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Abstract: Ultrasound (US) imaging is a medical imaging modality that uses the reflection of sound in
the range of 2–18 MHz to image internal body structures. In US, the frequency bandwidth (BW) is
directly associated with image resolution. BW is a property of the transducer and more bandwidth
comes at a higher cost. Thus, methods that can transform strongly bandlimited ultrasound data into
broadband data are essential. In this work, we propose a deep learning (DL) technique to improve the
image quality for a given bandwidth by learning features provided by broadband data of the same
field of view. Therefore, the performance of several DL architectures and conventional state-of-the-art
techniques for image quality improvement and artifact removal have been compared on in vitro US
datasets. Two training losses have been utilized on three different architectures: a super resolution
convolutional neural network (SRCNN), U-Net, and a residual encoder decoder network (REDNet)
architecture. The models have been trained to transform low-bandwidth image reconstructions to
high-bandwidth image reconstructions, to reduce the artifacts, and make the reconstructions visually
more attractive. Experiments were performed for 20%, 40%, and 60% fractional bandwidth on the
original images and showed that the improvements obtained are as high as 45.5% in RMSE, and
3.85 dB in PSNR, in datasets with a 20% bandwidth limitation.

Keywords: ultrasound imaging; bandwidth (BW) improvement; convolutional neural networks;
image reconstruction; deep learning

1. Introduction

Ultrasound (US) imaging is the modality of choice for many diagnostic purposes [1,2].
US is a cost-effective, versatile, and non-invasive imaging modality and is therefore often
applied for various imaging tasks, such as cardiac imaging [3], abdominal imaging [4] or
obstetrics [5] in addition to many other applications. The amount of bandwidth (BW) neces-
sary for imaging varies from task to task [6]. The frequency range of the transducer is a key
factor in determining the resolution for B-mode imaging [7–9]. The temporal bandwidth
of the ultrasound transducer is directly associated with the image resolution and image
quality. A large bandwidth therefore ensures that the smallest possible detail is visible in
both axial and lateral direction. Certain tasks require a higher bandwidth transducer to
image structures that are normally not clearly distinguishable with lower bandwidth trans-
ducers, as in the case of intra-vascular microvessel imaging [10]. Intravascular ultrasound
(IVUS) based methods require high-frequency transducers which are not available com-
mercially for imaging the microvessels [10]. High-frequency transducers are also required
for imaging in various clinical applications and in small animal studies for scanning rats,
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mice and zebrafish [11,12]. Furthermore, for intra-vascular or intra-cardiac US techniques,
the responsiveness of the PZT crystals (with certain thickness) with respect to frequency
also limits the bandwidth [13]. The improvement in reconstruction that transforms low
bandwidth image reconstruction to high bandwidth image reconstruction can potentially
help in making these tasks possible with lower bandwidth transducers. Traditional meth-
ods for bandwidth improvement in US already exist; for example, in ultrafast imaging,
the bandwidth of the transducer limits the image quality of the reconstruction. Resolution
enhancement compression (REC) is then utilized for enhancing the bandwidth [14]. In
Ref. [15], a pre-filtering technique was used to increase the output signal bandwidth for
the US transmit-receive systems. These methods are based on traditional approaches but
are not data driven and hence do not consider the probability distributions of actual US.

In this work, we proposed a new technique for bandwidth improvement based on
deep learning (DL). DL has already been successful in addressing a wide range of prob-
lems, such as speech recognition [16], language processing [17], image classification [18]
and image segmentation [19]. Furthermore, DL has been used in various medical appli-
cations [20–22] like Computed Tomography (CT) imaging [23,24], US imaging [25–28],
and MRI imaging [29,30] to improve image quality. DL has applications in denoising the
image, image analysis and super-resolution. In super-resolution, a low-resolution image
is transformed into a higher-resolution image. This task of bandwidth enhancement in
ultrasound is similar to super resolution problems in computer vision. In ultrasound
imaging, DL methods have been applied for various kinds of image enhancement tasks.
Perdios et al. [31] proposed a residual CNN based method, using multiscale and multichan-
nel filtering properties, for transforming a low-quality estimate to a high-quality image for
ultrafast US imaging. In the work by Yoon et al. [32], a DL-based model is created that can
transform a sub-sampled radiofrequency (RF) signal directly to a normal-quality B-mode
image. However, none of these tasks have actively targeted bandwidth improvement.

In this work, we assess the performance of several popular DL architectures for the
first time on five different US datasets consisting of B-mode images. The three model
architectures compared are: super resolution convolutional neural network (SRCNN) [33],
U-Net [34], and a Residual Encoder Decoder network (REDNet) architecture based on
the work by Gholizadeh-Ansari et al. [35]. We also introduce two loss functions namely,
PL1 (scaled mean square error) and PL2 (a combination of mean square error (RMSE)
and perceptual loss), to improve the results for these different architectures. To show that
these models really improve the reconstruction and bandwidth, we also compare these
methods with conventional histogram-based methods for contrast enhancement. For this,
we use histogram equalization (HE) and contrast limited adaptive histogram equalization
(CLAHE). The main contributions of the work can be summarized as follows:

• A DL-based method is proposed for directly transforming a low-bandwidth image
reconstruction to a broadband image reconstruction. The transducers are band-limited
in nature. The band-limitation of the transducer directly affects the resolution of the
US image. This DL based technique can help in transforming the low-bandwidth
image reconstruction obtained into a high-bandwidth image reconstruction, which
can help in removing artifacts, improving resolution and image quality in general.

