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Summary

Ever growing demands for both consumer and industrial products drive chem-
ical and petrochemical industries to optimize the quantity and quality of their

production. The companies that have the core business in the process industry are
competing with each other to dominate the market. Development of the current
process technologies provide a competitive edge for companies to ensure their
leading market positions. One of the major problems for the Advanced Process
Control (APC) element of the process industry is to sustain high performance of
the control in the presence of discrepancy between prediction model and process
of interest. This thesis investigates new methods to tackle this problem by taking
into account model inaccuracy and variation of process dynamics. The control
mechanism proposed in this thesis is based on Orthonormal Basis Functions (OBFs)
as a novel prediction model. The detailed descriptions of research motivations,
questions, and literature surveys are addressed in Chapter 1 of this thesis.

The second part of this thesis, Chapter 2-3, Addresses methods to optimally se-
lect basis poles of the OBF models from a finite set of system poles. Furthermore,
we provide a method to utilize our proposed algorithms for a model of a system
that is obtained via system identification procedure. Lastly, by conducting a sim-
ulation study, we showed that the proposed methods outperform the state of the
art basis selection algorithm in the sense of obtaining basis poles with better per-
formance measure. The simulation study also shows a reasonable computational
load of each algorithm which can be directly implemented in industrial practice.

The third part of this thesis, Chapter 4, Addresses the case where the OBF-
based prediction model is adapted per control cycle to capture the time-varying
behavior of the system of interest. The adaptation is based on an iterative iden-
tification procedure of the coefficients of the OBF prediction model. Conducting
system identification for OBF-based models has a strong benefit due to direct ap-
plicability of the PEM identification framework and hence the consistent estima-
tion of the OBF model coefficients. Afterwards, the MPC scheme for OBF-based
prediction model is formulated. The MPC scheme, as well as the feasibility and
stability results, are then extended to the time-varying case. The proposed MPC
is first tested in academic case study, where we have shown that the proposed
method can capture the time-varying dynamics of a given system and manage to
achieve the goal of set-point tracking.

The fourth part of this thesis, Chapter 5, Addresses the case where the OBF-
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viii Summary

based prediction model describes variations in the dynamics of the system of in-
terest that can be characterized by an external signal called the scheduling vari-
able. Two LPV identification approaches are provided to identify the LPV-OBF
model before the MPC is commissioned. The local LPV identification approach
can be seen as an interpolation of the dynamical behavior of the system, while the
global LPV identification approach is a direct identification method based on a
single data set that is measured from the system. Afterwards, the LPV-OBF MPC
scheme is formulated. The MPC scheme utilizes a designated steady-state target
and extra penalty term for tracking purposes. The space of the steady-state pair
is characterized by a vector which is used as an argument of minimization for
the MPC problem. Such setting helps us in establishing feasibility and stability
guarantees of the MPC scheme. The proposed MPC is first tested in academic
case study, where we show that the proposed method can capture the parameter-
varying dynamics of a given system and manage to achieve the goal of set-point
tracking.

The last part of this thesis is where the proposed LTV-OBF MPC and LPV-
OBF MPC are tested in two industrial case studies. A High purity distillation
column case and a Dual distillation column case which are common in process
industry, are used for the demonstration. The knowledge of the variations of sys-
tem dynamics becomes the key element that differentiate the two proposed MPC
schemes and their applications on the selected case studies.
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1 CHAPTER

Introduction

Ever growing demands for both consumer and industrial products drive
chemical and petrochemical industries to optimize the quantity and qual-
ity of their production. The companies that have the core business in the
process industry are competing with each other to dominate the market.
Development of the current process technologies provide a competitive
edge for companies to ensure their leading market positions. This thesis
investigates new methods to cope with the expectations of next genera-
tion of process technologies from the view point of control engineering
so as to deal with present day challenges. This involves the design of
automated systems that realize desired behavior of process operation by
deciding on the actuation of the process based on sensor information. The
first chapter is dedicated to describe the motivation and the reasoning be-
hind the research of this thesis. Key issues that are considered in this
thesis are highlighted and the main research problem is formulated. Fi-
nally, outline of the thesis is given to conclude this chapter.

1.1 Research motivation

The general motivation for the research presented in this thesis is to contribute to
the improvement of the current generation of control methods in process indus-
try. To specify what is considered as "improvement" and "current situation", we
first elaborate on the situation in the process industry as well as the current imple-
mentation of control solutions in this domain. Afterwards, we highlight the key
elements that are treated in this thesis.

1.1.1 Current situation in the process industry

The process industry includes all industries that have a core business in process-
ing resources. These processes, which can either be continuous or batch produc-
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2 Chapter 1 Introduction

tion, involve the chemical transformation of raw or pre-processed materials into
other products. The end products of these industries can be found in our daily life.
Food, beverages, pharmaceutical products, oil, gas, paper, etc., are just simple ex-
amples of the products of process industry. These products improve the quality of
human life. As welfare levels, the demands on these products grow exponentially.
This situation stimulates the economic position of the process industry. Compa-
nies are competing with each other to take the biggest share of the market in terms
of increasing the throughput of their production while reducing the operational
cost. The innovation of industrial technologies and improved production meth-
ods are some of the key enablers to have a favorable economic position in this
competition. However, as a negative result, the natural resources are being over-
consumed and start to deplete. People and organizations are becoming aware
and concerned of environmental issues that are caused by industrial production.
Hence, the industry is more and more pressured to operate in an environmental
friendly manner. Indeed, this situation leads to further challenges for this sector.
The operational constraints in industrial processes become stricter than ever. The
industry needs to obey not only mechanical-chemical constraints of the processes,
but also environmental regulations that are imposed on them. They need to en-
sure that their operations are safe, environmental friendly, efficient in resources,
and at the same time, yield a healthy financial profit to ensure favorable economic
position.

1.1.2 Control systems in the process industry

The aforementioned situations urge the process industry to optimize their pro-
cesses and plant operation with respect to multiple objectives and constraints.
Designing better control systems that can govern and improve plant operation
based on these aspects is one of the key elements that can help achieving these
goals. To illustrate the involvement of control system in the process industry, let
us take an example of a binary distillation column that is depicted in Fig. 1.1.

In this distillation process, a propane-propene mixture is fed into the column
with the purpose to separate the mixture into propene and propane components
with a prescribed level of purity. These two components are the outputs of the
process and are known as the Controlled Variables (CVs). The desired purity level
of the CVs can be obtained by controlling variables such as reboiler temperature,
cooling temperature in the condenser, feed flows, etc. The variables that are ma-
nipulated for this purpose are called the Manipulated Variables (MVs). One exam-
ple of the possible combinations of MVs in this distillation column is the vapor
flow and the reflux flow (Skogestad 1997). Controlling the CVs via the MVs re-
quires an optimization that is carried out by the control system. At a higher level
of process control, the interaction of the CVs and the MVs need to be set such
that the company obtains a positive revenue via operating the distillation process.
At the macro level, economic objectives are translated to set-points and operating
conditions of the distillation process. At the micro scale, keeping a single MV at a
desired level requires precise sensor-control-actuator interaction.
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Figure 1.1: Process diagram of a distillation column.

The control mechanism in the process industry from the top to the bottom
level is summarized in a hierarchical control scheme that is depicted in Fig.1.2.
This hierarchical control scheme is a well established operational scheme in the
process industry (Huesman 2011). The reason why a hierarchical control scheme
is used instead of only a single centralized controller to steer the whole process
is to cope with the different complexities and time scales of various elements and
processes involved in the production facilities. It is nearly impossible in terms
of both required knowledge and resources to design a single controller that is
able to optimize the profit with respect to all aspects involved in the production
process. Simultaneously, coping with all the economical, physical, and technical
objectives would be a problem with daunting complexity needed to be solved
with the fastest rate of variation in the system. Hence separation of these problems
in term of time and scale becomes the only feasible mechanism applicable in the
process industry. This has led to a distinguished set of layers in a control hierarchy
for industrial processes which are defined as follows:

• The scheduling and planning layer.
The top layer of this hierarchical scheme has the sole aim to maximize profit
or the economic revenue of the process. This layer takes into consideration
the demand of the market, the availability of the resources, and other eco-
nomical constraints. From this information, the scheduling layer decides
the target of the production: which production facilities (such as a single
distillation column depicted in Fig. 1.1) should be operated, and which fa-
cilities need to undergo maintenance. The time scale of the scheduling and
planning layer ranges from days to months.

• The real-time optimization layer.
The role of the Real-Time Optimization (RTO) layer is to translate targets
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Figure 1.2: Process control hierarchy.

and criteria that are set at the scheduling layer into optimal operating points
for the production units. In the distillation column example, the operating
points are the desired purity level of the products or the CVs of the process.
The time scale in this layer ranges from hours to days.

• The advanced process control layer.
The Advanced Process Control (APC) layer, which is usually implemented
in the form of a Model Predictive Control (MPC), tracks the operating point
that is given by the RTO layer. To accomplish this task, the MPC calculates
or determines the trajectories of the MVs of the process while respecting the
operational constraints. The operational speed of the APC layer needs to
be faster than the RTO to ensure that the targeted levels of the CVs are met
before the RTO layer gives a new operating point. The time scale of the APC
layer ranges from minutes to hours.

• The base-layer control and field instrumentation layer.
The last layer of the hierarchy consists of two layers that are often considered
as a single layer due to the interconnection between control-sensor-actuator
components. This layer usually operates in a Distributed Control System
(DCS) environment and has objectives such as reaching and maintaining
the MVs that are requested by the APC layer. In the aforementioned distil-
lation column example, this layer needs to control both the vapor and the
reflux flows via controlling other variables in the process. The reflux flow
is controlled by adjusting the cooling water in the condenser, while the va-
por flow is controlled by adjusting the heat of the reboiler. Controlling this
process is necessary since both variables can fluctuate easily as an effect of
internal dynamics or outside disturbances. These two variables are usually
controlled separately by a low-level controller that is implemented in the
form of a Proportional-Integral-Differential (PID) controller. The time scale of
the variables involved in this layer is smaller than the time scale of the APC
layer and ranges from milliseconds to minutes.
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For the past decades, this hierarchical process control scheme has served as
the backbone of many controlled processes and production facilities in the process
industry.

1.1.3 Current challenges in process control

The demand on plant-wide improvement, in terms of both quality and quantity of
the products, results in the growing complexity of the chemical-mechanical pro-
cesses and their corresponding production facilities. These conditions, along with
the tighter economic margins, lead to various new challenges that are emerging in
each layer of the process control hierarchy. The RTO layer needs to adjust the op-
erating points of the production units depending on the market condition and the
available resources. The APC layer needs to deal with tighter constraints originat-
ing from either mechanical-chemical operations and environmental regulations.
The low-level controllers and the instrumentation need to operate more precisely
to obtain faster and steadier responses of the process variables. The APC layer,
which bridges the requirement from the upper layers to the capability of the bot-
tom layers, is considered to be the most important layer as it eventually leads to a
plant-wide improvement in the least costly manner if compared to other layers.

The APC layer can either hide or compensate the effect of the changes that
are happening in other layers. Moreover, improvement of the APC layer can be
achieved without conducting major changes in the design and operation of the
plant. To implement changes in the base control and field instrumentation layer,
one needs to either re-tune the low-level controllers or upgrade the instrumen-
tation package of actuator-control-sensor devices since they usually come in one
package. Re-tuning the PID controllers of this layer is nothing more than a regular
maintenance procedure since it is almost impossible to achieve better performance
than what the instrumentation is designed to accomplish. Replacing the existing
instrumentation package with a more effective design in most cases is expensive.
Additionally, to have a significant impact on the overall improvement of the plant
operations, all field instrumentation need to undergo improvement. The condi-
tion of the base layer is relevant for the APC layer. Since the APC layer is govern-
ing all instrumentation at once, a well designed APC layer can take the current
condition of the instrumentation into consideration so as to achieve the highest
performance with the instruments. On the other hand, achieving improvement by
adjusting the top layer of the hierarchy is not a trivial task. A cluster of production
units or facilities in process industry usually already has a planned operation or a
fixed design operation. Changing the way these facilities are operated will have
an immediate impact on other layers. The RTO will then determine a different
optimal trajectory for the CVs which might be complicated or difficult to track
with the design of the lower layers. At the end, the APC layer and not the base
layer that needs to find the best possible MVs on the basis of the instrumentation.
So if the APC layer can not attain the operation point that is set by the RTO, the
improvement of the plant operation cannot be achieved.
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1.1.4 Performance variability of the APC layer

Figure 1.3: Illustration of APC performance versus time.

The importance of the APC layer has been motivated in the previous section.
However, in practice, serious limitations of this layer can be observed with stan-
dard designs. To give an illustration, consider the example of the performance of a
typical APC layer given in Fig. 1.3. It can be seen that the performance of the APC
layer degrades over time. Such situation, which is also highlighted in Bauer and
Craig (2008), is attributed to the growing discrepancy between the model used in
the MPC implementation of this layer and the actual processes that need to be
controlled. The model is not able to accurately describe the future behavior of the
actual system anymore and has, therefore, a poor prediction capacity. Sources for
the changes in the dynamics of the actual system are:

• Variability of raw materials: Wether its unintended or due to economical
reasons, the materials that are used in a process may vary from time to
time; e.g., variation on the feed composition of propane-propene mixture
of the distillation column depicted in Fig. 1.1. Such change affects the mass-
balance equation and hence the actual system dynamics.

• Inevitable aging of the plant and instrumentation: Any physical-mechanical
equipment will eventually deteriorate; e.g. aging in the reboiler and the con-
densor of the distillation column depicted in Fig. 1.1, as well as degradation
in the performance of sensors and actuators on any instrumentation.

• Change of operating point: Due to variations in the demand of the produc-
tion (economical reason), the RTO might set operating points that are not
considered when the model of the actual process is built. This leads to lim-
ited accuracy of the prediction.

• Effect of maintenance, process shutdown, and initialization: Due to the in-
herent nature of nonlinearity of the plant, each and every maintenance of
production unit might slightly alter the dynamics of that plant. Accumulat-
ing effects of these changes can lead to a significant mismatch between the
assumed model and the actual dynamics of the plant.
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If the model of the process does not match with the actual dynamics, unwanted
situations such as loss of disturbance attenuation, bad tracking performance, and
eventually loss of stability of controlled the plant can occur. These situations, of
course, were not intended at the time of the design of the APC. When the perfor-
mance of the APC deteriorates, the operator of the process needs to shut down
the APC layer and operate the process manually to avoid major damage of the
equipment and to avoid further economic loss from the poor performance (Ozkan
et al. 2016). Manual control is continued until the APC is recommissioned and
becomes operational again with the updated condition of the process. The recom-
missioning procedure of the APC layer, that includes updating the model and
re-tuning the controller, is an expensive and effortful procedure. The recommis-
sioning is costly since the production facilities often need to be halted for some
time to gather the necessary data for modeling and tuning the controller accord-
ingly. The necessity of recommissioning the APC is usually avoided by re-tuning
the controller parameters in a more aggressive fashion. By doing so, process op-
eration is no longer optimal, safe, or efficient. This leads to a growing mismatch
between the process behavior and its predictability. Improvement of the APC
schemes, which can provide solutions for these situations, is the key topic of this
thesis.

1.2 Research objective

The intricacy between the potential of plant-wide improvement that can be achieved
by improving the APC layer and the inevitable performance degradation of the
APC layer lead us to the formulation of the research objective of this thesis:

- Primary research objective -

Improve the performance of APC by taking into account
model inaccuracy and variation of process dynamics that are
causing the plant-model mismatch.

The results reported in this thesis were obtained in the European Union project
named SMART. The goal of the project was to develop a set of breakthrough APC
technologies aimed at drastically reducing Total Cost of Ownership (TCO) by means
of more streamlined APC implementation and automatic maintenance. The return
of capital investment in the APC technology can be made faster and its economic
benefit can be sustained if periodic maintenance, which stem from the model in-
accuracy, can be avoided or at most delayed. In order to pinpoint the key issues
that need to be addressed to attain this goal, we provide detailed overview of the
two main ingredients of the APC layer in the next section. These two fundamental
elements are the MPC and the modeling approaches to obtain an accurate model
of the process.
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1.3 Literature survey

First, we provide an overview of the state-of-the-art and the current developments
in both MPC and modeling approaches in the process industry. These observa-
tions serve as the basis to develop our proposed improvements of these technolo-
gies.

1.3.1 Model predictive control

We start with introducing the basic concept of MPC and then continue with the
current development and application of MPC in the process industry. Afterwards,
we investigate the current solutions and MPC schemes to deal with model inac-
curacy.

Basic concept of MPC

MPC is a model based control technique that systematically deals with multivari-
able processes and process constraints so as to optimize a given performance cri-
terion. The core concept of MPC is the so-called receding horizon principle (Ma-
ciejowski 2002; Rawlings and Mayne 2009). This principle is given in Figure 1.4.

Figure 1.4: Illustration of receding horizon principle.

In general, the receding horizon principle means that at each time sample, a
new control action (or the value of the MVs) is computed with respect to a predic-
tion of future behavior and the available measurements of the plant. The control
action is obtained by solving a constrained optimization problem that has the goal
to regulate or to track a given set point/trajectory and to obey operational con-
straints. The future prediction is obtained from the model of the process. Since
the parameters in the optimization problem are updated with respect to the cur-
rent measurements at each time sample, the MPC is able to handle and reject dis-
turbances in the processes. As a result of combining optimization, prediction of
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future trajectories of the CVs, and current measurement, the MPC designs an op-
timal trajectory for the MVs to achieve the goal set by the RTO layer. An example
of an MPC structure is illustrated in Figure 1.5.

Figure 1.5: Core concept of an MPC scheme.

Theoretical development and application of MPC in the process industry

The extensive application and theoretical advancement of MPC have resulted in
a vast amount of published methods. The earliest record on MPC coincides with
the first application of MPC in the process industry. Over the years, various MPC
schemes were developed starting from the ones using finite impulse response
models (Richalet et al. 1978) to step response models (Cutler and Ramaker 1979)
and afterwards transfer function models (Clarke et al. 1987). Lately, the state-
space model has become the standard way of posing MPC problems. Via this rep-
resentation, it is considerably easier to show and guarantee important properties
such as recursive feasibility and stability (Mayne et al. 2000). Many review papers
(Mayne (2014), Morari and Lee (1999)) and books (Maciejowski (2002),Rawlings
and Mayne (2009),Grüne and Pannek (2011)) have been published at regular in-
tervals. The latest review of Mayne (2014) gives an extensive overview of the latest
developments, current challenges, and possible directions of research in MPC. The
application of MPC is not restricted only to the process industry. Many successful
applications of MPC have been reported in the area of power grids, rail networks,
and the automotive industry (See Di Cairano (2012)).

In the process industry, numerous successful applications as well as recent de-
velopments are well captured in survey papers and books such as Qin and Badg-
well (2003b) and Camacho and Alba (2013). Part of the success of MPC in the
process industry is credited to three important aspects.

1. The first property is the systematic way to control multivariable systems. This
property is present in most control schemes that belong to the "optimal con-
trol" category such as H∞ control, Linear Quadratic Regulator (LQR), etc.
These controllers take an explicit model of the multivariable system into ac-
count and produce optimal control actions by minimizing a control relevant
cost function.
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2. The second property is the constraint handling capability. MPC can handle in-
herent constraints such as physical or chemical constraints, or user defined
constraints such as environmental constraints, safety constraint, etc. The ex-
plicit formulation of these constraints in the optimization typically results in
tighter control action that drive the process closer to its boundary of opera-
tion.

3. The last property is related to the receding horizon principle. By re-evaluating
the optimality of the control actions with respect to the current situation and
updating the control sequences at every subsequent time sample, the MPC
is able to reject disturbances and compensate for unwanted behavior.

Generally, one distinguishes two major types of MPC. These are Linear MPC
and Nonlinear MPC. These two types are distinguished based on the type of pre-
diction model. Although all the process and production facilities display non-
linear behavior, most of the industrial applications of MPC are Linear MPC. The
reasons for this are the scale of industrial processes, fixed working point, and the
limited amount of computation time until the next control action is required by
the base level controller. The common optimization problem of a Linear MPC is
a convex quadratic problem for which reliable algorithms are available that can
solve the optimization problem in a timely manner. In addition, most applica-
tions to date have been in refineries (Qin and Badgwell 2003b), where the primary
objective is to maintain the process at a desired steady-state (regulator problem),
rather than moving rapidly from one operating point to another (servo problem).

The linear MPC, of course, has limitations. Problems such as regulatory control
of a highly nonlinear process that is subject to large and frequent disturbances (pH
control, etc.), or servo control where the operating point changes frequently and
corresponds to a sufficiently wide range of nonlinear process dynamics (polymer
manufacturing, ammonia synthesis, etc.) are proven to be challenging for linear
MPC (Qin and Badgwell 2000). A prediction model that is based on a linear model
of the process, is not sufficient to describe the actual system dynamics on the afore-
mentioned problems. Resorting to a nonlinear MPC scheme, can sometimes be the
only solution to remedy these problems. The price for using a nonlinear scheme
are the considerably larger computational burden due to the non quadratic for-
mulation of the control relevant cost function, loss convexity in the optimization,
and the difficulties to obtain accurate nonlinear models.

MPC for uncertain systems

In the research objective of this thesis, it is stated that the core problem lies in
dealing with the possible discrepancy between the plant and the model. The most
popular way to incorporate possible discrepancy and plant-model mismatch is to
consider uncertainty in the MPC design. While major aspects of nominal MPC
are well understood, the performance and properties of MPC in the presence of
uncertainty is still considered as a major challenge (Mayne 2014). In general, a
well established way to overcome or reduce the effects of uncertainty is by apply-
ing feedback techniques. In many instances, robust control theory (Goodwin et al.
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2000) provides sufficient tools for achieving robust operation. There are multiple
techniques that are used to infuse robustness in an MPC scheme (Robust MPC),
wether it comes from the deterministic point of view (worst case MPC in Kothare
et al. (1996), tube based MPC in Mayne et al. (2011)) or the stochastic point of view
(Kwon and Han 2006; Saltik et al. 2017). Important problems in RMPC schemes
such as constraint satisfaction, stability, and performance are largely open and
general consensus on incorporating uncertainty has still not been made. More-
over, guaranteeing robustness in MPC often leads to a considerably larger com-
putational load when compared to the nominal schemes.

The problem of incorporating uncertainty in MPC is not only a theoretical one,
but has also practical implications. Besides the computational load, inducing ro-
bustness properties often leads to a conservative control law at each time instant.
For industrial applications, where the main goal is maximizing economic revenue,
a conservative control method is less preferred, and robustness is mostly estab-
lished in an ad-hoc manner (Mayne 2016). Another method to deal with growing
plant-model mismatch is to incorporate an automated maintenance scheme for the
MPC such as proposed in Tran et al. (2012). This work utilizes performance mon-
itoring coupled by frequency domain controller matching to do online updates
of the tuning variable of the MPC. However, the performance of the controlled
process that can be augmented from this procedure is limited and subjected to
the plant-model mismatch. If the uncertainty is not reduced, then there is a lim-
itation on what robust model based controllers can achieve. Lastly, recent study
of Rosolia and Borrelli (2018) explore possibility of using machine learning tech-
nique to handle uncertainty by iteratively constructing safety sets based on recent
information of the system.

1.3.2 Modeling approaches to obtain prediction models

The prediction model is an integral part in an MPC scheme. In general, there are
two approaches considered to obtain a prediction model. The first one is based
on a first principle description of the process, while the second one relies on mea-
surement data of the process. A comparison between both approaches in terms of
the properties that are relevant for the understanding of plant-model mismatch is
given after the description of each of these modeling approaches.

First principles based modeling approach

A first principle model is built from the combination of the mathematical, physi-
cal, and chemical relations along with the knowledge of the process. Due to diver-
sity of physical laws and process knowledge involved in building such a model,
the required amount of resources in both time and level of expertise can be enor-
mous. If such a model is concisely built, the model can accurately describe vari-
ations of the dynamics in the process including a wide range of operating points.
The resulting models from this approach tend to be very complex in terms of the
total number of algebraic or differential equations in the model. In order to limit
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the complexity and to some extent the required resources to build the model, the
physics of the process are often chosen to be modeled only at the macro level.
When linearized at a given operating condition, the complexity of the linearized
model is attributed to the number of states, expansion coefficients, or polynomial
terms for each particular representation. The complexity of the models can also
be controlled by using model order reduction techniques (Beck et al. 1996). From
the MPC point of view, the complexity of a first principle model can be disadvan-
tageous. The computational load of the controller typically grows quadratically
with respect to the complexity of the model in the linear MPC case and can grow
exponentially in the nonlinear MPC case. For linear MPC schemes, a first prin-
ciple model needs to be linearized in an operating point before it can be used as
a prediction model. The applications of first principle models in MPC schemes
can be found in Qin and Badgwell (2000). The models obtained via first principle
modeling approaches are not only used for control purposes, but also for pro-
duction planning, scheduling, and non-control related purposes such as training,
predictive maintenance, etc.

Data driven modeling approach

Data-driven models are obtained from operational data of the process. The data
can be gathered from a dedicated test or can be collected during online operation.
From a data set inferred from the process, the model is constructed by using ei-
ther system identification or parameter estimation techniques. A model that is
derived using system identification techniques is usually compact, but its capa-
bility in terms of explaining the general dynamics of the process is limited. The
first limitation comes from the model set/class that is inherently selected for the
identification. The accuracy of the model depends on the model structure selec-
tion as well as the criterion used to obtain the model. The second limitation comes
from the limited information that is available in the data set. At best, the model
can only give an accurate description of the local behavior of the process corre-
sponding to the operation recorded in the data set. A dedicated experiment is
necessary to excite the process so as to extract the data that is also required to
build an accurate model. From the MPC point of view, the inherent compactness
of the model means that the complexity of the controller is implicitly bounded as
well. The limited complexity of the process that can be explained by this model-
ing approach can lead to difficulties when doing a servo-based control task or if
there are variations in the operating conditions. Applications of the MPC scheme
where the prediction model uses a data-driven model can be found in Zhu (2001).

Comparison of the modeling approaches

Each of the aforementioned modeling approaches has its own merits and benefits
in terms of addressing the growing plant-model mismatch problem. The proper-
ties of both modeling approaches are captured in Table 1.1. These properties are
attributed to the richness or the capability of the model to describe a wide range
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Table 1.1: Properties of modeling approaches.

First Principle LTI Data Driven
Validity Global Local
Complexity Large Small / controllable
Accuracy Knowledge dependent Data dependent
Requirement Expertise Experimental data

of operating conditions and the flexibility of the model to be changed when vari-
ation in the process is detected. First principle models are valid in a wider range
of operating conditions when compared to data-driven based models. The data-
driven modeling approach often aims to yield time-invariant models, assuming
the extracted data to be sufficiently representing the future behavior of the actual
system (Ljung 1999). If the process changes over time, this technique gradually
yields a larger plant model mismatch. If the flexibility of the model is being com-
pared, the structure of the first-principle model is rigid and cannot be adjusted
as easily as the data-driven model. The structure of data-driven models can be
changed based on the model set selection. There are many cases where an ad-
justed model set can better explain additional data records from the system. This
situation might occur since there are changes in operation or physical structure of
the system whether they are accounted for or not. Last but not least, we need to
consider the effort of obtaining the model. Building accurate first principle mod-
els requires more resources, both in terms of time and knowledge, compared to a
data driven model. However, in order to obtain an accurate data-driven model,
one might have to give extra excitation to the system to get information about
the dynamical behavior of the system. The excitation signals need to be designed
are subject to many constraints on duration, incurred economic loss, safety, and
richness for identifying parameters (Zhu et al. 2013; Bombois and Scorletti 2012).
This can be seen as the cost of the data-driven method. In industrial practice, the
resulting identified models tend to be more accurate than first principle model.

1.4 Research questions

From the survey given in Section 1.3, it is clear that solving performance deteriora-
tion of the APC layer that is caused by a growing discrepancy between the actual
process and prediction model is an open problem. Available methods for han-
dling such discrepancy, from either a deterministic (RMPC schemes) and stochas-
tic (Scenario and Risk based MPC scheme) point of view, are not widely accepted
by the industry. These methods are similar in the sense that they aim to solve
the discrepancy between model and plant by assuming that the mismatch is an
uncertainty whose magnitude can reliably be handled by a (robustly performing)
controller. They are also similar in the sense that the discrepancy persists over
time, where no adaptation to the plant model and no adaptation to the APC are
implemented. This leads to sub-optimal control actions where the control perfor-
mance can fall short of expectations. From these facts, we can see that reducing
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plant-model discrepancy while preserving or adapting the controller is the key
point of augmenting the performance of the APC layer. This statement leads us to
the research question of this thesis:

- Primary research question -

How to reduce the discrepancy between the prediction model
in MPC and the process of interest so as to sustain high per-
formance of the controller? In particular, how and when
should the update of the controller and model take place?

In order to provide an answer to the research question, we structure and divide
the research question into several subquestions. These subquestions are given as
follows:

1. What are the sources of the discrepancy between the plant and the model?
What is the efficient way to handle it from a control point of view?

2. What are the resources that can be used to reduce this discrepancy? How to
effectively utilize these resources for this purpose?

3. How to mitigate any possible negative effect (stability and performance degra-
dation of the controlled system) caused by the discrepancy?

We describe the proposed answers to these sub-questions in the next section
on research methodology.

1.5 Research methodology and thesis outline

In this section, we reveal our proposed methodologies to answer the subquestions
that are listed in Section 1.4. Subquestion 1 is addressed in Section 1.5.1 while Sub-
question 2 is addressed in Section 1.5.2 and Section 1.5.3. Section 1.5.4 addresses
the problem that is posed in Subquestion 3. The proposed methodologies are ref-
erenced to their corresponding chapters of this thesis. Since the chapters interlink
with each other, the exact relation between each of the chapters along with the
contributions of this thesis are given at the end of this section

1.5.1 Sources of discrepancy between plant and prediction model

Uncertainty and inaccuracy in modeling are unavoidable. The first subquestion
is the initial step to address the discrepancy between the plant and the model. In
practice, the dynamics of the actual system are never fully understood and may
vary over time. In the survey of Takatsu et al. (1998), the most cited source of
the modeling inaccuracy is the continuous change in the operating conditions.
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As the model inaccuracy grows, the synthesized controller encounters reduced
potential to provide appropriate control actions to satisfy the control task. We can
distinguish the following changes that occur in the plant:

a. Unknown and unmeasurable changes, when undetected changes or failures
occur in the process.

b. Known and measurable changes, where the changes are based on known
and measurable parameters whose values vary. Specifically, these include
scheduled changes of operating conditions.

The MPC, particularly the prediction model, need to be equipped to handle or
reduce plant-model mismatch with respect to these two types of changes. In Sec-
tion 1.3.2 we mentioned and compared two modeling approaches. From the com-
parison, it can be seen that data-driven modeling methods have the upper hand to
handle these two type of changes. A data-driven model can be easily modified for
this purpose. Indeed, a data-driven model has a limiting factor of a small range
of validity due to the often used linear structure of the model. However, there
are existing frameworks where one enriches the linear structure in the model with
possible variations in its parameters. Some successful frameworks are the Linear
Time-Varying (LTV) systems (Zerz 2006) and Linear Parameter Varying (LPV) sys-
tems (Tóth 2010). These two frameworks offer powerful system representations
to incorporate each of the aforementioned changes that can occur in the plant.
Possible utilization of these frameworks to limit and possibly reduce the model
inaccuracy is the answer to Subquestion 2 and is described in the next subsection.

1.5.2 Reducing plant-model mismatch by system identification

In the operation of a process or a production facility, the available information that
can be used to handle the discrepancy are the blueprint of the facilities and offline
or online data about physical-chemical quantities that are measured. From a data-
driven modeling perspectives, the data can be used to model the system behavior
and update the models if necessary. In order to utilize this information, we pro-
pose to use the framework of system identification. The main goals of utilizing the
system identification framework are to bound, shape, and reduce model inaccu-
racy or uncertainty. The system identification framework consists of approaches
on experiment design, data processing, model structure and criterion selection,
model validation and residual analysis (Ljung 1999). The framework allows us
to characterize model uncertainty with respect to measurement and process noise
affecting the data set and guarantee asymptotic convergence of the model esti-
mate to the true system dynamics under mild conditions such as persistency of
excitation in the data set and that the system of interest lies in the selected model
set.

In this thesis, system identification is used with two different model classes
which correspond to capturing different sources of discrepancy between plant
and the model that are mentioned earlier in Section 1.5.1. The first one is the
Linear Time-Varying (LTV) case, where system identification is used in an iterative
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manner to capture unknown changes happening in the plant. The applied sys-
tem identification procedure is the same as in LTI system identification where the
identification can be done in either a direct or a recursive fashion. The second ap-
proach is Linear Parameter-Varying (LPV) identification (Tóth 2010). For the LPV
case, the identification is conducted in either a global or local identification of the
parameter varying model. For both modelling approaches, the capability of each
of the techniques to bind and shape the uncertainty of the model depends on the
selection of the model structure. Moreover, the model structure itself has a di-
rect impact on the following control synthesis step and the resulting closed-loop
dynamics. In the next subsection, we describe the selected model structure and
motivate our selection.

1.5.3 Capturing changes by OBF-based model structures

We need to have a model structure that is capable of describing a system on its
designed operating regime with a relatively simple, low complexity parametriza-
tion. One possible way to achieve this structure is by using a Finite Impulse Re-
sponse FIR model structure. It is known that the FIR representation can capture
any stable linear system if a long enough expansion is considered (Franklin et al.
1990). However, the numerous expansion coefficients may lead to variance issues
and hence a problem with model uncertainty. The candidate modeling approach
needs to be able to describe a wide range of systems on the designed operating
regime while only minimally affected by the bias and variance of the resulting
model estimates. Fortunately, there exists a particular model structure that pos-
sesses both qualities. This model structure is based on Orthonormal Basis Functions
(OBF) (Ninness and Gustafsson (1997),Heuberger et al. (2005)).

