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Many studies provided evidence regarding the influence of built environment (BE) on commuting time. However, few studies
have considered the spatial heterogeneity of such impacts. Using data from Nanjing, China, this study employs two-step clustering
and gradient boosted regression trees (GBRT) to segment the neighborhoods into different types and investigate the effects of BE
characteristics on the commuting time of active users. The results show a strong effect of BE characteristics on commuting time,
involving active modes. The importance of BE characteristics varies among neighborhood types. For active commuters in the
internal region of Nanjing, commuting time is affected mostly by the land use mix at the work end. The lowest impact of BE in
internal regions is associated with metro station density. For active commuters in external region of the city, the relative
importance of intersection density at the home end is the largest (as high as 5.76%). Moreover, other significant differences are

found in the associations between BE characteristics and active commuting time in the two regions.

1. Introduction

Active travel mode, referring to walking or cycling, is a viable
alternative to driving in short-to-medium distance trips [1].
Regular active travel such as active commuting to work is
thought to benefit both the environment and an individual’s
physical health [2]. To encourage active travel, several in-
terventions such as bike-sharing programs and provisions of
footpaths and cycle lanes have been implemented. However,
such promotion does not bring a significant increase in the
share of active commuting, and private cars are still the most
widely used mode [3].

The low prevalence of active commuting can be at-
tributed in part to urbanization’s increasing average

commute distance [4, 5]. Longer trip distances imply that
active commuters will spend more time on the road and thus
have less life satisfaction. Despite the fact that active mode
commuting generates positive utilities such as a health-
enhancing effect, commuters prefer to shorten it due to time
budgets [6]. Active transportation, particularly cycling, can
be used for longer distance trips if the time cost of com-
muting by active modes is appropriately reduced [4]. As a
result, it is critical to investigate factors that influence the
commuting time of active users.

Many studies on travel behavior have found that the built
environment and sociodemographics are strongly associated
with walking and cycling (e.g., see [7-14]). Individuals’
active travel choices are influenced by built-environment
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characteristics such as walk-bike infrastructure [7], street
pattern [8], route connectivity [9], street greenery [10], and
population density [11]. Changes in the built environment,
according to Handy et al. [12], influence travel mode choice
primarily by altering travel time. Furthermore, Eldeeb et al.
discovered that improving the built environment does not
have a homogeneous impact on the likelihood of using active
mode in different parts of the city [13]. However, rare studies
have focused on the commuting time of active mode and
examined whether the built environment has a spatially
different impact on it.

Therefore, this study attempts to advance the literature
by investigating the nonlinear associations between the built
environment and travel time of active commuters, ac-
counting for spatial heterogeneity. First, the two-step
clustering method is used to differentiate the regions with
various built-environment features. Next, gradient-boosted
regression trees are generated for predicting the commuting
time of active travelers in each region. Travelers’ socio-
demographics, trip characteristics, and built-environment
characteristics are considered as conditional variables.

The remainder of this article is structured as follows.
Section 2 presents a literature review on the association
between built environment and active travel. Section 3
describes the data source used in this study and built-en-
vironment characteristics at the traffic analysis zone (TAZ)
level, as well as commuters’ personal profiles. Section 4
briefly describes the methodology used in this study, while
Section 5 discusses the findings. Finally, we present the
summary of the key findings and discuss their implications
for planning practice.

2. Literature Review

2.1. Association between the Built Environment and Active
Travel. The built environment is the physical setting
designed to meet people’s need to engage in activities. The
built-environment characteristics that relate to residents’
travel behavior are defined from “3Ds” into “5Ds,” which are
“density,” “diversity,” block “design,” “destination,” “ac-
cessibility,” and “distance” to transit [15, 16]. Some scholars
specifically focused on the impact of the “5Ds,” as reflection
of built-environment characteristics, on active travel (e.g.,
see [7-14, 17-19)).

Density, as a key component of built environment, has a
paradoxical effect on active travel choice [20]. Density
appeared to have a significant impact on choosing active
travel modes in some studies, such as reference [21], but not
in other studies (e.g., see [22]). Zhu et al. discovered that
increasing population density increases residents’ possibility
of commuting in active mode [11]. Block design such as
street crossing density, road density, and connected side-
walks have profound effects on active travel [8, 23, 24].
Accessibility indicators such as employment accessibility
[18], destination accessibility [25], and transit accessibility
[26] are found to be positively correlated with residents’ use
of active travel. Diversity that measures land use mix in a
neighborhood/region is closely associated with the choice of
active travel [13, 23, 27]. Furthermore, Raman and Roy
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found that mixing multiple land uses beyond a certain
proportion can have an adverse effect [28]. For commuting,
the mix of land use types that specify jobs and houses plays a
major role. The appropriate job-to-housing ratio can be an
indication of whether residents are likely to be employed in
the neighboring area of their residence. This, in turn, in-
fluences commute distance and facilitates using active travel
to go to work.