• A data driven method was proposed for bandwidth improvement in US imaging for
the first-time using DL. The DL model proposed is light weight, has low computational
complexity, and can be utilized in real settings. Error analysis, frequency domain
comparisons and speckle characteristic comparisons were performed to show the
benefits of the proposed method as compared with other state-of-the-art networks.

• A scaled mean square error loss for the training of the DL network is introduced to
solve the vanishing gradient problem. The models were trained on only one set of
training data and tested on five different datasets with different properties to show
the generalizable and scalable property of the proposed model in real settings.

The rest of this article is organized as follows. In Section 2, we briefly introduce the
deep learning methods compared in this work, training strategy, and loss functions. In
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Section 3, datasets and experiments have been discussed, whereas in Section 4, details
about the figures of metric have been presented. In Section 5, results are discussed, while
Section 6 details about the discussion, analysis of all the models and Section 7 concludes
the work.

2. Material and Methods

We evaluate the proposed DL-based methods along with the two different loss func-
tions, for enhancing the bandwidth of the band-limited US images.

2.1. Deep Learning Techniques
2.1.1. SRCNN

The first architecture that is evaluated is known as the super-resolution convolutional
neural network (SRCNN) and is one of the first models to learn end-to-end mapping
of low-resolution to high-resolution images. It was one of the first super-resolution DL
architectures for computer vision images [33]. The model architecture is shown in Figure 1
with corresponding blocks and the number of filters in each layer.

Figure 1. Visualization of the SRCNN architecture utilized in this study with different blocks and the
number of filters present in each layer.

2.1.2. UNet

The second architecture evaluated is the U-Net, which is often used for medical
imaging segmentation problems [34]. However, it has also been applied in the field of super
resolution and denoising to improve image quality or resolution [36,37]. Therefore, the
U-Net model is chosen as the benchmark model. However, a ReLu activation instead of the
sigmoid activation is applied here for bandwidth improvement. Thus, the model is slightly
adjusted by removing the sigmoid activation in the last layer. The model architecture is
shown in Figure 2 with the number of filters in each layer and the corresponding block
representations.

2.1.3. REDNet

The third architecture utilized here is a residual encoder decoder network (REDNet),
which was originally developed to transform low-dose CT images to high-dose CT im-
ages [35]. As can be seen in Figure 3, the architecture uses an edge detection layer that uses
a Sobel filter for feature extraction. The model uses dilated convolutional layers to increase
the receptive field of the model as this is more computationally efficient than increasing
either the filters or the kernel size [38]. As a small adjustment to the model, dropout layers
with a value of 0.05 were added to reduce over-fitting. The model architecture is shown in
Figure 3, with the number of filters in each layer and corresponding block representations.
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Figure 2. Visualization of the U-Net architecture utilized in this study with different blocks and the
number of filters present in each layer.

Figure 3. Visualization of the REDNet architecture utilized in this work with different blocks and the
number of filters present in each layer.

2.2. Loss Functions

We evaluated the models for two different loss functions:
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• PL1 loss: Scaled mean square error loss. PL1 loss is used as it is more sensitive towards
outliers and is the most used loss function [39]. The network was trained using the
proposed PL1 (scaled-MSE) loss function, defined as:

L “ 1
N

N
ÿ

i“1

}ymodel ´ yFBpiq}2 ˆ τ (1)

where, ymodel are the predictions of the model, yFBpiq are the true signals and τ is the
scaling factor [40].

• PL2 loss: Recently perceptual loss has gained wide popularity as it can extract features,
and can compare the content, style, and high-level differences between images [35].
Hence, we used PL2 loss as the combination of RMSE and perceptual loss. The losses
are combined in a ratio of 30:70 [35].

2.3. Model Specifications

The models are implemented in TensorFlow [41] using Keras [42] as back-end. All
models are trained using a batch size of 16 and run for either 300 epochs or until the
validation loss stops improving. For each image, 64 image patches are made with each at a
size of 128 ˆ 128 by randomly selecting overlapping patches of 128 ˆ 128 from the image.
This means that 25,600 image patches are used to train the models and 8640 image patches
are used to validate the models. The Adam optimizer [43] is used with the following
parameters: Learning rate (lr) = 1 ¨ 10´4, β1 = 0.9, β2 = 0.999, ε = None and decay = 0.
The models are trained only for 20% bandwidth limitation using the Phantom I dataset
and tested on other datasets (Table 1) and bandwidth scenarios. This is to show the
generalization of the model on different datasets and bandwidth scenarios.

Table 1. The number of training, validation and test images for each dataset included in the experiments.

Dataset Train Validation Test

Phantom I 400 135 134
Phantom II - - 90

Commercial phantom - - 31
Carotid artery - - 70

In vivo carotid mimicking setup - - 239

3. Datasets and Experiments
3.1. Datasets

We have acquired five different phantom or in vitro datasets for our experiments,
the details of which are explained below. Table 1 gives the distribution of the images in
the dataset for training, validation, and testing purposes. A Verasonics Vantage research
system (Verasonics, Kirkland, WA, USA) was employed for acquisition of the data. With a
Verasonics L11-5v linear array transducer, 101 Plane Waves were transmitted at equi-spaced
angles, ranging from ´25˝ to 25˝. After careful consideration, the range was reduced to
´15˝ to 15˝ (61 PWs, step of 0.5˝) in post-processing to reduce grating lobe [44]. The data
that support the findings of this study are available on request from the corresponding
author.