The capability of the OBF model structure as a general approximator of nonlin-
ear systems is shown in Boyd and Chua (1985). The utilization of OBF to describe
nonlinear systems fit both the LTV and LPV frameworks that we propose to han-
dle changes in the plant. Moreover, an OBF-based model structure has attractive
properties from the system identification point of view such as favorable tradeoff
between bias and variance and linearity in its parameters. These properties are re-
inforced by a proper selection of the basis functions. The basis function selection
also provides a mechanism for incorporating prior information (blueprint) of the
system in the model. By properly selecting the basis functions we can shape the
richness of the model in the sense of describing possible changes that are probable
in the plant. Moreover, the basis selection also serves as a tuning knob from the
perspective of controller design to adjust the complexity of the model of the plant.
The basic theory of OBF is provided in Chapter 2 while the basis selection proce-
dure is given in Chapter 3. In the next subsection, Subquestion 3 of the research
question is addressed.

1.5.4 OBF-based MPC schemes

In our attempt to reduce the discrepancy between the plant and the model, the
parameters of the OBF model are going to vary. The variation of the model leads
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to the variation of the closed-loop system which can jeopardize the control perfor-
mance. In some extreme cases, closed-loop stability may be lost. Hence, we need
to ensure that the implementation of OBF models to handle plant-model mismatch
leads to minimum effect on the MPC controller. Unfortunately, the literature on
the implementation of OBF-based prediction models in an MPC scheme is mini-
mal. The work of Douik et al. (2007) utilizes an OBF-based prediction model in an
RMPC scheme. Another work of Patwardhan et al. (2006) and their series of pa-
pers utilize OBF for either state observers or fault diagnosis purposes. The possi-
ble advantages of using an OBF-based predictor model to handle plant-model dis-
crepancy and to ease the MPC design are not considered in these works. Besides
being used in the prediction model, the OBF framework can be used to parameter-
ize the synthesized input for MPC (Wang (2009) and van Donkelaar (2000)). This
input parameterization is used to achieve infinite horizon prediction property.

In our proposed OBF-based MPC scheme, we aim to reduce the discrepancy
between the plant and the model so as to sustain high performance of the con-
troller. It is mentioned in the previous subsections that two different frameworks
of LTV and LPV systems are used to handle different type of changes which are the
unknown and unmeasurable changes and the known and measurable changes.
These two frameworks lead to two different MPC schemes which are the LTV-
OBF MPC scheme and the LPV-OBF MPC scheme. Each of these two schemes
is coupled with different system identification procedures and each of them is
described in details in separate chapters of this thesis. In the LTV case, system
identification is conducted iteratively to update the parameters of the OBF pre-
diction model. Furthermore, we guarantee crucial controller properties such as
closed-loop stability and performance. These are described in details in Chapter
4. In the LPV case, we consider a predetermined change in the predictor model
by constructing an LPV model that explicitly captures the system dynamics in the
designed operating regime. The MPC scheme needs to handle the predetermined
changes in the model. A detailed description of the LPV-OBF MPC scheme can
be found in Chapter 5. Although OBF models can be used to model unstable sys-
tems (Tóth 2010), we restrict ourselves to predictive control formulation for stable
processes. If the process under consideration has unstable modes, it is assumed
that these modes are stabilized by feedback. Lastly, we demonstrate our proposed
MPC scheme in industrially relevant case study in Chapter 6.

1.5.5 Outline and contribution of the thesis

The remaining chapters of this thesis are organized in the following way: Chap-
ter 2 provides preliminary material on notation and mathematical background.
Chapter 2 also gives a brief introduction into the theory on OBFs and basis selec-
tion. The main contributions are given in Chapters 3, 4, 5, and 6 and the relation
between the chapters is depicted in Figure 1.6. The arrowed line indicates how
the chapters are linked with the other chapters, while the dashed line shows the
theories that support parts within the chapters.
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Figure 1.6: Thesis content.



2 CHAPTER

Preliminaries

This chapter is devoted to providing an overview of established theories
and their respective notations that are used throughout this thesis. This
chapter starts with a brief description of linear time-invariant (LTI) sys-
tems and their representations. In Section 2.3, the concepts of linear time-
varying (LTV) and linear parameter-varying (LPV) systems as extensions
of the class of LTI systems are introduced. In Section 2.4, fundamental
concepts from Hilbert space theory are given. These basics and defini-
tions are important as fundamental knowledge to introduce the concepts
and descriptions related to orthonormal basis functions (OBF).

2.1 Linear Time-Invariant systems

In this thesis, we adopt the viewpoint where systems are considered as operators
that map input signals to output signals. In the adopted framework, it is assumed
that it has been decided which signals are inputs and which are outputs. This de-
cision depends on the prior knowledge of the application regarding the cause and
effect of those signals. In the process industry, the input signals are often referred
to as the Manipulated variables (MV’s), and the output signals are also known as
the Controlled variables (CV’s). The input-output signals are usually represented as
continuous time signals (defined on R or R[0,∞)) or discrete time signals (defined
on Z or Z[0,∞)) . Most signals related to real world applications are continuous
time signals. However, to enable processing of such signals in the digital environ-
ment, they are usually discretized or sampled at equidistant time instants. From
Shannon’s sampling theorem (Åström and Wittenmark 1990), we learned that as
long as the frequency content of the continuous time signal is band limited, the
continuous signal can be recovered from its discrete-time samples without ap-
proximation loss provided that the sampling time is small enough.

Throughout this thesis, both the input signal u ∈ UZ (where the time sample
u(k) belongs to the input signal space U ⊆ Rnu ) and the output signal y ∈ YZ

19
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Figure 2.1: LTI System

(where the time sample y(k) belongs to the output signal space Y ⊆ Rny ) are
considered to be infinite sequences:

u := {u(k)}k=∞
k=−∞, (2.1)

y := {y(k)}k=∞
k=−∞, (2.2)

with k ∈ Z. System G governs the mapping between the input signal space to the
output signal space

G : UZ → YZ. (2.3)

We call system 2.3 linear if G is a linear map and time invariant if time shifted
inputs produce the same outputs shifted in time, i.e. qτG = Gqτ ,∀τ with q the
forward shift operator, and qτ corresponds to qτu(k) := u(k + τ). In this thesis,
we only consider discrete time causal systems, i.e. the output y(k) of a system
measured at time k does not depend on future inputs u(k + n) at k + n for any
n > 0. Depending on the dimension of the signals, the system is called a

• SISO (single-input, single-output) system: if both input and output signals
are scalar: nu = 1;ny = 1.

• SIMO (single-input, multi-output) system: if the input signal is scalar while
the output signal is multivariable: nu = 1;ny > 1.

• MISO (multi-input, single-output) system: if the input signal is multivari-
able while the output signal is scalar: nu > 1;ny = 1.

• MIMO (multi-input, multi-output) system: if both input and output signals
are multivariable: nu > 1;ny > 1.

Remark 2.1 It is worth to mention that there are other viewpoints that consider implicit
system definitions. One of the examples is the behavioral approach that considers all sig-
nals involved in a given system as collections of trajectories of the respective system with-
out an a priori distinction between inputs and outputs (Polderman and Willems 1991).

2.2 Representations of LTI system

Three system representations of LTI systems are considered in this thesis. The
representations are the series expansion representation, the transfer function rep-
resentation, and the state-space representation. Although the systems of interest
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in this thesis, in general, are MIMO systems, for simplicity and introductory pur-
pose, the representations presented in this section are given in the SISO form. The
MIMO formulation of a system is further treated in Section 2.5 along with the
introduction of Orthonormal Basis Functions (OBF).

2.2.1 Series expansion representation

The series expansion representation expresses the linear and causal mapping be-
tween input and output as:

y(k) =

∞∑
τ=0

g(τ)u(k − τ), k ∈ Z, (2.4)

where the output signal at time k is a convolution of the input signal with the se-
quence g(τ) ∈ R. Since only causal systems are considered in this thesis, we have
g(τ) = 0 for τ < 0 and thus the convolution (2.4) is written only with respect to
past input sequences. The function g is called the impulse response of the system
as it is equal to the output y of the system given an input u of a unit pulse:

u(k) = δ(k) :=

{
1, if k = 0;
0, if k ̸= 0;

If g has no compact support, then (2.4) is known as an Infinite Impulse Response
(IIR) representation. When g has a compact support, then (2.4) is called a Finite
Impulse Response (FIR) representation. For the latter, there exists an n > 0 such
that (2.4) is equivalent with

y(k) =

n∑
τ=0

g(τ)u(k − τ), k ∈ Z, (2.5)

where n is the length of the impulse response.

2.2.2 Transfer function representation

The transfer function representation of system G expresses the relation between
the input and the output signals in the frequency domain z ∈ C:

U(z) := [Z(u)](z) =
∞∑

k=−∞

u(k)z−k (2.6)

Y (z) := [Z(y)](z) =
∞∑

k=−∞

y(k)z−k, (2.7)

where Z denotes the z-transform operator and z ∈ C is any complex number for
which the infinite series (2.6) or (2.7) converge. The set of all z ∈ C for which
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(2.6) or (2.7) are well defined as an infinite series expansion are called the region
of convergence, i.e. R(u) ⊆ C and R(y) ⊆ C. The z-transform leads to a frequency
domain representation of the system, where G := Z(g) governs the relation of the
frequency spectrum of the input U(z) and output Y (z) according to

Y (z) = G(z)U(z), (2.8)

with

G(z) = [Z(g)](z) =
∞∑

τ=−∞
g(τ)z−τ , (2.9)

where z ∈ C and G(z) is the z-transform of the impulse response (2.4).

In general, the transfer function representation of a system consists of ratios of
finite order polynomials in z ∈ C:

G(z) =

l∑
i

niz
i

m∑
j

djz
j

, (2.10)

where ni ∈ R,∀i = {1, . . . , l} and dj ∈ R,∀j = {i, . . . ,m}. If the coefficients of
the numerator and denominator polynomials are real, then the transfer function
is called real-rational. The values of z that result in a zero numerator are known as
the zero(s) of the system, while the values that lead to a zero valued denumerator
are known as the pole(s) of the system. Poles of a system dictate that the output
response of the system is composed from specific exponential trajectories. The
zeros of a system describe the frequencies at which the input does not contribute
to the output. A system is called proper if limz→∞G(z) < ∞. If limz→∞G(z) = 0,
then the transfer function is called strictly proper.

2.2.3 State-space representation

The state-space representation of system G is defined as:

x(k + 1) = Ax(k) +Bu(k), (2.11)
y(k) = Cx(k) +Du(k), (2.12)

with A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu . A state-space represen-
tation with matrices A,B,C,D is a state-space realization of the transfer function
(2.9) if

G(z) = D + C(zI −A)−1B, (2.13)

while its impulse response coefficients satisfy

g(τ) =

 D, τ = 0;
CAτ−1B, τ > 0;
0, τ < 0.

(2.14)
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Note that a representation of a MIMO system in a state-space form has a more
intuitive formulation compared to the previous two representations. A state space
realization is called a minimal realization of G(z) if the state dimension nx is min-
imal among all possible realizations of G(z).

2.2.4 BIBO stability

One of the most commonly used stability notions for proper finite dimensional
LTI systems is the notion of Bounded-Input-Bounded-Output (BIBO) stability. Sys-
tems that are BIBO stable produce a uniformly bounded output when a uniformly
bounded input is applied. Formally, this means that for any u ∈ ℓ2, (space of
square summable sequences) we have

y = Gu ∈ ℓ2 (2.15)

and the corresponding ℓ2 gain of the system G : ℓ2 → ℓ2, defined as

∥G∥2 = sup
u∈ℓ2

∥Gu∥2
∥u∥2

, (2.16)

is finite. So, in particular, ∥y∥2 ≤ ∥G∥2∥u∥2 for any input u ∈ ℓ2. The norm ∥.∥2
is also called the induced norm of the system over the ℓ2 spaces. Fundamental
descriptions of these function spaces, inner product, and induced norm can be
found in Section 2.4.

2.3 Linear Time-Varying and Linear Parameter-Varying
systems

An LTI system assumes the same linear relation between input and output se-
quences for all time instances. However, almost all chemical-mechanical processes
in the process industry are by nature nonlinear and are subject to time-varying ef-
fects. This means that a rigid model description by an LTI representation can
become obsolete after a period of time. A known method to tackle this variability
while still preserving linearity between the input-output relation is to allow varia-
tions in the model parameters. The variation itself can, in general, be divided into
two types. The first one is when the cause of the variation is unknown but the
parameters are changing with respect to time. Such system classes are denoted as
Linear Time-Varying (LTV) systems (Zerz 2006). The second perspective consid-
ers known sources of the time-varying changes in the parameters of the system.
The parameter changes are governed by scheduling variables. Systems that fall in
this category are called Linear Parameter-Varying (LPV) systems (Tóth 2010).

2.3.1 General description of LTV and LPV systems

The interpretation of the variation in the linear dynamics can be made from the
perspective of a time-variant impulse response. The impulse response of both
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LTV and LPV systems are not restricted to be invariant over time and can possibly
change at different time instances. For the LTV case we have:

Definition 2.1 The output of a linear time-varying system F can be written as:

y(k) =

∞∑
τ=0

gk(τ)u(k − τ), k ∈ Z (2.17)

where the input-output mapping at time k is governed by the parameterized impulse re-
sponse gk(τ).

Note that dependence of gk in (2.17) on the time index k expresses the variation
of the impulse response. By our consideration, this variation may happen for
every value of k and can be piecewise constant or triggered by conditions of the
process. For the LPV case we have:

Definition 2.2 Let p : Z→ Rnp be a mapping called scheduling variable. We consider S
to be a linear parameter-varying system if the output can be written as:

y(k) =

∞∑
τ=0

g(p(k), . . . , p(k − τ), τ)u(k − τ), k ∈ Z, p(k) ∈ Rnp (2.18)

where the input-output mapping depends the whole trajectory 1 of the scheduling variable
p(k). The parameter-varying impulse response of the system is denoted by g(p(k), . . . , p(k−
τ), τ).

The major difference between the LTV and LPV case is how their impulse re-
sponse are characterized. This difference originates from the knowledge on what
is causing the change in the dynamics of the system. In (2.17), the source of the
change is unknown in most cases, and hence the relation between different im-
pulse responses for different time indices are not given explicitly. In contrary, the
relation of impulse responses of (2.18) are explicitly described as a function of the
scheduling variable p(k).

2.3.2 Momentary description of LTV and LPV systems

A momentary frequency domain interpretation of LTV and LPV systems can be
obtained directly from the z-transformation of their momentary impulse responses.
If the function gk(τ) in (2.17) is z-transformed into the frequency domain, we ob-
tain a transfer function for each index time k.

1This general form of LPV systems is also known to have dynamic dependence, i.e., dependence on
p(k), . . . , p(k − τ) at index τ .
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Definition 2.3 The time-varying momentary transfer function representation associated
with (2.17) is written as:

Gk(z) = [Z(gk)](z) =
∞∑

τ=−∞
gk(τ)z

−τ . (2.19)

If the function g(p(k), . . . , p(k − τ), τ)) in (2.18) is z-transformed into the fre-
quency domain, we obtain a transfer function that depends on the trajectory p(k),
. . . , p(k − τ).

Definition 2.4 The parameter-varying momentary transfer function representation as-
sociated with (2.18) is written as:

G(p, k, z) = [Z(g(p, k))](z) =
∞∑

τ=−∞
g(p(k), . . . , p(k − τ), τ)z−τ . (2.20)

Note that (2.19) qualifies as a frequency response of the LTV system F in the
sense that y(k) = [Z−1{GkU}]k. Thus, if u(k) = sin(ωok) with ωo ∈ [−ϕ,+ϕ]
then the response is y(k) = Gk(e

jω)sin(ωok + Gk(e
jω)). Note as well that the

use of "Gk" as a notation for the momentary transfer function of F is used to
emphasize that it corresponds to the transfer function of an LTI system Gk that
momentary describes the dynamics of F at time moment k. Observe that gk(τ) =
g(p(k), . . . , p(k − τ), τ) provided that the whole trajectory of p is known. In that
case Gk(z) = G(p, k, z) for all k, z.

2.3.3 Frozen description of LTV and LPV systems

Now we introduce the concept of frozen description which capture the linear dy-
namics of either an LTV system F for a given time instance or an LPV system S
for a given value of the scheduling variable.

Introduce a time-varying state-space representation:

x(k + 1) = Akx(k) +Bku(k),
y(k) = Ckx(k) +Dku(k),

(2.21)

where Ak ∈ Rnx×nx , Bk ∈ Rnx×nu , Ck ∈ Rny×nx , Dk ∈ Rny×nu . Now, for a fixed k,
the corresponding impulse response of (2.21) is given as follows::

g̃k(τ) =


Dk, τ = 0;

CkA
τ−1
k Bk, τ > 0;

0, τ < 0.

(2.22)

Note that (2.22) represent the impulse response of the LTI system (Ak, Bk , Ck, Dk)
at time moment k if k would be frozen (not varying anymore). If the function g̃k(τ)
in (2.22) is z-transformed into the frequency domain, we obtain a frozen transfer
function for each index time k.
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Definition 2.5 The time-varying frozen transfer function representation associated with
(2.17) is written as:

G̃k(z) = [Z(g̃k)](z) =
∞∑

τ=−∞
g̃k(τ)z

−τ . (2.23)

where impulse response of g̃k is identical for all k.

Note the subtle difference between gk of (2.17) is and g̃k of (2.23) which is
described in the following corollary.

Corollary 2.1 In general
gk(τ) ̸= g̃k(τ), (2.24)

since

gk(τ) = Ck
( τ−1∏
l=1

Ak−l
)
Bk−τ for τ > 0. (2.25)

However, as soon as the variation in the system dynamic over time becomes slow, the
difference between the momentary and the frozen transfer function becomes negligible.

Similarly, a frozen description of the dynamics can be introduced in the parameter-
varying case. Consider a parameter-varying state-space representation2:

x(k + 1) = A(p(k))x(k) +B(p(k))u(k),
y(k) = C(p(k))x(k) +D(p(k))u(k),

(2.26)

where A(p(k)) ∈ Rnx×nx , B(p(k)) ∈ Rnx×nu , C(p(k)) ∈ Rny×nx , D(p(k)) ∈ Rny×nu .
The corresponding frozen impulse response of (2.26) is given as follows:

g̃(p(k), τ) =


D(p(k)), τ = 0;

C(p(k))Aτ−1(p(k))B(p(k)), τ > 0;

0, τ < 0.

(2.27)

Again, (2.27) represent the impulse response of the LTI system (A(p(k)), B(p(k))
, C(p(k)), D(p(k))) at time moment k if (p(k)) would remain constant (not varying
with time k). If the function g̃(p(k), τ) in (2.27) is z-transformed into the frequency
domain, we obtain a transfer function for each index time k.

Definition 2.6 The parameter-varying frozen transfer function representation associated
with (2.17) is written as:

G̃(p(k), z) = [Z(g̃(p(k))](z) =
∞∑

τ=−∞
g̃(p(k), τ)z−τ . (2.28)

where impulse response g̃(p(k), τ) depends only on the instantaneous value of scheduling
variable p(k).

2Eq (2.22) corresponds to a wider class of systems that can be represented by (2.26). For a general
form of LPV-SS representations refer to (Tóth 2010)



2.4 Basics of Hilbert space theory 27

The difference between momentary and frozen parameter-varying description
is captured in the following corollary:

Corollary 2.2 In general

g(p(k), . . . , p(k − τ), τ) ̸= g̃(p(k), τ), (2.29)

since

g(p(k), . . . , p(k − τ), τ) = C(p(k))
( τ−1∏
l=1

A(p(k − l))
)
B(p(k − l)) for τ > 0. (2.30)

However, as soon as the scheduling variable p becomes slowly varying or constant3, the
difference between the momentary and the frozen transfer functions become negligible.

Both transfer functions (2.28) and (2.23) give a snapshot of the linear dynamics
for a given time or value of the scheduling variable. The state-space representa-
tions of the LTV and LPV systems ((2.21) and (2.26)) are further used for prediction
models in our proposed MPC schemes. More detailed description of the predic-
tion model and how they are handled in system identification, are mentioned in
their corresponding chapters (Chapter 4 for LTV systems and Chapter 5 for LPV
systems).

Remark 2.2 It is worth to note that the transformation between equivalent representa-
tions in case of LTV and LPV systems is far from trivial. We refer to Zerz (2006); Tóth
(2010) for more detailed descriptions on how to conduct transformations as well as their
consequences for both types of systems. In this thesis, we defined the representations as
the mathematical setting for our proposed solutions, and we do not explore or utilize the
transformations between these representations.

2.4 Basics of Hilbert space theory

This section contains material on Hilbert spaces that are important in the context
of this thesis. This material covers a number of basic descriptions and definitions
such as the inner product, orthogonality, sets, and basis functions in a Hilbert
space. Afterwards, special attention is given to a particular Hilbert space which is
a Hardy space of stable transfer functions.

2.4.1 Fundamental definitions of a Hilbert space

A Hilbert space H is a linear vector or function space that is equipped with an
inner product (Kreyzig 1978). The inner product induces a norm in a Hilbert space
which makes the Hilbert space also a normed space. Definitions are given as
follows:

3A constant scheduling variable is a subclass of possible scheduling trajectories.
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Definition 2.7 An inner product on a vector space X is a bilinear functional ⟨. , .⟩ :
X × X → R with the properties

1. Linearity ⟨α1f1 + α2f2, g⟩ = α1⟨f1, g⟩+ α2⟨f2, g⟩,∀ α1, α2 ∈ R.

2. Symmetry ⟨f, g⟩ = ⟨g, f⟩.

3. Positivity ⟨f, f⟩ ≥ 0 and ⟨f, f⟩ = 0 ⇐⇒ f = 0.

A vector space X that is equipped with an inner product is an inner product space denoted
by (X , ⟨. , .⟩).

Definition 2.8 An inner product space (X , ⟨. , .⟩) defines a normed space (X , ∥.∥) with
norm ∥f∥ := ⟨f , f⟩ 12 .

The Cauchy sequence is defined as follows:

Definition 2.9 A Cauchy sequence in X is a sequence {fk}∞k=1, fk ∈ X with the prop-
erty that lim

k,l→∞
∥fk − fl∥ = 0.

A Hilbert space is defined as follows:

Definition 2.10 A Hilbert spaceH is an inner product space that is complete in the sense
that every Cauchy sequence inH attains a limit belonging toH (converges to an element
inH).

In a Hilbert space, a measure of similarity between its elements is characterized
by the inner product. If the similarity measure of two elements is equal to zero,
then they are called orthogonal with each other.

Definition 2.11 An arbitrary pair of elements f, g ∈ H is called orthogonal if ⟨f, g⟩ = 0.
This is also written as f ⊥ g. For sets J1,J2 ⊂ H, we call J1 and J2 orthogonal if
⟨s1, s2⟩ = 0 for all s1 ∈ J1, s2 ∈ J2. If J1 and J2 are orthogonal, we write J1 ⊥ J2.

The orthogonality property is also used to give a definition of the complete-
ness4 of a given set J in a Hilbert spaceH.

Definition 2.12 J ⊂ H is complete if there are no non-zero elements f ∈ H for which
f ⊥ J .

Another essential definition related to a Hilbert space is the notion of projec-
tion.

4Note that completeness of a set and completeness of a space are entirely different things which are
not to be confused. Completeness of a set is also named as total, maximal, fundamental, or basic.



2.4 Basics of Hilbert space theory 29

Definition 2.13 An operator ΠJ : H → J is called a projection of H onto J ⊆ H if it
obeys ImΠJ = J and ΠJΠJ = ΠJ . Moreover, the projection ΠJ x of x ∈ H onto J is
the unique element s∗ = ΠJ x ∈ J with the property that ⟨x− s∗, s⟩ = 0,∀s ∈ J

A projection can easily be carried out in terms of basis expansions of subspaces.
This is especially useful in conjunction with the notion of a basis of a Hilbert space,
which has paramount importance in the scope of this thesis. The interaction be-
tween a projection and a basis is given in Section 2.4.2 while the definition of a
basis is given as follows:

Definition 2.14 A set {ϕj}j∈J is a basis of H if for all v ∈ H there exist unique coef-
ficients {cj}j∈J such that v =

∑
j∈J cjϕj . For countable infinite sets J = {1, 2, . . . , },

the latter expansion means that

lim
jo→∞

∥v −
jo∑
j=1

cjϕj∥ = 0. (2.31)

The coefficients cj are called the expansion coefficients of v with respect to the basis
{ϕj}j∈J . As a consequence, v ∈ H can be written as

v =
∑
j∈J

cjϕj . (2.32)

The convergence of this sum should be interpreted in the sense of (2.31). The
statement (2.32) holds for any v ∈ H if and only if the basis {ϕj}j∈J span the
complete Hilbert spaceH.

Remark 2.3 The formulation of (2.31) infers the countability of a given set of basis. Only
separable Hilbert spaces have countable bases. In the non countable case, (2.31) and (2.32)
do not hold. Thus, a Hilbert space H is called separable if there exists a countable subset
for which the closure with respect to the inner product norm coincides with the space itself.

2.4.2 Orthonormal basis of a Hilbert space

In order to construct a basis of a Hilbert space, each of the basis elements need to
be linearly independent with respect to each other. A set consisting of mutually
orthogonal elements is called orthogonal and a basis constructed of an orthog-
onal set is called an orthogonal basis. Orthonormal is the normalization of an
orthogonal set and is an extra property that is often used to avoid computational
sensitivity that occurs due to the disparity between the norms of the elements in
an orthogonal set.

Definition 2.15 (Orthogonal and orthonormal set) A set of functions {ϕi}i∈J in a Hilbert
space H is an orthogonal set if all its elements are mutually orthogonal, i.e. ⟨ϕi, ϕj⟩ =
0∀i, j ∈ J except for i = j. If, in addition, ∥ϕi∥ = 1, ∀i ∈ J, then the set is called an
orthonormal set.
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Definition 2.16 (Orthogonal and orthonormal basis) An orthogonal basis of a Hilbert
space H is an orthogonal set {ϕi}i∈J that is a basis in H. If in addition, the functions ϕi
are normalized in the sense that ∥ϕi∥ = 1,∀i ∈ J , then it is called an orthonormal basis
ofH.

The utilization of orthogonal bases further simplifies the parameterization of
an element in a Hilbert space. The motivation of using orthogonal and orthonor-
mal basis can be seen in the following example:

Example 2.1 Suppose that v ∈ J where J = span{ϕi}ni=1, how to find the coefficients ci of an expansion
v =

∑n
i=1 ciϕi?

For j ∈ {1, . . . , n} we have ⟨v, ϕj⟩ =
∑n
i=1 ci⟨ϕi, ϕj⟩, and hence:⟨ϕ1, ϕ1⟩ . . . ⟨ϕn, ϕ1⟩

...
. . .

...
⟨ϕ1, ϕn⟩ . . . ⟨ϕn, ϕn⟩


︸ ︷︷ ︸

Gc

c1...
cn

 =

⟨v, ϕ1⟩
...

⟨v, ϕn⟩


︸ ︷︷ ︸

b

. (2.33)

The expansion coefficients c = [c1, . . . , cn]⊤ can be obtained by inverting Gc in (2.33), i.e. c = Gc−1b. For a
set of non orthogonal basis, the invertibility ofGc is non trivial. For a set of orthogonal basis,Gc is diagonal and
non singular and thus it is easy to invert it. Moreover, for a set of orthonormal basis, Gc is an identity matrix
and hence we have ci = ⟨v, ϕi⟩.

It can be seen that for an orthogonal or orthonormal basis, it is easier to decou-
ple the contribution of each basis element (coefficient ck in (2.32)) to describe an
element in a given subspace of a Hilbert space. The importance of orthogonality
of a basis is further strengthened when an element x ∈ H is projected on a given
subspace J ⊂ H with J = span{ϕi}ni=1.

Let x =
∑∞
j=1 dj ϕ̃j and let s∗ =

∑n
i=1 ciϕi be the projection of x on J , thus

s∗ = ΠJ x. Then, by Definition 2.13, we have ⟨x− s∗, ϕi⟩ = 0 for all i = 1, . . . , n.
This relation is equivalent with

⟨
n∑
j=1

dj ϕ̃j , ϕi⟩ = ⟨
n∑
i=1

ciϕi, ϕi⟩,

and as well equivalent with

n∑
j=1

di⟨ϕ̃j , ϕj⟩ =
n∑
i=1

ci⟨ϕi, ϕi⟩,

and thus, in particular, by taking ϕ̃j = ϕi, it follows that ci = di, for i ≤ n.
Therefore s∗ =

∑n
i=1 diϕi whenever x =

∑∞
i=1 diϕi.
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2.4.3 Orthonormalization of a set inH

Any countable set of linearly independent functions in a Hilbert space H can be
transformed into an orthogonal set that has the same linear span. The orthogo-
nalization of a set along with the normalization procedure is called an orthonor-
malization method. One of the well-known orthonormalization methods is the
Gram-Schmidt orthonormalization procedure (Kreyzig 1978).

Definition 2.17 Given the set of linearly independent functions {ϕi}ni=1 ⊂ H, an or-
thonormal set {ϕ̃i}ni=1 with span{ϕi}ni=1 = span{ϕ̃i}ni=1, is obtained through a recursive
procedure: 

ϕ̃1 = ∥ϕ1∥−1
ϕ1, i = 1;

ϕ̃i = ∥vi∥−1
vi with vi = ϕi −

i−1∑
j=1

⟨ϕi, ϕ̃j⟩ϕ̃j , 1 < i ≤ n. (2.34)

Some notable examples of orthonormal bases of a Hilbert space that are fre-
quently used in the system and control field of study are:

• The space H of square summable sequences ℓ2(N). An example of a set of
basis functions in this space is {ψi(τ)}i∈N = {δi(τ)}i∈N, τ ∈ N which is the
unit pulse sequence where the non zero element is located at i = τ :

δi(τ) :=

{
1 i = τ ;

0 i ̸= τ.

• The Hardy space H2(E). An example of set of basis functions in this space
is the pulse basis {ϕi(z)}i∈N with ϕi(z) = z−i, z ∈ C, i ∈ Z. This particular
space is used and further explained in detail in the following subsection.

2.4.4 The spaces of real-rational and stable discrete-time systems

The Hardy space H2(E) is a space of complex valued functions that are analytic in
the exterior E = {z ∈ C | |z| > 1} of the unit disc D = {z ∈ C | |z| ≤ 1} and square
integrable over the unit circle T = {z ∈ C | |z| = 1}.

Definition 2.18 (Inner product ofH2(E)) The Hardy space is a separable Hilbert space
with inner product defined as:

⟨G1, G2⟩H2(E) =
1

2π

∫ π

−π
G1(e

iw)G∗
2(e

iw)dw. (2.35)

Further in this thesis, special attention is given to a specific subspace of the
Hardy space which contains all real rational transfer functions which are ana-
lytic in E and strictly proper i.e., limz→∞ |G(z)| = 0. This subspace is denoted by
RH2(E).
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2.4.5 Isomorphic space with the Hardy space

The Hilbert spaces of ℓ2(N) and H2(E) are isomorphic with respect to each other.
The isomorphism is defined by the z-transform Z . Consider g ∈ ℓ2(N), then

G(z) = [Z{g}](z) =
∞∑
i=1

g(τ)z−τ , (2.36)

belongs toH2(E). Conversely, if G ∈ H2(E) then

g(τ) = Z−1{G(z)}, (2.37)

belongs to ℓ2(N) and satisfies δ(τ) = 0 for τ < 0. Note that Z−1{·} is the inverse
z-transform on the appropriate region of convergence. It follows that due to the
isomorphism, we have

∥g∥2 = ∥G∥H2
. (2.38)

If the transformation is conducted on g1, g2 ∈ ℓ2(N) with δ1(τ) = 0, δ2(τ) = 0 for
τ < 0 and that result in G1, G2 ∈ H2(E), the inner product between these two
pairs are given as

⟨g1, g2⟩ℓ2(N) = ⟨G1, G2⟩H2(E). (2.39)

The isomorphism is also presented between particular subspaces of these two
aforementioned spaces. Particularly, we are interested in the relation between
RH2(E) and Rℓ2(N). This isomorphism means that any sequence g ∈ Rℓ2(N) in
the series expansion representation (2.4) corresponds to one and only one function
G ∈ RH2(E) in the transfer function representation (2.9), and vice versa. The
orthonormal basis of these spaces is a core ingredient of the results presented in
this thesis and is further elaborated in the next section.

2.5 Orthonormal basis functions ofRH2(E)

This section covers one of the core elements in this thesis which is the Orthonor-
mal Basis Function (OBF) model structure. We start with reformulating the series
expansion representation and the transfer function representation using OBFs. Af-
terwards, the description on the truncation of the model structure is given and a
method to construct these OBFs is motivated. The available methods of selecting
a set of OBFs based on the selected optimality measure are given to conclude this
section.

2.5.1 OBF model structure

Given a complete set of orthonormal basis {ϕi}∞i=1 of RH2(E), the transfer func-
tion G ∈ RHny×nu

2 (E) (space of ny × nu matrices with elements in RH2) of any
strictly proper asymptotically stable MIMO LTI system can be written as:
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G(z) =

∞∑
i=1

wiϕi(z), (2.40)

where wi ∈ Rny×nu is a matrix of expansion coefficients whose (m,n)-th entry
w
[m,n]
i corresponds to the m-th output and n-th input channel associated with

G[m,n](z) of G(z):
w
[m,n]
i = ⟨ϕi, G[m,n]⟩H2 . (2.41)

Similarly, let {ψi}∞i=1 be an orthonormal basis of Rℓ2(N). According to (2.36),
any impulse response g ∈ Rℓny×nu

2 (N) is associated with a G ∈ RHny×nu

2 (E) and
can be written as

g(τ) =

∞∑
i=1

wiψi(τ). (2.42)

Since {ψi(τ)}∞i=1 and {ϕi(z)}∞i=1 are related via the Z-transform (See Section 2.4.5)
in the sense that ϕi = Z(ψi), then the expansion coefficients wi in both (2.42) and
(2.40) are equal with each other.

Remark 2.4 Note that representations (2.40) and (2.42) are given in terms of scalar basis
of their corresponding spaces. In the MIMO case, this particular selection leads to a matrix
of expansion coefficients wi. In order to describe a MIMO system with scalar expansion
coefficients, one needs to select a MIMO formulation of OBFs such as given in Heuberger
et al. (2005). A scalar type of basis is used instead of a MIMO one because this particular
type of basis functions has well worked out properties that are useful in the context of
modeling and control in this thesis. More on the type of the basis and the implication of
such selection are explained further in this section.

