuzmin et al. 2012). The expression above is
equivalent to (1.2), but the coefficients have a similar but different interpretation.
Depending on the field, different variations of the transport equation (1.2) are
preferred, where (1.3) is the most common. As the transport equation can be
the result of a linearization, the physical transport coefficients D̃, Ṽ , K̃, and P̃

may depend on the operating point ζ0 of the transport variables and their spatial
derivatives, i.e., D̃, Ṽ , K̃, and P̃ become functions of ζ0, ∇xζ0, etc. However,
in practice the underlying dependencies may be unknown and are the subject
of study. Treating the coefficients as spatially dependent, i.e., D̃ : X → R>0,
Ṽ : X → Rn, K̃ : X → R, and P̃ : X → R, allows us to avoid dealing with all these
possible dependencies. Furthermore, the spatial distribution of the sink/source P̃
is considered to be unknown, but the actuation signal φ̃ : T → R is to be either
known or measured. Finally, for well-posedness, this partial differential equation is
constrained by some linear boundary conditions that act on the edge of the spatial
domain ∂X and an initial condition at time t0 that is compatible with the model
and its boundary conditions. The boundary conditions reflect how the transport
variable ζ̃ is connected to the environment. For example, a homogeneous Neumann
boundary condition can represent a plane of symmetry or a zero heat flux.

In the literature and the remainder of this thesis the tilde notation is dropped
and the operating points are not explicitly considered or mentioned. However,
all the considered (linear) models only hold in a sufficiently small region around
the considered operating point, which is commonly accepted and can be verified
(Berkel et al. 2017a; Berkel et al. 2017b; Slief et al. 2022).
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1.2 Applications of transport phenomena covered
in this thesis

In this thesis, two different applications will be used to demonstrate the developed
methods: heat transport in river stream-beds and heat and particle transport
in nuclear fusion reactors. This section will describe the background of these
applications in detail.

1.2.1 Transport phenomena in the hyporheic zone

The hyporheic zone is the dynamic interface between an aquifer and a surface water
body, such as a stream or river. It includes the streambed, banks and part of the
riparian floodplain, and in perennial rivers (i.e., rivers carrying water throughout
the whole year) it is often water-saturated. A visualization is given in Figure 1.2.
The hyporheic zone is a habitat for a variety of interstitial organisms, a spawning
ground for fish and a rooting zone for certain aquatic plants (Schneidewind 2016).
Active mixing of groundwater and surface water leads to constant exchange of
water, heat, oxygen, carbon, nutrients and pollutants between the aquifer and
the stream. These exchange processes have consequences for the water quantity
and quality as well as for the stream ecology and health (Buss et al. 2009). Many
studies have been devoted to modeling the fluid dynamical and biogeochemical
mechanisms occurring in the hyporheic zone (Boano et al. 2014). Transport in the
hyporheic zone is inherently three dimensional (3D) and variable in time. One
of the most important quantities describing the exchange between groundwater
and streams is the water flow per unit area and time, often called the Darcy flux
or specific discharge. Direction and magnitude of this flux depend ultimately
on differences in pressure between the groundwater and the connected stream
section. These pressure heads can vary on a regional scale over many square
kilometers (i.e., hydrostatic pressure head differences) as well as on smaller scale,
e.g., due to objects on the streambed such as large cobbles or woody debris or
due to bedforms such as pool-riffle-pool sequences. These regional and local flow
components often superimpose each other. Studies have shown that regional flow
entering a stream often has a much stronger vertical component than local flow
and discharges predominantly near the stream center (Cuthbert and Mackay 2013;
Shanafield et al. 2010). Flow closer to the streambanks has in turn often much
stronger horizontal components (Lautz 2010; Reeves and Hatch 2016; Roshan et al.
2014).

A variety of field techniques has been developed to directly or indirectly de-
termine the Darcy flux, including the use of heat as a tracer (Kalbus et al. 2006).
Available temperature sensors are generally inexpensive, robust, and reliable com-
pared to other tracers such as saline solutes, fluorescent dyes, radioactive isotopes,
etc. (Schneidewind 2016; Leibundgut et al. 2009). Moreover, the natural temper-
ature fluctuations, e.g., the day-night cycle and seasonal cycle, act as a natural
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Figure 1.2. A visualization of the hyporheic zone of a typical perennial lowland river
where active mixing of surface water and groundwater occurs, eventually resulting in the
exchange of oxygen, carbon, nutrients, and contaminants between the stream and the
aquifer and leading to a hydrologically and biogeochemically coupled system. Source:
Schneidewind 2016.

perturbation signal in the surface water relative to the groundwater temperature.
The resulting heat transfer between the surface water and groundwater can then
be used to determine the Darcy flux. A simple illustrative example is given in Fig-
ure 1.3. The temperature perturbation present in the stream will be better visible
deeper in the sediment if the stream is losing water than when the groundwater
(without perturbation) is flowing into the stream. To quantify the Darcy flux, a
model describing the heat transfer is required. While fully developed 3D modeling
codes such as HydroGeoSphere (Brunner and Simmons 2011) that couple surface
and subsurface flow and transport processes have recently gained more attention,
in perennial streams with considerable vertical flow components, a 1D approach is
often applied as it is much less complex and data-intensive.

A standard modeling assumption is that the heat transport through the
streambed is governed by the processes of convection and diffusion (Stallman
1965; Rau et al. 2014; Anderson 2005). Hence, by using the convection-diffusion
model and temperature measurements at different depths as a function of time,
the convection coefficient that is linked to the Darcy flux can be estimated. The
considered convection-diffusion model for the temperature T (x, t) is given by the
following parabolic partial differential equation (PDE) (Domenico and Schwartz
1997; Boano et al. 2014; Anderson 2005)

∂

∂t
T = DT∇2T − νT∇T, (1.4)

where νT and DT represent the convective and diffusive coefficient, respectively.
This equation follows from factoring out the generic transport equation (1.3) under
the assumption of a constant flow ∇νT = 0. The Darcy flux qT is linked to the
convection coefficient νT via

νT = qT
ρwcw
ρc

, (1.5)
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Figure 1.3. The temperature perturbation present in the stream is better visible deeper
in the sediment if the stream is losing water (right) then when the ground water (without
perturbation) is flowing into the stream (left). Note that in both cases the temperature
perturbation is present at both measurement locations and the amplitude decreases deeper
in the sediment. Source: Schneidewind 2016; Stonestrom and Constantz 2003; Rau et al.
2014.

where ρwcw and ρc are material properties, i.e., ρwcw is the volumetric heat capacity
of water and ρc is the volumetric heat capacity of the water-sediment mixture. The
volumetric heat capacity is either determined by taking the product of the specific
heat capacities cw, c and the densities ρw, ρ, or from literature or lab testing
(Stonestrom and Constantz 2003; Luce et al. 2017). After obtaining the volumetric
heat capacity, the Darcy flux qT can be determined with a simple transformation
of the convection coefficient νT .

However, in most environmental settings, the thermal properties are heteroge-
neous due to the different sediment layers, or due to strongly convergent or divergent
flows. For such cases, a natural model extension is to include multi-dimensional
transport with heterogeneous coefficients, as is hinted in (Rau et al. 2012; Cuthbert
and Mackay 2013; Boano et al. 2014; Roshan et al. 2014). Therefore, this thesis will
also consider multi-dimensional transport with heterogeneous transport coefficients.

1.2.2 Transport phenomena in nuclear fusion

To use nuclear fusion for power generation, the goal is to fuse two hydrogen isotopes,
deuterium and tritium, into helium and a neutron. The difference in mass before and
after the reaction results in energy, following Einstein’s famous equation E = mc2.
The most common fusion reactor designs are based on magnetic confinement in
which the fully ionized hydrogen gas (plasma) is confined in a toroidal shape, see
Figure 1.4. The reactivity of the plasma inside the reactor is directly related to
the number of deuterium and tritium collisions. This is related to the temperature,
which allows for the two positively charged ions to overcome the coulomb repulsion,
and the density which determines the collision frequency. The third important
parameter is the rate at which the plasma loses energy by transporting energy and
particles to the plasma periphery. The typical timescale at which the plasma holds
its energy is called the energy confinement time τE . In the context of this work,
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plasma

magnetic coil

vessel

(a) Tokamak. Source: EUROfusion,
Reinald Fenke, www.euro-fusion.org

plasma

magnetic coil

(b) Stellerator. Source: Max Planck insti-
tute for Plasmaphysics, www.ipp.mpg.de

Figure 1.4. The two most common magnetic confinement fusion reactor designs, the
tokamak (1.4a) and the stellerator (1.4b).

we note that the energy confinement time is associated with transport notably
τE ∝ D−1. The triple product of plasma density n, temperature T , and confinement
time τe balances the reactivity with the energy losses. If the triple product is above
some threshold L, the fusion reaction provides net power (Wesson 2004),

nTτe ≥ L. (1.6)

Due to the density limit in magnetic confinement reactors machines (Greenwald
2002) and the optimal temperature range between 150 to 200 million degrees Kelvin,
the only free parameter to increase the triple product is the energy confinement
time τE that depends on transport. Furthermore, the threshold L also depends on
the density and temperature distributions. Hence, transport phenomena determine
the performance and efficiency of nuclear fusion reactors. Therefore, transport is
intensively studied within the field of nuclear fusion (Lopes Cardozo 1995; Ryter
et al. 2010).

The plasma organizes itself in toroidal surfaces of constant magnetic flux and
temperature. Therefore, transport of heat and particles is perpendicular to these
surfaces and can be described by partial differential equations with a single spatial
(radial) coordinate ρ ∈ [0, 1], see Figure 1.5. However, the heat and particle
transport are coupled as the particle flux Γ, electron thermal flux qe, ion thermal
flux qi, and current density j are driven by the gradients of the electron density
ne, electron temperature Te, ion temperature Ti, and the electric field potential E
(Bourdelle 2005; Citrin et al. 2017; Garbet et al. 2004; Ida 1998; Köchl 2009; Ryter
et al. 2010; Mantica et al. 2008). As these relations can be nonlinear and depend
on the variables themselves, linearized models are used.

For example, consider the electron particle flux Γ described by the diffusion-
convection model

Γ = −D∇ne − V ne, (1.7)
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Figure 1.5. Cross section of a magneti-
cally confined plasma and the normalized
radius ρ ∈ [0, 1], that is zero in the center
and one at the last closed flux-surface,
which is approximately the edge of the
plasma. Adopted from Berkel 2015.

200 220 240
0

100

200

300

400

500

600

700

time [ms]

P
e
c
rh

[k
W

],
T
e

[eV
] Te(ρ1)

Te(ρ2)

Te(ρ3)

Pecrh

Figure 1.6. ECE measurements of
the electron temperature Te(ρ) from an
ECRH perturbation experiment in the
RTP-tokamak.

where the transport coefficients D, V are assumed to depend on ne, ∇ne, Te,
and ∇Te, i.e., D and V are functions. The linearization of the particle flux
Γ̃(ρ, t) = Γ(ρ, t)− Γ0(ρ) around the operating functions O = {Γ0, ne,0, Te,0, . . .} is
given by

−Γ̃ = D|O ∇ñe + V |O ñe

+

(
∇ñe

∂D

∂∇ne

∣∣∣∣
O
+ ñe

∂D

∂ne

∣∣∣∣
O
+∇T̃e

∂D

∂∇Te

∣∣∣∣
O
+ T̃e

∂D

∂Te

∣∣∣∣
O

)
∇ne,0

+

(
∇ñe

∂V

∂∇ne

∣∣∣∣
O
+ ñe

∂V

∂ne

∣∣∣∣
O
+∇T̃e

∂V

∂∇Te

∣∣∣∣
O
+ T̃e

∂V

∂Te

∣∣∣∣
O

)
ne,0.

(1.8)

The electron particle flux and the electron temperature are coupled as both depend
on each other. Assuming that the coupling is weak and using sufficiently small
perturbations in the density, these contributions can be neglected, thus T̃e ≈ 0

and ∇T̃e ≈ 0. Furthermore, the particle flux cannot be measured directly, but the
electron density can, e.g., with Thomson scattering, (far infrared) interferometry,
or reflectometry (Hutchinson 2002). Consequently, the considered model describes
the electron density rather than the flux. The evaluation of the electron density is
described by the equation for the conservation of particles (Gentle 1988; Bishop
and Connor 1990; Haas et al. 1991) that yields

∂

∂t
ñe = −∇Γ̃ + S̃p, (1.9)

where S̃P is a particle source/sink. Substituting the particle flux (1.8) into (1.9)
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with T̃e = 0 and ∇T̃e = 0 results in

∂

∂t
ñe = −∇

((
D|O +

∂D

∂∇ne

∣∣∣∣
O
∇ne,o +

∂V

∂∇ne

∣∣∣∣
O
ne,o

)
∇ñe

+

(
V |O +

∂D

∂ne

∣∣∣∣
O
∇ne,o +

∂V

∂ne

∣∣∣∣
O
ne,o

)
ñe

)
+ S̃p,

(1.10)

which can be simplified to the generic scalar transport equation

∂

∂t
ñe = −∇

(
D̃∇ñe + Ṽ ñe

)
+ S̃p (1.11)

with the new diffusion and convection coefficients D̃ and Ṽ . Note that even
when D and V are constant, the dependency on the other variables makes D̃
and Ṽ spatially varying functions. So again, D̃ : X → R>0 and Ṽ : X → R.
Hence, estimating D̃ and Ṽ as spatially varying functions simplifies the estimation
problem by eliminating the dependency of the other variables (ne, ∇ne, Te, and
∇Te). Moreover, by estimating D̃ and Ṽ around different operating points, a
new estimation problem can be formulated to determine the dependency on the
other variables. In this way, the complicated task of estimating all the transport
coefficients and its dependencies is split into separate smaller problems. This thesis
only deals with the estimation of the coefficients as space dependent parameters
and does not consider the dependencies.

The derivation of the particle transport in (1.11) can equivalently be performed
for the (electron) heat transport (Gentle 1988; Bishop and Connor 1990; Haas et al.
1991; Lopes Cardozo 1995) which results in

∂

∂t
T̃e = −∇

(
D̃∇T̃e + Ṽ T̃e

)
+ S̃q. (1.12)

For electron heat transport, the perturbation required to estimate the coefficients is
introduced by modulating a heat source S̃q. There are different methods for heating,
of which electron cyclotron resonance heating (ECRH) is used most commonly for
perturbative experiments. The reason is that ECRH provides localized heating, of
which the deposition is often assumed to be well known from theory. The resulting
temperature evolution is then measured at different spatial position via electron
cyclotron emission (ECE) (Wesson 2004; Hutchinson 2002). As this heating is
applied locally, there are two common approaches to determine the transport
coefficients. Either, it is assumed that the source is placed completely outside
the domain of interest and the resulting temperature perturbation is considered a
boundary input, i.e., S̃q = 0 (Lopes Cardozo 1995; Ryter et al. 2010). Alternatively,
the source is placed within the domain of interest and needs to be estimated
simultaneously with the other transport coefficients. The simultaneous estimation
of the source and transport coefficient is particularly important as various errors
and plasma conditions can lead to source distributions that are broader than
predicted (Kirov et al. 2002; Chellaï et al. 2018; Chellaï et al. 2021; Brookman
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et al. 2021; Slief et al. 2022; Slief et al. 2023). Examples are plasma instabilities
such as edge turbulence and misalignment errors originating from the design and
uncertainty of the launching system. For the estimation of the source distribution,
it is assumed that the source is spatially fixed (with the fixed spatial source profile
P̃ : X → R), and that the intensity of the source can be varied over time by the
modulation signal φ̃ : T → R, i.e., S̃q = P̃ φ̃. This is a consequence of the linearity
assumption by applying a perturbation around an operating point.

Both heat and particle transport adhere to the generic scalar transport de-
scription introduced in (1.3). Therefore, this thesis deals with the (simultaneous)
estimation of the transport coefficients D̃, Ṽ , K̃ and the source P̃ . The reac-
tion/damping term K̃ is not considered for these applications, as K̃ has a negligible
effect on the transport variable (Boorn 2021) and is therefore intrinsically difficult
to estimate. However, for completeness this coefficient is considered as it may be a
more dominant term in other fields.

1.3 Methods for estimating transport coefficients
In contrast to the transport variables, e.g., temperature, transport coefficient can
generally not be measured directly. To accurately describe transport phenomena
with a mathematical model, the corresponding transport coefficients need to be
identified. Typically, the identification method use spatio-temporal measurements
of the transport variable. This is a generic problem. As researchers across many
different disciplines face the same challenge, many different methods for this
identification have been developed.

Below, we present an overview the different identification methodologies in the
time domain methods and frequency domain.

1.3.1 Time domain methods
The classic overview of time domain methods for the estimation of transport
coefficients is given in the monograph by (Banks and Kunisch 1989) and references
therein. However, these methods often consider constant coefficients, and known
initial and boundary conditions. Therefore, different methodologies have been
developed to deal with spatially varying parameters (Kravaris and Seinfeld 1985;
Banks and Lamm 1985; Kunisch and Peichl 1991; Mochi et al. 1999), unknown
initial conditions (Eason 1976; Roques et al. 2014; Zhao et al. 2016), and unknown
boundary conditions (Eason 1976; Aihara and Bagchi 1988; Rossi et al. 2004;
Ebrahimian et al. 2007). In general, all the methodologies take a similar approach.
The transport coefficient estimation problem is posed as an optimization problem
with the goal to minimize the difference between the measurement data and the
model values at the dedicated set of sample points. In some special cases, such as
constant parameters, the analytical solutions are known and can be used. When
the analytical solution is unknown, the model is solved using numerical methods.
To do so, both the spatial as well as the temporal coordinate are discretized.
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For the spatial coordinate, the most common approaches are finite difference,
finite volumes, finite elements, or spectral decomposition (Banks and Kunisch
1989; Eason 1976; Belov 2002; Vogel 2002; Tarantola 2005; Kirsch 2011). This
reduces the problem to a system of coupled ordinary differential equations which is
solved using standard numerical methods. However, as both the solution to the
model and optimization problem are solved iteratively, the computational cost can
increase rapidly. Another problem that arises in case of non-constant coefficients
are highly oscillatory artifacts due to noise amplifications (Vogt et al. 2010). Hence,
regularization plays an important role for these methods (Banks and Kunisch 1989;
Vogel 2002; Ito and Kunisch 2008).

New advancements in the field of machine learning brings alternative promising
methods to estimate transport coefficients (Benosman and Farahmand 2017; Raissi
et al. 2017; Rai and Tripathi 2019; Raissi et al. 2020). Where traditional time-
domain methods first need to compute the solution to the model and then determine
the error by comparing it to the measurement data, machine learning approaches
interpolate the input and output data where the model acts as a constraint between
the two interpolations. In this way, the solution to the model and the best parameter
fit are solved simultaneously. Although, the above four references mainly cover
constant parameters, it should also be applicable for spatially varying coefficients.

The main disadvantages of time-domain methods is that they either need to
estimate the time derivative that is very sensitive to noise or they have to compute
the solution to the model for each step in the iterative optimization routine when
estimating the transport coefficients. Transforming the problem to the frequency
domain has many advantages, including not having to deal with the time evolution
or time derivative.

1.3.2 Frequency domain methods
By applying the Fourier transform to the linear or linearized model as well as to
the measurement data, the model is cast into the frequency domain. In this way,
the partial differential equation describing the transport phenomena (1.3) becomes
a complex-valued ordinary differential equation (ODE)

iωZ̃ = −∇x ·
(
Ṽ Z̃ − D̃∇xZ̃

)
+ K̃Z̃ + P̃ Φ̃, (1.13)

with angular frequency ω and the Fourier transformed variables Z̃ = F{ζ̃} and
Φ̃ = F{φ̃}, where F is defined as the (discrete) Fourier transform. The most well
known frequency domain approaches exploit this by using the analytical solution
to the model by considering a constant diffusion and convection term, no damping
term, no source term, and one boundary as an input where the perturbation is
diminished at infinity (Lopes Cardozo 1995; Luce et al. 2013). The two (constant)
coefficients are then estimated using the amplitude and phase difference between
two spatial points at a single frequency. To put it differently, the frequency response
function G(ω) = Z(x2,ω)

Z(x1,ω) is estimated using a single frequency. In this way the



1.3. Methods for estimating transport coefficients 113

10−1 100 101
10−2

10−1

100

f

|G
(f

)|

10−1 100 101
−180

−90

0

f

∠
G
(f

)

(a) diffusion D

10−1 100 101
10−2

10−1

100

f

|G
(f

)|

10−1 100 101

−150

−100

−50

0

f

∠
G
(f

)

(b) convection V

10−1 100 101
10−2

10−1

100

f

|G
(f

)|

10−1 100 101

−150

−100

−50

0

f

∠
G
(f

)

(c) damping K

Figure 1.7. The effect of the different (constant) transport coefficients on the frequency
response function G(f) = Z(x2,f)

Z(x1,f)
on a semi-infinite domain. The gray scale indicates the

value of the coefficient, where a lighter color means a larger value. The used ranges are
D ∈ [0.1, 10], V ∈ [0, 1] and K ∈ [−10, 0].

number of equations and unknowns are equal causing these methods to be very
susceptible to noise. On the other hand, these frequency response functions based
on the semi-infinite domain clearly illustrates how the different transport coefficients
manifest in the frequency domain (see Figure 1.7).

Therefore, these methods have been put forward by including the damping term,
estimating the uncertainty, using a maximum likelihood estimator, using multiple
frequencies (Berkel et al. 2013; Vandersteen et al. 2015; Sohn and Harris 2021), and
multiple spatial measurement locations (Vandersteen et al. 2015). In this way, the
parameter estimation problem is overdetermined and less prone to noise. However,
these methods all have the underlying semi-infinite domain assumption, i.e., the
applied perturbation signal that drives the system away from it’s steady state can
only travel in one direction and the parameters are assumed to be constant from
the measurement interval to infinity. To isolate the coefficient estimation problem
to the measured (local) domain, (Berkel et al. 2014c; Schneidewind et al. 2016;
Berkel et al. 2019) uses three measurements, two as boundary conditions and one
as an output. By considering constant parameters in this isolated local domain,
analytical transfer functions in combination with a maximum likelihood estimator
are used to determine the coefficients.

Analyzing spatially varying coefficients, there is no generic analytic transfer
available. Therefore, (Das et al. 2019) uses a numerical approximation of the
transfer function by parameterizing the unknown coefficients including the source,
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and the measurements as boundary conditions. The spatially varying coefficients
are estimated by minimizing the (weighted) least squares error between the mea-
surements and the outputs generated by the transfer functions. Similar to the time
domain methods, this methodology suffers from highly oscillatory artifacts caused
by noise amplifications.

All the previously mentioned frequency domain methods use transfer functions
to estimate the transport coefficients. Another approach is to consider the transport
equation after integration over the spatial coordinate (Escande and Sattin 2012;
Sattin et al. 2012; Brookman et al. 2021; Slief et al. 2022). This removes one of
the spatial derivatives. Consequently, the model does no longer include spatial
derivatives of the coefficients. Under the assumption that the source is either
known or outside the domain, the spatially varying coefficients can be determined
separately at each spatial point by solving a linear regression problem (Escande
and Sattin 2012; Sattin et al. 2012). For the simultaneous estimation of the
coefficients and the source, the unknown coefficients are first parameterized and
then determined by minimizing a least squares criterion that considers multiple
frequencies and spatial measurement locations (Brookman et al. 2021; Slief et al.
2022).

Generally speaking, frequency domain methods for constant parameters and
noisy measurements are amply available in literature (Lopes Cardozo 1995; Luce
et al. 2013; Berkel et al. 2013; Vandersteen et al. 2015; Berkel et al. 2014c;
Schneidewind et al. 2016; Berkel et al. 2019; Sohn and Harris 2021), while for more
complex models, e.g., spatially varying coefficients, literature is scarce, especially
when considering measurement uncertainty.

1.3.3 Time versus frequency domain
In this thesis the considered models and its dynamics are linear, therefore the time
and frequency domain are equivalent. However, the access to information differs
from one domain to the other. This is discussed in detail in (Pintelon and Schoukens
2012, pp. 522-527). Here, we briefly highlight a few of the main (dis)advantages
for estimating transport coefficients. Naturally, for real-time applications, the time
domain methods have numerous advantages over the frequency domain. However,
the focus of this thesis is on parameter identification of recorded experiments
instead of real-time applications. The use of recorded experiments allows noncausal
data processing methods before the coefficient identification step, and gives working
in the frequency domain the following advantages over the time domain:

1) The information carrying spectral content of perturbation experiments for
PDEs is typically sparse. By only considering the information carrying
frequencies, i.e., with a significantly high signal-to-noise ratio, the resulting
datasets are smaller and reduce the required computational effort during the
identification step.

2) As the information carrying spectrum is typically sparse and the added
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stochastic uncertainty is spread over the complete spectrum, the effect of
noise on the information carrying spectrum is significantly reduced.

3) The standard assumption of circular complex normal distributed noise on
the Fourier coefficients is a weak assumptions on time domain noise distribu-
tion as the central limit theorem shows that several different additive noise
distributions result in circular complex normal distribution of the Fourier
coefficients (Billingsley 2012).

4) The PDE reduces to a limited set of complex-valued ordinary differential
equations, which significantly reduces the analysis computation. This property
is commonly used in the standard frequency domain methods for constant
parameter (Luce et al. 2013; Lopes Cardozo 1995).

Although there are many advantages of working in the frequency domain, literature
on frequency methods to estimate spatially varying coefficients is scarce. This in
contrast with time domain methods that have received a lot of attention throughout
the years. Also in the last years, recent advancements regarding machine-learning
are brought to the field of transport coefficient identification in time domain, but
not in the frequency domain. Hence, the aim of this thesis is to close the gap
between time and frequency domain methods for the identification of spatially
varying coefficients and explore new avenues for machine-learning approaches in
the frequency domain.

1.4 Objective and contributions
As explained in the previous sections, estimation of spatially varying coefficients
in a generic scalar transport model is crucial for many applications and can be
the first step for identifying coefficients that depend on other variables. As these
coefficients cannot be measured directly, they need to be inferred from limited
measurement data that can be polluted with (or otherwise affected by) noise. This
noise may be seen as stochastic uncertainty. Moreover, it is important to note
that our goal is to quantify coefficients that have a physical meaning rather than
minimizing the modeling error. Therefore, the research question for this thesis is
formulated as follows:

How can we accurately estimate the physical spatially varying coefficients in
a generic scalar transport model in the presence of stochastic uncertainty?

The following sub-research questions are formulated to provide the path towards
answering the main research question:

• How does data processing and modeling choices affect the estimated coeffi-
cient?



16 Chapter 1. Introduction1

• When does the estimation of spatially varying coefficients require regulariza-
tion and how does this affect the estimates?

• How to deal with stochastic uncertainty when estimating spatially varying
coefficients?

The first sub-question: How does data processing and modeling choices
affect the estimated coefficient? is answered via the following two contributions
and are covered in Chapters 2 and 3.

Contribution I In this thesis it is demonstrated how advanced data pro-
cessing can significantly improve the coefficient estimates.

For the coefficient estimation process it is important that the model and
experimental data are compatible. For example, the frequency domain models
only consider the forced response of the system, while the measurements can also
contain transients and noise. To make the model and measurements compatible,
the unwanted contributions, in our case transients and noise, are removed by the
local polynomial method (Pintelon et al. 2010a; Pintelon et al. 2010b; Pintelon and
Schoukens 2012). As the importance and effect of correct data processing is not
widely available within the different communities, we published work in the nuclear
fusion and hydrology community showing the quality difference between processed
and non-processed experimental datasets (Berkel et al. 2020; Berkel et al. 2023).
Moreover, we show how this difference affects the coefficient estimation process
(Berkel et al. 2023).

Contribution II This thesis provides an extension of a maximum likelihood
estimator for constant transport coefficients to include multiple arbitrary
sensor locations. This extension enables the comparison on how different
choices for the boundary conditions affect the coefficient estimates.

In the field of hydrology, the semi-infinite domain is still the leading model
choice that is used to estimate transport coefficients. With the semi-infinite domain,
one measurement is used as boundary condition while all other measurements are
considered as outputs, implying that all parameters are constant for all spatial
values up to infinity. The method introduced in (Berkel et al. 2014c; Schneidewind
et al. 2016) uses two measurements as boundary conditions while considering
only one measurement as output. In this way, the estimation problem is isolated
to the measured domain where the coefficients are only assumed to be constant
over this locally bounded domain instead of over an unbounded spatial domain.
For a fair comparison with the semi-infinite model, the method in (Berkel et al.
2014c; Schneidewind et al. 2016) has been extended such that it can consider any
number of outputs. In this way, a fair comparison between the semi-infinite and
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bounded domain model assumption can be made and it demonstrates that the
bounded-domain model is the safer model choice. With a simulation example
this thesis shows that the semi-infinite model can estimate the groundwater flow
with a wrong direction. Application on an experimental dataset from the field of
hydrology, also given in this thesis, shows that locally bounded domain results in
better and more trustworthy estimates. The extension of the bounded domain
model and the effect of the semi-infinite domain model are published in (Kampen
et al. 2022d).

The next sub-question: When does estimating spatially varying coeffi-
cients require regularization and how does this affect the estimates? is
answered by the following contributions and covered in Chapter 4.

Contribution III This thesis contributes in formulating the estimation
of spatially varying transport coefficients as a linear least squares problem
where the global optimum is given by a closed-form solution. It is shown
that this closed-form solution makes the methodology fast and reliable.

The standard approach towards spatially varying coefficient estimation is to
minimize the output error, i.e., the difference between the measurements and
model value at the measurement locations. Typically, the models are high-order
approximations of the underlying infinite dimensional model. If the coefficients or
model values in-between measurement locations are unconstrained, the estimated
coefficients often contain large (non-physical) oscillatory artifacts. Classically
this is resolved by regularization, i.e., constraining the unknown coefficients. By
minimizing the equation error, i.e., the difference between the measured or estimated
state and the model state, the estimation problem can be formulated as a linear
least squares problem that allows direct calculation of the global optimum by
solving a linear matrix equality against a low computational cost.

Contribution III.A In addition to contribution III, it is shown that the
least squares optimization technique for coefficient estimation gives more
insight in how regularization affects the coefficient estimation.

The fast computation of the optimum allows to test different parameterizations
of the coefficient functions and investigate the effect on the estimated coefficients
in a machine learning like manner. In this way, it is shown how different parame-
terizations of the coefficients act as regularization and how it affects the estimates.
Moreover, using equation error formulation in the frequency domain clearly shows
where en when regularization is applied and the nature of the oscillatory artifacts.
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These results are published in (Kampen et al. 2021c).

Contribution III.B In addition to contribution III, it is shown that the
least squares optimization technique can be extended such that it can deal
with coefficients for transport in multiple spatial dimensions.

For nD transport coefficients, the number of variables increases rapidly. Having
access to a method that can estimate the transport coefficients against a low
computational cost while guaranteeing the (global) optimal solution is important.
Extending the methodology that considers the estimation of 1D spatially varying
coefficients as a linear least squares problem such that it is applicable for the
estimation of multidimensional transport coefficients, results in a closed-form
solution that has a low computational cost and guarantees the optimal solution.
This extension is published in (Kampen et al. 2023b).