3.1.1. Phantom I

A Bloom 300 (8%) gelatin solution was infused with high concentrations of silicon
carbide (SiC) scatterers [45]. Three different batches with different concentrations of SiC:
1 g/dL, 8 g/dL, and 16 g/dL were produced for this dataset. After solidification, the latter
two batches were diced into small cubes of roughly 1 cm3 and embedded in the first batch,
which was still fluid. In addition, fresh mandarin segments and raspberries were added to
provide some complex structures in the image data. A total of 669 US images using the full
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bandwidth were acquired and were limited to different fractional bandwidths. The images
were split into a training, validation, and test set of 400, 135, and 134, respectively, dividing
the data into a 60, 20, and 20 split (Table 1).

3.1.2. Phantom II

Based on previous experience, a second multi-purpose phantom was created that
consists of only canned mandarins embedded in gelatin with a lower concentration of
SiC scatterers (0.5 g/dL). Mandarins were processed to remove the connective layers and
membranes, that would otherwise absorb or reflect a lot of the acoustic energy. A total
of 90 images were used for testing the model developed for bandwidth improvement
(Table 1).

3.1.3. Commercial Phantom

This phantom is a commercially available phantom (Model 539, Multipurpose US
Phantom, CIRS, Inc., Norfolk, VA, USA) for quantitative US quality measurements. The
phantom provides a combination of tissue mimicking target structures of varying sizes and
contrasts and monofilament line targets for distance measurements. This dataset consists
of 31 US images acquired at full available bandwidth (3.04 MHz passband) and derived
datasets that were band-limited to the following fractional bandwidths, i.e., 20%, 40%, and
60% (Table 1).

3.1.4. Carotid Artery

Porcine carotid arteries (CAs), after removing most of the surrounding tissue, were
embedded in the low concentration (0.5 g/dL) scattering emulsion. The arteries were tied
up on both ends and pressurized with water. This dataset consists of 70 full bandwidth US
images of two porcine carotid arteries, which were limited to different fractional bandwidth
ranges, i.e., 20%, 40%, and 60% (Table 1).

3.1.5. In Vivo Carotid Mimicking Setup

For this phantom, another two carotid arteries were prepared identically. This time
however, they were embedded in skin-on muscle and adipose tissue of the porcine abdomen
and neck. Cuts were made skin side down. These cuts were approximately half the
thickness of the tissue in depth. The arteries were put inside of those cuts. This dataset
consists of 239 images and was only used for testing the model (Table 1).

Various experiments were performed for three different band-limited scenarios (20%,
40%, and 60% bandwidth) and for the five different test datasets to show the effectiveness
of the proposed techniques for improving the frequency content of the band-limited images.
A bandwidth limitation of 20% means that the frequencies of the target band-limited image
are further reduced to only 20% and used as the input for the DL-based model. The reason
of choosing these specific bandwidths is as follows: 60% bandwidth limitation is quite
realistic while 40% and 20% limitation is to check the limit of bandwidth limitation which
can be used for US imaging. All images in the datasets were processed in MATLAB (Release
2019a, The MathWorks, Inc., Natick, MA, USA) to attain image pairs of limited bandwidth
and full bandwidth reconstructions. The RF data are band-filtered. From these processed
RF data, the images are reconstructed for band-limited as well as full bandwidth images.
Envelope detection and log compression is applied to the resulting RF images to retrieve
B-mode data. The images obtained have a size of 801 ˆ 401 pixels.

3.2. Experiments

We compared the DL-based methods proposed with conventional HE-based methods.

3.2.1. Histogram Equalization (HE)

HE has been widely used as a method for enhancing the contrast of images in various
applications, such as radar image processing as well as medical image processing [46,47].
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HE flattens the density distribution of the image and enhances its contrast [48,49]. There
are some disadvantages to this technique such as artifacts, and deterioration of the visual
quality; thus, HE does not always give improved results and can lead to an enhanced noise
level [50].

3.2.2. Contrast Limited Adaptive Histogram Equalization (CLAHE)

CLAHE is another histogram equalization technique and consists of the following
four steps [51]:

• Partitioning of the image into non-overlapping and continuous patches.
• Clipping the histogram of each patch above a threshold and distributing the pixels to

all the gray values.
• Applying HE on each patch.
• Interpolating the mapping between separate patches.

Although CLAHE usually performs better than HE, it also suffers from noise enhance-
ment and providing no one-to-one correspondence between the input and the enhanced
image [51]. Please refer to Ref. [51] for more details about the method.

4. Figures of Metric

The reconstructions obtained using the different techniques were evaluated using
the Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR), and Pearson
Correlation (PC) for all the methods.

4.1. RMSE

RMSE is the root of the mean squared difference between the pixel intensities of two
images [52]:

RMSE “

c

řn
i“1pymodelpiq ´ yFBpiqq2

n
(2)

Equation (2) gives the RMSE metric with ymodel being the image generated by the
technique, yFB being the full bandwidth image and n being the number of pixels of both
images. RMSE is sensitive towards the outliers and is a measure of accuracy of the model.
This metric helps in quantifying the error between the reconstructions obtained as compared
to the full-bandwidth reconstructions.

4.2. PSNR

PSNR is the ratio between the maximum value in the full bandwidth image and the
mean square error between the model predicted image and the full bandwidth image [53].

PSNR “ 10 log10

ˆ

I2
maxpyFBq

MSEpymodel , yFBq

˙

(3)

Equation (3) gives the PSNR metric with Imax the maximum pixel intensity, yFB the
full bandwidth image, and ymodel the image generated by the technique, where the mean
square error (MSE) is the square of the RMSE. PSNR is often used for quantifying the
reconstruction quality [37].