All the above-mentioned studies have confirmed the
contribution of built environment to active travel primarily
by using regression-based models such as multilevel re-
gression [11], alogit-based model [8, 18, 24], and a structural
equation model [23, 25]. However, these models are pri-
marily based on a priori, often linear relation between the
built environment and active mobility. A parallel stream of
studies examines the association between built environment
and travel behavior using machine learning methods. Ding
et al. applied decision trees [29] to extract the nonlinear
relationship between a built environment and commute
mode choice. Tao et al. assessed the importance of BE
components for the energy consumption of active users by
applying gradient boosting decision trees [19]. They found
the distance to the nearest park posed the greatest impact.
Cheng et al. used a random forest to assess BE’s impact on
elderly active travel and found that population density had
the highest contribution [30]. Liu et al. in their most recent
study used the extreme gradient boosting approach to ex-
amine the association of built environment and active travel
choice. They found that trip characteristics contributed more
than the built environment [31].

2.2. Spatial Heterogeneity. Spatial heterogeneity refers to the
varying impact of the same influential factors at different
spatial scales or geographical locations. Several studies have
investigated whether the relationship between the built
environment and travel behavior varies across different
types of neighborhoods [32, 33]. Srinivasan and Ferreira
found the built environment around residential areas to pose
different effects on travel mode choice compared to that
around workplaces [34]. For instance, land use mix around
households’ residence has stronger effects on household
travel mode choice and travel distances than that at job
locations [35]. Using the geographically weighted regression
(GWR) model, Tu et al. found significantly different impacts
of built environment on travel mode choice [36]. Zhang et al.
used a hierarchical linear model to explore the relationship
between the neighborhood-built environment and trip
distance [37]. They found significant spatial heterogeneity in
the influence of the built environment on travel behavior.
Neighborhoods located in different areas of the city
sometimes share similar characteristics, but their effects can
be different. Zhong et al. used a geographically weighted
regression model to analyze the spatial heterogeneity of the
effects of an urban built environment on road travel time
and found that spatially varying relationships exist [38].
Ding et al. used spline in a mixed logit model and concluded
that nonlinearity exists in the relation between built envi-
ronment and commuting mode choice [39].
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In summary, existing studies have empirically done a lot
on the measurement of BE on active travel behavior or
spatial heterogeneity of BE on travel behavior. However,
none have investigated how the built environment influ-
ences the commuting time of active modes and compre-
hensively considered the potential impact of spatial
heterogeneity. Thus, this study contributes to the existing
body of the literature by exploring nonlinear relation
(without any a priori assumptions) between built environ-
ment and active commuting time taking into account spatial
heterogeneity. It is important to note that the duration of
active mobility for commuting purpose has never been the
subject of examination within the topic of nonlinear rela-
tionship between built environment and active mobility.

3. Data

3.1. Study Area and Data Sources. The data used in this study
originated from Nanjing, China. Nanjing is a mega-city and
the provincial political and economic center of Jiangsu. It is
located in the eastern region of China, downstream of the
Yangtze River. It is an important gateway city for the central
and western regions’ development, which is fueled by ra-
diation from the Yangtze River Delta. Nanjing is divided into
11 administrative regions, covering a total area of 6,587 km?
and a built-up area of 868 km”. The resident population was
9.42 million in 2021, with an urban population of 8.19
million and an urbanization rate of 86.9%. In 2021, the city’s
gross regional product reached 163,532 billion yuan. This
study concentrates on the most urbanized regions, including
Gulou, Qinhuai, Xuanwu, Jianye, Yuhuatai, Qixia, Jiangn-
ing, Pukou, and Luhe (two regions, Gaochun and Lishui,
were newly designated as regions during the urbanization
and were not involved in this survey). Seven of them are on
the southern side of the Yangtze River, while two are on the
northern side. For transportation census and management,
the Nanjing transportation planning agency divides the
entire study area of Nanjing into 766 traffic analysis zones
(TAZ) based on land use and administration boundaries.
Figure 1 depicts the study area of Nanjing, China.

In this study, four data sources are used: Nanjing
Household Travel Survey data from 2016; Nanjing urban GIS
data; points of interest (POIs) from Baidu map; and an open
street map (OSM). The Nanjing Household Travel Survey is
an annual survey conducted by the Nanjing transportation
planning agency. It is carried out through household in-
terviews in order to learn about the daily mobility patterns of
urban residents. In 2016, the survey employed the stratified
random sampling technique to guarantee that the sample
size was proportional to the population size. In total, 8,387
people from 3,015 households were invited to participate in
the survey. The survey collected individual’s sociodemo-
graphic information (e.g., household income, car ownership,
gender, and age) and their travel diaries (e.g., trip origin,
destination, purpose, departure time, and travel mode) on a
given day. Based on the provided trip purpose and travel
mode information, 1,937 commuters used active modes,
such as walking, bicycling, and e-cycling. In China, riding an
e-bike does not imply much higher speed than ordinary

bikes due to the infrastructure limitation. Thus, this study
included it as one of the active travel modes, from home to
work in the morning were chosen for this study.