2.5.2 Truncation of the OBF model structure

In practice, it is often required to have a finite number of terms in (2.40) or (2.42)
such as done in Finite Impulse Response (FIR) models. In contrast with FIR struc-
tures, the OBF parameterization allows a broad class of basis functions where each
basis function has an infinite impulse response sequence. The truncation of (2.40)
with respect to the first nb basis functions of {ϕi}∞i=1 is given by:

Gnb
(z) =

nb∑
i=1

wiϕi(z). (2.43)

By the last observation in Section 2.4.2, observe that (2.43) is the orthogonal projec-
tion ofG ∈ RH2 onto span{ϕi}nb

i=1. Any such truncation incurs an error Ḡnb
(z) :=

G(z) − Gnb
(z), where the error norm (induced by the inner product) for each

(m,n)-th entry of G(z) is defined by:

∥G[m,n] −G [m,n]
nb

∥2H2
=

∞∑
i=nb+1

(w
[m,n]
i )2. (2.44)

The implication of using a set of general OBFs rather than the pulse basis is two-
fold. From the modeling perspective, the freedom to select the OBFs {ϕi}∞i=1 gives
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(a) Impulse response g = Z−1{G}

(b) Impulse response of the OBFs {ϕi}3i=1 (c) Coefficients of the OBF model G3(z)

Figure 2.2: Comparison between the length of truncation for FIR and OBF models.

the user a handle to select the basis functions such that arbitrary low error in
(2.44) can be obtained using only a low truncation order nb. Moreover, in terms
of identification with the OBF model structure, one can obtain decreased variance
of the model estimate Gnb

(z) if compared to the FIR case (Ninness et al. 1996;
Heuberger et al. 2005). From the point of view of model based control synthesis,
OBF structure provides an additional degree of freedom to adjust the complexity
of the controller by selecting the basis functions and the truncation length. The
comparison between the length of truncation of a FIR model and an OBF model is
illustrated in the following example.

Example 2.2 Given a SISO LTI system with transfer functionG(z) for which the impulse response is depicted
in Figure 2.2(a), and an orthonormal set of OBFs {ϕi(z)}∞i=1. The impulse response of the first three OBFs
is shown in Figure 2.2(b). Figure 2.2(c) shows that the OBF model only need three expansion coefficients to
describe G(z) by G3(z) of (2.43) with low error in the sense of (2.44). Contrary to Figure 2.2(c), Figure 2.2(a)
shows that FIR model (which is constructed by the pulse basis) need at least a truncation length of 15 to obtain
low error in describing G(z).

The question that follows from the truncation of an OBF model structure is
how to select or construct the set of {ϕi(z)}∞i=1. This question will be addressed
further in the remaining sections in this Chapter.
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2.5.3 Classes of OBFs

Orthonormal basis inRH2(E) are often considered in terms of Takenaka-Malmquist
(TM) functions which cover wide arrays of well-known bases such as pulse ba-
sis, Laguerre basis, Kautz basis, and Hambo basis (Ninness and Gustafsson 1997;
Heuberger et al. 2005). TM OBFs are defined as:

ϕi(z) =

√
1− |λi|2
z − λi

i−1∏
j=1

1− λ∗jz
z − λj

, i = 1, 2, 3, . . . , (2.45)

where λi ∈ D for all i = 1, 2, 3, . . . , are complex numbers inside the unit disc that
appear as either real numbers or pairs of complex conjugate numbers and obey
the Szász Condition of

∑∞
i=1 1 − |λi| < ∞. The latter is a sufficient condition for

completeness of the basis. In Heuberger et al. (2005), it is shown that set of OBFs
generated by (2.45) is an orthonormal basis of RH2(E) since it originates from
conducting Gram-schmidt orthonormalization procedure (as explained in Section
2.4.3) to an infinite sequence of linearly independent functions:

ϕ̂i(z) =
1

z − λi
, i = 1, 2, 3, . . . . (2.46)

The selected values for each (or complex conjugate pairs) λi ∈ D of the sequence
{λi}∞i=0 satisfying the Szász Condition, determine the type and the properties of
the set of basis functions, as well as the subspace spanned by a finite subset of
them. Complex poles λi ∈ D need to appear as complex conjugate pairs to guar-
antee that the associated impulse responses of (2.40) are real-valued.

Some examples of notable basis functions that can be parameterized by (2.45)
are given below.

Example 2.3 Suppose λi = 0, ∀ i ∈ Z+. Then the resulting basis is known as the pulse basis ϕi(z) = z−i.
Given a value of ā ∈ R(−1,1). Suppose λi = ā for all i ∈ Z+. Then the resulting basis is known as the
Laguerre basis:

ϕ1 =

√
1−ā2

z−ā
,

...

ϕi =

√
1−ā2

z−ā

(
1−āz
z−ā

)i−1
.

(2.47)

Given a complex conjugate pole pair c, c∗ = a± ib ∈ D , with a, b ∈ R(−1,1). Suppose λ2i−1 = c, λ2i = c∗

for all i ∈ Z+. Then the resulting OBFs is known as the Kautz basis:

ϕ2i−1 =

√
1−b2 (z−a)

z2+a(b−1)z−b

(
−bz2+a(b−1)z+1

z2+a(b−1)z−b

)i−1
,

ϕ2i =

√
1−b2

√
1−a2

z2+a(b−1)z−b

(
−bz2+a(b−1)z+1

z2+a(b−1)z−b

)i−1
.

(2.48)

Example 2.3 provides particular selections or patterns of λi to describe ϕi(z)
of (2.45). These selections lead to well-defined infinite sequences of {λi}∞i=1 that
produce an infinite sequence of OBFs {ϕi}∞i=1. These OBFs constitute a complete
orthonormal basis forRH2(E) (Heuberger et al. 2005).
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Alternative to the OBFs that are provided in Example 2.3, a complete orthonor-
mal basis forRH2(E) can be constructed by repeating a priory selected {λi}nb

i=1 ⊂
D in the sense of:

{λi}nb
i=1 = {λi}2nb

i=nb+1 = . . . , (2.49)

up to infinite repetition. Note that such a repetition, trivially satisfies the Szász
condition. This particular repetition is the basic step in the construction of Gener-
alized Orthonormal Basis Functions (GOBF), the most general subclass of TM OBFs.

2.5.4 Construction and state space formulation of GOBFs

In this subsection, the construction of GOBFs along their state-space formulation
is given. The state-space formulation of OBF models is essential for this thesis
since most of the control/identification methods and analysis in the following
chapters are conducted in the state-space form. The construction of GOBFs is
based on an all-pass filter, defined as follows:

Definition 2.19 A function H ∈ H2(E) is called an all-pass filter, if

H(z)H∗(1/z∗) = 1, ∀z ∈ C. (2.50)

Such function if rational, is completely determined, modulo the sign by its poles
λi ∈ D,∀i = 1, . . . , nb.

Consider a single input single output asymptotically stable first order all-pass
filter Hi(z) given as:

H̆i(z) =
z − āi
1− āiz

, −1 < āi < 1, (2.51)

where āi denote a real valued λi. A state-space realization of this filter can be
given as: [

Ăi B̆i
C̆i D̆i

]
=

[
āi

√
1− ai√

1− āi −āi

]
. (2.52)

Introduce a second order all-pass filter Hj(z) with transfer function:

H̆j(z) =
−bjz2 + aj(bj − 1)z + 1

z2 + aj(aj − 1)z − bj
, −1 < aj < 1,−1 < bj < 1 (2.53)

where aj and bj denote the real and imaginary part of a complex conjugate pair
of poles λj and λ∗j . Note that (2.53) constitute two basis of ϕj and ϕj+1. The state-
space realizations of this filter can be given as:

[
Ăj B̆j
C̆j D̆j

]
=


aj bj

√
1− a2j

√
1− a2j

√
1− b2j√

1− a2j −ajbj −aj
√

1− b2j

0
√
1− bj −bj

 . (2.54)
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Figure 2.3: Cascaded connection of all-pass filters.

The two filters (2.51), (2.53), and any possible sequence of these filters, can be
connected in a cascaded network such as depicted in Fig 2.3.

For two filters, which can be a combination of first and/or second order pass
filters, this connection can be formulated as:

[
Anb

Bnb

Cnb
Dnb

]
=

 Ă1 0 B̆1

B̆2C̆1 Ă2 B̆2D̆1

D̆2C̆1 C̆2 D̆2D̆1

 . (2.55)

This construction can be recursively applied for cascaded connection on nb > 2
filters.

Suppose that we have a nb cascaded connection of filters that follows the for-
mulation of (2.55). Then the input to state transfer function for the cascaded net-
work of nb filters can be written as:

φnb
(z) := (zI −Anb

)−1Bnb
(2.56)

which is a vector of transfer function consisting of nb elements

φnb
(z) =



ϕ1(z)
ϕ2(z)

...

...

...
ϕnb

(z)


. (2.57)

Note that connection with (2.53) constitute 2 elements instead of 1 element of
(2.51) and hence (2.57) is the natural partitioning of φnb

in terms of nb numbers
of real and imaginary pole components. Furthermore, we can see that the i-th
element of (2.57) is the same as the i-th Takenaka Malmquist basis of (2.45) that
constitute a basis inRH2(E).

In order to span the complete RH2(E) space, the cascaded connection of all-
pass filters can be repeated infinitely. For ne number of repetition of φnb

(z) we
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have:

φne,nb
(z) =



ϕ1(z)
ϕ2(z)

...
ϕnb

(z)
ϕnb+1(z)
ϕnb+2(z)

...
ϕ2·nb

(z)
...

ϕne·nb
(z)



, (2.58)

which constitutes ne · nb number of basis functions {ϕi}ne·nb
i=1 . The formulation of

the cascaded network of (2.58) is given as follows:

Definition 2.20 Suppose that minimal and balanced (hence orthogonal) realization of
cascaded network of arbitrary combination of filters (2.51) and (2.53) is given in the state
space matrices (Anb

∈ Rnb×nb , Bnb
∈ Rnb , Cnb

∈ R1×nb , Dnb
∈ R) corresponding

to nb number of basis functions. For these given orthogonal realizations, the cascaded
network has a minimal and orthogonal state space realization where theAne,nb

andBne,nb

matrices are given as:

Ane,nb
=


Anb

0 . . . 0
Bnb

Cnb
Anb

0 0
...

...
. . .

...
Bnb

∏ne−1
j=2 Dnb

Cnb
Bnb

∏ne−1
j=3 Dnb

Cnb
. . . Anb

 , . (2.59)

Bne,nb
=


Bnb

Bnb
Dnb

...
Bnb

∏ne−1
j=1 Dnb

 . (2.60)

Under the trivially satisfied Szász condition, the elements of the vector of transfer
functions

φne,nb
(z) := (zI −Ane,nb

)−1Bne,nb
, (2.61)

constitute ne · nb number of basis for RH2(E). When ne = ∞, the resulting OBFs
{ϕi}∞i=1 of (2.61) span the complete RH2(E) space. Such an OBF sequence is known as
Generalized Orthonormal Basis Functions (Heuberger et al. 2005).

By using the OBFs produced by (2.61), any element G ∈ RH2(E) can be ap-
proximated as the orthogonal projection to the span of {ϕi}ne·nb

i=1 :

Gne,nb
(z) =

ne·nb∑
i=1

wiϕi(z), (2.62)
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with a state space realization of:

x(k + 1) = Ane,nb
x(k) +Bne,nb

u(k)

y(k) = [w1 w2 . . . wne·nb
]x(k) (2.63)

where Ane,nb
∈ Rne·nb×ne·nb , Bne,nb

∈ Rne·nb , and wi ∈ R. The OBF model
Gne,nb

(z) is depicted in Figure 2.4.

Figure 2.4: Cascaded structure of (2.62).

In the MIMO case when G ∈ (RH2(E))ny×nu , the OBF model (2.62) can be
written in the form:

x(k + 1) =


Ane,nb

. . . 0
...

. . .
...

0
. . . Ane,nb


︸ ︷︷ ︸

A∈Rng×ng

x(k) +


Bne,nb

. . . 0
...

. . .
...

0
. . . Bne,nb


︸ ︷︷ ︸

B∈Rng×nu

u(k)

y(k) =


w
[1,1]
1 . . . w

[1,1]
ne·nb w

[1,2]
1 . . . w

[1,nu]
ne·nb

...
. . .

...
...

. . .
...

w
[ny,1]
1 . . . w

[ny,1]
ne·nb w

[ny,2]
1 . . . w

[ny,nu]
ne·nb


︸ ︷︷ ︸

θ⊤

x(k) (2.64)

where ng = ne ·nb ·nu, x(k) ∈ Rng is the number of the cascaded network of filters
(2.61) that is repeated for nu number of input channels u(k) ∈ Rnu , and y(k) ∈ Rny

is the output of the system. The coefficient θ ∈ Rng×ny consists of the stacked
expansion coefficients w[ny,nu]

i for all possible input-output channel.

2.5.5 Optimality of an OBF set

The advantage of using GOBFs to describe aG ∈ RH2(E) is the possibility to char-
acterize the approximation error (convergence rate) as ne, the length of cascaded
networks increases. Suppose that a SISO system with G ∈ RH2(E) is aimed to be
modeled in the form of (2.62). Introduce Φnb

⊂ RH2(E) as the subspace spanned
by {ϕi(z)}nb

i=1 and Φne
⊂ RH2(E) as the subspace spanned by ne number of cas-

caded network of {ϕi(z)}nb
i=1. According to Heuberger et al. (2005); Oliviera e
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Silva (1996), the approximation error has exponential rate of convergence (with
rate ρnb

∈ R(0,1)) regarding Ḡne,nb
(z) := G(z)−Gne,nb

(z):

∥Ḡne,nb
∥H2 ≈ (ρnb

)ne∥Ḡ1,nb
∥H2 , ∀ ne = 1, 2, 3, . . . . (2.65)

In order to improve the convergence rate of the approximate model (2.62), the
selection of the all pass filter poles {λi}nb

i=1 becomes a crucial task. The set of nb
poles that corresponds to the fastest convergence rate is considered as the gener-
ating poles of the optimal basis functions to describe G(z) at truncation order nb.
It is shown in Oliviera e Silva (1996), that the rate of convergence ρnb

in (2.65) has
an upperbound of

ρnb
≤ max

ξ∈Ω

nb∏
i=1

∣∣∣∣ ξ − λi1− λ∗i ξ

∣∣∣∣ , (2.66)

where Ω ⊂ D is the set of poles of the transfer function G(z).

The procedure to select the all pass filter poles {λi}nb
i=1 from the information

of poles Ω is also known as the inverse Kolmogorov n-width (KnW) problem with
n = nb. The KnW concept, originates from Pinkus (1985), and it is used as a
quality measure of the capability of a set of basis functions {ϕi(z)}nb

i=1 to describe
a subset of transfer functions T ⊂ RH2(E).

Definition 2.21 Kolmogorov n-Width.
Let T be a closed set of RH2(E), andMn is the collection of all n dimensional subspaces
ofRH2(E). The KnW of G ∈ T is given by:

πn(T ) = inf
Φn∈Mn

sup
G∈T

dRH2(E)(G,Φn), (2.67)

where
dRH2(E)(G,Φn) = inf

F∈Φn
∥ G− F ∥RH2(E), (2.68)

describes the distance between G ∈ RH2(E) and a subspace Φn ofRH2(E).

In this way πn(T ) describes smallest possible dRH2(E) that can be achieved for all
G in T that is projected to the subspace Φn. The smallest possible distance dRH2(E)

lead to smallest possible worst case approximation (truncation) error when G is
described by using n basis function. The subspace Φn ∈ Mn, for which πn is
minimal, is called the optimal subspace in the KnW sense. This optimal subspace
describes the best possible approximation of T in the worst-case sense. Further-
more, in the sense of (2.65) and (2.66), this correspond to the lowest value of ρnb

that can be achieved using nb basis function (Oliviera e Silva 1996). It is also stated
in the same work, that the zeros of the transfer functions do not give a dominant
contribution for the convergence rate and hence the pole location of the to be ap-
proximated transfer function is the only determining factor to select the best OBFs
in the KnW sense.

Remark 2.5 The characterization of the convergence rate (2.65) of the error for each
input-output channel of a MIMO system can be written using same set of OBFs for all
channel. In this manner, we have an upper bound for the convergence of the approxima-
tion error of all the channels. Furthermore, it is shown in Heuberger et al. (2005) that for
a given set of OBFs {ϕi(z)}ni=1, the convergence rate between two cases of:
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• multiple transfer functions with single (or multiple) pole

• single transfer function with multiple poles

are the same as long as the set of poles Ω for both cases are equal. We can also use this result
to asses the quality of a given set of OBFs {ϕi(z)}ni=1 to approximate system dynamics
described by a set of LTI systems (i.e LTI system with parametric uncertainty, LPV system,
etc.).

2.5.6 KnW distance based basis selection techniques

Based on the description given in Section 2.5.5, the optimal basis poles in the KnW
distance sense can be formulated as follows:

Definition 2.22 Basis pole selection problem
Given Ω ⊂ D, find nb optimal pole locations, λoi ∈ D, i = 1, 2, . . . , nb by solving the
following optimization problem:

PKnW := min
λ1,...,λnb

∈D
max
ξ∈Ω

nb∏
i=1

∣∣∣∣ ξ − λi1− ξλ∗i

∣∣∣∣. (2.69)

For Ω = λ(G), i.e., the poles of a given G ∈ RH2(E), the attained minimum of
(2.69), denoted by Jo, describes the best achievable upperbound for the conver-
gence rate ρnb

of Eq. (2.65):
ρnb
≤ Jo. (2.70)

The pole selection problem (2.69) is a difficult rational min-max problem over D.
Several works attempted to give a solution to this problem:

• Oliviera e Silva (1996)
In this work, λi is parameterized using a technique similar to the Schur-
Cohn stability test in the denominator of Gb(z). Although it simplifies the
real and complex conjugate pairs of the pole selection, this restricts the con-
struction of basis function as well as the possible space spanned by the basis
functions.

• Patwardhan et al. (2006)
Direct pole and coefficient estimation in a prediction error minimization
scheme. This problem is solved with a direct application Nonlinear Pro-
gramming technique and hence the optimality of the resulting pole-coefficient
estimation is questionable. Moreover, this technique has a computation is-
sue even for a small number of poles.

• Tóth et al. (2009)
The so called Fuzzy Kolmogorov c-Max algorithm is the latest result in the
selection of the OBFs. This algorithm asymptotically obtains optimal OBFs
as the fuzzyness parameter goes to infinity. However, in order to obtain an
appropriate tuning parameter for the algorithm to be working as intended,
the user needs several iterations.
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2.6 Summary

In this chapter, an overview of established theories that are used in this thesis have
been given. We have introduced multiple representation forms of LTI, LTV, and
LPV system. These three types of system classes are of paramount importance
for this thesis. Furthermore, we have described the basic theory of Hilbert spaces
which is used as the foundation for the theories related to the OBF-based model
structure. We have provided a procedure to construct an OBF-based model and
then described the theory related to the selection of the OBFs.
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Optimal Basis Pole Selection

This chapter is devoted to solving the basis pole selection problem for the
OBF-based models. Since OBF-based models are extensively used in this
thesis, selecting optimal basis poles for the OBFs in terms of approxima-
tion error of the resulting model is of paramount importance. After the
introduction section, the basis pole selection problem is formally stated
in Section 3.2. In Section 3.3, the basis pole selection problem is reformu-
lated and adequate parameterization of the poles is selected. In Section
3.4, novel basis pole selection algorithms are proposed as a solution to the
problem. In Section 3.5, the issue of uncertainty of pole locations, caused
by uncertainty in model parameters, is addressed. In Section 3.6, per-
formance of the proposed basis selection algorithm is demonstrated on
simulation examples.

3.1 Introduction

Finite Impulse Response (FIR) model structures have been widely used in the pro-
cess industry as a modeling tool to approximate the dynamical behavior of a sys-
tem (Qin and Badgwell 2003b; Goodwin et al. 2005). The modeling procedure
for such a model structure is relatively easy to be accomplished due to its sim-
plicity, while it has powerful approximation capabilities. However, the simplicity
of the model comes with a drawback as an accurate model of the plant, or the
system of interest, may require long or infinitely many parameters. If parameter
estimation or system identification techniques are conducted with such a model,
the variances of the estimated parameters are going to be high. This means that
the obtained model tends to have low accuracy in case of moderate or high noise
conditions. One possible way to avoid this problem and achieve a parsimonious
model is to use richer basis functions such as Laguerre basis or Kautz basis instead
of the generic pulse basis. The aforementioned basis functions are known for their
ability to impose prior knowledge of the plant or the system of interest (Lee 1932;
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Kautz 1954). Laguerre basis is used to describe a dominant time constant of the
system while Kautz basis is used to capture resonant modes of the system. How-
ever, when a complex system with multiple distinct modes is attempted to be
modeled by using these two bases, it is apparent that these basis functions are not
rich enough to obtain a parsimonious model. The work of Heuberger (1990) intro-
duces a generalization of the Laguerre and Kautz basis into the so-called Hambo
basis, which can incorporate multiple modes of the system of interest. It is not
until the late 1990s that the relations between those basis functions are written
systematically and embodied into the notion of GOBFs (Ninness and Gustafsson
1997; Heuberger et al. 2005).

The parameterization of a system or signal in GOBFs leads to computationally
attractive techniques in various field of studies. The implication of using this ba-
sis in the context of system identification has been well summarized in Ninness
and Gustafsson (1999). Utilization of GOBFs as signal parameterization technique
for Model Predictive Controller (MPC) scheme can be seen in Wang (2009). Some
examples of recent developments in the utilization of GOBFs include the work of
Darwish et al. (2018) that uses the basis functions as regularization in Bayesian
based identification, and the work of Bachnas et al. (2015a) that utilize the model
structure to induce adaptivity in an MPC scheme. However, a key point that is
often less emphasized is that the advantages of using the GOBFs model structure
largely depend on the selection of the basis functions. This means that regardless
of the purpose or where the GOBF framework is being applied, the implementa-
tion of the framework with well selected basis functions will certainly outperform
the implementation where no emphasis on the selection is being made.

The task to select a set of OBFs from an arbitrary and possibly infinite dimen-
sional space is not a trivial exercise. This problem is also a reason why param-
eterization of the basis functions in terms of Hambo basis or GOBFs is advanta-
geous. The effect of this particular choice is that instead of selecting functions,
we are now selecting poles of the all-pass filter that is used to construct the basis
functions Heuberger et al. (2005). For the Laguerre basis and Kautz basis, due to
the simplicity of their structure, the optimal selection can be solved analytically.
However, for an arbitrary number of basis poles, the pole selection problem often
needs to be solved numerically. A pragmatic approach for pole selection was sug-
gested in van Donkelaar et al. (1998). In this work, a new set of basis functions is
estimated in each iteration step and then model reduction procedure is applied to
reduce the number of the basis function. This method can work in practice, but
without any guarantee of convergence. Another method written in Bodin et al.
(1997) utilizes a heuristic approach on selecting the basis poles.

In this Chapter, we adopt a line of reasoning proposed by Oliviera e Silva
(1996) to characterize optimal basis poles with respect to the (possible) poles of the
system of interest. The system of interest in the context of this thesis is restricted
to be stable systems only. This optimality condition arises from the Kolmogorov
n-width (KnW) concept of Pinkus (1985) that was originally utilized to express
capability of a model set to describe a certain subset of systems. The model set
is characterized by the poles of the basis generating filters, while the subset of
systems is distinguished by the pole locations of their transfer function represen-
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tations. In this manner, the selection of the basis poles can be cast into a nonlinear
optimization problem. Several basis selection techniques are already proposed
using this optimality condition. The work of Oliviera e Silva (1996) combines the
optimality condition with a specific parameterization method and solves it via a
non linear optimization technique. The work of Patwardhan and Shah (2005) tries
to solve this problem by attaching the optimality notion to the one step-ahead pre-
diction error minimization criterion. Another work of Tóth et al. (2009) explores
and extends the notion of optimal poles for not only LTI systems, but also LPV sys-
tems. What we perceive to be lacking in the aforementioned works is either the
exploitation of the structure of the problem, or the complexity of the procedures
that requires the user to have sufficient knowledge to optimally run the basis se-
lection technique. The structure of the optimality condition should point towards
which optimization tools are suitable to solve the basis selection problem. From
observing the basis selection problem, tools like Sequential Quadratic Programming
(SQP), Randomized Algorithm (RA), and Sum of Squares Programming (SOSP) lead
to basis selection techniques with simple tuning procedures. Moreover, due to the
selected optimality condition, the basis selection techniques that we propose can
be used to optimize the basis for a GOBF model of an LTI system, parametric un-
certain LTI system, or an LPV system. This capability is further demonstrated in
the following chapters in this thesis.

This chapter is constructed as follows. First, the basis pole selection problem
is given in Section 3.2. In Section 3.3, the basis selection problem is solved by se-
lecting an adequate parametrization of the poles. The re-formulation of basis pole
selection problem is needed to select the proper optimization tools to optimally
select the poles. These tools are described in Section 3.4, and are followed by the
proposed basis pole selection algorithms. Section 3.5 addresses the issue on how
our proposed algorithms can be used for an uncertain set of system poles. In or-
der to deal with such a case, a region of uncertain system poles is constructed on
which the basis selection methods are applied. In Section 3.6, the proposed basis
selection algorithm is demonstrated on a simulation example. The performance
of the proposed methods are compared with each other as well as with the cur-
rent state-of-the-art. Lastly, in Section 3.7, conclusions on the presented results are
drawn to end this chapter.

3.2 The basis pole selection problem

The convergence rate of the approximation error of an OBF model with the inner
function Gne,nb

∈ RH2(E) to describe the system of interest G ∈ RH2(E) is dic-
tated by the selection of the poles of Gne,nb

∈ RH2(E) (See Section 2.5.6 for details
on the approximation error and the convergence rate). The set of nb basis pole lo-
cations of the OBF model is obtained by solving the basis pole selection problem
for a given set of the system poles {ξk}nz

k=1 = Ω ⊂ D with cardinality nz:

Definition 3.1 Basis pole selection problem
Given a set of system poles {ξk}nz

k=1 = Ω ⊂ D, find nb pole locations, λol ∈ D, l =
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1, 2, . . . , nb by solving the following optimization problem:

PKnW := min
λ1,...,λnb

∈D
max

ξ1,...,ξnz∈D

nb∏
l=1

∣∣∣∣ ξk − λl1− ξkλ∗l

∣∣∣∣. (3.1)

The attained minimum of (3.1), denoted by Jo, describe the upperbound of the convergence
rate ρnb

(of Eq. (2.65)) :
ρnb
≤ Jo, (3.2)

with a Gnb
inner function generated basis using the pole locations of {λo1, . . . , λonb

}.

The cost function corresponding to (3.1) is defined as follows:

Definition 3.2 Define the cost function of basis pole selection problem J : Dnb → R as

J(λ1, . . . , λnb
) := max

ξ1,...,ξnz∈D

nb∏
l=1

∣∣∣∣ ξk − λl1− ξkλ∗l

∣∣∣∣. (3.3)

the component of the cost function for l-th basis pole and k-th system pole Jl,k : D2 → R
is:

Jl,k(λl, ξk) :=

∣∣∣∣ ξk − λl1− ξkλ∗l

∣∣∣∣. (3.4)

In order to solve the basis pole selection problem (3.1), the problem is refor-
mulated in the following section.

3.3 Solving the basis pole selection problem

Selection of a set of nb basis poles {λl}nb

l=1 that is optimal in terms of (3.1) corre-
sponds to a min-max problem over the complex domain. Since most optimization
techniques are more suitable in the domain of real numbers, parameterization
of the problem in R is practically convenient. Furthermore, the min-max opti-
mization problem can also be reformulated to simplify the solution of basis poles
selection problem.

3.3.1 Reparameterization of the basis poles

In this work, a generic representation of complex numbers is used instead of the
Schur-Cohn stability based parameterization (see Oliviera e Silva (1996)). The
generic representation is used to avoid restricting the degree of freedom in the
basis pole selection. There are two generic representations of a complex number
which are the cartesian form or the polar form. The cartesian form is used through-
out this work since it leads to a simpler derivation and formulation of the gradi-
ent of the cost function (3.3) when compared to the polar form. As mentioned in
Oliviera e Silva (1996) and Heuberger et al. (2005), using the cartesian form to solve
(3.1) requires pre-specifying how many of real and complex conjugate pairs are
expected among the basis poles which is called "pole configuration". The arrange-
ment problem to determine the configuration is illustrated as follows:
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Example 3.1 For nb = 10 the possible configuration of real and complex conjugate pair of poles are:

P1 = {real, real, real, real, real, real, real, real, real, real}
P2 = {real, real, real, real, real, real, real, real, cp}
P3 = {real, real, real, real, real, real, cp, cp}
P4 = {real, real, real, real, cp, cp, cp}
P5 = {real, real, cp, cp, cp, cp}
P6 = {cp, cp, cp, cp, cp}

(3.5)

In this example, it can be seen that for a small or medium number of basis
poles (nb < 10), the possible combinatorial pairing of real and complex conjugate
pairs of basis poles corresponds to 6 unique configurations. Hence, the utilization
of cartesian form for pole parameterization is justified. Furthermore, In Section
3.6.3, it is shown that prior information of the system can help to narrow down the
possible configurations of poles to determine the optimal basis pole configuration.

Remark 3.1 In Example 3.1, it is inferred that the order or the sequence of real poles and
complex conjugate pole pairs is not important. However, the sequence of the selected basis
poles {λl}nb

l=1 indeed changes the resulting OBFs {ϕl}nb

l=1. What remains invariant is the
span({ϕl}nb

l=1) ⊂ RH2(E) regardless the ordering of the basis poles. For a set of basis
poles {λl}nb

l=1, we follow the ordering method mentioned in Chapter 10 of Heuberger et al.
(2005). This method is tailored to avoid numerical issues that might rise due to difference
of the magnitudes of the expansion coefficients wi (of the OBF model (2.62)).

In the cartesian form, the complex numbers corresponding to the system poles and
the basis poles can be written as:

ξk = xk + iyk,

λl = al + ibl, (3.6)

where xk, yk, al, bl ∈ R(−1,1) for k = 1, . . . , nz and l = 1, . . . , nb. The cartesian form
requires the extra condition a2l + b2l < 1 for each of the complex conjugate pole
pairs to ensure that {λl}nb

l=1 ⊂ D.

In the cartesian form, each of the component of cost function (3.4) can be ex-
pressed as:

Jl,k(al, bl, xk, yk) =

(
(xk − al)

2 + (yk − bl)
2

(1− xkal − ykbl)2 + (ykal − xkbl)2

)1/2

. (3.7)

The next step of the re-parameterization of (3.1) is to distinguish (3.7) in case
of real poles or complex conjugate pole pairs. Introduce the set of real valued
basis poles as ā = {āi}nri=1 with āi ∈ R(−1,1) and the set of complex conjugate pole
pairs as a = {aj}ncj=1, b = {bj}ncj=1 with aj ∈ R(−1,1) and bj ∈ R(0,1). Denote nr as
the total number of real valued basis poles and nc as the total number of complex
conjugate pole pairs. Introduce

Nr,i(āi, xk, yk) = (xk − āi)
2 + (yk)

2, (3.8)
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as the contribution of a real valued basis pole to the numerator of (3.7), and

Dr,i(āi, xk, yk) = (1− xkāi)
2 + (ykāi)

2, (3.9)

as the contribution of a real valued basis pole to the denumerator of (3.7). Intro-
duce

Nc,j(aj , bj , xk, yk) = ((xk − aj)
2 + (yk − bj)

2).

((xk − aj)
2 + (yk + bj)

2), (3.10)

as the contribution of a complex conjugate basis pole pair to the numerator of
(3.7), and

Dc,j(aj , bj , xk, yk) = ((1− xkaj − ykbj)
2 + (ykaj − xkbj)

2).

((1− xkaj + ykbj)
2 + (ykaj + xkbj)

2). (3.11)

as the contribution of a complex conjugate basis pole pair to the denumerator of
(3.7).

Furthermore, denote

N(ā, a, b, xk, yk) =
nr∏
i=0

Nr,i(āi, xk, yk)

nc∏
j=0

Nc,j(aj , bj , xk, yk), (3.12)

and

D(ā, a, b, xk, yk) =
nr∏
i=0

Dr,i(āi, xk, yk)

nc∏
j=0

Dc,j(aj , bj , xk, yk), (3.13)

which combine the contribution of the nr numbers of real valued basis poles
and nc numbers of complex conjugate basis pole pairs. For i, j = 0, we define
Nr,0, Dr,0, Nc,0, Dc,0 := 1. With the newly introduced notation, we have:

nb∏
l=1

J2
l,k(al, bl, xk, yk) =

N(ā, a, b, xk, yk)

D(ā, a, b, xk, yk)
. (3.14)

Within the domain of the system poles {ξk}nz

k=1 ⊂ D, and basis poles {λl}nb

l=1 ⊂ D
solving the optimization problem (3.1) as

P̃KnW := min
a1,b1,...,anb

,bnb
∈R[−1,1]

max
x1,y1,...,xnz ,ynz∈R[−1,1]

nb∏
l=1

J2
l,k. (3.15)

can be beneficial if compared to solving the original problem (3.1). Within the
domain of the optimization variables, the minimizer of (3.15) corresponds to the
minimizer ({λoi }

nb
i=1) of (3.1). However, the gradient of the quadratic cost function

J2
l,k has a simpler form than the gradient of Jl,k. Since most optimization tech-

niques rely on the gradient of the cost function, a simpler gradient form might
ease the implementation of such techniques. After the cost function have been
reparameterized, the next step is to reformulate (3.15) into a simpler problem for
which general optimization techniques can be applied.
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3.3.2 Reformulation of the basis poles selection problem

On top of having a min-max problem (3.15), the cost function of this problem is a
non-continuous function in its domain and hence its gradient is not always com-
putable. This problem hinders the application of powerful gradient-based opti-
mization methods and forces to resort to gradient free or gradient approximation
based approaches, such as finite difference. For the min-max problem, it is stated
in Boyd and Vandenberghe (2004) that a min-max problem can be re-casted into a
constrained minimization problem. After the min-max problem is reformulated,
we need to find a continuous approximation of the new cost function. This ap-
proximation needs to have the same characteristics as the cost function, especially
with respect to the minimizer {λoi }

nb
i=1.