4.3. PC

PC is a measure of linear correlation between two entities [54,55]. Here, correlation
between the frequency domain amplitude for the full bandwidth image yFB and band-
limited image ymodel is computed as:

PC “
covpyFB, ymodelq

σpyFBq
¨ σpymodelq (4)
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where cov represents the covariance and σ represents the standard deviation. PC P r´1, 1s,
where 1 denotes complete linear correlation, 0 represents no linear correlation and ´1 indi-
cates a perfectly complementary relationship. This metric is used to show the correlation
between the frequencies in the obtained reconstruction as compared to the full bandwidth
reconstruction.

5. Results
5.1. Results—20% Bandwidth

In Figure 4, the results obtained using Phantom I as test data are presented for different
models. Figure 4a shows the band-limited reconstruction obtained after reducing the
frequency information to 20%, compared to the full bandwidth reconstruction, which is
shown in Figure 4b. The speckle variation is reduced in the full bandwidth reconstruction
compared to the band-limited reconstruction. The result obtained using HE and the CLAHE
are shown in Figure 4c,d. The reconstruction results obtained using these techniques
improve but also over-enhance the contrast and hence lead to information loss. As seen
from these reconstructions, the background is also enhanced and hence the RMSE and
PSNR values are even higher than the band-limited reconstruction. This is also visible
from the increase in the error and decrease in the PSNR values from Table 2. The results
obtained using the U-Net model are shown in Figure 4e and Figure 4f, respectively, for the
loss functions PL1 and PL2. The reconstruction obtained for Phantom I using SRCNN is
shown in Figure 4g and Figure 4h, respectively, for the loss functions PL1 and PL2. The
reconstruction obtained using the REDNet is shown in Figure 4i and Figure 4j, respectively,
for the loss functions PL1 and PL2. The reconstructions obtained using the PL1 loss are
better as compared to using the PL2 loss for training the DL models. The improvements
obtained in RMSE and PSNR compared to the band-limited reconstruction are 35.5% and
3.85 dB, utilizing the REDNet model with PL1 loss function.

Figure 4. Results of the bandwidth improvement for Phantom I for different models (a) Band-
limited image (b) Full Bandwidth image (c) Histogram Equalization (d) Contrast Limited Adaptive
Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1 (h) SRCNN-PL2 (i) REDNet-
PL1 (j) REDNet-PL2. Red and blue boxes show the different marked regions.
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Table 2. The average metric values for all the test datasets, for all the models and state-of-the-art
techniques for 20 % Bandwidth. The best scores for each dataset are written in bold font.

Dataset Model
20% Bandwidth 40% Bandwidth 60% Bandwidth

RMSE PSNR RMSE PSNR RMSE PSNR

Phantom I

Bandwidth limited 0.141 ˘ 0.016 17.049 ˘ 1.017 0.106 ˘ 0.012 19.590 ˘ 1.010 0.080 ˘ 0.010 21.953 ˘ 1.111
HE 0.297 ˘ 0.044 10.642 ˘ 1.316 0.280 ˘ 0.040 11.156 ˘ 1.296 0.265 ˘ 0.039 11.632 ˘ 1.331

CLAHE 0.344 ˘ 0.037 9.331 ˘ 0.948 0.324 ˘ 0.033 9.838 ˘ 0.908 0.307 ˘ 0.032 10.305 ˘ 0.928
PL1(U-Net) 0.097 ˘ 0.012 20.311 ˘ 1.123 0.134 ˘ 0.040 17.777 ˘ 2.387 0.091 ˘ 0.027 21.132 ˘ 2.296
PL2(U-Net) 0.581 ˘ 0.325 6.140 ˘ 5.145 0.667 ˘ 0.246 4.298 ˘ 4.030 0.083 ˘ 0.013 21.764 ˘ 1.328

PL1(SRCNN) 0.093 ˘ 0.012 20.683 ˘ 1.129 0.106 ˘ 0.011 19.590 ˘ 1.010 0.062 ˘ 0.009 24.276 ˘ 1.296
PL2(SRCNN) 0.131 ˘ 0.015 17.690 ˘ 0.915 0.108 ˘ 0.016 19.384 ˘ 1.208 0.080 ˘ 0.013 22.014 ˘ 1.428

PL1(RED) 0.091 ˘ 0.012 20.903 ˘ 1.189 0.077 ˘ 0.010 22.369 ˘ 1.219 0.059 ˘ 0.008 24.661 ˘ 1.302
PL2(RED) 0.116 ˘ 0.013 18.802 ˘ 0.956 0.092 ˘ 0.014 20.839 ˘ 1.279 0.072 ˘ 0.012 22.978 ˘ 1.442

Carotid
artery

Bandwidth limited 0.165 ˘ 0.026 15.768 ˘ 1.376 0.110 ˘ 0.018 19.266 ˘ 1.359 0.084 ˘ 0.013 21.577 ˘ 1.327
HE 0.313 ˘ 0.030 10.131 ˘ 0.856 0.269 ˘ 0.026 11.451 ˘ 0.862 0.242 ˘ 0.023 12.348 ˘ 0.836

CLAHE 0.344 ˘ 0.028 9.310 ˘ 0.733 0.298 ˘ 0.026 10.557 ˘ 0.761 0.270 ˘ 0.023 11.395 ˘ 0.753
PL1(U-Net) 0.096 ˘ 0.015 20.446 ˘ 1.378 0.236 ˘ 0.020 12.560 ˘ 0.757 0.169 ˘ 0.018 15.490 ˘ 0.901
PL2(U-Net) 0.247 ˘ 0.121 13.010 ˘ 3.674 0.806 ˘ 0.088 1.927 ˘ 0.955 0.088 ˘ 0.005 21.120 ˘ 0.512