The built-environment characteristics are measured at
the TAZ level using the software of ArcGIS. Data sources,
including Baidu map POIs, open street maps, and urban
land use GIS data, are used. Many studies have focused on
the built-environment characteristics surrounding resi-
dences, but others, such as Sun et al. [22] and Ding et al. [29]
have emphasized the importance of trip destination char-
acteristics. Thus, this study measures the TAZ characteristics
for both the home and workplace ends. Among all these data
sources, POIs provide geographic information about specific
points and are used to calculate transit-related indicators
such as intersection density, bus stop density, and metro
station density within the TAZ. The open street map is used
to calculate the density of roads in each TAZ. The urban land
use GIS data are used to calculate three indicators of land
use: land use mix and the ratios of residences and working
places to the area of TAZ. The land use mix is determined by
an entropy index of nine land use types around commuters’
residences and work places. The nine different types of land
uses include residence, industrial use, public administration,
commercial services, green space and plazas, construction,
transportation, public facilities, and warehousing. The in-
dicator is calculated as follows:

-1
LandMix = — ¥ p.1n p,, 1
andMix lnanllnp, (1)

where p; is proportion of the type i land use, and # is the
number of land use types.

3.2. Data Description

3.2.1. Built Environment at the TAZ Level. Table 1 shows the
definitions and descriptive statistics of eight built-envi-
ronment variables obtained at the TAZ level. All 766 TAZs
have the BE characteristics in five dimensions: density,
design, distance to transit, destination accessibility, and
diversity. Housing density corresponds to the density of
residential development. Road density and intersection
density that describe the characteristics of a street network
represent street design. Bus stop density and metro station
density measure the accessibility of bus and subway services
and are related to distance to transit. Job density indicates
destination accessibility; land use mix represents diversity;
and distance to the CBD reflects regional location.

3.2.2. Statistics of Active Commuters. We matched BE fea-
tures for each active commute trip based on both home-end
and work-end TAZs in the trip records. Table 2 depicts the
sociodemographics, trip characteristics, and BE character-
istics of 1,937 commuters by active modes. Males account for
43.9% of the sample, which is slightly lower than females.
56.4% have a bachelor degree or higher the majority are aged
between 30 and 49 and 52.7% own a driving license. The
average household has 0.63 cars, while the average number
of children aged six years old or below is 0.12. 53.5% of the
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FIGure 1: Case study area in Nanjing.

TABLE 1: Built-environment characteristics for 766 TAZs.

Names Variable descriptions Means (S.D.)
Road density Total road length/TAZ area (km/km?) 6.85 (4.57)
Intersection density Intersections/TAZ area (count/km?) 4.39 (11.55)
Bus stop density Bus stops/TAZ area (count/km?) 4.85 (4.95)
Metro station density Metro stations/TAZ area (count/km?) 0.23 (0.61)
House density Residential area/TAZ area 0.19 (0.20)
Job density Industrial, public administration, and commercial area/TAZ area 0.24 (0.21)
Land use mix An entropy index of nine types of land use 0.41 (0.19)
Distance to CBD Euclidean distance from TAZ centroids to CBD* (km) 16.40 (9.66)

*CBD refers to the center of the TAZ in which Xinjiekou business district is located.

respondents have an annual household income over 100,000
CNY. The majority (81.5%) leaves for work between 7:00 am
and 8:30 am. The sample’s average commute time is
21.52 minutes, and the average trip distance to work is
4.98 km.

4. Methodology

To examine the impact of built-environment characteristics
on active commuting time, this study first divides Nanjing’s
766 zones into different types using a two-step clustering
method. Then, in each region, gradient-boosted regression
trees are constructed to investigate the determinants and
relative importance of the influential factors on active
commuting time. The following sections elaborate the
specifics of the analysis.

4.1. Two-Step Clustering Method. The two-step clustering
method has been extensively used in the transportation
field due to its flexibility and capability in data processing
[40, 41]. It has an advantage over other clustering
techniques in that it can handle both continuous and
discrete variables simultaneously. In addition, it can
determine the optimal number of clusters automatically
and its clustering accuracy is unaffected by the size of
data [42, 43].

The clustering consists of two procedures. First, it
clusters the 766 zones into groups according to their sim-
ilarity in BE characteristics. Then, the merging algorithm is
used to gradually combine these groups until only one group
is left. The optimal clustering number is determined using
Bayesian information criterion (BIC). Interested readers can
refer to Chiu et al. [44].