In order to reformulate the min-max problem, introduce γ ∈ R(0,1] as the up-
perbound of (3.14).

N(ā, a, b, xk, yk)

D(ā, a, b, xk, yk)
≤ γ ,∀k = 1, . . . , nz. (3.16)

For arbitrary values of xk, yk, al, bl ∈ R(−1,1) that belong to the domain of the
system poles {ξk}nz

k=1 ⊂ D and the domain of the basis poles {λl}nb

l=1 ⊂ D, the
variable γ describes the upperbound of the attained minimum of (3.15):

(Jo)2 ≤ γ. (3.17)

By utilizing this upperbound, given a set of reparameterized system poles
{xk, yk}nz

k=1, the optimization problem of (3.15) can be re-casted as:

Pref : min
γ,ā,a,b

γ

s.t
N(ā, a, b, x1, y1)

D(ā, a, b, x1, y1)
≤ γ,

...
N(ā, a, b, xnz , ynz )

D(ā, a, b, xnz , ynz )
≤ γ.

(3.18)

If the minimum of (3.18) is attained, then (Jo)2 = γ. The optimization problem
(3.18) has a linear cost function in the decision variables (γ, ā, a, b) and a set of nz
rational function inequalities. The basis pole selection problem (3.18) amounts to
minimizing the upper bound value γ. However, the constraint (3.18) still consists
of non-continuous functions. The next step is to reformulate the constraints of
(3.18). Provided that D(ā, a, b, xk, yk) > 0, each inequality is equivalent to:

J̃k(γ, ā, a, b) = N(ā, a, b, xk, yk)− γD(ā, a, b, xk, yk) ≤ 0, (3.19)

This condition holds anywhere in the domain of the decision variables (γ, ā, a, b)
that satisfy {ξk}nz

k=1 ⊂ D and {λl}nb

l=1 ⊂ D. It can be seen that the polynomial
function (3.19) is continuous and hence the gradient of this function is computable
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everywhere in the domain of the decision variable. By using relation (3.19), we
reach the final reformulation of the basis pole selection problem which is now
defined as:

Definition 3.3 Reformulated basis pole selection problem:
Given a set of reparameterized system poles {xk, yk}nz

k=1, and prior selection of the number
of real valued basis poles nr and complex conjugate pairs of basis poles nc. Find the set
of reparameterized optimal pole locations {ā, a, b} by solving the following optimization
problem:

Psel := min
γ,ā,a,b

γ

s.t J̃k(γ, ā, a, b) ≤ 0; k = 1, . . . , nz.
(3.20)

The minimizer āo = {āoi }
nr
i=1 corresponds to the real valued optimal basis poles:

λl = āol , l = 1, . . . , nr (3.21)

while ao = {aj}ncj=1, b
o = {bj}ncj=1 correspond to the complex conjugate basis pole pairs:

λnr+2l−1 = aol + ibol , λnr+2l = aol − ibol , l = 1, . . . , nc. (3.22)

The attained minimum of (3.20) is denoted by γo and obeys the relation of

γo = (Jo)2, (3.23)

where Jo is the minimum of the original problem (3.1). The gradient of J̃k in (3.20) is
given by:

∇J̃k =

[
−D(ā, a, b)

∂J̃k
∂ā1

. . .
∂J̃k
dāi

∂J̃k
∂a1

∂J̃k
∂b1

. . .
∂J̃k
∂aj

∂J̃k
∂bj

]⊤
. (3.24)

The derivation of the gradient (3.24) can be found in the Appendix A.1.

These constraints can be brought into the cost function by multipliers. An analyt-
ical solution to problem (3.20) for the configuration of a single real valued basis
pole (i.e. nb = nr = 1, nc = 0) can be given. This is illustrated as follows:

Example 3.2 For nr = 1, we can write (3.19) as

(−1− γx2k − γy2k)ā
2
1 + (2γxk − 2xk)ā1 + x2k + y2k − γ ≤ 0, k = 1, . . . , nz. (3.25)

By substituting the set of reparameterized system poles {xk, yk}nz
k=1 into (3.25) and replacing "≤" with "=",

we have nz set of 2nd order polynomials equations in γ and ā1 which is simple enough to be solved to find the
values for both variables.

However, for general configuration of basis poles, the number of multivariate
polynomials in J̃k complicates the analytical solution of (3.20). Hence, we have
to rely on using numerical optimization tools. We need to select numerical opti-
mization tools that can be used to solve the optimization problem of (3.20) in an
efficient manner.
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3.4 Optimization tools for basis poles selection

The basis pole selection problem of (3.20) has a linear cost function with poly-
nomial (non-linear) inequality constraints. We propose three methods to solve
this problem. The methods are Sequential Quadratic Programming (SQP), Random-
ized Algorithm (RA), and Sum of Squares Programming (SOSP). We first describe the
basic concept and theory of each of these optimization tools to give a better un-
derstanding of their utilization for solving the basis pole selection problem. The
equations related to each of these methods are tailored towards the basis pole se-
lection problem.

3.4.1 Sequential quadratic programming

Sequential Quadratic Programming (SQP) is an iterative Non-Linear Programming
(NLP) algorithm that allows us to mimic Newton’s method for constrained op-
timization just as it is done for the unconstrained case. This method utilizes the
Hessian of the Lagrangian function of the original problem to construct a QP sub-
problem. This subproblem is then used to formulate a line search procedure to
reach the numerical solution for the original problem (Nocedal and Wright 2006).

Core concept of the SQP Algorithm

A generic description of SQP algorithm for the basis pole selection problem (Def-
inition 3.3) is given to understand the concept of the algorithm. Introduce

v = col({γ, ā, a, b}) ∈ Rnobj ,

with nobj = 1 + nr + 2nc, as the vectorized form of the optimization variables.
Introduce vk as the value of v at the k-th iteration of the SQP algorithm. Without
index k, v is seen as the search direction of the SQP algorithm. Introduce the
Lagrangian function for (3.20):

L(v) = γ −
nz∑
j=1

µj J̃j(v). (3.26)

where 0 ≤ µj ≤ 1 are the Lagrangian multipliers, J̃j is given in (3.19), and
j = 1, . . . , nz . The SQP algorithm constructs the QP subproblem (quadratic cost
with linear constraints) for (3.20) in each k-th iteration of the algorithm. The QP
subproblem is given as follows:

Psqp := min
v∈Rnobj

1
2v

⊤Hkv + v

s.t ∇J̃j(vk)⊤v + J̃j(vk) ≤ 0, j = 1, . . . , nz,
(3.27)

where ∇J̃j(vk) is Equation (3.24) evaluated at vk, J̃j(vk) is Equation (3.19) evalu-
ated at vk, and Hk is (a positive definite approximation of) the Hessian matrix of
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the Lagrangian function

Hk =
∂2

∂v2
L(v)

∣∣∣∣
v=vk

. (3.28)

In general, the implementation of an SQP algorithm utilizes an approximation of
the Hessian where the value of H0 is initialized with a positive definite matrix.
The value of vk+1 for the next iteration of the SQP algorithm is obtained by:

vk+1 = vk + αkv, (3.29)

where αk is the step length and v is the solution of the QP subproblem (3.27).
The value of αk can be obtained via evaluating (3.19) in the search direction (3.29).
Alternatively, one can determine the optimal step length by using a merit function
such as given in (Nocedal and Wright 2006). The Hessian update for the k + 1-
th iteration of (3.27) is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method:

Hk+1 = Hk +
qkq

⊤
k

q⊤k sk
− Hksks

⊤
k H

⊤
k

s⊤k Hksk
, (3.30)

where

sk = vk+1 − vk, (3.31)

qk =

m∑
i=1

µiJ̃j(vk+1)−
m∑
i=1

µiJ̃j(vk). (3.32)

The SQP iteration is continued until q⊤k sk being greater than or equal to a pre-
specified tolerance value. Further details on the SQP algorithm can be found in
Chapter 18 of Nocedal and Wright (2006).

Remark 3.2 The generic implementation of SQP can be conducted via available non/com-
mercial solvers such as fmincon, etc (Matlab 2022). These solvers provide the approxi-
mation of the Lagrangian multiplier for each iteration, the initial value for the hessian Ho,
and the optimal step length αk. In most solvers, analytic form of the gradient (3.24) is
optional. If manual implementation of SQP is needed, the Hessian needs to be computed
and the Lagrangian multiplier can be obtained via solving a set of equations related to
the Karush-Kuhn-Tucker (KKT) condition of the optimization problem. We select the
fmincon solver for implementing the SQP algorithm. Next to SQP, we have studied sev-
eral NLP algorithms such as Barrier function, Active Sets, etc. Among these methods,
the SQP has given the shortest computation time with a result that is less sensitive for
moderate number of basis poles (nb > 5).

Implementation of SQP

The implementation of the SQP in the fmincon environment is straightforward.
The required elements for solving the basis pole selection problem (3.20) are:

• Number of real valued basis poles nr and complex conjugate basis pole pairs
nc.
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• The cost function (3.20).

• The inequality constraint (3.19) and its gradient (3.24) for each of the given
system poles {ξk = xk + iyk}nz

k=1.

• Domain of the optimization variables:

γ ∈ R[0,1),
ā = {āi}nri=1 with āi ∈ R(−1,1),
a = {aj}ncj=1 with aj ∈ R(−1,1),

b = {bj}ncj=1 with bj ∈ R(0,1).

(3.33)

• The constraint for complex conjugate basis pole pairs: a2j + b2j < 1 for j =
1, . . . , nc.

However, due to the nonlinear characteristic of the problem, the solution of
the algorithm is sensitive with respect to the initial value of v0. The algorithm be-
comes more sensitive as the dimension of decision variables increases. One way
to avoid finding unsatisfactory local optima is by running the algorithm multi-
ple times with different initial points. The initial points can be picked randomly
around the possible set of system poles Ω. The result with the lowest γ is then
picked as the solution of the algorithm. The implementation of multiple SQPs
with random initialization is described in Algorithm 1.

Algorithm 1 SQP basis pole selection using multiple fmincon)

Require :

• Required elements for the fmincon environment

• Total number of algorithm runs: nrun

Ensure: n = 1
while n ≤ nrun do

Select a random initial value for the n-th run v[n]0

Run fmincon with the cost function, gradients, and v[n]0

Collect the final value v[n]kend
= vkend

n← n+ 1
end while
Select the final value v

[n]
kend

with the smallest γ for all algorithm runs n =
1, . . . , nrun

3.4.2 Randomized algorithm

The reformulated problem (3.20) is still a difficult non-linear optimization prob-
lem that is also subject to the curse of dimensionality. Hence, the Randomized
Algorithms (RA) which do not suffer from such a curse of dimensionality (Tempo
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et al. 2013), represent an attractive alternative to solve the basis selection problem.
The search space (domain) for the basis poles that is limited to the unit disc is
also a favorable condition for the RA. Moreover, since the basis selection problem
is almost always solved in an offline manner, we can adjust the accuracy of the
solution depending on the number of iterations (time) and the resources (compu-
tational power) that we have.

Core concept of the randomized algorithm

The RA is based on the theorem of The Law of Large Numbers for Empirical Probability
and The Law of Large Numbers for Empirical Minimum (Tempo et al. 2013). In this
framework, we assume that the parameterized set of basis poles {ā, a, b} consists
of random variables with a particular probability distribution. In this probabilistic
sense, for a deterministic set of system poles {ξk = xk + iyk}nz

k=1 = Ω, we can
describe the maximum value of:

max
xk,yk∈Ω

N(ā, a, b, xk, yk)

D(ā, a, b, xk, yk)
:= fγ(ā, a, b), (3.34)

by using a probability density function denoted by fγ .

However, due to nonlinearity of (3.34), the probability density function fγ is
difficult to compute even with a priori knowledge on the probability distribution
of the parameterized set of basis poles. The approximation of fγ can be obtained
by computing the empirical estimate of the density function based on finite num-
ber of multisamples1 of the basis poles. The set of N number of multisamples of the
basis poles is denoted by

{[ā, a, b](i)}Ni=1, (3.35)

where the index in [ā, a, b](i) corresponds to the i-th sample.

Introduce a performance level γ ∈ R[0,1) as the possible value of (3.34). As-
suming that fγ is known, the probability of having a set of basis poles that result
in a value of (3.34) that is less than γ is written as:

R(γ) = Pr{fγ(ā, a, b) ≤ γ}. (3.36)

The computation of empirical estimate of (3.36) is defined as follows:

Definition 3.4 Given a performance level γ and a set ofN multisamples {[ā, a, b](i)}Ni=1,
the empirical estimate of (3.36) can be computed by:

R̂N (γ) =
1

N

N∑
i=1

IRA([ā, a, b]
(i)), (3.37)

where IRA is an indicator function that is given by:

IRA([ā, a, b]
(i)) =

{
1 if fγ([ā, a, b](i)) ≤ γ,
0 otherwise.

(3.38)

1randomly taken samples of the parameters of interest from their respective domain.
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The asymptotic convergence of the empirical estimate (3.37) to (3.36) as N →
∞ is guaranteed (Tempo et al. 2013). For a finite set of multisamples, a certification
of the empirical estimate (3.37) in the probabilistic sense can be made. The certi-
fication of the validity of an empirical estimate is described by a variable called
the confidence level δ ∈ R(0,1). Furthermore, it is stated in Tempo et al. (2013); Bai
et al. (1997) that the minimum number of multisamples needed to reach a predeter-
mined confidence level δ varies depending on the implementation of the RA and
the methods used to obtain the set of multisamples. The minimum number of the
required multisamples is attained by assuming a uniform distribution of the sam-
ples over the domain of the parameters. We propose two types of RA’s to obtain a
sample of the parameterized basis poles [ā, a, b](i) that is approximately equal to:

fγ([ā, a, b]
(i)) ≈ γ∗, (3.39)

where
γ∗ = inf

ā,a,b
fγ(ā, a, b). (3.40)

Remark 3.3 In computing the solution of the RA, time is mostly spent on drawing a
sample (3.35) and computing (3.34) for that particular sample. Hence, application of
parallel computing can speed up the computation time to completeN number of iterations.

Implementation of RA based on direct worst case approximation

In this algorithm, the empirical estimate of γ∗ is analyzed with respect to the total
volume of the domain of the random variable [ā, a, b]. The portion of the domain
that is not represented by the set of multisamples is characterized by β ∈ R(0,1).
More specifically, the probability to obtain the empirical estimate with respect to
almost all possible samples of [ā, a, b] is given by:

Pr
{
R̂N (γ∗) ≥ β

}
≥ 1− δ. (3.41)

For this type of RA, the minimum number of the required multisamples to achieve
such result is given by:

Nwc =
log 1/δ

log 1/β
. (3.42)

The approximate value of (3.39) is obtained via

γ∗N = min
i∈{1,...,Nwc}

fγ([ā, a, b]
(i)). (3.43)

For this particular implementation, there is no guarantee that γ∗N is actually
close to γ∗. The bound only guarantees (in the probabilistic sense) that almost all
possible values of fγ(ā, a, b) will be bigger than γ̂∗N with high probability of at least
1 − δ. In other words, the possible values of ā, a, b that correspond to fγ(ā, a, b)
being smaller than the obtained γ̂∗N , has a volume measure that is smaller than
β · 100% of the domain of ā, a, b. If the density function is sufficiently smooth, the
estimated and actual minimum may be close. The implementation of direct worst
case RA is described in Algorithm 2.
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Algorithm 2 RA basis pole selection using direct worst case approximation

Require :

• Number of real valued basis poles nr and complex conjugate basis pole
pairs nc.

• Set of system poles {ξk = xk + iyk}nz

k=1.

• Confidence level 0 < δ < 1.

• Volume density 0 < β < 1.

• Number of iteration Nwc from (3.42)

Ensure: i = 1
while i ≤ Nwc do

Draw the i-th sample [ā, a, b](i)

Compute fγ([ā, a, b](i)) using (3.34)
i← i+ 1

end while
Obtain γ∗N from the multisamples using (3.43)
Select the i-th sample [ā, a, b](i) that results in fγ([ā, a, b](i)) = γ∗N

Implementation of RA based on probabilistic performance verification

For this type of RA, the algorithm consists of two parts which are the minimization
of the performance level γ and finding a sample that corresponds to fγ([ā, a, b](i)) <
γ. The performance level is minimized in an iterative manner (e.g. by a bisection
based search strategy) up until we cannot find feasible sample from the multisample
that satisfies fγ([ā, a, b](i)) < γ. Such confidence level is then denoted by γ∗N and
the relation between R(γ∗N ) of (3.36) and its empirical estimate is given by:

Pr{R(γ∗N )− R̂N (γ∗N ) < ϵ} ≥ 1− δ, (3.44)

where ϵ ∈ R(0,1) is the probabilistic error value. The minimum number of multi-
samples that need to be drawn for each iteration in order to achieve (3.44) follow
the one sided Chernoff bound (Tempo et al. 2013):

Nv =
1

2ϵ2
log

1

δ
. (3.45)

The one-sided bound is used because its not possible to have γ̂∗N < γ∗. We can
interpret the result of this algorithm as follows. If we can not find any samples
that obey fγ([ā, a, b](i)) < γ̂∗N after Nv multisamples have been taken from the last
iteration to minimize γ, then that particular γ̂∗N is approximately close to the γ∗

of (3.39) with confidence level of 1 − δ. The implementation of a probabilistic
performance verification RA is described in Algorithm 3.
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Algorithm 3 RA basis pole selection using probabilistic performance verification
(a bisection based search strategy

Require :

• Number of real valued basis poles nr and complex conjugate basis pole
pairs nc

• Set of system poles {ξk = xk + iyk}nz

k=1

• Confidence level 0 < δ < 1

• Accuracy level 0 < ϵ < 1

• Number of iteration Nv from (3.45)

Ensure: i = 1, γmax = 1, and γmin = 0
Calculate the actual search point γ = γmax−γmin

2 + γmin

while γ − γmin < ϵ do
Draw the i-th sample [ā, a, b](i)

Compute fγ([ā, a, b](i)) by (3.34)
if fγ([ā, a, b](i)) < γ then

Save the candidate sample [ā, a, b](i)

Set γmax ← γ
Set γ ← γmax−γmin

2 + γmin

else if fγ([ā, a, b](i)) > γ and i < Nv then
i← i+ 1

else if fγ([ā, a, b](i)) > γ and i = Nv then
Set γmin ← γ
Set γ ← γmax−γmin

2 + γmin

end if
end while
Set γ∗N ← γ
Use the candidate sample [ā, a, b](i)
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3.4.3 Sum of squares programming

When the value of γ in (3.20) is fixed, the optimization problem becomes a feasibil-
ity problem. A feasibility problem for a set of polynomial inequalities are equiv-
alent with finding the Sum Of Squares (SOS) of the polynomials (Parrilo 2000). In
contrary with the previous two algorithms, the solution of an SOSP is always the
global optimum due to its convexity. However, by casting the basis selection prob-
lem as an SOS problem, we are solving the proxy of the true problem. Hence, only
the resulting value of γ can be used and not the minimizer (basis poles). The min-
imal value of γ for a given set of system poles is obtained via bisection based search
strategy.

Core idea of SOSP

The SOSP algorithm is based on the SOS decomposition of multivariate polyno-
mials which can be efficiently computed using semi definite programming (SDP)
(Parrilo 2000). A multivariate polynomial f(x1, . . . , x2) := f(x) is an SOS if there
exist polynomials f1(x), . . . , fm(x) such that

f(x) =

m∑
i=1

f2i (x). (3.46)

Clearly, if f(x) is SOS then f(x) ≥ 0. Verification wether f(x) is SOS or not is a
more tractable problem than verifying wether f(x) ≥ 0. Introduce X(xk, yk) as a
column matrix containing multivariate polynomials in terms of xk, yk ∈ Ω. Intro-
duce A(γ, ā, a, b) as a positive semi definite matrix with a structure that follows
(3.19). The inequality constraints of (3.20) can be written as an SOS of:

X(xk, yk)
⊤A(γ, ā, a, b)X(xk, yk) ≥ 0, k = 1, . . . , nz. (3.47)

In order to illustrate the structure of (3.47), we provide an example as follows:

Example 3.3 For nr = 1 we can write (3.19) as

(γā21 − 1)x2k + (γā21 − 1)y2k + 2(ā1 − γā1)xk + γ + ā21 ≥ 0. (3.48)

Afterwards, the structure (3.47) is obtained by collecting the polynomials of xk, yk :xk
yk
1

⊤  γā21 − 1 0 ā1 − γā1
0 γā21 − 1 0

ā1 − γā1 0 +γ + ā21

xk
yk
1

 ≥ 0 (3.49)

By specifying a value of γ, finding a positive semi definite matrix A(γ, ā, a, b)
that satisfies (3.47) is a convex feasibility problem in the domain of the parameter-
ized basis poles {āi, ai, bi}nr+2nc

i=1 . The smallest possible value of γ that still satisfies
the feasibility problem can be obtained iteratively via a bisection based search strat-
egy. After obtaining the minimum of γ, (3.19) can be re-casted as equalities and the
optimum can be calculated by finding the roots of the resulting multi-argument
polynomial. However, this final step is a complicated mathematical problem in
itself.
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Implementation of SOSP

The feasibility problem (3.47) solved by reformulating it as an SDP that can be
solved efficiently using SDP solvers such as SDPT3. Since, SOSP always leads to
a relaxation of the original polynomial optimization problem, the obtained mini-
mizer is often not a good approximation of the minimizer of the un-relaxed prob-
lem. Due to this reason, this algorithm is more suited to validate or falsify the
solution from the previously proposed solutions of the SQP and the RA. The im-
plementation of SOSP is described in Algorithm 4.

Algorithm 4 SOSP basis pole selection using SDPT3

Require :

• Number of real valued basis poles nr and complex conjugate basis pole
pairs nc.

• Set of system poles {ξk = xk + iyk}nz

k=1

• Stopping condition of the bisection search ϵ

Ensure: γmax = 1, and γmin = 0
Construct X(xk, yk) and A(γ, ā, a, b)
Compute polynomials xk, yk in X(xk, yk) for all k = 1, . . . , nz

Calculate the actual search point γ = γmax−γmin

2 + γmin

while γ − γmin < ϵ do
if If there exist {āi, ai, bi}nr+2nc

i=1 that satisfy (3.47) then
Set γmax ← γ
Set γ ← γmax−γmin

2 + γmin

else if If there is no {āi, ai, bi}nr+2nc
i=1 that satisfy (3.47) then

Set γmin ← γ
Set γ ← γmax−γmin

2 + γmin

end if
end while
The optimum γ∗ is ϵ close to the value γ

3.4.4 Basis pole selection using other methods

We have investigated several alternative methods to solve problem (3.20). One of
them is based on finding the null-space of the polynomial (3.19). For a selection of
a single real pole, analytical solution can be obtained (See Example 3.2). However,
for selection of more than a single pole, this becomes a problem of finding null-
space of a multivariate polynomial. This leads to a computational problem where
the computational time grows substantially with the number of basis poles. We
have also tried to convexify the original cost function of (3.3) by casting the ex-
pression in the hyperbolic geometry framework (Bachnas et al. 2015b). However,
the multiplication of the decision variable in (3.1) destroys the zero metricity and
complicate this line of reasoning.
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3.5 Basis pole selection for systems with uncertain pole
locations

The basis pole selection problem (Definition 3.3) is formulated with the assump-
tion of a finite and countable set of system poles. In this section, we provide
a method to use the proposed basis pole selection algorithms for systems with
uncertain pole locations. The uncertainty of pole locations is a result of system
parameters (coefficients) that are uncertain. Such a system is usually the result of
a system identification procedure used to obtain a model of a system of interest
with a given confidence bound on the estimated parameters. The system identi-
fication framework and possible procedures are further described in Chapter 4 of
this thesis. In order to deal with such a condition, a region of uncertain system
poles needs to be constructed. The related theory for this purpose is provided in
this section. Afterwards, we translate the theory into a method to construct a finite
and countable set of system poles.

3.5.1 Theory of pole confidence bounds

The theory, which is described in details in Vuerinckx et al. (2001) and Tóth (2010),
gives a mapping between uncertain parameters and possible corresponding pole
locations. The theory provides a hypothesis test to check wether a candidate pole
location is a valid pole location for a system with uncertainty in its parameter.

System with uncertain parameters

For the sake of simplicity, only the SISO case is considered. Let G denote an un-
known discrete time system and denote Fθn as a parameterized proper discrete
time2 SISO LTI model estimate with order n (Ljung 1999):

F (q, θn) =

∑nb
k=0 bkq

−k

1 +
∑na
k=1 akq

−k , (3.50)

with q is the unit time shift operator, θn = col([b0 . . . bnba1 . . . ana ]) is the parameter
estimate vector and na, nb ∈ N are the order of the nominator and denominator
polynomials fulfilling n = na+ nb. The properness of Fθn is guaranteed by (3.50).

Let θ̂n be the estimate of G usingFθn . Introduce θo as the true parameter vector
corresponding to the system and Qθ̂n

as the covariance matrix of the parameter
estimate. From (Pintelon and Schoukens 2001) it follows that

(θ̂n − θo)⊤Q−1

θ̂n
(θ̂n − θo) ∈ χ2 (n) , (3.51)

where χ2 (n) is a χ2-distribution with n degrees of freedom. Denote ∆θn = θn− θ̂n
for every θn ∈ Θ ⊂ Rn. Then for a given confidence level α ∈ R[0,1], the parameter

2Note that this theory is also applicable for continuous time systems. In the continuous case, q is
substituted with the Laplace variable s and the same formulas apply.
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uncertainty of Fθ̂n can be defined as a α-percentage uncertainty ellipsoid3 given
by

Eθ̂n(Qθ̂n
, α) =

{
θn ∈ Θ | ∆θ⊤nQ−1

θ̂n
∆θn ≤ χ2

α (n)
}
, (3.52)

where χ2
α (n) denotes the α-percentile of χ2 (n) implying the probability

P (θo ∈ Eθ̂n(Qθ̂n
, α)) =

α

100
∈ [0, 1] .

Denote Ω̂ ⊂ C as the region of poles of the model (3.50) with parameter θn ∈
Eθ̂n(Qθ̂n

, α). In order to establish an uncertainty region of poles associated with
each configuration of the parameters inside the ellipsoidal bound (3.52), a nonlin-
ear transformation of the parameter confidence region is needed. This transfor-
mation can be accomplished through the method of Vuerinckx et al. (2001), which
gives a hypothesis test to decide wether a candidate pole ξ̂k ∈ Ω̂ can be a pole lo-
cation of a model (3.50). First, we distinquish transformation for real valued poles
and complex conjugate pole pairs.

Transformation for real valued pole

Let ξ1 ∈ Ω̂ be a real valued pole that is associated with F (q, θ̂n) (model with
estimated parameter θ̂n) with na > 1. Define the perturbation ξ̃1 = ξ̂1 + ∆ξ1
such that there is a corresponding parameter vector θ̃n ∈ Θ. Note that θ̃n is not
unique because ξ1 only determines the denominator parameters. If θ̃n ∈ Θ ex-
ists, then it can be chosen such that the numerator parameters [b̃0, . . . , b̃nb ] of θ̃n
are equal to the numerator parameters of θ̂n. Introduce model parameter θ̌n−1 =
col([b0, . . . , bnb ǎ1, . . . , ǎna−1]) with free parameters [ǎ1, . . . , ǎna−1] and reparame-
terize F (q, θ̃n) as

F (q, θ̃n) = F1(q, ã)F2(q, θ̌n−1)

with

F1(q, ã) =
1

1 + ãq−1
=

1

1− ξ̃q−1
and F2(q, θ̌n−1) =

∑nb
k=0 bkq

−k

1 +
∑na−1
k=1 ǎkq−k

where θ̌n−1 contains the parameters of F2. This factorization implies the existence
of the transformation T1(ξ̃) and a vector T2(ξ̃) such that

θ̃n = T1(ξ̃)θ̌n−1 +T2(ξ̃), (3.53)

with

3Note that Eθ̂n (Qθ̂n
, α) ⊂ Θn is not guaranteed. In the sequel, it will be shown how this condition

can be enforced.
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T1(ξ̃) =



1 0 . . . 0

ã 1
. . . 0

0
. . . . . .

... 0(na)×(n−na)
...

. . . . . . 1
0 . . . 0 ã

0(n−na)×(na−1) I(n−na)×(n−na)


n×(n−1)

T2(ξ̃) =
[
ã 0 0 . . . 0

]⊤
1×n

Transformation for complex conjugate pole pairs

In case of na > 2 and a complex conjugate pole pairs ξ1, ξ2 ∈ Ω̂, ξ1 = conj(ξ2)
denote the perturbation of the pole pairs as ξ̃1 = ξ̂1 + ∆ξ, ξ̃2 = ξ̂2 + conj(∆ξ).
Using the same mechanism as before, introduce the model parameter θ̌n−2 =
col([b0, . . . , bnb ǎ1, . . . , ǎna−2]) with free parameters [ǎ1, . . . , ǎna−2] and reparametrize
F (q, θ̃n) as

F (q, θ̃n) = F1(q, ã1, ã2)F2(q, θ̌n−2)

where

F1(q, ã1, ã2) =
1

1 + ã1q−1 + ã2q−2

=
1

1− 2Re(ξ̃1)q−1 + |ξ̃1|2q−2
,

F2(q, θ̌n−2) =

∑nb
k=0 bkq

−k

1 +
∑na−2
k=1 ǎkq−k

.

This factorization implies the existence of the transformation (3.53) with

T1(ξ̃) =



1 0 . . . 0

ã1 1
. . . 0

ã2 ã1
. . . 0

0
. . . . . .

... 0(na)×(n−na)
...

. . . . . . 1

0 . . .
. . . ã1

0 . . . 0 ã2
0(n−na)×(na−2) I(n−na)×(n−na)


n×(n−2)

T2(ξ̃) =
[
ã1 ã2 0 . . . 0

]⊤
1×n

where ã1 = −2Re(ξ1) and ã2 = |ξ1|.
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Construction of the pole region

The derived transformations qualify as a projection of a single pole or complex
pole pairs perturbation to the parameter domain Θ through the free parameter
θ̌n−1 or θ̌n−2. In order to test that the ∆ξ induced parameter variation is inside
Eθ̂n(Qθ̂n

, α), it is sufficient to show that there exist a θ̌n−1 or θ̌n−2 which minimizes

(T1(ξ̃)θ̌n−1 +T2(ξ̃))
⊤
Q−1

θ̂n
(T1(ξ̃)θ̌n−1 +T2(ξ̃)), (3.54)

and the minimum is smaller or equal than χ2
α (n). If this condition is not satisfied,

then this proves the hypothesis that the pole perturbation cannot be associated
with a parameter θ̃n in Eθ̂n(Qθ̂n

, α). The minimization of (3.54) has an analytic
solution of:

θ̌ =
T1(ξ̃)

TQ−1

θ̂n
θ̌n −T1(ξ̃)

TQ−1
θ̌n

T2(ξ̃)

T1(ξ̃)TQ
−1
θ̌n

T1(ξ̃)
. (3.55)

Thus for a given pole perturbation ∆ξ, if θ̌ resulting from (3.55) satisfies that (3.54)
smaller or equal to χ2

α (n), then ξ̃ can be the pole of the model estimate with prob-
ability α.

Based on the derived hypothesis test, it is possible to calculate the pole region
Ω̂. Precisely, the pole region can now be described as:

Ω̂ := {ξ̃ ∈ C} | ∃θ̃n ∈ Eθ̂n(Qθ̂n
, α) s.t. ξ̃ is a pole of F (q, θ̃n)}. (3.56)

Note that the pole region Ω̂ is a projection of Eθ̂n(Qθ̂n
, α) to a lower dimensional

space. The complex region Ω̂ characterizes the set of pole locations that can occur
with the given probability level of the model estimates. With the given hypothesis
test (3.55), Ω̂ can be efficiently computed and visualized. This way, the perime-
ter bound of Ω̂ describes the uncertain pole locations in a worst-case sense (Tóth
2010).

3.5.2 Discretization of the uncertain pole region

With the hypothesis test at hand, we can describe a pole region Ω̂ with a finite
and countable set of poles. This can be done by checking a set of candidate pole
locations that is obtained via a simple discretization inside the unit disc. One of
the simplest discretization methods is an equidistant 2-Dimensional grid with an
adjustable resolution of real and imaginary coordinates axis on the cartesian form.
Such a discretization gives the griding {xk + iyk}Nk=1 ⊂ D.

Afterwards, we can check if the candidate pole locations are inside of Ω̂ asso-
ciated with Eθ̂n(Qθ̂n

, α). This results in {xk + iyk}nz

k=1 ∈ Ω̂ as illustrated in Fig.3.1.
These pole location can then be used for the aforementioned basis pole selection
algorithm (i.e. SQP, RA, and SOSP). Furthermore, by using the maximum mod-
ulus principle, we know that the maximum of (3.15) lies on the boundary of the
set. Hence we can neglect the pole locations inside the perimeter of the region
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Figure 3.1: Pole locations of an uncertain model obtained via discretization of the
unit disc.

of system poles Ω̂. This result in lower computation burden due to the reduced
number of constraints in (3.20). The effect on the number of constraints (system
poles) on the computation time of the algorithms is further examined in Section
3.6.5.

3.6 Simulation Study

In this section, we demonstrate the performance of the proposed basis selection
algorithms on a simulation study. In this academic example, we show how to se-
lect the tuning parameters of the proposed methods. Afterward, we demonstrate
a basis pole selection procedure for a system that is obtained by system identi-
fication. Due to the degree of freedom in the discretization of the unit disc, we
connect this study with the investigation of the computational complexity of the
basis selection algorithm.