The last sub-question: How to deal with stochastic uncertainty when
estimating spatially varying coefficients? is answered by the following contri-
butions and covered in Chapter 5.

Contribution IV This thesis contributes in adding state estimation via
Gaussian process regression and maximum likelihood estimation of the coef-
ficients to deal with stochastic uncertainty present in the measurements.

In this thesis the estimation of spatially varying coefficient is posed as a linear
least-squares problem. In case the measurements are polluted with noise, i.e., with
stochastic uncertainties, the closed-form solution of this method is biased. To
deal with these uncertainties in an optimal way, Gaussian process regression is
used to determine the probability density function of the state. Then, a maximum
likelihood estimator is used to determine the spatially varying coefficients that are
most likely to result in the estimated probability density function of the state. This
work is published in (Kampen et al. 2023a).

Together these contributions help answering the research question How can
we accurately estimate the physical spatially varying coefficients in a
generic scalar transport model in the presence of stochastic uncertainty?
This is reflected by the last contribution:

Contribution V This project delivered MATLAB® implementations of all
the proposed methodologies that are applied and verified on both, simulated
and experimental data.

The working of the developed methods has been verified using simulations by
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implementing them in MATLAB®. Thereafter, these implementations have found
their way to practice as they have been used to estimate transport coefficients from
experimental data within two different fields, namely hydrology and nuclear fusion
(Kampen et al. 2022d; Schneidewind et al. 2021; Slief et al. 2022; Slief et al. 2023).

1.5 Outline
The outline of the thesis follows the contributions as mentioned above. First, the
data processing is covered in Chapter 2. Thereafter, in Chapter 3, the constant
parameter case with stochastic measurement uncertainty is covered, including the
effect of different model assumptions regarding the boundary conditions. Then, in
Chapter 4, the focus is on a new closed form solution to estimate spatially varying
coefficients. Starting with the 1D problem without uncertainty, to gain more insight
in the effect of highly oscillatory artifacts and how to overcome them. In Chapter 5,
the closed form solution is extended to make it applicable for transport in multiple
spatial dimensions. In Chapter 6, the closed form solution is replaced with a
maximum likelihood estimator such that it can deal with stochastic uncertainties
in an optimal way. This maximum likelihood estimator requires probability density
function of the state that is determined via Gaussian process regression. Finally, in
Chapter 7, the research questions are answered followed by a discussion on future
work. As the chapters are based on individual publications, all chapters can be
read individually.
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A framework for reliable

coefficient estimation

Abstract - Monitoring hyporheic flow and exchange fluxes between groundwater
and surface water is vital for integrated water resource management, analysis of solute
transport and water chemistry, as well as predictions of ecological implications. The last
decade has seen an increased interest in field techniques that use analysis of temperature
time series at two or more depths in streambed sediment to estimate hyporheic and
exchange fluxes because of their low cost, robustness, and ease of installation. The steps
necessary to systematically address this estimation problem are often intermingled in the
literature. This conflation of steps has perhaps limited advances in better characterizing
the fluxes and their uncertainty such as the faux requirement for single-sinusoid forcing.
Therefore, the intent of this work is to clearly outline the steps and choices inherent to
the analysis of temperature time-series from the viewpoint of a system theory perspective.
Thereby, we clarify potential error sources at each step, and present signal processing and
estimation methods in hope of clarifying misconceptions and providing a sound theoretical
basis from which the field can progress on the flux estimation challenge. To support this
clarification, signal processing and parameter estimation choices and their quantitative
consequences are illustrated using a laboratory dataset.

The content of this chapter is based on: Berkel, M. van, C. H. Luce, R. J. R. van Kampen,
et al. (2023). “A framework to improve the reliability of temperature-based estimates of flow and
diffusion in streambeds with frequency domain examples”. In: in preparation.
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2.1 Introduction
Inverse modeling approaches using temperature measurements in streambeds are
some of the key techniques used in quantifying exchange fluxes between rivers and
groundwater (Anibas et al. 2016; Bryant et al. 2020; Irvine et al. 2017; Jensen and
Engesgaard 2011; Zhou et al. 2017). Understanding the exchange fluxes between
groundwater and surface water is essential for evaluating stream metabolism and
biogeochemical cycling in river corridors (Boano et al. 2014; Boulton 2007; Boulton
et al. 1998; Boulton et al. 2010; Brunke and Gonser 1997; Brunke and Gonser 1997;
Buffington and Tonina 2009; Harvey and Gooseff 2015; Krause et al. 2011; Krause
et al. 2017) and to better understand the ecological functioning of hyporheic zones
and their role and interactions with river floodplains and the wider catchment
(Baxter and Hauer 2000; Boulton et al. 2010).

A number of different methodological approaches have been developed in recent
years, allowing increased convenience in estimation of fluid fluxes and thermal
properties in streambeds from point observations of temperature time series (Ford
et al. 2021; Irvine et al. 2015; Koch et al. 2016; Munz and Schmidt 2017). Many of
these approaches are based on the initial assumptions framed by (Stallman 1965)
and later extended by (Goto et al. 2005; Hatch et al. 2006; Keery et al. 2007). At the
same time, perceived limitations of Stallmans approach have been discussed as well
(e.g., (Briggs et al. 2014; Chen et al. 2018; Lautz 2010; Lautz 2012; Rau et al. 2010)).
Here, we introduce a generalization of the model of Stallman in terms of system
theory representation, which allows the connection between Stallman’s original
work and multi-frequency approaches in terms of system theory. This requires
a clear interpretation of the different components in the estimation procedure,
such as the roles of model framing relative to choices in data processing, and how,
when they are interchangeable and when not. Although not demonstrated here,
this extension is also important for heterogenous and multi-dimensional parameter
estimation challenges. Therefore, this work discusses an integrated framework for
the processes of estimating parameters using heat as a tracer in the following three
steps:

1) Model selection (Section 2.2);

2) Signal processing (Section 2.3);

3) Estimation methods (Section 2.4).

Evaluating these components and showing their links will allow scientists to improve
their decisions about method selection and understand the consequences of the
individual decisions. We begin with a discussion of the model choices and how they
frame and constrain solution methods and sensitivities to different errors. We follow
this by quantitatively demonstrating the consequences of multiple choices available
for both signal processing and parameter estimation based on the signal processing
results. This allows quantitative evaluation of alternative signal processing and
parameter estimation approaches within the range of suitable problem framings.
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The signal processing and parameter estimation techniques that we evaluate in this
work are only available for some model forms. When these signal processing and
parameter estimation techniques are performed in a way that improves precision
and provides information about uncertainty, there is, in turn, capacity to evaluate
the appropriateness of the model form, closing the loop.

An important contribution in this paper is the rigorous and independent demon-
stration of the merit of specific choices in the signal processing and parameter
estimation steps in the context of real measurements, which we have not seen in the
literature previously and which has been missing from our previous publications.
As such, this work is closely linked to our multi-frequency work (e.g., (Kampen
et al. 2022d; Vandersteen et al. 2015)) and choices made therein, which in turn is
based on system theory considerations (Antsaklis and Michel 1997; Curtain and
Zwart 1995; Hespanha 2018; Khalil 2002; Oppenheim et al. 1997; Pintelon and
Schoukens 2012; Söderström and Stoica 1989). This effort is supported by applying
the method steps to experimental data from a laboratory set-up taking it away
from a pure mathematical analysis while keeping the outcomes comprehensible and
demonstrating the merit of specific choices for a known model. This shows that
spectral components contribute important system information, i.e., its parameters,
and the merit of methodologies to optimally extract them from the data and process
them to achieve model parameter estimates. This also allows to compare different
combinations of spectral information showing that even in total absence of strong
sinusoidal component such as the diurnal cycle or a self-induced forcing, still the
intrinsic parameters can be estimated from the data which resembles more noise
than signal.

2.2 Model structure choices and their consequences
A model (taking a broad sense of the word) defines a relationship between the
data and the parameters that we want to estimate. Model selection is consequently
the starting point of every (model) parameter estimation exercise. In the context
of estimating surface water-groundwater interaction using heat as a tracer, the
model we consider is the advection-diffusion equation (ADE), which is based on
the energy balance, and the parameters of interest are the thermal properties and
fluid velocity. As such, inflow and outflow of energy are defined via the boundaries
and the initial state of energy, i.e., boundary conditions and initial conditions. The
1D model that is commonly used to determine specific discharge in and across
streambeds (e.g., (Anibas et al. 2018; Gariglio et al. 2013; Jensen and Engesgaard
2011; Lautz 2012)) is given by,

∂T (z, t)

∂t
=

k

cmρm

∂2T (z, t)

∂z2
− qf

cfρf
cmρm

∂T (z, t)

∂z
, (2.1)

where T is the temperature, t is time, z is the vertical coordinate into the bed,
k is the thermal conductivity of water and sediment, qf is the flux of water per
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unit area, c is the specific heat of either the mixture (m subscript) or water (f
subscript) and ρ is the density. Furthermore, (2.1) is incomplete without defining
the initial condition at T (z, t = 0) and the boundary conditions on the domain
[z1, z2], e.g., T (z1, t) = f1(t) and T (z2, t) = f2(t).

The ADE as written in (2.1) represents the specific case where everything is
uniform in space and invariant in time with the exception of T (z, t). Further, in this
common usage, there is no dependency of the model parameters on temperature
or any other parameter. It is important to analyze some other representations
of the ADE, both in terms of parabolic partial differential equations (PDEs) and
boundary conditions, to recognize the choices we make when selecting a particular
solution method.

2.2.1 Variations on the (linear) advection-diffusion equation
To illustrate how the representation of (2.1) influences parameter estimates, we
analyze the ADE in more general terms

∂ (cmρmT (z, t))

∂t
=

∂

∂z

(
k
∂T (z, t)

∂z

)
− ∂ (cfρfqfT (z, t))

∂z
, (2.2)

where dependencies of the model parameters on temperature and other varying
model parameters (can) exist. This results in a number of different models depend-
ing on how the parameters (cm, m, k, qf ) are expected to vary in time and space,
which are summarized in Table 2.1. We show how these models belong to different
model classes and that the methods we can use to solve them are different. For
simplicity, we only consider here one spatial dimension (1D) and assume unknown
linear boundary conditions and initial conditions (see Section 2.2.3). A 1D approach
places constraints on the mass balance, allowing simplifications that would not
exist under multi-dimensional flow conditions.

There are a few points worth noting from Table 2.1 with respect to selecting
solution methods. Both (2.1) and (2.3) are linear, time invariant models and have
well-defined Fourier representations (similar to (Stallman 1965)). Whereas (2.4)
and (2.5) belong to the class of time-varying models and as such do not have a
well-defined Fourier representation. They should be analyzed in the time domain or
using joint Fourier-time representations (Lataire and Pintelon 2011), the simplest
being a Fourier transform of a sliding window (Luce et al. 2013). They can also
be handled by fitting parameters for finite difference implementations of (2.4)
when supporting information is available (e.g., (Koch et al. 2016; McAliley et al.
2022)). Moreover, analyzing parameter dependencies in this framework shows that
the estimated model parameters will unlikely be the averaged model parameters
over time, which is empirically supported by (DeWeese et al. 2017). Systematic
treatments of (2.4) and (2.5) are a field of ongoing research.

A more recent class of systems that is being considered in heat transport (Zhang
et al. 2021) is based on fractional models (Benson et al. 2000; Schumer et al. 2001;
Schumer et al. 2003a; Schumer et al. 2003b) which are, for instance, used when there
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Table 2.1. Partial differential equations describing 1D heat transport given particular
assumptions about parameter variations in time and space. Subscripts m, s, f denote
mixture, solid, and fluid (water) fractions.

coefficient
properties model variations

uniform
time-invariant

∂T

∂t
=

k

cmρm

∂2T

∂z2
− qf

cfρf

cmρm

∂T

∂z
(2.1)

non-uniform
time-invariant

∂T

∂t
=

k(z)

cm(z)ρm(z)

∂2T

∂z
+

(
∂k(z)

∂z
− cfρf qf (z)

)
1

cm(z)ρm(z)

∂T

∂z
(2.3)

uniform
time-varying

∂T

∂t
=

k(t)

cm(t)ρm(t)

∂2T

∂z2
− qf (t)

cfρf

cm(t)ρm(t)

∂T

∂z
(2.4)

non-uniform
time-varying

∂T

∂t
=

1

cm(z, t)ρm(z, t)

[
k(z, t)

∂2T

∂z2
+

(
∂k(z, t)

∂z
− cfρf qf (z, t)

)
∂T

∂z

]
(2.5)

is heterogeneity in the fluid velocity field. The classification of fractional models
depends on the definition of fractional derivatives in these models. In case they have
a suitable definition in the Fourier domain and/or Laplace domain, such as Riesz
and Caputo fractional derivatives (Zhang et al. 2021), they generally belong to the
class of linear time invariant models (Magin 2004) and all the signal processing
tools described in Section 2.3 apply. The advantage of fractional descriptions is
that they no longer need rational forms of the Laplace variable s or

√
s (appearing

in the Stallman solution), but now also fractions can be used, i.e., sα with α being
some non-integer (Zhang et al. 2021). Hence, fractional descriptions provide much
more freedom. The downside is that these models are more difficult to interpret as
often the physical relationship to the model parameters is reduced.

2.2.2 Boundary conditions for the advection-diffusion equa-
tion

The conceptual model includes not only the ADE in (2.1), but also the corresponding
boundary and initial conditions. The initial conditions are generally ignored in
the frequency representation of (2.1) but will be considered in more detail in
Section 2.3.
For the problem in (2.1) to be well-posed, a unique solution must exist, and
corresponding boundary conditions need to be defined. Consequently, inverse
solutions for the estimation of parameters in the ADE usually apply a linear
boundary condition of some form. For our ADE proposed by (Stallman 1965) and
explored by others since (Goto et al. 2005; Hatch et al. 2006; Keery et al. 2007;
Luce et al. 2013; Vandersteen et al. 2015), a Dirichlet type top boundary condition
(temperature directly specified over time) is used (e.g., T (z = z1, t) = f(t))
while the lower boundary condition is the semi-infinite boundary condition with
temperature specified as a constant as z goes to infinity. Hence, the semi-infinite
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boundary condition implicitly assumes uniform conditions to substantial (infinite)
depth, which is rarely the case. Alternatively, a stated bottom boundary condition
at a specified depth can be used (e.g., T (z = z2, t) = f2(t)) (Schneidewind et
al. 2016), and its importance with respect to the correct estimation of model
parameter has been demonstrated by (Kampen et al. 2022d). Other boundary
conditions may perhaps be more appropriate for specific ADEs, e.g., specified
spatial derivatives of temperature (Neumann boundary conditions), or specified
fluxes at the boundaries (Robin boundary conditions) under upwelling conditions
in rivers (Caissie and Luce 2017). In summary, it is important to realize the
impact of boundary condition choices on the solution and the resulting model.
Simplifying the boundary conditions to create a linear time-invariant form amenable
to solutions using a Fourier transform may give acceptable results if the influence of
the boundary condition (in part due to the small forcing) is small on the domain of
analysis or if the assumption is realistic. This is further elaborated when considering
non-linear boundary conditions as discussed in the next section.

2.2.3 Non-linearities in the advection-diffusion equation
In the previous two sections, we discussed the simple 1D representations with
linear boundary conditions. In reality, we can encounter multi-dimensional flow
(Cranswick et al. 2014; Ghysels et al. 2021; Reeves and Hatch 2016; Roshan et
al. 2012; Shanafield et al. 2010) and non-linear dependencies of both the model
parameters and boundary conditions. These result in differences with the linear
1D representations briefly discussed here.

Equations presented in Table 2.1 only consider 1D flow. When flow bends in
space, energy flows and diffuses in multiple dimensions, and the mass balance is no
longer strictly satisfied by changes in porosity, which is a necessity if flow is only
1D. Numerical solutions exist if adequate data are available. However, if one only
knows temperatures in a 1D array and tries to interpret them without consideration
of the bending flows, errors arise (Cuthbert and Mackay 2013). Note that this is
not an issue where flowlines are parallel and not directly vertical (e.g., in the z
direction), rather is the two-dimensional consideration important when flow curves,
and the degree of error is a function of the degree of curvature (Cuthbert and
Mackay 2013).

Even in one dimension, nonlinearities exist that so far have been poorly explored
in terms of how they affect parameter identification. For example, the fluid viscosity
generally depends on temperature, yielding an ADE where qf is a function of the
state variable T ,

∂T

∂t
= κ

∂2T

∂z2
− qf (T )

cfρf
cmρm

∂T

∂z
. (2.6)

In (2.6), κ is the thermal diffusivity which in some representations includes a
(non-linear) function of diffusivity (dispersivity) and fluid velocity (Roshan et
al. 2012), e.g., the square of the fluid velocity (Rau et al. 2012). The latter



2.3. Signal processing for parameter estimation

2

27

would strictly speaking still be a linear time invariant ADE. However, when
it is compounded with other non-linear dependencies such as the temperature
dependency in (2.6), complexity grows quickly. The common solution is the
management of the perturbation size in forward modeling and experimental design,
e.g., amplitude at the top, which can keep the non-linear effects in check while
manifesting some measurable (linearizable) process. For the inverse problem,
advanced methods to deal with such non-linearities also exist but require a more
specific experimental design and more advanced estimation methods (Nuij et al.
2008; Berkel et al. 2017b). Non-linear boundary conditions can also give rise to
considerable non-linearities in the ADE. For example, consider (2.1) again with
qf = 0 and a non-linear boundary condition of the form

κoutside
∂T

∂z

∣∣∣∣ z2 = fnl (T (z2, t)) , (2.7)

which describes that the heat transfer at the boundary depends non-linearly on
the temperature. An example is a pool-boiling system consisting of a metal heater
which is interfaced with a pool of water at the boundary. The heater is described
by a linear ADE with constant parameters as shown in (2.1), one linear boundary
condition, and a non-linear boundary condition, (2.7) which is connected to a water
pool, outside the domain. The water outside the domain has a thermal diffusivity
depending non-linearly on the temperature. At room temperature the non-linearity
is weak, but it is severe near the evaporation temperature (liquid-gas transfer).
Perturbations around the evaporation temperature lead to switching between high
heat transfer at the boundary below the evaporation temperature (liquid) and low
heat transfer above the evaporation temperature (gas). This results directly in
rich non-linear dynamics including bifurcations, even though we have the simple
(linear) ADE describing our heater domain (see for details van (Gils et al. 2014).
Hence, (weakly non-)linear boundary conditions are a strong requirement needed
to apply the methods discussed in this work (and many others).

2.3 Signal processing for parameter estimation
Framing signal processing more broadly as a step in a process highlights the range
of available choices, some less limiting than others. Frequency domain analysis of
time-series has found some application in hydrology in general (e.g., (Acworth et al.
2014; Acworth et al. 2016; Graf et al. 2014; Schweizer et al. 2021; Vereecken et al.
2016; Wörman et al. 2006; Wu et al. 2020)) and in analyzing temperature data to
delineate ground water surface water exchange in particular (e.g. (Luce et al. 2017;
Onderka et al. 2013; Schneidewind et al. 2016; Sohn and Harris 2021; Vandersteen et
al. 2015; Wörman et al. 2012)). However, while the application of signal processing
methods is well developed in many engineering fields (e.g., (Curtain and Zwart
1995; Oppenheim et al. 1997; Pintelon and Schoukens 2012)) its application in
hydrology, and especially in identifying groundwater-surface water exchange is
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sparse. An important step missing in usual groundwater analyses is understanding
that temperature signals observed at different sediment depths are connected by
the model (system), including its parameters, e.g., flux, diffusion, depth. Hence,
exploiting the idea that signals are not independent entities but connected on all
levels, i.e., originating from a system offers significant improvements in processing
(Pintelon et al. 2010b). This section summarizes ideas and methods from signal and
system analysis with a specific focus on frequency domain techniques (Oppenheim
et al. 1997; Pintelon and Schoukens 2012). The temperature tracing models
described in (2.1) and (2.3) are some of the most commonly used models for
determining the specific discharge via an inverse solution and belong to the class
of linear time-invariant models (Hespanha 2018). As such, appropriate procedures
and methods have been outlined in the scientific literature for signal processing
(Oppenheim et al. 1997) and estimation (Keesman 2011; Ljung 1999; Söderström
and Stoica 1989) including Fourier transforms. In this section, we describe signal
processing techniques associated with frequency domain and linear time invariant
models. Other model classes generally require other solution techniques (see e.g.,
(Rijlaarsdam et al. 2017)). As signal processing is always performed in the discrete
time domain, we will only consider the discrete finite Fourier domain in this section.

2.3.1 Why signal processing for parameter estimation?
Here, we illustrate the application of signal processing using temperature data from
two depths collected in a laboratory sand tank experiment as described by (Luce
et al. 2017). A key point we wish to illustrate is that there are different ways of
representing the same data Figure 2.1.

Both the time domain and frequency domain representations are well-known
and are shown in Figures 2.1a to 2.1c for measurements at two different depths,
respectively. To calculate these, we have used a rectangular window to select the
data and applied the standard discrete Fourier transformation (FFT-algorithm)
(Bracewell 1986) without additional signal processing. The only selection we have
made is choosing the rectangular window such that it corresponds approximately
to an integer number of periods of the dominant oscillation. We note that in
the Fourier spectra, we see multiple peaks, with one being related to the natural
diurnal cycle and the others to the forcing applied (2h-cycle) in the laboratory.
Moreover, we see many apparent noisy signal components. We add to these familiar
representations, Figures 2.1d and 2.1e processed frequency domain signals. At first
sight, this does not make a significant change to the dataset as the spectra look
very similar. However, when analyzing the amplitude ratio and phase difference
Figures 2.1f and 2.1g, i.e., a systems representation of the frequency response
function (FRF), the unprocessed FRF (raw) representation and the processed FRF
differ significantly. The unprocessed FRF appears very noisy, while the processed
FRF is a smooth function over the frequency as expected for semi-infinite domain
solutions. For this reason, the processed FRF will be used for parameter estimation,
explained in detail in Section 4. Note that, representations shown in Figure 2.1
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Figure 2.1. a) Temperature time-series collected at two different depths in a lab
experiment with a 2-hourly (12 d-1) sawtooth shaped input temperature excitation as
described in (Luce et al. 2017). Additional thermal variation is caused by daily variations
in the building temperature. The (raw) amplitude b) and phase spectra c) obtained via
fast Fourier transform (FFT) are further processed by the local polynomial method (LPM)
resulting in new amplitude (d) and phase spectra e), which is introduced in Section 2.3.4.
The amplitude f) and phase g) of the corresponding frequency response functions between
the temperature time series (input z = 2.97 cm, output z = 7.97 cm, in gray) are clearly
improved after processing the data with the LPM (in black).
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can in essence be calculated for any signal.

To understand why the representation in Figure 2.1 is important, we relate
back to Section 2.2. We know that the analytical inverse solution to (2.1) with
semi-infinite lower boundary conditions and specified upper temperatures is given
by (Luce et al. 2013)

κ =
ω∆z2

∆φ2
(

1
η + η

) , (2.8)

qf =
cmρm
cfρf

ω∆z

∆φ

(
1− η2

1 + η2

)
, (2.9)

η =
∆(ln(A))

∆φ
, (2.10)

with κ = k
cmρm

. This relationship holds for any forcing frequency. Without going
into detail, we observe that the angular frequency ω = 2πf and distance ∆z between
measurement points can be considered given. Hence, there are only two quantities
that we need to determine to find κ and qf : the phase difference ∆φ = φ2−φ1 and
the logarithmic amplitude difference ∆(ln(A)) = ln

(
A2

A1

)
between measurement

points. Determining these two quantities correctly, and with high accuracy, is key
to obtaining good estimates of κ and qf . That these two components are the most
important quantities to represent and analyze linear time invariant models, such
as the ADE, is well known in the literature (Franklin et al. 2015; Oppenheim et al.
1997; Pintelon and Schoukens 2012), and this important ratio (see (2.11)) has been
formalized in the concept of the frequency response function (FRF). Note that
an FRF can be also obtained by evaluating the Laplace variable s in a transfer
function on the imaginary axis, i.e., s = iω.

The FRF, G(ω), is defined as the ratio as the ratio of the (complex-values)
Fourier coefficients or spectra between two signals with the Fourier transformed
(FT) temperature defined as T FT→ T̂ :

G(ω) =
T̂2(ω, z2)

T̂1(ω, z1)
=
A2(ω)e

iφ2(ω)

A1(ω)eiφ(ω)
(2.11)

or equivalently

ln(G) = ln

(
A2

A1

)
+ i (φ2 − φ1) (2.12)

with A2

A1
the amplitude ratio and ∆φ the phase change of the frequency response

function (or transfer function).
The concept of transfer function or FRF follows from the notion of linearity:

if we multiply the forcing signal with a factor, or one or multiple sinusoidal
components, linearity states that the temperature at depth is scaled proportionally,
and in taking the ratio, this proportionality factor is divided out. Note also that
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linearity together with time invariance are coupled to the Fourier representation,
e.g., for linear time invariant systems all the frequency components can be treated
individually and independently (Oppenheim et al. 1997).

The goal of signal processing is now to determine the best G(ω) from mea-
surements. In Figures 2.1f and 2.1g, we show a comparison between the standard
discrete Fourier transform (minimally processed (raw) frequency response function)
and the frequency response function after further processing shown in Figures 2.1d
and 2.1e using the local polynomial method (LPM) which removes errors in esti-
mating the Fourier coefficients (explained in Section 2.3.4). As we will show in
Section 2.4.1, the empirical G(ω) is a good representation of the theoretical G(ω)
corresponding to (2.1) in the entire range of 0.1− 10 d−1 for this specific example.
Hence, not only do the obvious peaks, 1, 12 and 24 d−1, convey information on the
ADE, but also all the other frequencies can contribute to the estimation of κ and qf ,
emphasizing there is no need to use or isolate a single sinusoidal forcing. The reason
is that some forcing is present at most frequencies, so the resulting temperature
measurements at depth will have a contribution from these multiple-frequency
forcing terms, which is useful information.

2.3.2 Signal components

In Section 2.3.1, we have established that to estimate our model parameters, ∆φ
and ln

(
A2

A1

)
need to be determined with high accuracy, which is equivalent to

determining G(ω) with high accuracy. Signal processing can be performed on
two levels, i.e., on the individual signal level (Section 2.3.3) or on a system level
(Section 2.3.4). For any individual signal, we distinguish generally among three
different components being (i) periodic components, (ii) trend, and (iii) noise.
These components are shown in Figure 2.2 for both the time domain and frequency
domain.

Particularly, transients play an important role in signal processing as they
are not part of the (periodic) model representation G(ω) of our ADE. Transients
are a collection term for signal components that are not periodic and result from
several causes. The strongest transient observed in the signals at depth originates
from the system state (temperature) that is not in equilibrium at the start of
the window of observation, which is associated with the initial condition. Others
could be sensor (calibration) drifts or more complicated drifts associated with
non-linearities as described by (2.5) in Section 2.2.3. Regardless of the cause, such
signal components need to be removed as the frequency representation of the ADE
assumes non-periodic signal components to be zero. Note that the steps explained
here could also be used in time domain approaches with the additional operation
of the discrete inverse Fourier transform (IFFT) to bring the signal back to the
time domain (Berkel et al. 2018b).
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Figure 2.2. Overview of a typical signal and its three main components: trends due to
sensor drifts and the initial conditions; the wanted periodic signal part used for estimating
advection and convection; and unwanted sensor noise. In the frequency domain, we have
an additional spectral leakage term due to noise and possibly non-integer period selection.



2.3. Signal processing for parameter estimation

2

33

filter S window (nl)
operator DFT filter
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Figure 2.3. Overview of standard signal processing steps from a continuous time signal to
a discrete frequency representation of the signal. Note that ũ(t) is the original continuous
signal whereas the others are discretized with index k using sampling frequency fs (DFT
stands for discrete Fourier transform). The term (nl) specifies a non-linear operation in
the detrending whereas the other steps are generally considered linear operations.

2.3.3 Signal processing on individual signals
Three general steps Figure 2.3 are applied to extract periodic components G(ω)
from signals by reducing transients and noise and avoiding aliasing, which is a non-
physical signal artifact introduced due to sampling; A) avoid aliasing by applying
the correct sampling process; B) suppress transients which is equivalent to spectral
leakage in the frequency domain; and C) suppress noise and/or disturbance.

A) Aliasing is easily avoided by adequate sampling and if necessary, properly
resampling the data at a later stage. Most (commercial) loggers these days
have anti-aliasing filters installed or use more advanced methods to avoid
aliasing, e.g., based on sigma-delta converters (Baker 2007; Baker 2008).
Consequently, the set-up takes care of the aliasing and as long as the user
does not resample the data, this part rarely poses a problem.

B) Due to transients and noise, the starting and end points of a time series do
not have the same value. In that case, taking the Fourier transform results in
(spectral) leakage. Additionally, another spectral leakage term could exist if
the number of periods is non-integer, even though the original signal might be
noiseless and perfectly periodic. Both leakage contributions would manifest
in contributions spread over frequencies most strongly at low frequencies or
as side-lobes in the frequency spectrum, respectively. The three standard
remedies to suppress transients (spectral leakage) are detrending, windowing,
and selecting a time window that corresponds to an integer number of signal
periods.
Detrending addresses the root cause of spectral leakage due to transients as it
removes non-periodic trends directly from the data. Alternatively, windowing
(Hamming, von Hann, etc.) differently from the square window can be applied
to down-weight the end points of a signal, thus reducing spectral leakage.
However, this is a much more delicate operation, as modifying signals in this
way can also negatively impact their quality. This is especially true when
signals are nearly periodic or if we have long time traces because applying a
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Table 2.2. System representation of signals in linear time invariant systems at three
different depths. We use ωk to denote the k-th Fourier coefficient as we are dealing with
discrete signals here.

measure-
ment

system
connection drifts leakage noise

T̂ (z0, ωk) = R(z0, ωk) + Tr(z0, ωk) + Tn(z0, ωk) + N(z0, ωk)

T̂ (z1, ωk) = H(z, ωk)R(z0, ωk)︸ ︷︷ ︸
U(z1,ωk)

+ Tr(z1, ωk) + Tn(z1, ωk) + N(z1, ωk)

T̂ (z2, ωk) = G(z, ωk)R(z0, ωk)︸ ︷︷ ︸
Y (z2,ωk)

+ Tr(z2, ωk) + Tn(z2, ωk) + N(z2, ωk)

window on a periodic dataset will make it aperiodic again, and for long time
traces (compared to the frequencies studied) leakage might only have a small
impact on the frequencies of interest.
Although detrending and windowing are useful in improving results from
signal processing, other methods based on the relationship between signals
(Schneidewind et al. 2016; Kampen et al. 2022d; Vandersteen et al. 2015) can
yield more reliable improvements as will be discussed in Section 2.3.4.

C) Noise suppression is done naturally using the discrete Fourier transform where
periodic components will remain at the same frequency (bin or point) and
the noise is spread over frequency (bins). Then, spectral signal components
only containing noise (or dominant disturbances) can be removed or simply
ignored. Both strategies are common and implicitly applied when selecting
the diurnal sinusoid. As noise, even after extensive signal processing, will
be present on all frequencies including on the diurnal cycle, it needs to be
properly quantified by, e.g., analyzing the (co-)variances.

