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Abstract: Modeling and control of dynamical systems rely on measured data, which contains
information about the system. Finite data measurements typically lead to a set of system
models that are unfalsified, i.e., that explain the data. The problem of data-informativity
for stabilization or control with quadratic performance is concerned with the existence of a
controller that stabilizes all unfalsified systems or achieves a desired quadratic performance.
Recent results in the literature provide informativity conditions for control based on input-state
data and ellipsoidal noise bounds, such as energy or magnitude bounds. In this paper, we consider
informativity of input-state data for control where noise bounds are defined through the cross-
covariance of the noise with respect to an instrumental variable; bounds that were introduced
originally as a noise characterization in parameter bounding identification. The considered cross-
covariance bounds are defined by a finite number of hyperplanes, which induce a (possibly
unbounded) polyhedral set of unfalsified systems. We provide informativity conditions for input-
state data with polyhedral cross-covariance bounds for stabilization andH2/H∞ control through
vertex/half-space representations of the polyhedral set of unfalsified systems.

Keywords: Data-driven control, data informativity, linear systems, LMIs

1. INTRODUCTION

Models of dynamical systems play a key role in the synthe-
sis of controllers. Typically, these models are not available,
however, and have to be derived from data and prior
knowledge from first-principles modelling. Estimating dy-
namical models from measurement data is considered in
the field of system identification (Ljung, 1999). Based on
models identified from data, controllers can be indirectly
synthesized via model-based control methods through the
certainty equivalence principle (Hou and Wang, 2013).
This is also referred to as indirect data-driven control in
the literature. Taking the control objective into account in
the identification can lead to models that are especially fit
control design; a topic that has been extensively studied
in the field of identification for control (Van den Hof and
Schrama, 1995).

The modelling step in data-driven control may be cir-
cumvented to synthesize a controller directly based on
the data. Methods for direct data-driven control include
adaptive control methods, virtual reference feedback tun-
ing (Campi et al., 2002), iterative feedback tuning (Hjal-
marsson et al., 1998), and optimal controller identifica-
tion (Campestrini et al., 2017), see e.g., (Hou and Wang,
2013) for an overview of methods for data-driven con-
trol. A commonality of the mentioned data-driven control
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methods is that persistently exciting data are required,
i.e., the data are in fact informative enough for system
identification.

Even if data are not informative enough for system identi-
fication, data can still be informative enough for controller
design. The pioneering work (van Waarde et al., 2020)
introduced a framework for analyzing informativity of data
for system-theoretic properties and controller design. In
particular, necessary and sufficient conditions for informa-
tivity of noiseless data for controller design were developed
in (van Waarde et al., 2020), which can hold even if the
data are not informative for system identification.

In general, process noise will be present, but prior knowl-
edge on the noise, if available, can be taken into account
in the informativity analysis. This problem has recently
received considerable attention in the literature (Berberich
et al., 2020), (van Waarde et al., 2022), (Bisoffi et al.,
2021), (van Waarde and Camlibel, 2021), (Steentjes et al.,
2021). The prior knowledge considered in the aforemen-
tioned literature is typically represented by a quadratic
bound on the noise sequence, which includes bounds on the
energy and magnitude of the noise process. Prior knowl-
edge of the noise in the form of ellipsoidal bounds on the
sample cross-covariance have been considered in (Steen-
tjes et al., 2022). Sample cross-covariance bounds were
introduced in (Hakvoort and Van den Hof, 1995) as an
alternative to magnitude bounds in parameter bounding
identification, given its overly conservative noise charac-
terization.
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In this paper, we consider informativity of input-state data
for controller design in the presence of noise satisfying
polyhedral cross-covariance bounds. This prior knowledge
combined with measurement data leads to sets of feasible
system matrices that are intersections of halfspaces and
therefore (possibly unbounded) polyhedra. We show how
convexity of the sets of feasible system matrices and stabil-
ity/performance criteria lead to data-based linear matrix
inequalities (LMIs) that are necessary and sufficient for
quadratic stabilization, H∞ and H2 control in the case
the polyhedron is bounded. The technique of using the
convexity of polytopes for obtaining a finite set of con-
troller synthesis LMIs is well known in robust control, e.g.
for stabilization of systems with polytopic uncertainties,
cf. (Kothare et al., 1996), (Scherer and Weiland, 2017,
Chapter 5). When the set of feasible system matrices is
unbounded, there is no correspondent from robust control
for systems with polytopic uncertainty. An unbounded set
of feasible systems implies that data are not informative for
system identification in the case of noise-free data, cf. (van
Waarde et al., 2020, Example 19), and is therefore par-
ticularly interesting for informativity analysis. We provide
preliminary results for data informativity for stabilization,
in the case of noisy data that lead to an unbounded set of
feasible systems.

2. POLYHEDRAL CROSS-COVARIANCE BOUNDS

In this paper, we consider the data-informativity for a class
of linear systems that is affected by a noise signal e(t):

x(t+ 1) = Ax(t) +Bu(t) + e(t), (1)

with state dimension n and input dimension m.

The true system is represented by the pair (A0, B0). State
and input data generated by the true system are collected
in the matrices

X := [x(0) · · · x(N)], U− := [u(0) · · · u(N − 1)].