3.6.1 Normalized upperbound

In order to measure the performance of a basis selection algorithm, we introduce
the normalized upperbound of (3.20):

γ̃nb
= (γnb

)
1
nb , (3.57)
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Table 3.1: Parameters corresponding to the true system (3.58).

k 1 2 3 4 5

ak 1.65 1 0.29 6.20 · 10−2 3.48 · 10−2

bk 1.68 2.73 2.13 0.99 0.17

k 6 7 8 9 10

ak 2.78 · 10−2 1.30 · 10−2 3.05 · 10−3 3.27 · 10−4 1.28 · 10−5

bk −4.23 · 10−2 −1.39 · 10−2 −9.97 · 10−5 6.27 · 10−5 −1.66 · 10−6

where nb is the total number of basis poles. This normalized upperbound holds
since γnb

< 1. Increasing the number of basis poles will certainly reduce the
attained minimum Jo of (3.2) and lead to possible reduction of the convergence
rate γnb

. With this normalization, we penalize the increase in the number of basis
poles that does not significantly reduce the convergence rate. The main reasoning
for this measure is to decide whether increasing the number of basis poles with
the expense of growing complexity of the OBF model is a necessary decision or
not.

3.6.2 System of interest and the settings of each algorithm

Consider a discrete 10th order stable LTI system (generated by the drss command
from Matlab) with a sampling time of 1s. The transfer function of the system is
given as follows:

Go(z) =

∑10
k=1 bkz

−k

1 +
∑10
k=1 akz

−k
, (3.58)

with parameters given in Table 3.1.

This system provides a challenging basis pole selection problem due to the
number and the configuration of real-complex conjugate pairs of poles (See Figure
3.2). The proposed algorithms have a number of parameters that need to be set
before running the algorithm. The details on the settings for each of the proposed
algorithms are as follows:

• SQP
We conduct ten separate runs of the algorithm with randomly selected ini-
tial conditions around the vicinity of the system poles. Multiple runs with
different initial conditions are done to avoid settling in local minima with
a high γ̃nb

. By using the fmincon solver, we have the option to select the
number of maximum iterations and tolerance level of the algorithm.

• RA
We set the confidence level of the results to be 1 − δ = 0.995 for both algo-
rithms. This confidence level means that we are 99.5% sure that the result is
going to be valid. The probabilistic parameter for the worst case algorithm
is set to be β = 1 · 10−6 while for the performance verification algorithm is
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Table 3.2: Comparison of the normalized upperbound γ̃nb
for each algorithm

with respect to various pole configurations.

2 real and 2 real and 4 real and
1 complex pairs 2 complex pairs 2 complex pairs

SQP 0.452 0.385 0.407

RAW 0.456 0.387 0.410

RAPF 0.454 0.386 0.412

FKcM 0.460 0.402 0.421

SOSP 0.452 0.384 0.407

set to be ϵ = 0.005. These selected probability values result in the number
of iterations of Nwc = 5298315 for the worst case approximation RA and
Nv = 105967 for the performance verification RA. Notice that the numbers
of iterations can vary if we select different confidence levels 1 − δ. Due to
the bisection nature of the performance verification RA, the total number of
iterations for this algorithm is around 20− 50 times the number Nv .

• SOSP
The SOSP does not have any tuning parameters besides the general pole
configuration that is also used in the other two proposed algorithms and the
stopping condition of the bisection search. We select a value of ϵ = 0.005 as
the stopping condition. We use the result from SOSP to verify whether the
value of γ̃ that is obtained from both the SQP and RA are close to the global
optima.

Each of the algorithms requires a pre-defined configuration of the numbers
of real and complex conjugate pairs of basis poles. This configuration is made
depending on the location of system poles. Proper selection of the basis pole con-
figuration is described in the next subsection along with the comparison of the
performance of each algorithm with respect to various pole configurations.

3.6.3 Selection and comparison of basis pole configurations

The system (3.58) has two complex pole pairs and six real poles. Both of the com-
plex pole pairs have relatively similar distance from the center of the unit disc
while the real poles are spread almost evenly at the negative real axis. Based on
this information, we start with basis poles configuration of one complex pair and
two real poles to represent each of the pole clusters of the system. Afterward,
we gradually increase the number of real and/or conjugate pole pairs until γ̃nb

of
(3.57) stops decreasing. The performance of the proposed algorithms is compared
with the state-of-the-art FKcM basis selection algorithm (Tóth et al. 2009). The
comparison of the results for different pole configurations (number of real and
complex pole pairs) can be seen in Table. 3.2 while the best configuration for each
of the algorithms is shown in Figure 3.2. For the FKcM algorithm, we only need
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to specify the total number of optimized pole locations. This is in fact the advan-
tage of the FKcM algorithm over the proposed method. Due to this condition, the
FKcM result in Table. 3.2 corresponds to 4, 6, and 8 basis poles.

From the table, we can see that the SQP outperforms both the randomized
and the FKcM algorithm in each of the basis pole configurations. The obtained
results are also close to the lower bound obtained from the SOSP algorithm. From
the basis pole configuration perspective, the second configuration (2 real and 2
complex pairs) achieves the lowest γ̃ = 0.385, resulting in the best basis pole
configuration in terms of convergence rate. This result is well visualized with
tighter perimeter line4. This means that for this selected case, the basis poles of
the SQP method is the most optimal to describe the dynamics of the system of
interest in the KnW distance sense (See Section 2.5.5 for details).
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Figure 3.2: Comparison of basis pole selection results using 2 real poles and 2
complex pole pairs (marker) along with their corresponding perimeter line.

3.6.4 Pole selection for an uncertain system

In practice, the system of interest of (3.58) is not exactly known. The uncertainty
of the system can either come from dynamical changes (nonlinear behavior) of

4Elements on the unit disc with equal value of γ based on a given set of basis poles.
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Table 3.3: Parameters of the identified model (3.59).

k 1 2 3 4 5 6

ak 9.08 · 10−2 9.87 · 10−3 −5.21 · 10−2 −1.78 · 10−2 4.71 · 10−2 1.03 · 10−2

bk 2.19 · 10−2 1.68 −2.22 · 10−1 5.34 · 10−1 −4.12 · 10−1 1.43 · 10−2

the system or the covariance of the parameter estimate of the identified LTI sys-
tem. In this simulation study, we consider the later scenario, in which we use the
methodology proposed in Section 3.5 to construct pole uncertainty region of the
10th order system (3.58). In order to obtain the data set for the LTI system, we
first excite the system using white noise input signal u(k) ∈ N (0, 1) and obtain
Nd = 250 samples of the output response with additive measurement noise of
v(k) ∈ N (0, 0.1). Based on this measured I/O signal, we use the OE routine of the
Matlab identification toolbox (Ljung 2006) and we obtain the model:

F
(
q, θ̂12

)
=

∑6
k=1 b̂kq

−k

1 +
∑6
k=1 âkq

−k
, (3.59)

with the parameters given in Table 3.3.

From this model and its associated parameter covariance, we generate two
different pole uncertainty regions for two confidence levels of 95% and 70%. The
regions are depicted in Figure 3.3.

For confidence level of 95%, we can see four separate regions of possible con-
jugate pairs of system poles along with a single long line of uncertain real poles.
We can see that the uncertainty region covering the real poles on the left side of
the disc consist not only of a line of possible real poles, but also a complex region
that has a shape similar to a half moon. This extended region can be seen as the
effect of nearby complex conjugate pairs of system poles that are more dominant
than the real pole. On the right side of the unit disc, we see a larger region which
is a result of merging of a real and a complex conjugate pole pair region.

For a lower confidence level of 70%, we can see that each of the mentioned
regions at the confidence level of 95% grow and they merge with each other. This
larger region means that the system dynamics become even more uncertain if
compared to the confidence level of 95%. Suddenly a system with only a single
dominant resonance mode can turn out to have two dominant resonance modes
in this particular case. Note that the number of discretization points directly influ-
ences the number of poles in the set {xk + iyk}nz

k=1 ∈ Ω̂. Hence, the computational
complexity can be influenced by selecting the discretization grid. In the next sec-
tion, we compare the computational complexity of each of the algorithms with
respect to various configuration of basis poles and numbers of system poles sam-
pled from the pole uncertainty region that corresponds to the confidence level of
95%.
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Figure 3.3: Pole regions with different confidence level

3.6.5 Computational complexity

In this section we are focusing only on the comparison of computational complex-
ity of the proposed algorithms. There are two terms that affect the computational
complexity, the first one is the configuration (number of real and complex conju-
gate pairs) of the basis poles, while the second one is the number of system poles.
We analyze the effect of the latter by using different number of grid points in the
uncertain pole region to vary the number of resulting system poles. The computa-
tional time comparison with respect to different number of grid points are given in
Table 3.4. For the basis poles, we investigate different configurations of poles such
as given in the earlier study in Section 3.6.3. The computational time comparison
with respect to different (configurations) number of basis poles are given in Table
3.5. In these two tables, both randomized algorithms are treated as the same algo-
rithm since basically they have similar computational times. We do not compare
the FKcM algorithm for this experiment since the time needed to obtain proper
tuning of the parameters of this algorithm is significantly longer than the time
required to solve the problem itself. The accuracy of the pole selection of FKcM
algorithm is very sensitive to the selected parameters of the algorithm. Moreover,
we have shown in Section 3.6.3 that the FKcM algorithm is outperformed by our
proposed algorithms. As an additional information, these experiments are con-
ducted on a computer that is equipped with an Intel i7-3770 CPU and 16GB of
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Figure 3.4: Illustration of pole selection for uncertain system poles with the corre-
sponding perimeter line.

memory. The illustration of basis poles selection for these uncertain sets is de-
picted in Figure 3.4.

From Table 3.4, we can see that the computational load of the SQP and the
RA is largely linear with respect to the number of system poles, while the SOSP
algorithm has computation time that scales quadratically with nb. Note that the
number of iteration is the dominant factor on the computation time. This table
only used to show a single iteration of the algorithms, where the RA methods
are at least 1000 times quicker than the other algorithms since they only need to
compute the value of a given function per iteration. However, the number of iter-
ations required to attain the probability level (δ, β, and ϵ of (3.41) and (3.44)), are
significantly higher ( around 5 million iterations) compared to the convergences
of SQP and the SOSP algorithms (around 10-20 iterations). This large amount of
iteration results in at least 25-50 times longer total computational time for the RA
when compared to the other two algorithms.

In Table 3.5, we can see an insignificant increase in the computation time for
the RA, while the SQP algorithm increases linearly with increasing number of
basis poles. It can also be seen that the computational time of the SOSP algorithm
increases exponentially. The exponential increase results in an intractable problem
when the SOSP is required to select 12 (or more) basis poles. Hence, we can say
that the SQP algorithm is preferable for a small-medium number of basis poles,
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Table 3.4: Comparison of average computation time (in seconds) per iteration
with respect to different number of poles (nz) belonging to Ω̂ and fixed configura-
tion of basis poles.

nz SQP RA SOSP
20 1.35 · 10−1 1.84 · 10−4 3.35 · 10−1

30 1.25 · 10−1 2.70 · 10−4 9.47 · 10−1

50 1.87 · 10−1 4.38 · 10−4 1.47

100 2.16 · 10−1 9.45 · 10−4 2.88

Table 3.5: Comparison of average computation time (in seconds) per iteration
with respect to different number of basis poles with fixed number of system poles.

SQP RA SOSP
2 1.96 · 10−2 6.67 · 10−5 9.47 · 10−3

4 5.27 · 10−2 1.48 · 10−4 3.36 · 10−2

6 4.91 · 10−2 1.03 · 10−4 9.71 · 10−2

8 9.16 · 10−2 1.23 · 10−4 4.47

10 1.22 · 10−1 1.07 · 10−4 7.47 · 101
12 1.47 · 10−1 1.46 · 10−4 ∗

while the RA is computationally more efficient for a large number of basis poles.
Note that the shape of pole distribution of the system of interest determines the
amount of basis poles needed for OBF model. The user of the algorithms have
to determine the basis poles configuration before using the proposed algorithms
(See Section 3.6.4 for example of configuration selection).
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3.7 Summary

Three different basis selection algorithms for a finite set of system poles are pre-
sented in this chapter. These algorithms are based on a reformulated basis pole se-
lection problem. These algorithms have a small number of tuning parameters and
hence should be intuitive for the user. The Sequential Quadratic Programming (SQP)
algorithm performs well by direct computation of the gradient. The Randomized
Algorithm (RA) provides an alternative selection technique for a large number of
basis poles. The Sum of Squares (SOSP) algorithm provides a convex global solu-
tion to the problem. However, due to the relaxation of the cost function, this algo-
rithm can only be used as a tool to assess the result of the other two algorithms.
Furthermore, we provide a method to utilize our proposed algorithms for a model
of a system that is obtained via system identification procedure. Lastly, by con-
ducting a simulation study, we showed that the proposed methods outperform
the state of the art basis selection algorithm in the sense of obtaining basis poles
with better performance measure. The simulation study also shows the computa-
tional load of each algorithm where the SQP algorithm excels for a small-medium
number of basis poles and the RA is computationally more efficient for a large
number of basis poles.



4 CHAPTER

Adaptive Predictive Control based on
OBF models

This chapter is devoted to solving the plant-model mismatch problem of
predictive control in case the cause of the changes in the plant dynam-
ics is not known. In order to tackle this problem, we allow adaptation of
the prediction model by employing iterative updates using an orthonormal
basis functions (OBF) based model. After the introduction to the chapter,
the problem setting is described in Section 4.2. In Section 4.3, an itera-
tive identification mechanism for adaptation of the OBF prediction model
is introduced. In Section 4.4, an MPC scheme based on OBF models is
described with stability and performance guarantees for the controlled
system. In Section 4.5, the MPC scheme is extended to incorporate the
adaptation of OBF-based prediction model. It is proven that under the in-
troduced adaptation scheme, the predictive control method can guaran-
tee stability and performance of the closed-loop system even under varia-
tions of the underlying plan dynamics. In Section 4.8, a simulation study
is provided to demonstrate the stability and performance properties of
the proposed MPC scheme.

4.1 Introduction

Model predictive control (MPC) is widely applied in the process control field (Qin
and Badgwell 2003a). This control scheme allows safe operation of the controlled
plant subject to boundary and operational constraints. However, due to wear in
the process and possible changes in the operational conditions, the desired per-
formance of the controller can only be sustained for a limited time period after
its commissioning. Process conditions, influencing the operation of the controller,
gradually degrade due to circumstances that have not been accounted for in the
control design process. These circumstances include changes in the disturbances,
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operating point changes, wear, maintenance, etc. Such problems are either solved
by enforcing the MPC to be robust for all possible changes in the operational con-
ditions and disturbances, or by equipping the MPC with adaptation capabilities.

The robust solution of MPC has received enormous attention in both academia
and industry. Numerous research works such as Kothare et al. (1996), Bempo-
rad et al. (2003), Mayne et al. (2011) offer various formulations for robust MPC
schemes. In the industry, earliest application for robust solutions date back to
1993. Since then, various robust MPC tools such as RMPC, DMC+, etc., have been
developed for commercial purposes. Despite the popularity of robust solutions,
there are several drawbacks and technical challenges affecting their practical use.
The requirement on computational resources and below average initial perfor-
mance for the resulting control solutions, remains two of the most challenging
problems of robust MPC schemes. An alternative to the robust MPC solution
is the introduction of adaptivity into the MPC scheme. This type of solution is
generically known as Adaptive MPC. The purpose of introducing adaptive ca-
pability is to keep the performance of the MPC scheme at a high level from the
start of commissioning and automatically adjust the controller when necessary. In
a recent survey of Mayne (2014), it is mentioned that there are only few Adap-
tive MPC techniques (such as Marafioti et al. (2014); Genceli and Nikolaou (1996);
Tanaskovic et al. (2014); Heirung et al. (2015)). The unpopularity of the adaptive
type of solution stems from the difficulty of formulating and implementing it.
There are two main practical restrictions of Adaptive MPC. The first one amounts
to guaranteeing that the adaptation of the prediction model will converge to the
dynamics of the plant or the system of interest. The second one amounts to guar-
anteeing that the MPC scheme remains feasible regardless of the adaptation rule
of the prediction model. If the second point is not being carefully addressed, then
even a slight change in the prediction model can alter the properties and the per-
formance of MPC controlled systems.

In this chapter, we follow the adaptive MPC type of solution by addressing
the above mentioned important issues: capturing the dynamics of the system of
interest and guaranteeing essential closed-loop properties under model adapta-
tion. We propose a novel data-driven MPC which is based on a finite set of or-
thonormal basis functions (OBF) as its prediction model. Online model adaptation
is conducted to mitigate the discrepancy between the system of interest and the
prediction model. The adaptation of the prediction model is achieved by itera-
tive re-identification of the model coefficients. The end goal of conducting such
adaptation is to maintain the control performance after the MPC has been com-
missioned. Moreover, the utilization of an OBF model structure as a prediction
model is attractive from both modeling and control synthesis perspectives. The
advantages of using OBF-based models are as follows:

1. The prior knowledge of possible changes that can happen in the system of
interest can be imposed on the prediction model.

2. The nature of the OBF-based model structure allows us to augment the pre-
diction model to be as rich as possible to capture changes in the system that
are not accounted for a priori.
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3. The complexity of the OBF models can be adjusted to ease the computational
burden of the optimization in MPC.

4. Conducting a system identification procedure with an OBF model has at-
tractive properties.

The prior knowledge of the system of interest can be imposed on the predic-
tion model by selecting the OBFs. Methods to select the OBFs and the reasoning
behind the selection are explained in Chapter 3. Furthermore, the construction
of the OBF model follows the construction procedure that is described in Section
2.5.3. Based on this construction procedure, the preselected set of OBFs can be ex-
tended to span the complete RH2(E) space. Hence, any possible dynamics from
a system belonging to that space can be captured by the OBF model. The model
complexity increases as the set of OBFs is extended. With the choice of the ex-
pansion length, the OBF model represents a tradeoff between model complexity
and the ability of the model to describe the system of interest. The latter prop-
erty can be well expressed in terms of minimal achievable approximation error.
From a system identification perspective, the OBF model is accompanied with
a well-defined stochastic framework, has a favorable bias-variance tradeoff, and
it has the linear-in-the-parameter property (Heuberger et al. 2005; Ninness and
Gustafsson 1997). These properties are described later in this chapter. It has been
mentioned before that the adaptation of the model is conducted via iterative re-
identification of the model. The model, therefore, becomes time-variant and is
called a Linear Time-Varying (LTV) OBF model. The proposed MPC scheme takes
into account the time-varying nature to ensure stability and performance of the
controlled system.

This chapter is constructed as follows. First, the setting of the LTV-OBF MPC
scheme is described in Section 4.2. In Section 4.3, identification techniques that can
be used to obtain the LTV model are described. In Section 4.4, an MPC scheme
for OBF models is introduced with stability and performance guarantees of the
controlled system. In Section 4.5, the MPC scheme is extended to incorporate the
adaptation of the OBF model. It is proven that under the introduced adaptation
scheme, the predictive control method can guarantee stability and performance of
the closed-loop system even under variations of the underlying plant dynamics.
In Section 4.8, we validate the proposed scheme on an academic example.

4.2 Problem Setting of the LTV-OBF MPC scheme

In this section, the general problem setting for the proposed LTV-OBF MPC scheme
is described. This section starts with the description of the LTV-OBF model and
then continues with the description of the concept of adaptation, the data acquisi-
tion setting, and realization of model adaptation.
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4.2.1 LTV-OBF model

Denote the momentary linear dynamics of the system of interest at an arbitrary
time k with F (See Section 2.3 for detailed description). This description can be
represented by using an OBF transfer function structureGnb

(z) that is constructed
by using a cascaded network of fixed nb basis functions (See Section 2.5.3 for de-
tails on the OBFs construction). For different time instances k, the linear dynamics
of the system might vary. The variation of the linear dynamics can be captured
by allowing the OBF model parameters, denoted by θk, to be varying for each
time instance. The variation of the OBF model parameters leads to a time-varying
OBF model which is called in the sequel as an LTV-OBF model. The state-space
representation of a MIMO LTV-OBF model is described as follows:

x(k + 1) =


Ane,nb

. . . 0
...

. . .
...

0
. . . Ane,nb


︸ ︷︷ ︸

A∈Rng×ng

x(k) +


Bne,nb

. . . 0
...

. . .
...

0
. . . Bne,nb


︸ ︷︷ ︸

B∈Rng×nu

u(k)

= f(x(k), u(k)),

y(k) = θ⊤k x(k), (4.1)

where x(k) ∈ X ⊆ Rng is the state variable of the LTV-OBF model, u(k) ∈ U ⊆ Rnu

is the input variable of the model, and y(k) ∈ Y ⊆ Rny is the output variable of the
model. The state dimension nx = ng = nbnenu of (4.1) depends on the number
of OBF (nb), the length of expansion (ne), and the dimension of the input signal
(nu). The state space matricesA andB are time-invariant and their values depend
on the selected OBFs. Since the OBFs are time-invariant, the OBFs selection needs
to consider possible dynamical variations of the process. This task can be accom-
plished by the algorithms that are given in Section 3.4. With a proper selection of
OBFs, the resulting LTV-OBF model with a suitable model parameter variation θk
is guaranteed to approximate the variation of the linear dynamics of the system F
with the smallest error in the l2-norm sense as explained in Section 2.5.2.

The LTV-OBF model (4.1) is used as a deterministic prediction model for the
proposed LTV-OBF MPC scheme. The parameter θk in the model is adjusted by
system identification at the beginning of each control cycle. The idea behind of
the proposed adaptation of the MPC scheme is explained in the next section.

4.2.2 Concept of prediction with adaptation

Conceptually, the proposed time line of operation is depicted in Figure 4.1.

The symbols that are used in Figure 4.1 are listed as follows:

• Present time k0,
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Figure 4.1: Timeline of operation.

• Arbitrary past time kpast < k0

• Length of the global identification data Ng ∈ N.

• Length of n-th local identification data Nn ∈ N,

• Data horizon Hd ∈ N,

• Prediction horizon Hp ∈ N,

• Control horizon Hu ∈ N where Hu ≤ Hp.

The time line can be divided into two parts which are the control commis-
sioning part and the online part. For the control commissioning part, past input-
output data of the system starting from arbitrary past time kpast up to kpast + Ng
are collected. This past data are used to determine the OBFs as well as the initial
estimate of model parameter θ̂k0 . The initial estimate is used as the model param-
eter during the first control cycle. When the controller is online, collection of past
data is continued with the purpose of recursively updating the model parameter
θ̂k for all k ∈ Z. The length of the collected past data is called the data horizon
Hd. One of the essential parts of any MPC scheme is the prediction phase where
we utilize the model of the system to predict its future behavior. The length of the
prediction is called prediction horizon Hp while the future prediction is defined
as follows:

Definition 4.1 The future predictions of the system of interest F are based on the present
LTV-OBF model Gk0 which is associated with the estimated model parameter θ̂k0 . For
prediction purposes, the model parameter is assumed to remain static, i.e. θ̂k0 = θ̂k0+i, i =
1, . . . ,Hp.

The time horizon of which the MPC computes candidate control actions u(i|k), i ∈
Z[0,∞] is called the control horizon Hu. The notation u(i|k) is used to describe the
future or predicted input u(k+i) that is calculated at time k. In most cases we con-
sider the control horizon to be equal to the prediction horizon Hu = Hp. For the
case of Hu < Hp, the control action is set to be constant after the first Hu control
samples, i.e. u(Hu|k) = u(Hu + i|k), i = 1, . . . ,Hp −Hu.
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4.2.3 Data acquisition

The identification procedure to obtain an LTV-OBF model of the system utilizes
the measured input-output data of the actual process. The assumption on the
input and output data is as follows:

Assumption 4.1 The output data yv(k) is assumed to satisfy:

yv(k) := y(k) + v(k), (4.2)

where the data of the actual process y(k) is corrupted by a noise process v(k). The noise
can be a cumulative effect of measurement and process noise. The input data u(k) is
assumed to be fully known and noise free. In case v(k) is assumed to be a white noise
process, independent of u(k), then Eq.(4.2) is called an Output Error (OE) noise setting.

The collection of input and output data of the system can be divided into two
distinct sets of data depending on the timing of the data acquisition and its pur-
pose. The two data sets are described as follows:

Commissioning data set

The commissioning data set is used for OBF selection as well as initial identi-
fication purposes. The data set is collected before the proposed LTV-OBF MPC
scheme is commissioned to the system. In general, the past input-output data of
the system is captured in one single "global" identification data set:

DNg := {u(kpast + τ), yv(kpast + τ)}Ngτ=0, (4.3)

where Ng is the length of data set. Note that, it is not required to obtain the data
set DNg in a single experiment. We can divide or construct (4.3) from "local" data
which contain information on the snapshots of the linear dynamics of the system.
We consider these snapshots as n operating points of the system. The correspond-
ing data sets associated with the n-th operating point is denoted by

D
(n)
Nn

:= {u(kpast + τ), yv(kpast + τ)}Nnτ=0, (4.4)

where Nn > 0 is the length of the n-th data set. For each D
(n)
Nn

, Prediction Error
Methods (PEM) identification is applied to obtain an LTI-OBF model estimate.

In order to gather measurement data for identification, the actual process needs
to be brought to a steady-state condition at each of the designated operating points,
and then excited around the vicinity by an input signal such as small amplitude
white noise, PRBS, or multisine (Bombois and Scorletti 2012). This can also be
done by including prior info on the operational change to infer linear dynamics at
varying operating points.
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Online data set

After the MPC is commissioned, input-output data from the actual process is con-
tinued to be measured and collected in a data set. Given a present (collection) at
time k, the collected data set is written as:

Dk = {u(k − τ), yv(k − τ)}Hdτ=1, (4.5)

where Hd is the length of stored past data. The main utilization of this data is to
update the present estimate of the model parameters in terms of θ̂k.

4.3 LTV-OBF identification in the PEM setting

The estimation of expansion coefficients of the OBF model structure is solved as
a system identification problem in the prediction error minimization (PEM) setting
Ljung (1999); Heuberger et al. (2005). Solving the estimation in the PEM setting
is preferred since the estimation result is obtained in a well-defined stochastic
framework and can benefit from the properties of PEM based identification.

4.3.1 The LTI PEM identification setting

In the PEM setting detailed in Ljung (1999), it is assumed that the data-sequences
of input and output signals DNn , as given in (4.4), describe the LTI behavior of the
system of interest Go(z) ∈ RH

ny×nu

2 (E)in the sense of:

yv = Go(q)u+ v, (4.6)

where q is the time shift operator, u is a quasi-stationary signal, and v is a station-
ary stochastic process (see Ljung (1999) for a definition of these signal properties).
Furthermore, v satisfies

v = Ho(q)e, (4.7)

with a monic transfer function Ho(z) ∈ RH2(E) and e is a zero-mean white noise
process with variance σ2

e . In the PEM setting, a parameterized modelG(q, θ̂), H(q, θ̂)

is hypothesized with the model parameter θ̂ ∈ Θ ⊂ Rnθ . This model structure
leads to the one-step-ahead prediction of (4.6):

ŷ = (1−H(q, θ̂))−1yv +H(q, θ̂)−1G(q, θ̂)u. (4.8)

The basic idea of PEM is to select θ̂ such that the error between the one-step-
ahead prediction (4.8) and the measured output of the system yv(k)

ε(k, θ̂) := yv(k)− ŷ(k), (4.9)

is minimized. The error (4.9) is often called the prediction error. There are a num-
ber of methods to select the model parameter θ̂ with respect to the prediction error.
These methods are:
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• Minimization of scalar-valued function of ε(k, θ̂) over θ̂ which is often called
the identification criterion.

• Constructing the probability density function of ε(k, θ̂) to maximize the pos-
terior probability of the model output. This method is called Maximum like-
lihood method.

• Modifying the PEM estimation, by multiplying ε(k, θ̂) with an auxiliary or so
called instrumental signal. This is often conducted to avoid biased estimates
due to inappropriate choice of noise structure or correlation of the input
data with the noise due to a closed-loop setting. This method is called the
instrumental variable method (Young 2008).

In this chapter, we utilize a quadratic identification (least squared prediction
error) criterion :

WN (θ̂,DNn) =
1

N

N∑
k=1

ε2(k, θ̂). (4.10)

which depends on the data set DNn and the estimated parameter θ̂. This partic-
ular identification criterion is often used in the PEM setting and is also known
as the least squares criterion. Interpretation of this criterion can be given as the
minimization of the power of the prediction error.

4.3.2 Advantages of identification with the OBF model

Utilization of the least square criterion (4.10) with the OBF model structure (4.1)
leads to additional benefits. The first one is based on the independent parame-
terization of G(q, θ̂) and H(q, θ̂). By using (4.1) to describe the process model, we
can assume that H(q, θ̂) = I . Then, the one-step-ahead prediction (4.8) associated
with the resulting OBF model can be written as

ŷ(k) = θ⊤k x(k). (4.11)

First we consider θk = θ̂ for all k and later we carry the formulation to the general
setting for varying θk.

As the OBF model has an assumed OE noise model, hence H(q, θ̂) = I and
(4.9) reduces to

ŷ = G(q, θ̂)u. (4.12)

Consequently, the noise is assumed to affect the estimation of θ̂ only in an addi-
tive manner in the prediction error (4.9). In the system identification framework,
such a noise assumption is similar to the Finite Impulse Response and the Output
Error settings. As an important result, in (Ljung 1999), it is shown that indepen-
dent parameterization of G(q, θ̂) and H(q, θ̂), along with assuming the input to be
persistently exciting, leads to a consistent estimation

lim
N→∞

θ̂ = θo (4.13)
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where θo gives a model G(q, θo) that is equal to the process dynamics Go(q) of
the underlying system . This means that consistent estimation of the deterministic
part of the system is guaranteed even whenH(q, θ̂) is misspecified. The price to be
paid is the potential variance increase due to the lack of noise modeling capability.
The second important property is the linearity in the parameters. Since we have a
finite data set, minimization of a quadratic criterion function leads to a quadratic
optimization problem. Under linearity of ε in θ, the estimation:

θ̂∗ = argmin
θ̂
WN (θ̂,DNn) (4.14)

has a unique solution that can be calculated analytically. Based on the previous
property, under PE data, convergence1 of the parameter estimate (4.14) is guaran-
teed with probability one (Ljung 1999).

4.3.3 Calculation of the current state of the filters

The data set only includes the measured output and input of the system. How-
ever, knowing the current state of the model x(k) is also important for both mod-
eling and control purposes. From (4.1), it can be seen that the state trajectory of the
model is determined by the inputs u(k) that are passed through the filter banks
{ϕi(q)}nb

i=1. Hence, x(k) can be obtained by selecting a past time instant k0 ≪ k
and then computing the current state x(k) recursively by:

x(k) = Ak−k0x(k0) +

k−k0−1∑
l=0

AlBu(k0 + l). (4.15)

Since the filter is stable, the effect of the initial state x(k0) gradually dies out.
Hence, considering x(k0) = 0 will not result in a cumulative error in the value
of x(k). The next state x(k + 1) = Ax(k) + Bu(k) can be computed directly from
the current input u(k). Alternatively, the state x(k0) can also be estimated with
respect to the input-output data.

Remark 4.1 Joint estimation of the current state x(k) together with the variation of
coefficient θk can be made by designing an Extended Kalman Filter or solving a co-
estimation problem requiring nonlinear optimization. This method is not explored in this
chapter since the design (stability) of the filter is a nonlinear optimization problem and it
is computationally heavier compared to a direct calculation of (4.15).

4.3.4 Covariance of parameter estimates

An important aspect of estimation (4.14) is the variability of the parameter esti-
mates with respect to data DNn . In the most general form, and with the assump-
tion of consistent estimation of Go(q) and Ho(q), the characterization follows the

1Asymptotic parameter estimate is independent from the particular noise realization in the data
sequence.



82 Chapter 4 LTV MPC based on OBF

central limit theorem, proving that√
Nn (θ̂

∗ − θo)→ N (0,Qθ̂n
) as Nn →∞, (4.16)

i.e. the random variable
√
Nn (θ̂

∗ − θo) converges in distribution to a Gaussian
probability density function with zero mean and covariance matrix Qθ̂n

. Note that
Qθ̂n

can only be calculated in a limited number of situations. One of these is when
we have consistent estimation of (4.13) which is the case for identification using
OBF-based model structure under the assumption that v is white (i.e. the noise
model H(q, θ̂) = I). Introduce the matrix xkNn ∈ RNn×nx for a matrix of Nn past
signal samples of the state evolution of the OBF model (4.1) {x(i)}ki=k−Nn+1 given
the input sequence {u(i)}ki=k−Nn+1 of a data set DNn . The matrix xkN ∈ RN×nx is
described as:

xkN =
[
x(k −Nn + 1) x(k −Nn + 2) . . . x(k)

]⊤
. (4.17)

The covariance matrix in (4.16) can be written as:

Qθ̂n
= σ2

e((x
k
N )⊤xkN )−1, (4.18)

where σ2
e is the variance of the noise v. Furthermore, the covariance matrix char-

acterizes the uncertainty of the parameter estimate θ̂ ∈ Θ ⊂ Rnθ :

Θ =
{
(θ̂∗ − θo)Qθ̂n

(θ̂∗ − θo)
⊤}

. (4.19)

The parameter set Θ is an ellipsoid that is characterized by the covariance matrix.
It is often beneficial to describe such an ellipsoid by a polytope. Outer or inner
approximation method such as described in Bronstein (2008) can be used for this
purpose.

4.3.5 Interpretation of LTI identification for LTV system

Earlier in this chapter, we mentioned that the linear dynamics of the system of
interest F can vary for each time k. We aim to capture the LTI behavior of such
system at each time k. To achieve this objective, the coefficient θ̂ must be estimated
at each time instant k, which will be denoted by θ̂k. However, due to possible
changes of the LTI behavior, the older data that we have from the system may
not be consistent with the system anymore. It is logical to weight the data set
according to their acquisition time. This weighting is incorporated by updating
the criterion function (4.10) to the weighted criterion

WN (θ̂,Dk) =
1

N

N∑
k=1

ε⊤(k, θ)W (k)ε(k, θ̂) (4.20)

where W (k) ∈ Rny×ny is a predefined symmetric, positive semi-definite matrix
and its value differs depending on the time k. The analytical solution of problem
(4.20) is given in the next section.
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Remark 4.2 The weighting in (4.20) can be interpreted as having the objective to capture
the frozen transfer function (localized dynamics of the system) instead of the momentary
transfer function when no weighting is being used (See Section 2.3 for detailed differences
between two types of transfer functions)

4.3.6 Iterative estimation of the model coefficients

Two methods which are based on the analytic solution of (4.20), namely the weighted
and recursive LS estimation, are presented for this purpose.