PL1(SRCNN) 0.107 ˘ 0.013 19.477 ˘ 1.162 0.080 ˘ 0.012 22.002 ˘ 1.318 0.066 ˘ 0.010 23.657 ˘ 1.381
PL2(SRCNN) 0.151 ˘ 0.007 16.435 ˘ 0.408 0.112 ˘ 0.008 19.028 ˘ 0.606 0.082 ˘ 0.008 21.786 ˘ 0.890

PL1(RED) 0.095 ˘ 0.013 20.523 ˘ 1.242 0.077 ˘ 0.011 22.399 ˘ 1.333 0.063 ˘ 0.010 24.134 ˘ 1.471
PL2(RED) 0.125 ˘ 0.008 18.110 ˘ 0.608 0.093 ˘ 0.009 20.655 ˘ 0.858 0.074 ˘ 0.008 22.716 ˘ 0.960

Commercial
phantom

Bandwidth limited 0.204 ˘ 0.032 13.885 ˘ 1.276 0.195 ˘ 0.040 14.390 ˘ 1.724 0.187 ˘ 0.049 14.874 ˘ 2.363
HE 0.236 ˘ 0.024 12.586 ˘ 0.840 0.229 ˘ 0.030 12.863 ˘ 1.130 0.226 ˘ 0.035 13.039 ˘ 1.366

CLAHE 0.287 ˘ 0.023 10.871 ˘ 0.674 0.282 ˘ 0.027 11.017 ˘ 0.823 0.279 ˘ 0.031 11.130 ˘ 0.967
PL1(U-Net) 0.197 ˘ 0.020 14.146 ˘ 0.884 0.210 ˘ 0.032 13.638 ˘ 1.359 0.187 ˘ 0.041 14.814 ˘ 2.115
PL2(U-Net) 0.421 ˘ 0.095 7.736 ˘ 1.983 0.467 ˘ 0.070 6.720 ˘ 1.340 0.338 ˘ 0.357 12.348 ˘ 6.212

PL1(SRCNN) 0.202 ˘ 0.025 13.956 ˘ 1.110 0.192 ˘ 0.018 14.354 ˘ 0.800 0.183 ˘ 0.032 14.876 ˘ 1.600
PL2(SRCNN) 0.223 ˘ 0.063 13.429 ˘ 2.717 0.217 ˘ 0.045 13.483 ˘ 1.915 0.188 ˘ 0.030 14.623 ˘ 1.338

PL1(RED) 0.201 ˘ 0.025 13.985 ˘ 1.120 0.191 ˘ 0.019 14.410 ˘ 0.844 0.182 ˘ 0.037 14.968 ˘ 1.866
PL2(RED) 0.204 ˘ 0.061 14.242 ˘ 2.894 0.193 ˘ 0.047 14.575 ˘ 2.238 0.179 ˘ 0.026 15.013 ˘ 1.217

Phantom II

Bandwidth limited 0.155 ˘ 0.021 16.297 ˘ 1.212 0.100 ˘ 0.012 20.044 ˘ 1.132 0.074 ˘ 0.009 22.690 ˘ 1.201
HE 0.318 ˘ 0.032 9.994 ˘ 0.936 0.282 ˘ 0.025 11.021 ˘ 0.815 0.260 ˘ 0.022 11.742 ˘ 0.778

CLAHE 0.355 ˘ 0.027 9.017 ˘ 0.672 0.317 ˘ 0.023 10.007 ˘ 0.634 0.294 ˘ 0.022 10.672 ˘ 0.662
PL1(U-Net) 0.089 ˘ 0.012 21.086 ˘ 1.217 0.207 ˘ 0.040 13.869 ˘ 1.874 0.146 ˘ 0.030 16.932 ˘ 1.910
PL2(U-Net) 0.393 ˘ 0.210 9.334 ˘ 4.655 0.854 ˘ 0.173 1.566 ˘ 1.929 0.081 ˘ 0.006 21.862 ˘ 0.669

PL1(SRCNN) 0.096 ˘ 0.011 20.427 ˘ 1.067 0.069 ˘ 0.010 23.331 ˘ 1.248 0.054 ˘ 0.008 25.395 ˘ 1.270
PL2(SRCNN) 0.144 ˘ 0.013 16.855 ˘ 0.767 0.106 ˘ 0.009 19.513 ˘ 0.709 0.074 ˘ 0.009 22.646 ˘ 0.984

PL1(RED) 0.085 ˘ 0.012 21.457 ˘ 1.238 0.065 ˘ 0.010 23.790 ˘ 1.368 0.051 ˘ 0.007 25.975 ˘ 1.274
PL2(RED) 0.119 ˘ 0.009 18.506 ˘ 0.630 0.087 ˘ 0.009 21.245 ˘ 0.899 0.067 ˘ 0.009 23.577 ˘ 1.099

In vivo carotid
mimicking setup

Bandwidth limited 0.172 ˘ 0.040 15.487 ˘ 1.876 0.134 ˘ 0.027 17.591 ˘ 1.695 0.110 ˘ 0.018 19.274 ˘ 1.482
HE 0.276 ˘ 0.042 11.271 ˘ 1.303 0.254 ˘ 0.039 11.984 ˘ 1.302 0.244 ˘ 0.036 12.361 ˘ 1.285

