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A B S T R A C T

Leveraging the current generation of quantum devices to solve optimization problems of practical interest
necessitates the development of hybrid quantum-classical (HQC) solution approaches. In this paper, a multi-
cut Benders decomposition (BD) approach that exploits multiple feasible solutions of the master problem (MP)
to generate multiple valid cuts is adapted, so as to be used as an HQC solver for general mixed-integer linear
programming (MILP) problems. The use of different cut selection criteria and strategies to manage the size of
the MP by eliciting a subset of cuts to be added in each iteration of the BD scheme using quantum computing
is discussed. The HQC optimization algorithm is applied to the Unit Commitment (UC) problem. UC is a
prototypical use case of optimization applied to electrical power systems, a critical sector that may benefit from
advances in quantum computing. The proposed approach is demonstrated using the D-Wave Advantage 4.1
quantum annealer.
1. Introduction

Quantum computing (QC) is an emerging technology that may
help address challenging computational problems. Although significant
progress has been made in the recent years, universal error-corrected
quantum computers have not been realized yet. Nonetheless, currently
available quantum hardware, often called Noisy Intermediate-Scale
Quantum (NISQ) (Preskill, 2018), allows applying quantum algorithms
in order to identify problems and application areas in which QC can
offer an advantage compared to classical computing.

The power and energy sector is an example of an area where com-
puting has always been of paramount importance for system design and
operation (Priesmann et al., 2019). However, the complexity induced
by the modernization of the energy sector is posing computational
challenges that may not be met by classical resources (Tovar-Facio
et al., 2021). The energy sector is currently undergoing a transition
from fossil-based to zero-carbon energy sources, triggered by global
decarbonization targets. The electrical power sector is leading the
energy transition through three innovation trends, namely the elec-
trification of end-use sectors, the decentralization of energy resources
and extensive digitalization (Lopion et al., 2018). In this context, QC
and quantum informatics are expected to find significant applications.
First, quantum cryptography can be leveraged in order to enhance the
cyber security of power systems, especially those with many distributed
energy resources (Tang et al., 2021). Also, QC has the potential to
expand the current computational capabilities and facilitate the solu-
tion of complex analysis, optimization and data analytics problems in
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the energy domain (Eskandarpour et al., 2020; Olatunji et al., 2021;
Giani and Eldredge, 2021), while maintaining a low energy footprint
of computations (Elsayed et al., 2019).

1.1. Quantum computing for optimization

Among the many areas where a quantum speedup is sought, solv-
ing combinatorial optimization problems is one of the most promi-
nent (Bernal et al., 2022). In the context of using QC for optimization,
a commonly-studied class of combinatorial problems are Quadratic
Unconstrained Binary Optimization (QUBO) problems (Kochenberger
et al., 2014). A QUBO problem can be stated as min𝐱 𝐱𝑇𝐐𝐱 where
𝐱 ∈ {0, 1}𝑛 and 𝐐 ∈ R𝑛×𝑛. QUBO problems can be mapped to Ising
models (𝐱 ∈ {−1, 1}𝑛) through a linear transformation. The lim-
itations of NISQ hardware have triggered the development of hy-
brid quantum–classical (HQC) algorithms that exploit both classical
and quantum resources. Popular techniques include variational ap-
proaches such as the Variational Quantum Eigensolver (VQE) (Peruzzo
et al., 2014) and the Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014), as well as techniques based on Grover’s
algorithm (Gilliam et al., 2021). However, gate-based QC, which the
aforementioned algorithms are designed to exploit, are still at an
early development stage and, therefore, their application for solving
practical-scale problems is limited (Nannicini, 2019). On the contrary,
vailable online 6 February 2023
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special-purpose quantum computers, namely quantum annealers (QA),
currently surpass gate-based computers both in terms of number of
qubits and qubit connectivity and can be used to obtain approximate
solutions of larger QUBO instances (McGeoch, 2020).

Several problems can be modeled using QUBO (e.g., Grant et al.,
2021; Harwood et al., 2021; Stollenwerk et al., 2019). However, most
optimization problems of practical interest are constrained and contain
both discrete and continuous variables. For instance, mixed-integer lin-
ear programming (MILP) problem formulations are often encountered
in diverse application areas, such as logistics (Anghinolfi et al., 2016),
the coordination of unmanned aerial vehicles (Yang et al., 2019) and
power systems (Chen et al., 2016). In these cases, developing a mono-
lithic QUBO formulation is neither a convenient nor efficient approach
since the continuous variables would need to be discretized. In order
to leverage a quantum processing unit (QPU) for solving mixed-integer
problems of practical interest, decomposition-based HQC algorithms
must be developed. Such HQC algorithms aim to decompose the origi-
nal optimization problem into a part that can be assigned to the QPU,
i.e., a QUBO problem or a problem that can be cast as a QUBO, and
a part that can be solved efficiently using classical algorithms (e.g., a
convex optimization problem).

Although HQC optimization algorithms are not expected to result in
exponential speedups in the NISQ era, studying them is important for
two reasons (Bass et al., 2021). First, they are an avenue for the applica-
tion of QC to various types of optimization problems. Second, they offer
the potential for quantifiable algorithmic performance improvements
and reinforcing the value of using QC alongside classical resources in
solving real-world problems in critical sectors, such as power and en-
ergy systems. Recently, the development of such approaches has gained
attention and various problem-specific (Ajagekar et al., 2020; Braine
et al., 2021) and general-purpose techniques have been proposed (Gam-
bella and Simonetto, 2020; Chang et al., 2022; Zhao et al., 2022).

In Gambella and Simonetto (2020) a decomposition approach for
mixed binary-continuous optimization problems with complicating con-
straints based on a multi-block version of the alternating direction
method of multipliers (ADMM) was presented. The proposed method
splits the original problem into a QUBO problem and constrained
convex subproblems (SP). The QUBO problem was solved using VQE
and QAOA, while the constrained convex SPs were solved with a
classical solver. Despite being a general method of wide applicability,
the convergence of the HQC algorithm is not guaranteed.

In Chang et al. (2022) and Zhao et al. (2022) the Benders decom-
position (BD) scheme was used as the basis for a general-purpose HQC
MILP solver. BD splits the problem into a master problem (MP) that
contains both binary and continuous variables and is assigned to the
QPU and a linear programming (LP) SP that is solved classically. In
each iteration, the solution of the SP provides an upper bound to the
objective function and generates a new constraint (cut) that is added
to the MP to improve the lower bound. A primer on BD is presented in
Section 2.2. Although BD is proven to converge to the global optimum
of the original MILP problem, a major drawback of its direct application
as an HQC algorithm is that it requires the discretization of the continu-
ous variable that appears in the constraints of the MP (proxy for the SP
value) at the expense of introducing an increasing number of ancillary
qubits to represent the cuts as the iterations of the algorithm progress.
The straightforward implementation of BD is known to require a large
number of iterations for convergence, which would render the afore-
mentioned approaches impractical considering the limitations of NISQ
hardware. In this paper, a multi-cut implementation of BD is adopted
and, instead of the MP, the QPU is assigned to solve QUBO problems
that correspond to an acceleration subroutine that manages the size of
the MP and feature a more predictable size.
2

1.2. Applications of quantum computing in the power & energy sector

Despite the projected benefits, technical studies that investigate
the use of QC for addressing power and energy system computational
problems are currently scarce. Relevant studies can be classified into
three categories.

The first category of studies focused on power system optimization.
In Jones et al. (2020), the solution of the phasor measurement unit
(PMU) placement problem using the D-Wave Systems 2000Q QPU
was investigated. The PMU placement problem was formulated as the
minimum dominating set problem. It was found that for some instances
the QA outperformed the classical solver CPLEX. The optimization
model presented in Jones et al. (2020) is easily converted into a QUBO,
however, it does not capture the complexity of the actual problem.
In Ajagekar and You (2019), simplified formulations of the facility
location–allocation, unit commitment (UC) and heat exchanger net-
work synthesis problems were solved using both the D-Wave Systems
2000Q QPU and IBM Q gate-based quantum computers. It was reported
that for some problem instances, contrary to the QC approach, the clas-
sical solver Gurobi failed to return an optimal solution within a given
time limit. However, the problem formulations presented in Ajagekar
and You (2019) could either be directly recast as QUBO problems or
discretization of continuous variables was performed, at the expense
of using a large number of ancillary qubits in order to represent the
discretized variables. More recently, to address the limitations of the
direct application of QC to solving mixed-integer power system opti-
mization problems, HQC algorithms were applied to solve the UC prob-
lem (Chang et al., 2022; Koretsky et al., 2021; Mahroo and Kargarian,
2022; Nikmehr et al., 2022). Nevertheless, the aforementioned studies
either applied a straightforward implementation of BD that requires a
prohibitively large number of ancillary qubits or used QAOA and multi-
block ADMM heuristics that do not provide convergence guarantees.

The second category of studies developed quantum algorithms for
power system analysis. The main component of relevant approaches
is the Harrow–Hassidim–Lloyd (HHL) algorithm for the solution of
systems of linear equations. In Feng et al. (2021) and Sævarsson et al.
(2022), a quantum power flow algorithm was introduced and tested. Al-
though computational experiments were performed on small-scale test
systems, it was argued in both studies that a quantum computational
advantage may be attainable in the future, provided that a number
of caveats related to the application of the HHL algorithm are ad-
dressed (Sævarsson et al., 2022; Aaronson, 2015). The HHL algorithm
was also exploited in Eskandarpour et al. (2020) as part of a workflow
to assess power system security under contingencies of increasing sever-
ity. Lastly, in Zhou et al. (2021), a quantum algorithm for simulating
electromagnetic transients was presented. These studies advocate that
QC may find impactful applications in reliability assessment of power
grids, that is currently intractable for large-scale systems.

Applications of HQC algorithms that combine machine learning and
quantum sampling are the subject of the last category of studies. For
instance, in Ajagekar and You (2021) a methodology to detect and
classify power system faults using conditional restricted Boltzmann
machines and quantum generative training was proposed.

1.3. Contributions

The appealing convergence properties of BD motivate pursuing this
technique as a template for developing general-purpose MILP HQC
solvers. However, the straightforward implementation of the method
does not efficiently exploit NISQ resources. In this paper, an alternative
approach to implementing BD while leveraging quantum resources is
investigated by developing a multi-cut version of the algorithm. Instead
of discretizing the continuous variable of the MP to assign it to a QPU
directly, the QPU is designated to handle a pure binary optimization
subroutine that selects the cuts that enter the MP to manage its size
and accelerate the BD scheme by tightening the approximation of the
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MP, while both the MP and the SPs are solved classically. In contrast
with the implementations in Chang et al. (2022) and Zhao et al. (2022),
the number of ancillary qubits required in the proposed approach does
not depend on the number of iterations needed for convergence. Cut
selection involves the solution of NP-hard problems, potentially in
every iteration of the algorithm. Small instances are expected to be
solvable classically. However, as the problem instance size and the
number of times cut selection is applied increase, investigating the
potential for a quantum benefit is pertinent.

The contribution of this paper is threefold:

• A multi-cut BD scheme that is applicable to general MILP prob-
lems without decomposable SP structure is adapted such that both
classical and quantum resources can be exploited.

• A cut selection procedure that is based on two different cut se-
lection criteria (exclusion of infeasible MP solutions, MP variable
coverage) and two different cut selection strategies (minimum set
cover, maximum coverage) is proposed. The QUBO reformulation
of the cut selection strategies, such that they can be executed
using QC, is provided and implementation details are discussed.

• The proposed HQC optimization algorithm is applied to a pro-
totypical power system optimization problem, namely the UC
problem, and the computational viability of its solution using a
commercially available QA is extensively discussed.

It is to be noted that in this paper, experiments are conducted using
a QA. However, the quantum step can also be seamlessly executed on
a gate-based QPU using, for instance, QAOA for the solution of the
QUBO problem instances. This is due to the convergence properties of
the proposed algorithm that are discussed in Section 3.5.