2.3.4 Signal processing using system properties
As we are interested in the parameters of the ADE, i.e., the system, rather than
the individual signals, we suggest using different signal processing techniques, or
better, system processing techniques, which allow for more accurate estimates of
G(ω). In a system, signals are not considered as separate entities, rather they are
connected. In practice, the temperature time-series at depth are related to the
forcing signal and the signals at other depths and are not separate entities. In such
cases G(ω) represents one part of the relationship between the signals, however,
the components that need to be separated are still the same as in Figure 2.2.
As an example, a system of temperature measurements in the frequency domain
(T̂ (z0, ωk), T̂ (z1, ωk), T̂ (z2, ωk)) at three depths (0, 1, 2) is shown in Table 2.2.

We start with some arbitrary forcing R(z0, ωk) at some top channel where
measurements T̂ (z0, ωk) can contain two types of leakage (discussed previously),
i.e., due to, (sensor) drifts Tr(z0, ωk) and due to spectral leakage when applying the
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discrete Fourier transform to a signal Tn(z0, ωk). Moreover, we may have spatially-
and time (colored) correlated noise components on the different channels N(z0, ωk),
N(z1, ωk), N(z2, ωk). In case of non-periodic forcing (Figure 2.1), we cannot remove
the transient from G(ω) (perfectly) in contrast to non-sinusoidal periodic forcing,
where this is possible. However, by assuming the top channel z0 to be noiseless, we
can determine G(ω) perfectly, at least in theory (see (Pintelon and Schoukens 2012)
for a formal proof). To assume N(z0, ωk) = 0 is a reasonable (weak) assumption, as
the noise on the top channel is small compared to the signal. Hence, by neglecting
the noise N(z0, ωk)) at the top channel we only introduce a small error compared
to a true noiseless top channel. Assuming that we can fully eliminate the transients
in all steps, we obtain the actual signals R(z0, ωk), U(z1, ωk), Y (z2, ωk) with some
uncertainty based on the noise N(zi, ωk). This provides the information required
to calculate H(z, ωk) and G(z, ωk) and, consequently we obtain the parameters in
the ADE at every frequency as shown in (2.8) to (2.10).

The removal of transients represents a challenging task. This can be achieved
by separating smooth (non-periodic) signal components from non-smooth (periodic)
components as a function of frequency. It is well established that (arbitrary)
forcing is never smooth as function of frequency, where a purely sinusoidal forcing
is an extreme example as it presents itself as just a spike in the frequency domain.
However, T̂ (z, ωk) will consist of both smooth and non-smooth components. Both
H(z, ωk) and G(z, ωk) are smooth functions of frequency and are multiplied with
non-smooth functions of the frequency R(z0, ωk) and U(z1, ωk), resulting in again
non-smooth functions. Additionally, the aliasing contributions Tn(z, ωk) will always
be smooth (see (Pintelon and Schoukens 2012) for a formal proof). This means
that if we create (local) smooth fits over frequency, we can separate the transient
contributions from the systems response by subtracting them from the signals
T̂ (z0, ωk), T̂ (z1, ωk), T̂ (z2, ωk) to arrive at signals R(z0, ωk), U(z1, ωk)+N(z1, ωk),
and Y (z2, ωk) +N(z2, ωk). Other possibilities to make these fits include rational
polynomial functions (McKelvey and Guérin 2012) or interconnected polynomials
(Gevers 2005). Using these methods, we can also quantify the noise by analyzing
the small residual fluctuations on the locally smooth fits over frequency which
correspond to the noise (co-)variances. From these signals, we can significantly
improve the calculation of G(z, ωk) including its uncertainties as shown in Figure 2.1.

As discussed previously, detrending is the removal of trends from the time signal
(measured data) using linear or quadratic functions. If we were able to determine
the (specific) trend that does not belong to the periodic measurements, we could
remove the actual (non-linear) trend, which is exactly what the estimation of the
smooth curve over frequency tries to achieve.

Also, for completeness, we want to mention that in specific cases, applying
the LPM method to remove transients can be non-ideal. Transients that are
unrelated to spectral leakage can also carry information of the system and its
parameters but are extremely difficult to be distinguished from spectral leakage.
Hence, the removal of the transient is generally necessary, but can also mean
that useful data is removed. In comparison single-sinusoidal approaches remove
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all transient information, except at the diurnal cycle and also remove all other
frequency components. Although for significant natural forcing this discussion is
largely irrelevant as there is no way to distinguish useful transients from non-useful
transients, however, for perfect periodic forcing and dominant transient forcing
this claim needs to be nuanced.

2.3.5 A discussion of related single sinusoidal approaches
In the previous section, we presented practical signal analysis methods applicable
for an entire system and showed that regardless of how one reduces spectral leakage
or noise, the correct mathematical framing is that the relationship G(ω) (transfer
function) needs to be extracted from the data, which holds for all frequencies. The
estimate of G(ω) is denoted by Ĝ(ω). Nevertheless, a number of practices have
evolved and grown around a perfect sinusoidal theme (of the diurnal), i.e., that
y(t) (e.g., temperature at depth) and u(t) (e.g., surface temperature) must each
be approximated by a sinusoid(al) representation (often separately), applying for
instance, regression techniques based on Kalman filtering (Young et al. 1999) used
in (Keery et al. 2007) and (Irvine et al. 2015). These methods give the impression
of signal improvement but actually extract a signal (sinusoid) of reduced quality
compared to the original signal when used for parameter estimation. The problem
then is twofold:

• The resulting amplitude and phase (of the pure sinusoids) are best sinusoidal
fits of the signals and not of the ADE-system, i.e., do not represent the
correct/best estimate of G(ω) and consequently the parameter estimates.

• All the other useful information at all the other frequencies is lost, which can
be significant and often, more useful information is lost than is actually used
(see Section 2.4 for more explanation).

In other words, regardless of which method is applied, the ratio Y (ω)
U(ω) = G(ω) needs

to be retained (and improved), but specifically not the ratios of the best sinusoidal
fits of the individual signals as sometimes is proposed.

2.4 Estimation methods
Many of the commonly applied methods for estimation use only a small portion
(mostly the diurnal signal) of the information available in temperature signals to
estimate water flux, and, sometimes, thermal diffusivity (e.g., (Hatch et al. 2010;
Irvine et al. 2015; Irvine et al. 2017)). When uncertainty is reported, it is usually
framed on reported sensor uncertainty (Glose et al. 2019; Luce et al. 2013). A
more broadly supported and implemented approach to uncertainty estimation and
validation is through the use of overdetermination, i.e., using more frequencies or
more locations than strictly necessary to obtain a single parameter value. This
section follows the latter approach and exploits the overdetermination (in the
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Table 2.3. Parameter estimates at different frequencies of the raw and signal processed
data presented in Figure 2.1 with σκ and σqf as the standard deviation of the parameter
estimates.

raw processed raw processed

f
[d−1]

κ
[cm2 s−1]

κ
[cm2 s−1]

σκ

[cm2 s−1]
qf

[cm s−1]
qf

[cm s−1]

σqf

[cm s−1]

1 0.02321 0.00870 0.00286 0.00260 0.00256 0.00009
12 0.00557 0.00556 0.00004 0.00215 0.00218 0.00004
24 0.00602 0.00586 0.00014 0.00209 0.00202 0.00006

frequency domain) to its maximum. This starts by understanding that the ADE
has two characteristic equations in the frequency domain, namely amplitude and
phase (or real and imaginary parts), and two unknown parameters, namely flow
and diffusivity. At each frequency, one can calculate a unique solution for κ
and qf . However, simply averaging over these estimates per frequency (Berkel
et al. 2014a) would not converge to a correct κ and qf as is demonstrated below.
Hence, a different unbiased (efficient) approach is necessary, known as maximum
likelihood estimation. In this context, we also discuss approaches that better aid
in identifying parameter values and uncertainty using multiple frequencies, and
multi-sensor estimation.

2.4.1 Single frequency estimates and their uncertainty

Coefficients at each frequency are calculated individually using the data of Ĝ(ω)
as shown in Figure 2.1, which is presented in Figure 2.4. In Figures 2.4a and
2.4b, the raw discrete Fourier transform is used, while results applying the LPM-
processed signals are shown in Figures 2.4c and 2.4d, where information about
noise at each frequency is used to estimate confidence bounds based on the linear
transformation of the variance of the Fourier coefficients, which is explained in
detail in Sections 2.4.2 and 2.4.3. We see that the result is erratic over the frequency
range but also that in some frequency ranges the estimates are less erratic. This
is also supported by Table 2.3 where we see that both for the raw and processed
data the estimates are comparable at some specific frequencies.

These high signal-to-noise ratios are closely related to the lab set-up used for this
experiment, with a primary forcing at 12 [d−1]. If we compare the raw estimates
per frequency (Figures 2.4a and 2.4b) to those when using the LP-processed data
(Figures 2.4c and 2.4d) as discussed in Section 2.3, we see that the results are
significantly improved between the frequency range 1 [d−1] and 10 [d−1]. After
LPM-processing, we have precise estimates for nearly every frequency. The added
processing provides good estimates not only at frequencies where forcing is strong,
but at many other frequencies, giving a better estimate of the shape of G(ω).
Adding many (hundreds) of frequency points can help improve parameter estimates
(see Section 2.4.4) significantly. The estimates are reliable not only for the perturbed



38 Chapter 2. A framework for reliable coefficient estimation

2

10−1 100 101 102
0

0.5

1

1.5

2

2.5

3
·10−2

f [d−1]

κ
[c

m
2

s−
1
]

10−1 100 101 102
0

0.25

0.5

0.75

1
·10−2

f [d−1]

q f
[c

m
s−

1
]

10−1 100 101 102
0

0.5

1

1.5

2

2.5

3
·10−2

f [d−1]

κ
[c

m
2

s−
1
]

10−1 100 101 102
0

0.25

0.5

0.75

1
·10−2

f [d−1]

q f
[c

m
s−

1
]

(a) (b)

(c) (d)

raw

processed

Figure 2.4. Parameter estimates of diffusivity (a, c) and flow (b, d) for the raw (a,
b) and signal processed (c, d) data presented in Figure 2.1. They are estimated per
single frequency. The confidence bounds (yellow shading) are calculated based on the
variances of the Fourier coefficients determined by the LPM (at each frequency) using
linearly approximated 95% confidence bounds based on the MLE method in domains.
The ratio for the calculation from the advection to qf is given by cmρm

cfρf
= 1.0449. Some

corresponding values can be found in Table 3 showing the parameter values with their
standard deviation for the main forcing components.
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frequencies (1 [d−1], 12 [d−1], etc. in this particular experiment), but over a large
frequency range. While the daily frequency is certainly a high-power frequency for
stream temperature in many natural settings, most low-frequency forcing and most
high-frequency harmonics, especially those of the daily frequency, hold considerable
information.

2.4.2 Quantifying noise at single frequency
In most parameter identification experiments, the general approach to estimate the
uncertainty is quantifying the (stochastic) noise through overdetermination. The
most realistic measure for noise is based on the data itself and generally not sensor
uncertainty, as the latter is small for modern measuring devices compared to the
variation of the data over time. We propose to use instead the variance of Fourier
coefficients over periods calculated using the LPM (Pintelon and Schoukens 2012)
(explained in Section 2.A). When we assume Gaussian (time-domain) noise, the
resulting distribution function is a complex(-valued) circular normal distribution
(CCND) (Goodman 1963). This is a bi-variate Gaussian distribution (Goodman
1963) where the variance of imaginary and real parts is the same (circular) but
the variance will change over frequency (color of noise). On the other hand, the
resulting spectrum is independent over frequency (linearity). This is shown in
Figure 2.5.

The histogram based on a numerical calculation presented in Figure 2.5, shows
that there is indeed a Gaussian distribution with equal variances in real and
imaginary values. That the confidence circles do not have the same radius, i.e.,
variance, is shown in Figure 2.5a. These distribution functions are used to construct
multi-frequency estimators.

2.4.3 Confidence bounds at a single frequency estimate
Here, we show how to translate the frequency domain distribution (CCND) to a
confidence bound calculation for a single frequency estimate of dispersity κ and
water flux qf . As the single frequency is defined by a two-dimensional distribution
function (Figure 2.5), mapping it onto two parameters, κ and qf , results also in a
two-dimensional distribution which defines the confidence bounds. This is shown
in Figure 2.6.

Figure 2.6 shows the steps that are taken to calculate the joint distribution
function of κ and qf using two (spatial) channels at a single frequency (18 d−1).
As an intermediate step, we have also included the distribution of the transfer
function G(ω). Using (2.8) to (2.10) results in a unique transformation from
the single frequency at two locations to κ and qf . However, (2.8) to (2.10) is a
(strongly) non-linear transformation, hence, the distribution function of κ and qf
is the inverse non-Gaussian χ2-distribution (Berkel et al. 2014a). This can also
clearly be seen by the joint distribution and its cross-sections (Figures 2.6d, 2.6e
and 2.6f). The confidence bounds are theoretically non-symmetric and only for a
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Figure 2.5. Statistical representations of frequencies 6, 12, 18, 24 [d−1] of the temperature
time traces presented in Figure 2.1a. Figure (b) shows a zoom of the Fourier coefficients
per period (200 samples total) at 12 d−1 including the 95% confidence interval, all
represented by circles. Figure (c) shows the bi-variate Gaussian distribution function
based on a numerical histogram calculation (10000 samples total) (see (Berkel et al. 2014a)
for details). This distribution is known as complex circular normal distribution (CCND)
as the variances for real and imaginary parts are the same.
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(a)

(b)

(c) (d)

(e)

(f)

Figure 2.6. Distribution functions (histogram or probability density function (PDF))
all at frequency 18 [d−1] of the different steps in calculating the confidence bounds on
κ and qf where: (a) the CCND for the forcing U(ωk) = T̂ (z1, ωk); (b) the CCND at
depth Y (ωk) = T̂ (z2, ωk); (c) the CCND of the transfer function Ĝ(ω) at 18 [d−1]; (d)
the non-Gaussian distribution of κ and qf ; and (e, f) the cross-sections including in
(red-dashed) lines the 95% confidence bounds and the approximate value of on κ and qf
at 18 [d−1]. Note, that all distributions are calculated based on Monte-Carlo calculations
and hence no prior information on their shape, e.g., Gaussian, is used except for the
Gaussian time domain samples used to generate these distributions.
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high signal-to-noise ratio does the distribution of κ and qf converge to a Gaussian
distribution (and diverge for a decreasing signal-to-noise ratio). Most apparent is
the long tail of the distribution of κ, leading to a large upper bound. Moreover, an
important aspect is that κ and qf are not independent but correlated quantities.
This is rarely reported as cross-correlation (Pearson coefficient) but describes to
what extent κ and qf can be independently estimated.

To obtain the confidence bounds on κ and qf , we take an intermediate step by
calculating the variance of the transfer function Ĝ(ω) introduced in (2.11) and its
distribution shown in Figure 2.6c. There is an analytic expression nicely reflecting
all the important components with Y (ωk) = T̂ (z2, ωk) and U(ωk) = T̂ (z1, ωk) as
defined in (Pintelon and Schoukens 2012)

σ̂2
G (G(ωk)) ≈

∣∣∣Ĝ(ωk)
∣∣∣2
 σ2

Y (ωk)

|Y (ωk)|2
+

σ2
U (ωk)

|U(ωk)|2
− 2Re

 σ2
Y U (ωk)∣∣∣Y (ωk)U(ωk)

∣∣∣2

 .

(2.13)

The variance on the transfer function σ̂2
G depends on the cross-correlation between

two channels σ2
Y U (ωk), e.g., caused by electrical equipment noise. The variance

σ̂2
G also depends inversely on the signal-to-noise ratio and on the transfer function
Ĝ(ωk) =

Y (ωk)
U(ωk)

itself. We have to realize that the exact input and output and true
G(ωk) are unknown, such that Y , U , and Ĝ need to be based on the calculated
Fourier coefficients resulting in an approximation of the variances, which also holds
for the variance estimates and confidence bounds on κ and qf . The calculation
of the confidence bounds for single frequencies of κ and qf is problematic as the
distributions are non-symmetric and consequently no analytic expression exists.
Generally, for single frequencies, field measurements result in significant non-
Gaussian distributions when compared to our laboratory measurements due to
our high signal-to-noise ratios even for the 18 d−1. Consequently, the asymmetric
bounds need to be approximated using Monte-Carlo calculations (as shown in
Figures 2.6e and 2.6f) or the signal-to-noise ratio needs to be increased allowing
for a Gaussian approximation, which in practice can only done by averaging over
frequencies, which is the topic of the multi-frequency analysis. A Monte-Carlo
analysis is used in this work to process generated samples (Fourier coefficients)
from a distribution (CCND) and analyze the outcomes, e.g., κ and qf for which
the variance and the (non-symmetric) confidence bounds are calculated.

2.4.4 Multi-frequency model parameters estimation (maxi-
mum likelihood)

The challenge in multi-frequency analysis is to search for solutions for which with
increasing data, here the number of frequencies, the model parameter estimates
constantly improve. In practice, this is tightly linked to using (multivariate)
Gaussian distributions both in estimating the model parameters and in confidence
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calculation. This section attempts to make multi-frequency model parameter
estimation more understandable. However, the deep statistical interpretations and
calculations will not be derived here (see for this, e.g., (Keesman 2011; Ljung 1999;
Söderström and Stoica 1989)).

To better understand multifrequency analysis, let us first consider some standard
approaches. These will also be compared in Table 2.4 based on the four frequencies
presented in Figure 2.5 (and Figure 2.8 in Section 2.B). The most naïve choice is
to average over the estimated model parameters, which can be denoted as

θ̂ =
1

F

F∑
k=1

θ(ωk), (2.14)

with θ =
[
κ qF

]
and F as the total number of frequencies used. Alternatively,

one could also weight the variance or standard deviation

θ̂ =

∑F
k=1

θ(ωk)
σθ(ωk)∑F

k=1
1

σθ(ωk)

. (2.15)

However, one needs to first acquire the variances to use (2.15). As the previous
section shows, the distribution functions for most θ(ωk) are non-Gaussian. Hence,
acquiring the variances σ2

θ(ωk) is a rather challenging endeavor as we need to
acquire them via Monte-Carlo simulations with sufficient sampling, see Section 2.4.3.
One could select by hand a minimum signal-to-noise ratio of those frequencies
for which the parameters can be well approximated by a Gaussian distribution
(time-consuming).

For both methods, there is no guarantee that adding more data results in a
better overall estimate due to the non-Gaussian nature of the distribution functions.
Moreover, the cross-correlation that exist between κ and qf is not being considered
here resulting in an increase in error. In conclusion, the direct approach in (2.15)
causes many computational difficulties, does not guarantee convergence to the true
value and can only be used for extremely high signal-to-noise ratios.

Alternatively, standard least-squares algorithms can be used which also do not
assure that the estimate becomes better with an increasing number of frequencies,
although this result is better conditioned than (2.14) in terms of retaining Gaussian
distributions. Consequently, it offers a path to understanding how to approach
the multi-frequency estimation challenge. The standard least-squares estimator in
terms of transfer functions is the cost function

θ̂ = argmin
θ

1

F

F∑
k=1

∣∣∣Ĝ(ωk)−G(θ, ωk)
∣∣∣2 , (2.16)

where the measured transfer function Ĝ(ωk) was calculated in Figure 2.1 and its
analytical counterpart, the transfer function G(θ, ωk) following from the ADE
derived in (2.8) to (2.12).



44 Chapter 2. A framework for reliable coefficient estimation

2
Notation-wise, argmin of θ states that we minimize this least-squares criterium

by changing θ =
[
κ qF

]
such that the sum of the squared error over frequencies

is minimal. However, note that there is a clear difference between (2.14) and (2.16)
statistically. As Figure 2.6c demonstrates, the distribution functions of θ(ωk) are
non-Gaussian and as such averaging them results in a non-Gaussian distribution
for the resulting multi-frequency distribution of θ =

[
κ qF

]
with all its associated

problems, whereas the real and imaginary parts of Ĝ(ωk) shown in Figure 2.6 are
(near) Gaussian and as such (2.16) yields a (near) Gaussian distribution. The
problem with this representation is that it does not account for the quality, i.e., the
uncertainty, of the estimates of Ĝ(ωk). Combining the ideas from (2.15) and (2.16),
gives rise to the weighted least-squares estimator. However, this does (again) not
always guarantee that the estimate will improve with increasing data. Therefore,
we have to show that the estimator is efficient (Pintelon and Schoukens 2012),
i.e., that the parameters would converge to the exact value if we went towards
an infinite amount of data with minimum variance. Technically, the lower bound
of the minimum variance (unbiased estimate) is known as the Cramer-Rao lower
bound (Pintelon and Schoukens 2012), which is the best we can achieve given
the data. Estimators that come extremely close to this property are maximum
likelihood estimators (MLEs). In transfer function representation the MLE is given
in (e.g., (Vandersteen et al. 2015))

θ̂ = argmin
θ

1

F

F∑
k=1

∣∣∣Ĝ(ωk)−G(θ, ωk)
∣∣∣2

σ̂2
G(θ, ωk)

, (2.17)

which can be seen as weighting the least-squares estimator with σ̂2
G(θ, ωk). The

estimator variance σ̂2
G(θ, ωk) for the 2-point estimator is given in (2.13) where the

estimate Ĝ(ωk) is replaced by the true G(θ, ωk) (for which we need to determine
θ). Hence, the weight also depends on the parameters to be estimated.

The maximum likelihood estimator does not need user interaction with the
exception of non-model related disturbances, e.g., the electrical grid disturbance.
Consider the simplified case as in (e.g. (Vandersteen et al. 2015)) where σ̂2

G(ωk) =
σ2
Y (ωk)

|U(ωk)|2 , then the bad estimates of Ĝ(ωk) are suppressed (high noise variance
σ̂2
Y (ωk) or small signal |U(ωk)|2 and good measurements are increased in weight,

e.g., the amplitude of the forcing, |U(ωk)|2, being large around the diurnal cycle.
Hence, the user no longer needs to decide what is good data and what is bad
data, the maximum likelihood estimator takes over this decision process. Also,
the (near) Gaussian distribution is retained as σ̂2

G(ωk) is a frequency-dependent
scaling factor and the overall estimate also has lower variance converging to an ever
more Gaussian estimate. The complexity of the MLE increases when taking more
realistic conditions into account such as noise on the top channel (Schneidewind
et al. 2016) and multiple channels (Kampen et al. 2022d). The only challenge is
the optimization of the cost function. However, as only two parameters need to
be estimated, and given the computational power of modern computers this is no
longer a real issue.
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Table 2.4. Multi-frequency parameter estimates of the frequencies 6, 12, 18, 24 d−1

belonging to the different multiple frequency approaches calculated using Monte-Carlo
calculations. In italic the variances calculated using (linear) propagation of uncertainty
(explained in Section 2.B).

method eq κ× 10−3

[cm2 s−1]
σκ

[cm2 s−1]
qf × 10−3

[cm s−1]

σqf

[cm s−1]

Pearson
factor

average (2.14) 6.0313 3.02 · 10−6 2.2413 9.89 · 10−7 −0.50

weighted
average (2.15) 5.6361 6.26 · 10−7 2.1885 1.84 · 10−7 −0.45

LSE (2.16) 5.5678 1.17 · 10−9 2.1782 9.89 · 10−11 0.44

MLE (2.17) 5.5696 1.05 · 10−9 2.1825 8.81 · 10−11 0.44

MLE
no-MC (2.17) 5.5690 1.13 · 10−9 2.1826 9.37 · 10−11 0.44

To go beyond explanation of the alternative estimates in (2.14) to (2.17), we
also demonstrate the improvement towards the MLE estimates. We use the data
presented in Figure 2.6 for four frequencies. For the variance calculations we
use Monte-Carlo simulations. The results are presented in Table 2.4. When
looking at Table 2.4 two important considerations have to be taken into account:
1) the exact value is unknown and we use experimental data, which can also
randomly be on the exact value and 2) the data presented here is from high-quality
laboratory experiments, hence, signal-to-noise ratios are high and differences
between estimators are less distinct. The improvement, for instance, with the MLE
increases significantly compared to the other estimators when the data quality
decreases, i.e., with decreasing signal-to-noise ratio.

Table 2.4 clearly shows the increase in accuracy of the estimated parameters
especially when we consider the variances of the different estimates. We also see
that retaining Gaussian properties is very beneficial as all implicit estimators give
good results. Moreover, for all estimates there is a strong correlation between the
estimates meaning that changing the κ estimate will have a significant impact on
the estimate of qf , which is something that needs to be remembered (and reported).

2.4.5 Multi-frequency estimation of confidence bounds
As we now have a method which can deal with multiple frequencies, we can now
also apply the MLE to our experimental processed data shown in Figure 2.1. Using
the MLE with different sets of frequencies for estimation leads to the outcomes in
Figure 2.7.

Three frequency regions are considered for estimation, using only frequencies
lower than the primary excitation frequency, the diurnal (24h) signal, and the
first three harmonics of the primary, 2-hr (12 d−1), excitation. The results are
summarized in Table 2.5.

While both multi-frequency estimates (MLE) produce similar results, the diurnal
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Figure 2.7. The FRF from the LPM for the interval (depths) and the three different fits:
using all frequencies below the first excited frequency (12 d−1) except the daily (blue);
using the first three harmonics of the sawtooth perturbation (red); and only using the
daily excitation (green). Here, a) is the amplitude ratio spectrum, b) the phase difference,
and c) the error. The corresponding values can be found in Table 2.5.
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Table 2.5. Parameter estimates of the diurnal frequency and multiple frequencies
belonging to the MLE estimates in Figure 2.7.

f
[d−1]

κ
[cm2 s−1]

σκ

[cm2 s−1]
qf

[cm s−1]

σqf

[cm s−1]

Pearson
factor

1 0.00870 0.00286 0.00256 0.00009 −0.103
< 12\{1d−1} 0.00518 0.00003 0.00230 0.00001 −0.286
12, 24, 36 0.00558 0.00003 0.00217 0.00001 −0.450

frequency alone does not produce a result as accurate, even though it is one of
the strongest components in the signal. This is supported by the corresponding
variance calculation based on propagation of uncertainty (explained in Section 2.B).
Note that model errors (see Section 2.2) can also play a role, which results in the
model parameters not being exactly within their confidence bounds as the variance
does not account for deterministic errors related to the choice of underlying model
used in the analysis (as is the case in Table 2.5 for the two bottom rows).

2.4.6 Model error identification

Several methodologies are available to identify model errors. Straightforwardly,
model errors can be detected when the confidence bounds at different frequencies
do not overlap. Alternatively, residual errors and their statistical properties can
be assessed, which is especially powerful when using independent training and
validation sets (machine learning). Also, whiteness residual tests are powerful in
determining if dynamics is left in the data or the residual is white, i.e., only noise.
These two methods are applied for the ADE, (2.1), in (Berkel et al. 2013). For high
noise levels, many potential models could in theory fit within the error bounds.
However, when the noise level is low, only a few of these models will fit, and we
can start assessing where our (deterministic) mathematical model deviates from
the actual real model. This approach is most powerful when applied across a large
frequency range. A good example is the estimate purely of the diurnal cycle shown
in Figure 2.7, which has an error significantly larger error than the other estimates
for the entire frequency range (exception directly around the daily cycle).

If the above analysis is combined with the concept of linearization (sufficiently
small perturbation) and corresponding linear time invariant model descriptions
(both discussed in Section 2.2), we note that G(ω) is uniquely defined, which means
in practice that we can confirm the degree to which the system is really linear
time-invariant or has some other physical description. This is one of the most
powerful methods to identify and confirm the physical description embodied in the
model. This utility of multi-frequency analysis might be even more important than
the multi-frequency estimation of model parameters.
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2.4.7 Multi-depth analysis
A related approach to using multiple frequencies is using sensors at multiple depths
(Vandersteen et al. 2015). It has been extended to also include noise on the
top sensor used to determine the model parameters. This results in a matrix
representation of the problem for both the noise (including (2.14)) and the transfer
functions (matrix) which can be analytic for uniform domains (Kampen et al.
2022d). One problem is that measurements at depth will contribute less and less
information (as was the case for higher frequencies) due to their lower signal to noise
ratio. Hence, especially in the uniform case, the top sensors and low frequencies
(at depth) will dominate the solution that is calculated.

2.5 A forward-looking perspective
Current analytical frameworks using heat as a tracer to quantify groundwater -
surface water exchange fluxes are not immediately transparent about the origins
of the limitations and uncertainties encountered when applying those approaches.
Here, we provide a framework in which to consider and address some of those
complexities. In part, we do that by separating among model conceptualization,
data analysis, and parameter quantification to help identify, isolate, and resolve
some of the sources of error. In part, we further the aims of improving estimates
by noting some recent advances in signal processing and estimation methods
that reduce the uncertainty from how we process the data so that we can report
uncertainties in estimated parameters of interest, typically fluxes and sediment-
water thermal properties. Our evaluations of methods against laboratory data
show that choices of model structure, signal processing technique, and parameter
estimation method have profound effects on parameter and parameter uncertainty
estimates. Perhaps of similar importance, previously unwanted signal components
can reveal information relevant to model structure and parameter uncertainty. We
propose that separating the analysis of decisions in the different steps of application
will help the community identify the limitations of individual choices made at each
step, leading to more reliable interpretation of the results and their uncertainties.
We know based on approaches in system theory that such a systematic framework is
necessary to achieve reliable parameter estimates in more complex challenges such
as multi-dimensionality, heterogeneity, and in the case of non-linear dependencies
in the parameters. Consequently, this may also lead to the possibility to assess
the model structure uncertainties systematically with respect to heterogeneity and
nonlinear processes. There is a parallel here with modeling frameworks being
generated in other areas of hydrology (e.g., (Clark et al. 2015), where an initial
decomposition into components of a solution can aid in systematic improvements.



Appendix

2.A Variance calculation in the frequency domain

In an ideal case, noise can be quantified by removing the deterministic (periodic)
components from the signal and calculating the variance(s) of the remaining data,
which then consists purely of noise without transients. We cannot achieve this in
practice as the deterministic signal is unknown, so we seek to determine the noise
level based on overdetermination. In the frequency domain, this is conceptually
done by calculating the variance over periods shown in Figure 2.8.

Figure 2.8 shows that starting from a deterministic periodic signal to which
stationary Gaussian distributed noise is added, results in a time-independent
spectrum. When this noisy signal is transformed into the frequency domain, it
results in a variation of the Fourier coefficient per period around the deterministic
Fourier coefficient similar to time samples varying around the deterministic signal.
In practice, this means we transform a 1D distribution function to a 3D distribution
function in terms of the real-, imaginary-, and frequency axis. As Figure 2.5 shows,
the resulting distribution function when we assume Gaussian (time-domain) noise
is complex (-valued) with circular normal distribution (CCND) (Goodman 1963).
In practice, with arbitrary forcing, the variance calculation procedure presented
in Figure 2.8 is slightly different, but conceptually the same because the same
distributions in Figure 2.5 hold. For the calculation of the variances, transient
removal is required, for which we use the LPM as explained in Section 2.3.4. Then,
the variance level is estimated over a small frequency range instead using individual
frequencies as in Figure 2.8. The latter method has been shown to be reliable and
has been cross-validated against other methods (Monteyne et al. 2013).

