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A B S T R A C T   

Objectives: Pathologic subtyping of tissue biopsies is the gold standard for the diagnosis of lung cancer (LC), 
which could be complicated in cases of e.g. inconclusive tissue biopsies or unreachable tumors. The diagnosis of 
LC could be supported in a minimally invasive manner using protein tumor markers (TMs) and circulating tumor 
DNA (ctDNA) measured in liquid biopsies (LBx). This study evaluates the performance of LBx-based decision- 
support algorithms for the diagnosis of LC and subtyping into small– and non-small-cell lung cancer (SCLC and 
NSCLC) aiming to directly impact clinical practice. 
Materials and Methods: In this multicenter prospective study (NL9146), eight protein TMs (CA125, CA15.3, CEA, 
CYFRA 21-1, HE4, NSE, proGRP and SCCA) and ctDNA mutations in EGFR, KRAS and BRAF were analyzed in 
blood of 1096 patients suspected of LC. The performance of individual and combined TMs to identify LC, NSCLC 
or SCLC was established by evaluating logistic regression models at pre-specified positive predictive values (PPV) 
of ≥95% or ≥98%. The most informative protein TMs included in the multi-parametric models were selected by 
recursive feature elimination. 
Results: Single TMs could identify LC, NSCLC and SCLC patients with 46%, 25% and 40% sensitivity, respectively, 
at pre-specified PPVs. Multi-parametric models combining TMs and ctDNA significantly improved sensitivities to 
65%, 67% and 50%, respectively. 
Conclusion: In patients suspected of LC, the LBx–based decision–support algorithms allowed identification of 
about two-thirds of all LC and NSCLC patients and half of SCLC patients. These models therefore show clinical 
value and may support LC diagnostics, especially in patients for whom pathologic subtyping is impossible or 
incomplete.   
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1. Introduction 

In the past two decades, the development of new lung cancer (LC) 
therapies based on precision medicine strategies, i.e. targeted therapy 
and immunotherapy, has led to a significantly improved progression- 
free and overall survival compared to conventional therapies [1,2]. 
Currently, treatment is chosen based on the histological subtype (non- 
small-cell lung cancer (NSCLC) or small-cell lung cancer (SCLC)), tumor 
stage, presence of oncogenic driver mutations and expression of immune 
checkpoint proteins [3]. Radiological imaging techniques such as posi-
tron emission tomography (PET) scans or computed tomography (CT) 
scans are mainly used to define the tumor stage. Definitive diagnosis 
including subtype and genotype of LC is based on examination of tissue 
or cytology specimens collected by invasive procedures such as bron-
choscopy, endobronchial ultrasound-guided needle aspirations (EBUS/ 
TBNA) or CT/ultrasound–guided transthoracic biopsy [3–5]. Unfortu-
nately, these biopsies are not always adequate for histological, cyto-
logical and/or molecular profiling, necessitating repeated biopsies 
[6–8]. Moreover, obtaining tissue via invasive procedures may be 
challenging or impossible in fragile patients or patients with small or 
unreachable tumors [6]. 

Additional information on the presence and characteristics of LC can 
be obtained via liquid biopsy (LBx), in which tumor markers (TMs) such 
as circulating tumor DNA (ctDNA) and proteins in the blood are 
analyzed [9]. Analysis of plasma-derived ctDNA was shown to enable 
detection of driver mutations in e.g. EGFR, KRAS and BRAF, which are 
frequently occurring and targetable mutations in LC, allowing for the 
use of targeted therapies [10–12]. Serum protein TMs such as carci-
noembryonic antigen (CEA), cytokeratin-19 fragment 21-1 (CYFRA 21- 
1) and human epididymis protein 4 (HE4) were shown to aid in the 
identification of LC [13,14]. Moreover, protein TMs were shown to be 
promising for differentiation between the histological subtypes SCLC 
and NSCLC, as neuron-specific enolase (NSE) and progastrin-releasing 
peptide (proGRP) were shown to be elevated in SCLC, whereas 

carbohydrate antigen 15.3 (CA15.3), cancer antigen 125 (CA125), CEA, 
CYFRA 21-1 and squamous cell carcinoma antigen (SCCA) were shown 
to be associated with NSCLC [14–16]. 

Compared to individual protein TMs, combining multiple TMs has 
previously been shown to improve the performance to identify and 
subtype LC [15–19]. However, these studies often combined TMs using 
standard cut-off values or determined optimal performance using a 
trade-off between sensitivity and specificity, often leading to insufficient 
performance for clinical use. Moreover, a few studies suggested that 
combined assessment of protein and ctDNA TMs might further improve 
performance to diagnose LC [20,21]. Therefore, this study describes the 
performance of protein– and ctDNA–based decision support algorithms 
for the identification of LC and subtyping of SCLC and NSCLC, focusing 
on direct clinical applicability. 