Journal of Advanced Transportation

TaBLE 2: Sample description of active commuters (N =1937).

Names

Variable descriptions

Means (S.D./percent)

Sociodemographics

Gender Gender: 1 =male; 0 =female 0=56.1%, 1=43.9%

Education Hold a bachelor degree or above: 1=yes; 0=no 0=43.6%, 1=56.4%

Age Respondent’s age: 1 =20-29 years old; 2 =30-39 years old; 3 =40-49 years old; 1=17.6%, 2=27.1%, 3=36.1%,
4 =50 or more years old 4=19.2%

License Hold a driving license: 1 =yes; 0 =no 0=47.3%, 1=52.7%

Cars Number of cars owned by a household (count) 0.63 (0.58)

Child Number of children at 6 years old or younger (count) 0.12 (0.34)

Income Household income per year: 1 =over 100,000 CNY; 0= other 0=46.7%, 1=53.3%

Trip attributes

Departure time
P 0=no

Trip distance (k)
Commuting time

The commute trip occurs in morning peak hours from 7:00 am to 8:30 am: 1 =yes;
Euclidean distance from residential TAZ centroid to workplace TAZ centroid

Commuting time spent on road (min)

0=18.5%, 1=81.5%

4.98 (6.38)
21.52 (11.98)

Built environment at home end

Road density Total road length per TAZ area (km/km?) 9.78 (3.54)
Inter.sectlon Intersections/TAZ area (count/kmz) 10.12 (16.99)
density

Bus stop density Bus stops/TAZ area (count/km?) 8.32 (5.39)
Metr.o station Metro stations/TAZ area (count/kmz) 0.53 (0.92)
density

House density Residential area/TAZ area 0.31 (0.19)
Job density Industrial, public administration, and commercial area/TAZ area 0.30 (0.21)
Land use mix An entropy index of nine types of land use 0.52 (0.16)
Distance to CBD Euclidean distance from TAZ centroids to CBD* (km) 9.39 (8.38)
Built environment at work end

Road density Total road length per TAZ area (km/km?) 9.77 (3.91)
Inter.sectlon Intersections/TAZ area (count/kmz) 11.48 (19.05)
density

Bus stop density Bus stops/TAZ area (count/km?) 8.48 (5.47)
Metrlo station Metro stations/TAZ area (count/km?) 0.46 (0.86)
density

House density Residential area/TAZ area 0.31 (0.19)
Job density Industrial, public administration, and commercial area/TAZ area 0.30 (0.20)
Land use mix An entropy index of nine types of land use 0.52 (0.16)
Distance to CBD Euclidean distance from TAZ centroids to CBD* (km) 9.35 (8.59)

*CBD refers to the centroid of the TAZ in which Xinjiekou business district is located.

4.2. Gradient-Boosting Regression Trees. Gradient-boosted
regression trees (GBRT) are an ensemble model that
combines gradient-boosting and regression trees [45, 46]. It
has myriad merits over the traditional linear regression
methods and has been often used in transportation research
[29, 37, 45]. First, GBRT is more effective at data prediction
and interpretation than general linear regressions or even
just a single tree due to its tree-based ensemble feature.
Second, it accommodates data with missing values and
avoids multicollinearity of explainable variables. Third, it
can calculate the relative importance of each variable
without making assumptions about the variables’ relation-
ships. Fourth, it is adaptable to both continuous and cate-
gorical types and is applicable to small data sets.
Furthermore, it avoids the overfitting issue that frequently
arises as the number of tree nodes rises by using gradient
boosting.

The GBDT model combines multiple regression trees
sequentially with each new tree adding up to correct the

errors of the previous ones. Given the training data
( yi,xi)}i\r, the specific learning steps are as follows:

(1) Initialize the base model F,(x) to be a constant:
N
Fy(x) = argmin, Z L(y57), (2)
i=1

where y; is the observed value, y is the predicted
value, and N is the number of observation. Squared
error is chosen as the loss function for the regression.

(2) For m=1 to M (M is the times of iterations or
optimal number of trees), compute the residual
which is mathematically calculated by the negative
derivation of loss function with respect to the pre-
vious model outcome:

L)

OF (x,) ,i={1,...,N}, (3)

:|F (0)=Fp1 (%)



where r,,; is negative gradient, and F(x;) is the
previous model.

(3) Fitaregression tree to the residuals r,,,; and minimize
the loss function:

J
h,, (x) = Zymjl(x € ij),
=1

]
Vmj = argminy ; L(}/,-,Fm_1 (x,-) + Z{VI(X € ij)>,
X;€R,,; J=
(4)

where h,, (x) is the m th regression tree, ] is the tree
depth, referring to the number of terminal nodes,
R,,; is the disjoint region partitioned by the terminal
nodes of m th tree, y,,; is the optimal coefficient for
R, j,andI(x € R, ;) equals to 1 when (x € R,,;), or 0
otherwise.