The remainder of this paper is organized as follows: in Section 2 the
necessary theoretical background is established, while in Section 3 the
proposed HQC multi-cut BD algorithm and the proposed cut selection
procedure are detailed. Then, in Section 4, the UC problem formulation
that is used for demonstration purposes is described. The setup of
the numerical experiments is described in Section 5 and results are
presented and discussed in Section 6. Finally, conclusions are drawn
in Section 7.

2. Preliminaries

2.1. Quantum annealing

In this section, the process of solving an optimization problem
using a QA is briefly reviewed. Further details can be found in various
sources, including McGeoch (2020) and Johnson et al. (2011). QAs are
based on the adiabatic quantum computing paradigm (Childs et al.,
2001). Quantum annealing evolves a quantum state by applying a time-
dependent Hamiltonian described by (1) over a time interval [0, 𝑇𝐴],
where 𝑇𝐴 is the annealing time:

𝐻(𝜏) = 𝐴(𝜏)𝐻0 + 𝐵(𝜏)𝐻𝑃 , 𝜏 ∈ [0, 𝑇𝐴] (1)

The annealing path functions 𝐴(𝜏) and 𝐵(𝜏) are monotonic functions
of time that satisfy the conditions 𝐴(0) = 1, 𝐴(𝑇𝐴) = 0 and 𝐵(0) = 0,
𝐵(𝑇𝐴) = 1 respectively. In other words, at the beginning of the anneal-
ing, the Hamiltonian is equivalent to 𝐻0 and gradually transitions to
𝐻𝑃 .

The initial Hamiltonian 𝐻0 for a system of 𝑉 qubits is described
by (2), where 𝜎𝑥𝑎 is the Pauli-𝑥 operator applied to qubit 𝑎. The initial
Hamiltonian sets the qubits into an equal superposition with respect to
the computational basis 𝑧.

𝐻0 = −
∑

𝑎∈𝑉
𝜎𝑥𝑎 (2)

The problem Hamiltonian 𝐻𝑃 which is dominant at time 𝑇𝐴 is de-
scribed by (3) and represents the unconstrained optimization problem
of interest in terms of an Ising model, whose ground state is the optimal
3

solution. The parameters ℎ, 𝐽 are real numbers that depend on the
problem to be solved (linear and quadratic biases) and 𝜎𝑧𝑎 is the Pauli-𝑧
operator applied to qubit 𝑎.

𝐻𝑃 =
∑

𝑎∈𝑉
ℎ𝑎𝜎

𝑧
𝑎 +

∑

𝑎∈𝑉

∑

𝑏∈𝑉 ,𝑎≠𝑏
𝐽𝑎,𝑏 𝜎

𝑧
𝑎 ⊗ 𝜎𝑧𝑏 (3)

According to the quantum adiabatic theorem, starting from the
round state of 𝐻 , if the transition 𝐴 ∶ 1 → 0 and 𝐵 ∶ 0 → 1 is suf-
iciently slow, the system will remain in the ground state through-
ut the transition. This implies that 𝐻(𝑇𝐴) should also be in the
round state, i.e., it represents the optimal solution of the problem
Farhi et al., 2000).

Since QAs are open systems, the final result may not be the op-
imal solution of the problem. For this reason, quantum annealing is
pplied multiple times (annealing-read cycle) in order to increase the
robability of finding high quality solutions. In general, the process of
olving an optimization problem using a QPU consists of three steps.
irst, the optimization problem must be expressed as an Ising model or,
quivalently, a QUBO problem. The logical problem formulation may
mpose interactions between qubits that are not directly compatible
ith the physical topology of the QPU. For this reason, the second step

onsists of finding a minor embedding of the logical problem graph
uch that it is compatible with the sparse native topology of the QPU,
.e., the physical connectivity between qubits (Cai et al., 2014; Bernal
t al., 2020). This is achieved by creating chains of physical qubits such
hat they behave as a single logical qubit. It is possible that at the end of
he QA process a number of chains are broken, i.e., physical qubits that
elong in the same chain are not in the same state. Note that finding
minor-embedding is a classical computational task and involves the

olution of an NP-hard problem (Cai et al., 2014; Lobe and Lutz, 2021).
inally, the minor-embedded problem instance is submitted to the QPU
ogether with a set of hyperparameters, QA is performed and a set of
olutions is returned.

.2. Benders decomposition

In this study, MILP problems of the form (4) are of interest:

min
𝐱,𝐲

𝐜𝑇 𝐱 + 𝐝𝑇 𝐲 (4a)

ubject to 𝐀𝐱 + 𝐁𝐲 ≥ 𝐛 (4b)

𝐱 ∈ R𝑛+, 𝐲 ∈ Y𝑚 (4c)

where 𝐜 ∈ R𝑛, 𝐝 ∈ R𝑚, 𝐛 ∈ R𝑞 are vectors and 𝐀 ∈ R𝑞×𝑛, 𝐁 ∈ R𝑞×𝑚 are
atrices of coefficients, respectively. Y𝑚 is a set of constraints involving

nly the decision variables 𝐲. Without loss of generality, decision
ariables 𝐱 are considered to be non-negative. Decision variables 𝐲
ay be considered complicating if they are involved in most of the
roblem constraints or render the optimization problem non-convex.
f complicating variables are fixed, then the optimization problem is
ubstantially simplified (Conejo et al., 2006).

BD is a popular technique that is applied to such problems (Benders,
962). The central idea in BD is to decompose the original problem
nto an MP which contains all the integer variables and a SP in
hich the complicating variables 𝐲 are fixed to tentative values (LP
roblem). The MP and the SP are iteratively solved. Tentative solutions
̂ (tentatively fixed variables are denoted by ⋅̂) are provided by solving
he MP, whereas the solution of the SP yields the so-called Benders cuts,
.e., constraints that are progressively added to the MP to restrict its
olution space.

For a tentative solution of the MP, the SP is given by (5):

min
𝐱

𝐜𝑇 𝐱 (5a)

ubject to 𝐀𝐱 ≥ 𝐛 − 𝐁𝐲̂ (5b)

𝐱 ∈ R𝑛+ (5c)
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In practice, the dual of the SP (DSP) given by (6) is solved:

max
𝐯

𝑉𝐷𝑆𝑃 = (𝐛 − 𝐁𝐲̂)𝑇 𝐯 (6a)

subject to 𝐀𝑇 𝐯 ≤ 𝐜 (6b)

𝐯 ∈ R𝑞+ (6c)

where 𝐯 are the dual variables associated with constraints (5b). Notice
that the feasible region of the DSP remains the same for different
tentative values 𝐲̂.

The MP is given by (7):

min
𝐲,𝜻

𝑉𝑀𝑃 = 𝜁 + 𝐝𝑇 𝐲 (7a)

subject to 𝐲 ∈ Y𝑚 (7b)

𝜁 ≥ 𝜁 𝑙𝑜𝑤 (7c)

(𝐛 − 𝐁𝐲)𝑇 𝐯𝑖 ≤ 𝜁, ∀𝑖 ∈ 𝐷 (7d)

(𝐛 − 𝐁𝐲)𝑇 𝐮𝑗 ≤ 0, ∀𝑗 ∈ 𝑈 (7e)

In (7) 𝜁 is a free variable that acts as a surrogate for the value of the
DSP. To guarantee that the MP is always bounded, an arbitrarily low
bound 𝜁 𝑙𝑜𝑤 on 𝜁 is enforced via (7c). The set of constraints (7d), where
𝐯𝑖 corresponds to an extreme point of (6), are referred to as Benders
optimality cuts. If the DSP is unbounded, an extreme ray 𝐮𝑗 can be
extracted instead of an extreme point, giving rise to Benders feasibility
cuts expressed by (7e). The sets of extreme points and extreme rays of
the DSP are denoted by 𝐷 and 𝑈 , respectively.

In each iteration the value of the MP provides a lower bound
of (4a), i.e., 𝐿𝐵 = 𝜻̂ + 𝐝𝑇 𝐲̂. The lower bound is monotonically in-
creasing. A feasible solution of the DSP provides a valid upper bound
𝑈𝐵 = (𝐛 − 𝐁𝐲̂)𝑇 𝐯̂ + 𝐝𝑇 𝐲̂. The algorithm converges if (𝑈𝐵 − 𝐿𝐵) < 𝜖,
where 𝜖 → 0 is a predetermined tolerance.

The maximum number of iterations required for BD to converge
to the optimal solution of Problem (4) equals the total number of
extreme points and extreme rays of the DSP, which corresponds to an
exponential enumeration of all the solutions of the MP. Although finite,
this number can be enormous. However, at optimality, the number
of active MP constraints is limited and cannot exceed the number
of the MP decision variables (Saharidis and Ierapetritou, 2013). BD
exploits this observation and aims to identify the active MP constraints
by generating and adding a single cut in each iteration and reach
convergence without generating all the possible Benders cuts. Despite
BD being one of the most widely applied decomposition techniques,
the straightforward implementation that was presented in this section
is often inefficient from a computational point of view. Several reasons,
including poor feasibility and optimality cuts, initial iterations that
slowly improve the bounds and slow convergence towards the end of
the algorithm, have been recognized. Details about these problems, as
well as a systematic review of the research on accelerating BD, can be
found in Rahmaniani et al. (2017).

3. Methodology

3.1. Hybrid quantum-classical multi-cut Benders decomposition

In the standard BD described in Section 2.2 only a single cut is
generated and added to the MP in each iteration. However, in order to
accelerate BD, it is possible to generate and add multiple cuts to tighten
the MP problem and improve the obtained lower bounds (Su et al.,
2015; Tang et al., 2013; Saharidis et al., 2010; You and Grossmann,
2013; Asl and MirHassani, 2019). In this paper, the BD acceleration
strategy that was introduced in Asl and MirHassani (2019) and is based
on generating multiple cuts via multiple solutions (MCMS) of the MP
is explored further. The advantage of this technique is that neither
4

Fig. 1. Schematic representation of HQC-MCMS.

the SP need have a decomposable structure nor auxiliary SPs need to
be devised to generate multiple cuts. In particular, multiple feasibility
and optimality cuts are generated by exploiting multiple feasible (but
not necessarily optimal) solutions of the MP that are available in each
iteration. The generated cuts may be appended to the MP to restrict its
solution space more drastically compared to adding a single cut and,
therefore, reduce the number of iterations required for convergence.
However, adding a large number of cuts increases the size of the MP
rapidly and, as a result, may increase the total execution time of the
algorithm. To achieve a trade-off between the increase in the size of
the MP and the reduction in the number of major iterations of the
decomposition algorithm, it is possible to add a subset of the cuts
that are generated in each iteration. A cut selection subroutine based
on pure binary optimization problems that may be solved using QC
is developed, hence the modified algorithm is an HQC optimization
algorithm (HQC-MCMS). A schematic illustration of HQC-MCMS is
shown in Fig. 1.

The HQC-MCMS procedure is described in Algorithm 1. Similar to
the original BD algorithm, the procedure begins by setting the upper
and lower bounds of the original objective function to +∞ and −∞,
respectively (lines 1 and 2). In each iteration 𝑘, and while the difference
between the upper and lower bounds remains higher than a predeter-
mined tolerance 𝜖, a number of steps are executed. First, the MP is
solved and 𝑆𝑘 feasible solutions are obtained. Modern solvers permit
the extraction of high quality feasible solutions that are found while
attempting to solve a MILP problem to optimality. Note that it may be
the case that 𝑆𝑘 < 𝑆, where 𝑆 is the number of requested solutions.
If the MP is proven to be infeasible, the optimization problem is also
infeasible and the algorithm terminates. Otherwise, the lower bound is
updated with the value 𝑉 1

𝑀𝑃 of the optimal solution (lines 5–9).
For each of the 𝑆𝑘 available solutions the corresponding DSP is

solved. Note that the DSP instances are independent and may be solved
in parallel. If a DSP instance is infeasible, the algorithm terminates. If
the DSP instance is unbounded, then a feasibility cut is generated and
appended to the set of feasibility cuts 𝐺𝐹𝑘 , whereas, if the DSP instance
is optimal, then an optimality cut is generated and appended to the set
of optimality cuts 𝐺𝑂𝑘 (lines 10–19).