CLAHE 0.302 ˘ 0.038 10.482 ˘ 1.090 0.276 ˘ 0.036 11.257 ˘ 1.113 0.266 ˘ 0.033 11.554 ˘ 1.065
PL1(U-Net) 0.143 ˘ 0.027 17.081 ˘ 1.680 0.250 ˘ 0.028 12.103 ˘ 0.976 0.177 ˘ 0.023 15.127 ˘ 1.134
PL2(U-Net) 0.199 ˘ 0.078 14.522 ˘ 2.834 0.736 ˘ 0.087 2.723 ˘ 0.995 0.100 ˘ 0.013 20.094 ˘ 1.097

PL1(SRCNN) 0.135 ˘ 0.023 17.558 ˘ 1.544 0.117 ˘ 0.019 18.775 ˘ 1.477 0.100 ˘ 0.016 20.134 ˘ 1.487
PL2(SRCNN) 0.148 ˘ 0.013 16.602 ˘ 0.719 0.130 ˘ 0.017 17.784 ˘ 1.130 0.104 ˘ 0.016 19.795 ˘ 1.400

PL1(RED) 0.133 ˘ 0.022 17.654 ˘ 1.536 0.118 ˘ 0.019 18.710 ˘ 1.476 0.098 ˘ 0.016 20.340 ˘ 1.553
PL2(RED) 0.130 ˘ 0.015 17.787 ˘ 0.975 0.111 ˘ 0.017 19.204 ˘ 1.316 0.096 ˘ 0.015 20.485 ˘ 1.424

Figures 5–8 show the reconstructions obtained using the Carotid artery, Commercial
phantom, Phantom II, and porcine–pork belly datasets for 20% band-limited data as input.
The results and the improvements obtained in RMSE and PSNR compared to the band-
limited reconstruction are shown in Table 2 and Table 3, respectively. The REDNet model
with PL1 loss performs better in 3 out of 4 cases for these datasets. A Sobel filter is inherently
included in the REDNet model, which can increase the features captured by the layers and
hence the REDNet model gives the best results among the three models.



Healthcare 2023, 11, 123 10 of 19

Figure 5. Results of the bandwidth improvement for Carotid artery phantom for different models
(a) Band-limited image (b) Full Bandwidth image (c) Histogram Equalization (d) Contrast Limited
Adaptive Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1 (h) SRCNN-PL2
(i) REDNet-PL1 (j) REDNet-PL2.

Figure 6. Results of the bandwidth improvement for Commercial phantom for different models
(a) Band-limited image (b) Full Bandwidth image (c) Histogram Equalization (d) Contrast Limited
Adaptive Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1 (h) SRCNN-PL2
(i) REDNet-PL1 (j) REDNet-PL2.
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Figure 7. Results of the bandwidth improvement for Phantom II for different models (a) Band-
limited image (b) Full Bandwidth image (c) Histogram Equalization (d) Contrast Limited Adaptive
Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1 (h) SRCNN-PL2 (i) REDNet-
PL1 (j) REDNet-PL2.

Figure 8. Results of the bandwidth improvement for in vivo carotid mimicking setup for different
models (a) Band-limited image (b) Full Bandwidth image (c) Histogram Equalization (d) Contrast
Limited Adaptive Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1 (h) SRCNN-
PL2 (i) REDNet-PL1 (j) REDNet-PL2.

The improvements are also visible in the reconstructions obtained, as the artifacts are
less and the edges are more visible. The red box shown in Figure 4 shows the improvement
in the edge information and less artifacts. The edges are clearer in the full-bandwidth
reconstruction shown in Figure 4b as compared to the band-limited reconstruction shown
in Figure 4a. The histogram based methods (Figure 4c,d) show a loss in the edge information
while the DL based methods show an improvement in the edges and hence improve the
reconstruction (Figure 4e–j). The PL1 loss outperforms the PL2 loss in most cases. The
reconstruction obtained using the U-Net-PL2 model shows the artifact present in the
reconstruction (Figure 4f). The blue box (Figure 4) shows the artifact introduced by the PL2
loss and hence is not suitable for reconstruction. Thus, the PL1 loss is the choice of loss
function for the reconstruction although, in some cases the PL2 loss function gives better
reconstruction image quality and image metrics.
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Table 3. The improvements obtained for all test datasets with the different models and state-of-the-art
techniques for 20%, 40% and 60% Bandwidth.

Dataset Bandwidth RMSE (%) PSNR (dB)

Phantom I
20% 35.46 3.85
40% 27.35 2.77
60% 26.25 2.70

Carotid artery
20% 42.42 4.76
40% 30.00 3.13
60% 25.00 2.56

Commercial phantom
20% 3.43 0.36
40% 2.05 0.18
60% 4.28 0.14

Phantom II
20% 45.16 5.16
40% 35.00 3.75
60% 31.08 3.28

In vivo carotid mimicking setup
20% 24.24 2.30
40% 17.16 1.61
60% 12.72 1.21

5.2. Results—40% and 60% Bandwidth

Next, we performed the same experiments for the 40% and 60% bandwidth limitation
scenarios. The goal of these set of experiments was to investigate whether the model also
works for other bandwidth limitations and to check the applicability of the model for
different bandwidth reductions. Again, in these cases, the model was trained only on the
Phantom I dataset and then tested on all the datasets.

The results obtained when the US images are limited to 40% and 60% bandwidth for
all the different test datasets. The RMSE and PSNR values for the 40% and 60% bandwidth
reconstruction are provided in Table 2. The improvements obtained for all the test datasets
for different bandwidths are shown in Table 3. The reconstructions obtained using the
DL-based methods improve the RMSE and PSNR. The DL based reconstructions also
reduce the artifacts present in the band-limited reconstructions and thus the image quality
is improved. The improvement for 60% bandwidth limitation is lower as compared to the
40 % bandwidth limitation. This occurs since the 60% reconstructions are better than the
40% band-limited reconstructions and this limits the improvement which can be obtained
compared to the 40% band-limited reconstructions.