(4) Update the model:

J
Fpu(® = Fpy (0 + )y, I(x € R,,)). (5)
j=1

To prevent overfitting in the training procedure, hyper-
parameters including optimal number of trees M, learning
rate v, and tree depth J should be estimated by using test data
or cross-validation. The model is replaced by

J
Fpu(®) = Fp (0 +7v) c,i1(x €R,,;), (6)
j=1

where v is the learning rate that scales the contribution of
each tree. It has the value range from 0 to 1. Smaller values of
learning rate give rise to larger M value and results in minor
test error.

The optimal values of these parameters are determined
by performing the 5-fold cross-validation. Root mean
squared error (RMSE) is chosen as the performance
measurement. Parameters that result in the lowest cross-
validation error are preferred in the final model. For the 5
test datasets in cross-validation, RSMEL* is calculated as
follows:

RSME*' = (7)

where N/ is the data number in test set f.

Meanwhile, the learned regression trees {Tm}iw provide
interpretative results that show the relative influence of an
explanatory variable x, as follows [45]:

2 1 &
IK = M Z IK(Tm)>

m=1
(8)
=2 L
IK(Tm) = TtI[vt - K]’
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where J is the number of terminal nodes, J-1 is the number of
the nonterminal nodes, v, is the feature associated with the
node f, 7; is the improvement in squared error after the
splitting node t, and I[v, = k] equals to 1 when v, = x,, or 0
otherwise.

5. Results

5.1. Identification of the Neighborhood Types. As shown in
Table 3, there are 766 TAZs in Nanjing with varying built-
environment characteristics. 'The two-step clustering
method is used to cluster these TAZs with more homoge-
neous spatial features. To eliminate the influence of col-
linearity on clustering results, the Pearson correlation
coeflicient is used to test the association between pairs of BE
variables, and the variance inflation factors (VIF) are cal-
culated to measure the degree of collinearity. Except for bus
stop density, all BE characteristics have coefficients less than
0.6 (0.7-1.0 indicates strongly correlated) and all VIFs
calculated are less than 3. Both indicate that all BE variables
are suitable for clustering. In a stepwise approach, the ratio
change in BIC and ratio of distance measures for a variety of
clusters are identified. A model with two clusters appears to
be optimal, with a silhouette coefficient value of 0.5.

Table 3 shows the centroids for the two clustered groups
as well as the significance of their differences in each BE
characteristic. All 766 TAZs are divided into two groups:
Cluster-1 with 263 TAZs and Cluster-2 with 503 TAZs. The
spatial heterogeneity of TAZs has been interpreted using the
centroids for each group. TAZs in Cluster-1 are featured by a
higher road density (10.64km/km?), more intersections
(11.04 count/km?), more access to metro stations (0.61
count/km?), higher ratio of residential land (0.40), more job
opportunities (0.33), higher land use mix (0.58), and closer
proximity to CBD (8.11 km). TAZs in Cluster-2 have a lower
road density (4.86 km/km?), fewer intersections (0.92 count/
km?), less developed metro service (0.04 count/km?), less
residential land use (0.08), lower job coverage (0.19), a lower
land use mix (0.33), and are located far away from the CBD
(20.74km). Given the spatial difference between the cen-
troids, we named cluster-1 as the internal region and cluster-
2 as the external region. The Mann-Whitney U test method
is used to compare the differences in BE characteristics
between the two groups. The result demonstrates their
spatial differences. The two types of TAZs in Nanjing are
shown in Figure 2.

5.2. Results of GBRT. Using the GBM package in RStudio,
GBRT models for the commute time of active commuters
living in each region are estimated. The relative importance
of influential factors is calculated for both identified regions.
The relative importance is measured by comparing the error
reduction of one variable in commute time compared to
other variables. All variables included have a total impor-
tance that adds up to 100%. Prior to modeling, hyper-pa-
rameters including learning rate, optimal number of
iterations (or the number of trees), and tree depth must be
tuned. Ridgeway recommended setting the learning rate for
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TaBLE 3: Centroids for the TAZ clustering results.

Attributes Cluster-1 (263 TAZs) Cluster-2 (503 TAZs) Mann-Whitney U Sig.