2.B Confidence bound calculation
Calculating confidence bounds using Monte-Carlo simulations is computationally
expensive and for a large number of frequencies, infeasible; also explaining why
(only) four multi-frequency analyses are performed in Table 2.4. However, as we
have attempted to keep the estimates as Gaussian as possible and achieving near
minimum variance based on the data for the MLE, it becomes acceptable to use
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Figure 2.8. Graphical representation of the variance calculation of a single signal
used to determine confidence bounds: (top) shows the signal, the (additive) noise, and
its Gaussian distribution (histogram); (bottom) the Fourier coefficients per period at
different (independent) frequencies with in color the average Fourier coefficient which is
by definition equal to that of the entire time-window.
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the standard technique of propagation of uncertainty to determine the confidence
bounds. Propagation of uncertainty is based on the Taylor expansion around a
(differentiable) non-linear function, assuming that we can approximate from a
Gaussian distribution to a (multivariate) Gaussian distribution with different mean
and variance.

For a function f(x) depending on one parameter, x, this results in σ2
f ≈

∣∣∣∂f∂x ∣∣∣2 σ2
x.

Many of us also recognize the standard two-dimensional formula for, f(x, y) gives
σf ≈

∣∣∣∂f∂x ∣∣∣2 σ2
x +

∣∣∣∂f∂y ∣∣∣2 σ2
y + 2∂f

∂x
∂f
∂yσ

2
xy. This is also exactly used in (2.13) (for

complex-values) to calculate the variance of the transfer function based on the
variance of the Fourier coefficients at the two distinct channels. Using the same two-
dimensional formula for our function writing f(x, y) = G(κ, qf ) for two frequencies,
hence, results in matrix form (with the 1

2 compensating for the complex circular
variance transformation to real-valued variance):

1

2

[
σ2
G(ω1) 0

0 σ2
G(ω2)

]
= JH

G

[
σ2
κ σ2

κqf

σ2
qfκ

σ2
qf

]
JG, (2.18)

with

JG =
∂G(θ̂)

∂θ
=

[
∂G(θ̂,ω1)

∂κ
∂G(θ̂,ω2)

∂κ
∂G(θ̂,ω1)

∂qf

∂G(θ̂,ω2)
∂qf

]
(2.19)

To calculate the covariance matrix of κ and qf denoted by Cov
(
θ̂
)

, we need to
invert this relationship. This can be done by exploiting the diagonality of the
Cov

(
G(θ̂, ωk)

)
such that it can be combined with JG and as the derivative to

∂Ĝ(ωk)
∂θ = 0, we can calculate the real-valued Cov(θ̂) using the inversion

Cov(θ̂) = [Re
(
2JH

θ Jθ
)
]−1, (2.20)

with

Jθ =
∂

∂θ

(
Ĝ(ωk)−G(θ̂, ωk)

σ̂(θ̂, ωk)

)
, (2.21)

which has special significance as Jθ is used in most gradient-descent based algorithms
to estimate θ̂ and hence does not need to be calculated extensively. The variances
calculated based on this method are also compared to the variances from the
Monte-Carlo analysis in Table 2.4 showing the applicability of this calculation. The
confidence can be calculated using the p value, e.g., ±1.96σκ ≈ 95% confidence
bounds.
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Abstract - This chapter presents the LPMLEn, a new method to estimate vertical
flux and thermal diffusivity from streambed temperature time series using the frequency
domain. The main advantages of this new method are: (a) the use of multiple frequencies
and multiple sensors for the parameter estimation; (b) noise/uncertainty handling in
an optimal way; (c) the possibility to estimate the parameters with both semi-infinite
and bounded domain models; and (d) the compensation for temperature drifts in the
data known as transients. The capabilities of the LPMLEn are demonstrated using both
synthetic and field data, highlighting the advantages of the bounded domain model over
the semi-infinite domain model in the parameter estimation process.
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(2022d). “LPMLEn A Frequency Domain Method to Estimate Vertical Streambed Fluxes and
Sediment Thermal Properties in Semi-Infinite and Bounded Domains”. In: Water Resources
Research 58.3 (Feb. 2022), e2021WR030886. doi: 10.1029/2021wr030886.
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3.1 Introduction
The use of heat as a tracer has become an important and frequently applied tool
to quantify water fluxes across streambeds (Abbott et al. 2016; Irvine et al. 2017)
since available temperature sensors are inexpensive, robust, and reliable. Numerous
studies have explored the theory behind and application of heat as a tracer to
quantify water flow in and across riverbed sediments (Constantz 2008; Rau et al.
2014) whereas others have focused on the development of methods and devices to
collect temperature time series at multiple streambed depths and locations (Banks
et al. 2018; Briggs et al. 2012; Schmidt et al. 2014). To estimate vertical fluxes
from these now more and more abundantly available, temperature-time series data,
a variety of model codes and software tools (Ford et al. 2021; Irvine et al. 2015;
Koch et al. 2016; Munz and Schmidt 2017) have been devised that make use of
analytical (Goto et al. 2005; Hatch et al. 2006; Keery et al. 2007; Luce et al. 2013)
or numerical solutions (Lapham 1989) of the 1D heat transport equation.

The vast majority of previous studies interested in the quantification of the verti-
cal exchange flux across streambeds (often also called Darcy flux) from temperature-
time series data has made use exclusively of the diurnal temperature signal (Fanelli
and Lautz 2008; Hatch et al. 2010; Jensen and Engesgaard 2011). Although,
the diurnal frequency represents the strongest temperature signal in many field
settings,(Wörman et al. 2012) demonstrated how additional information contained
in the temperature signal gained from assessing multiple frequencies can potentially
improve the estimation of flux and thermal diffusivity. Subsequently, methods were
put forward by (Vandersteen et al. 2015; Schneidewind et al. 2016; Sohn and Harris
2021), that solve the 1D heat transport equation after (Carslaw and Jaeger 1959)
in the frequency domain and explicitly consider multiple frequencies during flux
estimation (see Table 3.2 in Section 3.A for a concise overview).

As not all frequencies are equally informative, multi-frequency analysis requires
that noise (i.e., uncertainties) at individual frequencies be accounted for (Berkel et al.
2014a). (Vandersteen et al. 2015; Schneidewind et al. 2016; Sohn and Harris 2021)
all handle the noise in an optimal way when estimating flux and thermal diffusivity
with a maximum likelihood estimator (MLE). Differences in their methods are found
in how these uncertainties are determined, how the model domain is delineated
and the used information content. For example, (Sohn and Harris 2021) use the
multitaper method while (Vandersteen et al. 2015; Schneidewind et al. 2016) apply
the local polynomial (LP) method to estimate uncertainties and reduce leakage.
Where (Sohn and Harris 2021) as well as (Vandersteen et al. 2015) considered the
subsurface as semi-infinite, (Schneidewind et al. 2016) developed an early bounded
(finite) domain model with the idea to estimate vertical flux for distinct streambed
sections. This early bounded model (LPMLE3) utilized information from three
(noisy) sensors, two for the input (top and bottom boundaries) and the third for
the output.

Here, we introduce LPMLEn, which builds upon works from (Vandersteen et al.
2015; Schneidewind et al. 2016) by extending the bounded LPMLE3 method to
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include temperature data from n sensors in the parameter estimation process and
by considering noisy input and output data for both semi-infinite and bounded
domains. The possibility to use n sensors better constrains parameter uncertainty
whereas the lower boundary condition better insulates the parameter estimation
process from spatial and temporal heterogeneities outside the probed domain. This
is especially helpful when flux and thermal diffusivity are estimated within small
vertical subsections of the streambed to detect streambed heterogeneity. The
advantage of using n sensors within bounded domains is beneficial in the analysis
of flux within heterogenous sediment when data are collected with temperature
probes containing many sensors such as multilevel temperature lances (Munz and
Schmidt 2017) or FO-DTS (Selker et al. 2006).

3.2 The LPMLEn method
The LPMLEn combines the LP method with an MLE to estimate 1D vertical
streambed fluxes and thermal diffusivities using data from n temperature sensors.
It operates in the frequency domain and can use multiple frequencies and sensors
simultaneously for the parameter estimation process. The LP method is applied to
reduce leakage (transients) and estimate the noise levels at the selected frequency
components of the measured temperature signals. The LPMLEn is provided
here with two models: (a) the semi-infinite domain model where only an upper
temperature boundary condition is specified to estimate the parameters and (b)
a bounded (finite) domain model where an additional lower local temperature
boundary condition is assigned to estimate the parameters for a distinct section of
the streambed.

Like other 1D models, LPMLEn assumes local thermal equilibrium (or a slow-
moving equilibrium without significant change of diffusivity and vertical flux),
steady water flow and constant thermal parameters over the model domain. While
it provides information on the vertical flux, we would like to remind potential users
that in natural settings water flow has vertical and nonvertical flow components
(horizontal or lateral). While flowlines at the center of a stream are formed in such
a way that they often indicate predominantly vertical flow (Cuthbert and Mackay
2013; Shanafield et al. 2010), it has been shown that nonvertical flow components
can often become significant closer to streambanks or in areas of high hyporheic
flow (Lautz 2010; Reeves and Hatch 2016; Roshan et al. 2014). Nonvertical flow
does not invalidate 1D heat transport estimates, however curvature in the flow
path may, depending on the degree of curvature (Cuthbert and Mackay 2013).
Areas with high curvature in flow paths warrant the use of more complex and
data-intensive 3D heat transport models (Ghysels et al. 2021; Karan et al. 2014).

Coupled vertical (1D) water flow and heat transport defined after (Stallman
1965) is given by the advection-diffusion equation

∂

∂t
T = D

∂2

∂z2
T + V

∂

∂z
T, (3.1)
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where the temperature T (z, t) [Θ] around an equilibrium is a function of depth z

[L] and time t [T]. Here, time-invariant parameter V [LT−1] represents advection
given by

V = −qz
ρwcw
ρc

, (3.2)

with ρc [ML−1T−2Θ−1] as the volumetric heat capacity of the water-sediment mix,
ρwcw [ML−1T−2Θ−1] the volumetric heat capacity of water, and qz [LT−1] as the
vertical flux (a positive value means downward flow). The parameter D [L2T−1]

represents the effective thermal diffusivity and can be described by

D =
κ

ρc
+ γ(ψ, qz), (3.3)

where κ [MLT−3Θ−1] is the bulk thermal conductivity and γ is a function based
on qz and the thermal dispersivity ψ [L]. Here, we use the LPMLEn to estimate D
without prior knowledge of either thermal conductivity or dispersivity. If all thermal
parameters in (3.3) were known (e.g., through prior field or lab measurements), the
LPMLEn could also be used to only estimate the Darcy flux, but this is discouraged
because D and V are coupled. However, this prior knowledge could be used to
validate the estimation method and model choice (Luce et al. 2013).

As the solution to (3.1) is determined by its boundary conditions, we first cover
the analytical solution for two common choices, (a) the semi-infinite domain and (b)
the bounded domain with Dirichlet (temperature specified) boundary conditions.
As we provide the analytical solutions in the frequency domain, but the measured
data are time series, a transformation to the frequency domain and additional
processing are required, for which we use the Fast Fourier Transform (FFT) and
the LP method, respectively. The unknown parameters are then estimated using
the MLE considering multiple frequencies, n sensors and their uncertainty (the
MLEn part).

3.2.1 The models and their analytical solutions
For well-posedness, i.e., to obtain a unique solution to (3.1), two boundary condi-
tions are required. The two choices commonly applied are: (a) the semi-infinite
domain where the upper boundary condition at depth zU is given by the function
TU (t) and the lower boundary condition is set to approach zero at infinity (Hatch
et al. 2010; Luce et al. 2013; Sohn and Harris 2021; Stallman 1965; Vandersteen
et al. 2015) and (b) the bounded domain where the upper boundary condition at
depth zU is given by the function TU (t) and the lower boundary at depth zL by
the function TL(t) (Schneidewind et al. 2016). The semi-infinite domain model
MSI is given by

MSI :


∂
∂tT = D ∂2

∂z2T + V ∂
∂zT

T (zU , t) = TU (t)

limz→∞ T (z, t) = 0,

(3.4)
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and the bounded domain model MBD by

MBD :


∂
∂tT = D ∂2

∂z2T + V ∂
∂zT

T (zU , t) = TU (t)

T (zL, t) = TL(t).

(3.5)

Using a transfer function notation, the solution to both models is given according
to van (Berkel et al. 2013; Berkel et al. 2014c) by

Θ(z, s) = GU (z, s, θ)UU (s) +GL(z, s, θ)UL(s), (3.6)

where Θ(z, s) is the Laplace transform of T (z, t), while UU (s) and UL(s) are the
Laplace transforms of the functions describing the upper and lower boundary
conditions, respectively. The transfer functions GU (z, s, θ) and GL(z, s, θ) for the
semi-infinite domain model MSI are given by

GU (z, s, θ) = eλ1(s,θ)(z−ZU ) (3.7)
GL(z, s, θ) = 0, (3.8)

and for the bounded (finite) domain model MBD by

GU (z, s, θ) =
ξ(zL, s, θ)ζ(z, s, θ)− ζ(zL, s, θ)ξ(z, s, θ)

ζ(zU , s, θ)ξ(zL, s, θ)− ζ(zL, s, θ)ξ(zU , s, θ)
(3.9)

GL(z, s, θ) = − ξ(zU , s, θ)ζ(z, s, θ)− ζ(zU , s, θ)ξ(z, s, θ)

ζ(zU , s, θ)ξ(zL, s, θ)− ζ(zL, s, θ)ξ(zU , s, θ)
(3.10)

with

ξ(z, s, θ) = eλ1 (s, θ)z (3.11)
ζ(z, s, θ) = eλ2 (s, θ)z (3.12)

λ1,2(s, θ) = −a∓
√
a2 + bs, (3.13)

and θ = [a, b]T =
[

V
2D ,

1
D

]
as a simplification of the parameters for the eigenvalues,

described in detail in (Berkel et al. 2014c). The aim is to estimate θ = [a, b]T, which
then can be transformed back to D and qz. However, to estimate the unknown
parameters, the model needs to be linked to the temperature time series. In
practice, the Laplace variable can only be measured on the imaginary axis, thus
s = iω, where i =

√
−1 and ω is the angular frequency. Any measured temperature

time series can be transformed to the frequency domain using the FFT such that
it is a function of iω. However, the measured streambed temperature data are
commonly not perfectly periodic due to natural conditions such as temperature
fluctuations that are slower than the measurement period, introducing spectral
leakage (Pintelon and Schoukens 2012). Furthermore, the measured temperatures
can be subject to transients due to the initial condition, sensor drift and noise.
To reduce spectral leakage and remove the other unwanted contributions to the
temperature signal, we apply the LP method to assess and improve the quality of
the dataset.
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3.2.2 Processing the dataset with the LP method

A standard method to reduce spectral leakage is windowing, which is known to
introduce systematic (bias) and random (noise leakage) errors when transforming
data to the frequency domain (Pintelon and Schoukens 2012). The LP method
(Pintelon et al. 2010a; Pintelon et al. 2010b) outperforms windowing techniques
by assuming linear relationships (transfer functions) between a given noiseless
reference signal and the measured response, i.e., the LP considers that the signal
originates from a system rather than it being independent. The LP method splits
the measured signal into a forced response, (circular complex normally distributed)
noise, and transients (i.e., the signal part that cannot be explained by the reference
signal). Similar to (Vandersteen et al. 2015; Schneidewind et al. 2016), we use the
temperature measurement Θ(z1, ω) at the top of the streambed as the “noiseless”
reference signal, as this signal contains the largest temperature perturbation and
as such is least subjected to measurement noise. As a result, the LP returns
the (estimated) forced response Θ̂(zm, ω) and the corresponding covariance matrix
CΘ̂(ω) for the remaining m = 2, . . . ,M sensors, which will be used for the parameter
estimation process. This is in contrast to (Vandersteen et al. 2015) where the
“noiseless” reference signal is included in the estimation of V and D. Furthermore,
the obtained covariance matrix allows us to assess the quality of the dataset and
to take the measurement uncertainty consistently into account during parameter
estimation performed subsequently using the MLE.

3.2.3 The n-point MLE

The aim of the MLE is to find those parameters θ = [a, b]T for which the output
of the selected model (in our case MSI or MBD) is the most likely to generate
the measured temperatures. An MLE has been used previously by (Berkel et al.
2013; Berkel et al. 2014c) to estimate the thermal transport coefficients considering
slab geometries on a semi-infinite domain with two sensors (MLE2) and a bounded
domain with three sensors (MLE3). They were later incorporated into the LPML
(Vandersteen et al. 2015) and the LPMLE3 (Schneidewind et al. 2016), respectively.
A cylindrical representation of the MLE3 has also been put forward (Berkel et al.
2019).

In a similar fashion, for the LPMLEn, we construct the log-likelihood cost
function VML(θ,X) that considers the uncertain boundary inputs UU and UL as
in (Schneidewind et al. 2016) and determines the likelihood for the n-outputs
Yn, which are the remnant measurements of the system. For the sake of clar-
ity, we define the new variable X(ωk) =

[
UU (ωk), Yn(ωk)

T, UL(ωk)
]T that con-

tains both the inputs (boundary conditions) and the outputs (other tempera-
ture measurements) and has the corresponding covariance matrix CX . Thus, for
MSI :

[
Θ̂(z2, ωk), . . . , Θ̂(zM , ωk), 0

]T
and for MSI :

[
Θ̂(z2, ωk), . . . , Θ̂(zM , ωk)

]T
.

Using this general notation, the cost function for the log-maximum likelihood (ML)
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is given as in (Pintelon and Schoukens 2012) by

VML(θ,X) =
∑
k∈K

e(ωk, θ,X)H [Ce(ωk, θ)]
−1
e(ωk, θ,X), (3.14)

with the Hermitian transpose H, the angular frequencies that contain relevant
information ωk, k ∈ K, which contains a total number of F frequencies. The error
is then given by

e(ωk, θ,X) = [−GU,n(ωk), In,−GL,n]X(ωk), (3.15)

with its corresponding error covariance matrix

Ce(ωk, θ) = [−GU,n(ωk, θ), In,−GL,n(ωk, θ)]CX(ωk)

[−GU,n(ωk, θ), In,−GL,n(ωk, θ)]
H
,

(3.16)

where In denotes the identity matrix of size n× n. The transfer function vectors
GU,n and GL,n are given by

GU,n = [GU (ž1, ωk, θ), . . . , GU (žn, ωk, θ)]
T (3.17)

GU,n = [GL(ž1, ωk, θ), . . . , GL(žn, ωk, θ)]
T
, (3.18)

where žj , j = 1, . . . , n are the n depths of the sensors considered as output of the
model. Note that the cost function (3.14) is constructed from the sum of squares
of the error that is normalized by its (co)variance. Each of the n× F equations
in the cost function will cause a χ2 distribution with n × F degrees of freedom.
Under the assumption that we have no modeling error, the expected value of the
cost function is n× F − 2

2 . Here, the correction factor 2
2 originates from the two

real parameters that are estimated.
All things considered, we have now defined the complete set of noise and transfer

functions belonging to the n-point estimator with constant transport coefficients.
Note that the LPML in (Vandersteen et al. 2015) results in a much simpler form
of (3.15) and (3.16), i.e., Ce(ωk, θ) = [−0, In, 0]CX(ωk) [0, In, 0]

H
, and that in

the LPMLE3 in (Schneidewind et al. 2016) the matrix products were written out
considering only one of n sensors resulting in scalar expressions for (3.15) and
(3.16), which were independently derived at the time.

As with the LPML and LPMLE3, the parameters are estimated by minimizing
the cost function VML

θ̂ = argmin
θ

VML(θ,X). (3.19)

The cost function VML is nonconvex and is therefore often optimized using
nonlinear least squares minimization techniques such as Gauss-Newton or Levenberg-
Marquardt methods (Fletcher 1980; Levenberg 1944; Marquardt 1963). As the
number of parameters is limited and the analytical transfer functions are known,
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the analytical Jacobian is determined and used to improve computational efficiency.
Furthermore, the analytical Jacobian is used to determine the variance of the
estimated parameters following:

Cθ̂ =
[
2Re

{
JML(θ̂, X)HJML(θ̂, X)

}]−1

, (3.20)

with its Jacobian

JML(θ̂, X) =
∑
k∈K

∂

∂θ̂
Ce(ωk, θ̂)

− 1
2 e(ωk, θ̂, X), (3.21)

where C 1
2 is a square root of the positive definite matrix C, i.e., C = C

1
2C

1
2
H .

Until this point, the variable θ̂ = [â, b̂]T is estimated while we are interested in the
variable θ̂′ = [D̂, q̂z]

T. To obtain θ̂′, θ̂ is transformed via

θ̂′ =

[
D̂

q̂z

]
=

[
1
b̂

−2 â
b̂

ρc
ρwcw

]
, (3.22)

where the uncertainty of the variable θ̂′ is obtained using propagation of uncertainty,
i.e.,

Cθ̂′ = Jθ̂→θ̂′Cθ̂J
H
θ̂→θ̂′ (3.23)

with the Jacobian of the transformation given by

Jθ̂→θ̂′ =

[
0 − 1

b̂2

−2 1
b̂

ρc
ρwcw

2 â
b̂2

ρc
ρwcw

]
. (3.24)

Hence, we can estimate the most likely vertical flux and thermal diffusivity including
the corresponding covariance matrix for both parameters.

3.3 Application of the LPMLEn
In this section, we estimate the thermal diffusivity and vertical flux by applying
the LPMLEn on three synthetic and one experimental dataset using both, the
semi-infinite domain model MSI and the bounded domain model MBD. The
utilization of synthetic data in 1D heat transport modeling to test methodological
limitations and better understand the modeling process is a common approach also
used by others (Glose et al. 2021; Glose et al. 2021; Irvine et al. 2020; Lautz 2010).

Here, the synthetic datasets are used to show that the semi-infinite domain
model can estimate the flow in the wrong direction even though thermal diffusivity
and Darcy flow are constant on the domain where the measurements are taken.
Moreover, the semi-infinite domain can be seen as a special case of the bounded
domain, i.e., on a semi-infinite domain, the bounded domain will still be exact
while the inverse is not true. This gives the LMPLEn the unique capability to
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Table 3.1. Simulated and estimated transport parameters using the semi-infinite domain
model MSI and bounded domain model MBD for a scenario with constant parameters
and sensors placed similarly to the experimental setup.

dataset I (semi-infinite domain) II (bounded domain)

D × 10−6

(m2 s−1)
qz

(mm d−1)
D × 10−6

(m2 s−1)
qz

(mm d−1)

simulated parameters 1.200 200 1.200 200
estimated with MSI 1.200 200 1.830 −17.64
estimated with MBD 1.200 200 1.200 200

diagnose whether the use of a semi-infinite domain approach is justified for a given
dataset and whether the estimated parameters can be deemed accurate. This is
demonstrated by applying the LPMLEn on an experimental dataset and comparing
the estimation results and model fits.

3.3.1 Synthetic datasets
We apply the LPMLEn with both models on four synthetic datasets. The
first two synthetic datasets consist of five temperature signals at depths z =

[0.15, 0.17, 0.20, 0.25, 0.35] m, generated by evaluating (3.6) with the transfer func-
tions for the semi-infinite domain model (3.7) and (3.8) resulting in dataset I, and
the bounded domain model (3.9) and (3.10) resulting in dataset II. The used input
signals are taken from an experimental dataset. Here, the lower boundary condition
for dataset II (bounded domain) does not originate from a semi-infinite domain
model. Stated differently, the temperature signal at the lower boundary condition
contains information that cannot be explained by the semi-infinite domain model,
e.g., by a contribution of hyporheic flow. For the sake of clarity, we did not add
noise to these datasets and used the identity matrix as the covariance matrix. More
information about the generation of the synthetic datasets I and II is presented in
Section 3.B. The simulated and estimated transport parameters for both datasets
are shown in Table 3.1. For completeness, the model fits are presented in Figure 3.7
in Section 3.B. The estimation results show that if the underlying physics-based
model is the semi-infinite domain model (dataset I), both models will estimate
the same transport parameters. On the contrary, for dataset II where the lower
boundary condition contributes to the solution, the flux estimate obtained with
the semi-infinite domain model is in the wrong direction.

datasets I and II are based on constant parameters over the entire model
domain. For the semi-infinite domain, this means that diffusivity and flux need
to be constant up to infinity and deviations from this assumption can profoundly
affect the estimates. We show this by generating synthetic dataset III where the
diffusivity is changed from 1.5× 10−6 m2 s−1] to 0.8× 10−6 m2 s−1 at z = 0.275

m. The dataset is generated using (3.6) with a numerical approximation of the
transfer functions using a central finite difference scheme in MATLAB with 10, 001
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points. The upper boundary condition at z = 0 m is taken from an experimental
dataset and the lower boundary condition at z = 10 m is set to zero to mimic a
semi-infinite domain. Details about the generation of this dataset can be found in
Section 3.C and our MATLAB model is similar to a numerical model presented in
(Das et al. 2019). Furthermore, the temperature is known, i.e., measured, every
0.05 m from 0.1 to 0.5 m.

A single set of transport parameters is estimated at each depth using three
neighboring sensors. The estimation results are plotted in Figure 3.1 at the middle
sensor location, e.g., at 0.15 m, the estimated transport parameters are shown for
the estimate using z = [0.10, 0.15, 0.20] m. In Figure 3.1, we clearly see that in
shallower depths, above 0.25 m, a large discrepancy exists between the simulated
values and the estimated values when using the semi-infinite domain model. This is
in contrast to the bounded domain model that estimates the transport parameters
well. Moreover, at 0.15 m, the shallowest location tested, the semi-infinite domain
model estimated the flow in the wrong direction. The change in diffusivity affects
the temperature at shallower depths and the assumptions for the semi-infinite
domain are not satisfied. Therefore, the semi-infinite domain model implicitly
averages to greater depths during the parameter estimation, and consequently
the diffusivity and velocity estimates attempt to compensate for the change in
parameters. In contrast, the bounded domain model can isolate individually
homogeneous units such that parameter estimates are correct, and only generate
small errors in averaging across the step in diffusivity.

In addition to synthetic dataset III and Figure 3.1, Figure 3.8 in Section 3.D
contains the estimation results of the diffusivity change in the opposite direction
(dataset IV), i.e., from 0.8 × 10−6 to 1.5 × 10−6 m2 s−1. The results are similar
to Figure 3.1, but now with the semi-infinite domain model overestimating the
transport parameters instead of underestimating them.

In conclusion, we have shown two scenarios where the LPMLEn can help
us detect when estimates of the semi-infinite domain approach are inaccurate
compared to using a bounded domain model. Additionally, the LPMLEn with
the bounded domain model might prove extremely helpful analyzing the vertical
flux of distinct small (local) domains with variations in streambed sediment taking
multiple sensors into account, especially for temperature data with very high
vertical spatial resolution (e.g., in the cm range) as is typically the case for data
collected with FO-DTS where the fiber-optic cable is coiled around a PVC core
(Briggs et al. 2012; Folegot et al. 2018; Vogt et al. 2010).

3.3.2 Experimental dataset
Here, the LPMLEn is demonstrated on a 90-day temperature time series (location
ML1) from the Slootbeek, a small tributary to the Aa River, Belgium. The field
site and flow system of the River Aa and Slootbeek have been described in detail
in previous studies (Anibas et al. 2018; Anibas et al. 2018; Ghysels et al. 2021).
Temperature was measured using a multilevel temperature lance (UIT, Dresden,
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Figure 3.1. Simulated and estimated transport parameters using the semi-infinite domain
model MSI and bounded domain model MBD for a scenario with a change in diffusivity,
where the sensors are placed from 0.1 to 0.5 m, every 0.05 m and the parameters are
estimated using a moving triplet of consecutive sensors for which the estimate is shown
at the center of the triplet. Above 0.25 m, a significant discrepancy exists between the
simulated values and the estimated values for the semi-infinite domain model but not for
the bounded domain model. At 0.15 m, the semi-infinite domain model estimated the
flow in the wrong direction.
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Germany) from 17 February to 12 May 2012 every 10 min at the streambed top
and six additional depths (see Figures 3.2a and 3.2b). To determine qz following
(3.22), we used ρwcw = 4.18× 106 Jm−3 K−1 and ρc = 3.07× 106 Jm−3 K−1. The
value for ρc is based on previous research from (Vandersteen et al. 2015) and closely
represents a sandy loam (Ren et al. 2000; Stonestrom and Constantz 2003).

Similar to (Vandersteen et al. 2015), we analyze the experimental dataset using
a rectangular 10-day window. To reduce the computational load during parameter
estimation, only the relevant or informative frequencies should be included in
the analysis. To select the relevant frequencies, the dataset is transformed to
the frequency domain using the FFT and then processed using the LP method
with sensor 1 as noiseless reference signal. As the LP method provides the covari-
ance matrix of the processed Fourier coefficients for the other sensors, the ratio
between the amplitude squared and the variance of the Fourier coefficients, i.e.,
signal-to-noise ratio (SNR), shown in Figure 3.2c for one 10-day window, can be
used to select the informative frequencies for the parameter estimation process.
Similar to (Vandersteen et al. 2015), we choose to include all frequencies up to
1.5 d−1. While selecting the relevant frequencies and sensors for the parameter
estimation is ultimately the choice of the modeler this selection will influence
the parameter estimates. However, including noninformative frequencies in the
parameter estimation process will have little impact on the estimates because the
MLEn uses the error (co)variances as weighting, hence signals with a low SNR
have a smaller contribution to the solution. They will influence (increase) the
expected value of the cost function and delay the computation. On the other hand,
discarding informative frequencies will influence the estimation depending on the
(co)variance.

Comparatively, excluding a sensor has a more significant effect on the estimates
than excluding noninformative frequencies as it also changes the domain on which
the parameters are estimated. In (Vandersteen et al. 2015), the parameters are
estimated using sensors 17, while we here estimate the parameters using sensors 26

as sensor 1 is used as noiseless reference signal for the LP method and sensor 7 is
excluded due to the low SNR at some intervals. In addition, our bounded domain
model MBD uses the bottom sensor as boundary condition, i.e., n = 3, whereas
the semi-infinite domain model MSI considers this sensor as an output (n = 4).
Consequently, the semi-infinite domain model is fitted over one additional sensor
depth. For this reason, we also estimate the parameters with the semi-infinite
domain model using sensors 25, such that the number of outputs between semi-
infinite and bounded domain models is the same (n = 3). However, note that this
estimate is then based on a reduced dataset compared to the bounded domain
model. The diffusivity, vertical flux, and the (normalized) cost function value are
obtained by moving the 10-day window along the dataset (Figure 3.3). As the
number of equations nF is much larger than the correction factor 2

2 , the expected
value VML

nF ≈ 1 if there are no modeling errors. Hence, the difference with this
expected value reflects the modeling error.