By defining

X+ := [x(1) · · · x(N)], X− := [x(0) · · · x(N − 1)],

E− := [e(0) · · · e(N − 1)],

we clearly have

X+ = A0X− +B0U− + E−. (2)

In case the noise is measured, the set of systems that is
consistent with the data (U−, X) is

Σ(U−,X,E−) = {(A,B) |X+ = AX− +BU− + E−}.
When the data are informative for system identification,
as defined in (van Waarde et al., 2020), the set of feasible
system is a singleton Σ(U−,X,E−) = {(A0, B0)}. This is
equivalent with col(X−, U−) having full rank, where col(·)
vertically concatenates its arguments. If the data are not
informative for system identification, then Σ(U−,X,E−) is
not a singleton, but becomes a line or hyperplane. Even if
the data are not informative for system identification, the
data can still be informative for other properties, such as
feedback stabilization, cf. (van Waarde et al., 2020).

Let e =: col(e1, . . . , en) and consider that each noise
channel ej , j = 1, . . . , n, is not measured, i.e., E−

j is

unknown, but that ej(t) satisfies the bounds

clij ≤
1√
N

N−1∑
t=0

ri(t)ej(t) ≤ cuij , i = 1, . . . ,M, (3)

where ri are signals that are chosen, typically as a (delayed
version of) state or input signal, and clij , c

u
ij are specified

bounds. Notice that we specify M upper and lower bounds
for each noise channel j ∈ {1, . . . , n}, and that the
instrumental variables ri, i ∈ {1, . . . ,M}, are common for
all noise channels j ∈ {1, . . . , n}. The bounds in (3) are
satisfied for all j if and only if

E− = col(E−
1 , . . . , E−

n ) ∈ ER,
where, with r := col(r1, . . . , rM ),

ER := {E |Cl ≤
1√
N

E−R
�
− ≤ Cu}

= {E |Cl ≤
1√
N

N−1∑
t=0

e(t)r(t)� ≤ Cu}.

with R− := col(R−
1 , . . . R

−
M ), R−

i := [ri(0) · · · ri(N − 1)],
and with clij and cuij the (i, j)-th entry of Cl and Cu,
respectively. The inequalities defining ER are thus entry-
wise inequalities.

Remark 1. Noise bounds of the type (3) define upper and
lower bounds on the sample cross-covariance of the noise e
and an instrumental variable r. These bounds were intro-
duced in (Hakvoort and Van den Hof, 1995) for parameter
bounding identification. An ‘ellipsoidal’ version of these
bounds, i.e., a bound on E−R

�
−R−E

�
− in the terms of

the partial order on positive semi-definite matrices, has
been considered in (Steentjes et al., 2022) for analyzing
informativity for control. The difference in prior knowledge
on the noise has two implications: (i) the bounds (3) allow
a component-wise specification of bounds on the cross-
covariance compared to ellipsoidal bounds, and (ii) in-
corporating this “polyhedral” (possibly unbounded) prior
knowledge on the noise in the informativity analysis re-
quires a fundamentally different approach compared with
the application of the matrix S-lemma (van Waarde et al.,
2022) used in (Steentjes et al., 2022), as will be discussed
in Section 3.

Remark 2. Guidelines in the literature recommend choos-
ing an instrumental variable r that is correlated with the
input u, but uncorrelated with the noise e (Hakvoort and
Van den Hof, 1995). Examples of r are therefore (lagged
versions of) u in open loop (cf. Example 9 or 14) or (exter-
nal) reference signals in closed loop. We refer to (Hakvoort
and Van den Hof, 1995) for more information on choosing
r and estimating the bounds (3) from data.

The bounds on the cross-covariance between the noise
channels and the instrumental signals induce a restriction
on the pairs (A,B) that satisfy the data equation

X+ = AX− +BU− + E−. (4)

All systems that explain the data (U−, X) for some E− ∈
ER are collected in the set ΣR

(U−,X):

ΣR
(U−,X) := {(A,B) | ∃E− ∈ ER such that (4) holds}. (5)

The following proposition provides a parametrization for
the set of feasible systems with cross-covariance bounds.

Proposition 3. Consider the inequality

√
NCl ≤ X+R

�
− −

[
A B

] [X−R
�
−

U−R
�
−

]
≤

√
NCu. (6)

It holds that ΣR
(U−,X) = {(A,B) | (6) holds}.
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In this paper, we consider informativity of input-state data
for controller design in the presence of noise satisfying
polyhedral cross-covariance bounds. This prior knowledge
combined with measurement data leads to sets of feasible
system matrices that are intersections of halfspaces and
therefore (possibly unbounded) polyhedra. We show how
convexity of the sets of feasible system matrices and stabil-
ity/performance criteria lead to data-based linear matrix
inequalities (LMIs) that are necessary and sufficient for
quadratic stabilization, H∞ and H2 control in the case
the polyhedron is bounded. The technique of using the
convexity of polytopes for obtaining a finite set of con-
troller synthesis LMIs is well known in robust control, e.g.
for stabilization of systems with polytopic uncertainties,
cf. (Kothare et al., 1996), (Scherer and Weiland, 2017,
Chapter 5). When the set of feasible system matrices is
unbounded, there is no correspondent from robust control
for systems with polytopic uncertainty. An unbounded set
of feasible systems implies that data are not informative for
system identification in the case of noise-free data, cf. (van
Waarde et al., 2020, Example 19), and is therefore par-
ticularly interesting for informativity analysis. We provide
preliminary results for data informativity for stabilization,
in the case of noisy data that lead to an unbounded set of
feasible systems.