6. Discussion/Analysis of the Results

The purpose of this study was to develop and investigate methods based on DL
for enhancing the US bandwidth. We evaluated several architectures with different loss
functions in their ability to improve the reconstruction. When looking at the metrics,
all training pipelines with PL1 loss show an improvement over the bandwidth limited
reconstructions, while the PL2 loss does not bring improvement for networks other than
REDNet. There is no pipeline that outperforms all others on each metric but in general,
the REDNet model with loss PL1 performs best on RMSE and PSNR for all the datasets.
The model parameters and model size are shown in Table 4. The REDNet model has the
minimum number of parameters as well as the smallest size and gives the best performance
for most cases. The developed models and codes are available at https://github.com/
navchetan-awasthi/US-Bandwidth-Improvement, accessed on 5 December 2022.

https://github.com/navchetan-awasthi/US-Bandwidth-Improvement
https://github.com/navchetan-awasthi/US-Bandwidth-Improvement
https://github.com/navchetan-awasthi/US-Bandwidth-Improvement
https://github.com/navchetan-awasthi/US-Bandwidth-Improvement
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Table 4. Total parameters including the Model parameters (Trainable Parameters and Non-trainable
Parameters) and Model Size are shown for all the models.

Model Total Parameters Trainable Parameters Non-Trainable Parameters Model Size (MB)

SRCNN 85,889 85,889 0 1.06

U-Net 2,164,433 2,161,489 2944 26.3

REDNet 60,760 60,440 320 0.87

6.1. Error Analysis

We have performed an error analysis to see how much the reconstructions obtained
using the different methods are different from the full bandwidth reconstruction for Phan-
tom I. In Figure 9, the resulting error between the output image and the target image
obtained using Phantom I as the test dataset for different models is presented. Figure 9a
is the difference between the full bandwidth reconstruction and the band-limited recon-
struction obtained after reducing the frequency information to 20% of that obtained from
the full bandwidth reconstruction shown in Figure 4b. The resulting error obtained using
the histogram equalization and the contrast limited adaptive histogram equalization are
shown in Figure 9c,d. As can be seen from the figures of the resulting error, the dynamic
range of values obtained is higher as compared to the band-limited image because of
over-enhancement and hence the error is higher in histogram-based methods. The resulting
error obtained using the U-Net model are shown in Figure 9e and Figure 9f, respectively,
for the different loss functions. The reconstruction error obtained for the Phantom I using
SRCNN is shown in Figure 9g and Figure 9h, respectively, for the loss functions PL1 and
PL2. The reconstruction obtained using the REDNet is shown in Figure 9i and Figure 9j,
respectively, for the loss functions PL1 and PL2. The dynamic range of the error in the
colorbar reflects the improvement obtained in the reconstruction as the range is less for DL
based methods. Furthermore, loss of structure in the error points to the improvement ob-
tained in the reconstruction. Thus, Figure 9e,g,i show less error as compared to Figure 9f,h,j.
This implies that the reconstructions errors obtained using the PL1 loss are low compared
to the PL2 loss, which can also be depicted from Table 2.

Figure 9. Results of the error of the bandwidth improvement for Phantom I for the different models
(a) Band-limited image (b) Full Bandwidth image (c) Histogram Equalization (d) Contrast Limited
Adaptive Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1 (h) SRCNN-PL2
(i) REDNet-PL1 (j) REDNet-PL2.

6.2. Frequency Domain Comparison

We also investigated the frequency spectrum response for the reconstruction to under-
stand the improvement in spatial bandwidth of the reconstructions obtained. In Figure 10,
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the frequency spectrums are plotted using Phantom I reconstructed data as input data
for the different models presented. Figure 10a represents the frequency spectrum for the
band-limited reconstruction, obtained after reducing the frequency information to 20% of
the full bandwidth spectrum (shown in Figure 10b). The resulting frequency spectrum
obtained using HE and CLAHE are shown in Figure 10c and Figure 10d, respectively. As
seen from the reduction in PC values, there is a reduction in the frequency component cor-
relation and hence the reconstructions obtained have not improved over the band-limited
reconstruction. The resulting frequency spectrum obtained using the U-Net, SRCNN, and
REDNet are shown in Figure 10e–j. The reconstruction errors obtained using the PL1 loss
are low as compared to using the PL2 loss for training the DL models, which is also visible
in a high PC value for the PL1 loss and a low PC value for the PL2 loss. The reduction in PC
values correlates with the RMSE/PSNR obtained, as can be seen in Table 2. A high RMSE,
low PSNR value gives low PC and vice versa and the spectrums of the full bandwidth
reconstruction is similar to the reconstructions obtained using DL-based methods with
PL1 loss.

Figure 10. Results of the frequency spectrum of the bandwidth improvement for Phantom II for
the different models (a) Band-limited image (b) Full Bandwidth image (c) Histogram Equalization
(d) Contrast Limited Adaptive Histogram Equalization (e) U-Net-PL1 (f) U-Net-PL2 (g) SRCNN-PL1
(h) SRCNN-PL2 (i) REDNet-PL1 (j) REDNet-PL2.