From Figure 3.3c, we see that, in general, the bounded domain model has
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Figure 3.2. (a) Multilevel temperature lance used to collect data, (b) temperature
data from the Slootbeek at ML1 (both modified from Vandersteen et al. 2015), (c)
example of signal-to-noise ratio (SNR) plot for one 10-day window after using the local
polynomial method. It can be used to select informative frequencies. We chose to include
all frequencies up to 1.5 d−1, indicated by the vertical dashed line.
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Figure 3.3. (a) Estimated diffusivity, (b) Darcy flux (positive means downwelling) with
their 95% confidence bounds, and (c) (normalized) cost function value, shown at the start
of the analyzed 10-day window for the semi-infinite domain MSI and bounded domain
MBD models. The two vertical dashed black lines indicate the time for the model fits
shown in Figure 3.4.
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the smallest modeling error. Moreover, while on some intervals, estimates with
the semi-infinite and bounded domain models agree, at other intervals the flow is
estimated in opposite directions (Figure 3.3b, e.g., between day 10 and day 20).
As shown with the synthetic dataset, if both models agree in their estimates, the
estimates can be deemed trustworthy. However, in case the two models do not
agree, the bounded domain model is more likely to estimate the correct flow. To
verify this, we can look at how the models fit the data. For clarity, the model fits
at t1 = 9.2569 and t2 = 17.2153 are shown in Figure 3.4 without the error bars
on the measured data, while a figure with error bars is shown in Figure 3.9 in
Section 3.E. In these figures, we see that at t1 all models fit the data very similarly,
while at t2 the bounded domain model describes the phase behavior better than
the semi-infinite domain models do.

Additional evidence is provided by looking at the joint variation of the estimated
diffusivity and flux from Figure 3.3a and Figure 3.3b, presented in Figure 3.5. As
mentioned previously, we estimated the thermal diffusivity instead of the bulk
thermal conductivity as there is a physical basis to expect variation of the diffusivity
with flux (3.3), namely, hydraulic dispersion. Two common notations of the thermal
dispersivity are given by (Marsily 1986; Rau et al. 2012)

D =
k

ρc
+ ψ

∣∣∣∣ρwcwρc
qz

∣∣∣∣ , (3.25)

D =
k

ρc
+ ψ

(
ρwcw
ρc

qz

)2

. (3.26)

The estimates originating from the bounded domain model MBD follow that
pattern much more strongly than the semi-infinite domain model MSI, suggesting
that some of the variations estimated by the semi-infinite domain model are spurious.
A linear least squares fit of (3.25) and (3.26) on the bounded domain estimates is
shown along the estimates in Figure 3.5. As both fits do not perfectly fit the data,
further research is necessary to establish more insight into the joint variation of
the estimated parameters. However, one should note that the observed variations
are not the result of small variations within the dataset, but originate from larger
trends as small variations, e.g., estimates originating from the next and previous
10-day windows, would be close to each other (within each others 95% confidence
ellipses, see Figure 3.10 in Section 3.F).

Combining the knowledge from the synthetic dataset, the model fits and the
variation of the diffusivity with flux, indicates to us that the semi-infinite domain
model estimates the flow in the wrong direction and that the estimates originating
from the bounded domain model are more trustworthy. However, as with any
model no absolute guarantee exists that all underlying physical processes in our
natural system are described sufficiently well.
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Figure 3.4. The amplitude ratio (top) and change in phase (bottom) of the measured
frequency response functions and fitted semi-infinite domain model MSI and bounded
domain model MBD at the two times shown with dashed lines in Figure 3.3. The shown
amplitude ratios and changes in phase are from sensor 2 at 0.15 m to sensors 3, 4, 5, and
6 at 0.17, 0.20, 0.25, and 0.35 m, respectively. Note that sensor 6 is used as boundary
input for the bounded domain model; thus, the fitted response would equal the measured
response and is left out for clarity.
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Figure 3.5. Diffusivity as a function of flux for the semi-infinite domain model MSI and
bounded domain model MBD compared to two common notations that are fitted on the
estimates from the bounded domain model.
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3.4 Conclusion
The LPMLEn extends previous frequency domain approaches to estimate vertical
streambed fluxes and thermal diffusivities by including temperature data from
n sensors in the multifrequency parameter estimation process. It contains the
commonly used semi-infinite domain model, and a more robust and physically
based bounded (finite) domain model. Processing the data with the LP method
and systematically taking the measurement uncertainty into account by minimizing
the (log) ML cost function result in an estimate of the parameters and their
corresponding uncertainties.

The application of the two models to the same dataset is crucial in verifying
whether the use of the semi-infinite domain approach is justified and the estimated
diffusivity and Darcy flux can be deemed accurate. The semi-infinite domain model
is a special case of the more general, bounded (finite) domain model; hence, the
semi-infinite domain model is more likely to estimate the flux erroneously whereas
the bounded domain model has a higher likelihood to estimate the direction of
the flux correctly as is demonstrated using synthetic datasets as well as field
measurements. In case estimates obtained with both model types agree, model fits
and cost function values are also very similar. Where the estimated parameters do
not agree, the bounded domain model fits the data better and has a much lower
cost function value. As such, the LPMLEn with the bounded model can be used
to verify assumptions made for the semi-infinite domain model. Additionally, if the
dataset allows for it, the bounded domain model can easily be used to estimate
parameters for distinct vertical streambed sections, which might shed light on the
contribution of shallow hyporheic flux and deeper groundwater upwelling to the
overall flux estimate in future studies.



Appendix

3.A Summary of frequency domain methods in
hydrology

Table 3.2. Summary of characteristics of frequency domain models used to estimate
vertical streambed fluxes from temperature-time series.

name source model type sensors fre-
quency

noisy
output

noisy
input

Luce et al. Luce et al. 2013 semi-infinite 2 single no no
MLE2 Berkel et al. 2013 semi-infinite 2 multiple yes yes
MLE3 Berkel et al. 2014c bounded 3 multiple yes yes
LPML Vandersteen et al. 2015 semi-infinite n multiple yes no
LPMLE3 Schneidewind et al. 2016 bounded 3 multiple yes yes
Sohn and Harris Sohn and Harris 2021 semi-infinite 2 multiple yes yes

LPMLEn Kampen et al. 2022d semi-infinite
or bounded n multiple yes yes

3.B Synthetic datasets I and II (constant parame-
ters)

The two synthetic datasets are generated using the semi-infinite domain model MSI

and the bounded domain model MBD, respectively. The used input parameters
are shown in Table S2 and are inspired by the experimental dataset presented in
the manuscript. Moreover, we use two (processed) signals from the experimental
dataset presented in the manuscript as input for our synthetic dataset, namely
the signal at z = 0.15 m for the upper boundary condition and at z = 0.55 m for
the lower boundary condition. We consider the complete 90-day signal, taking
all frequencies up to 2.5 d−1. The synthetic temperature signals are directly
determined in the frequency domain, using equations (3.6) and the corresponding
transfers functions (3.7) and (3.8) for the semi-infinite domain model, and (3.9)
and (3.10) for the bounded domain model in the manuscript. The synthetic datasets
are than created by taking the input temperature signal from the upper boundary
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Figure 3.6. The amplitude (top) and phase (bottom) of synthetic datasets I & II
generated by the semi-infinite domain model MSI (left) and bounded domain model MBD

(right), respectively

condition at zU , and the temperatures at z1, z2, z3 and z4. Note that we leave
the temperature signal at zL out of both synthetic datasets. The two synthetic
datasets are visualized in Figure 3.6, where for completeness the lower boundary
condition is shown in black. The estimated parameters are depicted in Figure 3.1
and the corresponding estimated transfer function are fitted through the synthetic
datasets in Figure 3.7. For the semi-infinite domain model this fit is given by
Θ(zm,f)
Θ(zU ,f) = GU (zm, f, θ) while for the bounded domain model, the fit is shown by
Θ(zm,f)
Θ(zU ,f) = GU (zm, f, θ) +GL(zm, f, θ)

Θ(zL,f)
Θ(zU ,f) . Note that for the synthetic dataset

generated with MSI both models fit the data perfectly, while in case of the synthetic
dataset generated with MBD, only the MBD model fits the data perfectly. The
parameter fit with the MSI merely captures the average of the amplitude behavior,
and completely fails to describe the correct trend in the phase behavior.
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Figure 3.7. The amplitude ratio (top) and change in phase (bottom) of the measured
frequency response functions and fitted semi-infinite domain model MSI and bounded
domain model MBD for synthetic datasets I & II generated by the semi-infinite domain
model MSI (left) and bounded domain model MBD (right), respectively. The shown
amplitude ratio and change in phase are from sensor 1 at 0.15 m to sensors 2, 3, 4 and
5 at 0.17, 0.20, 0.25 and 0.35 m, respectively. Note that sensor 5 is used as boundary
input for the bounded domain model; thus, the fitted response would equal the measured
response and is left out for clarity.
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3.C Synthetic dataset III (change in parameters)
As there is no analytical solution known for a model with a change in parameters,
we approximate the partial differential equation by applying a semi-discretization
using a central finite difference scheme to discretize the spatial coordinate

∂

∂t
T (zj , t) = D(zj)

(T (zj+1, t)− 2T (zj , t) + T (zj−1, t)))

(∆z)
2

+ V (zj)
(T (zj+1, t)− T (zj−1, t)))

2∆z
,

(3.27)

where j denotes the discretization index and ∆z the vertical spacing. This equation
can directly be transformed to the frequency domain

iωΘ(zj , ω) = D(zj)
(Θ(zj+1, ω)− 2Θ(zj , ω) + Θ(zj−1, ω)))

(∆z)
2

+ V (zj)
(Θ(zj+1, ω)−Θ(zj−1, ω)))

2∆z
.

(3.28)

In this way, we can determine the spatial temperature at the measurement points
for each frequency individually using a two-boundary condition. Our MATLAB®

implementation is based on the work of (Das et al. 2019).

3.D Synthetic dataset IV (change in parameters)
Complementary to synthetic dataset III, where the diffusivity is changed from
1.5 · 10−6 m2 s−1 to 0.8 · 10−6 m2 s−1 at z = 0.275 m, we created an additional
dataset where the diffusivity is changed from 0.8 · 106 m2 s−1 to 1.5 · 10−6 m2 s−1.
Equal to Figure 3.1, we estimate a single set of transport parameters at each depth
using three neighboring sensors. The estimation results are plotted in Figure 3.8
at the middle sensor location, e.g., at 0.15 m, the estimated transport parameters
are shown for the estimate using z = [0.10, 0.15, 0.20] m.
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Figure 3.8. Simulated and estimated transport parameters using the semi-infinite domain
model MSI and bounded domain model MBD for a scenario with a change in diffusivity,
where the sensors are placed from 0.1 to 0.5 m, every 0.05 m and the parameters are
estimated using a moving triplet of consecutive sensors for which the estimate is shown
at the center of the triplet.
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3.E Model fits on experimental dataset
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Figure 3.9. The amplitude ratio (top) and phase difference (bottom) of the measured
frequency response functions with their 95% confidence interval and the fitted semi-infinite
domain model MSI and bounded domain model MBD at the two times shown with dashed
line in Figure 3.3. The shown amplitude ratio and change in phase are from sensor 2

at 0.15 m to sensors 3, 4, 5 and 6 at 0.17, 0.20, 0.25 and 0.35 m, respectively. Note
that sensor 6 is used as boundary input for the bounded domain model; thus, the fitted
response would equal the measured response and is left out for clarity.
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3.F Thermal dispersivity fits on experimental dataset

Figure 3.10. Diffusivity as a function of flux for the semi-infinite domain model MSI

(left) and bounded domain model MBD (right) with their 95% confidence ellipses. For
the bounded domain model, the two common notations for dispersion are fitted.





4
Estimating 1D spatially

varying coefficients

Abstract - This chapter presents a closed-form solution to estimate space-dependent
transport parameters of a linear one dimensional diffusion-transport-reaction equation.
The infinite dimensional problem is approximated by a finite dimensional model by
1) taking a frequency domain approach, 2) linear parameterization of the unknown
parameters, and 3) using a semi-discretization. Assuming full state knowledge, the
commonly used output error criterion is rewritten as the equation error criterion such that
the problem results in linear least squares. The optimum is then given by a closed-form
solution, avoiding computational expensive optimization methods. Functioning of the
proposed method is illustrated by means of simulation.
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Berkel (2021c). “A Closed-Form Solution to Estimate Spatially Varying Parameters in Heat
and Mass Transport”. In: IEEE Control Systems Letters 5.5 (Nov. 2021), pp. 1681–1686. doi:
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4.1 Introduction
Heat and mass transport phenomena are widely studied in the domain of physics
and chemistry. Examples include, but are not limited to, transport of thermal
energy through nuclear fusion reactors (Berkel et al. 2019), the study of the
groundwater-surface interaction systems (Schneidewind et al. 2016), and heat or
moisture transport in buildings (Irsyad et al. 2017). These phenomena are typically
modeled around an operating point by linear parabolic partial differential equations
(PDEs), commonly known as diffusion-transport-reaction equations (Incropera
et al. 2006). In most physical diffusion-transport-reaction systems the -exact-
parameters are often unknown. Hence, data-driven estimation of the unknown
physical parameters is necessary to determine a model which can be used for
simulation, analysis, prediction, and control.

Historically, the utilization of measured data to determine an estimate of -
physical- parameters is known as an inverse problem (Tarantola 2005; Kirsch
2011); in contrast to forward problems where the model is used to generate data.
Specifically, determining unknown physical parameters in dynamical systems is
often considered as an optimization problem where an error criterion based on
the mismatch between model and measurements is minimized. To this end, there
are typically two sub-fields in PDE estimation: 1) grey-box identification where
unknown parameters are estimated by minimizing the difference between a pre-
selected model (class), e.g., a PDE with unknown diffusion, and measured data
(Banks and Kunisch 1989; Vogel 2002); 2) parameter learning which resorts to
machine learning like techniques to avoid pre-selection of model-class (Xun et al.
2013; Tartakovsky et al. 2018). In both cases the underlying infinite dimensional
models are generally approximated by finite dimensional models.

The standard method to estimate the unknown parameters is the output
error criterion, i.e., taking the -weighted- sum of the squared error between the
measurements and model output, primarily solved with iterative optimization
methods (Banks and Kunisch 1989; Bock et al. 2013; Vogel 2002; Kirsch 2011;
Mechhoud et al. 2015). These suffer from two problems: 1) they are solved
iteratively, which is time consuming and in many cases the problem is non-convex,
i.e., no guarantee for convergence to an optimal solution; 2) as only the output
error is optimized and the unknown parameters are unconstrained, the parameters
can start oscillating even when the output error is zero due to spatial aliasing
of the state, which is estimated simultaneously. The latter is generally resolved
by regularizing the unknown parameters (Ito and Kunisch 2008). However, this
regularisation is often artificial, as there is usually no a priori information on how
the unknown parameters change as function of space. Hence, here we propose a
different approach by separating the two problems. First, we estimate the solution
of the state over space based on a finite number of measurements. This allows
us to transform the output error in an equation error criterion. By transforming
this criterion into the frequency domain, we can derive a closed-form expression
for the unknown parameters based on the estimated states, which is the novelty
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of the presented method. Hence, we can uniquely and directly -without iteration-
determine the diffusivity, convectivity, reactivity, and the source -as function of
space-, simultaneously. Combining this with advances in 1) modern frequency
domain signal processing to reduce noise and removing the initial condition (Pintelon
and Schoukens 2012; Berkel et al. 2020); 2) recent innovations in dealing with
experimentally unknown boundary conditions (Berkel et al. 2014c); 3) a wide
variety of functions to spatially parameterize transport (Das et al. 2019). This
results in a highly versatile and fast method to acquire reliable estimates of the
spatially varying parameters. This is in strong contrast to direct solutions proposed
in the literature which are based on (piecewise) constant parameters (Berkel et al.
2014b) and often only consider diffusion (Ewing and Lin 1988; Liao et al. 2009).

4.2 Problem formulation
The estimation of space-dependent physical parameters in heat and mass transport
is performed based on the following specifications.

Model-class A class of linear parabolic PDEs is considered in a one dimensional
bounded spatial geometry to model the spatio-temporal dynamics of heat and mass
transport. For all x ∈ X := [xb, xe] ⊂ R and t ∈ T := [t0,∞) ⊆ R≥0, the class of
PDEs is defined as

∂z

∂t
= D(x)

∂2z

∂x2
+ V (x)

∂z

∂x
+K(x)z + P (x)s(t). (4.1)

Here, the state z : X × T → R is a multi-variable function (that can describe
temperature or mass concentration) and (4.1) is understood point-wise in x ∈ X
and t ∈ T with z evaluated as z(x, t). The physical transport parameters are
diffusivity D : X → R>0, convectivity V : X → R, and reactivity K : X → R. The
external input is denoted by s : T → R. Furthermore, the spatial distribution of
the input is given by the function P : X → R.

For well-posedness, the PDE is constrained by two boundary conditions at
locations xb and xe. Moreover, the initial condition z(·, t0) is assumed compatible
with the model and its boundaries.

Measured data Corresponding to the heat and mass transport phenomena,
location specific values of the state function z are measured over time and available
as data. Let there be M > 0 sensors that measure z at the locations given by
the set of points XM := {x̌1, x̌2, . . . , x̌M} ⊂ X. The measured output signals are
ym(t) = z(x̌m, t) for all t ∈ T, with m ∈ {1, . . . ,M}. The input s(t) is assumed to
be known or measured for all t ∈ T.

Problem formulation In practical applications, the explicit definitions of space-
dependent transport parameters {D(x), V (x),K(x), P (x)} are often not available.
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Moreover, the boundary conditions that constrain heat and mass transport phe-
nomena may depend on the spatially varying transport parameters, and, hence,
remain unknown. In a similar fashion, in practice, the -exact- initial condition
z(·, t0) may also be unknown. Therefore, we take the extremum measurements as
boundary inputs, however, other linear boundary conditions are also allowed.

To complete the model in (4.1), the spatially varying transport parameters
{D(x), V (x),K(x), P (x)} have to be estimated based on measured data. This
results in the following estimation problem:

Problem 4.1. Given the pre-processed data-set (see remark 4.2)

D := {y1(t), . . . , yM (t), s(t) | t ∈ [t0,∞)},

estimate the unknown function γ : XE → R4,

γ(x) := col
(
D(x), V (x),K(x), P (x)

)
, (4.2)

by minimizing a cost function V
(
D, z(x, t; γ)

)
-defined in Sec IV- over γ such that

the solution z(x, t; γ) satisfies the model (4.1) with parameters γ in the sense that

∂z

∂t
= row

(
∂2z

∂x2
,
∂z

∂x
, z, s

)
γ, (4.3)

subject to the boundary conditions and initial condition

z(x̌1, t) = y1(t), z(x̌M , t) = yM (t), z(x, t0) = 0.

Remark 4.1. Using the extremum measurements as Dirichlet boundary conditions
reduces the estimation domain to XE := [x̌1, x̌M ] (Berkel et al. 2014c). Moreover,
this allows to set-up the parameter estimation problem without the need of full
knowledge about the actual boundary conditions.

Remark 4.2. With -advanced- signal processing techniques, the measured signal
can be split into a transients/drift signal (non-steady-state behavior, e.g., from the
initial condition), a forced response (from the excitation) and additive (filtered)
noise (Pintelon and Schoukens 2012; Berkel et al. 2020). By removing the transient
and noise terms from the original signal, only the forced response remains in the
filtered dataset D, which is equivalent to z(·, t0) = 0.

4.3 Finite dimensional frequency domain problem

Problem 4.1 is infinite dimensional with no known analytic solution for z(x, t).
Therefore, this section approximates the infinite dimensional problem by creating
a finite dimensional model following the methodology from (Das et al. 2019).
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4.3.1 Frequency domain approach
Assuming that the discrete Fourier transformed input S(k) has (excited) frequency
bins k ∈ K, problem 4.1 can be studied in the frequency domain without loss of
information (Parseval’s Theorem). Moreover, due to linearity of the model, Z(x, k)
is independent for each excited bin k. The frequency domain model of (4.3) is then
given by

iωkZ =row

(
∂2Z

∂x2
,
∂Z

∂x
, Z, S

)
γ

Y (k) :=col (Z(x̌2, k), . . . , Z(x̌M−1, k))

(4.4)

subject to the boundary conditions

Z(x̌1, k) = Y 1(k), Z(x̌M , k) = YM (k),

with discrete Fourier transformed state Z : X×K → C, input S : K → C, output
Y (k), i2 = −1 and angular frequency ωk corresponding to the kth-bin.

Remark 4.3. In excitation experiments only a finite number of bins are informative,
i.e., those bins which are present in the input S(k) and are above the noise level
(Pintelon and Schoukens 2012). Hence, in practice only a -few- finite number of
bins need to be considered (see (Berkel et al. 2018b) for details).

4.3.2 Linear parameterization of the unknown functions
For estimation purposes, assume that γ belongs to a function space Γ that is
parameterized by a surjective mapping Π : Θ → Γ that is described by a finite sum
of basis functions Br(x) := diag

(
BD

r (x), BV
r (x), BK

r (x), BP
r (x)

)
,

γ(x; θ) := [Π(θ)](x) :=

R∑
r=1

Br(x)θr, (4.5)

with θ = col (θ1, . . . , θR) and θr = col
(
θDr , θ

V
r , θ

K
r , θ

P
r

)
∈ Θ ⊂ R4. With this

parameterization, the estimation of γ amounts to estimating θ ∈ R4R.

4.3.3 Semi-discretization
The infinite dimensional model (4.4) is approximated by a central finite difference
scheme that converges to the exact solution for N → ∞ (Quarteroni and Valli
1994). The finite dimensional model is

iωkZ(k) = A(θ)Z(k) +B(θ)U(k)

Y (k) = CZ(k)
(4.6)

with state vector Z(k) := col (Z(x2, k), . . . , Z(xN−1, k)) at sample xj ∈ Xd ⊂ X,
j ∈ {1, . . . , N}, extended input vector U(k) = col

(
S(k), Y 1(k), YM (k)

)
. Here,
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A(θ) and B(θ) contain the boundary conditions, are linear affine in θ, and defined
in (Das et al. 2019). The -observation- matrix C maps states to output. Altogether,
the finite dimensional problem yields

Problem 4.2. Given the pre-processed data-set

D = {col
(
Y 1(k), . . . , YM (k)

)
, S(k) | k ∈ K}.

Estimate θ by minimizing a cost function V
(
D,Z(k; θ)

)
over θ such that Z(k; θ)

satisfies the model (4.6).

4.4 The inverse problem
This section describes our methodology to estimate the unknown weights. In the
literature for distributed parameter systems, different error criteria are proposed
to calculate the parameters. The commonly used criterion is the output error
criterion (Banks and Kunisch 1989; Bock et al. 2013; Vogel 2002; Kirsch 2011; Das
et al. 2019) and the rarely used equation error criterion (Banks and Kunisch 1989)
which we will use in the frequency domain to derive a closed-form solution for the
unknown parameters.

4.4.1 Output error criterion
The commonly used cost function is the output error criterion which is the sum of
the squared error between solution z(x, t; γ) for a given γ and measurements y(t),
i.e.,

Voe(θ) :=

∫ τ

t0

∫ xe

xb

|y(t)− Cz(x, t; γ(x; θ))|2 dxdt (4.7)

with observation map C that maps state to output. This criterion is transformed
into the frequency domain such that the output error criterion for problem 4.2 and
(Das et al. 2019) is given by

Voe(θ) =
∑
k∈K

∥∥∥Yk − C (iωkI −A(θ))
−1
B(θ)Uk

∥∥∥2 , (4.8)

with shorthand notation Yk = Y (k) and Uk = U(k). This criterion is nonlinear
in θ due to the inverse and multiplication. As such, it needs to be iteratively
optimized with often no guarantee for convergence to the global minimum. As this
is generally the case for the output error criterion, we propose to use the equation
error criterion for which a closed-form solution can be derived.

4.4.2 Equation error criterion
In the equation error criterion, the state of the model is replaced by measurements
or estimates of the state ẑ(x, t) (Banks and Kunisch 1989), such that for (4.3), the
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equation error criterion is defined as

Vee(θ) := ∫ τ

t0

∫ x̌M

x̌1

(
∂ẑ

∂t
− row

(
∂2ẑ

∂x2
,
∂ẑ

∂x
, ẑ, s

)
γ(x; θ)

)2

dxdt. (4.9)

This can be simplified in the frequency domain: the integral over time simplifies to
a summation over the excited frequency bins k ∈ K without loss of information
(Parseval’s theorem). With the measured or estimated state vector in the frequency
domain Ẑk, the equation error for problem 4.2 simplifies to

Vee(θ) =
∑
k∈K

∥∥∥iωkẐk −
(
A(θ)Ẑk +B(θ)Uk

)∥∥∥2 . (4.10)

4.4.3 Derivation of the closed-form solution
Consider the equation error criterion in (4.10) and that A(θ) and B(θ) are linear
affine in θ, then new matrices Ã, B̃ can be defined as a function of the data Uk and
Ẑk such that A(θ)Ẑk = Â(Ẑk)θ and B(θ)Uk = B̂(Uk)θ (see ). As a result, (4.10)
can be written as

Vee =
∑
k∈K

∥∥∥iωkẐk −
(
Â(Ẑk) + B̂(Uk)

)
θ
∥∥∥2 , (4.11)

with the closed-form solution

θ̂ :=
((
Ā+ B̄

)H (
Ā+ B̄

))−1 (
Ā+ B̄

)H
W̄, (4.12)

where H denotes the Hermitian transpose, Ā, B̄, and W̄ are the column concatena-
tion of Â(Ẑk), B̂(Uk), and iωkẐk for all excited bins k ∈ K, respectively. Hence,
the optimal weighting for θ, and thus γ(x), are determined without using iterative
optimization methods.

Remark 4.4. The equation error in combination with different cost functions such
as weighted and total linear least squares also have closed-form solutions (Markovsky
and Huffel 2007).

4.4.4 State estimation
The unique solution ((4.12)) requires knowledge of the state at each discretization
point, i.e., a “space-”continuous measurement. If N → ∞, the finite dimensional
description converges to the true infinite dimensional solution and an exact solution
can be found.

However, due to limited spatial measurements, the purpose is to estimate the
full state based on these measurements. This raises the fundamental problem of
unknown in-between sensor behavior. In case of regularized output error (Banks
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and Kunisch 1989), the intermediate relationship in-between measurements is de-
termined by the regularized functions for the transport parameters. This technique
is reminiscent to the (spatial) NyquistShannon (NS) sampling theorem. Therefore,
a consistent -spatial- signal reconstruction using the NS theorem is required and
currently being worked out. Alternatively, the states can be inferred by interpolat-
ing the measurements using machine learning techniques -currently being further
worked out- (Kampen et al. 2020; Ho et al. 2019); classic interpolation methods; or
reducing the number of states in the model to match the measurements. Note that
the selected method should be model free such that the problem remains affine
in the unknown parameters. In the simulation section, we show the latter two
approximation methods in combination with the closed-form solution.

4.5 Simulation results
In this section, two simulation scenarios are presented demonstrating the merit
of the proposed methodology. As the here proposed method has a closed-form
solution that only requires solving a linear matrix equality, it is expected to be
significantly faster than iterative optimization methods, e.g., when compared to
(Das et al. 2019). This can be exploited by considering two scenarios: scenario
1 which estimates {D(x), P (x)} testing different orders (weights) R of the basis
functions and scenario 2 which tests different interpolation density of the data
when all four functions {D(x), V (x),K(x), P (x)} are estimated using fixed set of
basis functions Br (x) and their orders R.

4.5.1 Data generation
The simulation example is inspired by perturbative experiments in the field of
nuclear fusion (Berkel et al. 2013). The heat transport, (4.1), is generally analyzed
on the normalized domain X = [xb, xe] = [0, 1] of the -minor- plasma radius. Here
xb is at the center and xe is at the edge of the plasma. The corresponding boundary
conditions in the simulation are ∂Z

∂x (xb, ·) = 0 due to (axi)symmetry and Dirichlet
boundary condition Z(xe, ·) = 0 due to a significant temperature difference between
core plasma ∼170 million ◦C and edge plasma ∼1 million ◦C. Typical functions
used in nuclear fusion are

Dsim(x) = 5x3 − 0.005x+ 5,

V sim(x) = 15x2 − 0.005,

Ksim(x) = −3x,

P sim(x) = 0.2 +
7√
π
e

−(x−0.35)2

(0.1)2 +
5.6√
π
e

−(x−0.6)2

(0.1)2 .

For the perturbation of the plasma temperature a microwave source is used, where
the excitation signal S(ω) is a block-wave of ω0 = 50π with a 70% duty cycle. Here,
only the first five harmonics ωk = kω0, k = 1, . . . , 5 have a significant contribution
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Figure 4.1. The fitting error map Vee(θ) for scenario 1 by approximating the parameters
{D(x), P (x)} with different number of basis-functions, RD, RP , respectively. Here, the •
annotates the locations (RD, RP ) = (3, 8), (9, 16), and (21, 23) shown in Figure 4.2.

and are used for the estimation. The temperature data is generated by a simulation
with a central finite difference grid of N = 801 sample points.

4.5.2 Estimation of {D(x), P (x)} with unknown order R

In scenario 1, the goal is to estimate {D(x), P (x)} without knowledge on the
correct orders (RD, RP ) in (4.5), which practically means we do not know the
shape of {D(x), P (x)}. For ease of explanation, we set V (x) = K(x) = 0 for this
example. As the number of sensors plays an important role, we choose here M = 22

sensors that are located at x̌m = 0.05 + 0.04125(m− 1), with m = 1, . . . ,M . This
corresponds to the electron cyclotron emission (ECE) diagnostic that measures in
a medium sized fusion reactor.

In principle, any basis function can be used and several can be tested simultane-
ously. Here, we use -arbitrarily chosen- Chebyshev polynomials for both parameters
(Quarteroni and Valli 1994).

We vary the orders RD, RP ∈ {1, . . . , 30} and use a discretization grid that
equals the measurement grid Xd = XM , thus C = I. Naturally, the cost (4.10)
decreases for increasing RD and RP as shown in Figure 4.1. For three different
combinations, i.e., (RD, RP ) = (3, 8), (9, 16), and (21, 23) the resulting estimates
are shown in Figure 4.2.

Figure 4.2 shows that when the order (RD, RP ) is too low, e.g., for (3, 8),
significant errors occur in the estimates. If the order is sufficiently high, e.g., for
the pairs (9, 16) and (21, 23), the estimates have the correct value at the sensor
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Figure 4.2. The estimated parameters {D(x), P (x)} over XE for scenario 1 with the
number of basis-function (RD, RP ) = (3, 8), (9, 16) and (21, 23) and their relative error
ε(x).

locations as is imposed by the equation error. Consequently, only the values of
γ(x) at the sensor locations should be considered as a correct result given that the
combination of basis functions and order give sufficient freedom.

Remark 4.5. Although the intermediate points between sensor locations should
not be considered in this methodology, γ(x) is defined at these points and plotted
for completeness. As the comparison of the orders (9, 16) and (21, 23) shows, the
finite dimensional approximation does not pose a unique solution for γ(x) at the
intermediate points. This can be resolved by increasing the discretization grid, e.g.,
by interpolating the data, which is further investigated in the following section.

4.5.3 Estimation using spatial interpolations of the temper-
ature

In the simulation for scenario 2, we investigate the effect of interpolations on
the estimation. In scenario 2 all the functions are non-zero and according to
Section 4.5.1. Here, we use a sensor grid which corresponds to that of a larger
fusion reactor, i.e., the temperature is measured by M = 60 sensors located at
x̌m = 0.1625m, with m = 1, . . . ,M .