2. POLYHEDRAL CROSS-COVARIANCE BOUNDS

In this paper, we consider the data-informativity for a class
of linear systems that is affected by a noise signal e(t):

x(t+ 1) = Ax(t) +Bu(t) + e(t), (1)

with state dimension n and input dimension m.

The true system is represented by the pair (A0, B0). State
and input data generated by the true system are collected
in the matrices

X := [x(0) · · · x(N)], U− := [u(0) · · · u(N − 1)].

By defining

X+ := [x(1) · · · x(N)], X− := [x(0) · · · x(N − 1)],

E− := [e(0) · · · e(N − 1)],

we clearly have

X+ = A0X− +B0U− + E−. (2)

In case the noise is measured, the set of systems that is
consistent with the data (U−, X) is

Σ(U−,X,E−) = {(A,B) |X+ = AX− +BU− + E−}.
When the data are informative for system identification,
as defined in (van Waarde et al., 2020), the set of feasible
system is a singleton Σ(U−,X,E−) = {(A0, B0)}. This is
equivalent with col(X−, U−) having full rank, where col(·)
vertically concatenates its arguments. If the data are not
informative for system identification, then Σ(U−,X,E−) is
not a singleton, but becomes a line or hyperplane. Even if
the data are not informative for system identification, the
data can still be informative for other properties, such as
feedback stabilization, cf. (van Waarde et al., 2020).

Let e =: col(e1, . . . , en) and consider that each noise
channel ej , j = 1, . . . , n, is not measured, i.e., E−

j is

unknown, but that ej(t) satisfies the bounds

clij ≤
1√
N

N−1∑
t=0

ri(t)ej(t) ≤ cuij , i = 1, . . . ,M, (3)

where ri are signals that are chosen, typically as a (delayed
version of) state or input signal, and clij , c

u
ij are specified

bounds. Notice that we specify M upper and lower bounds
for each noise channel j ∈ {1, . . . , n}, and that the
instrumental variables ri, i ∈ {1, . . . ,M}, are common for
all noise channels j ∈ {1, . . . , n}. The bounds in (3) are
satisfied for all j if and only if

E− = col(E−
1 , . . . , E−

n ) ∈ ER,
where, with r := col(r1, . . . , rM ),

ER := {E |Cl ≤
1√
N

E−R
�
− ≤ Cu}

= {E |Cl ≤
1√
N

N−1∑
t=0

e(t)r(t)� ≤ Cu}.

with R− := col(R−
1 , . . . R

−
M ), R−

i := [ri(0) · · · ri(N − 1)],
and with clij and cuij the (i, j)-th entry of Cl and Cu,
respectively. The inequalities defining ER are thus entry-
wise inequalities.

Remark 1. Noise bounds of the type (3) define upper and
lower bounds on the sample cross-covariance of the noise e
and an instrumental variable r. These bounds were intro-
duced in (Hakvoort and Van den Hof, 1995) for parameter
bounding identification. An ‘ellipsoidal’ version of these
bounds, i.e., a bound on E−R

�
−R−E

�
− in the terms of

the partial order on positive semi-definite matrices, has
been considered in (Steentjes et al., 2022) for analyzing
informativity for control. The difference in prior knowledge
on the noise has two implications: (i) the bounds (3) allow
a component-wise specification of bounds on the cross-
covariance compared to ellipsoidal bounds, and (ii) in-
corporating this “polyhedral” (possibly unbounded) prior
knowledge on the noise in the informativity analysis re-
quires a fundamentally different approach compared with
the application of the matrix S-lemma (van Waarde et al.,
2022) used in (Steentjes et al., 2022), as will be discussed
in Section 3.

Remark 2. Guidelines in the literature recommend choos-
ing an instrumental variable r that is correlated with the
input u, but uncorrelated with the noise e (Hakvoort and
Van den Hof, 1995). Examples of r are therefore (lagged
versions of) u in open loop (cf. Example 9 or 14) or (exter-
nal) reference signals in closed loop. We refer to (Hakvoort
and Van den Hof, 1995) for more information on choosing
r and estimating the bounds (3) from data.

The bounds on the cross-covariance between the noise
channels and the instrumental signals induce a restriction
on the pairs (A,B) that satisfy the data equation

X+ = AX− +BU− + E−. (4)

All systems that explain the data (U−, X) for some E− ∈
ER are collected in the set ΣR

(U−,X):

ΣR
(U−,X) := {(A,B) | ∃E− ∈ ER such that (4) holds}. (5)

The following proposition provides a parametrization for
the set of feasible systems with cross-covariance bounds.

Proposition 3. Consider the inequality

√
NCl ≤ X+R

�
− −

[
A B

] [X−R
�
−

U−R
�
−

]
≤

√
NCu. (6)

It holds that ΣR
(U−,X) = {(A,B) | (6) holds}.