The crucial step of the HQC-MCMS algorithm is the cut selection
procedure which is described by Algorithm 2 (Section 3.4) and com-
prises two elements, namely the cut selection criterion (Section 3.2) and
the cut selection strategy (Section 3.3). This is the step where QC can be
exploited. After the execution of the cut selection subroutine, the sets
of the selected feasibility and optimality cuts, 𝐺′𝐹

𝑘 and 𝐺′𝑂
𝑘 respectively,

are added to the MP to be solved in the next iteration (lines 20–27).
Finally, the upper bound is updated using the value of the DSP cor-

responding to the optimal solution of the MP, 𝑉 1
𝐷𝑆𝑃 , and the iteration

counter is increased. The convergence of the HQC-MCMS algorithm is
discussed in Section 3.5.
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Algorithm 1: HQC-MCMS algorithm
Data: 𝜖 (tolerance), 𝑆 (maximum number of MP solutions to be

extracted)
1 𝑈𝐵 ← +∞ ;
2 𝐿𝐵 ← −∞ ;
3 𝑘← 1 (iteration counter) ;
4 while (𝑈𝐵 − 𝐿𝐵) > 𝜖 do
5 Solve MP𝑘 (7) and obtain 𝑆𝑘 ≤ 𝑆 solutions;
6 if infeasible then
7 Stop; Declare infeasibility;
8 else
9 𝐿𝐵 ← 𝑉 1

𝑀𝑃 ;
10 for 𝑗 ← 1 to 𝑆𝑘 do ⊳ In parallel
11 Solve DSP𝑗,𝑘+1 (6) for 𝑆𝑗 ;
12 if infeasible then
13 Stop; Declare infeasibility;
14 else if unbounded then
15 Add cut to 𝐺𝐹𝑘 ;
16 else
17 Add cut to 𝐺𝑂𝑘 ;
18 end
19 end
20 if 𝐺𝐹𝑘 ≠ ∅ then
21 Execute Algorithm 2 on a QPU;
22 Add selected feasibility cuts 𝐺′𝐹

𝑘 to MP𝑘+1;
23 end
24 if 𝐺𝑂𝑘 ≠ ∅ then
25 Execute Algorithm 2 on a QPU;
26 Add selected optimality cuts 𝐺′𝑂

𝑘 to MP𝑘+1;
27 end
28 𝑈𝐵 ← min{𝑈𝐵, 𝑉 1

𝐷𝑆𝑃 };
29 end
30 𝑘 ← 𝑘 + 1;
31 end

3.2. Cut selection criteria

3.2.1. Criterion I: Cut selection based on the exclusion of infeasible solutions
In Asl and MirHassani (2019), cut selection was based on the

observation that a subset of the generated feasibility cuts may exclude
all the infeasible solutions of the MP that are identified in a given
iteration. The feasibility cut that corresponds to the infeasible solution
𝐲̂𝑖 of the MP also excludes the infeasible solution 𝐲̂𝑗 if (𝐛−𝐁𝐲̂𝑗 )𝑇 𝐮̂𝑖 > 0.

Let |𝐺𝐹𝑘 | denote the cardinality of the set of all feasibility cuts that
are generated in iteration 𝑘. Then, the |𝐺𝐹𝑘 | × |𝐺𝐹𝑘 | binary indicator
matrix 𝐄 can be constructed in order to compile information about the
infeasible MP solutions that are excluded by each cut in the current
iteration. Specifically, 𝐄𝑖𝑗 = 1 if the feasibility cut 𝑖 excludes the
infeasible solution associated with the 𝑗th solution of the MP, otherwise
𝐄𝑖𝑗 = 0. Note that the diagonal elements of 𝐄 are always equal to
one because, by definition, a feasibility cut excludes the infeasible MP
solution based on which it was generated.

Cut selection based on this criterion presents two potential draw-
backs. First, this criterion applies only to feasibility cuts. Second, it
is possible that for a given problem instance one or more cuts can
exclude all the infeasible MP solutions, rendering the application of this
criterion trivial.

3.2.2. Criterion II: Cut selection based on MP variable coverage
It is often the case that the generated optimality and feasibility

cuts are low-density. This means that many of the coefficients that
correspond to MP decision variables in a given cut are either zero or
near-zero relative to other coefficients. The contribution of low-density
cuts to strengthening the MP tends to be limited (Saharidis et al., 2010).
For this reason, several BD acceleration strategies are based on the idea
5

of either generating high-density Pareto optimal cuts (Tang et al., 2013)
or bundles of low-density cuts (Saharidis et al., 2010) such that more
MP decision variables are covered. In this paper, instead of focusing on
the generation of cuts such that the decision variables of the MP are
covered, the cuts that are generated based on multiple solutions of the
MP are inspected with the purpose of identifying a subset of feasibility
(and/or optimality cuts) such that all or most of the MP decision
variables are collectively covered. Note that a rather strict definition of
MP variable coverage is adopted. A decision variable 𝑦𝑖 of the MP is said
to be covered in a given feasibility cut of the form ∑

𝑖 𝑦𝑖(𝐁𝑇 𝐮)𝑖 ≥ 𝐛𝑇 𝐮,
if for the 𝑖th row of the matrix 𝐁𝑇 𝐮 it holds |(𝐁𝑇 𝐮)𝑖| > 0. A similar
efinition applies to optimality cuts if 𝐮 is replaced by 𝐯.

A |𝐺𝐹𝑘 | × 𝑚 binary indicator matrix 𝐃𝐹 can be constructed after
aving identified which MP decision variables are covered by a given
easibility cut in the current iteration. Specifically, 𝐃𝐹𝑖𝑗 = 1 if the 𝑗th

variable of the MP is covered in cut 𝑖, otherwise 𝐃𝐹𝑖𝑗 = 0. A similar
matrix 𝐃𝑂 (|𝐺𝑂𝑘 | × 𝑚) may be constructed for optimality cuts, if cut
selection is to be applied also to the set of optimality cuts. Note that
some columns of 𝐃𝐹 and 𝐃𝑂 may be zero, that is, some decision
variables may not be covered in any of the generated feasibility or
optimality cuts.

Compared to Criterion I, cut selection based on the coverage of MP
variables applies both to feasibility and optimality cuts and, therefore,
may result in more effective MP size management. Moreover, from an
implementation perspective, the construction of matrices 𝐃𝐹 and 𝐃𝑂
requires the evaluation of shorter expressions in comparison with 𝐄.

3.3. Cut selection strategies

After having processed the available cuts according to one of the
criteria that were presented in Section 3.2, a cut selection strategy must
be applied in order to identify 𝐺′𝐹

𝑘 and/or 𝐺′𝑂
𝑘 . Two such strategies

based on the minimum set cover problem and the maximum coverage
problem, as well as their solution using a QPU are discussed next.

3.3.1. Strategy I: Minimum set cover for cut selection
The minimum set cover problem can be solved to identify a set

of cuts with minimum cardinality that satisfy a given condition. If
cut selection is based on Criterion I, then the minimum number of
feasibility cuts that exclude all the infeasible solutions in the current
iteration will be identified. Similarly, if cut selection is based on
Criterion II, then the minimum number of feasibility (optimality) cuts
that cover all the MP decision variables that can be covered in the
current iteration will be identified.

Given a binary indicator matrix 𝐌 ∈ {0, 1}|𝐼|×|𝐽 |, where 𝐼 is the set
of rows and 𝐽 is the set of columns, the minimum set cover problem is
a pure binary optimization problem expressed by (8):

min
𝝌

∑

𝑖∈𝐼
𝜒𝑖 (8a)

subject to
∑

𝑖∈𝐼
𝑀𝑖𝑗𝜒𝑖 ≥ 1, ∀𝑗 ∈ 𝐽 (8b)

𝝌 ∈ {0, 1}𝐼 (8c)

where 𝜒𝑖 is a binary variable that is equal to 1 if the cut 𝑖 is selected
and 0 otherwise. It is reiterated that the cut selection problem has to
be solved in each iteration 𝑘. However, for notational simplicity, the
iteration index 𝑘 is dropped. Depending on the cut selection criterion,
the columns of 𝐌 represent either infeasible solutions or decision
variables of the MP (matrix 𝐌 is accordingly replaced by matrices 𝐄,
𝐃𝐹 , 𝐃𝑂). Note that when Criterion II is used, there is the possibility that
a number of MP decision variables cannot be covered and, therefore,
(8b) should be amended by subtracting a binary slack variable from
the right-hand side in order to indicate that the constraint cannot be
satisfied for a particular column 𝑗. The sum of the slack variables should
also be penalized in (8a). However, this can be avoided by inspecting
𝐌 and dropping all the columns of zeros.
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The minimum set cover problem is known to be NP-hard (Grossman
and Wool, 1997), i.e., it is intractable for large 𝐼 and 𝐽 . For this reason,
various heuristics have been proposed in order to obtain approximate
solutions. To find the minimum set cover using a QPU, (8) must be
recast as a QUBO problem. First, (8b) is converted to an equality
constraint by adding an integer slack variable on the right hand side of
the constraint and using binary expansion (Tamura et al., 2021) with
𝛾𝑗 = ⌈log2

(
∑

𝑖∈𝐼 𝑀𝑖𝑗
)

⌉, ∀𝑗 ∈ 𝐽 ancillary qubits 𝑠𝛼𝑗 as in (9):

∑

𝑖∈𝐼
𝑀𝑖𝑗𝜒𝑖 = 1 +

𝛼=𝛾𝑗−1
∑

𝛼=0
2𝛼𝑠𝛼𝑗 , ∀𝑗 ∈ 𝐽 (9)

The QUBO problem formulation is given by (10), where 𝐻 is the
Hamiltonian of the problem, and  and 𝑗 ,∀𝑗 ∈ 𝐽 are positive
penalties that are heuristically determined such that 𝑗 ≫ ,∀𝑗 ∈ 𝐽

to avoid constraint violations:

min
𝝌 ,𝒔

𝐻 = 𝐻𝐴 +𝐻𝐵 (10a)

where

𝐻𝐴 = 
∑

𝑖∈𝐼
𝜒𝑖 (10b)

𝐻𝐵 =
∑

𝑗∈𝐽
𝑗

⎡

⎢

⎢

⎣

∑

𝑖∈𝐼

(

𝑀𝑖𝑗𝜒𝑖
)

− 1 −
𝛼=𝛾𝑗−1
∑

𝛼=0
2𝛼𝑠𝛼𝑗

⎤

⎥

⎥

⎦

2

(10c)

The maximum number of qubits that are required in order to
represent the problem is |𝐼| + |𝐽 |⌈log2 |𝐼|⌉. If Criterion I is used,
then this number translates to |𝐺𝐹𝑘 |(1 + ⌈log2 |𝐺𝐹𝑘 |⌉). This is the case
if each infeasible MP solution is excluded by every feasibility cut.
If Criterion II is used, then the maximum number of qubits that are
needed is |𝐺𝐹𝑘 | + 𝑚⌈log2 |𝐺

𝐹
𝑘 |⌉, if all the variables of the MP are covered

by every single cut. A similar expression can be written for Criterion II
applied to the set of optimality cuts.

It may be observed that for Criterion I the number of qubits that are
necessary in order to represent Problem (10) is independent of the size
of Problem (4). Instead it depends on the user-provided parameter 𝑆
and is expected to be larger during the first iterations of the algorithm
where mostly feasibility cuts are generated. In addition to that, inspec-
tion of the columns of matrix 𝐌 can reveal rows (feasibility cuts) that
exclude all the infeasible solutions in the current iteration and avoid
triggering cut selection. The number of qubits in case Criterion II is
applied depends on the number of MP variables and may be particularly
large. However, for many practical applications the generated cuts are
typically expected to be low-density, which implies that a relatively
large number of columns of matrix 𝐌 are expected to be dropped
because all their entries are zero. In both cases, multiple cuts may
exclude the same infeasible solutions or cover the same variables.
Therefore, the rows of matrix 𝐌 can also be inspected in order to
remove duplicates, keeping the row that corresponds to a higher quality
MP solution.