In this scenario, the order of the basis functions is fixed and only the weights
are estimated. Polynomial basis functions are used for {D (x) , V (x) ,K (x)} and
B-spline functions for P (x) to approximate Gaussians. The choice of order for
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Figure 4.3. Estimated parameters {D(x), V (x),K(x), P (x)} over XE for scenario 2 and
the relative error ε(x) between the simulated parameter and the estimated parameter.
The subscript 1, 2, 3 denote if the estimates are based on the measurements N1 = M , or
the interpolated measurements N2 = 2(M − 1) + 1 or N3 = 10(M − 1) + 1, respectively.
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the monomial basis functions to estimate {D (x) , U (x) ,K (x)} is higher than the
actual order and is chosen to be RD = 8, RV = 6 and RK = 3 such that it
is possible to find an exact description. The basis function for P (x), BB

r (x) is
designed using the De Boor’s algorithm (Boor 1978) with 58 equally distributed
control points, thus RP = 58.

Three estimations are presented where, 1) the discretization grid equals the
measurement grid N1 = M , 2) the measurement data is interpolated over space
to generate artificial spatial measurements, i.e., N2 = 2(M − 1) + 1, and 3) more
interpolation points, i.e., N3 = 10(M − 1)+1. The data is interpolated using cubic
splines.

The estimation results are shown in Figure 4.3. Overall, the estimated parame-
ters {D(x), P (x)} closely match with the simulated parameters, while {V (x),K(x)}
are estimated with a significantly lower accuracy. Estimating {V (x),K(x)} requires
a higher accuracy of the discretization grid. Therefore, interpolating the data
increases the accuracy (see results for N2), however, over-interpolation can affect
the estimation accuracy negatively (see results for N3).

4.6 Conclusions and discussion
This chapter presents a novel method to efficiently estimate the unknown space-
dependent transport parameters, based on a closed-form solution of the equation
error criterion. The closed-form solution is formulated as a linear matrix equality
such that high density grids can be solved computationally efficient. As a result, if
the states z(·, t) are known, the parameters are estimated uniquely with the desired
accuracy by taking a sufficiently dense discretization grid.

In practice, measurements are often only provided at a limited set of spatial
locations. This is generally resolved by (i) applying regularization or restrictions
on the unknown parameters or (ii) as we have done here by “interpolating” the
measurements to increase the grid density. There are three reasons why we prefer
approach (ii): 1) As we are estimating the unknown parameters, prior information
on the -smoothness of- parameters is generally unavailable, whereas smoothness
on the states is required due to the underlying parabolic PDE; 2) the states as
function of space can easily be -visually- inspected for correctness and validated
by taking additional spatial measurements; and 3) a closed-form solution can be
used which significantly speeds up the process and avoids convergence to a local
minimum.



Appendix

4.A Finite Difference Matrices

The matrices used in (4.11) are given by

Â
(
Ẑ(k)

)
:=
[
LD
1 , L

V
1 , L

K
1 ,0, . . . , L

D
R , L

V
R , L

K
R ,0

](
I4R ⊗ Ẑ(k)

)
, (4.13)

B̂
(
U(k)

)
:=
[
0, gD1 , h

D
1 ,0, g

V
1 , h

V
1 ,0,0,0, f

P
1 ,0,0, . . . ,

0, gDR , h
D
R ,0, g

V
R , h

V
R ,0,0,0, f

P
R ,0,0

](
I4R ⊗ U(k)

)
,

(4.14)

where ⊗ denotes the Kronecker product and 0 the zero vector/matrix of the
appropriate size. The central finite difference matrices L with grid sample ∆x > 0

are

LD
r :=

1

(∆x)2
B̃D

r


−2 1

1 −2 1
. . . . . . . . .

1 −2

 , (4.15)

LV
r :=

1

2∆x
B̃V

r


0 1

−1 0 1
. . . . . . . . .

−1 0

 (4.16)

LK
r := B̃K

r . (4.17)

Here, B̃D
r , B̃V

r and B̃K
r are diagonal matrices of dimension (N − 2) × (N − 2)

with the diagonal entries BD
r (xj), BV

r (xj), BK
r (xj) evaluated at each grid point
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xj , j ∈ {2, . . . , N − 1}. The vectors for the input and boundary conditions are

gDr := col

(
BD

r (x2)

(∆x)2
, 0, . . . , 0

)
(4.18)

gUr := col

(
−B

V
r (x2)

2∆x
, 0, . . . , 0

)
(4.19)

hDr := col

(
0, . . . , 0,

BD
r (xN−1)

(∆x)2

)
(4.20)

hUr := col

(
0, . . . , 0,

BV
r (xN−1)

2∆x

)
(4.21)

fPr := col
(
BP

r (x2), . . . , B
P
r (xN−1)

)
. (4.22)
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5.1 Introduction
In many physical systems, generic scalar transport determines the behavior. Ex-
amples are transport of particles, heat and momentum in nuclear fusion reactors
(Ryter et al. 2010), the hyporheic flow in groundwater-surface interaction systems
(Boano et al. 2014), thermal transport for medical treatments such as local hy-
perthermia therapy (Deuflhard et al. 2012), etc. The most important physical
quantities determining the transport are the transport coefficients representing the
diffusivity, convectivity, reactivity/damping, and the sinks/sources in the system.
Typically, these quantities cannot be measured directly but have to be inferred
from measurements of the transport variable, such as the temperature for ther-
mal transport or the concentration for particle transport. The evolution of the
transport variable is described by the transport equation and is referred to as the
state. Estimating the corresponding coefficients of the transport equation based on
measurement is known as an inverse problem or referred to as grey box modelling.

In many cases, the geometry and the physics allow for the reduction of the
transport model to a single spatial dimension. For example, in the context of mag-
netically confined plasmas there is a strong anistropy between transport processes
along and perpendicular to the magnetic field lines. The toroidal geometery then
allows for a 1D-approach in the main plasma. In this context, a 1D approach has
been proposed multiple times (Krieger et al. 1990; Moret et al. 1993; Takenaga
et al. 1998; Escande and Sattin 2012) and is sometimes referred to as the matricial
approach (MA). As pointed out by Escande and Sattin (Escande and Sattin 2012),
the main advantage of the MA is that after integration the exact value of two of
the transport coefficients (using one frequency), namely diffusion and convection,
can be determined without having to choose basis functions.

The MA approach is theoretically valid. However, experimental practicalities,
such as the smoothing, extrapolation, and interpolation of the measurements, e.g.,
by splines, necessary to obtain acceptable spatial functions of the source, the
state (and its derivatives) makes determination of the exact coefficients ambiguous.
Smoothing operations on the (state) profile are equivalent to choosing lower order
basis functions for the transport parameters in the estimation procedure. Hence,
both are different forms of regularization and both can significantly impact the
estimates of diffusion and convection. Moreover, the regularization of profile or
transport parameters is a choice for optimization rather than an inherent modeling
feature.

For estimation procedures, a strict distinction needs to be made between systems
in which the source is at the system boundary and systems in which the source and
sinks are within the domain. An example of the latter is a nuclear fusion reactor
where there are various state dependent heating methods with state dependent
source distributions. Here heating can stem from the nuclear fusion reaction
as well as from neutral beam heating, ion cyclotron heating, electron cyclotron
heating, lower hybrid heating, and Ohmic heating. To infer the transport in steady
state, the power deposition for all these heating methods needs to be known in
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detail. To complicate matters, the heating method can be subject to, or even
drive, plasma instabilities that lead to source broadening (Baar et al. 1997; Ryter
et al. 2001; Kirov et al. 2002; Chellaï et al. 2018; Chellaï et al. 2021; Brookman
et al. 2021; Slief et al. 2022). Therefore, the deposition width of sources within
the domain may be uncertain or subject to dynamic changes. Hence, simultaneous
estimation of the transport parameters and source profile is crucial to achieve
reliable estimates and to ensure a broad application of these estimation methods.
As the aforementioned methods do not deal with the simultaneous estimation of
sinks/sources and transport coefficients, we developed a new approach allowing
for this simultaneous estimation while we also provide transparency in the applied
regularization. By using high order basis functions, no additional regularization is
applied to the coefficients. Moreover, regularization on the level of the state by
smoothing or interpolation is still an option.

Similarly to (Escande and Sattin 2012), we formulate the problem as a linear
regression problem which contains the source and damping. We use multiple
harmonics because one of the strong advantages of estimation is over-determination,
i.e., increasing the number of harmonics (equations) compared to the number of
unknown coefficients reduces the uncertainty. To deal with this over-determination,
we formulate the problem as a linear least squares problem for which we have a
(unique) closed-form solution, thereby avoiding iterative optimization methods.

5.2 Methodology
We consider the convection-diffusion-reaction equation often following from lin-
earization

∂tz = −∇ · (Vz −D∇z) +Kz + Pφ, (5.1)

describing the spatio-temporal evolution of the transport quantity z(x, t) where
x ∈ X ⊂ Rn denotes the spatial geometry. The transport parameters representing
the diffusivity and reactivity are given by the functions D(x) and K(x), respectively.
The diffusivity is a strictly positive function. For transport in multiple dimensions,
the convectivity is a flow field given by the vector function V(x), while for a
single dimension it is given by the function V (x). Furthermore, we consider an
unknown source profile P (x) that is fixed in space but modulated over time by the
known signal φ(t). In our problem we measure z(x, t), control φ(t), while the exact
deposition P (x) is unknown, and needs to be estimated in conjunction with the
diffusivity D, flow velocity V, and reactivity K. Linear, but unknown boundary
conditions constrain the edge of the spatial domain X and determine the solutions
of the PDE (well-posedness). It is assumed that the initial condition of the problem
is compatible with the model and its boundaries, but that the response due to the
initial condition has already diminished or is compensated for through advanced
signal processing, see (Berkel et al. 2020).

To estimate the transport coefficients {D,V,K, P}, we reformulate the method-
ology presented in (Kampen et al. 2021c) to be applied to a more general nD
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setting. As the model, gradient and Laplacian operators are linear, we can rewrite
(5.1) in the frequency domain as

iωZ =
(
∇2Z

)
D +∇Z · ∇D −∇Z ·V − Z (∇ ·V) + ZK +ΦP, (5.2)

where Z(x, ω) and Φ(ω) are the Fourier transform of z(x, t) and φ(t), respectively.
For now, consider that Φ, Z and all of its derivatives are known such that the
problem is linear in the unknown transport parameters, thus the resulting least
squares problem is quadratic in the parameters (Banks and Kunisch 1989). However,
as the transport parameters are functions of the spatial variable, the problem
is infinite dimensional and hard to solve. For this reason, we apply a linear
parametrization to each of the unknown parameters, say γ ∈ {D,V,K, P}. For this,
introduce basis functions Bγ(x) and weighting vector θγ of dimension Rγ such that
γ =

∑Rγ

r=1B
γ
r θ

γ
r . This means that we only need to estimateR = RD+RV+RK+RP

weights that parameterize the functions. Furthermore, this parametrization allows
us to rewrite the problem by grouping the known terms in vectors

GD =


(
∇2Z

)
BD

1 +∇Z · ∇BD
1

...(
∇2Z

)
BD

RD +∇Z · ∇BD
RD


T

(5.3)

GV =

 −∇Z ·BV
1 − Z

(
∇ ·BV

1

)
...

−∇Z ·BV
RV − Z

(
∇ ·BV

RV

)


T

(5.4)

GK =
(
ZBK

1 . . . ZBK
RK

)
(5.5)

GP =
(
ΦBP

1 . . . ΦBP
RP

)
, (5.6)

such that we can express (5.2) as an inner product

iωZ −
(
GD GV GK GP

)
θ = 0, (5.7)

where θ stacks the vectors θD, . . . , θP and should hold for all (x, ω) ∈ X×Ω. As the
user chooses the basis functions, the derivatives are known and (5.7) can be seen
as a linear regression problem. Next, we approximate the equation error criterion
(Banks and Kunisch 1989) by only considering the state Z at the measurement
locations x ∈ XM ⊂ X for the relevant frequencies ω ∈ ΩM ⊂ Ω that are well above
the noise level (i.e., excited/perturbed). The error criterion is then given by

Vee =

∫
Ω

∫
X

(
iωZ −

(
GD GV GK GP

)
θ
)2

dxdω

≈
∑
ΩM

∑
XM

(
iωZ −

(
GD GV GK GP

)
θ
)2
.

(5.8)

As the boundary conditions of the original problem are assumed to be unknown,
the measurements on the edge of the measurement grid XM constitute Dirichlet
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boundary conditions, but other choices are feasible and can be added to the equation
error (Banks and Kunisch 1989).

Similar to (Escande and Sattin 2012; Kampen et al. 2021c), (5.8) can be seen
as a linear regression model

Ȳ = Ḡθ, (5.9)

where Ȳ and Ḡ are a concatenation of the considered data points for iωZ and(
GD GV GK GP

)
, respectively. Then, the optimal solution in the least square

sense is given by

θopt = (ḠHḠ)−1(ḠH Ȳ ), (5.10)

where ḠH is the Hermitian transpose of Ḡ. Hence, instead of iterative optimization
procedures which may end up in local minima, we can simply evaluate the expression
(5.10) to obtain the global minimum or use a linear equation solver. Moreover,
due to linearity of the derived regression problem, different criteria than (5.8)
such as weighted least squares also have a closed-form solution (Markovsky and
Huffel 2007) and are equally easy to implement and use. In addition, due to the
linearity it is straightforward to extend this to more advanced estimators such as a
maximum likelihood estimator (Kampen et al. 2023a) which considers uncertainty
in an optimal sense.

Until this point, we assumed that Z, ∇Z and ∇2Z are known at the measured
locations, but note that in practice only Z is measured at a limited number of spatial
locations. Similar to (Escande and Sattin 2012), the derivatives could be estimated
by smoothing, interpolating and extrapolating the dataset. By doing so, one forces
a specific solution of the transport parameters as they are directly related to the
interpolation method and its derivatives. For this reason, we approximate ∇2Z

and ∇Z using central finite difference (Sundqvist and Veronis 1970; Quarteroni
and Valli 1994). For this semi-discretization it is known that increasing the number
of (spatial) samples results in a convergence to the exact solution to the model
(Quarteroni and Valli 1994). As we have a closed-form solution for the global
optimum, our solution will thus also converge to the exact solution for an increasing
number of (spatial) samples, under the assumption that the selected basis functions
of γ have sufficient freedom. If the number of measurement locations is too limited
such that it significantly affects the discretization accuracy, one can still resort
to interpolation methods to increase the accuracy without requiring a complete
continuous profile and therefore force a very specific solution.

Furthermore, the transport parameters are only considered at the data points
that are included in the equation error. As a result, the estimated transport
coefficients are exact at the considered data points if the provided derivatives are
exact and the combination of basis functions gives sufficient freedom to describe the
underlying function, while the values in-between data points can merely be used
as interpolation of the estimated parameters. The maximum spatial variability
of the transport coefficients is directly linked to the number of basis functions,
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i.e., free parameters, and the number of spatial data points that constraint these
free parameters. Hence, if the number of basis functions for a coefficient is lower
than the number of spatial data points minus two (for the boundary conditions),
regularization is applied naturally. This is in contrast to the classical transport codes
where the choice of basis functions directly limits the solution space. Moreover,
due to the low computational cost of the closed form solution, many different
parametrizations can be evaluated, such that a machine learning approach (as
shown in (Kampen et al. 2021c)) can be applied to find a suitable parametrization.

5.3 Simulation Examples

5.3.1 1D Simulation Example
In order to demonstrate the presented methodology, we start with a 1D simulation
for a fusion relevant scenario, where the electron temperature Θe in cylindrical
geometry is described by

iω
3

2
neΘe =

1

ρ
∂ρ (ρDne∂ρΘe + ρV neΘe) + PΦ, (5.11)

with spatially varying electron density ne(ρ). The temperature data is generated
using a central finite-difference scheme with a grid XM of 1001 points and considering
a block-wave modulation for φ with a 70% duty cycle at 5 Hz from which we only use
the first three harmonics. The electron temperature is measured on an equidistant
measurement grid consisting of 32 spatial points on which we assume the electron
density and its gradient to be known. The simulated D and V are a third and
second order polynomial, respectively, while the source profile P is a Gaussian. For
the estimation procedure, BD and BV are sixth order polynomials and BP is a
third order B-spline. In this way, BD and BV have more parameters than required
to describe D and V . By matching the number of control points for BP with the
spatial measurement grid minus two boundary conditions i.e., 30, no regularization
is applied. The basis functions are multiplied with the required factors to account
for the cylindrical geometry and spatially varying density, after which the unknown
parameters are determined by evaluating (5.10). Figure 5.1 contains an overview
of the used data and the estimation results. The estimated parameters are close to
the simulated parameters despite the scarce finite difference grid to estimate the
gradient. Only the estimate of V deviates somewhat at the end of the domain due
to low amplitudes and change in density gradient.

As stated in (Escande and Sattin 2012), the source is crucial to the parameter
estimation problem. Therefore, we want to show the importance of simultaneously
estimating the transport parameters and the source profile, as a small mismatch
between the true and used source profile can result in a large difference in esti-
mated transport parameters. For the sake of clarity, we consider (5.11) with a
constant density (to avoid cross-error analysis), diffusivity described by a third
order polynomial, no convection, and a Gaussian source profile. The diffusivity is
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Figure 5.1. The density and simulated temperature profile (left) with the corresponding
simulated and estimated transport parameters (right).

now estimated for two different scenario’s: I) simultaneously with the source profile;
and II) with a fixed source profile that is narrower than the simulated source profile.
For the estimation, both diffusivity BD and source BP are third order B-spline
with 30 control points such that there is no regularization. An overview of the used
data and estimation results is given in Figure 5.2.

In Figure 5.2, scenario I), where the diffusivity and source are simultaneously
estimated, there is only a small error in D at the boundary condition close to ρ = 0

due to low accuracy of the discretization grid. In Figure 5.2, scenario II), with the
fixed used source that is smaller than the true source, there is a large error on the
diffusion in the region with the source and a bias in the region without source.

5.3.2 2D Simulation Example

Although our methodology is applicable in nD, for the sake of clarity and presenta-
tion, we demonstrate it on a 2D scenario. The 2D scenario mimics a rotating fluid
that is heated by a modulated uniform and Gaussian profile and uniform diffusion
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Figure 5.2. The density and simulated temperature profile (left) with the corresponding
simulated and estimated transport parameters (right) for the two different scenario’s:
I) simultaneously estimate of the diffusivity D̂I and source P̂I, and II) estimate of the
diffusivity D̂II with the sources that is too narrow Psmall.
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over the entire domain. The transport coefficients are given by the following
functions:

D(x, y) = 1 (5.12)

V(x, y) =

(
u

v

)
= 500

(
0.5− y

x− 0.5

)
(5.13)

P (x, y) = 1 +
40

π
e−

(x−0.25)2

0.12 e−
(y−0.5)2

0.12 . (5.14)

The source is modulated by a 25 Hz block wave with a 50% duty cycle, where we
only consider the first three harmonics (25 Hz, 75 Hz, 125 Hz). The temperature
profile is generated by solving (5.2) using the finite volume-complete flux scheme
(Thije Boonkkamp and Anthonissen 2011) with a grid of 1001× 1001 points, and
the measurements are taken on a 251× 251 grid for the estimation procedure. The
corresponding temperature profile of the first harmonic, the used convection and
source are visualized in the four top subfigures in Figure 5.3.

The unknown 2D transport coefficients are parameterized by taking the product
of two 1D basis functions for each γ ∈ {D,u, v,K, P},

Bγ
r (x, y) = Brx(x)Bry (y) (5.15)

with rγ = rγx +(rγy −1)Rγ
y , where Rγ

y is the total number of basis functions in the y
direction. Here, BD, Bu, Bv are 2× 2 Chebyshev polynomials of the first kind and
BP a 40× 40 Chebyshev polynomial. Hence, in total, we need to estimate 1612

unknown parameters, where evaluating (5.10) takes approximately 100 ms on a
regular desktop. The estimation error on each function is also shown in Figure 5.3,
which clearly shows that the parameters are well estimated and only small errors
are made with respect to the function values. The error on D, u and v are low
order polynomials due to the low order of the approximation, while the error on P
is the result of Chebyshev polynomials that cannot perfectly describe the Gaussian
deposition profile and compensation for the errors made by the finite-difference
method for the gradient approximation. Note that we display the (log) relative
error. As u and v cross zero at 0.5, the relative error tends to infinity and is
therefore much large close to 0.5 while being small in the other regions.

5.4 Conclusion and Discussion
In conclusion, our proposed methodology provides new opportunities to study
nD transport by estimating the sinks/sources and transport coefficients while
providing transparency about regularization and interpolation with extremely low
computational effort due to the closed-form solution that guarantees the global
optimum for the selected optimization criteria. The low computational cost of
the closed-form solution opens up a number of new significant opportunities:
(i) machine learning like approaches to find the best parameterization of the
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transport coefficients as demonstrated in Kampen et al. 2021c; (ii) fast estimation
of multidimensional transport coefficients, for which we present the first results
in this letter. Moreover, as the source no longer needs to be localized, since the
transport parameters and sources/sinks can be estimated simultaneously, adding a
source to regions with a low signal-to-noise can significantly improve the quality of
the coefficient estimation.

Furthermore, it is possible to extend the current methodology to include more
coefficients, e.g., derivatives to other variables following from linearization or cross-
terms from coupled transport. However, there is no guarantee that these additional
coefficients can be estimated by simply considering more harmonics as the solution
to the inverse problem with additional coefficient functions is not necessary unique.
This is in contrast to the considered diffusion-convection-reaction-source equation
which is known to have a unique inverse solution. Hence, uniqueness of solution
should be studied before considering more coefficients.

Finally, the proposed methodology does not consider noise. In case of noisy
measurements, the estimation problem becomes an error-in-variables problem as
the measurements are used in the regressor matrix. Therefore, estimates with
the proposed least squares estimator will be biased where the bias depends on
the signal-to-noise ratio. Moreover, the gradients in our proposed methodology
are computed via a finite difference scheme. Therefore, the uncertainty of the
estimated gradients is a combination of the uncertainty of the surrounding sensors
and scales with the distance between sensors. Hence, denser measurement grids
will increase the uncertainty on the estimated gradients.

The best way to deal with noise is to use an estimator that takes the noise
into account, e.g., Bayesian or maximum likelihood. For transport 1D this is
still computable (e.g., see Kampen et al. 2023a), whereas for nD transport this
quickly becomes computational expensive due to the curse of dimensionality that
applies to both the dataset and the number of free parameters. Therefore, a
computational better, but less optimal way to deal with noise is to use a weighted
(total) least squares criterion with a closed-form solution where the weights are
based on the uncertainty. Furthermore, the effect of noise in the finite-difference
gradient approximation can be mitigated by smoothing the measurements and
using the smoothing function to estimate the gradients, e.g via spline interpolation
which is common practice in some fields Escande and Sattin 2012; Kirov et al.
2002. In the estimation of nD transport coefficients there is clear tradeoff between
accuracy and computational cost. The effect of noise on the estimates with different
criterion and new methods to efficiently deal with noise in nD transport are part
of our future research.
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Figure 5.3. The 2D scenario with the absolute temperature profile of the modulation
frequency at 25 Hz (a) and the phase (b), followed by the flow field (c) and source
deposition profile (d). The relative estimation errors are shown for the x-component (e)
and y-component (g) of the flow field, the source (f) and diffusivity (h).
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Estimating 1D spatially

varying coefficients taking
uncertainty into account

Abstract - This chapter presents a closed-form solution to estimate space-dependent
transport parameters of a linear one dimensional diffusion-transport-reaction equation.
The infinite dimensional problem is approximated by a finite dimensional model by 1)
taking a frequency domain approach, 2) linear parametrization of the unknown parameters,
and 3) using a semi-discretization. Assuming full state knowledge, the commonly used
output error criterion is rewritten as the equation error criterion such that the problem
results in linear least squares. The optimum is then given by a closed-form solution,
avoiding computational expensive optimization methods. Functioning of the proposed
method is illustrated by means of simulation.
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6.1 Introduction

Scalar transport (e.g., heat or mass) plays an important role in many different
fields. For example, the efficiency of a nuclear fusion reactor is mainly determined
by how much heat and particles the core plasma loses to the reactor wall (Hogeweij
et al. 1998). Another example is given in the field of hydrology, where the goal
is to identify hot spots for contaminants and nutrients in stream beds as a result
of vertical ground water fluxes (Boano et al. 2014). Therefore, researchers require
models which can be used for simulation, analysis, prediction, diagnosis and control
of generic scalar transport. For most physical systems, these transport models are
obtained using first principles, however the (exact) parameters to these models are
unknown. Hence, data-driven estimation of the unknown physical parameters is
necessary to complete the model, which is also known as an inverse problem or
grey-box modeling.

The standard method to estimate the unknown parameters (diffusion, convection,
reaction, and source/sink) in these typically infinite-dimensional models that
describe the physical quantity, e.g., the temperature or density, is by minimizing the
output error criterion, i.e., taking the (weighted) sum of the squared error between
the measured data and the model output of a finite-dimensional approximation
(Banks and Kunisch 1989; Kravaris and Seinfeld 1985). As this approach does
not impose constraints on the state’s variation in-between sensors, the state is
allowed to oscillate (spatial aliasing) while the observed (output) error is zero.
Even though these oscillations are small in the state, the errors in the estimated
parameters are often significant, e.g., if they are based on the second derivative
of the state (diffusion). This is generally resolved by regularizing the unknown
parameters (Banks and Kunisch 1989; Kravaris and Seinfeld 1985; Ito and Kunisch
2008). As pointed out in (Kampen et al. 2021c; Escande and Sattin 2012), this
regularization is often artificial as there is usually no a priori information on how
the unknown parameters change as function of the spatial variable. Therefore,
another option to add regularization is to first estimate the state as a function
of the spatial variable using the measurements, and then perform the parameter
estimation process (Banks and Kunisch 1989; Kampen et al. 2021c; Escande
and Sattin 2012; Banks and Lamm 1985). This has the following advantages:
(i) for an increasing number of samples the finite approximations used in these
methods will converge towards the true solution, and so will their estimates; (ii)
the availability of prior information on the state can be embedded in the state
estimation process (such as smoothness due to the underlying model); (iii) the state
estimate can be visually inspected for correctness and validated by taking additional
(spatial) measurements; (iv) separating the state and parameter estimation process
allows one to write the parameter estimation problem as a, often linear, regression
problem (Banks and Kunisch 1989; Kampen et al. 2021c; Escande and Sattin 2012).
Taking a frequency domain approach, (Kampen et al. 2021c) performs the state
estimation via spline interpolation and exploits the linearity of the problem by
deriving a closed-form solution for the global optimum using the ordinary least
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squares criterion. However, for uncertain measurements this ordinary least squares
solution is biased as both, the output and the regressor can contain error terms.
Especially for the heterogeneous case, i.e., space-dependent parameters, very little
noise already results in poor estimates. Under those circumstance this problem
requires an errors-in-variables approach. Therefore, the two main contributions
of this chapter are extending the methodology proposed in (Kampen et al. 2021c)
by (i) determining the probability density function of the state as a function of
the spatial variable using Gaussian process regression (GPR), and (ii) deriving a
maximum likelihood solution such that it can deal with uncertainty in an optimal
way when estimating the unknown parameters.

In contrast to other methods that use a Gaussian process (GP) to estimate
the state, e.g., (Raissi et al. 2017; Rai and Tripathi 2019; Jidling et al. 2017), we
perform the GPR in the frequency domain instead of the time domain. In this
way, our method does not need to determine the time derivative, which is often
hard to estimate under noisy conditions; and we can work with smaller datasets as
in perturbation experiments only a limited number of frequencies are informative,
i.e., excited and above the noise floor.

6.2 Problem formulation
The problem setup is specified as follows.

Model-class The estimation of the space-dependent physical coefficients is based
on a one-dimensional linear parabolic partial differential equation (PDE) that
describes the state, e.g., temperature or mass concentration, around an equilibrium
point (Baukal et al. 2000):

∂tz = −∇ · (V z −D∇z) +Kz + Pφ, (6.1)

where z : X × T → R is a multi-variable function of a bounded space x ∈ X :=

[xb, xe] ⊂ R and time t ∈ T := [t0, te] ⊆ R≥0
. The state z is understood point-wise

in x and t evaluated as z(x, t). The physical transport coefficients are the diffusion
D : X → R>0, convection V : X → R, reaction K : X → R, and the fixed spatially
distributed source or sink P : X → R. The source/sink is manipulated in time only
by the external input φ : T → R. For well-posedness, the PDE is constrained at
xb and xe by two (arbitrary) linear boundary conditions. Moreover, the initial
condition z(·, t0) is assumed to be compatible with the model and its boundaries.
Due to linearity of the model, (6.1) can be considered in the frequency domain
without loss of information (Pintelon and Schoukens 2012). Hence, the generic
scalar transport equation in the frequency domain is

iωZ = −∇ · (V Z −D∇Z) +KZ + PΦ, (6.2)

with the Fourier transformed state Z = F(z) : X×Ω → C, input Φ = F(φ) : Ω → C,
i2 = −1, and angular frequency ω ∈ Ω ⊂ R.



108 Chapter 6. Estimating 1D spatially varying coefficients with uncertainty

6

Measurement data The measurement signals y(t) := col (y1(t), . . . , yM (t)) are
assumed to be band-limited measurements of the scalar transport state z at M > 2

fixed locations given by the set XM := {x̌1, . . . , x̌M} ⊆ X and are disturbed by
noise ε(t), i.e., ym = z(x̌m, t)+ εm(t). As we consider the problem in the frequency
domain, we assume the discrete Fourier transform (DFT) spectra Y(k) = F(y)

and Φ(k) to be processed such that it only contains the forced response. This
means that transients (non-steady-state behavior, e.g., due to the initial condition)
have been removed by either waiting until the transient terms are diminished, or
compensating for it using (advanced) signal processing techniques such as the local
polynomial method (Pintelon and Schoukens 2012; Berkel et al. 2020) and hence,
does not need to be considered further.

Additionally, we assume that the noise contributions are circular complex
normally distributed in the frequency domain, which imposes weak assumptions
on the time domain noise distribution (Pintelon and Schoukens 2012). As a
result, the uncertainty of the (processed) Fourier spectrum is also circular complex
normally distributed, i.e., E{(Y−E{Y})(Y−E{Y})T} = 0 and E{(Y−E{Y })(Y−
E{Y})H} = CY, with the Hermitian transpose denoted as H. Here, CY is either
known or can be estimated (Pintelon and Schoukens 2012). Moreover, due to
linearity of the model, each (excited) angular frequency ωk, with frequency bin
k ∈ K, is independent and only a finite number of the discrete angular frequencies
are informative, i.e., those which are present in the (boundary) input and are
above the noise level (Pintelon and Schoukens 2012). Therefore, we only consider
those bins to be in K, and excluded the DC and Nyquist frequency from the
spectrum. All these signal and noise assumptions are standard (weak) assumptions
for frequency domain analysis (Pintelon and Schoukens 2012).