Proof. Through the definition of ER defined above, the
set of feasible systems defined in (5) can be written as

ΣR
(U−,X)= {(A,B) | ∃E− : Cl ≤

1√
N

E−R
�
− ≤ Cu and (4)},

Using the data equation (4), it follows that

1√
N

E−R
�
− =

1√
N

X+R
�
− −A

1√
N

X−R
�
− −B

1√
N

U−R
�
−.

Hence, it holds that ΣR
(U−,X) = {(A,B) | (6) holds}, which

completes the proof. �

It can be shown that ΣR
(U−,X) is an intersection of half

spaces, by observing that

ΣR
(U−,X) = ΣR1

(U−,X) ∩ · · · ∩ ΣRM

(U−,X) =

M⋂
i=1

ΣRi

(U−,X),

where, denoting the i-th column of Cl (Cu) by cli (c
u
i ),

ΣRi

(U−,X) = {(A,B) | cli ≤ RN+
xri −

[
A B

] [RN−
xri

RN−
uri

]
≤ cui },

with RN+
xri = 1√

N
X+(R

−
i )

�, RN−
xri = 1√

N
X−(R

−
i )

� and

RN+
uri = 1√

N
U−(R

−
i )

�. Hence, the set of feasible subsys-

tems is either an unbounded intersection of halfspaces
(called an H-polyhedron) or it is a bounded polyhedron
(called V-polytope). Another way to see that ΣR

(U−,X) is an

intersection of halfspaces, is to vectorize 1 the inequalities:

ΣR
(U−,X) = {(A,B) | vec(Cl) ≤ vec(RN+

xr )−

([
RN−

xr

RN−
ur

]�
⊗ In

)

× vec
([
A B

])
≤ vec(Cu)},

where ⊗ denotes the Kronecker product.

Lemma 4. The set of feasible systems ΣR
(U−,X) is bounded

if and only if

ker

[
X−R

�
−

U−R
�
−

]�
= {0}. (7)

Proof. First, we note that ΣR
(U−,X) is not empty. A non-

empty polyhedron

ΣR
(U−,X) = {(A,B) |W vec(

[
A B

]
) ≤ c}

is unbounded if and only if there exists v �= 0 such that
Wv ≤ 0. With

W := col

(
−
[
RN−

xr

RN−
ur

]�
⊗ In,

[
RN−

xr

RN−
ur

]�
⊗ In

)
,

we observe that Wv ≤ 0 if and only if Wv = 0. Hence,
ΣR

(U−,X) is unbounded if and only if

ker

([
RN−

xr

RN−
ur

]�
⊗ In

)
�= {0} ⇔ ker

[
RN−

xr

RN−
ur

]�
�= {0}.

We conclude that ΣR
(U−,X) is bounded if and only if

ker

[
RN−

xr

RN−
ur

]�
= {0}, which concludes the proof. �

1 The vectorized version of a matrix X, denoted vec(X), is a column
vector obtained by the vertical concatenation of the columns of X.

A

B

Fig. 1. Illustration of the set ΣR
(U−,X) for M = 1 (green)

and for M > 1 (orange).

Remark 5. The condition for boundedness of ΣR
(U−,X) is

equivalent with the matrix [R−X
�
− R−U

�
− ] having full

column rank. A necessary condition for this matrix to have
full column rank, is to have enough instrumental signals.
More precisely, a necessary condition for boundedness is
thatM ≥ n+m, where we recall that n andm are the state
and input dimension, respectively, and M is the dimension
of the instrumental signal r. For the scalar case n = m = 1,
an unbounded set ΣR

(U−,X) is obtained for M = 1, as

illustrated in Figure 1 in green. With M > 1 the rank
condition can be satisfied (no redundant inequalities) and
a polytope is obtained, as illustrated in Figure 1 in orange.

3. INFORMATIVITY FOR FEEDBACK
STABILIZATION

Consider the problem of stabilizing the ‘true’ system
(A0, B0) using the data (U−, X). We define the set of
systems that are stabilized 2 by K as

ΣK := {(A,B) |A+BK is stable}.
In line with (van Waarde et al., 2020, Definition 12),
we consider the following definition for informativity for
stabilization by state feedback.

Definition 6. The data (U−, X) are said to be informative
for stabilization by state feedback if there exists a feedback
gain K such that

ΣR
(U−,X) ⊆ ΣK .

In other words, if there exists a K such that for every
system (A,B) in ΣR

(U−,X), A+BK is stable, then the data

are informative for feedback stabilization.

Definition 7. The data (U−, X) are said to be informative
for quadratic stabilization by state feedback if there exist
a K and P  0 such that

ΣR
(U−,X) ⊆{(A,B) | (A+BK)�P (A+BK)−P ≺ 0}. (8)

Notice the difference: the data are informative for quadratic
stabilization if there exists a common pair (K,P ), with
P  0, such that the inclusion in Definition 7 holds,

2 A matrix is stable if all its eigenvalues are in the open unit disk.
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while the data are informative for stabilization if there
is a common K such that ΣR

(U−,X) ⊆ ΣK . Hence, the

data (U−, X) are informative for stabilization by state
feedback if the data (U−, X) are informative for quadratic
stabilization by state feedback, but the reverse implication
is not true, in general.