2. Materials and methods 

2.1. Study design 

The data for this investigation was obtained in a multicenter study 
(Longmerker studie, NL9146) approved by the Medical Research Ethics 
Committees United (NL58985.100.16). In six hospitals in the 
Netherlands, 1096 patients suspected of LC were prospectively included 
by their lung physician between June 2017 and February 2022. After 
obtaining written informed consent, blood samples were retrieved 
before a final diagnosis had been given and any treatment had been 
initiated. Diagnosis of LC and subtyping was performed according to 
Dutch guidelines [22,23]. Staging was performed according to the 8th 
edition of TNM Classification for LC [24]. 

Patients treated for LC before enrollment (9%), with exception of 
patients previously treated with curative intent, and patients with 
another primary tumor (15%) were excluded from analysis (Fig. 1). 
Also, patients with incomplete laboratory data (3%), without patho-
logical diagnosis (9%) or other LC subtypes than NSCLC or SCLC (2%) 

Fig. 1. Overview of the study population. LC = lung cancer, NSCLC = non-small-cell lung cancer; SCLC = small-cell lung cancer; COPD = Chronic Obstructive 
Pulmonary Disease, LCNEC = Large cell neuroendocrine carcinoma of the lung. 

E. Visser et al.                                                                                                                                                                                                                                   



Lung Cancer 178 (2023) 28–36

30

were excluded. 

2.2. Sample processing and analysis 

Whole blood was collected and processed to obtain plasma for 
analysis of cfDNA and serum for analysis of protein TMs, as described 
previously [25,26]. All samples were analyzed in the clinical laboratory 
of the Catharina Hospital Eindhoven. Wild-type KRAS, used as a mea-
sure for cell-free DNA (cfDNA) concentrations, and driver mutations in 
EGFR, KRAS and BRAF were determined on ctDNA using droplet digital 
PCR (ddPCR), as described previously (QX200 system, Bio-Rad Labo-
ratories, Hercules, CA) [25,27,28]. The serum levels of CA15.3, CA125, 
CEA, CYFRA 21-1, HE4, NSE, proGRP and SCCA were measured with 
commercially available electrochemiluminescent assays (Cobas e602 or 
Cobas Pro e801, Roche Diagnostics, Rotkreuz, Switzerland). The NSE 
concentrations were corrected for hemolysis [26]. 

2.3. Model fitting and evaluation 

To determine the performance of liquid-biopsy for diagnosis of LC 
and identification of NSCLC and SCLC, multivariate logistic regression 
was applied. The models were trained and evaluated using patients with 
pathology-proven NSCLC or SCLC and patients for whom LC was 
excluded (Fig. 1). For diagnosis of LC, a model to distinguish LC from no 
LC was fitted. For identification of NSCLC, another model was fitted to 
separate NSCLC from no NSCLC, i.e. patients with SCLC and no LC. For 
identification of SCLC, a model was trained to separate SCLC from no 
SCLC, comprising patients with NSCLC and no LC. 

Models used either individual or multiple protein and DNA (cfDNA 
concentration and presence of mutation (ctDNA)) TMs. The models were 
all adjusted for the covariates age and sex by using these covariates as 
independent variables in the models. The protein TMs and cfDNA con-
centrations were log10-transformed. The logistic regression models 
were trained and validated using 200 repetitions of 5-fold stratified 
cross-validation, resulting in 1000 models where 80 % of the data was 
used for training and 20 % for validation of the model. Each continuous 
variable was standardized by subtracting the mean and dividing by the 
standard deviation of that variable in the training set. 

The most informative combination of protein TMs, unadjusted for 
covariates, was determined by recursive feature elimination (RFE) using 
repeated stratified K-fold cross-validation. For each cross-validation 
fold, a logistic regression model was trained starting with the total of 
eight protein TMs. The least informative TM, based on the coefficient in 
the logistic regression model was removed and the model was fitted 
again on the remaining seven TMs. This procedure was repeated up until 
only one TM remained. The most informative combination of protein 
TMs was chosen based on the maximum performance (based on the 
validation data) while using a minimum number of TMs. This combi-
nation of protein TMs was thereafter adjusted for the covariates age and 
sex and combined with the DNA TMs. 