Problem definition The goal is to estimate the set of space-dependent coeffi-
cients, i.e., functions, Γ := {D,V,K, P} in (6.2), related to the physical quantities
diffusion, convection, etc., using the (processed) spectra Y(k) and Φ(k). The
(exact) boundary conditions that constrain the generic scalar transport are often
unknown as they may depend on the equilibrium or unknown space-dependent
parameters. Therefore, the extremum measurements are used as boundary inputs
(Schneidewind et al. 2016; Das et al. 2019), which reduces the domain on which
the space-dependent coefficients are estimated to XE := [x̌1, x̌M ]. However, other
linear boundary conditions are allowed. Hence, the formal problem definition is

Problem 6.1. Given the processed data-set

D := {Y(k), CY(k),Φ(k) | k ∈ K, x̌m ∈ XM},

estimate the unknown functions Γ = {D,V,K, P} by minimizing a cost function
V (D, Z(x, k; Γ)) over Γ such that the solution Z(x, k; Γ) satisfies the model (6.2)
subject to the boundary conditions

Z(x̌1, k) = Y1(k), Z(x̌M , k) = YM (k), k ∈ K.
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6.3 State estimation by Gaussian process regres-
sion

As (Kampen et al. 2021c; Banks and Lamm 1985) shows, to have a unique solution
for the coefficients, a continuous state Z is required. However, in general, the state
is only measured at a limited number of spatial locations with uncertainty. To
find the state Z as a continuous function of the spatial variable, we resort to GPR,
because it takes the uncertainty into account and provides a probability density
function of the state estimate which can then be used to determine the maximum
likelihood solution of the unknown coefficients.

6.3.1 Gaussian process regression
A GP is defined as a collection of random variables, any finite number of which
have a joint Gaussian distribution (Rasmussen and Williams 2005). Therefore, a
GP f(x) is completely defined by its mean function µ(x) and covariance function
κ(x, x̂), and is denoted as

f(x) ∼ GP (µ(x), κ(x, x̂)) . (6.3)

If the process is observed under some Gaussian distributed noise ε with a known
covariance Cε, i.e., y = col (f(x̌1), . . . , f(x̌M )) + ε, the joint prior distribution of
the measured values y at x̌ and the prior predictive distribution f̂ at x̂ is given by[

y

f̂

]
∼ N

([
µ(x̌)

µ(x̂)

]
,

[
K(x̌, x̌) + Cε K(x̌, x̂)

K(x̂, x̌) K(x̂, x̂)

])
, (6.4)

with the mean vector µ and covariance matrix K(x,x) for which the v, w-th element
has value κ(xv, xw). The posterior predictive distribution after conditioning with
the prior joint distribution is given by,

f̂ | x̌,y, x̂ ∼ N
(
µf̂ , Cf̂

)
, (6.5)

µf̂ = µ(x̂)

+K(x̂, x̌)[K(x̌, x̌) + Cε]
−1 (y − µ(x̌)) ,

(6.6)

Cf̂ = K(x̂, x̂)

−K(x̂, x̌)[K(x̌, x̌) + Cε]
−1K(x̌, x̂),

(6.7)

which are the key equations for GPR (Rasmussen and Williams 2005). Typically,
the covariance function, also called kernel, will have some free parameters α, called
hyperparameters, and are tuned by maximizing the marginal likelihood, i.e., the
likelihood that the given prior has generated the observed data. This is equal to
minimizing the following cost function

VGP(α) = − (y − µ(x̌))
T
[K(x̌, x̌, α) + Cε]

−1
(y − µ(x̌))

− log (det (K(x̌, x̌, α) + Cε)) .
(6.8)
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6.3.2 Complex valued Gaussian process regression
As the measurements are complex valued, the GPR should be adopted accordingly.
For the sake of simplicity, we consider the state Z at each frequency separately and
assume it to be a zero mean circular complex GP which is a standard assumption
(Lataire and Chen 2016; Hallemans et al. 2021). However, we pose the additional
constraint that the covariance between the real and imaginary part is zero. This
allows us to use standard kernels for real valued GPs while only limiting the
information that is shared between the real and imaginary part. The complex
valued GP is then given by the two joint real valued GPs[

Re (Z(x, k))

Im (Z(x, k))

]
∼ GP

([
0

0

]
,

[
κ(x, x̂, α) 0

0 κ(x, x̂, α)

])
, (6.9)

denoted as ZRe ∼ GP (0, κRe(x, x̂)). The assumption of a zero mean is not a
drastic restriction as it does not confine the mean of the posterior process to be
zero (Rasmussen and Williams 2005). However, in the future, a mean could be
included to increase interpretability of the model or add prior information. The
following transformation is used to go from complex valued data to a real valued
vector YRe and covariance matrix CYRe

YRe =
1

2

[
I I

−iI iI

] [
Y

Y

]
, (6.10)

CYRe =
1

4

[
I I

−iI iI

] [
CY 0

0 CY

] [
I I

−iI iI

]H
(6.11)

where Y and CY denote the complex conjugates. Now, the joint distribution of
the real valued measurements and the real valued state prediction ẐRe follow from
(6.4) while (6.5) to (6.7) are used to determine the (posterior) prediction ẐRe with
mean µẐRe

and covariance matrix CẐRe
. To complete the state estimation process

and go back to complex valued data, the following inverse transformation is used

µẐ =
[
I iI

]
µẐRe

(6.12)

CẐ =
[
I iI

]
CẐRe

[
I iI

]H
. (6.13)

The kernel defines nearness or similarity between data points and can be used to
embed prior information (Rasmussen and Williams 2005). As we can use standard
kernels for real valued GPs, we choose the Matérn covariance function with ν = 5

2

as it enforces the GP, i.e., the state Z, to be twice (mean square) differentiable with
respect to x. This corresponds to the solution of the underlying model (6.2) that is
at least twice differentiable. In this way, we incorporate valuable prior knowledge
of our system into the state estimation procedure via GPR. For completeness, the
kernel is given by

κ(x, x̂, α) = σ2

(
1 +

√
5|x− x̂|
`

+
5(x− x̂)2

3`2

)
e−

√
5|x−x̂|

` , (6.14)

with hyperparameters α = col (σ, `) (Rasmussen and Williams 2005).
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6.4 Finite-dimensional problem formulation
To create a finite-dimensional problem, we take the same approach as in (Kampen
et al. 2021c; Das et al. 2019), starting with the linear parametrization of the
unknown coefficients, followed by a finite difference scheme to approximate the
spatial derivatives, resulting in a linear matrix equality. Therefore, the model (6.2)
is reformulated such that it is linear in the state

iωkZ = DZ ′′ + (D′ − V )Z ′ + (K − V ′)Z + PΦ, (6.15)

where the prime (′) denotes the spatial derivative(s).

6.4.1 Parameterization of the unknown functions
To estimate the function γ ∈ Γ = {D,V,K, P}, we assume that each function can be
described by a finite sum of basis functions Bγ

r weighted by θγ = col (θγ1 , . . . , θ
γ
Rγ ),

γ(x, θγ) =

Rγ∑
r=1

Bγ
r (x)θ

γ
r . (6.16)

Now, estimating the unknown coefficients is reduced to estimating θ =

col
(
θD, θV , θK , θP

)
∈ RR, with R = RD + RV + RK + RP . The basis func-

tions Bγ
r should satisfy the model, which means that the derivative of BD

r and BV
r

must exist. As the user chooses these basis functions, we consider these derivatives
to be known.

6.4.2 Discretization procedure
The regression model requires spatial derivatives of the state. These can be obtained
from the GPs (Ho et al. 2019). Alternatively, by approximating them using a
numerical scheme, we can bypass the GPR by directly using the measurement data
(Ẑ = Y). This allows to study the effect of the state estimation procedure on the
estimated parameters and can help verifying the outcome. The spatial derivatives
are approximated by a central finite difference scheme for non-equidistant grids
(Sundqvist and Veronis 1970), as it is known that the finite-dimensional model will
converge to the true infinite-dimensional model for an increasing number of points.
For this we consider the discrete state vector Z(k) := col (Z(x1, k), . . . , Z(xN , k))

that contains N spatial sample points xj ∈ Xd ⊆ XE , j ∈ {1, . . . , N}, x1 = x̌1 and
xN = x̌M . The derivatives for Z ′′, Z ′ and Z can be written using the matrices
L2, L1, L0, e.g, Z′ = L1Z. By excluding the derivatives on the boundaries, i.e.,
at x1 and xN , L2, L1 and L0 are of size N − 2 ×N . Moreover, in this way, the
boundaries are directly included as Dirichlet boundary conditions. Hence, (6.15)
can be expressed as

iωkL0Z = Â(θ)Z+ B̂(θ)Φ, (6.17)
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with

Â(θ) =

RD∑
r=1

(B̃D
r L2 + B̃D′

r L1)θ
D
r −

RV∑
r=1

(B̃V
r L1 + B̃V ′

r L0)θ
V
r

+

RK∑
r=1

B̃K
r L0θ

K
r

(6.18)

B̂(θ) =

RP∑
r=1

(B̃P
r 1)θPr , (6.19)

with B̃γ
r = diag (Bγ

r (x2), . . . , B
γ
r (xN−1))) as the diagonal matrix for each basis

function γ = D,V,K or P , and the column vector of ones denoted by 1. Hence,
the problem is now written as a matrix equality that is bilinear in the unknown
parameters θ and the discrete state vector Z. Furthermore, note that other linear
boundary conditions can be included by adapting Â and B̂ accordingly.

6.5 Maximum likelihood solution
For the maximum likelihood solution we assume that the state estimate or measure-
ment Ẑ is circular complex normally distributed with a mean µẐ and a covariance
matrix CẐ. The cost function for the maximum likelihood is then given by (Pintelon
and Schoukens 2012) as

V(θ, Ẑ) =
∑
k∈K

e(θ, µẐ, k)
H[Ce(θ, CẐ, k)]

−1e(θ, µẐ, k), (6.20)

where the constant F ln(π) + ln
(
det
(
CẐ

))
has been omitted as it does not affect

the optima. The error vector from the model (6.17) yields,

e(θ, µẐ, k) = (iωkL0 − Â(θ))µẐ(k)− B̂(θ)Φ(k) (6.21)

with the corresponding covariance matrix

Ce(θ, CẐ, k) = (iωkL0 − Â(θ))CẐ(k)(iωkL0 − Â(θ))H. (6.22)

The maximum likelihood solution is found by minimizing the cost function

θ̂ = argmin
θ

V(θ, Ẑ). (6.23)

6.5.1 Minimizing the cost function
As the cost function is non-convex, we choose to solve it using iterative optimization
methods such as Gauss-Newton or Levenberg-Marquardts (Nocedal and Wright
1999). For this we resort to the pseudo-Jacobian matrix which generally gives



6.6. Simulation results

6

113

faster convergence (Guillaume and Pintelon 1996). The parameter update ∆θ for
the iterative algorithms is found by solving the overdetermined set of equations

J+(θ, Ẑ, k)∆θ =
[
Ce(θ, CẐ, k)

]− 1
2 e(θ, µẐ, k), (6.24)

for all k ∈ K. The pseudo-Jacobian J+ is given by

J+(θ, Ẑ, k) =
[
J1
+(θ, Ẑ, k) . . . JR

+ (θ, Ẑ, k)
]
, (6.25)

Jr
+(θ, Ẑ, k) =

[
Ce(θ, CẐ, k)

]− 1
2
(
∂θre(θ, µẐ, k)

− 1

2
∂θrCe(θ, CẐ, k)

[
Ce(θ, CẐ, k)

]−1
e(θ, µẐ, k)

)
,

(6.26)

where ∂θr denotes the partial derivative to the weight θr and C 1
2 denotes the square

root of the matrix (Pintelon and Schoukens 2012; Guillaume and Pintelon 1996).
Note that these derivatives are easily obtained as the problem is formulated such
that it is linear in the weights θ.

6.5.2 Calculation of the confidence intervals

The covariance matrix of the estimated weights θ̂ is given by (Pintelon and
Schoukens 2012) as

Cθ̂ =

[
2Re

(∑
k∈K

J+(θ̂, Ẑ, k)
HJ+(θ̂, Ẑ, k)

)]−1

. (6.27)

As the transformation from θ̂γ to γ is linear, the p confidence interval for the
estimated functions γ ∈ Γ is given by

Cγ(x, θ̂
γ , p) = γ(x, θ̂γ)±

√
2σ2

γ(x)erf
−1(p), (6.28)

where the variance of the function γ is determined using propagation of uncertainty

σ2
γ =

[
Bγ

1 (x) . . . Bγ
Rγ (x)

]
Cθ̂γ

[
Bγ

1 (x) . . . Bγ
Rγ (x)

]T
, (6.29)

where Cθ̂γ is a submatrix of the total covariance matrix Cθ̂.

6.6 Simulation results
The merit of the proposed methodology is demonstrated by generating a noisy
dataset and estimating the transport coefficients using our early work (Kampen
et al. 2021c) and the newly derived maximum likelihood estimator with and without
the novel state estimation via GPR, including a noiseless dataset to focus on the
differences GPR brings.
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6.6.1 Data generation and state estimation
The simulation example is inspired by perturbative experiments in the field of
nuclear fusion (Berkel et al. 2014c; Slief et al. 2022). The heat transport, (6.1),
is generally analyzed on the normalized domain X = [xb, xe] = [0, 1] of the minor
plasma radius. Here xb is at the center and xe is at the edge of the plasma. The
corresponding boundary conditions in the simulation are Z ′(xb, ·) = 0 due to
(axi)symmetry and Dirichlet boundary condition Z(xe, ·) = 0 due to a significant
temperature difference between core plasma ∼170 million ◦C and edge plasma
∼1 million ◦C. Typical parameter functions used in nuclear fusion are Dsim(x) =

5x3 − 0.005x+ 5, V sim(x) = −15x2 + 0.005, Ksim(x) = 0 and

P sim(x) =

(
2 +

7√
π
e

−(x−0.35)2

(0.1)2 +
5.6√
π
e

−(x−0.6)2

(0.1)2

)
· 104,

which are equal to the functions in (Kampen et al. 2021c), except we set Ksim(x) = 0

as the reaction coefficient is intrinsically hard to estimate under noisy conditions
compared to the other coefficients (Berkel et al. 2018a). Furthermore, we increased
the power deposition with four orders of magnitude to be more realistic (Slief
et al. 2022). For the perturbation of the plasma temperature, a microwave source
is used, where the excitation signal Φ(ω) is a block-wave of ω0 = 50π with a
70% duty cycle. Here, only the first five harmonics ωk = kω0, k = 1, . . . , 5 are
informative and used for the estimation. The temperature data is generated by
simulation with a central finite difference grid of 1001 sample points where the
state is measured at M = 16 spatial sensors locations, positioned at x̌m = ∆x ·m,
with ∆x = 0.058 and m = 1, . . . ,M . Noise from a circular normal distribution
with covariance matrix CY = σε(k)I is added to the measurements, where ε is
chosen such that the maximum signal-to-noise ratio, SNR = |Ym(k)|

σε(k)
, is 40 dB and

lowers with 2.5 dB for each harmonic (due to transport). Hence, overall the SNRs
range from 5 to 40 dB at the different data points. For the first two harmonics, the
simulated and measured state with its p = 0.95 confidence interval are shown in
Figure 6.1. Based on the measurements and their uncertainty, the hyperparameters
of the GP are tuned by optimizing (6.8) for each frequency separately. Then,
the state estimate and covariance matrix is determined at N = 76 points given
by xn = 0.058 + 0.0116(n − 1), with n = 1, . . . , N . The estimated state and its
p = 0.95 confidence interval is also shown in Figure 6.1.

6.6.2 Parameter estimation
For the estimation procedure, we consider that there is some prior knowledge on
the shape of the coefficients, i.e., that D and V are polynomials and P Gaussian.
Therefore, the basis functions to estimate D and V are monomials Bγ

r (x) = x(r−1)

with RD = 7 and RV = 6, respectively. The orders are significantly higher than
the actual order such that it is possible to find an exact (noiseless) description of
D and V . The basis functions for the source are B-splines, as it is linear in the



6.6. Simulation results

6

115

−160 −140 −120 −100 −80 −60 −40 −20 0
0

20

40

60

80

100

120

140

Re{Z(x, k)}

Im
{Z

(x
,k

)}
Z(x, k = 1)

2σY

Y

2σẐ
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Figure 6.1. The simulated Z, measured Y and estimated state Ẑ shown in the complex
plane for the first harmonic (k = 1) at ω = 50 (top) and the second harmonic (k = 2) at
ω = 100 (bottom), including their p = 0.95 confidence interval.
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unknown parameters and can describe smooth complex shapes. The B-splines are
designed using the De Boor’s algorithm (Boor 1978) with RP = 14 control points
and degree 3. Thus, in total, there are R = 27 free parameters. For a discussion
on the effect of different basis functions, see (Kampen et al. 2021c).

The iterative optimization algorithm needs an initial starting point, which is
set to θ = 1. The result of the newly developed method with and without GPR is
shown in Figure 6.2 along with the simulated coefficients. To show the improvement,
the estimates using the methodology in (Kampen et al. 2021c) is also shown in
Figure 6.2. Although the methodology in (Kampen et al. 2021c) comes with a
closed-form solution of the global optimum, the estimates are poor. This is a result
of the used ordinary least squares criterion that results in an biased estimator
for the given problem formulation where the measurement uncertainty enters the
regression matrix. The newly derived maximum likelihood estimators takes this
into account resulting in better estimates. Moreover, in combination with the GPR
as state estimator, spatial resolution and the quality of the estimated coefficients is
improved. Although we used the GPs to apply regularization, there are still small
oscillations in the estimated coefficients. This is a result of the small mismatch
between the simulated and estimated state and the many degrees of freedom of the
coefficients. For comparison, estimates based on noiseless observations are shown
along the other estimates in Figure 6.2. The coefficients are estimated accurately
except at the boundaries of the domain. Especially when using GPR. This is the
result of small errors made in the state estimation using the Gaussian process
as the amplitude of the signal quickly decreases due to the Dirichlet boundary
condition and there is less information available at the boundaries for the GP.

6.7 Conclusion and discussion

This chapter presents a novel method to estimate the unknown space-dependent
transport coefficients for 1D generic scalar transport from noisy measurements
by first determining the probability density function of the state and then using
this information to estimate the unknown parameters with a maximum likeli-
hood estimator. By separating the state and parameter estimation problem, we
avoid the artificial regularization of the unknown transport coefficients, but apply
regularization on the state via GPR. This approach has shown to be successful,
although we must note that it has a reduced performance at the boundaries of the
domain. However, we expect that this can be improved by including more (prior)
knowledge, e.g., by forcing the solution of the GP to satisfy the model (Raissi
et al. 2017; Jidling et al. 2017), considering multiple frequencies simultaneously
and embedding the stability of the transfer function into the kernel (Lataire and
Chen 2016; Hallemans et al. 2021), and simultaneously estimating the state and
parameters by considering the coefficients as hyperparameters of the GP (Raissi
et al. 2017). Nonetheless, in the current state, the proposed methodology shows
to be a significant improvement over the earlier linear least squares method that
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Figure 6.2. The estimated transport parameters: diffusion (top), convection (middle),
source location (bottom) and their p = 0.95 confidence interval, estimated by the earlier
presented ordinary least squares method (LS), the novel maximum likelihood method
(ML) and the maximum likelihood method where the state and its uncertainty is estimated
using Gaussian process regression (GP-ML) where the ∗ indicates the noiseless scenario.
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results in biased estimates when considering noise. Moreover, the novel derived
maximum likelihood estimator can also work with only measurement data in case
the GPR is distrusted and help verifying the correctness or influence of the GPR
results as we showed for the noiseless scenario.



7
Conclusions, discussion and

recommendations

7.1 Conclusions
The aim of this thesis is to the answer the research questions as stated in Section 1.4:

How can we accurately estimate the physical spatially varying coefficients in
a generic scalar transport model in the presence of stochastic uncertainty?

The three main contributions that helped answering this research question are
as follows:

• A frequency domain approach has been investigated to estimate the three spa-
tially varying transport coefficients: diffusivity, convectivity, reactivity/damp-
ing. In addition, the approach allowed to estimate the spatial distribution of
the source/sink locations from data.

• The equation error criterion has been used instead of the commonly used out-
put error criterion resulting in faster algorithms. Additionally, this allows for
better analysis of the applied regularization and how it affects the coefficient
estimates.

• It has been investigated how complex Gaussian process regression can be used
to estimate the state in the frequency domain and how this state estimate can
be used for regularization. This has been demonstrated by using a maximum
likelihood estimator to estimate the spatially varying coefficients using the
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state estimates. In this way, regularization is applied via the state without
making assumptions on (the spatial variability of) the transport coefficients.

The research question constitutes two modeling choices, namely a deterministic
part with the challenge of estimating the physical transport coefficients, and a
stochastic part with the challenge how to deal with stochastic uncertainty. The
conclusions for both parts are given below. Finally, the implementations of the
proposed methodologies are discussed.

7.1.1 Deterministic challenges
The challenges regarding the deterministic modeling have led to answers to the
following sub-research questions:

• How does data processing and modeling choices affect the estimated
coefficient? This question is answered in two parts: i) the required data
processing for working with frequency domain models and ii) the effect of
boundary conditions on coefficient estimates.

i) For the coefficient estimation process it is important that the model
and experimental data are compatible. As this thesis takes a frequency
domain approach to estimate the transport coefficients, the used models
only consider the forced response of the system while the measurement
data can contain transients, e.g., due to initial conditions. Transients
have most of their energy in the low frequency range. Therefore, it is
standard practice to compensate the Fourier coefficients in the low fre-
quency range for transients. However, for distributed systems, the forced
response often decays quicker with (spatial) depth for high frequencies
than the transient decays with depth, significantly impacting the Fourier
coefficients at high frequencies. For distributed systems, the transients
have a negative impact over the complete frequency and spatial domain
and need to be removed. This thesis uses the local polynomial method
to remove transients and shows that this significantly improves the fre-
quency response function and the corresponding estimated coefficients.
More specifically, this is demonstrated on experimental data from the
field of hydrology where they normally only use one strong frequency
component that is the least affected by transients. After processing the
data, it is demonstrated that all frequencies can be used as they are now
compatible with the model (that only contains the forced response).

ii) Boundary conditions play a key role as they determine the solution
to the model, and accordingly impact the coefficient estimation. For
hydrology, two approaches have been proposed. Firstly, the semi-infinite
domain model, which is the standard model assumption. Secondly,
the finite domain model where measurements are regarded as Dirichlet
boundary conditions to create a locally bounded domain. This finite
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domain model avoids errors related to semi-infinite domains (Berkel
2015). Application of the two models to the same dataset often results
in different coefficient estimates, with extremes of flows in opposite
direction.
To compare and discern the two models, existing methods for the semi-
infinite and finite domain model are extended. For the finite-domain
model that uses multiple frequencies to estimate constant transport
coefficients, this extension includes the use of multiple arbitrary sensor
locations. Extension of the existing methods allows for both models
(semi-infinite and finite) to process exactly the same data. Application
to synthetic datasets demonstrates that a small violation of the semi-
infinite domain model assumption can result in coefficient estimates
with a wrong sign. Application on experimental data shows that if
the estimates obtained with both models agree, the model fit and cost
function value are very similar. If the estimated coefficients do not agree,
the bounded domain model fits the data better and has a much lower
cost function value, indicating more trustworthy estimates. Therefore,
in case three or more sensors are available, the semi-infinite domain
should be abandoned.

• When does the estimation of spatially varying coefficients require
regularization and how does this affect the estimates? The standard
method to estimate the transport coefficients is by minimizing the output
error criterion, i.e., taking the (weighted) sum of the squared error between
the measurements of the state (transport variable) and the model predictions
at the corresponding sample points. This approach suffers from two problems:

– The methods used for finding the optimal parameters for the output
error criterion are typically solved iteratively. This is time consuming
and in many cases the problem is non-convex, i.e., numerical solvers do
not guarantee convergence to the optimal solution.

– As only the output error is optimized at the sampled locations, this
approach does not impose constraints on the state in-between data
points. Therefore, the coefficient estimates start oscillating. This can
even happen when the observed (output) error is zero due to spatial
aliasing of the state.

The latter problem is generally resolved via regularization. This can be on
the state level, by providing the state value in-between sensor locations, e.g.,
by interpolation, or on the level of the unknown coefficients by restricting
the (variance of) spatial distribution of the unknown coefficients. Restricting
the unknown coefficients is the most common method, but also artificial as
the goal is to estimate the physical transport coefficients and there is usually
no prior information on how the unknown parameters change as function of
the spatial variable.
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This thesis takes a different approach by separating the two problems. First,
the solution of the state as a function of the spatial variable is estimated
based on the (limited) measurement data, e.g., via inter- and extrapolation.
Instead of the commonly used output error criterion, the equation error
criterion is used. The equation error criterion takes the (weighted) sum of
the squared error between the measured or estimated state and the model
values at all points where the model is considered. Secondly, by using the
equation error criterion in combination with a linear parameterization of the
unknown coefficients, a closed-form solution for the unknown coefficients in
the frequency domain has been derived. This approach brings the following
advantages:

– The equation error clearly shows the relation between the (number of)
unknown parameters that parameterize the coefficients, the (number of)
spatial measurement locations, and the assumptions made on the state
in-between spatial measurement locations. In this way it directly shows
where regularization is applied and how it affects coefficient estimates.

∗ Regularization via the state can be applied by estimating the state
in-between measurement locations. This has the advantage of easy
visual inspection and can be validated by taking additional spatial
measurements.

∗ Regularization via the coefficients can be applied by limiting the
number of basis functions. Prior knowledge on the unknown coef-
ficients can be incorporated in the selection of the basis functions.
In principle, this regularization is not required for the noiseless case
as the closed form solution is exact on the considered data points.
For the noisy case regularization is applied via the state estimate.
Hence, using a parametrization with more degrees of freedom than
required avoids unwanted regularization.

– A closed-form solution can be used which significantly speeds up the
process and avoids convergence to a local minimum.

∗ This allows for the estimation of transport coefficients in n spatial
dimensions as iterative methods suffer harder from the curse of
dimensionality due to the required number of evaluations compared
to this closed-form solution.

∗ The low computational cost allows testing different levels of regu-
larization in a machine-learning like manner, e.g., selecting the best
parameterizations of the unknown coefficients via a model selection
criterion such as minimum description length or Akaike information
criterion.
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7.1.2 Stochastic challenges

The presented equation error framework contributes to the deterministic part
of the transport coefficients estimation but not the stochastic challenge: How
to deal with stochastic uncertainty when estimating spatially varying
coefficients? This thesis takes the viewpoint that only the measurement data is
available without any other prior knowledge. Hence, the stochastic uncertainty on
the measurements is unknown and needs to be estimated from the data itself. This
has been incorporated via the local polynomial method that is also used to remove
transients from the data. The local polynomial method is build upon the standard
assumption of circular complex normal distributed noise on the Fourier coefficients.
This is a weak assumption on the associated time domain noise distribution as
several different additive noise distributions result in circular complex normal
distribution of the Fourier coefficients. Provided that the local polynomial method
or equivalent techniques are used, the probability density function of the (processed)
Fourier coefficients is assumed to be known.

The transport coefficients that are most likely to have generated these Fourier
coefficient distributions are determined by maximizing the likelihood function of
the equation error criterion. Earlier maximum likelihood estimators are use a
scalar expression as they only consider one input (semi-infinite domain) or one
output (finite domain model). To deal with the multiple uncertain in- and outputs,
required to estimate spatially varying coefficients, a new maximum likelihood
estimator has been derived. This maximum-likelihood cost function is expressed in
terms of vectors and matrices. Moreover, as the likelihood function is non-convex,
the optimization problem is solved using iterative optimization scheme where the
bi-linear structure of problem formulation is exploited. Furthermore, due to the
linear parametrization of the unknown coefficients, the confidence interval of the
estimated coefficients is determined via propagation of uncertainty. This results
in spatially varying coefficients where the true physical coefficient lies within the
boundaries of the estimated coefficients.

Often, regularization on the state level is required. Most methods that estimate
spatially varying coefficients and that use regularization on the state level, do
not consider stochastic uncertainties. However, it is important to determine the
confidence bounds of the coefficient estimates. Therefore, it is also important to
have access to the probability distribution of the estimated state as this information
is required for the applied maximum likelihood estimator. This thesis estimates the
state by considering the state for each frequency as an individual complex valued
Gaussian process. In this way the (estimated) uncertainty of the measurements is
used to determine the probability density function of the state. Then, the required
samples for the equation error used in the maximum likelihood estimator can be
drawn from this distribution. Prior information about the underlying PDE, such
as smoothness and the (noise) distributions are embedded in the Gaussian process.
This results in significantly improved estimates compared to the commonly used
output-error criterion or methods that do not consider the uncertainties.
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7.1.3 Implementations of the methodologies

This thesis delivered various MATLAB® implementations of the discussed method-
ologies that are applied and verified on both simulated and experimental data.
The LPMLEn, the methodology to estimate constant transport coefficients using
multiple frequencies, and multiple outputs, is published as open source software on
HydroShare (Kampen et al. 2022c). The code is robust and reliable in terms of
user interaction, but not in terms of the data verification and the corresponding
estimation results. For example, for very noisy datasets it is more likely to end
up in local minima or even with infeasible solutions such as negative diffusion
coefficients. Therefore, the user should still verify if the estimates make sense or
try different starting values for the iterative optimization routine.

The MATLAB implementation to estimate spatially varying coefficients in 1D
is internally available at DIFFER and upon request for other interested researchers.
The code is able to deal with non-uniform grids, contains various basis-functions for
the parametrization such as B-splines and polynomials, has implementation for slab
and cylindrical geometry, can deal with known source functions, known spatially
varying coefficients such as the electron density for estimating heat transport
in a nuclear fusion reactor, and allows the estimation of different coefficients
combinations. When using the (linear) least square estimator, the closed-form
solution is efficiently determined as it only requires solving a system of linear
equations. Furthermore, the iterative optimization algorithm for the maximum
likelihood estimator uses the pseudo Jacobian for faster convergence. Therefore,
the most computational heavy steps are often the generation of basis functions and
regression matrices instead of solving the system of equations. The computational
time of the implemented algorithms is hard to evaluate as it depends on the number
of data points, degrees of freedom of the coefficient parameterization and the
sparsity of the problem, i.e., if the used basis functions have local support or have
support over the complete domain. For the used synthetic datasets in this thesis the
complete estimation time (including basis function generation) for the closed-form
solution has been below 100 ms, where for the maximum likelihood solution it is a
few seconds. These are the times on a regular laptop computer.

The implementation of the closed-form solution for nD transport coefficients is
currently the most limited as it can only deal with square uniformly distributed
measurement grids. For the example given in Section 5.3.2, generating the 1612
basis functions for the 249×249 grid (73206 spatial data points) takes a few seconds,
but the estimation procedure for the corresponding 1612 unknown parameters
takes approximately 100 ms on a regular laptop computer.

On a general note, the methods in this thesis have already been implemented
and used in the fields of hydrology to quantifying vertical streambed fluxes around
woody structures (Schneidewind et al. 2021) and nuclear fusion to quantify the
electron cyclotron power deposition broadening (Slief et al. 2023). In principle, the
methodology and the implementation are applicable to every transport problem
described by (1.13). However, we have observed that significant systematic errors
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in measurements or input parameters, for instance originating from the inversion
of line integrated measurements to spatially distributed measurements or a source
function that is assumed to be known, result in spatial distributed parameter
estimates which are inconclusive. Hence, the quality of the data and especially
to what extend systematic errors (bias) are present in the measurements or input
parameters determines the applicability of the proposed (if not all) methodologies
to produce reliable estimates.