3.1 ΣR
(U−,X) is an unbounded polyhedron

We consider here the scalar case, i.e., m = n = 1. In the
case that there is one instrumental signal r = r1, the set
ΣR

(U−,X) is described by two linear inequalities

[
A B

] [RN−
xr

RN−
ur

]
≤ RN+

xr − cl,
[
A B

] [RN−
xr

RN−
ur

]
≥ RN+

xr − cu.

We observe that ΣR
(U−,X) is the intersection of two closed

half-spaces. The following result states that a sufficient
condition for data informativity for stabilization, is the
existence of a K that stabilizes all systems on the “bound-
aries”, i.e., the defining hyperplanes of ΣR

(U−,X).

Proposition 8. Let RN−
xr be non-zero and let there exist

(RN−
xr )† such that 3 RN−

xr (RN−
xr )† = 1 and

(RN+
xr − cl)(RN−

xr )† and (RN+
xr − cu)(RN−

xr )†

are stable. Then the data (U−, X) are informative for
stabilization by state feedback. Moreover, K is such that
ΣR

(U−,X) ⊆ ΣK if K = RN−
ur (RN−

xr )†, with (RN−
xr )† as

described above.

Proof. Let (RN−
xr )† be non-zero and such that

(RN+
xr − cl)(RN−

xr )† and (RN+
xr − cu)(RN−

xr )†

are stable. We will first show that

−1 <
[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† < 1.

Consider the case that (RN−
xr )† is positive. Then

[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† ≤ (RN+
xr − cl)(RN−

xr )†,

[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† ≥ (RN+
xr − cu)(RN−

xr )†.

Furthermore, RN+
xr − cu ≤ RN+

xr − cl implies that

−1 < (RN+
xr − cu)(RN−

xr )† ≤ (RN+
xr − cl)(RN−

xr )† < 1.

Hence, any (A,B) ∈ Σ(U−,X) satisfies

−1 <
[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† < 1. (9)

Similarly, if (RN−
xr )† is negative, then RN+

xr −cu ≤ RN+
xr −cl

implies that

−1 < (RN+
xr − cl)(RN−

xr )† ≤ (RN+
xr − cu)(RN−

xr )† < 1,

and we again find that (9) holds for any (A,B) ∈ ΣR
(U−,X).

Now, define K := RN−
ur (RN−

xr )† and observe that −1 < A+
BK < 1 for any (A,B) ∈ ΣR

(U−,X). Hence, there exists a

K so that ΣR
(U−,X) ⊆ ΣK , which completes the proof. �

Example 9. Consider that data X = [0 1.2 3 4.1 4.25],
U− = [1 1 −0.5 −2] have been collected from a system with

3 Note that in this case (n = 1), (RN−
xr )† is a scalar and is unique.

system matrices A0 = 1.5 and B0 = 1. The corresponding
noise E− = [0.2 0.2 0.1 0.1] is unknown, but satisfies
E− ∈ ER for R− = U− with cu = −cl = 0.25. For
this example, (RN+

xr − cl)(RN−
xr )† = 0.6882 and (RN+

xr −
cu)(RN−

xr )† = 0.8059, hence the data are informative for
stabilization by state feedback by Proposition 8 and K =
RN−

ur (RN−
xr )† = −0.7353 is indeed such that A0 + B0K is

stable.

Alternatively, the sufficient conditions for the data (U−, X)
to be informative for feedback stabilization can be stated
in terms of linear matrix inequalities.

Proposition 10. Let there exist a Θ satisfying RN−
xr Θ =

(RN−
xr Θ)� such that[

RN−
xr Θ (RN+

xr − cl)Θ

Θ�(RN+
xr − cl)� RN−

xr Θ

]
� 0 and (10)

[
RN−

xr Θ (RN+
xr − cu)Θ

Θ�(RN+
xr − cu)� RN−

xr Θ

]
� 0. (11)

Then the data (U−, X) are informative for stabilization by
state feedback. Moreover, K is such that ΣR

(U−,X) ⊆ ΣK if

K = RN−
ur Θ((RN−

xr )†Θ)−1.

Proof. The inequalities in (10)-(11) imply that RN−
xr Θ is

positive definite and that

[(RN+
xr − cl)Θ(RN−

xr Θ)−1](RN−
xr Θ)[�]� −RN−

xr Θ < 0 and

[(RN+
xr − cu)Θ(RN−

xr Θ)−1](RN−
xr Θ)[�]� −RN−

xr Θ < 0,

with [�] inferred by symmetry. Hence, both (RN+
xr −

cl)Θ(RN−
xr Θ)−1 and (RN+

xr − cu)Θ(RN−
xr Θ)−1 are stable.

That is, there exists a (RN−
xr )† := Θ(RN−

xr Θ)−1 such
that (RN+

xr − cl)Θ(RN−
xr )† and (RN+

xr − cu)Θ(RN−
xr )† are

stable. Therefore, by Proposition 8 the data (U−, X) are
informative for stabilization by state feedback. �

3.2 ΣR
(U−,X) is a bounded polyhedron

By Lemma 4, we observe that ΣR
(U−,X) is a convex polytope

with a finite number of vertices σi
(U−,X), i = 1, . . . , L, if

the data (U−, X) and instrumental signals R− satisfy (7).
In the scalar case, for example, the set ΣR

(U−,X) is then

described by L = 4 vertices with M = 2 instrumental
variables, as depicted in Figure 1.