2.4. Model evaluation 

Overall performance was evaluated using the Area Under the Curve 
(AUC) of Receiver Operating Characteristic (ROC) curves. The average 
ROC curves of the cross-validation folds per model were computed by 
vertical averaging, hence average true positive rates are computed at 
fixed false positive rates [29]. Additionally, the performance metrics 
sensitivity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV) were computed using standard formulas. These 
performance metrics were evaluated using the validation sets, thus pa-
tient data that was not used for training of the model in that cross- 
validation fold. In the end, the median performances of the 1000 vali-
dation sets were computed, together with the interquartile range (IQR; 
25th-75th percentile) as a measure for the distribution. 

To determine potential clinical applicability of the TMs in 

identification of LC, NSCLC or SCLC with high certainty, the perfor-
mance metrics of the validation sets were evaluated at pre-specified 
PPVs for the training set: 98% PPV for LC and 95% PPV for confirma-
tion of NSCLC or SCLC. In addition, the performance was evaluated at 
100% NPV for potential exclusion of LC, since it is important to not 
misclassify a LC patient who would then not get proper treatment. The 
final classifications of individual patients were determined by the ma-
jority vote (>50%) of classifications considering all the cross-validation 
models with the patient in the validation set. 

2.5. Statistical analysis 

TM concentrations and age were compared by non-parametric tests 
(Kruskal-Wallis or two-sided Mann-Whitney-U tests (α = 0.05)). Cate-
gorical variables were compared by chi-square tests (α = 0.05). The 
performances of the individual and combined TMs models were 
compared by Mann-Whitney-U-tests (one-sided, α = 0.05). The data 
were represented as number (frequency (%)) or median (IQR; 25th 
percentile – 75th percentile). The analyses were performed using Python 
(version 3.8.8), using scikit-learn (version 0.24.1) and SciPy (version 
1.8.0). 

2.6. Data availability 

The data generated in this study are not publicly available due in-
formation that could compromise study participant privacy. Data may 
be made available for substantiated research projects. The code is 
available at: https://github.com/SysBioOncology/Lungmarkerstudy_ 
diagnosticalgorithm. 

3. Results 

3.1. Patient characteristics 

In total, 1096 patients were included in this study, of whom 683 
patients met the inclusion criteria for analysis. 21% of the included 
subjects did not have LC and 79% were diagnosed with LC (Fig. 1). 91% 
of LC patients were diagnosed with NSCLC, of whom 58% patients had 
advanced stages (IIIb-IV) and 41% patients had earlier stages (I-IIIa). 
Moreover, 9% patients were diagnosed with SCLC, all with stage III-IV. 

Some different characteristics were observed between the patient 
group without LC and with LC. A higher frequency of males was present 
in the group without LC (63%) compared to the group with LC (NSCLC: 
51%, SCLC: 54%) (p = 0.020) (Supplemental Table 1). In addition, in-
dividuals without LC were slightly younger (66, IQR: 59–74) compared 
to LC patients (NSCLC: 69, IQR: 62–74; SCLC: 70, IQR: 63–73) (p =
0.018). Mutations were detected by ctDNA-ddPCR in 2% of SCLC pa-
tients and in 19% of NSCLC patients, while no mutations were found in 
patients without LC. 11% of NSCLC patients had a targetable mutation in 
EGFR, BRAF or KRAS G12C. 

3.2. Concentrations of individual TMs 

TM concentrations were increased in NSCLC and SCLC patients 
compared to individuals without LC (Fig. 2). CA15.3 and SCCA were 
significantly increased in NSCLC patients only (p < 0.001 and p = 0.033, 
respectively) and proGRP in SCLC patients only (p < 0.001). CA125, 
CEA, CYFRA 21-1, HE4, NSE and cfDNA were increased for both NSCLC 
(all p < 0.001) and SCLC (all p < 0.001). However, commonly used 
diagnostic cut-off values determined in previous studies [13,15,30] 
could not clearly separate patients with and without LC, since concen-
trations above the cut-off value are measured in individuals without LC 
and below the cut-off for patients with NSCLC and SCLC. 

Significant concentration differences between NSCLC and SCLC were 
observed for all TMs, except for CEA (p = 0.58) (Fig. 2). CA125, HE4, 
NSE, proGRP and cfDNA were significantly higher in SCLC patients (p =
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0.046, p = 0.035, p < 0.001, p < 0.001 and p < 0.001, respectively) and 
CA15.3, CYFRA 21-1 and SCCA were elevated in NSCLC patients (p =
0.0036, p = 0.0042 and p = 0.011, respectively). Furthermore, NSCLC 
patients with early stages (I-IIIa) had lower concentrations than patients 
with late stage NSCLC (IIIb-IV) for all TMs (all p < 0.001), except for 
proGRP and SCCA (p = 0.99 and p = 0.60, respectively). 