3.3.2. Strategy II: Maximum coverage for cut selection
The conservativeness of Strategy I may lead to a large number

of cuts being added to the MP. To address this issue, the maximum
coverage problem can be solved as an alternative cut selection strategy
in order to select at most a predefined number of cuts such that,
depending on the cut selection criterion that is applied, either the
maximum number of infeasible solutions are excluded or the maximum
number of MP decision variables are covered. To the best of the
Author’s knowledge, maximum coverage has not been used as a cut
selection strategy in the context of BD before.

Given a matrix 𝐌 ∈ {0, 1}|𝐼|×|𝐽 | (𝐌 is accordingly replaced by
matrices 𝐄, 𝐃𝐹 , 𝐃𝑂) and a maximum number of cuts to be selected
(≤ |𝐼|), the maximum coverage problem (Takabe et al., 2018) is a
6

pure binary optimization problem formulated in (11):
max
𝝌 ,𝝓

∑

𝑗∈𝐽
𝜙𝑗 (11a)

ubject to
∑

𝑖∈𝐼
𝜒𝑖 ≤  (11b)

∑

𝑖∈𝐼
𝑀𝑖𝑗𝜒𝑖 ≥ 𝜙𝑗 , ∀𝑗 ∈ 𝐽 (11c)

𝝌 ∈ {0, 1}𝐼 ,𝝓 ∈ {0, 1}𝐽 (11d)

where 𝜒𝑖 is a binary variable that is equal to 1 if cut 𝑖 is selected and
𝜙𝑗 is a binary variable that is equal to 1 if column 𝑗 is covered. This
means that, depending on the criterion that is used, either an infeasible
solution of the MP is excluded, or an MP variable is covered by the
selected cuts.

The QUBO problem formulation of the maximum coverage problem
is given by (12), where 𝐻 is the Hamiltonian of the problem and
, 𝑗 ,∀𝑗 ∈ 𝐽 and  are positive penalties that are heuristically
determined such that  ≫  and 𝑗 ≫ ,∀𝑗 ∈ 𝐽 . First, (11b)
is converted into an equality constraint using integer slack variables
on the left-hand side of the constraint and binary expansion intro-
ducing 𝛾 = ⌈log2 ( + 1)⌉ ancillary qubits 𝑠𝛼 . Note that (11a) does
not involve 𝝌 . Thus, cut combinations with |𝐺′𝐹

𝑘 |, |𝐺′𝑂
𝑘 | ≤  that

maximize coverage are indistinguishable from an optimization perspec-
tive and (11b) can be replaced by an equality constraint, avoiding
the use of ancillary qubits to represent this constraint (Takabe et al.,
2018). The only drawback of this simplification is that it prevents the
discovery of a potentially smaller subset of cuts that also maximize
coverage; however, if  ≪ |𝐼|, (11b) can be expected to be binding.
Similarly, (11c) can be converted into an equality constraint using
𝛾 ′𝑗 = ⌈log2(min(,

(
∑

𝑖∈𝐼 𝑀𝑖𝑗
)

) + 1)⌉, ∀𝑗 ∈ 𝐽 ancillary qubits 𝑠′𝛼𝑗 .

min
𝝌 ,𝝓,𝒔,𝒔′

𝐻 = 𝐻𝐴 +𝐻𝐵 +𝐻𝐶 (12a)

where

𝐻𝐴 = −
∑

𝑗∈𝐽
𝜙𝑗 (12b)

𝐻𝐵 = 

(

∑

𝑖
𝜒𝑖 − +

𝛼=𝛾−1
∑

𝛼=0
2𝛼𝑠𝛼

)2

(12c)

𝐻𝐶 =
∑

𝑗∈𝐽
𝑗

⎡

⎢

⎢

⎣

∑

𝑖∈𝐼

(

𝑀𝑖𝑗𝜒𝑖
)

− 𝜙𝑗 −
𝛼=𝛾′𝑗−1
∑

𝛼=0
2𝛼𝑠′𝛼𝑗

⎤

⎥

⎥

⎦

2

(12d)

The maximum number of qubits that are required in order to
represent the problem, assuming that (11b) is replaced by an equality
constraint, is |𝐼|+|𝐽 |(1+⌈log2(+1)⌉). If Criterion I is used, this number
translates to |𝐺𝐹𝑘 | + |𝐺𝐹𝑘 |(1 + ⌈log2( + 1)⌉). This is the case if each
infeasible MP solution can be excluded by at least  cuts. If Criterion II
is used, then the maximum number of qubits that are required is |𝐺𝐹𝑘 |+
𝑚(1 + ⌈log2( + 1)⌉) in case all the MP variables can be covered by at
least  cuts. A similar expression can be written for Criterion II applied
to the set of optimality cuts. Although these numbers may appear to be
prohibitively large, in practice, the observations of Section 3.3.1 hold
also when Strategy II is employed.

3.4. Cut selection procedure

The cut selection problem that is invoked in lines 21 and 25 of
Algorithm 1 is described by Algorithm 2. If cut selection is based on
Criterion I, the rows of matrix 𝐄 are inspected in order to identify cuts
that exclude the same infeasible solutions (line 3). If such duplicate
rows are found, the row corresponding to the cut associated with an
MP solution with smaller objective function value is kept, while the
rest of the rows are dropped. Then, depending on the cut selection
strategy, the corresponding optimization problem is solved (lines 5 and
8) and 𝐺′𝐹

𝑘 is returned. If Criterion II is used, matrices 𝐃𝐹 and 𝐃𝑂
are inspected depending on whether cut selection is applied both to
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feasibility and optimality cuts (lines 14 and 23). First, their rows are
inspected similarly to the rows of 𝐄. Then, since it may not be possible
o cover a number of MP variables by any of the cuts (all column entries
re zero), the respective columns are dropped. Depending on the cut
election strategy, the corresponding optimization problem is solved
lines 25 and 28) using the modified matrix.

The inspection step may significantly reduce the size of the matrices
efore the cut selection optimization problems are solved. Additionally,
ll three matrices are inspected in order to identify whether a single
ut can either exclude all the infeasible solutions (Criterion I) or cover
ll the MP variables that can be covered (Criterion II). If such a cut
s found, the cut selection procedure terminates without triggering the
olution of an optimization problem and the set of selected feasibility
nd/or optimality cuts that is returned contains only a single cut.

Algorithm 2: Cut selection procedure using a QPU
Data: 𝐺𝐹𝑘 , 𝐺𝑂𝑘 , cutSelectionCriterion, cutSelectionStrategy,

optSelect (boolean; whether to apply cut selection on
optimality cuts), hyperparameters

1 if cutSelectionCriterion = Criterion I then
2 Construct 𝐄;
3 Inspect 𝐄;
4 if cutSelectionStrategy = Strategy I then
5 Solve (10) to select feasibility cuts;
6 end
7 if cutSelectionStrategy = Strategy II then
8 Solve (12) to select feasibility cuts;
9 end
10 Return 𝐺′𝐹

𝑘 ;
11 end
12 if cutSelectionCriterion = Criterion II then
13 Construct 𝐃𝐹 ;
14 Inspect 𝐃𝐹 ;
15 if cutSelectionStrategy = Strategy I then
16 Solve (10) to select feasibility cuts;
17 end
18 if cutSelectionStrategy = Strategy II then
19 Solve (12) to select feasibility cuts;
20 end
21 if optSelect then
22 Construct 𝐃𝑂;
23 Inspect 𝐃𝑂;
24 if cutSelectionStrategy = Strategy I then
25 Solve (10) to select optimality cuts;
26 end
27 if cutSelectionStrategy = Strategy II then
28 Solve (12) to select optimality cuts;
29 end
30 end
31 Return 𝐺′𝐹

𝑘 and 𝐺′𝑂
𝑘 ;

32 end

3.5. Convergence of HQC-MCMS

Even though the solution of the cut selection problem using a QPU
is not necessarily optimal (or even feasible) in every iteration, the
HQC-MCMS algorithm is guaranteed to always converge to the global
optimum of Problem (4) if at least one valid cut is added to the MP in
each iteration.

Sets 𝐺𝐹𝑘 and 𝐺𝑂𝑘 contain only valid cuts that are generated based on
multiple feasible solutions of the MP (Asl and MirHassani, 2019). Thus,
any non-empty subsets 𝐺′𝐹

𝑘 and 𝐺′𝑂
𝑘 returned by Algorithm 2 contain

only valid cuts, even if the solution to the QUBO problems (10) and
(12) returned by the QPU is sub-optimal or infeasible. Convergence can
also be guaranteed in case the cut selection problem is infeasible such
that no cuts are selected in a given iteration. For instance, to prevent

′𝐹 ′𝑂
7

𝐺𝑘 and 𝐺𝑘 from being empty, the feasibility or optimality cut that is
generated at the current iteration using the optimal value of the MP in
the DSP can be added in the next iteration.

Naturally, the number of iterations required for convergence of the
HQC-MCMS algorithm and the solution time are affected by the quality
of the approximate QUBO solutions returned by the QPU. Relying on
quantum resources for the cut selection step, a trajectory of larger MP
instances or weaker approximations of the MP may be generated in
comparison to that of solving the cut selection problem exactly, there-
fore possibly increasing the number of iterations and solution time.
Nonetheless, as the scale of the cut selection problems increases, using a
QPU to obtain approximate QUBO solutions of reasonable quality may
prove a valuable option to limit the time spent on Algorithm 2, while
effectively managing the size of the MP.

4. Use case: The unit commitment problem

The UC problem is a fundamental power system optimization prob-
lem that aims to schedule and dispatch the available generation and
demand side resources such that a financial or operational objective is
optimized (Zheng et al., 2015). Various classical solution techniques,
including BD schemes, have been applied to variants of this prob-
lem (Wen et al., 2016; Nasri et al., 2016; Alemany et al., 2013;
Fu et al., 2013, 2005; Wu and Shahidehpour, 2010). An interesting
observation is that the Benders cuts are often low-density for the UC
problem, which makes it a good candidate problem to demonstrate
the effectiveness of multi-cut BD approaches (Wen et al., 2016; Fu
et al., 2013; Wu and Shahidehpour, 2010). As it was discussed in
Section 1.2, the UC problem has been studied also in the context of
early QC applications in the power and energy sector. However, NISQ
hardware limitations have constrained the application of quantum and
HQC approaches to relatively simple problem formulations compared
to those that have been solved by classical techniques. In Ajagekar and
You (2019) a single-period formulation considering only power balance
and generator output constraints was solved via discretization. The
same formulation was adopted in Koretsky et al. (2021) and Mahroo
and Kargarian (2022) that studied the application of QAOA and multi-
block ADMM HQC heuristics respectively. An abstract formulation of
the UC problem was presented in Nikmehr et al. (2022). QAOA was
applied to simple instances of the UC formulation, while more complex
variants were tackled using a multi-block ADMM HQC heuristic. Sim-
ilarly, in Chang et al. (2022), a multi-period, network-constrained UC
formulation was adopted and solved using a straightforward BD-based
HQC algorithm with discretization of the MP variables, disregarding
the commitment cost. However, the QA could not be applied even on
a small 6-bus system due to the prohibitive number of physical qubits
required to implement the algorithm.

To demonstrate the applicability of the solution approach that was
presented in Section 3, a multi-period, network-constrained UC prob-
lem formulation is adopted and decomposed such that it is amenable
to solution by the proposed HQC algorithm. First, in Section 4.1 the
complete MILP problem formulation is presented. Then, the DSP and
MP formulations are derived in Sections 4.2 and 4.3.

4.1. MILP problem formulation

The UC problem formulation is described by (13a)–(13o). The no-
tation that is used is presented in Table 1. The dual variables as-
sociated with each constraint set are denoted by greek letters that
are displayed in parentheses next to the corresponding equation. Note
that all the dual variables associated with the inequality constraints
are non-negative, whereas the dual variables associated with equality
constraints are unrestricted.

min
𝑷 ,𝜽,𝒖,𝒚,𝒛

𝑇𝐶 = 𝐸𝐶 + 𝐶𝐶

here 𝐸𝐶 =
∑∑

𝐶𝑔𝑃𝑔𝑡

𝑡 𝑔
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Table 1
Notation used in the UC formulation.