By Definition 6, the data (U−, X) are informative for
stabilization by state feedback if there exists a K such
that A + BK is stable for all (A,B) ∈ ΣR

(U−,X). If (7)

holds true, then ΣR
(U−,X) = conv{σ1

(U−,X), . . . , σ
L
(U−,X)},

where conv S0 denotes the convex hull of the set S0. The
following lemma allows us to verify stability conditions for
all matrices (A,B) that are compatible with the data, by
verifying the conditions at the extreme points of ΣR

(U−,X).

Lemma 11. Let Γ ∈ Sn×n, 4 let S0 be a set and let F :
S → Sn×n be a convex function with domain S = conv S0.
Then F (x) ≺ Γ for all x ∈ S if and only if F (x) ≺ Γ for
all x ∈ S0.

Proof. The assertion is a strict version of the assertion
in (Scherer and Weiland, 2017, Proposition 1.14). The

4 Sn×n denotes the set of n×n symmetric matrices with real entries.
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while the data are informative for stabilization if there
is a common K such that ΣR

(U−,X) ⊆ ΣK . Hence, the

data (U−, X) are informative for stabilization by state
feedback if the data (U−, X) are informative for quadratic
stabilization by state feedback, but the reverse implication
is not true, in general.

3.1 ΣR
(U−,X) is an unbounded polyhedron

We consider here the scalar case, i.e., m = n = 1. In the
case that there is one instrumental signal r = r1, the set
ΣR

(U−,X) is described by two linear inequalities

[
A B

] [RN−
xr

RN−
ur

]
≤ RN+

xr − cl,
[
A B

] [RN−
xr

RN−
ur

]
≥ RN+

xr − cu.

We observe that ΣR
(U−,X) is the intersection of two closed

half-spaces. The following result states that a sufficient
condition for data informativity for stabilization, is the
existence of a K that stabilizes all systems on the “bound-
aries”, i.e., the defining hyperplanes of ΣR

(U−,X).

Proposition 8. Let RN−
xr be non-zero and let there exist

(RN−
xr )† such that 3 RN−

xr (RN−
xr )† = 1 and

(RN+
xr − cl)(RN−

xr )† and (RN+
xr − cu)(RN−

xr )†

are stable. Then the data (U−, X) are informative for
stabilization by state feedback. Moreover, K is such that
ΣR

(U−,X) ⊆ ΣK if K = RN−
ur (RN−

xr )†, with (RN−
xr )† as

described above.

Proof. Let (RN−
xr )† be non-zero and such that

(RN+
xr − cl)(RN−

xr )† and (RN+
xr − cu)(RN−

xr )†

are stable. We will first show that

−1 <
[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† < 1.

Consider the case that (RN−
xr )† is positive. Then

[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† ≤ (RN+
xr − cl)(RN−

xr )†,

[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† ≥ (RN+
xr − cu)(RN−

xr )†.

Furthermore, RN+
xr − cu ≤ RN+

xr − cl implies that

−1 < (RN+
xr − cu)(RN−

xr )† ≤ (RN+
xr − cl)(RN−

xr )† < 1.

Hence, any (A,B) ∈ Σ(U−,X) satisfies

−1 <
[
A B

] [RN−
xr

RN−
ur

]
(RN−

xr )† < 1. (9)

Similarly, if (RN−
xr )† is negative, then RN+

xr −cu ≤ RN+
xr −cl

implies that

−1 < (RN+
xr − cl)(RN−

xr )† ≤ (RN+
xr − cu)(RN−

xr )† < 1,

and we again find that (9) holds for any (A,B) ∈ ΣR
(U−,X).

Now, define K := RN−
ur (RN−

xr )† and observe that −1 < A+
BK < 1 for any (A,B) ∈ ΣR

(U−,X). Hence, there exists a

K so that ΣR
(U−,X) ⊆ ΣK , which completes the proof. �

Example 9. Consider that data X = [0 1.2 3 4.1 4.25],
U− = [1 1 −0.5 −2] have been collected from a system with

3 Note that in this case (n = 1), (RN−
xr )† is a scalar and is unique.

system matrices A0 = 1.5 and B0 = 1. The corresponding
noise E− = [0.2 0.2 0.1 0.1] is unknown, but satisfies
E− ∈ ER for R− = U− with cu = −cl = 0.25. For
this example, (RN+

xr − cl)(RN−
xr )† = 0.6882 and (RN+

xr −
cu)(RN−

xr )† = 0.8059, hence the data are informative for
stabilization by state feedback by Proposition 8 and K =
RN−

ur (RN−
xr )† = −0.7353 is indeed such that A0 + B0K is

stable.

Alternatively, the sufficient conditions for the data (U−, X)
to be informative for feedback stabilization can be stated
in terms of linear matrix inequalities.

Proposition 10. Let there exist a Θ satisfying RN−
xr Θ =

(RN−
xr Θ)� such that[

RN−
xr Θ (RN+

xr − cl)Θ

Θ�(RN+
xr − cl)� RN−

xr Θ

]
� 0 and (10)

[
RN−

xr Θ (RN+
xr − cu)Θ

Θ�(RN+
xr − cu)� RN−

xr Θ

]
� 0. (11)

Then the data (U−, X) are informative for stabilization by
state feedback. Moreover, K is such that ΣR

(U−,X) ⊆ ΣK if

K = RN−
ur Θ((RN−

xr )†Θ)−1.