3.3. Detection of primary lung cancer 

Of the individual TMs, CYFRA 21-1 had the best overall performance 
to distinguish LC patients from patients without LC (ROC-AUC = 0.83, 
IQR: 0.81–0.85), followed by CEA (ROC-AUC = 0.76, IQR: 0.73–0.78) 
(Fig. 3A, Supplemental Table 2). Moreover, when evaluating the per-
formance at pre-specified PPV ≥ 98% for identification of LC, these two 
TMs achieved the highest sensitivities (CYFRA 21-1: 46%, IQR: 43–49%; 
CEA: 31%, IQR: 28–34%) and could therefore identify the largest subset 
of LC patients (Fig. 3A, Supplemental Table 2). As ctDNA mutations 
were only found in LC patients, these mutations could identify LC with 
PPV of 100% with a sensitivity similar to the frequency of mutations in 

the LC patients (19%, IQR: 17–21%). Evaluating the performance at 
NPV of 100% showed that exclusion of LC was not possible by individual 
TMs (Supplemental Table 3). 

To determine the most informative combination of the eight protein 
TMs for identification of LC, the performance of models ranging from 
one to eight TMs was evaluated using recursive feature elimination 
(Fig. 4). The best TM combination was found to be CYFRA 21-1 and CEA 
with a sensitivity of 62% (IQR: 58–65%), specificity of 97% (IQR: 
93–100%), NPV of 40% (IQR: 38–42%) and PPV of 98% (IQR: 97–100%) 
(Fig. 4A, Supplemental Table 4). Addition of more TMs to the model 
resulted in a significant decrease in sensitivity (p < 0.001), but changed 
the fraction of the patients with NSCLC and SCLC that could be correctly 
identified (Supplemental Fig. 1A). Here, addition of more SCLC related 
TMs (NSE and proGRP) resulted in an increase of correctly classified 
SCLC patients, but also a decrease in correctly classified NSCLC patients. 
Because the overall fraction of NSCLC patients is about tenfold higher 
than the SCLC patients, the decline in identified NSCLC patients resulted 
in lower overall sensitivity. 

The combination of the CEA and CYFRA 21-1, corrected by age and 

Fig. 2. Concentrations of protein TMs and cfDNA per subgroup. The boxplots and statistical tests include all stage I-IV NSCLC. The cut-off values for the protein TMs 
shown are: CA125: 35 U/mL; CA15.3: 35 U/mL; CEA: 5 ng/mL; CYFRA 21-1: 3.3 ng/mL; HE4: 97.6 pmol/L; NSE: 25 ng/mL; proGRP: 50 pg/mL; SCCA: 2 ng/mL 
[13,15,30]. * p < 0.05, ** p < 0.01, *** p < 0.001. NSCLC = non-small-cell lung cancer; SCLC = small-cell lung cancer; cfDNA = cell-free DNA, TMs =
tumor markers. 
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sex, increased the ROC-AUC (from 0.83, IQR: 0.81–0.85 to 0.86, IQR: 
0.84–0.88, p < 0.001) and sensitivity (from 46%, IQR: 43–49% to 63%, 
IQR: 59–65%, p < 0.001) significantly compared to the individual TM 
CYFRA 21-1, while the PPV did not change significantly (from 98%, IQR: 
97–100% to 98%, IQR: 97–99%, p = 0.74) (Fig. 3A, Supplemental 
Table 2). Addition of DNA TMs to the protein TMs model improved ROC- 
AUC (from 0.86, IQR: 0.84–0.88 to 0.87, IQR: 0.85–0.89) and sensitivity 
(from 63%, IQR: 59–65% to 65%, IQR: 62–68%) marginally, yet 
significantly (p < 0.001 for both), with insignificant change of PPV 
(from 98%, IQR: 97–99% to 98%, IQR: 96–99%, p = 0.37). The co-
efficients of the multi-TM models show that higher concentrations of the 
TMs and a mutation in ctDNA increased the probability of LC (Supple-
mental Fig. 2). Combinations of the protein TMs did not allow for 
exclusion of LC with high NPV (Supplemental Table 5). 