7.2 Discussion and recommendations
This section describes possible future research and is subdivided into two parts.
One focuses on the improvement of the presented methodology whereas the other
focuses on the required extensions or applicability of the developed method in case
the underlying assumptions do not hold.

7.2.1 Improvement of the estimation methodology

As shown in this thesis, the ability to estimate spatially varying transport coefficients
is closely related to the number of spatial measurement points and the assumptions
made on the state in-between spatial measurement points. Hence, avoiding (spatial)
aliasing is key in the estimation of spatially varying transport coefficients. This
thesis tackles the spatial aliasing problem by only considering the coefficient values
on the spatial sample points. We use basis functions as spatial interpolation
of the estimated coefficients. For regularization or artificially increased spatial
resolution, the measured transport variable is interpolated via Gaussian process
regression. The following two recommendations will help to further improve the
current methodology:

• For a better fundamental understanding of the spatial aliasing problem and
how it affects the estimation of spatially varying coefficients, it is recommend
to use a spectral decomposition of the state. By writing the state as a
summation of products of spatial functions and frequency (or time) depending
coefficients, it clearly separates the spatial and/or temporal domain. Moreover,
the selected basis function for the spectral decomposition directly implies the
behavior of the state in-between spatial measurement points, i.e., interpolation.
Furthermore, the error integrals over the spatial domain can be determined
analytically. In this way, the basis functions for the spectral decomposition
are directly related to the parametrization of the unknown coefficients over
the complete spatial domain. Studying how these errors change by testing
different combinations of basis functions and coefficient parametrizations can
give more insight in the underlying spatial aliasing problem. Moreover, testing
different combinations of basis functions and coefficient parameterization
allows for a machine learning like approach to learn the best combinations.
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• For better coefficient estimates, the state and coefficient estimation process
should be done simultaneously, as the state depends on the coefficients. The
recommended approach is to modify the kernel functions of the Gaussian
process such that the state estimates satisfies the transport equations. Here,
the modified kernels contain the unknown coefficients that can be treated
as hyperparameters. Consequently, the state and coefficient estimation are
coupled as the coefficients can be determined by optimizing the likelihood
function of the Gaussian process while the state is used to provide the required
regularization. Further improvements can be achieved by taking a Bayesian
approach and assigning priors to the unknown coefficients or learning the
model (structure) form the data.

7.2.2 Extensions of the estimation methodology

The methods presented in this thesis have been developed with specific assumptions
in mind that simplify the analysis. However, in practice, these assumptions will
not always be satisfied. Furthermore, by removing or reducing some assumptions
it may make the developed methods useful for a larger group of users. Therefore,
in the following paragraphs the most important assumptions are described and
possible extensions are suggested.

Higher order partial differential equations

The methods presented in this thesis are focused around the transport equation,
i.e. a second order parabolic partial differential equation. As the developed methods
are generic, they can easily be extended to partial differential equations with higher
order temporal and spatial derivatives (Vries 2021). However, a practical limitation
is that higher order derivatives are more subject to noise, and therefore will limit
the order of differential equations that be considered with this method.

Coupled transport equations

In many applications, the transport is not described by a single PDE but by
a system of coupled PDEs, e.g., density and temperature. Solving the forward
problem, i.e. determining the state, requires solving both PDEs simultaneously,
whereas solving the inverse problem, i.e. estimating the unknown coefficients, allows
decoupling of the PDEs. By treating the coupled transport variable (state) as an
additional input, the coefficient estimation for each PDE can be solved individually.
Hence, with a small extension of an additional input, the developed methods are
applicable for coupled systems. However, it should be noted that uniqueness of
the solution to the inverse problem is a concern for coupled PDEs thus should be
investigated in the future (Vries 2021).
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Nonlinear partial differential equations

The considered (linear) transport equation can be the result of a linearization,
which only holds if the perturbations are sufficiently small. If this is not the case,
e.g., larger amplitudes are required to rise above the noise level, then it will result
in nonlinear dynamics. The considered linear model with the current methodology
results in the best linear approximation. Extending the current methodology
to nonlinear models is a big challenge as this can result in intermodulation or
harmonic distortions that can significantly impact the excited harmonics. To start
studying nonlinear transport models in the frequency domain, it is recommended
to start with models where a periodic input results in the same period output
(Berkel et al. 2017b). Then, for each frequency, the corresponding equation can
be determined and estimating the coefficients can be done by following a similar
methodology as presented in this thesis. However, this approach will result in
many different coefficients as all combinations of harmonics should be considered.
Hence, performing multiple experiments with different realizations or having prior
knowledge about the model structure and parameters is a necessity to solve the
estimation problem.
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Samenvatting

Schatten van ruimtelijk variërende
transportcoëfficiënten in het frequentiedomein

Het kwantificeren van transportverschijnselen die de uitwisseling van energie,
lading, massa, of momentum beschrijven, speelt een belangrijke rol in de na-
tuurwetenschappen en techniek. Het gegeneraliseerde wiskundig model dat deze
transportverschijnselen beschrijft wordt het generieke scalaire transportmodel ge-
noemd en behoort tot de klasse van parabolische partiële differentiaalvergelijkingen
(PDVs). Hoewel transportmodellen vaak zijn afgeleid vanuit de bekende onderlig-
gende fysica, zijn de bijbehorende fysische parameters die de transportmechanismen
beschrijven onzeker of onbekend. Dit resulteert in een schattingsprobleem waarvoor
er in de literatuur verschillende methoden zijn ontwikkeld.

Schattingsmethoden variëren, afhankelijk van het toepassingsgebied, van het
schatten van constante coëfficiënten met behulp van analytische oplossingen van
de PDV tot het schatten van ruimtelijk variërende coëfficiëntfuncties met behulp
van numerieke PDV-benaderingstechnieken. Dit proefschrift gaat verder op beide
strategieën door verschillende frequentiedomeinmethodieken uit te breiden en te
vergelijken. De keuze voor het frequentiedomein is een bewuste keuze door het tal
van voordelen ten opzichte van tijddomeinmethodieken. Een van de belangrijkste
voordelen is de reductie van de PDV tot een gewone differentiaalvergelijking met
complexe waarden. Daarnaast is de inhoud van het informatie dragende spectrum
van de gebruikte verstoringsexperimenten voor PDVs doorgaans geconcentreerd,
wat ten volste wordt benut.

Het eerste deel van dit proefschrift richt zich op het uitbreiden van de maximum
likelihood (meest aannemelijke) schatter voor het transportmodel met één ruimte-
lijke dimensie (1D) en constante parameters. De uitbreiding maakt het mogelijk
om het effect van de verschillende randvoorwaarden voor het transportmodel op de
geschatte coëfficiënten te bestuderen. Om precies te zijn, dit proefschrift breidt
de maximum likelihood schatter uit zodat zowel het lokaal begrensde domein als
het semi-oneindige domein als randvoorwaarden gebruikt kunnen worden voor
schattingen met meerdere met ruis vervuilde metingen. Daardoor kan de schatter
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met beide randvoorwaarden hetzelfde aantal metingen gebruiken waardoor er een
eerlijke vergelijking mogelijk is. Deze nieuwe methode is toegepast op zowel simu-
latie resultaten als experimentele gegevens uit de hydrologie. Dit laat duidelijk
de verdiensten van het schatten met meerdere metingen op een lokaal begrensd
domein ten opzichte van het semi-oneindige domein.

Het tweede en grootste deel van dit proefschrift richt zich op het ontwikke-
len van methodologieën voor het schatten van ruimtelijk variërende coëfficiënten
voor parabolische PDVs. De standaardbenadering is het minimaliseren van de
uitgangsfout, d.w.z. het verschil tussen de metingen en de modelwaarde op de
meetlocaties. Als de ruimtelijke afhankelijkheid van de coëfficiënten niet beperkt
wordt, bevatten de geschatte coëfficiënten vaak grote (niet-fysieke) oscillerende
artefacten als gevolg van ruisversterkingen. De klassieke aanpak van dit probleem
is door middel van regularisatie, d.w.z. het beperken van de complexiteit van
de functies die de onbekende coëfficiënten beschrijven. Dit proefschrift vermijdt
deze (vaak) willekeurige regularisatie op de onbekende coëfficiënten door de verge-
lijkingsfout te minimaliseren, d.w.z. het verschil tussen de gemeten of geschatte
toestand en de toestand van het model worden geminimaliseerd. De aanpak is
als volgt: 1) er wordt een discretisatie toegepast op de ruimtelijke coördinaat; 2)
een lineaire parametrisering wordt toegepast op de onbekende coëfficiënten. Het
verschil tussen de vrijheidsgraden van deze parametrisering en het beschouwde
aantal ruimtelijke punten weerspiegelt direct de mate van toegepaste regularisatie
op het schattingsprobleem. Bovendien resulteert de lineaire parametrisering, in
combinatie met de vergelijkingsfout, in een lineair kleinste-kwadratenprobleem met
een bekende oplossing in een gesloten vorm. Dit maakt 3) directe berekening van
het globale optimum mogelijk door een lineaire matrixvergelijking op te lossen, het-
geen dat een lage rekenkracht vereist. Dit is een belangrijke verbetering aangezien
de schattingen van ruimtelijk variërende coëfficiënten normaal veel rekenkracht
vereist vanwege de noodzakelijke iteratieve optimalisatiemethoden. Daarom maakt
deze nieuwe methodologie het mogelijk om snel verschillende parametrisaties van
coëfficiënten te schatten en te vergelijken op een manier die lijkt op machinaal leren.
Bovendien maakt dit het mogelijk om snel ruimtelijke variërende coëfficiënten in
meerdere ruimtelijke dimensies te schatten, iets waar normaliter veel rekenkracht
voor nodig is.

Als verdere verbetering van de 1D-schattingsmethode wordt de casus beschouwd
waarin alle metingen ruis bevatten. In dit geval bevat de gesloten-vorm oplossing
een systematische fout. Daarom wordt de methodologie uitgebreid door eerst de
waarschijnlijkheidsdichtheidsfunctie van de toestand te bepalen door middel van
Gaussiaanse proces regressie en vervolgens met de maximum likelihood schatter de
transportcoëfficiënten te bepalen.

De voorgestelde methodologieën zijn toegepast binnen twee verschillende do-
meinen. In de hydrologie voor het schatten van de vermenging van grondwater
en oppervlaktewater. Hetgeen dat verantwoordelijk is voor de uitwisseling van
verontreinigingen en zodoende de waterkwaliteit beïnvloed. Ten tweede, op het
gebied van kernfusie voor het schatten van warmte en deeltjestransport die de
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reactorefficiëntie bepalen.
Het is te verwachten dat deze methoden hun weg zullen vinden naar meer

toepassingen en gebruikers zullen helpen hun transportmodellen te identificeren, en
de aanleiding zijn voor een nieuw perspectief op het schatten transportcoëfficiënten.





List of publications

Peer-reviewed journal articles
• Kampen, R. J. R. van, A. Das, S. Weiland, and M. van Berkel (2021c). “A

Closed-Form Solution to Estimate Spatially Varying Parameters in Heat and
Mass Transport”. In: IEEE Control Systems Letters 5.5 (Nov. 2021), pp. 1681–
1686. doi: 10.1109/lcsys.2020.3042933.

• Kampen, R. J. R. van, U. Schneidewind, C. Anibas, et al. (2022d). “LPMLEn A
Frequency Domain Method to Estimate Vertical Streambed Fluxes and Sediment
Thermal Properties in Semi-Infinite and Bounded Domains”. In: Water Resources
Research 58.3 (Feb. 2022), e2021WR030886. doi: 10.1029/2021wr030886.

• Kampen, R. J. R. van, M. van Berkel, and H. J. Zwart (2023a). “Estimating
Space-Dependent Coefficients for 1D transport using Gaussian Processes as
State Estimator in the Frequency Domain”. In: IEEE Control Systems Letters 7
(2023), pp. 247–252. doi: 10.1109/LCSYS.2022.3186626.

• Kampen, R. J. R. van, J. de Vries, S. Weiland, et al. (2023b). “Fast simultaneous
estimation of nD transport coefficients and source function in perturbation
experiments”. In: Scientific Reports 13.1 (Feb. 2023), p. 3241. doi: 10.1038/
s41598-023-30337-0.

Co-authored peer-reviewed journal articles
• Berkel, M. van, R. J. R. van Kampen, G. Vandersteen, et al. (2020). “Correcting

for non-periodic behaviour in perturbative experiments: application to heat
pulse propagation and modulated gas-puff experiments”. In: Plasma Physics
and Controlled Fusion 62.9 (July 22, 2020), p. 094001. doi: 10.1088/1361-
6587/ab9eaa.

https://doi.org/10.1109/lcsys.2020.3042933
https://doi.org/10.1029/2021wr030886
https://doi.org/10.1109/LCSYS.2022.3186626
https://doi.org/10.1038/s41598-023-30337-0
https://doi.org/10.1038/s41598-023-30337-0
https://doi.org/10.1088/1361-6587/ab9eaa
https://doi.org/10.1088/1361-6587/ab9eaa


152 List of publications

• Ravensbergen, T., M. van Berkel, A. Perek, et al. (2021). “Real-time feedback
control of the impurity emission front in tokamak divertor plasmas”. In: Nature
Communications 12.1 (Feb. 2021), p. 1105. doi: 10.1038/s41467-021-21268-3.

• Slief, J. H., R. J. R. van Kampen, M. W. Brookman, and M. van Berkel (2022).
“Extension of the flux fit method for estimating power deposition profiles”. In:
Physics of Plasmas 29.1 (Jan. 20, 2022), p. 010703. doi: 10.1063/5.0069869.

• Reimerdes, H., M. Agostini, E. Alessi, et al. (2022). “Overview of the TCV
tokamak experimental programme”. In: Nuclear Fusion 62.4 (Mar. 2022),
p. 042018. doi: 10.1088/1741-4326/ac369b.

• Fenstermacher, M. E., J. Abbate, S. Abe, et al. (2022). “DIII-D research
advancing the physics basis for optimizing the tokamak approach to fusion
energy”. In: Nuclear Fusion 62.4 (Apr. 2022), p. 042024. doi: 10.1088/1741-
4326/ac2ff2.

• Slief, J. H., R. J. R. van Kampen, M. W. Brookman, et al. (2023). “Quantifying
electron cyclotron power deposition broadening in DIII-D and the potential
consequences for the ITER EC system”. In: Nuclear Fusion 63.2 (Jan. 2023),
p. 026029. doi: 10.1088/1741-4326/acaedc.

• Berkel, M. van, C. H. Luce, R. J. R. van Kampen, et al. (2023). “A framework
to improve the reliability of temperature-based estimates of flow and diffusion
in streambeds with frequency domain examples”. In: in preparation.

Peer-reviewed conference proceedings
• Kampen, R. J. R. van, A. Das, S. Weiland, and M. van Berkel (2021b). “A

Closed-Form Solution to Estimate Spatially Varying Parameters in Heat and
Mass Transport”. In: 2021 American Control Conference (ACC). May 2021,
pp. 286–291. doi: 10.23919/ACC50511.2021.9482757.

• Kampen, R. J. R. van, M. van Berkel, and H. J. Zwart (2022a). “Estimating
Space-Dependent Coefficients for 1D transport using Gaussian Processes as State
Estimator in the Frequency Domain”. In: 61st IEEE Conference on Decision
and Control (CDC). Dec. 2022, p. 1717.

https://doi.org/10.1038/s41467-021-21268-3
https://doi.org/10.1063/5.0069869
https://doi.org/10.1088/1741-4326/ac369b
https://doi.org/10.1088/1741-4326/ac2ff2
https://doi.org/10.1088/1741-4326/ac2ff2
https://doi.org/10.1088/1741-4326/acaedc
https://doi.org/10.23919/ACC50511.2021.9482757


List of publications 153

Non peer-reviewed abstracts in conference proceed-
ings
• Kampen, R. J. R. van, A. Das, S. Weiland, and M. van Berkel (2020). “Complex

Gaussian Process Regression for Estimating Spatially Varying Coefficients in
Thermal Transport”. In: 39th Benelux Meeting on Systems and Control. Elspeet,
Netherlands, Mar. 2020, p. 38.

• Kampen, R. J. R. van, A. Das, S. Weiland, and M. van Berkel (2021a). “A
closed-form solution to estimate space-dependent parameters in heat and mass
transport”. In: Physics@Veldhoven. Veldhoven, Netherlands, Jan. 2021.

• Kampen, R. J. R. van, A. Das, S. Weiland, and M. van Berkel (2021d). “A
Linear Least Squares Approach to Estimate Space-Dependent Parameters in
Heat and Mass Transport”. In: Benelux Workshop on Systems and Control.
Rotterdam, Netherlands, June 2021, p. 68.

• Kampen, R. J. R. van, U. Schneidewind, C. Anibas, et al. (2021e). “On
the Validity of Flux Estimates using Semi-Infinite Domains.Comparing Flux
Estimates from Semi-Infinite and Bounded Domains using the LPMLEn - a
Multi Frequency, Multi Sensor Method to Estimate Vertical Streambed Fluxes
and Sediment Thermal Properties”. In: AGU Fall Meeting 2021. Hybrid, New
Orleans, LA, USA, Dec. 2021.

• Kampen, R. J. R. van, S. Weiland, H. J. Zwart, and M. van Berkel (2022b). “A
frequency domain maximum likelihood Approach to Estimate Space-Dependent
Parameters in heat and mass transport”. In: 41st Benelux Meeting on Systems
and Control. Brussels, Belgium, July 2022, p. 200.





Dankwoord

Net zoals bij de partiële differentiaalvergelijkingen die ik de afgelopen vier jaar heb
bestudeerd, zijn ook bij het promotietraject de randvoorwaarden zeer bepalend voor
de uitkomst. Eenieder die, op welke manier dan ook, een bijdrage heeft geleverd
aan de totstandkoming van dit proefschrift, behoort tot die randvoorwaarden. Ik
wil jullie allen hartelijk bedanken en een aantal van jullie benoem ik graag in het
bijzonder.

Allereerst mijn promotoren. Matthijs, jouw ongeremde enthousiasme, gedreven-
heid en high-gain feedback zijn onmiskenbaar en onmisbaar geweest in de afgelopen
vier jaar. Jouw altijd kritische input en intensieve begeleiding heb ik erg gewaar-
deerd. Daarnaast ben ik je dankbaar voor de prachtige start van mijn promotie-
traject door mij direct naar Brussel en Lausanne te laten reizen. Dit waren de
meest leuke en leerzame weken in de afgelopen vier jaar. De thuiswerkperiode was
onvermijdelijk, maar jij zorgde ervoor dat de motivatie op peil bleef door allerlei
mooie samenwerkingen op te zetten. Onze schattingsmethoden toepassen in de
hydrologie was een leuke onverwachte wending. Alle moeite die je voor mij hebt
gedaan is niet ongezien gebleven en hiervoor wil ik je dan ook graag bedanken.

Hans en Siep, jullie scherpe commentaren, positieve houding en fascinatie
voor alles wat maar met wiskunde te maken heeft werkt aanstekelijk. Na elke
bijeenkomst vertrok ik in een betere stemming dan waarmee ik arriveerde. Fijnere
promotoren dan jullie kan ik me niet voorstellen.

Furthermore, I would like to express my gratitude towards the chair Patrick
Anderson and the committee members Marijke Huysmans, Paul van den Hof, Karel
Keesman, and Tuomas Tala for their time and effort spent reading my dissertation
and participating in my defense.

This thesis has been realized through indispensable collaboration with various
inspiring people. Artur, Joost, Matthijs and Timo, although it is not included
in this thesis, the two experimental campaigns at TCV were a great way to get
some hands-on experience with system identification and nuclear fusion. This
experience laid the foundation of my fusion knowledge and my further research.
Our achievements, all the amazing places we had dinner, and the victory beers
at the lake, made these trips “unaniem een belachelijk groot success”. Amritam,
thank you for the fruitful collaboration, it really helped me get up to speed with
my own research. Charlie, Daniele, and Stefan, many thanks for all the inspiring



156 Dankwoord

discussions regarding heat transport in hydrology. This really opened up my eyes
to how widely applicable and important my research is. Uwe, I really want to thank
you for the close collaboration, interesting discussions, and most of all, taking care
of all the references in this horrible program called ‘Word’. Verder wil ik nog
Marco de Baar, Koen Tiels, Gerd Vandersteen en Egbert Westerhof bedanken voor
jullie advies gedurende de afgelopen vier jaar, dit heeft erg geholpen bij het scherp
krijgen van verschillende details.

Daarnaast wil ik ook alle studenten die ik heb begeleid bedanken. Andreas,
Bart, Jelle, andere Jelle en Jochem, de samenwerking met jullie heeft mij veel
belangrijke inzichten opgeleverd die de basis hebben gevormd voor een aantal van
mijn publicaties.

A big thanks to all the people at DIFFER, Bart, Beatrix, Chris, Fabio, Jos,
Jonathan, Lennard, Michele, Marek and Paul for making it such an enjoyable
workplace. I really appreciate all the interesting talks and fun moments we had
during and after work. Special thanks to Laura and Maria, for pushing everybody
(including me) to participate in social activities outside work and often bringing
(home-made) food to lift the spirit during the coffee breaks. A special shout out to
Aaron, Laura and Jesse for making so many great memes and WhatsApp stickers
of all the DIFFER Ph.D. students.

Daarnaast wil ik ook mijn (voormalige) kantoorgenoten bedanken, Artur, Bob,
Garud, Gerard, Gijs, Jesse, Joost en Timo. Dit kantoor was de geboorteplaats
voor veel legendarische dingen: happy tunes Friday, quote van de week, computer-
puntenscorelijst, MATLAB memes en zelfs de Energy Systems and Control groep
is daar uiteindelijk opgericht. Het was altijd een plek waar ik met plezier naar
toe ging en terecht kon met mijn ‘domme’ natuurkunde vragen, ongenuanceerde
opmerkingen en frustraties. Garud, Jesse en Timo, ik ben jullie dankbaar voor
het delen van alle nieuwsberichten en columns die we vervolgens bediscussieerden
tijdens de ochtendkoffie en/of lunch. Then I moved to a new office, with new
officemates: Aaron, Jelle, and Thomas. With the three of you it was not only our
research that connected us, but also our taste in music and sense of humor. Opening
the door in the morning and hearing great music blasting from the speakers made
the final stretch of the Ph.D. a bit easier. Jelle, jou wil ik toch nog even extra
bedanken voor alle zeer scherpe opmerkingen en het corrigeren van mijn Nederlands
taalgebruik. Al blijf ik erbij, sommige (spreek)taalfouten zijn cultureel erfgoed en
dienen behouden te worden.

Verder wil ik nog iedereen uit de CST en D&C groep van de TU/e bedanken,
in het bijzonder, Brandon, Camiel, Fahim, Hao, Jilles, Johan, Koen, Koen, Lars,
Leontine, Menno, Roeland, Roy, Sebastiaan en Wouter. Met alle plezier liet ik de
goede koffie en het mooie kantoor bij DIFFER achter om één dag per week met jullie
in de betonnen kelder te spenderen. Bedankt voor alle leuke koffiepauzes, lunch
wandelingen, vrijdagmiddag borrels en de onvergetelijke tijden tijdens conferenties
en borrels. Sven, dankjewel voor de mooie discussies over het potentieel toepassen
van mijn werk op hyperthermie voor kankerbehandelingen. Bardia and Tomas, it
was a real pleasure to be your office mate in the final stretch of the Ph.D. Especially



Dankwoord 157

during our trip to Cancún where we had to write our thesis/paper while having
the tempting view of the beach and the pools. Fortunately, after submitting, we
were still able to enjoy it for a bit.

Rinus, Ruud en Timo, ik ben blij dat ik deel mocht uitmaken van dit ‘boze witte
mannen’ gezelschap. De diepgaande gesprekken onder het genot van koffie, bier of
whisky waarbij alles in termen van wiskunde en regeltechniek werd geanalyseerd,
deden mij goed. Ik waardeer het enorm dat ik altijd op jullie kan rekenen als vaste
gesprekspartners voor advies, inspiratie en de nodige afleiding.

Ook wil ik de docenten werktuigbouwkunde aan de Hogeschool Rotterdam
bedanken, in het bijzonder Andrea, Jac en Jos. Jullie hebben mij niet alleen
als student een goede basis meegegeven, maar daarna heb ik als collega nog veel
meer van jullie geleerd. Zonder jullie hulp en ondersteuning had ik nooit aan mijn
Ph.D. kunnen beginnen. Andrea, de appjes met updates over de opleiding en de
sporadische vragen over de vakken die ik gaf waren een welkome afleiding.

Daarnaast wil ik al mijn vrienden bedanken voor de leuke tijden buiten werk.
In het bijzonder, de ‘spelletjes groep’, Joris, Leontine, Menno, Roeland, Thomas
en Yi Ying. Fabian, voor alle leuke gesprekken en updates omtrent je toffe
hobbyprojecten. Die gaven mij vaak weer hernieuwde energie voor mijn eigen
hobbyprojecten, waarvan ik er nu eindelijk eentje ga afronden, namelijk mijn Ph.D.
Mike en Dirk-Jan, dankjewel voor de jarenlange vriendschap en alle onvergetelijke
momenten die we samen hebben beleefd. Ik kan altijd waarderen hoe ik met jullie
gewoon even alles achter me kan laten en kan genieten van de altijd bijzondere
momenten samen.

Als volgende wil ik Els en Peter bedanken voor de gezelligheid, ondersteuning,
altijd aanwezige interesse in mijn werk en natuurlijk de frietjes op vrijdag.

De laatste woorden zijn voor mijn familie. Opa en oma, dankjewel voor de
gezelligheid en het begrip voor het ‘oneindige’ studeren, maar na vele jaren is dit
dan uiteindelijk het sluitstuk.

Wesley en Kimberley, jullie ook bedankt voor het creëren van een fijne thuis-
situatie waarin ik altijd al mijn verhalen kwijt kon en tegenwoordig het enthousiasme
als ik weer met een nieuw bordspel kom opdagen.

Pa en ma, bedankt voor het creëren van een stabiele basis. De levenslessen die
jullie mij van kinds af aan probeerde bij te brengen hebben mij in staat gesteld
om dit te bereiken. Vooral de zin “even diep ademhalen en gewoon nog een keer
proberen” heeft mij door de afgelopen vier jaar geholpen.

Tot slot, Shari, al meer dan 10 jaar ben jij mijn steun en toeverlaat. Bedankt
voor alles dat je voor mij hebt gedaan, van ‘het streepje’ tot het bieden van een
luisterend oor en van alle relativerende opmerkingen tot het verbreden van mijn
horizon met leuke activiteiten en nieuwe hobby projecten. Mijn proefschrift maakt
mij trots, maar jij maakt mij gelukkig.

Ricky van Kampen
Eindhoven, Maart 2023





About the author

Ricky van Kampen was born on the eighteenth of
September, 1993 in Spijkenisse, the Netherlands.
After finishing his secondary education in 2010 at
PENTA college CSG Blaise Pascal in Spijkenisse, he
studied Mechanical Engineering at the Rotterdam
University of Applied Sciences. After receiving his
B.Eng degree in 2014, he started his pre-master in
Mechanical Engineering at the Eindhoven University
of Technology, while simultaneously starting his ca-
reer as a lecturer in mechanical engineering at the
Rotterdam University of Applied Sciences. In 2016
he received the teaching qualification for universities
of applied sciences from the VU Amsterdam. In 2018
he received the M.Sc. degree (with great appreciation)
in Mechanical Engineering from the Eindhoven Uni-
versity of Technology. The subject of his Master’s Thesis was on geometric social
force interaction models for autonomous driving with mobile robots. In 2019 he
quit his job as a lecturer at the Rotterdam University of Applied Sciences to start
his Ph.D. research on the estimation of transport coefficients in the newly founded
Energy Systems and Control group at DIFFER - Dutch Institute for Fundamental
Energy Research in Eindhoven and the Control Systems Technology Group at
the Eindhoven University of Technology. The main results of this research are
presented in this thesis.




	Summary
	Contents
	Introduction
	Transport phenomena
	Perturbation studies to analyze transport
	Generic scalar transport

	Applications of transport phenomena covered in this thesis
	Transport phenomena in the hyporheic zone
	Transport phenomena in nuclear fusion

	Methods for estimating transport coefficients
	Time domain methods
	Frequency domain methods
	Time versus frequency domain

	Objective and contributions
	Outline

	A framework for reliable coefficient estimation
	Introduction
	Model structure choices and their consequences
	Variations on the (linear) advection-diffusion equation
	Boundary conditions for the advection-diffusion equation
	Non-linearities in the advection-diffusion equation

	Signal processing for parameter estimation
	Why signal processing for parameter estimation?
	Signal components
	Signal processing on individual signals
	Signal processing using system properties
	A discussion of related single sinusoidal approaches

	Estimation methods
	Single frequency estimates and their uncertainty
	Quantifying noise at single frequency
	Confidence bounds at a single frequency estimate
	Multi-frequency model parameters estimation (maximum likelihood)
	Multi-frequency estimation of confidence bounds
	Model error identification
	Multi-depth analysis

	A forward-looking perspective
	Variance calculation in the frequency domain
	Confidence bound calculation

	Estimating locally constant coefficients with uncertainty
	Introduction
	The LPMLEn method
	The models and their analytical solutions
	Processing the dataset with the LP method
	The n-point MLE

	Application of the LPMLEn
	Synthetic datasets
	Experimental dataset

	Conclusion
	Summary of frequency domain methods in hydrology
	Synthetic datasets I and II (constant parameters)
	Synthetic dataset III (change in parameters)
	Synthetic dataset IV (change in parameters)
	Model fits on experimental dataset
	Thermal dispersivity fits on experimental dataset

	Estimating 1D spatially varying coefficients
	Introduction
	Problem formulation
	Finite dimensional frequency domain problem
	Frequency domain approach
	Linear parameterization of the unknown functions
	Semi-discretization

	The inverse problem
	Output error criterion
	Equation error criterion
	Derivation of the closed-form solution
	State estimation

	Simulation results
	Data generation
	Estimation of D(x), P(x)  with unknown order R
	Estimation using spatial interpolations of the temperature

	Conclusions and discussion
	Finite Difference Matrices

	Estimating nD spatially varying transport coefficients
	Introduction
	Methodology
	Simulation Examples
	1D Simulation Example
	2D Simulation Example

	Conclusion and Discussion

	Estimating 1D spatially varying coefficients with uncertainty
	Introduction
	Problem formulation
	State estimation by Gaussian process regression
	Gaussian process regression
	Complex valued Gaussian process regression

	Finite-dimensional problem formulation
	Parameterization of the unknown functions
	Discretization procedure

	Maximum likelihood solution
	Minimizing the cost function
	Calculation of the confidence intervals

	Simulation results
	Data generation and state estimation
	Parameter estimation

	Conclusion and discussion

	Conclusions, discussion and recommendations
	Conclusions
	Deterministic challenges
	Stochastic challenges
	Implementations of the methodologies

	Discussion and recommendations
	Improvement of the estimation methodology
	Extensions of the estimation methodology


	Bibliography
	Samenvatting
	List of publications
	Dankwoord
	About the author