Proof. The inequalities in (10)-(11) imply that RN−
xr Θ is

positive definite and that

[(RN+
xr − cl)Θ(RN−

xr Θ)−1](RN−
xr Θ)[�]� −RN−

xr Θ < 0 and

[(RN+
xr − cu)Θ(RN−

xr Θ)−1](RN−
xr Θ)[�]� −RN−

xr Θ < 0,

with [�] inferred by symmetry. Hence, both (RN+
xr −

cl)Θ(RN−
xr Θ)−1 and (RN+

xr − cu)Θ(RN−
xr Θ)−1 are stable.

That is, there exists a (RN−
xr )† := Θ(RN−

xr Θ)−1 such
that (RN+

xr − cl)Θ(RN−
xr )† and (RN+

xr − cu)Θ(RN−
xr )† are

stable. Therefore, by Proposition 8 the data (U−, X) are
informative for stabilization by state feedback. �

3.2 ΣR
(U−,X) is a bounded polyhedron

By Lemma 4, we observe that ΣR
(U−,X) is a convex polytope

with a finite number of vertices σi
(U−,X), i = 1, . . . , L, if

the data (U−, X) and instrumental signals R− satisfy (7).
In the scalar case, for example, the set ΣR

(U−,X) is then

described by L = 4 vertices with M = 2 instrumental
variables, as depicted in Figure 1.

By Definition 6, the data (U−, X) are informative for
stabilization by state feedback if there exists a K such
that A + BK is stable for all (A,B) ∈ ΣR

(U−,X). If (7)

holds true, then ΣR
(U−,X) = conv{σ1

(U−,X), . . . , σ
L
(U−,X)},

where conv S0 denotes the convex hull of the set S0. The
following lemma allows us to verify stability conditions for
all matrices (A,B) that are compatible with the data, by
verifying the conditions at the extreme points of ΣR

(U−,X).

Lemma 11. Let Γ ∈ Sn×n, 4 let S0 be a set and let F :
S → Sn×n be a convex function with domain S = conv S0.
Then F (x) ≺ Γ for all x ∈ S if and only if F (x) ≺ Γ for
all x ∈ S0.

Proof. The assertion is a strict version of the assertion
in (Scherer and Weiland, 2017, Proposition 1.14). The

4 Sn×n denotes the set of n×n symmetric matrices with real entries.

proof follows mutatis mutandis by the proof of (Scherer
and Weiland, 2017, Proposition 1.14). �

Now, given the (known) vertices σi
(U−,X), i = 1, . . . , L, the

problem of verifying informativity for stabilization can be
reduced to verifying the stability condition at the extreme
points of ΣR

(U−,X), as shown by the following result:

Proposition 12. Let (7) hold. The data (U−, X) are infor-
mative for quadratic stabilization by state feedback if and
only if there exist K and P such that P � 0 and
[
I

K

]�
(σi

(U−,X))
�Pσi

(U−,X)

[
I

K

]
− P ≺ 0, i = 1, . . . , L.

(12)

Proof. Consider the function F : ΣR
(U−,X) → Sn×n, de-

fined by F (σ) := col(I,K)�σ�Pσ col(I,K). Since ΣR
(U−,X)

is convex and P � 0, we infer that F is a convex function.
Hence, by Lemma 11, F (σ) ≺ P for all σ ∈ ΣR

(U−,X) if and

only if F (σ) ≺ P for all σ ∈ {σ1
(U−,X), . . . , σ

L
(U−,X)}. This

proves the assertion. �

We note that the conditions in (12) are not linear with
respect to K and P . The application of the Schur comple-
ment yields conditions equivalent to (12) that are LMIs.

Corollary 13. Let (7) hold. The data (U−, X) are infor-
mative for quadratic stabilization by state feedback if and
only if there exist Y and M such that[

Y Z�(σi
(U−,X))

�

σi
(U−,X)Z Y

]
� 0, i = 1, . . . , L, (13)

with Z := col(Y,M). Moreover, K is such that ΣR
(U−,X) ⊆

ΣK if K = MY −1.

Proof. By the Schur complement, the existence of K and
P � 0 such that (8) holds, is equivalent with

∃K,P such that

[
P (A+BK)�

A+BK P−1

]
� 0

for all (A,B) ∈ ΣR
(U−,X). Define Y := P−1 and M :=

KP−1 and perform a congruence transformation with
diag(Y, I) to obtain

∃Y,M such that

[
Y (AY +BM)�

AY +BM Y

]
� 0

for all (A,B) ∈ ΣR
(U−,X). By Lemma 11, we find that this

is equivalent with (13), which proves the assertion. �
Example 14. Consider again the system from Example 9
with A0 = 1.5 and B0 = 1. Consider that the noise
e(t) is drawn uniformly from the set {e | e2 ≤ 0.2} and
data (U−, X) is collected for N = 10. We select four
different instrumental variables r based on lagged versions
of the input u with M ∈ {2, 3, 4, 5}. These are defined
as rM (t) := col(u(t), u(t − 1), . . . , u(t − M + 1), i.e.,
r2(t) = col(u(t), u(t − 1)), r3(t) = col(u(t), u(t − 1), u(t −
2)), et cetera. We assume prior knowledge on the cross-
covariance through the bounds (3) with cui = −cli = 0.1,
i = 1, . . . ,M ; these bounds hold true for each of the
four choices for M . Figure 2 shows the set of feasible
systems ΣR

(U−,X) for each choice of rM , denoted ΣR
M ,

illustrating a significant reduction in the size of ΣR
M

for increasing M . We verify that the data (U−, X) are
informative for quadratic stabilization by Corollary 13,
since the LMIs (13) are feasible for M = 2, . . . , 5, yielding
K = −1.4842 for M = 5 such that ΣR

5 ⊆ ΣK .