The multi-parametric model using CEA, CYFRA 21-1 and DNA TMs 
correctly classified 65% of the NSCLC patients and 48% of the SCLC 
patients and misclassified 5% of patients without LC as having LC 
(Fig. 5A). In the NSCLC group, a higher fraction of patients with stage IV 
disease (80%) was identified compared to stage I (23%), stage II (44%) 
stage IIIa (57%). 

3.4. Identification of NSCLC 

Of the individual TMs, CYFRA 21-1 could distinguish NSCLC patients 

from SCLC and LC-free individuals with the best overall performance 
(ROC-AUC = 0.78, IQR: 0.76–0.81) and highest sensitivity (25%, IQR: 
20–30%) at pre-specified PPV ≥95% (Fig. 3B, Supplemental Table 6). 
Even though CEA had the second-best overall performance (ROC-AUC =
0.69, IQR: 0.66–0.72), this TM could not identify NSCLC with the 
required pre-specified PPV of ≥95% for the training sets. Also HE4, NSE, 
proGRP and cfDNA could not meet this criterium. 

CYFRA 21-1 combined with CEA, proGRP and NSE was shown to be 
the most informative combination of protein TMs to identify NSCLC, due 
to the highest AUC (0.85, IQR: 0.83–0.87), sensitivity (63%, IQR: 
60–66%), NPV (50%, IQR: 48–52%) and PPV (95%, IQR: 93–97%), with 
a specificity of 92% (IQR: 87–95%) (Fig. 4B, Supplemental Table 7). 
Addition of other protein TMs did not improve the performance for the 
overall population and the characteristics of the identified patients in 
terms of stage of disease and histological subtype were similar (Sup-
plemental Fig. 1B). 

Combining CYFRA 21-1, CEA, proGRP and NSE, adjusted for age and 
sex, significantly improved the ROC-AUC (from 0.78, IQR: 0.76–0.81 to 
0.86, IQR: 0.84–0.88, p < 0.001) and sensitivity (from 25%, IQR: 
20–30% to 65%, IQR: 62–68%, p < 0.001) compared to CYFRA 21-1 
alone, while the PPV did not change significantly (from 94%, IQR: 
92–100% to 94%, IQR: 93–97%, p = 0.38) (Fig. 3B, Supplemental 
Table 6). Adding DNA TMs to the multi-parametric model slightly 
increased the ROC-AUC (from 0.86, IQR: 0.84–0.88 to 0.87, IQR: 

Fig. 3. Performance metrics of the validation sets of individual and multi-TM models, all adjusted for covariates age and sex. Overall performance is shown as ROC 
curves. Sensitivity, specificity, PPV and NPV were evaluated at pre-specified PPVs for the training set. Performances of individual TMs at pre-specified PPVs are only 
shown if this PPV could be achieved in all training sets. Median and interquartile ranges (IQR) performance metrics are shown in Supplemental Tables 2, 6 and 8. A) 
No LC versus LC, evaluated at PPV ≥ 98%. Protein TMs in the multi-marker model are CEA and CYFRA 21-1. B) Absence of NSCLC versus NSCLC, evaluated at PPV ≥
95%. Protein TMs used in the multi-marker models are CEA, CYFRA 21-1, NSE and proGRP. C) Absence of SCLC versus SCLC, evaluated at PPV ≥ 95%. Protein TMs 
used in the multi-marker models are CA125, CA15.3, CYFRA 21-1, NSE and proGRP. Due to limited sample size, the multi-marker models of SCLC could not achieve 
the pre-specified PPV for all training sets. The performances shown include only the validation sets where corresponding training sets met this PPV requirement. LC 
= lung cancer, TMs = tumor markers, NSCLC = non-small-cell lung cancer; SCLC = small-cell lung cancer; cfDNA = cell-free DNA, ctDNA = circulating tumor DNA, 
ROC = Receiver Operating Characteristics, AUC = Area under the curve. 
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0.85–0.88, p < 0.001) and sensitivity (65%, IQR: 62–68% to 67%, IQR: 
64–71%, p < 0.001) with insignificantly changed PPV (from 94%, IQR: 
93–97% to 94%, IQR: 93–96%, p = 0.12). In these models, higher 
concentrations of CEA and CYFRA 21-1, together with a mutation in 
ctDNA, increase the probability of having NSCLC (Supplemental Fig. 2). 
Higher concentrations of NSE, proGRP and cfDNA decrease the proba-
bility of having NSCLC. 

The model using CYFRA 21-1, CEA, NSE, proGRP and DNA to 
identify NSCLC correctly classified 67% of all NSCLC patients, with a 
higher proportion of correctly classified stage IV patients compared to 
stage I-IIIa (Fig. 5B). The model misclassified 12% of SCLC (n = 6) and 
9% of patients without LC (n = 13). 