Road density 10.64 4.86 15990.00 <0.001
Intersection density 11.04 0.92 27695.00 <0.001
Metro station density 0.61 0.04 41884.00 <0.001
House density 0.40 0.08 9588.50 <0.001
Job density 0.33 0.19 34587.00 <0.001
Land use mix 0.58 0.33 16321.00 <0.001
Distance to CBD 8.11 20.74 13653.00 <0.001

Classification N

[ ] Administrative regions
Internal

[ External

0

T — 1

30

FIGURE 2: Spatial distributions of TAZs in clustered neighborhood types.

practice between 0.01 and 0.001 [46]. The smaller learning
rate is thought to improve model performance. We set the
learning rate as 0.001 in accordance with Tao et al. [19]. In

order to find the best GBRT, we initially developed the
model with the depth of the tree ranging from 1 to 49 in
increments of 1. The optimal parameters are then



determined using the RMSE value of five-fold cross-vali-
dation, which varies as tree depth increases. Figures 3 and 4
visualize the RMSE values versus tree depth and the optimal
number of iterations for the internal and external regions,
respectively. The RMSE in the internal region decreases with
increasing tree depth until it reaches 28. In the external
region, however, this indicator becomes stable at a depth of
19. As a result, 28 were set as the tree depth for the model in
the internal region and 19 for the model in the external
region. The difference between internal and external regions
with respect to the number of iterations is even larger.
According to the results, the commuting time model in the
internal region iterated 3,140 times before convergence,
while the model in the external region iterated 2,728 times.
Both models fit well, with pseudo-R* values of 0.637 and
0.585 in the internal and external regions, respectively. These
values are greater than those of traditional linear regressions,
which are 0.207 and 0.237. For comparison, we estimated a
general GBRT for all active commuters and found that the
model has the lower pseudo—R2 (0.509). This indicates that
incorporating spatial heterogeneity in creating the GBRT
improves the model fit.

5.2.1. Relative Importance of Influential Factors. Relative
importance is commonly used in machine learning to
measure how much a factor influences a dependent variable.
All variables in this study have a relative importance that
sums up to 100%. The greater the relative importance of the
factor, the greater it contributes. Table 4 is the calculated
relative importance of each influential factor in determining
active commuting time in internal and external regions. The
result demonstrates that built-environment characteristics
have a higher collective importance than social demo-
graphics. This is consistent with the findings of some earlier
studies [30, 31]. The importance of built-environment
characteristics at both commute trip ends is 63.29% and
54.92%, respectively, for internal and external regions. The
roughly 8% gap could be due to the more spatially con-
strained nature of active commute trips in the internal re-
gion. In both regions, built-environment features at the
work-end pose higher importance than those at home end,
which is consistent with the finding of Ding et al. [29].
Similarly, we find differences in the collective importance of
sociodemographics in both the regions. They are 5.49% more
important in the external region than in the internal region.
Active commuters in the external region have more flexi-
bility in determining their commuting time than those in the
internal region.

In the internal region, road network density at both trip
ends contributes significantly to active commuting time,
accounting for 5.24% (ranking 3rd) and 5.23% (ranking 4th),
respectively. The effectiveness of active commuting is closely
related to the connectivity of the street network, particularly
the routes for cycling and walking. This is consistent with the
findings of Cao [47]. The intersections density at the work
end (4.41%) is shown to have an impact on the trip time of
active commuters. Land use mix, job density, and house
density at the work end have higher rankings than those at
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the home end. This can be explained by the high aggregation
of morning commutes at the destination over the origin.
Similarly, bus stop density at the work end is as high as
4.32%, greater than that at the home end. This confirms the
roles of transit accessibility on travel behavior [48], as well as
the fact that the resultant trip time is more influenced by the
BE feature at the trip end. Metro station density is the least
important BE factor, and its importance at both ends is less
than 2.00%. This could be explained by the least variation in
metro services in the internal region. Geographical locations
of home and work ends that are presented by distance to
CBD pose the contributions, 3.60% and 3.84%, respectively.

In the external region, intersection density at the home
end is the most influential BE factor, with a relative
importance of 5.76% while its importance at the work end
is 4.47%. Land use characteristics at the work end, in-
cluding job density, house density, and land use mix, have
higher contributions in the external region, ranking third,
fourth, and ninth, respectively. In contrast to that in the
internal region, the density of metro stations at work ends
in the external region has a greater impact, accounting for
4.49% of the total. This may be due to the proximity of
metro services to the workplace. The bus stop density at
both ends contributes around 3.5%, which is comparable
to the internal region. The remaining BE variables had
only a minor influence. For active commuters in the
external region, the distance from the work end to the
CBD (4.22%) contributes more to their trip duration than
the home end (3.08%) does.

5.3. Spatial Heterogeneity in BE Impact. To describe the
spatial heterogeneity of BE impact, a more thorough
comparison of derived BE importance as well as BE asso-
ciations with active commuting time was made.

5.3.1. BE Importance. Figure 5 shows the comparison of BE
importance to active commuting time in two regions. In the
internal region, nearly all BE variables have a relative im-
portance more than 3%, with the exception of metro station
density at both ends and intersection density at the home
end. In external region, all BE variables at the work end and
three out of eight BE variables (intersection density, bus stop
density, and distance to CBD) at the home end have relative
importance over 3%. The most significant disparity is in the
roles of street network-related factors, metro station density,
and land use-related factors.