Sets and indices
𝑔 (𝐺) Index (set) of generators
𝑡 (𝑇 ) Index (set) of time
𝑖, 𝑗 (𝐼) Indices (set) of buses
𝐼0 Set of the reference bus (singleton)
𝑙(𝐿) Index (set) of loads

Parameters
𝐴𝐺𝑖𝑔 Generator incidence matrix; 1 if generator 𝑔 is

connected to bus 𝑖
𝐴𝐿𝑖𝑙 Load incidence matrix; 1 if load 𝑙 is connected to bus 𝑖
𝐶𝑔 Energy cost of generator 𝑔 ($/MWh)
𝐷𝑙𝑡 Demand of load 𝑙 in time 𝑡 (MW)
𝑁𝐿𝐶𝑔 No-load cost of generator 𝑔 ($/h)
𝑆𝑈𝐶𝑔 Start-up cost of generator 𝑔 ($)
𝑆𝐷𝐶𝑔 Shut-down cost of generator 𝑔 ($)
𝑃 𝑚𝑎𝑥
𝑔 Maximum power output of generator 𝑔 (MW)
𝑃 𝑚𝑖𝑛
𝑔 Minimum power output of generator 𝑔 (MW)
𝑃 𝑖𝑛𝑖
𝑔 Initial power output of generator 𝑔 (MW)
𝑅𝑈𝑔 Ramp-up rate of generator 𝑔 (MW/h)
𝑅𝐷𝑔 Ramp-down rate of generator 𝑔 (MW/h)
𝑋𝑖𝑗 Reactance of line (𝑖, 𝑗) (pu)
𝐹𝑚𝑎𝑥
𝑖𝑗 Maximum power flow through line (𝑖, 𝑗) (MW)
𝐵𝑖𝑗 (𝑖, 𝑗) admittance matrix element (pu)
𝑢𝑖𝑛𝑖𝑔 Initial state of generator 𝑔; 1 if generator 𝑔 was

online before the beginning of the scheduling horizon
𝜁 𝑙𝑜𝑤 Lower bound of the proxy variable 𝜁 ($)

Decision variables
𝑃𝑔𝑡 Power output of generator 𝑔 in time 𝑡 (MW)
𝜃𝑖𝑡 Voltage angle of bus 𝑖 in time 𝑡 (rad)
𝜁 Proxy for the DSP value ($)
𝑢𝑔𝑡 Binary variable; 1 if generator 𝑔 is online in time 𝑡
𝑦𝑔𝑡 Binary variable; 1 if generator 𝑔 starts-up in time 𝑡
𝑧𝑔𝑡 Binary variable; 1 if generator 𝑔 is shut-down in time 𝑡

𝐶𝐶 =
∑

𝑡

∑

𝑔

(

𝑁𝐿𝐶𝑔𝑢𝑔𝑡 + 𝑆𝑈𝐶𝑔𝑦𝑔𝑡 + 𝑆𝐷𝐶𝑔𝑧𝑔𝑡
)

(13a)

subject to:

𝑦𝑔𝑡 − 𝑧𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔(𝑡−1) ∀𝑔, 𝑡 > 1 (13b)

𝑦𝑔𝑡 − 𝑧𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑖𝑛𝑖𝑔 ∀𝑔, 𝑡 = 1 (13c)

− 𝑃𝑔𝑡 ≥ −𝑃𝑚𝑎𝑥𝑔 𝑢𝑔𝑡 ∀𝑔, 𝑡 (𝜇+𝑔𝑡) (13d)

𝑃𝑔𝑡 ≥ 𝑃𝑚𝑖𝑛𝑔 𝑢𝑔𝑡 ∀𝑔, 𝑡 (𝜇−𝑔𝑡) (13e)

− 𝑃𝑔𝑡 + 𝑃𝑔(𝑡−1) ≥ −𝑅𝑈𝑔 ∀𝑔, 𝑡 > 1 (𝜈+𝑔𝑡) (13f)

− 𝑃𝑔𝑡 ≥ −𝑅𝑈𝑔 − 𝑃 𝑖𝑛𝑖𝑔 ∀𝑔, 𝑡 = 1 (𝜈0+𝑔 ) (13g)

𝑃𝑔𝑡 − 𝑃𝑔(𝑡−1) ≥ −𝑅𝐷𝑔 ∀𝑔, 𝑡 > 1 (𝜈−𝑔𝑡) (13h)

𝑃𝑔𝑡 ≥ −𝑅𝐷𝑔 + 𝑃 𝑖𝑛𝑖𝑔 ∀𝑔, 𝑡 = 1 (𝜈0−𝑔 ) (13i)
1
𝑋𝑖𝑗

(𝜃𝑗𝑡 − 𝜃𝑖𝑡) ≥ −𝐹𝑚𝑎𝑥𝑖𝑗 ∀(𝑖, 𝑗)|𝑋𝑖𝑗 ≠ 0, 𝑡 (𝜓𝑖𝑗𝑡) (13j)

𝜃𝑖,𝑡 = 0 ∀𝑡, 𝑖 ∈ 𝐼0 (𝜆0𝑡 ) (13k)
∑

𝑗∈𝐼
𝐵𝑖𝑗𝜃𝑗𝑡 −

∑

𝑔∈𝐺
𝑃𝑔𝑡𝐴

𝐺
𝑖𝑔 = −

∑

𝑙∈𝐿
𝐷𝑙𝑡𝐴

𝐿
𝑖𝑙 ∀𝑖, 𝑡 (𝜆𝑖𝑡) (13l)

𝑃𝑔𝑡 ≥ 0 ∀𝑔, 𝑡 (13m)

𝜃𝑖𝑡 ∈ R ∀𝑖, 𝑡 (13n)

𝑢𝑔𝑡, 𝑦𝑔𝑡, 𝑧𝑔𝑡 ∈ {0, 1} ∀𝑔, 𝑡 (13o)

The objective function is expressed by (13a) and stands for the
minimization of the total energy (𝐸𝐶) and commitment cost (𝐶𝐶)
across the time horizon. Constraints (13b) and (13c) determine the
generator commitment logic. The power output of generators is limited
by (13d) and (13e). The intertemporal constraints (13f)–(13i) limit the
change in the power output of generators in consecutive time periods
according to their up and down ramp rates. Network constraints are
8

modeled in terms of a DC power flow approximation. The power that
flows through transmission lines is constrained by (13j), while (13k)
fixes the voltage angle at the reference bus. The power balance at each
bus is determined by (13l). Finally, (13m)–(13o) determine the domain
of the decision variables.

In (13), 𝒖 are considered to be the complicating variables. The MP
includes constraints (13b), (13c) and (13o), as well as the necessary
optimality and feasibility cut expressions. The objective function of the
MP comprises only the component 𝐶𝐶 of (13a) and a proxy variable 𝜁 .

he MP provides a tentative generator commitment status 𝒖̂. The SP in-
ludes constraints (13d)–(13n), while its objective function includes the
omponent 𝐸𝐶 of the original objective function (13a). Essentially, the
P represents the solution of a network-constrained economic dispatch.

.2. Dual subproblem formulation

For a tentative solution 𝒖̂ of the MP, the SP is an LP problem.
herefore, its dual is also an LP problem (Conejo et al., 2006) that is
xpressed by (14a)–(14k).

max
𝝁+ ,𝝁− ,𝝂+ ,𝝂− ,𝝂0− ,𝝂0+ ,𝝍 ,𝝀,𝝀𝟎

𝑈𝐶𝐷𝑆𝑃

here 𝑈𝐶𝐷𝑆𝑃 =
∑

𝑡

∑

𝑔

(

𝜇−𝑔𝑡𝑃
𝑚𝑖𝑛
𝑔 − 𝜇+𝑔𝑡𝑃

𝑚𝑎𝑥
𝑔

)

𝑢̂𝑔𝑡

−
∑

𝑡

∑

𝑔

(

𝜈+𝑔𝑡𝑅𝑈𝑔 + 𝜈
−
𝑔𝑡𝑅𝐷𝑔

)

+
∑

𝑔

[

𝜈0+𝑔
(

−𝑃 𝑖𝑛𝑖𝑔 − 𝑅𝑈𝑔
)

+ 𝜈0−𝑔
(

𝑃 𝑖𝑛𝑖𝑔 − 𝑅𝐷𝑔

)]

−
∑

𝑡

∑

𝑖

⎡

⎢

⎢

⎣

𝜆𝑖𝑡
∑

𝑙

(

𝐷𝑙𝑡𝐴
𝐿
𝑖𝑙
)

+
∑

𝑗|𝑋𝑖𝑗≠0
𝜓𝑖𝑗𝑡𝐹

𝑚𝑎𝑥
𝑖𝑗

⎤

⎥

⎥

⎦

(14a)

ubject to:
− 𝜇+𝑔𝑡 + 𝜇

−
𝑔𝑡 − 𝜈

0+
𝑔 + 𝜈0−𝑔 + 𝜈+𝑔(𝑡+1) − 𝜈

−
𝑔(𝑡+1)

−
∑

𝑖
𝐴𝐺𝑖𝑔𝜆𝑖𝑡 ≤ 𝐶𝑔 ∀𝑔, 𝑡 = 1 (14b)

− 𝜇+𝑔𝑡 + 𝜇
−
𝑔𝑡 − 𝜈

+
𝑔𝑡 + 𝜈

−
𝑔𝑡

−
∑

𝑖
𝐴𝐺𝑖𝑔𝜆𝑖𝑡 ≤ 𝐶𝑔 ∀𝑔, 𝑡 = |𝑇 | (14c)

− 𝜇+𝑔𝑡 + 𝜇
−
𝑔𝑡 − 𝜈

+
𝑔𝑡 + 𝜈

+
𝑔(𝑡+1) + 𝜈

−
𝑔𝑡 − 𝜈

−
𝑔(𝑡+1)

−
∑

𝑖
𝐴𝐺𝑖𝑔𝜆𝑖𝑡 ≤ 𝐶𝑔 ∀𝑔, 𝑡 ∈ (1, |𝑇 |) (14d)

𝜆0𝑡 +
∑

𝑗

(

𝜆𝑗𝑡𝐵𝑗𝑖
)

+
∑

𝑗|𝑋𝑖𝑗≠0

(𝜓𝑗𝑖𝑡 − 𝜓𝑖𝑗𝑡
𝑋𝑖𝑗

)

= 0 ∀𝑖 ∈ 𝐼0, 𝑡 (14e)

∑

𝑗

(

𝜆𝑗𝑡𝐵𝑗𝑖
)

+
∑

𝑗|𝑋𝑖𝑗≠0

(𝜓𝑗𝑖𝑡 − 𝜓𝑖𝑗𝑡
𝑋𝑖𝑗

)

= 0 ∀𝑖 ∈ 𝐼 − 𝐼0, 𝑡 (14f)

+
𝑔𝑡, 𝜇

−
𝑔𝑡, 𝜈

+
𝑔𝑡, 𝜈

−
𝑔𝑡 ≥ 0 ∀𝑔, 𝑡 (14g)

𝜈0−𝑔 , 𝜈0+𝑔 ≥ 0 ∀𝑔 (14h)

𝜓𝑖𝑗𝑡 ≥ 0 ∀(𝑖, 𝑗)|𝑋𝑖𝑗 ≠ 0, 𝑡 (14i)

𝜆0𝑡 ∈ R ∀𝑡 (14j)

𝜆𝑖𝑡 ∈ R ∀𝑖, 𝑡 (14k)



Computers and Chemical Engineering 172 (2023) 108161N.G. Paterakis

a
c
c
t

v
A
t
E
u
s
i

m
b
v
h

4.3. Master problem formulation

Given 𝐺′𝐹
𝑘 and 𝐺′𝑂

𝑘 , the MP is a MILP problem that is expressed by
(15a)–(15e).