3.5. Identification of SCLC 

For distinction of SCLC patients from NSCLC patients and patients 
without LC, the individual TM NSE had the best overall performance 
(ROC-AUC = 0.88, IQR: 0.83–0.91), however this TM could not meet the 
requirement of PPV ≥ 95% for all training sets (Fig. 3C, Supplemental 
Table 8). ProGRP was the only individual TM able to meet this 
requirement and had a ROC-AUC of 0.86 (IQR: 0.82–0.91) and sensi-
tivity of 40% (IQR: 30–50%) with a PPV of 100% (IQR: 86–100%). 

The most informative combination of protein TMs was again evalu-
ated by recursive feature elimination. However, due to limited sample 
size of SCLC (n = 50), the pre-specified PPV requirement (≥95%) for the 
training sets could not always be achieved (Supplemental Table 9). 
Therefore, the performance metrics were only computed for validation 
sets for which the corresponding training set could meet this 
requirement. 

The optimal sensitivity (50%, IQR: 40–60%) for identification of 

SCLC was achieved by models combining four protein TMs (Fig. 4C). 
CYFRA 21-1, NSE and proGRP were always included in these models, 
whereas ~50% of the models used either CA125 or CA15.3, thus both 
TMs contributed to the performance metrics. Therefore, the most 
informative combination of TMs to identify SCLC was considered to be 
CA125, CA15.3, CYFRA 21-1, NSE and proGRP. 

This multi-TM model, adjusted for age and sex, had an increased 
ROC-AUC (from 0.86, IQR: 0.82–0.91 to 0.98, IQR: 0.96–0.99, p <
0.001) and sensitivity (40%, IQR: 30–50% to 50%, IQR: 30–60%, p <
0.001) compared to proGRP, with insignificant change of PPV (both 
100%, IQR: 86–100%, p = 0.85) (Fig. 3C, Supplemental Table 8). 
Addition of DNA TMs to the model did not significantly change the 
performance, except for a slightly decreased PPV (from 100%, IQR: 
86–100% to 100%, IQR: 83–100%, p = 0.021). In this model, NSE, 
proGRP, CA125 and cfDNA had positive coefficients, indicating that 
higher concentrations increased the probability of having SCLC (Sup-
plemental Fig. 2). On the other hand, CYFRA 21-1, CA15.3 and a mu-
tation in ctDNA had negative coefficients and thus decreased the 
probability of having SCLC. 

The CA125, CA15.3, CYFRA 21-1, NSE, proGRP and DNA could 
correctly classify 50% of SCLC patients, comprising 25% of stage IIIa, 
45% of stage IIIb-c and 54% of stage IV patients. Of NSCLC patients, 1% 
was misclassified (stage IIIa) and no patients without LC were mis-
classified (Fig. 5C). 

4. Discussion 

In this study, the added clinical value of protein and DNA TMs in LC 
diagnostics was evaluated. Compared to the performance of individual 
TMs, combined assessment of protein and DNA TMs improved the 

Fig. 4. Selection of most informative combination of protein TMs by recursive feature elimination. The performances per total number of selected protein TMs are 
shown as median (IQR). The selected protein TMs are shown as percentage of cross-validation folds for which the protein TMs are included in the models. A) No LC 
versus LC, evaluated at PPV ≥ 98% (Supplemental Table 4). B) Non-NSCLC versus NSCLC, evaluated at PPV ≥ 95% (Supplemental Table 7). C) Non-SCLC versus 
SCLC, evaluated at PPV ≥ 95%. The performance metrics were computed for validation sets where the corresponding training set could achieve PPV ≥ 95% 
(Supplemental Table 9). LC = lung cancer, NSCLC = non-small-cell lung cancer; SCLC = small-cell lung cancer; TMs = tumor markers, PPV = positive predictive 
value, NPV = negative predictive value, AUC = area under the receiver operating characteristics curve. 
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overall performance and the performance at pre-specified PPVs to detect 
LC and its subtypes NSCLC and SCLC. 