4. INCLUDING PERFORMANCE SPECIFICATIONS

In this section, we will consider the problem of finding
a feedback gain from the data (U−, X), such that the
closed-loop system with (A0, B0) satisfies a given H∞ or
H2 performance bound. Consider the performance output
z, given by

z(t) = Cx(t) +De(t),

where C and D are user-specified matrices. Recall the set
ΣK ; the set of systems that are stabilized by K. The set
of systems that achieve H∞ performance γ with feedback
K is defined as

ΣH∞
K (γ) := ΣK ∩ {(A,B) | ‖T‖H∞< γ},

with T (q) := C(qI −A−BK)−1 +D.

Proposition 15. Consider a pair (A,B) and γ > 0. The
following statements are equivalent:

• there exists K such that (A,B) ∈ ΣH∞
K (γ),

• there exist K and P such that P � 0 and


I 0

A+BK I

0 I

C D




�


−P 0 0 0

0 P 0 0

0 0 −γ2I 0

0 0 0 I







I 0

A+BK I

0 I

C D


≺ 0.

(14)

Definition 16. The data (U−, X) are said to be informa-
tive for common H∞ control with performance γ if there
exist K and P such that P � 0 and (14) holds for all
(A,B) ∈ ΣR

(U−,X).

Following a similar reasoning as for Proposition 12, neces-
sary and sufficient conditions on the data for informativity
for common H∞ control are obtained, by Proposition 15
in conjunction with Lemma 11.

Proposition 17. The data (U−, X) are informative for
common H∞ control with performance γ if and only
if there exist K and P such that P � 0 and for all
i ∈ {1, . . . , L}:



I 0

σi
(U−,X)

[
I

K

]
I

0 I

C D




�


−P 0 0 0

0 P 0 0

0 0 −γ2I 0

0 0 0 I







I 0

σi
(U−,X)

[
I

K

]
I

0 I

C D



≺ 0.

Corollary 18. The data (U−, X) are informative for com-
mon H∞ control with performance γ if and only if there
exist Y and M such that for all i ∈ {1, . . . , L}:



Y 0 Z�(σi
(U−,X))

� Y C�

0 γI I D�

σi
(U−,X)Z I Y 0

CY D 0 γI


 � 0,

with Z := col(Y,M).

The set of systems that achieve H2 performance γ with
feedback K is defined as
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Fig. 2. Feasible sets of systems ΣR
(U−,X) obtained in Exam-

ple 14 with different choices of R− forM ∈ {2, 3, 4, 5}.

ΣH2

K (γ) := ΣK ∩ {(A,B) | ‖T‖H2
< γ}.

Proposition 19. Consider a pair (A,B) and γ > 0. The
following statements are equivalent:

• there exists K such that (A,B) ∈ ΣH2

K (γ),
• there exist K, P and Z such that traceZ < γ and


P P (A+BK) P

� P 0

� � γI


 � 0,



P 0 C�

0 I D�

C D Z


 � 0. (15)

Definition 20. The data (U−, X) are said to be informa-
tive for common H2 control with performance γ if there
exists K, P and Z such that traceZ < γ and (15) holds
for all (A,B) ∈ ΣR

(U−,X).

The application of Lemma 11 to the conditions in Propo-
sition 19 leads to necessary and sufficient conditions for
informativity for common H2 control, as stated in Propo-
sition 21. These conditions can be stated equivalently as
LMIs through a variable transformation, leading to Corol-
lary 22.

Proposition 21. The data (U−, X) are informative for
common H2 control with performance γ if and only if
there exist K, P and Z such that traceZ < γ and for
all i ∈ {1, . . . , L}:


P 0 C�

0 I D�

C D Z


 � 0 and



P Pσi

(U−,X)

[
I

K

]
P

� P 0

� � γI


 � 0.

Corollary 22. The data (U−, X) are informative for com-
mon H2 control with performance γ if and only if there
exist Y , M and P such that traceP < γ and


Y 0 Y C�

0 I D�

CY D P


 � 0 and



Y σi

(U−,X)Z I

� Y 0

� � γI


 � 0,

holds for all i ∈ {1, . . . , L} with Z := col(Y,M).

5. CONCLUDING REMARKS

We have considered the problem of analyzing informativ-
ity of data for controller design with prior knowledge on

process noise in the form of linear sample cross-covariance
bounds. We have established a parametrization of the
set of systems that are compatible with data. Using the
convexity of this set and the convexity of stability/per-
formance conditions with respect to the system matrices,
we have developed necessary and sufficient conditions for
informativity for stabilization and H2/H∞ control.
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