min
𝜁,𝒖,𝒚,𝒛

𝜁 +
∑

𝑡

∑

𝑔

(

𝑁𝐿𝐶𝑔𝑢𝑔𝑡 + 𝑆𝑈𝐶𝑔𝑦𝑔𝑡 + 𝑆𝐷𝐶𝑔𝑧𝑔𝑡
)

(15a)

subject to:
(13b),(13c)
{

∑

𝑡

∑

𝑔

(

𝜇̂−𝑔𝑡𝑃
𝑚𝑖𝑛
𝑔 − 𝜇̂+𝑔𝑡𝑃

𝑚𝑎𝑥
𝑔

)

𝑢𝑔𝑡

−
∑

𝑡

∑

𝑔

(

𝜈̂+𝑔𝑡𝑅𝑈𝑔 + 𝜈̂
−
𝑔𝑡𝑅𝐷𝑔

)

+
∑

𝑔

[

𝜈̂0+𝑔
(

−𝑃 𝑖𝑛𝑖𝑔 − 𝑅𝑈𝑔
)

+ 𝜈̂0−𝑔
(

𝑃 𝑖𝑛𝑖𝑔 − 𝑅𝐷𝑔

)]

−
∑

𝑡

∑

𝑖

⎡

⎢

⎢

⎣

𝜆̂𝑖𝑡
∑

𝑙

(

𝐷𝑙𝑡𝐴
𝐿
𝑖𝑙
)

+
∑

𝑗|𝑋𝑖𝑗≠0
𝜓̂𝑖𝑗𝑡𝐹

𝑚𝑎𝑥
𝑖𝑗

⎤

⎥

⎥

⎦

≤ 𝜁

}(𝜅)

∈
𝑘
⋃

𝜅=2
𝐺

′𝑂
𝜅 (15b)

{

∑

𝑡

∑

𝑔

(

𝜇̂−𝑔𝑡𝑃
𝑚𝑖𝑛
𝑔 − 𝜇̂+𝑔𝑡𝑃

𝑚𝑎𝑥
𝑔

)

𝑢𝑔𝑡

−
∑

𝑡

∑

𝑔

(

𝜈̂+𝑔𝑡𝑅𝑈𝑔 + 𝜈̂
−
𝑔𝑡𝑅𝐷𝑔

)

+
∑

𝑔

[

𝜈̂0+𝑔
(

−𝑃 𝑖𝑛𝑖𝑔 − 𝑅𝑈𝑔
)

+ 𝜈̂0−𝑔
(

𝑃 𝑖𝑛𝑖𝑔 − 𝑅𝐷𝑔

)]

−
∑

𝑡

∑

𝑖

⎡

⎢

⎢

⎣

𝜆̂𝑖𝑡
∑

𝑙

(

𝐷𝑙𝑡𝐴
𝐿
𝑖𝑙
)

+
∑

𝑗|𝑋𝑖𝑗≠0
𝜓̂𝑖𝑗𝑡𝐹

𝑚𝑎𝑥
𝑖𝑗

⎤

⎥

⎥

⎦

≤ 0

}(𝜅)

∈
𝑘
⋃

𝜅=2
𝐺

′𝐹
𝜅 (15c)

𝜁 ≥ 𝜁 𝑙𝑜𝑤 (15d)

𝑢𝑔𝑡, 𝑦𝑔𝑡, 𝑧𝑔𝑡 ∈ {0, 1} ∀𝑔, 𝑡 (15e)

The optimality and feasibility cuts that are appended to the MP up
to the current iteration 𝑘 are expressed by (15b) and (15c) respectively.
Constraint (15d) is necessary in order to prevent the problem from
being unbounded in the first iteration of the algorithm.

It should be noted that constraints involving only decision variables
of the MP (e.g., generator minimum up and down time, reserve capacity
constraints) can be added to the formulation of Section 4.1 directly,
since they do not affect the DSP formulation or the expressions of the
Benders cuts. Moreover, they do not influence the scalability of the cut
selection step. This is due to the fact that the size of matrix 𝐌 when
Criterion I is used is independent of the MILP problem size, while under
Criterion II the size of 𝐌 depends only on the number of complicating
variables and not on the number of MP constraints.

5. Numerical experiments

5.1. Implementation details

The HQC-MCMS algorithm was implemented in Python 3.9 using
the Pyomo package (Bynum et al., 2021). All the classical MILP prob-
lems were solved using the Gurobi 9.5.0 solver (Gurobi Optimization,
LLC, 2021) with a MIPGap of 0 % on a workstation with 2 Intel Xeon
processors (24 cores, 3 GHz) and 128 GB of RAM. In order to find
multiple solutions of the MP the solution pool functionality of Gurobi
was used. The PoolSearchMode parameter was set to 1. This means
that the solver continues the search for feasible solutions after the
9

optimal solution has been found, however, no guarantees are provided
bout the quality of the additional feasible solutions. Note that when
lassical resources were utilized to solve the cut selection problem, the
onstrained optimization problem formulations (8) and (11) were used
o obtain globally optimal solutions.

The QUBO problem instances were solved using the D-Wave Ad-
antage 4.1 QA that was accessed via Amazon Braket. The D-Wave
dvantage 4.1 QPU relies on the Pegasus topology and features more

han 5000 qubits and 35 000 couplers (D-Wave Systems Inc., 2021).
mbedding of the problem onto the physical QPU graph was performed
sing the minorminer package (D-Wave Systems Inc., 2017) with default
ettings. The chain strength value was set to 150% of the largest
nteraction coefficient observed in the problem Hamiltonian.

To derive values for the penalties in (10) and (12), the recom-
endations in Lucas (2014) were followed, such that the gain in 𝐻𝐴

y violating a constraint is offset by the penalty incurred due to the
iolation. In the worst case, a feasible solution of problem (10) will
ave an objective function value of 𝐻𝐴 = 

∑

𝑖∈𝐼 1 = |𝐼|, if all
the cuts are added to cover all the columns of matrix 𝐌. Therefore,
for problems of the type (10),  = 1 and 𝑗 = |𝐼|, ∀𝑗 ∈ 𝐽 ,
where 𝐼, 𝐽 are the sets of rows and columns of matrix 𝐌 respectively.
Similarly, for problem (12) the minimum value in the objective function
is 𝐻𝐴 = −

∑

𝑗∈𝐽 1 = −|𝐽 |, when all the columns of matrix 𝐌 are
covered by the selected cuts. As a result, for  = 1 the penalties could
be set to 𝑗 = |𝐽 |, ∀𝑗 ∈ 𝐽 and  = |𝐽 |. In practice, it was found that
for  = 1, increasing the penalty values to 𝑗 = |𝐼| + |𝐽 |, ∀𝑗 ∈ 𝐽
and  = |𝐼| + |𝐽 | resulted in encountering less infeasible solutions.
It is acknowledged that this approach is rather conservative and may
provide weak lower bounds on the penalty values. Since the selection
of the values of penalty weights may hinder the ability of the QPU to
efficiently solve QUBO problems, it is desirable to reduce them to the
extent possible (Quintero et al., 2022; García et al., 2022).

5.2. Input data

To investigate the applicability of the proposed methodology on the
UC problem, the test systems displayed in Fig. 2 were randomly gener-
ated. The network topologies were generated based on the methodology
that was proposed in Wang et al. (2008). First, buses are uniformly
placed within a fixed area with width and height of 1. Then, given a
distance requirement (in this study [0, 0.4]) between neighboring buses,
the set of transmission lines are selected by sampling a Poisson distri-
bution with its parameter set to 2.67. The reactance of a transmission
line is considered proportional to its length. For simplicity a factor of
1/10 is assumed for all lines. Subsequently, the type of each bus is
decided. It is assumed that 50% of the buses are load buses, 20% are
generator buses and 30% have both loads and generators connected. In
case the number of buses is such that the aforementioned percentages
do not result in integers with a sum equal to the number of buses,
the remaining buses are considered to be transfer buses (i.e., they do
not connect loads or generators). The capacity of each line is sampled
from a uniform distribution ranging from 15% to 35% of the total
generating capacity of the system. The individual loads are assigned
a percentage of the hourly normalized system load (with respect to the
maximum generating capacity of the system) that is portrayed in Fig. 3
using the Dirichlet distribution. The Dirichlet distribution satisfies the
requirements that each bus load fraction is positive and that the sum of
the fractions is 1. Finally, generator parameters are constructed using
the values presented in Table 2.

5.3. Simulation setup

For all the experiments the algorithm terminates if 𝑈𝐵−𝐿𝐵
𝑈𝐵 100% <

0.5%. For the 8-bus system, the whole 24-hour load profile is used (72
MP decision variables are involved in the DSP), while 10 solutions of
the MP are requested from the solver. For the 30-bus system 30 solu-

tions of the MP are requested, however, considering the full 24 periods
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Fig. 2. The test power systems. The nodes are color-coded. Red: load bus, Green:
generation bus, Gray: load and generation bus, Yellow: transfer bus. Without loss of
generality, Bus 0 is defined as the reference bus.

Fig. 3. Normalized system load. Extracted from (Ordoudis et al., 2016).

Table 2
Generator parameters. Ranges imply sampling a value from a uniform distribution.

Parameter Value

𝑃 𝑚𝑎𝑥
𝑔 [60, 600]
𝑃 𝑚𝑖𝑛
𝑔 [20%𝑃 𝑚𝑎𝑥

𝑔 , 40%𝑃 𝑚𝑎𝑥
𝑔 ]

𝑅𝑈𝑔 max(𝑃 𝑚𝑖𝑛
𝑔 , [20%𝑃 𝑚𝑎𝑥

𝑔 , 40%𝑃 𝑚𝑎𝑥
𝑔 ])

𝑅𝐷𝑔 𝑅𝑈𝑔
𝑆𝑈𝐶𝑔 [5, 1600]
𝑆𝐷𝐶𝑔 𝑆𝑈𝐶𝑔
𝐶𝑔 [5, 30]
𝑁𝐿𝐶𝑔 [3𝐶𝑔 , 6𝐶𝑔 ]
𝑢𝑖𝑛𝑖𝑔 {0, 1}
𝑃 𝑖𝑛𝑖
𝑔 𝑃 𝑚𝑖𝑛

𝑔 𝑢𝑖𝑛𝑖𝑔
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the heuristic would not result in finding a feasible minor-embedding
within the timeout limit of 1000s for all the cases. In particular, this
concerned instances of the cut selection problem applied to optimality
cuts using Criterion II. Although failure of the heuristic to find a minor
embedding does not prove that it is impossible to minor-embed a given
problem, as it will be demonstrated in Section 6, the relevant problems
feature logical qubits with a high node degree, which implies that a
large number of physical qubits need to be chained in order to imple-
ment the required logical qubits and interactions, potentially exceeding
the capacity of the Pegasus graph. For this reason, only the first 8 time
periods were considered (120 MP decision variables involved in the
DSP). It is to be noted that the size of the UC problem instances studied
is in line with –and even exceeds– current research (Chang et al., 2022;
Koretsky et al., 2021; Mahroo and Kargarian, 2022; Nikmehr et al.,
2022). For both power systems, Strategy II was applied using  = 3
(both for feasibility and optimality cuts).

For all problems that were submitted to the QPU the annealing
time was set to 10 μs and the anneal-read cycle was repeated 1000
times. Note that a single solution needs to be chosen in order to
select the cuts that enter the MP in each iteration of the HQC-MCMS
algorithm. The lowest-energy feasible solution returned by the QPU was
implemented. If none of the solutions in the returned sample set were
feasible, the solution with the lowest number of constraint violations
was implemented, provided that 𝐺′𝐹

𝑘 and 𝐺′𝑂
𝑘 were not empty.