Weighted LS estimation

Introduce the matrix:

ykN =
[
y(k −N + 1) y(k −N + 2) . . . y(k)

]⊤
, (4.21)

which contains the output data for a given data set Dk. Here we set the length of
the data set Hd = N . The estimation problem (4.20) is solved by:

θ̂LS∗k = ((xkN )⊤WLSx
k
N )−1(WLSx

k
N )⊤ykN , (4.22)

where the tuning (hyper) parameter for this method is the number of the con-
sidered past data N and the exponential weighting WLS = diag

(
{ β

k

βN
}Nk=1

)
with

β ∈ R(0,∞). The parameter N should be chosen to be larger than the settling time
of the slowest step response of the system dynamics. A high value ofN can reduce
the estimation variance which is caused by the noise, but can also result in slow
adaptation speed of the model. This situation can be remedied by the weighting
WLS that penalizes the effect of old data as proposed in Ljung (1999). In many
practical applications, it was found that a sensible value of β is in the range of
(0, 20].

Recursive LS estimation

In this method, the estimation of coefficient θ̂k is based on variables that can be
considered as the memory of the estimate (see Ljung (1999)). The update strategy
requires computation of:

θ̂RLS∗
k = θ̂RLS

k−1 + L(k)ε⊤(k), (4.23a)

L(k)=
P (k − 1)x(k)

WRLS + x⊤(k)P (k − 1)x(k)
, (4.23b)

P (k)=
1

WRLS

(
P (k−1)−P (k−1)x(k)x

⊤(k)P (k−1)
WRLS+x⊤(k)P (k−1)x(k)

)
, (4.23c)

where L(k) ∈ Rng is the gain matrix, and P (k) ∈ Rng×ng is the conditional co-
variance matrix of the estimation error. The gain matrix L(k) governs the rate
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of change of the estimated coefficient and can be seen as the gradient of the pa-
rameter estimate. The hyper parameter of this estimation method is the weight
WRLS ∈ R(0,1) which also known as the forgetting factor. The value ofWRLS ≈ 1 is
a reasonable choice to allow continuous update of model coefficients. The recur-
sive algorithm requires initial values of P and θ̂. Typically, the initial values are
obtained by starting the recursion at a time instant k0 with

P (k0 − 1) =

[ k0−1∑
τ=0

x(τ)x⊤(τ)

]−1

, (4.24a)

θ̂RLS
k0−1 =P (k0 − 1)

k0−1∑
τ=0

x(τ)y⊤(τ). (4.24b)

4.3.7 Identification in a closed-loop setting

The identification of an OBF model can be accomplished by both methodologies in
a closed-loop setting. Unfortunately, this implies that v(k) and u(k) are correlated.
Without any additional modification of (4.10), such as an instrumental-variables
(IV) scheme Young et al. (2009), this means that there will be an estimation bias
on the coefficient θ̂k. If such a bias is significant, a simple IV scheme can be easily
implemented provided that the excitation signal is persistently exciting.

4.4 Non-adaptive OBF MPC

With the OBF model at hand, an MPC scheme can be formulated. However, before
going through the complete MPC control problem that includes iterative adapta-
tion of the OBF model, the basic concept of OBF MPC is given in this section.
The OBF MPC formulation is based on the well established classical MPC theory
and our formulation is related to the approach of Rawlings and Mayne (2009).
The definition of the MPC problem alongside the ingredients to establish recur-
sive feasibility, convergence, and stability of the controlled system are given in
this section. The notations and definitions that are written in this section are tai-
lored towards the OBF model structure and the application of MPC in the process
industry.

4.4.1 LTI MPC problem under OBF process models

In general, an MPC synthesis problem can be described by minimizing a cost func-
tion subject to operational and stability constraints with respect to a prediction of
the future behavior of the system of interest. In our case, the prediction model
is based on the OBF model structure of (4.1). For a non-varying OBF model, the
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prediction model is written as:

Σ




x(1|k)
x(2|k)

...
x(i+ 1|k)

 =


A

A2

...
Ai

x(k) +


B 0 . . . 0

BA B . . . 0
...

...
. . .

...
BAi−1 BAi−2 . . . B




u(0|k)
u(1|k)

...
u(i− 1|k)


y(i|k) = Cx(i|k).

(4.25)
At the time instant k, the prediction model (4.25) predicts future values of the
state x(i + 1|k) and output y(i + 1|k) based on the current state value x(k) and
the possible future input sequence u(i|k) for i = 0, 1, . . . , N . The future input
sequence {u(i|k)}N−1

i=0 is also denoted by u. The time horizon N , is set equal to the
prediction horizon, i.e. N = Hp. Additionally, we introduce xr ∈ Xr ⊂ X and the
set Xr as a set of states that corresponds to a reference vector r

r = Cxr. (4.26)

In majority of process industry usecases, the reference is set to be constant and
only changing in step wise manner when the system need to change its operating
condition.

The MPC cost function VN : (Rnu)N+1 × Rnx → R is constructed based on the
prediction model (4.25) and is formulated as follows:

VN (u, x(k)) :=

N∑
i=0

li(x(i|k), u(i|k)) + Vf (x(N |k)), (4.27)

with the stage cost li : Rnx × Rnu → R, i = 0, 1, . . . , N that is chosen as:

li(x, u) :=
(
x− xr

)⊤
C⊤Q(i)C

(
x− xr

)
+ u⊤R(i)u, (4.28)

where Q(i) ≻ 0, R(i) ≻ 0. The exact choice of the terminal cost Vf : Rnx → R
in (4.27) is explained in detail in Section 4.4.2 since its formulation requires ad-
ditional definitions and reasoning related to the MPC problem. The weighting
matrices Q(i) and R(i) are symmetric, positive definite matrices that define the
performance specification. We call the cost function homogeneous if Q(i) and
R(i) are constant for i = 0, 1, . . . , N . In that case we can drop the index (i) and
denote these matrices as Q and R. The matrix Q is used to put emphasis on a
particular output according to its importance. The tuning matrix R is utilized to
mitigate the aggressiveness of the control action, i.e. the input energy.

The minimization of VN with respect to the future input sequence u is solved
while obeying operational and stability constraints. This minimization problem is
called the MPC problem, and is formulated as follows:

Definition 4.2 Non-adaptive OBF MPC Problem
Given the prediction model Σ of (4.25), the current state x(k), and the reference r. The
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MPC problem is the optimization problem to determine:

PMPC := inf
u

VN (u, x(k))

s.t. Σ, ∀ i = 1, . . . , N

x(i|k) ∈ X, ∀ i = 1, . . . , N

umin ≤ u(i|k) ≤ umax, ∀ i = 0, 1, . . . , N − 1

x(N |k) ∈ Xf ⊆ X,

(4.29)

where umin is the minimum value of the possible input, umax is the maximum value of the
possible input, and Xf is a stability constraint which is also known as the terminal set.
Set PMPC = +∞ when (4.29) is infeasible (i.e. the MPC problem is ill posed).

The goal of this MPC problem is to find the minimizer of (4.29) for each control
cycle k ∈ Z. The attained minimum of (4.29) is called the primal optimum and
denoted by V ∗

N (k). The minimizer with respect to the primal optimum is called the
optimal input sequence and is denoted by {u∗(i|k)}N−1

i=0 or u∗.

Only the first value of the optimal input sequence is applied as the control action
at time k. Such control action is known as an MPC control law and is defined as
follows:

Definition 4.3 For every k ∈ Z, the MPC control law is given as:

uMPC(k) = u∗(0|k), (4.30)

where u∗(0|k) is the first element of the optimal input sequence u∗.

The main purpose of the MPC control law is to steer the output y(k) of the
controlled system:

GCL

{
x(k + 1) = Ax(k) +BuMPC(k), x(0) = x0

y(k) = Cx(k),
(4.31)

towards a given reference r. If this goal is accomplished, then the MPC controller
is stated to be convergent. Precisely:

Definition 4.4 The MPC controller is convergent if for all xo ∈ X and for all r ∈
Rny , the MPC control law {uMPC(k)}∞k=0 drives the output of system (4.31) to a given
constant reference r in the sense that

lim
k→∞

∥ y(k)− r ∥= 0. (4.32)

The convergence described in (4.32) is defined in the asymptotic sense. An
additional property, namely the stability of the MPC controller, is required to fur-
ther strengthen and regulate the possible behavior of the output of the controlled
system. Further definitions and results that are related to the stability of (4.31) are
described in Section 4.4.2.
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Before we can show that an MPC controller is both convergent and stabilizing,
one of the first steps is to show the existence of the MPC control law. The existence
of the MPC control law is guaranteed with the notion of feasibility of the MPC
problem (4.29).

Definition 4.5 The MPC problem (4.29) is called feasible at time k if the optimization
problem has a solution.

Additionally, the notion of Infeasibility of MPC problem is defined as follow:

Definition 4.6 The MPC problem (4.29) is called infeasible at time k if inf
u
VN (u, x(k)) =

+∞.

From the definition of feasibility of the MPC problem, the notion of recursive
feasibility follows:

Definition 4.7 The MPC problem (4.29) is called recursively feasible if feasibility at time
k with reference r and initial condition x(k) implies feasibility of the MPC problem at time
k + 1 with the same reference r, and initial condition x(k + 1) = Ax(k) +BuMPC(k).

Recursive feasibility of MPC is a strong property that is used as the basic build-
ing block for showing both convergence and stability of an MPC controller. How-
ever, in order to guarantee this property, we need additional definitions that are
related to the extension of the input for the prediction model (4.25) after the pre-
diction horizon.

Definition 4.8 At a given k > 0 , the extended input sequence for a K(k) ∈ Rnu×nx is
given as:

uext(i|k) :=

{
u∗(i|k) i = 0, . . . , N

K(k)(x(i|k)− xr) + ur i > N
(4.33)

where x(i|k) is the state of (4.25) with u(i|k) = u∗(i|k) for i ≤ N , while xr and ur
are the input and the state that correspond to the reference r (See Definition 4.11).

Definition 4.9 Call K(k) in (4.33) a stabilizing linear state-feedback controller at
time k if

lim
i→∞

∥x(i|k)− xr∥ = 0 (4.34)

for all initial conditions x(k) ∈ X. If K(k) = K, ∀k, then K is called a uniformly
stabilizing linear controller.

Definition 4.10 We call the terminal set Xf ⊆ X closed-loop invariant at time k if

(A+BK(k))(Xf ⊖ xr) ⊂ (Xf ⊖ xr), (4.35)

where the operator ⊖ express element wise substraction of the set which is also called
Minkowski difference. Additionally, if K(k) = K, ∀k and (A + BK)(Xf ⊖ xr) ⊂
(Xf ⊖ xr) then Xf is said to be uniformly closed-loop invariant.
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Definition 4.11 Given reference vector r, define (xr, ur) as the unique solution to:[
A− I B
C 0

] [
xr
ur

]
=

[
0
r

]
(4.36)

where A,B,C are the associated matrices with the OBF prediction model (4.25).

The consequences of these definitions is that the state evolution of the predic-
tion model at time k:

x(i+ 1|k) = Ax(i|k) +Buext(i|k), (4.37)

satisfies x(i|k) ∈ Xf for all i > N with an invariant K(k).

This result completes the necessary ingredients that are needed to set up the
recursive feasibility theorem. The theorem is given as follows:

Theorem 4.1 Recursive feasibility guarantee
If for any xk ∈ X, a stabilizing linear controller in the form of a varying K(k) (or in the
form of non-varying K) exists such that:

1. The MPC problem (4.29) at time k is feasible,

2. The terminal set Xf is closed-loop invariant (or uniformly closed-loop invariant),

3. The operational constraint umin and umax are constants and either the condition
umin−ur ≤ K(k)(Xf⊖xr) ≤ umax−ur, or umin−ur ≤ K(Xf⊖xr) ≤ umax−ur
is satisfied,

are satisfied, then recursive feasibility of MPC problem (4.29) is guaranteed.

Proof of the theorem can be found in Appendix A.2. With the feasibility of
the MPC controller at hand, we can continue to set up required definitions and
formulations toward a convergent and stable MPC controller.

4.4.2 Stability guarantee

In this section, the further steps that are needed to show the convergence and sta-
bility of the controlled system (4.31) are established. More precisely, the combina-
tion of these two terms result in the notion of an asymptotically stable controlled
system.

Definition 4.12 The controlled system (4.31) is called asymptotically stable if it is both
convergent (Definition 4.4) and the controlled state evolution is bounded in a closed-loop
invariant set x(k) ∈ X ,∀k ∈ Z.
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In Definition 4.8-4.11, we use the local controller K(k) and closed-loop invari-
ant Xf to guarantee recursive feasibility of the MPC controller. We further extend
this result towards guaranteeing the asymptotically stable property of the con-
trolled system GCL under the MPC control law uMPC. To do this, we follow the
Control Lyapunov stability argument mentioned in Sontag (1998). The Control Lya-
punov stability argument is relevant for a controlled system such asGCL where the
successor state x(k + 1) depend on the current state x(k) and the driving control
law u or uMPC in the MPC case. In order to define a Control Lyapunov function, the
definition of class K functions (Khalil 2002) is required:

Definition 4.13 A function α : R+ → R+ belongs to class K if it is continuous, zero
at zero, and strictly increasing; α : R+ → R+ belongs to class K∞ if it is class K and
unbounded (α(k) → ∞, k → ∞). A function γ : R → R+ belongs to the class of PD
functions if it is continuous and positive everywhere except at the origin.

The definition of a Control Lyapunov is given as follows:

Definition 4.14 A function V : Rn → R is called a Control Lyapunov function if there
exist K∞ functions α1, α2, and a PD function α3 defined on Xf such that

α1(∥x− xr∥) ≤ V (x) ≤ α2(∥x− xr∥), (4.38)

and
inf
u∈U

V (Ax+Bu)− V (x) ≤ −α3(∥Ax+Bu− xr∥). (4.39)

The existence of a control Lyapunov function for the controlled system Gcl of
(4.31) is a sufficient condition for asymptotic stability.

The last item that is needed to be formulated to set up stability guarantee is
the terminal cost Vf (x(N |k)) of the aforementioned MPC cost function (4.27). The
terminal cost is chosen as:

Vf (x) = (x− xr)⊤P (x− xr), (4.40)

with P ≻ 0. This particular selection of terminal cost is interesting since it also
provides a method to select a stabilizing linear controller K as a solution for LQR
control synthesis. Following this line of reasoning, the following stability theorem
is established:

Theorem 4.2 Stability guarantee.
Suppose that there exist either a stabilizing linear controlK(k) or uniformly stabilizing
linear control K, and a closed-loop invariant set (A+BK)Xf ⊂ Xf such that:

1. The MPC problem (4.29) is recursively feasible,

2. The terminal cost Vf (·) is a control Lyapunov function with control law K(k) and
invariant set Xf ,
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then MPC cost function VN (·) admits a control Lyapunov function for the controlled
system Gcl and hence the controlled system is asymptotically stable.

Proof of the theorem can be found in Appendix A.3 while the LQR control syn-
thesis is further elaborated in Section 4.6. Theorem 4.2 completes the formulation
of OBF MPC for the non-adaptive setting. In the next section, we continue with
the Adaptive LTV-OBF MPC formulation.

4.5 Adaptive OBF MPC formulation

The main difference between the non-adaptive and the adaptive formulation is the
OBF prediction model. In the adaptive formulation we let the prediction model to
be time-varying for the calculation of the MPC control law for each time instance
k. In this section, we provide the updated MPC problem for the adaptive case and
highlight the difference with the classical formulation and the requirements that
are needed to show feasibility as well as stability of the controlled system.

4.5.1 The LTV-OBF MPC problem

The prediction model in the adaptive setting is given as follows:

Σk

{
x(i+ 1|k) = Ax(i|k) +Bu(i|k), x(0|k) = x(k),

y(i|k) = Ckx(i|k) = θ⊤k x(i|k),
(4.41)

whereCk, corresponds to the OBF model coefficient θk defined in (4.1). The matrix
Ck can be varying for each time instance k. It can be seen that the prediction for
i = 0, . . . , N depend on the instantaneous value of Ck at time k. For each time
sample k, the value of Ck is obtained via either the LS identification (4.22) or the
RLS identification (4.23).

In this section, we focus only on the adaptive LTV-OBF MPC formulation and
hence we assume2 that the matrix Ck is available for each time instance k ∈ Z.

Assumption 4.2 The coefficient θk is identifiable per each time instance (PE condition
on the I-O data Dk is satisfied).

With this assumption, we define the state and input reference for prediction
case

Definition 4.15 Given reference vector r, define (xrk, ur) as the unique solution to:[
A− I B
Ck 0

] [
xrk
ur

]
=

[
0
r

]
(4.42)

where A,B,Ck are the associated matrices with the OBF prediction model (4.41).
2In the implementation of LTV-OBF MPC (i.e. Algorithm 7), we add a method to ensure that PE

condition hold
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Introduce the adaptive LTV-OBF MPC cost function VN |k : (Rnu)N+1×Rnx → R
which is constructed based on the prediction model (4.25) and is formulated as
follows:

VN |k(u, x(k)) :=

N∑
i=0

li|k(x(i|k), u(i|k)) + Vf (x(N |k)), (4.43)

with the stage cost li|k : Rnx × Rnu → R, i = 0, 1, . . . , N that is written as:

li|k(x, u) :=
(
x− xrk

)⊤
C⊤
k Qk(i)Ck

(
x− xrk

)
+ u⊤R(i)u, (4.44)

where Q(i) ≻ 0, R(i) ≻ 0. Similar to the non-adaptive case, the terminal cost
Vf (x(N |k)) : Rnx → R is used to establish the stability properties of the MPC con-
troller. The formulation and selection of the terminal cost is going to be explained
in detail in Section 4.5.2. The weighting matrices Qk(i) and R(i) are symmetric,
positive definite matrices that define the control specification. In most cases, we
set Qk(i) = Qk and R(i) = R for i = 0, 1, . . . , N . Note that the weighting matrix
Qk(i) have index k which is related to the time index k in a similar fashion as
Ck. This means that its possible to have different value of Qk for different k. The
reasoning behind this formulation is related to the stability guarantee for the con-
trolled system which is described further in Section 4.5.2. Following Definition
4.11, observe that xrk can also vary depending on value Ck. However, due to the
nature of PEM identification as explained in Section 4.3, the variation of model
parameter are bounded and convergence of parameter estimate is guaranteed.

The MPC problem for the adaptive case is written similar to Definition 4.2.

Definition 4.16 LTV-OBF MPC Problem
Given the prediction model Σk of (4.41), current state x(k), and constant reference r, the
MPC problem is written as:

PTV−MPC := inf
u

VN |k(u, x(k))

s.t. Σk, ∀ i = 0, 1, . . . , N

x(i|k) ∈ X, ∀ i = 0, 1, . . . , N

umin ≤ u(i|k) ≤ umax, ∀ i = 0, 1, . . . , N

x(N |k) ∈ Xf ⊆ X

(4.45)

where umin is the minimum value while umax is the maximum value of the possible in-
put signal, and Xf is stability constraint which also known as the terminal set. Set
PTV−MPC = +∞ when the feasible set of (4.29) is empty (the MPC problem is ill posed).
The goal of this MPC problem is to find the minimizer of (4.29) for each control cycle
k. The attained minimum of (4.29) is called the primal optimum and is denoted by
V ∗
N |K(k). The minimizer with respect to the primal optimum is called the optimal

input sequence and is denoted by {u∗(i|k)}Ni=1 or u∗.

In the adaptive case, the controlled system now exhibits a time-varying behav-
ior:

GCLk

{
x(k + 1) = Ax(k) +BuMPC(k), x(0) = x0

y(k) = Ckx(k).
(4.46)
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Other supporting definitions for the MPC problem such as MPC control law (Def-
inition 4.3), convergence (Definition 4.4), feasibility (Definition 4.5), recursive fea-
sibility (Definition 4.7), the input extension (Definition 4.8), stabilizing linear con-
troller (Definition 4.9), as well as the terminal set (Definition 4.10) remains the
same for the adaptive case. The similarity on the aforementioned definitions lead
to direct utilization of the recursive feasibility Theorem 4.1 for the adaptive case:

Theorem 4.3 Recursive feasibility guarantee for adaptive OBF MPC formulation
If either one of stabilizing linear controller K(k) or K exists such that:

1. The MPC problem (4.45) at time k is feasible,

2. The terminal set Xf is closed-loop invariant or uniformly closed-loop invariant,

3. The operational constraint umin and umax do not change for all k and either the
condition umin − ur ≤ K(k)(Xf ⊖ xrk) ≤ umax − ur, or umin − ur ≤ K(Xf ⊖
xrk) ≤ umax − ur is satisfied,

is satisfied, then the recursive feasibility of MPC problem (4.45) for all k is guaranteed.

Proof of the theorem can be found in Appendix A.4. In the other hand, the
stability guarantee for adaptive case is slightly different due to the time-varying
behavior of the controlled system 4.46.

4.5.2 Stability guarantee in the adaptive setting

In this section, we examine how the variation on Ck affects the stability guarantee
of the LTV-OBF MPCs controller in the adaptive setting. The stability argument in
the adaptive case is still based on the control Lyapunov function (Definition 4.14).
We start with the observation wether the classical stability guarantee (Theorem
4.2) hold for the adaptive case. Within this theorem there are two items that are
affected by the time-varying behavior:

• The construction of linear stabilizing controller K (Eq. (A.28)),

• The optimality principle (Eq. A.31).

In the adaptive case, the existence of a stabilizing linear controller K is needed
such that

(x(N |k)−xrk)⊤
(
(A+BK)⊤P (A+BK)−P+C⊤

k QkCk+K
⊤RK

)
(x(N |k)−xrk) ≤ 0.

(4.47)
Unlike the non adaptive case, the solution for the LQR synthesis problem needs
to be valid for all possible value of Ck

(A+BK)⊤P (A+BK)− P ⪯ −(C⊤
k QkCk +K⊤RK). (4.48)
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Fortunately we know that the possible value ofCk is inside of the parameter space
Θ ⊂ Rng×ny which is bounded and depend on the covariance matrix of parameter
estimates (See Section 4.3.4). Finding K as the solution of 4.48 can be done by
solving multiple LMIs in the vertices of a polytopic approximation of Θ. The
LMIs and the details of the synthesis is given in Section 4.6.

The second item which is affected by the variation of Ck is the optimality prin-
ciple

V ∗
N |k(x(k + 1)) ≤ ṼN |k(x(k + 1)). (4.49)

In the adaptive cases this relation is not valid since l̃i|k in

ṼN |k(x(k + 1)) =

N∑
i=0

l̃i|k(x(i|k + 1), uext(i|k)) + Vf (x(N |k)), (4.50)

is based on the previous value of Ck. There is a possibility that the variation on
Ck lead to the relation of

li|k(x(i|k + 1), uext(i|k)) < l̃i|k(x(i|k + 1), uext(i|k)),
∥Ck+1(x(i|k + 1)− xrk)∥Qk+1

< ∥Ck(x(i|k + 1)− xrk)∥Qk ,
(4.51)

for arbitrary i which invalidates the optimality principle:

VN (x(k + 1)) ≰ ṼN (x(k + 1)). (4.52)

It is clear that in order to guarantee the decreasing property of the value function,
an additional condition is required. The stability Theorem for the adaptive case
then becomes:

Theorem 4.4 Stability guarantee in the adaptive setting.
Suppose that there exist either a stabilizing linear control K(k) or a uniformly stabiliz-
ing linear control K, and a closed-loop invariant set Xf such that:

1. The MPC problem (4.45) is recursively feasible,

2. The terminal cost Vf (·) is a control Lyapunov function with control law K(k) and
invariant set Xf ,

3. The condition

Ck+1
⊤Qk+1(i)Ck+1 ⪯ C⊤

k Qk(i)Ck ∀k ∈ Z, i ∈ N (4.53)

holds.

then the MPC cost function VN |k(·) admits a control Lyapunov function for the closed-
loop system GclA and hence the controlled system is asymptotically stable.

Proof of the theorem can be found in Appendix A.5. The last condition on
Theorem 4.4 leads to two interpretations:
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• Control synthesis: This condition determines how we need to adjustQk+1(i)
to counter balance the change in Ck.

• Iterative identification: This condition regulates the input-output condition
of the data set Dk which leads to governing the experimental condition
and/or adjusting the weighting of the identification method.

It is mentioned at the end of the proof of Theorem 4.4 that the stability of (4.46)
can be enforced by either adjusting the sequence Qk+1(i) for all i ∈ N or assuming
Qk is independent of i and adjusting the matrix Qk. The sequence of weighting
matrices Qk(i) act similarly to the weighting on the identification WLS in (4.22).
Provided that the length of the prediction horizon Hp and the data horizon Hd are
the same, it is natural to select of Qk(i) and WLS to be equivalent with each other.
This way, the stability of the controlled system, and in particular the condition
(4.53), is being satisfied from both the view points of identification and the control.

Alternatively, for Qk that is selected to be independent of i, one can adjust the
the next value of Qk+1 in similar fashion as how the weighting of WRLS in (4.23c)
affect the value of P (k−1). In summary, we can guarantee stability, no matter how
often the model is updated.

Another possibility is to consider the condition of (A.35) from the interpreta-
tion of limit value of Ck and Qk.

C∗ := lim
k→∞

Ck, Q∗ := lim
k→∞

Qk (4.54)

Then (4.53) implies that

C∗
⊤Q∗(i)C∗ ⪯ C⊤

k Qk(i)Ck ∀k ∈ Z, i ∈ N. (4.55)

4.6 LQR control synthesis

The existence of a stabilizing LQR controller K that satisfy (4.47) is needed to
show both recursive feasibility and stability of the LTV-OBF MPCs controller. The
value of P and K of the corresponding robust LQR problem needs to satisfy:

(A+BK)⊤P (A+BK)− P ⪯ −(C⊤
k QkCk +K⊤RK), (4.56)

for all Ck ∈ Θ (ellipsoidal parameter set (4.3.4)) and variations of Qk. It is often
beneficial to describe such an ellipsoid by a polytope. Outer or inner approxima-
tion method such as described in Bronstein (2008) can be used for this purpose.
By defining vertices {θ̃i}ni=1 of the polytopes such that

Θ ⊆ Co{θ̃1, . . . , θ̃n} (4.57)

the value of P and K can be simultaneously computed by defining S := P−1,
T := KP−1, and solving the LMI problem:

S (AS +BT )⊤ Sθ̃⊤i T⊤

AS +BT S 0 0

θ̃iS 0 Q−1
k 0

T 0 0 R−1

 ⪰ 0, (4.58)
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for all vertices {θ̃i}ni=1.

With the stabilizing LQR controller at hand, the invariant setXf can be selected
as a level set of

Vf (x) = (x− xrk)⊤P (x− xrk).

The invariant set definition follow

Xf = {x|Vf (x) ≤ η} (4.59)

with 0 < η ≤ 1.

The LQR control synthesis as well as invariant set definition give us the com-
plete description of LTV-OBF MPC scheme.

4.7 LTV-OBF MPC algorithm

This section summarizes the finding of previous sections and presents the LTV-
OBF MPC scheme as an algorithm. In principle the algorithm is divided into three
parts:

• Preparation step of the LTV-OBF model

• Finding stabilizing linear controller

• Online LTV-OBF MPC control

Each step is presented in algorithm flow as follows:

Splitting global data set DNg into identification and validation data sets can be
done in any ratio. The intuitive division is half and half, but having more data
sets for better identification is also beneficial. For the OBF model, the input signal
has a direct effect on the covariance matrix of model estimate. This defines the
allowable parameter space Θ of the LTV-OBF model which we need to consider
for LQR control synthesis.

Since we are going to adapt the model coefficient of the LTV-OBF model for
the MPC scheme, extra input excitation needs to be injected into the closed-loop
setting to maintain PE excitation. Similar excitation that leads to the covariance
matrix that we used in LQR synthesis should be used. The excitation help steer
the variation of the model coefficient of the LTV-OBF model. Note that this extra
excitation and iterative identification can be turned off to apply LTI-OBF MPC
instead of LTV-OBF MPC.

For this LTV-OBF MPC implementation, the stability of the closed-loop sys-
tem can be monitored from the evolution of Eq. (4.53). Since this condition
scale depends on the state-space of the LTV-OBF model, alternative formulation of
Eq.(4.53) by pre and post multiplication with the current state x(k) can be made.
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Algorithm 5 Setting up LTV-OBF model

Require :

• Basis pole for the system of interest ({λi}nb
i=1) (see Chapter 3 for basis

selection methodology)

• Global data set DNg

• Selected number of basis expansion ne
• Number of input channels of the system of interest nu
• Success Criteria for identification 0% < SC < 100%

Ensure: BFR = 0%
Select the WLS/RLS tuning parameter (See Section 4.3.6 for rule of thumb)
while BFR ≤ SC do

Construct a state-space OBF representation w.r.t. basis poles ({λi}nb
i=1), num-

ber of basis expansion (ne), and input channel nu (i.e. Eq (2.64))
Run the WLS/RLS identification method on a part of global data set DNg

(identification step)
Collect the initial coefficient of the LTV-OBF model θo for each output chan-

nel
Simulate the LTV-OBF model with coefficient from step w.r.t. the other part

of the global data set DNg (validation step)
Compute

BFR = 100% ·max

(
1− ∥y(k)− ŷ(k)∥2

∥y(k)− ȳ∥2
, 0

)
, (4.60)

if BFR < SC then
Fine-tune the WLS/RLS tuning parameters WLS/WRLS in a grid like en-

vironment
else if BFR < SC and tuning parameter space has been explored then

Set ne ← ne + 1
end if

end while
Collect the final initial coefficient θo of the LTV-OBF model and the compute
covariance matrix of parameter estimates using Eq.(4.18).
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Algorithm 6 Finding Stabilizing LQR control for LTV-OBF MPC

Require :

• Covariance matrix of parameter estimate Qθ̂o

• Initial LTV-OBF model of the system of interest (Result from Algorithm
5)

• Control matrices Q and R.

• Polytope approximation algorithm (e.g. algorithm of Bronstein (2008))

Ensure: i = 0
Construct n-dimensional polytope approximation of model set Θ from the in-
formation of the covariance matrix of parameter estimate Qθ̂o

with the center of
initial coefficient θo
while i = 0 do

Collect all vertices of the polytope {θ̃i}ni=1 (i.e. Eq (4.57))
Construct an LMI for each vertices
Solve LMIs
if LMIs are not solvable then

Shrink the polytope
else if LMIs are solvable then

Set i← 1
end if

end while
Compute matrices P and K.
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Algorithm 7 LTV-OBF MPC online control

Require :

• Initial LTV OBF model of the system of interest (Result from Algorithm
5)

• Stabilizing LQR controller matrices P and K

• Control matrices Q and R (that are used for LQR control synthesis)

• Prediction-Control horizonN (value needs to be larger than the settling
time of the system dynamics)

• WLS/RLS tuning matrix WLS/WRLS

• Vertices of n-dimensional polytope {θ̃i}ni=1 (that are used for LQR con-
trol synthesis)

• commissioned data set Dk consisting of the current value of input u(k),
output y(k) (for WLS adaptation, up to n past data set depending on
the length of WLS)

Initialize state of LTV-OBF model x(k) w.r.t. the Commissioned data set Dk (See
Section 4.3.3)
while MPC control is online do

Construct the MPC problem of Eq. (4.45)
Solve the MPC problem (Always solvable due to recursive feasibility Theo-

rem 4.3)
Apply control action uMPC(k) with added excitation for persistence excita-

tion condition
Update commissioned data set Dk with the output y(k)
Update the current state x(k) of LTV OBF model with the updated commis-

sioned data set Dk

Run LTV RLS/WLS model identification w.r.t. the latest data Dk

Estimate LTV RLS/WLS model coefficient θk+1

if The model coefficient θk+1 is inside the n-dimensional polytope then
Re-run LQR control synthesis (i.e. Algorithm 6)
Update P and K matrices

end if
if Control Performance is not satisfying (e.g MSE of tracking performance,

etc) then
Tune Q and R matrices
Re-run LQR control synthesis (i.e. Algorithm 6)
Update P and K matrices

end if
end while
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This product is similar to the stage cost l0
(
x(0|k), uMPC(k)

)
of the MPC without

the reference state xrk term:

x⊤(k + 1)θk+1Qθ
⊤
k+1x(k + 1) ≤ x(k)θkQθ⊤k x(k) ∀k ∈ Z, i ∈ N. (4.61)

Referring to the proof of stability Theorem 4.4 in Appendix A.5, this stage cost
formulation can be a replacement condition in which we guarantee the optimality
principle. This means that if the value of Eq. (4.61) converges to the reference state
xrk, the closed-loop stability is guaranteed.

Remark 4.3 The evolution of model coefficient θk of the LTV-OBF model as well as the
control matrix Q are part of the stability condition as described in Theorem 4.4 (i.e. condi-
tion of Eq. (4.53)). For simplification reasons, Algorithm 7 only restricts the variation of
the model coefficient and does not specifically mention the condition of an iterative update
on Q for each time step. This means that the stabilizing LQR control will remain valid as
long as the evolution of the model coefficient is bounded by the n-dimensional polytope. In
case it is desired to implement an iterative update onQ, additional rules for the Algorithm
7 and possible redefinition of the LMI for LQR synthesis in Algorithm 6 is needed to be
made.