The road network density at both ends contributes
1.78%~2.69% more in the internal region than it does in
the external region. The intersection density at the home
end in the internal region, on the other hand, contributes
half as much as it does in the external region. Although
metro station density at the home end contributes the
least in both regions, its importance in the internal region
is six times that of the external region. At the workplace,
metro station density is three times as important in the
external region as it is in the internal region. When land
use variables related to BE variables at home end, such as
land use mix, job density, and house density are
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FIGURE 4: Result of RMSE in the external region.

compared, their roles range between 3.92%~4.28% in the
internal region and 1.98%~2.21% in the external region.
Notice that at the work end land use mix still holds a more
important role in internal region than in external region
(5.49% versus 3.47%). These varying effects from region to
region are closely related to land use characteristics. The
diverse and well-developed land use pattern within the
internal region implies greater job options for active
commuters. As a result, these factors in the internal region
have great effects. TAZs in the external region, on the
other hand, are generally less developed in large blocks
with homogeneous land use. Distance to the CBD and bus
stop density have similar roles in both regions.

5.3.2. Nonlinear Associations between BE and Active Com-
muting Time. Partially dependent curves are used to present
the nonlinear associations between BE characteristics and
active commuting time. In GBRT models, partial depen-
dence curves are commonly used to visualize the marginal
effects of independent variables on the dependent variable.
Figure 6 shows the relationships between BE at home
(columns 1 and 2) and work ends (columns 3 and 4) and
active commuting time in internal (columns 1 and 3) and
external (columns 2 and 4) regions.

Figures 6(a) and 6(b) show nonlinear associations be-
tween street network-related characteristics and active
commute times. The active commuting time for the internal
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TaBLE 4: The relative importance of influential factors in both regions.

. Internal region External region
Variables L L
Rank Relative importance (%) Sum (%) Rank Relative importance (%) Sum (%)
Built environment at home end 28.97 21.65
Road density 3 5.24 16 2.55
Intersection density 16 2.68 2 5.76
Bus stop density 15 3.43 8 3.79
Metro station density 17 1.70 25 0.26
House density 11 3.92 18 221
Job density 9 4.28 19 2.02
Land use mix 10 412 20 1.98
Distance to CBD 13 3.60 12 3.08
Built environment at work end 34.32 33.27
Road density 4 5.23 10 3.45
Intersection density 7 4.41 6 4.47
Bus stop density 8 4.32 11 3.43
Metro station density 18 1.49 5 4.49
House density 6 4.69 4 4.69
Job density 5 4.85 3 5.05
Land use mix 2 5.49 9 3.47
Distance to CBD 12 3.84 7 4.22
Trip attributes 29.68 32.54
Departure time 14 3.50 14 2.72
Trip distance 1 26.18 1 29.82
Sociodemographics 7.05 12.54
Gender 19 1.47 17 2.26
Education 23 0.90 23 1.18
Age 20 1.40 15 2.72
License 22 1.08 22 1.25
Cars 21 1.09 21 1.85
Child 25 0.33 24 0.30
Income 24 0.78 13 2.98
Total 100 100
Road density 5.24%
Intersection density 5.76%
Bus stop density 3.79%
g Metro station density
g House density
jen
Job density
Land use mix
Distance to CBD
Road density
Intersection density
Bus stop density 4.32%
g Metro station density
=
§ House density
Job density
Land use mix
Distance to CBD 4.20%

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Relative Importance (%)

B Internal
MW External

FiGure 5: Comparison of relative importance in internal and external regions.
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region decreases rapidly as the home-end road density in-
creases from 0 to 11km/km* and bottoms at 22 minutes. It
then gradually increases. Active commuting in the external
region decreases until the home-end road density reaches
7 km/km?, and then it goes up sharply. The curves of work-
end road density in both regions also have a nonlinear
feature. Within 10 km/km?, the active commuting time in
the internal region decreases sharply in a nearly linear
pattern. After that, it climbs to 22.8 min and then remains
stable. With increasing work-end road density in the ex-
ternal region, active commuting time fluctuates in an ap-
proximate inverted U shape; when the road density at the
work end reaches 5 km/km” in the external region, the in-
creasing trend in commuting time stops. As shown in
columns 1 and 2 of Figure 6, intersection density at home
end is positively associated with active commuting time,
when it is in the range of 0~40 per km” in internal region and
0~3 per km? in external region. Higher intersection density
is often associated with longer stopping times, which in turn
increases active commute times. Both findings reinforce the
ambiguous impact of street network design on active mo-
bility [49]. Improved street network connectivity may
demonstrate that there are more alternative shortcuts to
reach destinations, reducing travel time further, but it may
also increase commute time due to more intersections.
Figures 6(c) and 6(d) compare the effects of transit-
related variables in both regions. The density of bus stops at
the home end has the opposite effects. Active commuting
time increases when home-end bus stops increase in the
external region but decreases when they increase in the
internal region. Both regions see a similar trend in the
impact of work-end bus stop density, namely, a reduction in
active commuting time with an increase in bus stop density.
A minor difference between the two curves is in the range of
10~18 stops/km” in the internal region where a fluctuation
exists. The impact of metro station density at both ends

exhibits the contrast patterns. The extension of home-end
metro stations increases commuting time in the internal
region while decreasing them in the external region. The
extension of work-end metro stations reduces active com-
muting time in the internal region while increasing it in the
external region.