6. Results and discussion

6.1. Performance comparison of cut selection criteria and strategies

In order to assess the performance of the HQC-MCMS algorithm the
cut selection procedure described in Algorithm 2 is executed both on
a classical computer and a QA. The straightforward implementation of
BD and the addition of all the available cuts to the MP are used as
benchmarks of the performance of the multi-cut strategies. Moreover,
a case in which the optimal solution and three randomly selected
solutions of the MP are used to generate cuts is presented in order to
establish the fact that Algorithm 2 performs a non-trivial cut selection.

Detailed computational characteristics for the two test systems are
presented in Table 3. For ease of reference, the different combinations
of cut selection strategies and cut selection criteria are denoted by
C1–C12. Specifically, the number of iterations until convergence is
achieved, the total time required to solve the MILP problem, as well
as the time that is spent on each component of the algorithm are
provided. The values presented in these tables are averaged across 5
executions of the algorithm for each case. Further details concerning
the execution time of the individual runs of the algorithm for C7–C12
are shown in Fig. 4. The time for completing a quantum computation
each time cut selection is triggered is given by 𝑇𝑄 ≈ 𝑇𝑃 + 𝜌(𝑇𝐴 + 𝑇𝑅),
where 𝑇𝑄 is the QPU access time, 𝑇𝑃 is the quantum programming time,
𝜌 is the number of times an anneal-read cycle is repeated, 𝑇𝐴 is the
nnealing time and 𝑇𝑅 is the time required to read a measurement. It
s conventional to report only 𝜌𝑇𝐴 as an equivalent to the classical CPU
ime (Jones et al., 2020), however, the total 𝑇𝑄 is reported in Table 3
or the cut selection component for the sake of completeness, since it
orresponds to the wall clock time. Recognizing that in contrast with
he exact solution to the cut selection problem reached by Gurobi, the
olution of the QA is not necessarily optimal, timing results should
e interpreted as an indication of the practical performance of the
QC-MCMS algorithm using the specific QA hardware rather than a
enchmark between the QA and a state-of-the-art classical solver in
earch for optimal solutions to (10) and (12). Other metrics would be
ore suitable for such studies (King et al., 2015).
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Table 3
Number of iterations, total solution time and timing of individual components for the two test systems. The values are averaged across five executions of the algorithm for each
case. The convergence criterion is 𝑈𝐵−𝐿𝐵

𝑈𝐵
100% < 0.5%. All times are in (s). The columns BD, MCMS and Random stand for the straightforward implementation of BD, the classical

MCMS algorithm without cut selection and the random cut selection benchmark, respectively. In cases C1–C6, the cut selection problem is solved with classical resources, while in
cases C7–C12 the cut selection subroutine is assigned to the QPU. Cut selection Strategies I and II refer to the minimum set cover and maximum coverage problems, respectively.
Cut selection Criteria I and II refer to the exclusion of infeasible solutions of the MP and MP variable coverage, respectively. Finally, where applicable, the application of cut
selection to the set of optimality cuts (parameter optSelect in Algorithm 2) is denoted by True (T) or False (F).

MCMS with cut selection HQC-MCMS

BD MCMS Random C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Strategy – – – I II I II
Criterion – – – I II II I II II I II II I II II
optSelect – – – – F T – F T – F T – F T

8-bus system

Iterations 23.00 7.00 17.60 13.00 7.00 7.00 13.00 9.00 9.00 13.00 7.00 7.00 13.40 10.00 9.80
Total time 28.20 8.66 19.10 13.12 9.22 9.24 12.95 10.65 10.78 13.14 9.06 10.33 14.87 17.22 64.62

MP solution 1.74 2.17 3.77 1.77 1.63 1.30 1.71 1.86 1.75 1.76 1.58 1.39 1.89 2.10 1.68
DSP solution 26.46 6.49 15.33 8.36 6.50 6.61 8.34 7.15 7.13 8.37 6.58 6.63 8.54 7.55 7.47
M construction – – – 2.37 0.32 0.42 2.29 0.49 0.54 2.27 0.33 0.40 2.30 0.52 0.58
Cut selection – – – 0.62 0.78 0.92 0.62 1.16 1.35 0.33 0.39 0.50 0.43 0.82 0.94
Minor-emb. (feas.) – – – – – – – – – 0.41 0.17 0.18 1.71 6.23 7.62
Minor-emb. (opt.) – – – – – – – – – – – 1.23 – – 46.34

30-bus system

Iterations 51.00 10.00* 24.40 9.00 11.00 10.00 9.00 9.00 9.00 9.00 10.60 8.40 9.00 10.20 11.40
Total time 110.50 80.56 69.65 53.22 64.73 35.01 52.86 38.11 29.16 56.31 109.92 1348.55 73.14 223.53 1594.90

MP solution 29.00 62.86 37.58 27.74 40.67 12.25 26.51 19.19 8.71 28.40 45.88 18.04 23.33 30.20 12.24
DSP solution 81.51 17.70 32.07 16.12 20.45 17.82 16.10 16.17 15.83 15.95 18.77 19.07 16.29 17.91 23.40
M construction – – – 8.77 1.92 2.56 9.64 1.74 2.31 8.91 1.63 2.11 9.60 1.84 3.04
Cut selection – – – 0.59 1.70 2.38 0.61 1.00 2.30 0.37 1.02 1.91 0.44 1.08 2.61
Minor-emb. (feas.) – – – – – – – – – 2.67 42.62 53.43 23.49 172.51 360.04
Minor-emb. (opt.) – – – – – – – – – – – 1253.99 – – 1193.57

*For 𝜖 → 0, MCMS without cut selection yields a lower bound on the number of iterations.
Fig. 4. HQC-MCMS execution time for different cut selection strategies and criteria using QA, compared to the straightforward implementation of BD and the random benchmark.
arkers correspond to the five independent executions of the algorithm for each case. The dashed line shows the average execution time of BD. The dotted line indicates the

verage execution time of the random benchmark. The vertical axis is in logarithmic scale.
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.1.1. HQC-MCMS performance on the 8-bus system
In Table 3 it can be observed that all multi-cut strategies result in

reduction in the number of iterations with respect to the straight-
orward implementation of BD of up to 69.6%. Since the 8-bus power
ystem problem instance is small, adding all the generated cuts at each
teration to the MP results in the lowest total execution time, despite
he increase in the MP solution time. The reason for this is that all cases
n which cut selection is applied, additional components are executed,
amely the construction of the indicator matrix 𝐌 and the solution
f the cut selection problem. For this small problem instance, the
ignificant reduction in the DSP solution time, which in turn depends
n the number of iterations, is dominant. Nonetheless, applying any
f the cut selection strategies and criteria results in a comparable
cceleration with respect to the straightforward implementation of BD
hen classical resources are used.

For the 8-bus system, the average cut selection time is by up
o 50% lower using QA for cases C7–C12 in comparison with their
11

a

classical counterparts C1–C6. However, when QA is used, additional
time is required in order to map the problem to the QPU topology,
which can significantly influence the overall performance of the HQC-
MCMS algorithm. It can be seen that when Strategy I is used for cut
selection, significantly less time is required in order to find a minor
embedding in comparison with Strategy II. Also, applying cut selection
using 𝐷𝐹 resulted in faster minor embedding in comparison with 𝐷𝑂.

onetheless, for cases C7–C11 the HQC-MCMS algorithm performed
etter, in terms of total solution time, than the straightforward im-
lementation of BD, while C8 also performed better than its classical
ounterpart C2. Finally, it is to be noted that although, on average,
he total solution time that is reported in C12 exceeds that of the
traightforward implementation of BD, the performance of the minor
mbedding heuristic is highly variable in this case (standard deviation
f 50.31 s) and two instances were found to perform better than BD,

s it can be seen in Fig. 4(a).
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6.1.2. HQC-MCMS performance on the 30-bus system
A similar analysis is performed for the 30-bus system based on the

results that are presented in Table 3. First, it can be observed that all
the multi-cut solution approaches result in a reduction in the number
of iterations with respect to the straightforward BD implementation of
up to 83.5%. Contrary to the 8-bus system, adding all the available cuts
in each iteration to the MP results in a proliferation of the MP solution
time that is sufficient to render it a less performant option than the ap-
plication of any of the cut selection strategies when the classical solver
is used. Both for Strategies I and II the best performance was observed
when Criterion II was used by applying cut selection both on feasibility
and optimality cuts (C3 and C6) due to the maximum reduction in the
size of the MP. However, the corresponding cases using QA (C9 and
C12) were the least performant ones due to the excessive time that
was required in order to map the corresponding problems to the QPU
topology. This is confirmed by the results that are shown in Fig. 4(b).

Similarly to the results for the 8-bus power system, except for cases
C11 and C12, cut selection was faster when QA was used also for the 30-
bus power system by up to 40%. The worse performance of cut selection
in C11 and C12 can be attributed to the higher average number of
iterations that were required for convergence to the specified tolerance
in comparison with their classical counterparts C8 and C9. Despite the
significant time that is spent on minor-embedding, C7 and C10 are
characterized by a lower solution time in comparison with adding all
the available cuts in the MP, while C8 was slightly faster than the
straightforward BD implementation.

The results on the 30-bus test system reveal a significant difference
in the time that is required for minor-embedding the logical problem
graphs to the QPU topology when different cut selection strategies and
cut selection criteria are applied. Minor-embedding time exhibits strong
dependence on the complexity of the cut selection problem that is
solved using QA, as well as on the size of matrix 𝐌 after inspection.

First, Strategy II relies on a more complex optimization problem
ompared to Strategy I, with two sets of decision variables and two
ets of constraints. Specifically, the components of 𝝌 are always fully-

connected due to constraint (12c), whereas in Strategy I, the number
of interactions between components of 𝝌 is determined only by the
structure of matrix 𝐌, i.e., the characteristics of the cuts. Moreover,
in Strategy II, the components of 𝝌 interact also with components of
𝝓. As a consequence, the resulting problem graphs tend to have a
higher maximum node degree compared to those of Strategy I. Also,
because under Criterion II there are more constraints in comparison
with Criterion I (|𝐺|×|𝑇 |≫ 𝑆), the mean degree of the QUBO problems
in the former case tends to be higher due to more interactions between
the decision variables and ancillary qubits. Since the physical qubits
on the hardware graph have a fixed degree (15 in the case of the
Pegasus QPU graph), embedding problems with high node degrees is
more computationally challenging. This is confirmed by the results
portrayed in Figs. 5(a) and 5(b) where the minor-embedding time of
the individual cut selection instances is plotted against the maximum
degree of the node degree distribution of the logical problem graph.

The second observation is that when Criterion I is used (C7 and
C10), the number of logical qubits is higher compared to Criterion II
(C8, C9 and C11, C12 respectively). This is observed in Figs. 6(a) and
6(b) where the maximum number of logical qubits that are required to
model the cut selection problem is plotted versus the actual number of
logical qubits after inspecting matrix 𝐌. From Fig. 6(b) it is also evident
that the size of QUBO instances is generally larger for optimality cuts in
comparison with feasibility cuts. This may be attributed to the different
density of feasibility and optimality cuts (the number of non-zero MP
variable coefficients), which is higher for the latter. For instance, for
the worst-performing instance of C9, the lowest average density of
feasibility cuts was 7.92% and the highest 12.50%, whereas for the
optimality cuts the lowest average density was 35.83% and the highest
55.65%. As a consequence, preprocessing of matrix 𝐌 is more effective
in terms of reducing the size of the cut selection QUBO problem for
12

feasibility cuts.
Table 4
Largest QUBO problem instance submitted to the QPU for each case (8-bus system).

Decision variables Ancillary qubits Interactions

C7 5 16 78
C8 7 0 0
C9 4 40 184
C10 15 18 124
C11 28 21 84
C12 48 83 634

6.2. Quality of the solutions obtained using quantum annealing

As expected, all executions of the HQC-MCMS algorithm terminated
within the specified optimality tolerance. To evaluate the qualitative
characteristics of the solutions that are returned by QA, the increase in
the number of constraints of the MP due to the addition of feasibility
and optimality cuts across iterations is displayed for the 8-bus and
30-bus test systems in Figs. 7 and 8 respectively.