Previous research has shown that combined assessment of protein 
TMs could improve the performance of decision–support algorithms in 
LC diagnostics [15,16,19,31]. To distinguish LC from absence of LC, 
studies of Molina et al. [15] and Jiang et al. [31] found comparable ROC- 
AUCs (0.89 and 0.871, respectively). With the pre-specified NPV of 
100% to exclude LC, PPV of ≥98% to identify LC and PPVs ≥ 95% to 
identify NSCLC and SCLC, this study however was the first that shifted 
the focus towards direct clinical impact of a TM–based decision–support 
algorithm. These pre–specified performance metrics were chosen to 
ensure minimal overtreatment, while also providing additional infor-
mation that might lead to faster treatment decisions. The multicenter 
patient population used in this study consisted of patients suspected of 
LC and should be representative for the clinical setting in which this 
model could be used. Moreover, the LC patients showed similar distri-
bution of subtypes and stages compared to the Dutch lung cancer pop-
ulation and therefore might be representative [3]. 

Exclusion of LC at a pre-specified NPV of 100% could not be achieved 
by individual nor combined TM assessment due to the overlapping data 
of patients with and without LC, which makes it difficult to discriminate 
the LC patients with minimally increased TM levels from the patients 
without LC that have slightly increased TM levels. For example protein 
TMs are known to be elevated in benign (lung) diseases, kidney disor-
ders and CEA in smokers [32], while small and/or early stage tumors are 
known to only induce a minimal increase in TM concentrations [15,18]. 

Identification of LC, NSCLC and SCLC with PPV ≥95-98% was suc-
cessfully achieved by individual and combined assessment of TMs. 
Similar to previous studies, CYFRA 21-1 was shown to perform best in 

identification of LC, followed by CEA [15,17–19] (Fig. 3A). Combining 
CYFRA 21-1 and CEA resulted in maximum sensitivity (65%) for iden-
tification of LC. To identify NSCLC, CYFRA 21-1, CEA, NSE and proGRP 
enabled maximum sensitivity (67%), as these TMs could improve dif-
ferentiation between NSCLC and SCLC [16,18]. Lastly, best sensitivity 
(50%) to identify SCLC was achieved by combining SCLC–associated 
TMs NSE and proGRP with NSCLC-associated TMs CYFRA 21-1, CA125 
and CA15.3. Interestingly, high concentrations of CA125 increased 
probability of SCLC in these models, a relationship that was to our 
knowledge not previously described (Supplemental Fig. 2). While pre-
vious research showed added value of HE4 and SCCA for LC detection 
[13,16,17], these TMs were not selected for the optimal marker com-
binations in this study. However, SCCA might have added value in 
identifying the NSCLC subtype squamous cell carcinoma [16]. 

Although some previous studies suggested improved performance to 
identify LC by combining both protein and DNA TMs [20,21], in our 
study addition of DNA to protein TMs models only slightly improved the 
ROC-AUCs and sensitivities. Mutations in ctDNA indicate presence of LC 
with high specificity, yet only ~20% the LC patients do have a mutation. 
Moreover, the majority of patients with driver mutations could already 
be identified based on protein TMs alone. Differences with respect to 
previous studies could be explained by a lower number of overall mu-
tations identified in our study. Compared to CancerSeek [20], less mu-
tations were identified in our study due to analysis of a smaller number 
of mutations, whereas CancerSeek used a more extensive panel. Even 
though the mutations in our study cover frequently occurring and 
targetable mutations in NSCLC, future research could focus on extension 
of mutation analyses by performing NGS on blood samples. NGS could 
overcome some technical limitations of ddPCR to analyze e.g. targetable 

Fig. 5. Characteristics of patients correctly and incorrectly classified by the models combining protein and DNA TMs, specified per subgroup and stage. Stages are 
shown for the subgroup aimed to identify by the model, i.e. LC, NSCLC or SCLC. A) No LC versus LC, evaluated at PPV ≥ 98%. B) Non-NSCLC versus NSCLC, 
evaluated at PPV ≥ 95%. C) Non-SCLC versus SCLC, evaluated at PPV ≥ 95%.LC = lung cancer, TMs = tumor markers, NSCLC = non-small-cell lung cancer; SCLC =
small-cell lung cancer. 
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alterations in ALK and MET and could therefore improve performance of 
DNA TMs in the diagnostic model by identification of more (targetable) 
ctDNA mutations. In addition, in the study of Yin et al. [21] a higher 
prevalence of EGFR mutations was found (46%), which is common in 
Asian countries compared to European countries [33] and therefore 
resulted in improved performance compared to our study. Even though 
the added value of ctDNA on population level might be limited, infor-
mation on targetable driver mutations is valuable to identify individual 
patients who could benefit from targeted therapy [10,11]. Moreover, 
ctDNA-ddPCR baseline measurements could be useful for monitoring of 
treatment response [28]. The analysis of ctDNA-ddPCR could therefore 
still have direct clinical impact for a selected group of patients, but does 
not necessarily have to be performed to improve the decision–support 
algorithms. 