4.8 Simulation study

The proposed control scheme in Section 4.7 is tested on a binary distillation col-
umn benchmark model that is based on a liquid-vapor flow configuration. The
model is detailed in Skogestad (1997). A linearization of the model is established
for the operating condition of 0.05 and 0.95 (mole fraction) of the bottom and top
composition levels respectively, with corresponding liquid and vapor flows of 521
kmol/min (kilo-mole per minute) and 664 kmol/min. The sampling time of the
system is chosen to be 5 minutes while the settling time of the system is 170 min-
utes (34 time steps). The MIMO LTI model in deviation variables is given as fol-
lows:

G(z) =

[
0.001357z−0.0009633
z2−1.528z+0.5679

−0.0009023z+0.000597
z2−1.528z+0.5679

0.001174z−0.0009952
z2−1.528z+0.5679

−0.0003762z+0.0002929
z2−1.528z+0.5679

]
. (4.62)

This represents a 2x2 LTI system with liquid and vapor flow as the inputs (manip-
ulated variables) and bottom and top composition as the output (controlled vari-
ables) respectively. The generated measurements from this system are corrupted
by a discrete-time output additive white noise with signal-to-noise ratio3 (SNR) of
15 dB. The LTV-OBF MPC scheme will be designed and commissioned on this
system with ng = 4 (i.e. nb = 2 basis poles and nu = 2 input) basis functions that
are generated from the poles of the system. This pole generating mechanism also
means zero approximation error i.e. ∥G[m,n]−G [m,n]

nb ∥2H2
= 0 (See Section 2.5.2 for

3The signal-to-noise ratio is defined as SNR := 10 · log10
(

∥y−v∥22
∥v∥22

)
.
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Figure 4.2: Rotation coefficient and validation data set in the open-loop setting.

Table 4.1: Open-loop validation result for the WLS and RLS approaches.

Bottom product Top product
composition (y1) composition (y2)

BFR BFR
WLS-approach 94.88 % 87.18 %
RLS-approach 89.81 % 84.26 %

details). After the commissioning of the MPC, the plant-model mismatch will be
induced as an effect of a rotation matrix:

Gnew(z) =

[
cos(α(k)) − sin(α(k))
sin(α(k)) cos(α(k))

]
G(z), (4.63)

where −π/5 < α(k) < 0 is the rotation coefficient at time instant k. Different
rates of change of α(k) such as abrupt and slow changes are considered in the
experiment. The considered trajectory of α(k) is depicted in Fig 4.2. The goal of
this study is to test the ability of the LTV-OBF MPC scheme to track the change in
the system while maintaining a low deviation from the given reference point.

4.8.1 Initial observation and open-loop validation

An off-line experiment (study) has been conducted which corresponds to the com-
missioning stage of the MPC where the hyper parameters of the estimation and
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Table 4.2: Closed-loop performance of the investigated MPC approaches with
respect to the given reference (r1 = 0.02, r2 = 0.98)

Bottom product Top product
composition (y1) composition (y2)

MSE MSE
Fixed-MPC 7.57 · 10−5 3.54 · 10−5

Oracle-MPC 3.01 · 10−7 1.41 · 10−6

LTV-OBF MPC WLS 1.22 · 10−5 5.98 · 10−6

LTV-OBF MPC RLS 1.09 · 10−5 5.17 · 10−6

the control parameters are selected. In this experiment, the system is excited with
Gaussian white noise input with standard deviation of 10 kmol/min. The length
of the simulation study is 23000 minutes (383 hours). It is important to note that
this experimental length is not the required time to obtain the model. Instead, the
length is chosen such that the estimation capabilities of the model can be assessed
with respect to various rotation scenarios. The result of this experiment can be
seen in Table 4.1 in terms of the average best fit ratio (BFR). These results corre-
spond to the selected hyper parameters of N = 239, WLS = diag

(
{ 4.5k

4.5N
}Nk=1

)
, and

WRLS = 0.97 which are obtained via the gridding of the parameter space.

4.8.2 Closed-loop experiment

With the parameters available from Section 4.8.1, the LTV-OBF MPC is commis-
sioned on the system. The control task is to follow a set point of r1 = 0.02 and
r2 = 0.98 for each of the output channels under the effect of the rotation factor that
is depicted in Fig. 4.2. LTV-OBF MPC synthesis follows the algorithm described
in Section 4.7. Four different cases are considered for the closed-loop experiment:

• Oracle-MPC: The predictive model is equal to the true system dynamics.

• Fixed-MPC: The predictive model is fixed (i.e. single LTI-OBF model).

• LTV-OBF MPC with WLS estimation: Model coefficient is updated using Eq.
(4.22)

• LTV-OBF MPC with RLS estimation: Model coefficient is updated using Eq.
(4.23)

The result of the Oracle-MPC will also serve as a benchmark for the best achiev-
able result on the selected control parameter. The LQR synthesis for the Oracle-
MPC is conducted with the available model coefficient as given in Eq.(4.62) and
Eq.(4.63). The Fixed-MPC case only uses a single model (initial model of the open-
loop experiment) for the LQR synthesis, while both LTV-OBF MPC cases use the
vertices of the polytope approximated covariance matrices of the parameter esti-
mate to construct the LMI (See Section 4.6 for details). For the controller of all the
cases, we select the control-prediction horizon value to be N = 34 which is based
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Figure 4.3: Tracking performance of four different cases of the predictive con-
troller under rotation scenario.

on the slowest step response of the system, while the control matrices are selected
to be

Q =

[
1/0.05 0

0 1/0.95

]
R =

[
1/521 0
0 1/664

]
(4.64)

The value in (4.64) correspond to the normalization of the magnitude of the in-
puts and outputs of the system. This is a typical initial choice of Q and R that is
often used in MPC applications. The normalization is also meant to give equal
importance to both output and input channels.

The related parameters of the LQR control synthesis for all four cases can be
found in the Appendix A.8 and the result of the closed-loop experiment can be
seen in Fig. 4.3 and Table 4.2.

From these results, it can be seen that the Fixed-MPC cannot give a proper
reaction to the change in the system since the changing dynamics of the system is
unknown to the predictive model. On the other hand, the LTV-OBF MPC which is
based on an adaptive model, can still follow the reference in both abrupt or slow
rotation scenarios. From Table 4.2, it can be seen that the recursive least-squares
approach slightly outperforms the weighted least-squares approach. This result is
the opposite of the open-loop simulation result (Table 4.1) where the adaptations
of the system dynamics were performed better by the least-squares approach. The
explanation of this behavior lays in the informativeness of the identification data
set / regression matrix. In the open-loop setting (Fig. 4.2), the excitation signals
in the form of white noise input contain rich information and hence the model
estimation based on a long data set will produce better results. In contrary, in the
closed-loop setting, the input excitation is limited. This limited excitation leads to
less information in the regression matrix which penalize performance of weighted
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Figure 4.4: Stability condition for LTV-OBF MPC under rotation scenario.

least-squares approach more than it affect the recursive least-squares approach.

Lastly, as indicated in Section 4.7 we visualize the stability condition 4.61 in Fig
4.4. The Fixed MPC case does not have any variation in the model coefficient and
hence this condition is purely driven by the state of the LTI-OBF model. Hence, the
condition does not have any meaning for this Fixed MPC case. For Oracle, WLS,
and RLS cases, we can see that for each jump in the rotation coefficient, the stabil-
ity condition is also jumping for an instantaneous moment and then converge to
the equilibrium related to the reference state xrk. Note that the non-smoothness of
the LTV-OBF stability parameter is due to the measurement noise and the induced
excitation to maintain persistent excitation for system identification. As indicated
in Section 4.7 the update on the parameter can be turned off and both WLS and
RLS cases will behave more like the LTI case.

4.9 Summary

An adaptive MPC scheme that is based on an OBF prediction model is presented
in this chapter. The OBF-based prediction model is adapted per control cycle to
capture the time-varying behavior of the system of interest. The adaptation is
based on an iterative identification procedure of the coefficients of the OBF predic-
tion model. Conducting system identification for OBF-based model has a strong
benefit due to direct applicability of the PEM identification framework and hence
the consistent estimation of the OBF model coefficients. Two procedures for con-
ducting iterative identification based on Weighted Least Square and Recursive Least
Square are given. WLS estimation has the advantage of using past data while RLS
estimation has the ease of tuning parameter selection for iterative identification.
Afterwards, the MPC scheme for OBF-based prediction model is formulated. A
classical feasibility and stability theorem is established for this MPC scheme. The
MPC scheme, as well as the feasibility and stability results, are then extended to
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the time-varying case. An extra stability condition is required to guarantee the sta-
bility of the controlled system. The additional condition shows that the stability of
the controlled system can be established from both the control synthesis and the
identification side. Lastly, by conducting a simulation study, we have shown that
the proposed method can capture the time-varying dynamics of a given system
and manage to achieve the goal of set-point tracking.



5 CHAPTER

Parameter-Varying Predictive Control
based on OBF models

This chapter is devoted to solving the plant-model mismatch problem in
case the cause of the changes in the plant dynamics is known and measur-
able. We utilize the Linear Parameter-Varying (LPV) system framework to
describe the variation in the plant dynamics as variation in the parameters
of the prediction model. The utilized LPV model to represent these varia-
tions is based on Orthonormal Basis Functions (OBF) that is identified prior
to the commissioning of the MPC controller. After the introduction to
the chapter, the considered problem setting is described in Section 5.2. In
Section 5.3, LPV identification approaches for the considered OBF model
representation are described. In Section 5.4, the LPV-OBF MPC scheme
for reference tracking is proposed. It is shown that recursive feasibility
and stability is guaranteed for the proposed scheme. In Section 5.5, an
Extended Kalman Filter (EKF) is introduced. The goal of using EKF is to
assist the proposed MPC method when only output measurements are
available. In Section 5.7, a simulation study is conducted to demonstrate
the capabilities of the proposed MPC scheme.

5.1 Introduction

Model-based control strategies are widely used for optimal operation of chem-
ical processes. Obtaining accurate models to describe the inherently nonlinear,
time-varying dynamics of chemical processes remains a challenge in most model-
based control applications. One possible method to embed nonlinear dynamics
while keeping the linear structure of the model is via the LPV system framework.
The class of LPV systems can be seen as an extension of LTI systems as the input-
output signals relation is considered to be linear in the LPV case, but this dynamic
relation changes depending on an external signal called the scheduling variable

105
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(Tóth 2010). In Bachnas (2012), the capability of data-driven LPV models to cap-
ture nonlinear behavior of a chemical process is demonstrated. Moreover, in the
context of this thesis, this work shows that OBF-based LPV identification proce-
dures are competitive with other LPV identification method. In this chapter we
utilize the OBF model obtained by LPV-OBF identification in our proposed MPC
scheme. The aim is to sustain high performance of control under variations of the
operating conditions by ensuring minimum discrepancy between the plant and
the model.

It is mentioned in Chapter 1, that the available literature on the utilization of
OBFs in MPC schemes is underdeveloped for the LTI setting. In Chapter 4, we
proposed an adaptive MPC scheme based on OBFs with a goal to capture un-
known changes happening in the system of interest. In this scheme, OBFs played
an important part in the efficiency of the resulting methodology. However, if
the changes in the dynamics of the system at hand are known and measurable,
for instance like a change in the operating conditions, a parameter-varying MPC
scheme is more suitable compared to the adaptive scheme. This extra knowledge
allows us to tackle the control problem in two different fashions. The first one
is like controlling ensembles of localized system dynamics which is similar to a
gain scheduling control (see in Shamma and Athans (1991), Apkarian and Gahinet
(1995)). The second one is more in the global sense where continuous variation of
linear dynamics are embedded in the control scheme (see (Tóth 2010)). This pro-
vides potential performance improvements over a fixed robust controller. The
performance improvements inspired modification of the robust MPC solutions
such as in Kothare et al. (1996), Mayne et al. (2011), Bemporad et al. (2003). It is
shown in the work of Lu and Arkun (2000), Suzuki and Sugie (2006), Jurre et al.
(2017) that exploiting extra information on the process variation improves feed-
back properties and control performance.

In this chapter, we propose a parameter-varying MPC scheme that is based on
an LPV-OBF prediction model. We adopt the MPC scheme based on Limón et al.
(2008) and Ferramosca et al. (2009), and extending it for the parameter-varying
case. This MPC scheme is selected since it achieves set point tracking, and the
modification of the MPC cost function in this scheme is advantageous for the LPV-
OBF prediction model. The tracking for piece wise affine set point for a linear
system can be seen as an equivalent problem of reference tracking for a parameter-
varying system that varies in a piece wise affine manner. This type of variations is
commonly seen in process industries. The proposed LPV-OBF MPC scheme given
in this chapter consists of three parts:

• Obtaining an LPV model of the plant before recommissioning.

• Synthesizing an MPC control law for the prediction model.

• Designing an EKF for tracking problem with only output measurements.

This chapter is constructed as follows. First, the problem setting is described
in Section 5.2. The problem setting specifies the LPV-OBF model, control imple-
mentation timeline, and data acquisition setting. In Section 5.3, two LPV iden-
tification methods in terms of the local and global approaches are described for
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the LPV-OBF model. These two approaches provide two distinct ways of identi-
fying an LPV-OBF model. In Section 5.4, the LPV-OBF MPC scheme for reference
tracking is proposed. The MPC scheme utilizes designated steady-state target
and extra penalty term for achieving output tracking. Recursive feasibility and
stability guarantees are provided for the MPC scheme. In Section 5.5, an Extended
Kalman Filter (EKF) is introduced. The EKF is used to infer the state from output
measurements. In Section 5.7, a simulation study is conducted to demonstrate the
performance of the proposed MPC scheme.

5.2 Problem Setting of the LPV-OBF MPC scheme

In this section, a general problem setting for the implementation of the proposed
LPV-OBF MPC scheme is described. This section starts with the description of
the LTV-OBF model and then continued with the considerations of the predictive
control problem in terms of implementation, commissioning, and continuous op-
eration.

5.2.1 LPV-OBF model

Denote the collection of frozen linear dynamics of the system of interest with S
(see Section 2.3 for detailed description). By considering a frozen description of
the system, the variation of the linear dynamics between the inputs and outputs
of S can be distinguished by the instantaneous value of the scheduling variable
p(k), k ∈ Z. Furthermore, the linear dynamics can be represented by using an
LTI-OBF transfer function Gnb

(z) that is constructed using a cascaded network of
fixed nb basis functions (See Section 2.5.3 for details on the OBFs construction).
The variation of the linear dynamics of S can be described by allowing the ex-
pansion coefficients of the OBF model, denoted by θ, to be varying depending
on scheduling variable p(k). Such a variation leads to a parameter-varying OBF
model which will be called as the LPV-OBF model in the sequel. The state-space
representation of the resulting (Wiener type) LPV-OBF model is described as fol-
lows:

x(k + 1) =


Ane,nb

. . . 0
...

. . .
...

0
. . . Ane,nb


︸ ︷︷ ︸

A∈Rng×ng

x(k) +


Bne,nb

. . . 0
...

. . .
...

0
. . . Bne,nb


︸ ︷︷ ︸

B∈Rng×nu

u(k)

= f(x(k), u(k)),

y(k) = θ⊤(p(k))x(k), (5.1)

where x(k) ∈ X ⊆ Rng is the state variable of the LPV-OBF model, u(k) ∈ U ⊆ Rnu

is the input variable of the model, and y(k) ∈ Y ⊆ Rny is the output variable
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of the model. The state dimension nx = ng = nbnenu of (5.1) depends on the
number of OBFs (nb), the length of expansion (ne), and the dimension of the input
signal (nu). The state space matrices A and B are time-invariant and their values
depend on the selected OBFs. Since the OBFs are time-invariant, the OBF selection
needs to consider possible dynamical variation of the process. This task can be
accomplished by algorithms that are given in Section 3.4. With a proper selection
of OBFs, the resulting LPV-OBF model with a suitable model coefficient function
θ is guaranteed to approximate all frozen transfer functions Sk with the smallest
error in the l2-norm sense such as explained in Section 2.5.2. Note that the error
will asymptotically go to zero as the number of OBFs goes to infinity.

The model coefficient θ(p(k)) of (5.1) is a function of the scheduling variable
p : Z → P with a scheduling regime P ⊆ RnP . This function depends on the instan-
taneous value of the scheduling variable and hence the model coefficient is called
to have static1 dependency on the scheduling variable. There are two main sets
of LPV identification approaches available to derive LPV-OBF models from data
measured from the actual process:

• Local approach: Where the function θ(p(k)) is identified by interpolating
LTI models of S identified at distinct operating points inside the operating
regime (collection of operating points) of the process.

• Global approach: Where direct estimation of the function θ(p(k)) is con-
ducted based on a single data set that captures the variation of the linear
dynamical behavior of S with respect to a given trajectory of the scheduling
variable.

The LPV-OBF model (5.1) is used as the prediction model for the proposed
LPV-OBF MPC scheme. The time line of the MPC scheme is explained in the next
section.

5.2.2 Implementation concept of the LPV-OBF MPC scheme

The implementation can be divided into two parts which are the control com-
missioning part and the online part. Before control is commissioned, past mea-
surement data is used to obtain the LPV model and while the control is active,
online-data is used to estimate the state of the model. The length of n-th local and
global identification data (Nn ∈ N, Ng ∈ N) are associated with an arbitrary past
time. The data, prediction, and control horizon (Hd, Hp, Hu) are associated with
the present time k. The details on data acquisition setting is given in Section 5.3.4.

The length of which MPC is allowed to compute candidate control actions
u(i|k), i ∈ Z[0,∞] is called control horizon Hu. The notation u(i|k) is used to
describe the future or predicted input u(k + i) that is calculated at time k. In
most cases we consider the control horizon to be equal to the prediction horizon
Hu = Hp. For the case of Hu < Hp, the control action is set to be constant, i.e.
u(Hu|k) = u(Hu + i|k), i = 1, . . . ,Hp −Hu.

1The opposite of static dependency is dynamic dependency where the function depends on the past
trajectory of the scheduling variable (Tóth 2008).
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5.3 LPV-OBF identification methods in the PEM set-
ting

In this section, details of Prediction Error Minimization (PEM) identification for
LPV-OBF models are given. We start by describing the parameterization of the
scheduling dependent model coefficients. This parameterization is then used to
identify the model via a local and a global LPV identification approach.

5.3.1 Parameterization of the OBF model coefficient

The expansion coefficient θ(p(k)) of an LPV-OBF model is considered to be a func-
tion of the instantaneous value of the scheduling variable p(k). This function em-
beds nonlinear and time-varying behavior of the actual process, while keeping the
linear relation of the input-output signal in the model. One method to describe the
function θ(p(k)) is by a linear parametrization using a priori chosen set of basis
functions {ψs}

nψ
s=1, ψs : P → R (Tóth 2010). In this manner, the model coefficients

can be written as:

θ(p(k)) =

nψ∑
s=1

ϑsψs(p(k)), (5.2)

where ϑs ∈ Rny×nu , s = 1, . . . , nψ are the unknown parameters to be estimated. It
is stated in Boyd and Chua (1985) that by using parameterization (5.2), the OBF
model can act as a general approximator of a nonlinear system with fading mem-
ory. Here we take the same OE assumption on the noise structure as given in
Section 4.2.3. Based on the PEM framework, estimation of ϑs can be conducted
via a least square formulation. Efficient selection of {ψs}

nψ
s=1 is required such that

(5.2) can adequately capture the underlying nonlinearities of the process. Prior
information on how the nonlinearities affect the change in the dynamics of the
process is of paramount importance for such a parameterization. One possible
choice of this set of basis functions is the set of monomial basis such as given in
the example below:

Example 5.1 For a two dimensional scheduling variable p(k) =
[
p1(k) p2(k)

]⊤ the set of monomial basis
of order 3 are:[

ψ1(p(k)) ψ2(p(k)) . . . ψ9(p(k)) ψ10(p(k))
]
=[

1 p1(k) p2(k) p21(k) p1p2 p22(k) p31(k) p21p2 p1p22 p32(k)
]
. (5.3)

After the set of basis functions have been selected, there are two possible ways
of estimating ϑs. The first one is called the local approach where ϑs is estimated
with respect to a fixed set of operating points {p̄(n)}nop

n=1. The second method is
referred to the global approach where the estimation of ϑs is based on a trajectory
p̃ = {p(k + τ)}Ngτ=1 that contains varying values of the scheduling variable.
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Remark 5.1 In order to perform the selection of the basis functions {ψs}
nψ
s=1, an anal-

ysis of a first-principle model is often required. Unaccounted nonlinear behavior may
appear in the measurement of the actual process due to non-ideal operation of actuators or
actual morphology of the installation. Alternative to parametrization of {ψs}

nψ
s=1, non-

parametric methods are available to directly estimate a functional form of the coefficients
θ(p(k)) (e.g. Laurain et al. (2012); Hsu et al. (2008)).

5.3.2 Local approach

In the local approach, estimation of {ϑs}
nψ
s=1 can be interpreted as an interpola-

tion of the model coefficients of a set of models Mlocal which are locally identi-
fied at each operating point ( {θ(p̄(n))}nop

n=1). These model coefficients are inter-
polated by the selected basis {ψs}

nψ
s=1. Suppose that each of the operating points

p̄(n), n = 1, . . . , nop is associated with an LTI-OBF model G(n)
nb (z) with expansion

coefficient θ(p̄(n)). By assuming that the model coefficient in the operating regime
is linearly parameterized according to (5.2), the estimation procedure of ϑs is de-
fined as follows:

Definition 5.1 Define the cost function of local estimation as

Vlocal :=

∥∥∥∥∥∥∥∥∥

 θ(p̄(1))
...

θ(p̄(nop))

−
 ψ1(p̄

(1)) . . . ψnψ (p̄
(1))

...
...

...
ψ1(p̄

(nop)) . . . ψnψ (p̄
(nop))


︸ ︷︷ ︸

Ψ

 ϑ1
...

ϑnψ


∥∥∥∥∥∥∥∥∥

2

2

. (5.4)

The coefficients {ϑs}
nψ
s=1 are obtained by the minimization of (5.4):

{ϑs}
nψ
s=1 = argmin

{ϑs}
nψ
s=1∈Rnψ

Vlocal. (5.5)

The requirements for a unique solution of (5.5) are nop > nψ and Ψ being full
rank. The formulation of the model coefficient interpolation as a least square prob-
lem lead to an interesting property of the resulting LPV-OBF model. It is shown
in Tóth (2010) that the interpolation of model coefficients of LTI-OBF models is
equivalent to the interpolation of the dynamics of the LTI-OBF model itself. By
selecting {ϑs}

nψ
s=1 as the solution of (5.5), we minimize the dynamical error of the

identified LPV-OBF model Gnb
(z) (at an arbitrary value of the scheduling vari-

able p(k)). This property is a strong point of conducting local LPV identification
approach by using OBF models which does not hold true for local LPV identifi-
cation with other model structures. Furthermore, if the noise affecting the data
generating systems is not OE, θ(p̄(nop)) can be identified with parametrization of
the noise model H(q, θ) or via IV in the PEM framework to reduce the variance of
the estimates. Then, interpolation can be conducted on the resulting parameters.

Remark 5.2 A local LPV identification approach is often characterized by the combi-
nation of the selected interpolation scheme (input, output, coefficient) and interpolation
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methods (linear, polynomial, RBF). Interpolation of the coefficients of LTI-OBF models
can be considered as a coefficient interpolation scheme. Thorough comparison between the
combinations of interpolation schemes and methods can be found in Bachnas (2012).

5.3.3 Global approach

A commonly applied method for direct estimation of {ϑs}
nψ
s=1 is the use of the LPV

extension of the PEM framework ((Tóth 2010; Giarré et al. 2006)). The LPV-PEM
framework utilizes one-step ahead prediction of the presumed model of the sys-
tem similar to LTI-PEM (See Section 4.3 for identification in the PEM setting). In
particular, by having a linear parametrization of (5.2), our goal is to estimate the
parameters {ϑs}

nψ
s=1 given a data set of the actual process DNg . Since the noise

structure of our OBF model is assumed to be OE, and under the commonly taken
assumption of noise-free measurement of the scheduling variable p, the one-step-
ahead prediction of the LPV-OBF model (5.1) is equivalent to the simulated re-
sponse:

ŷ(k) = θ(p(k))x(k), (5.6)

where x(k) is the instantaneous state value of the LPV-OBF model. The LPV-PEM
identification criterion for the data set DNg , along with the optimization problem
to obtain {ϑs}

nψ
s=1 are defined as follows:

Definition 5.2 The LPV-PEM identification criterion is formulated as

VGlobal({ϑs, ψ}
nψ
s=1) :=

1

Ng

N∑
k=1

∥y(k)− ŷ(k)∥22. (5.7)

which is the ℓ2-loss of the prediction error of (5.6). The coefficient {ϑs}
nψ
s=1 is obtained by

the minimization of (5.7):

{ϑs}
nψ
s=1 = argmin

{ϑs}
nψ
s=1∈Rnψ

VGlobal({ϑs, ψ}
nψ
s=1). (5.8)

Due to combination of the linearity in the coefficient property of the LPV-OBF
model as well as the linear parametrization (5.2), minimization of (5.7) corre-
sponds to a least squares solution. Moreover, the unbiasedness of the estimation
is guaranteed just like in the LTI setting even if v in the data set is a colored noise
process. These two properties are the advantages of conducting global LPV iden-
tification of LPV-OBF models.

Remark 5.3 If the noise in the data set is a stationary colored noise, we can use a Box-
Jenkins noise model to decrease the asymptotic variance of the model estimate at the ex-
pense of a non-linear optimization (Tóth 2010).
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5.3.4 Data acquisition

The LPV-OBF model is derived using measured data of the actual process. The
output data yv(k) is considered to be obtained according to:

yv(k) := y(k) + v(k), (5.9)

where the response of the actual process y(k) is corrupted with the cumulative
effect of measurement and process noise v(k) which is assumed to be a stationary
noise. Each of the local and global approaches have distinct characteristics and
hence different requirements for data acquisition.

Local approach

In the local approach, the interpolation of LTI models is based on snapshots of lin-
ear dynamics of the actual process taken at distinct operating points. These snap-
shots represent multiple local linear dynamics in the designated operating regime
and are characterized by the scheduling variable. To have an adequate coverage of
the possible dynamics, the operating regime is gridded (often equidistantly) with
respect to the domain of the scheduling variable P. This results in grid points
{p̄(n)}nop

n=1 ⊂ P. These points are associated with particular steady-state values of
the inputs and outputs of the process that are denoted by (ū(n), ȳ(n)). Selection
of these operating points not only defines the achievable accuracy of the resulting
model, but also sets the number of experiments needed around these operating
points to derive local estimates of the behavior.

In order to gather measurement data for the purpose of identification, the
actual process needs to be brought to a steady-state condition at the operating
points, and then excited around the vicinity by an input signal such as a small
amplitude white noise, PRBS, or multisine (Bombois and Scorletti 2012). This ex-
citation is designed such that the system remains around the specified operating
condition and the corresponding output y̆(k) describes the linear dynamics of the
system. The corresponding data sets associated with the n-th operating point are
denoted by

D
(n)
Nn

:= {u(k + τ)− ū(n), yv(k + τ)− ȳ(n), p̄(n)}Nnτ=0, (5.10)

where Nn > 0 is the length of the data set. For each D
(n)
Nn

, PEM identification (see
Section 4.3) is applied to obtain LTI-OBF models using the same set of OBFs. The
collection of these models for each operating point is denoted by Mlocal. Note
that, it is not required to obtain the data set for all nop grid points in a single ex-
periment. In fact, a separate procedure on interpolation and identification allows
online update of the LTI-OBF model if necessary. The only requirement is a new
data set for the selected operating points.

Remark 5.4 Note that optimized allocation of {p̄(n)}Nop

n=1 can seriously lower the number
of required LTI experiments (Khalate et al. 2009), and hence the cost of the experimental
campaign. Typically in the process domain, adequate choice of grid points is recommended
to be 3-6 for each dimension of the scheduling variable.
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Global approach

Unlike in the local approach, in the global approach, the LPV-OBF model is esti-
mated directly from a single data set

DNg := {u(k + τ), yv(k + τ), p(k + τ)}Ngτ=0. (5.11)

This data set is obtained by exciting the actual process with a predesigned se-
quence of input ũ = {u(k + τ)}Ngτ=1 that result in a scheduling trajectory p̃ =

{p(k + τ)}Ngτ=1 inside the operating regime of the process. The necessity of single
estimation data set DNg means that a dedicated experiment is required to obtain
such a data set. This experiment also needs to be designed such that the system
visits the operating domain with an adequate transient between the operating
points. (Bachnas 2012; Tóth 2010).

5.4 LPV-OBF MPC scheme

In this section, we formulate an LPV-OBF MPC scheme that is based on LPV-OBF
models (5.1). We incorporate and extend the MPC scheme proposed by Limón
et al. (2008), Ferramosca et al. (2009) for the parameter-varying case. First, we
introduce the prediction model and its corresponding parameterization of the
steady-state pairs. The steady-state pairs describe the input-state pairs which can
achieve steady-state condition. This steady-state pairs are then used to formulate
the LPV-OBF MPC scheme. Afterwards, we describe the important properties of
the control scheme such as feasibility and stability guarantee.

5.4.1 LPV-OBF prediction model

The main idea behind the MPC scheme proposed in Limón et al. (2008) and Fer-
ramosca et al. (2009) is to have an MPC controller that drive the state x to a desig-
nated steady-state value xs. The space of the steady-state pairs us ∈ Us, xs ∈ Xs
depend on the prediction model, and their value is selected by a parametrization
variable ξ. In the context of this chapter, the prediction model is based on the
LPV-OBF model (5.1):

ΣPV

{
x(i+ 1|k) = Ax(i|k) +Bu(i|k), x(0|k) = x(k)

y(i|k) = C(p(k + i))x(i|k).
(5.12)

At time instant k, the prediction model (5.12) predicts future values of the state
x(i + 1|k), i = 0, 1, . . . , N based on the current state value x(k) and the possible
future input sequence u(i|k), i = 0, 1, . . . , N . The relation between the prediction
of the output y(i|k) and the state x(i + 1|k), for i = 0, 1, . . . , N , is governed by
the parameter-varying matrix C(p(k + i)) which is obtained via the identification
procedure given in Section 5.3. This matrix varies according to the future value of
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the scheduling variable p(k+ i), i = 0, 1, . . . , N . The end value of the time horizon
N , is set equal to the prediction horizon, i.e. N = Hp.

Based on prediction model (5.12), it can be seen that any steady-state of pair
xs, us of such a model must satisfy the following equation[

A− Inx B
] [xs
us

]
= 0nx (5.13)

If the pair (A,B) is stabilizable, Equation (5.13) has a non-trivial solution. This
solution can be parameterized as:[

xs
us

]
=

[
Mx

Mu

]
=Mξξ, (5.14)

where Mξ ∈ Rnx+nu×nξ is the nullspace of (5.13) that characterizes the space of
steady-state pairs Xs and Us, and ξ ∈ Rnξ is a vector that selects a particular el-
ement of xs, us in this space. Further in this thesis, we also use notation of Mx

and Mu which are the corresponding rows of Mξ associated with xs and us. The
associated designated target output space ys ∈ Ys with respect to xs is a linear
mapping from the space Xs to Ys that is governed by matrix C(p(k)). Precisely,
the relation is defined as follows:

Definition 5.3 The designated target output ys is written as:

ys = C(p(k +N))xs, (5.15)

where C(p(k +N)) depend on the the value p(k +N) at the end of prediction horizon.

We only consider the value at the end of prediction horizon since the reference
r is considered to be constant or at most piece wise affine. This type of reference is
a common set up for process industry applications. In the next section we describe
the cost function of the LPV-OBF MPC.

Remark 5.5 From (5.13), we can see that the space of designated steady-state pairs (xs, us)
is independent of the scheduling variable p. A particular value of ξ is associated with a
unique pair of (xs, us) regardless on the value of p(k). This is one advantage of using
LPV-OBF model instead of an other LPV model that has scheduling dependent state and
input matrices A(p) and B(p).

5.4.2 The LPV-OBF MPC problem

The LPV-OBF MPC cost function VN : (Rnu)N+1 × Rnx × Rnξ → R is formulated
as follow:

VN (x(k),u, ξ) =

N∑
i=0

(∥x(i|k)− xs∥2Q + ∥u(i|k)− us∥2R)

+ ∥x(N |k)− xs∥2P + Vo(ys − r), (5.16)
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where x(k) is the (initial) state at time k, r is the target reference, u denotes the
future input sequence {u(i|k)}N−1

i=0 , the MPC weighting matrices are denoted by
positive definite matricesQ ≻ 0,R ≻ 0, and P ≻ 0, while us, xs are the designated
steady-state input and state pair associated with the parameterization variable ξ.
In (5.16), we consider the prediction horizon N = Hp. In the case when N > Hu,
we set u(k + i|k) = u(k +Hu|k) for i = Hu + 1, . . . , N. The cost function (5.16) is
based on the work of Limón et al. (2008), which is slightly different than a common
MPC cost function by the addition of a designated steady-state pair us, xs, which
are generated by the prediction model, and the additional target penalty function
Vo which penalizes the difference between the reference and the designated target
output ys associated with the steady-state pair us, xs. These two unique additions
are further used to guarantee recursive feasibility and stability properties. The
function Vo : Rny → R is assumed to be convex, positive definite, subdifferentiable
and zero when the entry is zero. Simple example of a target penalty function that
can be used is

Vo(ys − r) = ∥ys − r∥2T (5.17)

where T ≻ 0 is a positive definite matrix. Such a function contributes to the
selection of ξ for tracking purpose.

The minimization of (5.16) with respect to the future input sequence u is solved
while obeying operational and stability constraints. This minimization problem
corresponds to an MPC problem which is formulated as follows:

Definition 5.4 LPV-OBF MPC Problem
Given the prediction model ΣPV, current state x(k), reference r, and future values of the
scheduling variable p(k + i), i = 0, 1, . . . , N . The MPC problem is written as:

PPV−MPC := min
u,ξ

VN (x(k),u, ξ)

s.t. ΣPV, ∀ i = 0, 1, . . . , N

(x(i|k), u(i|k)) ∈ Z, ∀ i = 0, 1, . . . , N

[xs, us]
⊤ =Mξξ,

(x(N |k), ξ) ∈ Xwf

(5.18)

where the set Z is a polyhedron that describe the admissible set of inputs and states2, and
Xwf are polyhedrons that describe the stability constraint regarding the end state x(N |k)
and vector ξ. Set PPV−MPC = +∞ when the feasible set of (5.18) is empty (the MPC
problem is ill posed). The goal of this MPC problem is to find the minimizer of (5.18)
for each control cycle k ∈ Z. The attained minimum of (5.18) is called the primal opti-
mum and it is denoted by V ∗

N (k). The minimizer with respect to the primal optimum
is the optimal input sequence which is denoted by {u∗(i|k)}Ni=1 or u∗ and the optimal
steady-state vector ξ∗.