6.2.1. Solution characteristics for the 8-bus system
For the 8-bus system it can be seen in Fig. 7 that the increase in

the number of MP constraints when cut selection problem is solved
using QA corresponds to that of the classical solution for cases C7–
C9. This is the reason why no significant differences are observed in
the MP solution time in comparison with their classical counterparts,
while the same number of iterations are performed. On the contrary,
differences are observed when Strategy II is employed in combination
with any of the cut selection criteria (C10–C12). Although in all three
cases there are instances of the quantum step which result in an optimal
cut selection trajectory, the average number of iterations is increased
due to the sub-optimal trajectories that are generated in some of the
runs. It should be noted that the size of the problems that are submitted
to the QPU is relatively small, with the largest instance solved using
QA in each case reported in Table 4. For this reason, the lowest-energy
solutions tend to satisfy the constraints of the cut selection strategies.
It is also worth mentioning that for all the problems related to this test
system that were submitted to the QPU, only a single decision was made
based on a sample with broken logical chains (chain break fraction
of 0.76%). The comparable performance of the classical and quantum
resources shows that HQC-MCMS is a viable decomposition-based HQC
algorithm for small-scale optimization problems.

6.2.2. Solution characteristics for the 30-bus system
For the 30-bus test system, the results portrayed in Fig. 8 are

indicative of the performance of QA as a heuristic for cut selection
when HQC-MCMS is applied to larger-scale optimization problems. For
Strategy I, although in C7 the application of QA resulted, in each itera-
tion, in the selection of a comparable number of cuts with its classical
counterpart, using Criterion II results in trajectories that significantly
increase the size of the MP. This is reflected in the increased MP
solution time, but also in the reduced average number of iterations
required for convergence in C8 and C9. For Strategy II, the opposite
behavior is observed. With the exception of C10 in which the results are
consistent with the optimal results obtained by classical optimization,
C11 and C12 are characterized by a higher number of iterations in
comparison with their classical counterparts. This is an indication that a
larger number of sub-optimal cut choices are made by QA. Nonetheless,
despite the cut selection trajectories generated by QA in C9 and C12
departing significantly from the optimal, the cut selection remains
effective in terms of MP size management for Criterion II applied both
to feasibility and optimality cuts. This is evident from the lower average
time that is spent on solving the MP compared to the benchmarks, as
reported in Table 3.

To provide further insight into the quality of the QA solutions for
the larger 30-bus system, additional details for different cut selection
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Fig. 5. Minor-embedding time versus the maximum of the node degree distribution of the logical cut selection problem graph under different cut selection strategies and criteria
(30-bus system). Means across all the instances are depicted with triangle markers and mean values are presented in the legend in the format (x, y, z), where z is the mean of
the node degree distribution. The size of the triangle markers is proportional to the average value of the mean of the node degree distribution. The vertical axis is in logarithmic
scale.
Fig. 6. The actual number of logical qubits after the inspection of matrix 𝐌 versus the worst-case number of qubits required to represent the cut selection problem under different
ut selection strategies and criteria (30-bus system). Mean values across all the instances are presented in the legend in the format (x, y). The dashed line 𝑥 = 𝑦 is used a visual aid
o illustrate the effectiveness of the inspection step; if a point lies on 𝑥 = 𝑦, then the actual number of required logical qubits corresponds to the worst-case logical qubit number.
.

Table 5
QA solution details for the 30-bus system across all executions of the HQC-MCMS algorithm. The first column reports the total number of times the QPU was used to perform cut
selection in each case. The second column presents the number of times broken chains were observed in the implemented solution, while the third column reports the maximum
chain break fraction. The representative chain length is provided in the fourth column. In the fifth column, the number of times the set of solutions returned by the QPU contained
only infeasible solutions is reported. The number of violated constraints and the total number of constraints in the instance that presented the most violations are given in the
sixth and seventh columns respectively. The characteristics of the largest problem instance in terms of logical qubits that was solved in each case are given in columns eight to ten

Minor embedding Worst case infeasibility Largest problem instance

QPU
calls

Decisions with
broken chains

Max. chain
break fraction
(%)

Representative
chain length

Infeasible
solutions

Violated
constraints

Constraints Decision
variables

Ancillary
qubits

Interactions

C7 15 1 1.69 5 – – – 5 54 294
C8 39 1 1.05 7.75 – – – 17 78 1087
C9 (feas.) 29 3 1.72 7.25 – – – 18 95 752
C9 (opt.) 27 19 5.09 34.2 2 1 43 30 287 7975

C10 15 0 – 9.33 – – – 35 52 376
C11 35 9 4.83 14 4 1 33 69 99 600
C12 (feas.) 45 12 7.35 13.71 5 2 22 117 149 861
C12 (opt.) 34 17 6.42 27.87 1 1 28 109 165 5083
13
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Fig. 7. Number of MP constraints in each iteration of the HQC-MCMS algorithm applied to the 8-bus system for different cut selection strategies and criteria. The trajectories
corresponding to each of the 5 runs using a QPU for cut selection are represented by the gray lines. The optimal solution trajectory found using classical optimization is marked
with the dashed black line.
Fig. 8. Number of MP constraints in each iteration of the HQC-MCMS algorithm applied to the 30-bus system for different cut selection strategies and criteria. The trajectories
corresponding to each of the 5 runs using a QPU for cut selection are represented by the gray lines. The optimal solution trajectory found using classical optimization is marked
with the dashed black line.
strategies and criteria are presented in Table 5 for all the executions
of the HQC-MCMS using the QPU. The first observation is that the
deterioration of the solution quality observed in Fig. 8 across different
cases is related to the size of the QUBO instances that are assigned to
the QPU. Furthermore, the size of the problem impacts the qualitative
characteristics of minor-embedding. The minor embedding of larger
QUBO problems tends to be characterized by longer physical qubit
chains. To quantify this observation, a representative chain length is
calculated. Specifically, for each minor embedding that is found in a
single run if cut selection is triggered, the maximum qubit chain length
is recorded and the results are averaged. The maximum across the
five runs is considered as the representative chain length. As expected
from the results in Figs. 5 and 6, the chain length was found to be
significantly higher under Criterion II, in particular when cut selection
is applied to optimality cuts. For this reason, larger problem instances
14
tend to result in more decisions being made based on samples with
broken logical chains and higher maximum chain break fractions.
Notably, QA managed to discover feasible solutions in 95% of the
solved cut selection problem instances, whereas in the few cases where
a cut selection was made based on an infeasible solution, only a few of
the problem constraints were not satisfied. Summarizing Table 5, Strat-
egy I is associated with more favorable solution characteristics than
Strategy II. The same can be said about Criterion I in comparison with
Criterion II, especially when cut selection is applied to optimality cuts.

6.3. Practical limitations and future outlook

Based on the computational experience with the UC problem, two
limitations of the proposed HQC algorithm can be identified. First,
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minor-embedding has to be repeated in each iteration where the QPU is
called because a different matrix 𝐌 is available. Although performing
ut selection using quantum resources may be a computationally effi-
ient procedure itself, the impact of the time that is required in order
o map the problem to the hardware graph can adversely impact the
verall performance of the algorithm by introducing a classical com-
utation bottleneck, as it can be seen in several instances in Table 3.
o overcome this limitation, either more efficient minor-embedding
euristics or a systematic way to exploit previously generated minor
mbeddings need to be developed. One pragmatic solution is to pre-
alculate a minor embedding of the largest fully-connected QUBO
raph that can be embedded onto the QPU and use it to trivially map
ny QUBO of smaller size. However, this approach introduces the risk
f rejecting larger non fully-connected QUBO instances that may still
e embeddable onto a given QPU, effectively restricting the size of
roblems that can be solved by the current generation of QA. For
erspective, the largest complete graph that is known to be embeddable
nto the Pegasus P16 graph is 𝐾185, while for the previous generation
himera C16 graph it is 𝐾65 (Zbinden et al., 2020). Note that although
he average node degree of the logical QUBO graphs of Problems (10)
nd (12) can be particularly high, they are never complete graphs.
he reason for this is that the ancillary qubits that are introduced
o model a particular constraint induce interactions only with other
ncillary qubits and components of the decision variables 𝝌 and 𝝓 that
re involved in that constraint.

The second shortcoming of the proposed algorithm in the context
f NISQ hardware is the dependence of the size of matrix 𝐌 under
riterion II on the number of complicating variables of the MILP
roblem. This imposes a limit on the size of MILP problems for which
uantum resources can be used, if the QUBO problems (10) and (12)
re to be minor-embedded directly onto the QPU. In the case of the UC
roblem, the limiting factor would be the number of generators and
ime periods, since the number of columns of 𝐌 and, therefore, the
equired number of logical qubits in the worst case, depends linearly
n the number |𝐺|×|𝑇 | of complicating variables 𝑢𝑔𝑡 (generator status).
o limitation is induced by the number of buses, transmission lines and

oads, since the relevant decision variables appear only in the SPs. On
he contrary, the size of matrix 𝐌 under Criterion I depends solely on
he number of MP solutions, which is determined by the user-selected
arameter 𝑆 and is independent of the size of the MILP problem (13).
s a consequence, although Criterion II appears to be computationally
dvantageous in comparison with Criterion I when classical computing
esources are used, the latter may find wider applicability to solving
ILP problems by using NISQ hardware to perform cut selection.

Establishing bounds on the maximum number 𝑆 of cuts that can be
enerated during an iteration and the number of complicating variables

a MILP problem can have such that the resulting QUBO problems
10) and (12) can be directly embedded onto a QPU is particularly
hallenging. Clearly, 𝑆 and 𝑚 are limited by the embeddability of
he largest instance of the cut selection problem that must be solved
n an execution of the HQC-MCMS algorithm. However, the structure
f matrix 𝐌 and, therefore, the actual number of logical qubits that
eed to be introduced and interactions between them depend on the
haracteristics of the cuts, which are not known in advance. Moreover,
he fact that cuts tend to be low-density implies that, in practice, 𝐌 is
parse and its size significantly smaller than 𝑆×𝑆 (Criterion I) and 𝑆×𝑚

(Criterion II) because of the application of the preprocessing technique.
For such arbitrary QUBO problems, graph properties they must fulfill
in order to determine whether it is embeddable onto the QPU graph are
not easy to recognize (Lobe and Lutz, 2021). Nonetheless, an interesting
extension to the HQC-MCMS algorithm so that it can be applied to
problems with large numbers of complicating variables would be to
decompose QUBO-based cut selection problem instances that are too
large to directly minor-embed onto the QPU (Bass et al., 2021).

Despite the aforementioned limitations, contingent on algorith-
mic improvements and expecting the availability of more densely-
15

connected QPU topologies in the future, the proposed approach may
find wide applicability since its convergence is resilient to the heuristic
nature of QC and it does not require the MILP problem to possess SPs
with special structure.

7. Conclusion

In this paper, a hybrid quantum–classical (HQC) multi-cut Benders
decomposition (BD) strategy to solve general mixed-integer linear pro-
gramming (MILP) problems to optimality was presented. The proposed
approach exploits multiple feasible solutions of the master problem
(MP) in order to generate multiple feasibility and optimality cuts.
Adding multiple cuts to the MP improves the convergence rate of BD.
However, the increase in the size of the MP may adversely impact
solution time. In order to manage the size of the MP and exploit
the availability of multiple cuts, a cut selection procedure that can
be assigned to a quantum computer was developed. Two different
criteria and two different cut selection strategies based on pure binary
optimization problems that can be solved using quantum computing
were studied. The HQC algorithm was applied to the Unit Commitment
problem and computational experiments were conducted using the
D-Wave Advantage 4.1 quantum annealer. Results on two test power
systems showed that although it is viable for quantum resources to be
used as an alternative to classical resources for cut selection for small-
scale problems, current hardware limitations must be overcome and the
efficiency of minor-embedding techniques should be improved before
effectively applying the proposed approach to large-scale problem in-
stances. Future research will focus on further improving the proposed
HQC algorithm according to the limitations that were identified in
Section 6.3, applying it on different use cases, and pursuing the gen-
eralization of the proposed methodology to encompass different types
of optimization problems.
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