To adjust for potential effects of age and sex on TM concentrations 
[34], these characteristics were included in the algorithms. However, 
since a higher fraction of males occurred in the group without LC 
compared to LC, inclusion of sex could potentially have influenced 
model predictions for identification of LC. As only a minimal improve-
ment of performance was found for the multi-TM model adjusted for age 
and sex, compared to the unadjusted model during the recursive feature 
elimination, this influence is expected to be limited and could be related 
to the correction of differences in TM concentrations as well. 

The decision–support algorithms presented in this study could aid 
lung physicians by providing additional information for patients with 
high probabilities of LC, NSCLC or SCLC, even in an early stage of dis-
ease. Here, 23% of stage I and 44% of stage II disease patients were 
correctly classified, therewith providing important information for these 
type of patients with small lesions that could be more complicated to 
take a biopsy of. Although these models will not replace pathological 
diagnosis, LBx-based models may provide additional information for 
patients without (conclusive) pathology examination, which in our 
study was shown to be the case for 9% of the overall population. If the 
model indicates NSCLC and a mutation has been detected in ctDNA, 
targeted therapy may be selected, whereas chemotherapy may be the 
treatment trajectory in case of SCLC. Since these models were evaluated 
at pre–specified PPVs, a performance metric influenced by prevalence of 
disease, the models are applicable in patients suspected of LC with high 
pre–test probability of LC. Further validation should be performed to 
determine usage of these models for populations with other prevalence 
of disease, e.g. for screening purposes. 

To improve the performance of liquid-biopsy based models and even 
confirm absence of LC, some future research directions could be 
considered. Firstly, Molina et al. showed that repetition of TM mea-
surement within 3–4 weeks to determine concentration changes could 
improve performance [15]. This additional LBx may aid in diagnosis of 
patients for whom a conservative diagnostic strategy (follow-up with 
CT) can be applied. Secondly, a combination of the LBx models with 
radiological information, such as maximal FDG uptake in PET-CT scans 
[31] and/or nodule size [15], might improve identification of LC. To 
ensure reproducibility, it is necessary to obtain these input parameters 
in an objective manner. Thirdly, other protein TMs, such as tumor- 
associated autoantibodies (TAAbs) and exosomal proteins, were 
described to enable more specific identification of early-stage patients 
than currently used protein TMs, reviewed in [35]. However, the actual 
added value of these markers in a diagnostic setting needs to be further 
investigated, since reported sensitivities of these individual TAAbs were 
often limited and the performance was not always evaluated in a clini-
cally relevant population [35]. Lastly, addition of measurement of PD- 
L1 expression in LBx would be useful to support treatment decision for 
immunotherapy and therefore further personalize treatment choices 
based on minimally-invasive information [36]. 

The models were trained and evaluated after exclusion of patients 
with other carcinomas. Since the TMs used in this study are not LC- 
specific, these TMs could also be elevated in patients with other carci-
nomas [13,32], potentially resulting in false classifications as LC, NSCLC 

or SCLC. Therefore, lung physicians should be aware that these models 
would not be applicable to confirm the presence of LC in patients with 
other carcinomas and could provide false positive results for patients 
with previously undiagnosed carcinomas. 

Model performance was evaluated using cross-validation, allowing 
to determine performance on patients not used for training of the model. 
To further verify model performance for application of liquid-biopsy 
based decision support algorithms in clinical practice, validation on an 
external patient cohort should be performed. 

Further studies focused on SCLC would be needed to further assess 
model performances on this population. As we could expect, perfor-
mances of classification of SCLC patients had large uncertainties, due to 
a low frequency (11%) of SCLC amongst lung cancer patients [3] and 
therefore also a limited number of SCLC patients in our study (n = 50). 

5. Conclusion 

In conclusion, this study provides solid evidence that the combined 
assessment of the protein TMs CYFRA 21-1, CEA, NSE, proGRP, CA125 
and CA15.3 and DNA TMs contain sufficient information for the devel-
opment of three decision–support algorithms that allowed for identifi-
cation of two–thirds of all LC and NSCLC patients and half of SCLC 
patients. Our results suggest that, in the future, these models may aid in 
the reduction of invasive procedures or offer new perspective in the 
diagnostics of patients for whom pathologic subtyping is impossible or 
incomplete. To achieve this, further discussions are required with cli-
nicians to determine optimal presentation of model outputs and to 
define how to optimally integrate model predictions in the clinical 
decision-making process. 
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