Figures 6(e) and 6(g) illustrate the effects of land use-
related variables, including house density, job density, and
land use mix. In general, active commuting time increases
with increasing house density at the home end, although
there are some fluctuations in the curve of the external
region within the ratio of 0.1. Because the data points in
these intervals are too sparse to interpret, the fluctuations
can be ignored. In both regions, house density at the work
end has a positive relationship with active commuting time.
Work-end house density, as presented by the ratio of res-
idential land at the work end, is better kept within 0.5 for the
internal region and within 0.3 for the external region. The
general trend can be explained by the greater sense of safety
while walking/cycling in areas with higher house density,
which leads people to be willing to walk/cycle longer to their
work. Job density at the home end has a U-shaped rela-
tionship with active commuting time in internal region. The
threshold of 0.3 indicates the ideal ratio of work-related land.
However, in the external region, the association is generally
negative. Commuting time stops decreasing when the ratio
of work-related lands reaches 0.5. Active commuting time
increases in both regions as job density increases at the
workplace.

For land use mix, its association with active commuting
time varies by region. For active commuters in the internal
region, the best home-end land use mix is around 0.5.
However, in the external region, a land use mix of 0.5 or
higher is preferable for active commuters. The work-end
land use mix, in contrast to the home end, has a winding,
decreasing association with active commuting time in the
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internal region. The active commuting time reaches its
lowest point (of 22 minutes) when the land use mix is 0.7. In
external region, the work-end land use mix has an inverted
U-shaped relationship with active commuting time. It
suggests that increasing the land use mix in the external
region at the work end is only recommended to a certain
extent in order to promote active commuting.

Figure 6(h) shows the relationship between distance to
the CBD and active commute time. The residence distance to
the CBD has a U-shaped relationship with active commute
time in both regions. For active commuters in the internal
region, with the distance of their residence to the CBD
around 5 km, active commuting time reaches its lowest value
(of 21.5 minutes); however, for commuters in the external
region, when the distance is in the range of 15~20 km, the
time keeps short. At the workplace, its average distance to
the CBD is 8.8 km for the internal region and 16.9 km for the
external region. We focus more on curve intervals of less
than 10 km for internal region and over 15 km for external
region. Active commuting time increases with the increasing
distance of the workplace from the CBD in both intervals.
The rise in active commuting time as a consequence of
increasing distance from home to CBD is monotonic.

6. Conclusions and Discussion

With the evidence from Nanjing, China, this paper inves-
tigates the spatial heterogeneity in the BE impact on active
commuting time. It uses the two-step clustering method to
cluster 766 TAZs according to their BE features. Gradient-
boosted regression trees are then constructed for each
distinguished cluster to examine the heterogeneity in the
importance of BE for active commuting time. It has been
concluded that built-environment characteristics have more
importance than sociodemographics because they contrib-
ute 63.29% to active commuting time in the internal region
and 54.92% in the external region. This confirms the con-
clusions of Cheng et al. that despite of the minor impact of
single BE factor, their total impacts were larger than that of
sociodemographics [30]. The spatial heterogeneity of BE’s
role to active commuting time is further proved by com-
paring the nonlinear impact of BE on active commuting time
in two regions. Such heterogeneity is so pronounced that in
many cases the impact of BE on active commuting time is
opposite in two regions.

The implications of this study for practice are two-fold.
First, if the goal of urban planners and practitioners is to
encourage the use of active modes, they need to prioritize
different policies in each region depending on their im-
portance in reaching the ultimate goal. This is especially
important when there is a limited budget that can be spared
for improving one or a few built-environment character-
istics. Second, it is very important for policymakers to be
aware of the adverse effects of certain policies in some re-
gions if those policies are developed on the basis of average
effects.

The current work comes with some limitations, which
leave space for future improvements. First, if the data allows,
walkability measures such as sidewalk presence and width
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should be included as part of conditional variables. Second,
the temporal impact of BE on active commuting time de-
serves attention if new data sources become available. Fi-
nally, while the study’s findings are applicable to Nanjing
and may provide basic references for cities in similar con-
texts to Nanjing, the BE impact varies from city to city [50].
More case studies are recommended in the future.
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