6.3. Histogram Analysis

Finally, we performed first-order speckle statistics, i.e., analyzed the histogram of the
speckle for the band-limited data, full bandwidth data, and the images obtained using the
DL-based techniques for the envelope image. Figure 11a shows the Commercial phantom
used for the speckle characteristics as well as the part of the image used for histogram
comparison. The histogram comparison for band-limited and the full bandwidth is shown
in Figure 11b, while the histogram comparison for the REDNet PL2 model and the full
bandwidth is shown in Figure 11c. As can be seen from the images, the overlap is increased
and hence the reconstructed images are better, compared to the band-limited reconstruction;
the speckles are more similar in nature, leading to reconstruction near to the full bandwidth
reconstruction in visual quality. Next, we performed the analysis of the speckle size.
The autocorrelation of the speckle pattern is obtained, and the full width half maximum
(FWHM) is computed to obtain the speckle size. The US imaging resolution is anisotropic,
and the speckle size is quantitatively evaluated by computing the eccentricity of the ellipse
that represents the uniformity of the resolution. The eccentricity of the ellipse containing
the longest and the shortest axis is the first eccentricity and is given as:

ecc1 “

?
b2 ´ a2

b
(5)
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where a and b are the shortest and the longest axis.

(a)

(b)

(c)

Figure 11. (a) Sample of a Commercial phantom image and the corresponding patch area which we
want to analyze, (b) Comparison of the histogram of band-limited and full bandwidth data, and,
(c) REDNet PL2 model and full bandwidth histogram.

A uniform distribution of the speckle size results in zero eccentricity of the ellipse,
but since the speckle size is disk shaped, a value of zero is impossible to reach, especially
at deeper depth. We performed an analysis of the eccentricity of the images before and
after the bandwidth improvement. The eccentricity of the ellipse for band-limited image
for a set of 10 images was calculated and averaged over the frames and was found to be
0.458 ˘ 0.073, while for the full bandwidth image it was found to be 0.237 ˘ 0.205. The
eccentricity of the image obtained using the REDNet model was found to be 0.296 ˘ 0.117
and hence it is improved as compared to the band-limited image. In addition, numerous
DL models have been proposed recently for super-resolution enhancement of images,
which can also be utilized for improving the bandwidth in US images. An improved
residual self-encoding and attention mechanism based super-resolution network was
proposed in Ref. [56] and a multi-scale convolution-based model was proposed in Ref. [57].
An efficient model based on neural architecture search and attention mechanism was
proposed in Ref. [58]. Other encoder-decoder networks are also available such as binocular
rivalry oriented predictive autoencoding network for blind stereoscopic image quality
measurement [59] and wavelet-based deep auto encoder-decoder (WDAED)-based image
compression [60]. These can also be used for bandwidth improvement after doing some
tweaks in the models. All of these models were shown to improve the results for natural
images with improved PSNR, and structural similarity index metric (SSIM) and can also be
utilized in future research for improving the bandwidth in US images.

6.4. Discussion

The models are trained only on the Phantom I dataset and tested on the other datasets.
Thus, the model generalizes very well on the unseen datasets and hence can be utilized
in real settings without re-training the model. As can be seen from Table 2, the model
REDNet-PL1 performs the best in most of the cases with different bandwidth limitations as
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well as for different test datasets. Thus, REDNet-PL1 model can be utilized for improving
the limited bandwidth reconstruction.

The following factors should be considered for potential practical applications of the
architectures.

• Firstly, the amount of bandwidth limitation that can be applied to the full bandwidth
data. The bandwidth limited reconstructions sometimes may lose too much infor-
mation for the model to predict certain structures that were present in the original
images. This leads to the complete or partial omission of these structures in the model-
enhanced reconstructions, and thus a significantly worse metric score, depending on
the dataset and the bandwidth limitation.

• Secondly, the models have trouble in predicting the speckle in US images, which
leads to smoothed images in some of the results. The loss of speckle also impacts
the usability of the images because the speckle is often used for various diagnostic
purposes, for example predicting the type of tissue [61]. Most US machines will have
some speckle reduction in post processing. So, this should not be a big problem for
normal B-mode imaging, if there is improvement in resolution and quality.

For future research, there are some interesting directions that can be considered: Firstly,
the models currently use either MSE loss or a combination of VGG16 perceptual loss and
MSE. A viable option might be to use other loss functions, for example, using a texture loss
as seen in [62] could be considered, because the models currently smooth the images in
some cases. A texture loss might result in the generated images being less smoothed and
closer to the original texture and thus retain the speckle. Secondly, currently the models
cannot predict certain structures due to severe bandwidth limitation. The current models
are trained with a 20% fractional bandwidth. A good point of research would be to train a
generalized network with all data and different bandwidth limited images as input, to see
for what range of bandwidth limitation these structures can or cannot be predicted. Lastly,
similar to multi noise level image denoising, where various levels of noise are used as
input [63], another interesting approach might be including different bandwidth limitation
in the images in the input set to make the models potentially more robust when it comes to
different rates of bandwidth limiting.

7. Conclusions

In conclusion, DL-based architectures with two different training losses were utilized
and compared with histogram-based techniques. The developed methods show that the DL-
based methods transform the limited bandwidth reconstruction to an image comparable
with one obtained with the full US bandwidth and can thus be utilized for improving
reconstruction. We compared some of the state-of-the-art architectures for transforming
low bandwidth images into high bandwidth images. The REDNet architecture shows
improvements as high as 45.5% on RMSE and 3.85 dB in PSNR for 20% bandwidth limitation.
The proposed architecture is lightweight compared to U-Net, has less computational cost,
and hence can be utilized in real time settings.
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