Only the first value of the optimal input sequence u∗ that is applied as the control
action. Such control action is known as an MPC control law and is defined as
follows:

2Notice that different definition of set of admissible input and state are used compared to LTV-
OBF problem of (4.29). This is the result of using steady state characterization of (5.13) and how we
incorporate nullspace Mξ and selector variable ξ into the MPC problem
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Definition 5.5 For every k ∈ Z, the MPC control law is given as:

uMPC(k) = u∗(0|k) (5.19)

where u∗(0|k) is the first element of the optimal input sequence u∗.

The main purpose of the MPC control law is to steer the output y(k) of the
closed loop system:

GCL−PV

{
x(k + 1) = Ax(k) +BuMPC(k), x(0) = x0

y(k) = C(p(k))x(k),
(5.20)

towards a given reference r. If this goal is accomplished, then the MPC controller
is stated to be convergent. Precisely:

Definition 5.6 The MPC controller is convergent if for all xo ∈ X, for all r ∈ Rny , and
p(k) ∈ P, k ∈ Z, the MPC control law {uMPC(k)}∞k=0 drives the output of system (5.20)
to a given constant reference r in the sense that

lim
k→∞

∥ y(k)− ys ∥= 0. (5.21)

where
ys = argmin ∥ y(k)− ys ∥,
s.t. xs ∈ Xwf .

(5.22)

The convergence described in (5.21) is defined in the asymptotic sense and an
assumption need to be taken for the proposed MPC problem:

Assumption 5.1 Future trajectory of the scheduling variable satisfies that p(k + i) =
p(k +N) for all i ≥ N . Furthermore, there exist ξ such that (xs, us) ∈ Z ,(xs, ξ) ∈ Xwf ,
and r = C(p(k +N))xs.

The assumption that p(k) is constant make sense for process industry appli-
cations where operating conditions are usually kept constant for longer period
of time. Another condition that comply to the assumption is where the operating
point is state dependent and the process is required to converge to the steady state
in given period of time.

An additional property, namely the stability of the MPC controller, is required
to further strengthen and regulate the possible behavior of the output of the closed
loop system. Further definitions and results that are related to the stability of
(5.20) is described in Section 5.4.4.

Before we can show that an MPC controller is both convergent and/or stable,
one of the first steps is to show wether the MPC control law actually exists. The
existence of the MPC control law is guaranteed with the concept of feasibility of
the MPC problem (5.18).

Definition 5.7 The MPC problem (5.18) is called feasible at time k if the optimal input
sequence and optimal steady-state vector exist.
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Additionally, the notion of infeasibility of the MPC problem (5.18) is defined
as follow:

Definition 5.8 The MPC problem is called infeasible at time k if inf VN = +∞.

From the definition of a feasible MPC problem, the notion of recursive feasi-
bility of an MPC problem (5.18) is then defined.

Definition 5.9 The MPC problem is called recursively feasible if feasibility at time k
with reference r, future value of the scheduling variable p(k + i), i = 0, 1, . . . , N and
initial condition x(k), implies feasibility of the MPC problem at time k + 1 with the same
reference r, future value of the scheduling variable p(k + i), i = 1, . . . , N + 1, and initial
condition x(k + 1) = Ax(k) +BuMPC(k).

The recursive feasibility of an MPC controller is an essential property that is
used as the fundamental building block to guarantee stability of an MPC con-
troller. However, in order to guarantee this property, we need additional defini-
tions that are related to the extension of the input for the prediction model (5.12)
after the prediction horizon. This is described in the next subsection.

5.4.3 Local controller for LPV-OBF MPC

In this subsection, we introduce an extended input signal and a local controller for
the LPV-OBF model (5.1) with the purpose to drive the state x to the designated
steady-state xs after the end of the prediction horizon.

Definition 5.10 For any matrix K ∈ Rnu×nx , the extended input sequence is given as:

uext(i|k) :=

{
u∗(i|k) i = 0, . . . , N,

K(x(i|k)− xs) + us = Kx(i|k) + Lξ i > N,
(5.23)

where x(i|k) is the state of (5.12) with u(i|k) = u∗(i|k) for i ≤ N andL = [−K Inξ ]Mξ

is the matrix that parameterizes xs and us.

Definition 5.11 Call K in (5.23) a stabilizing linear controller at time k if

lim
i→∞

∥x(i|k)− xs∥ = 0 (5.24)

for all initial condition x(k) ∈ X,∀ξ ∈ Rnξ .

If there exist a stabilizing linear controller K, then (5.24) implies convergent
MPC controller (Definition 5.6) provided that ys = r and p fulfills Assumption
5.1. This term is characterized by the target penalty function Vo.

Furthermore, we characterize the evolution of the state of the prediction model
(5.12):

x(i+ 1|k) = Ax(i|k) +Buext(i|k) , i > N, (5.25)
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is bounded by in an invariant set Xf . The set Xf can be characterized by introduc-
ing the extended state w(i|k) = [x(i|k), ξ]⊤ and a closed loop augmented system:

w(i+ 1|k) =
[
A+BK BL

0 Inξ

]
︸ ︷︷ ︸

Aw

w(i|k), i > N (5.26)

where Inξ is identity matrix of dimension nξ × nξ.

For a given value of ξ, the state x(i|k) in (5.26) evolves to the designated des-
ignated state xs (depending on the value of ξ) only when the matrix A + BK is
Hurwitz. Introduce the admissible invariant set ΩK,w of (5.26) as a set of all pos-
sible value of w ∈ Ωw that can be admissibly stabilized by the control law (5.23).
Introduce Wη as a convex polyhedron

Wη = {w = (x, ξ) : (x,Kx+ Lξ) ∈ Z,Mξξ ∈ ηZ} (5.27)

where η = (0, 1] is the so called contraction parameter and Z is the set of admis-
sible set of state and input. A set ΩK,w is denoted as the admissible invariant set
for tracking if for all w ∈ ΩK,w, it holds that Aww ∈ ΩK,w and ΩK,w ⊆Wη=1.

Denote Ow∞ = {w : Akw ∈ Wη=1,∀k ≥ 0} as the maximal admissible invariant
set of system (5.26). Due to the unitary eigenvalues of Aw, Ow∞ can not be finitely
determined, i.e. described by a finite set of constraints (Gilbert and Tan 1991).
Alternatively, as stated in Gilbert and Tan (1991), we can introduce the following
convex polyhedron set

OK,w∞,η = {w : Akww ∈Wη,∀k ≥ 0}, (5.28)

which is finitely determined for any η ∈ (0, 1). Given that ηOK,w∞ ⊂ OK,w∞,η ⊂ Ow∞
and since η can be chosen arbitrarily close to 1, the set OK,w∞,η can be used as a
polyhedral approximation of the maximal invariant set OK,w∞ . This also means
that

AwOK,w∞,η ⊂ OK,w∞ . (5.29)

By using (5.28), the invariant set Xf can be selected as the projection of OK,w∞,η

to the admissible state X:
Xf = ΠX(OK,w∞,η ). (5.30)

thus achieving
(A+BK)x(i|k) ⊂ Xf for , i > N. (5.31)

In the next section we establish the recursive feasibility theorem

5.4.4 Recursive feasibility and stability of LPV-OBF MPC

By using Definition 5.5-5.10 as well as the set OK,w∞,η of (5.28), the feasibility of the
MPC problem (5.18) can be established.
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Theorem 5.1 Recursive feasibility of LPV-OBF MPC
If there exist stabilizing controller K such that

1. The MPC problem (5.18) at time k is feasible,

2. Matrix A+BK is Hurwitz,

are satisfied, then by selecting Xwf = ΠX(OK,w∞,η ) the recursive feasibility of MPC problem
(5.18) is guaranteed

Proof of the theorem can be found in Appendix A.6.By guaranteeing recursive
feasibility of the LPV-OBF MPC scheme we can establish the stability guarantee
of the scheme. First, we define the notion of an asymptotically stable closed loop
system.

Definition 5.12 Closed loop system (5.20) is called asymptotically stable if it is both
convergent (Definition 5.6) and the controlled state evolution is bounded in a closed-
loop invariant set x(k) ∈ Xf ,∀k ∈ Z.

We follow the Control Lyapunov stability argument mentioned in Sontag (1998).
Control Lyapunov stability argument is relevant for a controlled system (5.20) where
the successor state x(k+1) depends on the current state x(k) and the driving con-
trol law u or uMPC in the MPC case. In order to define a Control Lyapunov function,
the definition of class K functions (Khalil 2002) are required:

Definition 5.13 A functions α : R+ → R+ belongs to class K if it is continuous, zero
at zero, and strictly increasing; α : R+ → R+ belongs to class K∞ if it is a class K
and unbounded (α(k) → ∞, k → ∞). A function γ : R → R+ belongs to a class PD
functions if it is continuous and positive everywhere except at the origin.

The definition of a Control Lyapunov function is given as follows:

Definition 5.14 A function V : Rn → R is called a Control Lyapunov function if there
exists K∞ functions α1, α2, and PD function α3 defined on Xf such that

α1(∥x− xs∥) ≤ V (x) ≤ α2(∥x− xs∥), (5.32)

and
inf
u∈U

V (Ax+Bu)− V (x) ≤ −α3(∥Ax+Bu− xs∥). (5.33)

The existence of a control Lyapunov function for the closed loop system (5.20)
is a sufficient condition for the asymptotic stability property. The stability theorem
is given as follows:

Theorem 5.2 Stability guarantee of LPV-OBF MPC.
Introduce Ṽo(ys − r) as the penalty term of (5.16) computed at time k + 1. Suppose that
there exist a stabilizing linear controlK and a closed loop invariant set (A+BK)Xf ⊂
Xf such that:
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1. The MPC problem (5.18) is recursively feasible,

2. Let P ∈ Rnx×nx be a positive definite matrix such that

(A+BK)
⊤
P (A+BK)− P ⪰ Q+K⊤RK (5.34)

3. Ṽo(ys − r)-Vo(ys − r) ≤ 0.

Under Assumption 5.1, the MPC cost function VN (·) admits a control Lyapunov function
for the closed loop system (5.20) and hence the closed loop system is asymptotically stable.

Proof of the theorem can be found in Appendix A.7. The Theorem 5.2 com-
pletes the formulation of LPV-OBF MPC scheme.

5.5 Formulation of the Extended Kalman Filter

For the implementation of LPV-OBF MPC, the model coefficient variations are
identified before the commissioning of the MPC and not updated while the con-
troller is online. Unaccounted change in the actual process or disturbances might
lead to the growing plant-model mismatch, thus unwanted behavior such as in-
ability to track reference or in extreme case loss of stability might incur. Hence, an
EKF is utilized to correct the state of the prediction model for the tracking prob-
lem with only output measurements. Similar to the original Kalman filter, there
are basically two steps in the EKF, which are the prediction step and the update
step (Gelb 1974). The only notable differences is the actual computation of the Ja-
cobian Fk−1 and Hk which are based on the parameter-varying OBF model (5.1).
The model considered in the EKF formulation is as follows:

x(k + 1) = Ax(k) +Bu(k) + w(k),

y(k) = C(p(k))x(k) + v(k) = θ(p(k)) + v(k), (5.35)

where w(k) and v(k) are gaussian white noise processes with variance RE , and
QE respectively. The formulation of EKF is then given as follows:

Prediction Step
Predicted state estimate x̂(k) = Ax(k − 1) +Bu(k − 1),

Predicted covariance estimate P̂k = APk−1A+QE ,

Update Step
Measurement residual ỹ(k) = yv(k)− C(p(k))x̂(k),
Residual covariance Sk = HkP̂kH

⊤
k +RE ,

Kalman gain Kk = P̂kH
⊤
k S

−1
k ,

Update state estimate x(k) = x̂(k) +Kkỹ(k),

Update covariance estimate Pk = (I −KkHk)P̂k,

(5.36)

with the Jacobian

Fk−1 =
∂f

∂x
= A,
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and
Hk =

∂h

∂x
= θ(p(k)).

The EKF estimates the state x(k) which minimizes the difference between the
measured output yv(k) and the output of the prediction model (5.12). By using
an OBF model structure, the Jacobian calculation of Fk−1 leads to a static matrix,
and Hk is the parameter dependent θ(p(k)). This simplifies the usage of EKF
compared to using a nonlinear model. Since the A and B matrices of the OBF
model are selected properly by the method discussed in Chapter 3, the effect of
un-modeled dynamics or truncation error will be minimal.

The typical value for EKF matrices is to use the information of variance of the
measurement data as the entries of RE , while the Qk matrix needs to have a small
value to maintain a relative ratio between QE and RE . The smallest entry of the
RE matrix can be used for this purpose.

5.6 LPV-OBF MPC algorithm

This section summarizes the finding of previous sections and presents the LPV-
OBF MPC scheme as an algorithm. In principle the algorithm is divided into three
parts:

• Preparation step of the LPV-OBF model

• Finding a stabilizing linear controller

• Online LPV-OBF MPC control

The preparation step for the LPV-OBF model can be split depending on the
LPV modeling approach that is selected. However, irrespective of the selected
approach, efficient selection of {ψs}

nψ
s=1 is required such that the LPV-OBF model

can adequately capture the underlying nonlinearities of the process. Prior infor-
mation on how the nonlinearities affect the change in the dynamics of the pro-
cess is of paramount importance for such a parameterization. For the local ap-
proach, the parameterization explains the evolution of identified model param-
eter {θ(p̄(n))}nop

n=1 in the operating regime. An example of such algorithm is as
follows:

For the global approach, the evolution of {ϑs}
nψ
s=1 through the parameter space

is identified in one step w.r.t. a global data set. An example of such algorithm is
as follows:

The LPV-OBF global approach will have a longer parameterization in terms of
{ψs}

nψ
s=1 compared to the LPV-OBF local approach. The reason is the construction

of the cost function of LPV-PEM identification criterion in least-square form re-
quires separate parameterization of the model coefficients {ϑs}

nψ
s=1 for each state

of the OBFs.
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Algorithm 8 LPV-OBF model identification using the local approach

Require :

• Basis pole for the system of interest ({λi}nb
i=1) (see Chapter 3)

• Local identification data sets D(n)
Nn

for each {p̄(n)}nop

n=1

• Coefficient parameterization {ψs}
nψ
s=1 (e.g. monomial basis of Eq.(5.3))

• Selected number of basis expansion ne
• Number of input channels of the system of interest nu
• Validation data set Dval with a continuous trajectory of input u(k), out-

put y(k), and scheduling variable p(k).

• Success Criteria for identification 0% < SC < 100%

Ensure: BFR = 0%
while BFR ≤ SC do

Construct state-space OBF representation w.r.t. basis poles ({λi}nb
i=1), num-

ber of basis expansion (ne), and input channel nu (i.e. Eq (2.64))
Conduct n times LTI-OBF identification in PEM setting for each D

(n)
Nn

(See
Section 4.3.1)

Collect the initial coefficient of the LTV-OBF model θo for each output
Simulate the LTV-OBF model with respect to the other part of the global data

set DNg (validation step)
Compute Best Fit Ratio(Ljung (2006)) of the identified LTI-OBF model:

BFR = 100% ·max

(
1− ∥y(k)− ŷ(k)∥2

∥y(k)− ȳ∥2
, 0

)
, (5.37)

if BFR < SC then
Set ne ← ne + 1

end if
end while
Collect initial coefficient of LTI-OBF model {θ(p̄(n))}nop

n=1

Ensure: BFR = 0%
while BFR ≤ SC do

Construct regression matrix of Eq. (5.4) w.r.t. selected parameterization
{ψs}

nψ
s=1 for each output channels

Solve the LPV-OBF local estimation problem of Eq.(5.5)
Collect the LPV-OBF model coefficient {ϑs}

nψ
s=1 for each output channels

Construct the LPV-OBF model w.r.t. {ϑs}
nψ
s=1

Simulate the LPV-OBF model w.r.t. validation data set Dval

Compute the Best Fit Ratio of LPV-OBF model (i.e. Eq.5.37)
if BFR < SC then

Select new parameterization {ψs}
nψ
s=1

end if
end while
Collect the final LPV-OBF model
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Algorithm 9 LPV-OBF model identification using the global approach

Require :

• Basis poles for the system of interest ({λi}nb
i=1) (see Chapter 3 for basis

selection methodology)

• Coefficient parameterization {ψs}
nψ
s=1 (e.g. monomial basis of Eq.(5.3))

• Selected number of basis expansion ne
• Number of input channels of the system of interest nu
• Global identification data set DNg with a continuous trajectory of input
u(k), output y(k), and scheduling variable p(k)

• Validation data set Dval with a continuous trajectory of input u(k), out-
put y(k), and scheduling variable p(k).

• Success Criteria for identification 0% < SC < 100%

Ensure: BFR = 0%
while BFR ≤ SC do

Construct a state-space OBF representation w.r.t. basis poles ({λi}nb
i=1), num-

ber of basis expansion (ne), and input channel nu (i.e. Eq (2.64))
Simulate the state evolution x(k) of the SS-OBF w.r.t. global data set DNg

Construct prediction matrix Eq.(5.6) w.r.t. state evolution x(k) and selected
parameterization {ψs}

nψ
s=1

Construct cost function of LPV-PEM identification criterion (i.e. Eq. (5.7))
Solve the LPV-PEM identification problem
Construct the LPV-OBF model with model coefficients {ϑs}

nψ
s=1

Simulate the LPV-OBF model w.r.t. the validation data set Dval

Compute the Best Fit Ratio of LPV-OBF model (i.e. Eq.5.37)
if BFR < SC then

Set ne ← ne + 1 or consider new parameterization {ψs}
nψ
s=1.

end if
end while
Collect the final LPV-OBF model
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With the LPV-OBF model at hand, the next step is to find stabilizing linear
controller. As described in Section 5.4.3, we only need a single local controller for
the LPV-OBF MPC. A standard LQR control synthesis algorithm is as follows:

Algorithm 10 Finding a stabilizing LQR control for LPV-OBF MPC

Require :

• LPV-OBF model of the system of interest (Result from Algorithm 8/9)

• Control matrices Q, and R.

Construct LMI of:
S (AS +BT )⊤ S T⊤

AS +BT S 0 0
S 0 Q−1 0
T 0 0 R−1

 ⪰ 0, (5.38)

Solve LMI
Compute matrices P = S−1, K = TP

The value of Q = Inx×nx should be selected in most cases since Q in the LPV-
OBF case affects different state elements where each corresponds to a different
OBFs (See Eq.(5.1)). This leads to a less intuitive tuning parameter compared to
the LTV-OBF case since there is no physical interpretation of the state for the LPV-
OBF model. It is also possible to scale down the Q matrix w.r.t. the control action
matrix R to make the control action more aggressive. The role of weighting the
output channels is now governed by matrix T which is not used for the LQR
synthesis but only for the MPC scheme. The online execution of the LPV-OBF
MPC scheme is written in this following algorithm:

Another notable point in the online control algorithm is that we require fu-
ture information on scheduling variables/trajectories up to N step ahead. This
is requirement is driven by Definition 5.3. We consider the value at the end of
prediction horizon since the reference r is considered to be constant or at most
piece wise affine. This type of reference is a common setup for process industry
applications. In the next section, we describe the cost function of the LPV-OBF
MPC.

Regarding the stability of the LPV-OBF MPC scheme, as given by Theorem 5.2,
the stability holds during the commissioning of the proposed MPC scheme. We
can show the stability by plotting the evolution of the target function Vo(ys − r)
(Eq. (5.17)). The reason is that it is the last condition of stability where the value of
Vo(ys−r) at time k+1 should be less or equal to the value at time k. This value also
indicates that the targeted reference r can be fully tracked by the target steady-
state output ys and the change of system dynamics w.r.t. the change operating
points can also be captured by the LPV-OBF model.

Remark 5.6 For the EKF, although not directly mentioned in the algorithm, if we notice
unsatisfactory control performance, we can lower the relative ratio between QE and RE .
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Algorithm 11 LPV-OBF MPC online control

Require :

• LPV-OBF model of the system of interest (Result from Algorithm 8/9)

• Stabilizing LQR controller matrices P and K

• Control Matrices Q, R, and T (use the same Q and R that are used for
LQR control synthesis)

• Prediction-Control horizonN (value needs to be larger than the settling
time of the system dynamics)

• Commissioned data set Dk consisting of current value of input u(k),
output y(k), and scheduling variable p(k). For scheduling variable up
to N step ahead are required.

• EKF matrices QE and RE (See Section 5.5 for a typical value of EKF)

Initialize state of LTV-OBF model x(k) w.r.t. the Commissioned data set Dk (See
Section 4.3.3)
while MPC control is online do

Compute the steady-state null space Mξ (i.e. Eq. (5.13)&(5.14))
Initialize state of LPV-OBF model w.r.t. the data set Dk (See Section 4.3.3)
Calculate LPV model coefficient w.r.t. the data set Dk

Run EKF calculation to update the state of the LPV-OBF model x(k)(i.e.
Eq.5.36)

Construct the MPC problem of Eq. (5.18)
Solve the MPC problem (Always solvable due to recursive feasibility Theo-

rem 5.1)
Apply control action uMPC(k)
Update the data set Dk with the output y(k)
if Control Performance is not satisfying (e.g MSE of tracking performance,

etc) then
Tune Q,R, and T matrices
Re-run LQR control synthesis (i.e. Algorithm 10)
Update P and K matrices

end if
end while
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A small value of QE also means that we are also less confident in the prediction capability
of our model.

5.7 Simulation study

The proposed control scheme is tested on a binary distillation column benchmark
model that is based on a liquid-vapor flow configuration. The model is also used
in Chapter 4 and is detailed in Skogestad (1997). A description of the benchmark
model is firstly given and then followed by the steps mentioned in the Algorithms
of Section 5.6. The goal of this study is to test the ability of the LPV-OBF MPC
scheme to track the change in the system while maintaining a low deviation from
the given reference point.

5.7.1 Distillation column case

A linearization of the model is established for the operating condition of 0.5 and
0.95 (mole fraction) of the bottom and top composition levels respectively, with
corresponding liquid and vapor flows of 521 kmol/min (kilo-mole per minute)
and 664 kmol/min. The sampling time of the system is chosen to be 5 minutes
while the settling time of the system is 170 minutes (34 time steps). The MIMO
LTI model in deviation variables is given as follows:

G(z) =

[
0.001357z−0.0009633
z2−1.528z+0.5679

−0.0009023z+0.000597
z2−1.528z+0.5679

0.001174z−0.0009952
z2−1.528z+0.5679

−0.0003762z+0.0002929
z2−1.528z+0.5679

]
.

5.7.2 LPV identification and open-loop validation

This represents a 2x2 LTI system with liquid and vapor flow as the inputs (manip-
ulated variables) and bottom and top composition as the output (controlled vari-
ables) respectively. The generated measurements from this system are corrupted
by a discrete-time output additive white noise with signal-to-noise ratio3 (SNR) of
15 dB. The LPV-OBF MPC scheme will be designed and commissioned on this
system with ng = 4 (i.e. nb = 2 basis poles and nu = 2 input) basis functions that
are generated from the poles of the system. This pole generating mechanism also
means zero approximation error i.e. ∥ εm,nnb

∥RH2
= 0. After the commissioning of

the MPC, the change in plant dynamics is induced as an effect of a rotation matrix:

Gnew(z) =

[
cos(p(k)) − sin(p(k))
sin(p(k)) cos(p(k))

]
G(z), (5.39)

where −π/5 < p(k) < 0 is the rotation coefficient and also the selected scheduling
variable that drives the change in the system dynamics.

3The signal-to-noise ratio is defined as SNR := 10 · log10
(

∥y−v∥22
∥v∥22

)
.
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Figure 5.1: Scheduling variable and identification data set for both LPV identifi-
cation approaches.

Two strategies to do LPV-OBF identification in the PEM setting are presented
in Section 5.3 and Algorithm 8,9. In order to have a fair comparison between
both approaches, we use the same data set for identification namely Dglobal. The
data set is obtained by exciting the system with PRBS input with a magnitude of
+− 3 kmol/min for 13000 minutes (217 hours) through different scheduling vari-
ables p(k). The data set is depicted in Fig 5.1. The identification goal is to obtain
{ϑi}

nψ
i=1 as coefficient of linearly parameterized θ(p(k)) using polynomial basis of

{ψi(p(k))}
nψ
i=1. After obtaining the LPV model for both approaches, the model is

validated on a separate data set Dval which is also used in the validation of LTV
identification in the previous Chapter. The validation data set have a length of
23000 minutes (383 hours).

LPV-OBF Local approach

For the local approach, we are splitting the identification data set into 4 smaller
batches namely D

(1)
local,D

(2)
local,D

(3)
local, and D

(4)
local where each has 2000 minutes (34

hours) length of data. The local data set corresponds to 4 distinct operating points
p̄(1) = 0, p̄(2) = −π/20, p̄(3) = −π/10, and p̄(4) = −π/5. For each data set, separate
linear identifications (LTI-PEM) are used and the resulting BFR for each identifi-
cation are in the vicinity of 98 − 99%. The coefficients of the LTI-PEM are then
used to estimate the LPV model coefficient {ϑs}

nψ
s=1 with a selected polynomial of



128 Chapter 5 LPV MPC based on OBF

0 0.5 1 1.5 2

x 10
4

−1

−0.5

0
S

c
h
e
d
u
lin

g
 V

a
ri
a
b
le

 (
p
)

 

 

0 0.5 1 1.5 2

x 10
4

−40

−20

0

20

40

In
p
u
t 
D

e
lt
a
 w

.r
.t
. 

O
p
e
ra

ti
n
g
 p

o
in

t 
  
 

(k
m

o
l/
m

in
) 

  
  
  
  

 

 

0 0.5 1 1.5 2

x 10
4

−0.1

−0.05

0

0.05

0.1

time (min)

O
u
tp

u
t 
C

o
m

p
o
s
it
io

n
D

e
lt
a
 w

.r
.t
.

 O
p
e
ra

ti
n
g
 p

o
in

t

 

 

p

Liquid Flow (u
1
)

Vapor Flow (u
2
)

Bottom Purity (y
1
)

Top Purity (y
2
)

Figure 5.2: Scheduling variable and validation data set in the open-loop setting.

order 2 (i.e. nψ = 3). The estimated LPV coefficient {ϑs}3s=1 for each output can
be found in Appendix A.9.

LPV-OBF Global approach

For the global approach, we do direct identification LPV-OBF model coefficients
using Dglobal. The linear parameterization use up to 3rd order polynomial and
result in nψ = 16 (since ng = 4 is used). The estimated LPV coefficients {ϑs}16s=1

can be found in Appendix A.9.

Validation result

The open-loop validation w.r.t. Dval is captured in Table 5.1. From this table, we
can see that the global approach has slightly outperformed the local approach.
Notice as well that the BFR validation error of the local approach is lower com-
pared to the result obtained by the LTI-PEM of local identification. The loss of
accuracy is not due to the selection of the polynomial parameterization but rather
due to the transient dynamics that are captured in the validation data set. This is
also the reason why the global approach gives better performance since the identi-
fication of the global approach takes into account the transient behavior captured
in Dglobal. Although the transient dynamics between identification and validation
data sets are different, the validation result shows that the content is sufficient to
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Table 5.1: Validation result for local identification and both LPV identification
approaches.

Bottom product Top product
composition (y1) composition (y2)

BFR BFR
Local approach 97.99 % 97.70 %

Global approach 98.34 % 98.52 %

Table 5.2: Closed-loop performance of the investigated MPC approaches with
respect to the given reference (r1 = 0.02, r2 = 0.98).

Bottom product Top product
composition (y1) composition (y2)

MSE MSE
Local approach 1.4673e− 06 2.7747e− 06

Global approach 1.3466e− 06 2.5228e− 06

explain the variation in system dynamics. The result also proves that polynomial
parameterization is a correct choice for this usecase.

5.7.3 Closed loop experiment

With the parameters available from Section 5.7.2, the LPV-OBF MPC for each ap-
proach is commissioned on the system in a separate closed-loop simulation. The
control task is to follow a set point of r1 = 0.02 and r2 = 0.98 for each of the
output channels under the effect of the rotation coefficient that is depicted in Fig.
5.2. LPV-OBF MPC synthesis follows the algorithm described in Section 5.6 and
for the controller of each case, we select the control-prediction horizon values of
N = 34 which is based on the slowest step response of the system, while the
control matrices are selected as

Q = Inx×nx R =

[
1/521 0
0 1/664

]
T = 100 ·

[
1/0.05 0

0 1/0.95

]
(5.40)

The value of R and T correspond to the normalization of the magnitude of the
inputs and outputs of the system while Q is set to be identity as recommended in
the Algorithm 10. The P and K matrices for the LQR synthesis can be found in
Appendix A.9.

For the EKF, two matrices which are the QE and RE (of Eq.(5.36)) need to be
selected before we can commission the MPC. The matrix RE describes the confi-
dence of your measurement while the matrix QE describes the confidence of the
prediction. The EKF matrices are given as follows:

QE = 7.7458 · 10−3.Inx×nx RE =

[
1.3912 · 10−2 0

0 7.7458 · 10−3

]
. (5.41)
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Figure 5.3: Tracking performance of both LPV-OBF MPC approaches under rota-
tion scenario.

With both LQR and EKF matrices, each of the LPV-OBF MPC is commissioned
to the system and the result of the closed-loop experiment can be seen in Fig.
5.3 and in Table 5.3. The result shows that both LPV-OBF MPC approaches can
achieve the goal of tracking the given reference through the change in system dy-
namics. Also notice a very close performance of the local and global approaches,
with slightly better MSE value for the global approach. This better performance
can be better seen in the zoomed in version of the performance in Fig. 5.4 where a
small offset can be seen during transient dynamics. It is expected since the global
approach can capture the transient dynamics better than the local approach. Re-
lated to the stability of the LPV-OBF MPC, although not depicted in any figure,
the value of Vo(ys − r) is zero for all time steps. This constant zero value is also
expected due to the outstanding tracking performance of both LPV-OBF MPC
schemes.

5.8 Summary

A parameter-varying MPC scheme that is based on an LPV-OBF prediction model
is presented in this chapter. The prediction model describes variations in the dy-
namics of the system of interest that can be characterized by an external signal
called the scheduling variable. Two LPV identification approaches are provided
to identify the LPV-OBF model before the MPC is commissioned. The local LPV
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Figure 5.4: Zoom in version of Figure 5.3.

identification approach can be seen as an interpolation of the dynamical behavior
of the system, while the global LPV identification approach is a direct identifi-
cation method based on a single data set that is measured from the system. Af-
terwards, the LPV-OBF MPC scheme is formulated. The MPC scheme utilizes a
designated steady-state target and extra penalty term for tracking purposes. The
space of the steady-state pair is characterized by a vector which is used as an
argument of minimization for the MPC problem. Such setting helps us in es-
tablishing feasibility and stability guarantees of the MPC scheme. In both the
feasibility and stability theorems, it is shown that the effect of the parameter vari-
ation on the MPC scheme is minimal. The MPC scheme is aided by an EKF to
address unaccounted changes in system dynamics from the identification of the
LPV-OBF model. Lastly, by conducting a simulation study, we show that the pro-
posed method can capture the parameter-varying dynamics of a given system and
manage to achieve the goal of set-point tracking.
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6 CHAPTER

Case Study

This chapter is devoted to demonstrate the proposed MPC schemes of
this thesis in two simulated industrial case studies. The first case, a high
purity distillation column system, is covered in Section 6.2. This system
exhibits variations of the input-output dynamics under operating condi-
tion changes. In particular, where directionality effects become more dom-
inant as one of the outputs reaches higher purity levels. The proposed
LTV-OBF MPC and LPV-OBF MPC based controller design approaches of
Chapter 4 and 5 are used to solve the reference tracking problem of the
high purity distillation column over a designated operating regime. As
a second case study, a dual distillation column system is investigated in
Section 6.3. In this study, the column dynamics gradually drift from the
model of the system that was initially identified at the time of commis-
sioning the controller. Since such drifts cannot be characterized by any
measured parameters, the LTV-OBF MPC scheme is applied in this case
study. It is shown that the proposed LTV-OBF MPC scheme maintains the
given set point despite the drift.

6.1 Introduction

Chemical processes often exhibit a significant nonlinear behavior when operated
over a wide range of operating conditions. Despite the advances in model-based
control technologies, it remains a challenge to realize high-performance operation
of nonlinear chemical processes (in terms of product quality and process produc-
tivity) using a single linear time-invariant (LTI) model-based controller. For exam-
ple, when a chemical process is operated under transient conditions (e.g., set-point
changes and start-up procedures), the nonlinear behavior of the process becomes
more dominant, which makes the use of a single LTI model inadequate to describe
the system dynamics over the entire operating window. Distillation columns are
a representative example of process systems that exhibit nonlinear dynamics and
gain directionality in their operating window (Skogestad et al. 1988; Skogestad
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and Morari 1988; Finco et al. 1989; Gokhale et al. 1996). In this chapter, we show
that the proposed OBF-based MPC schemes are able to tackle the challenge to re-
alize high-performance operation of industrial distillation column systems. Two
case studies are presented on different type of distillation columns. The first case
is a high purity distillation column which exhibit variations of the input-output
dynamics when operated in the high-purity region. The second case is a dual dis-
tillation column system which is affected by an unknown dynamical drift after the
controller has been commissioned.

Each distillation column case study is presented in separate sections where the
following item are discussed:

• Problem setting of the case studies: Describing the background and under-
lying information of the system of interest, as well as the experimental setup
and the control objective of the experiment.

• OBF modeling of the case studies : Step by step explanation of the OBF mod-
eling procedure which consist of basis pole selection, required parameters
for identification, and the resulting OBF-based model of the case studies.

• Control synthesis: Explaining the necessary ingredients and parameters to
commission either an LPV-OBF MPC or an LTV-OBF MPC based on the
identified model.

• Result and discussion: Presenting the results of the commissioned OBF-
based MPC control and analyzing the behavior that can be observed in the
closed-loop system.

6.2 Case Study: High-purity distillation column
6.2.1 Problem Setting

High-purity distillation columns are well-known for their nonlinear dynamics and
directionality characteristics, which become more significant as the operating condi-
tions approaches the high-purity region Jacobsen et al. (1991),Waller (2003). Due to
directionality effects, the system response is dominated by the high-gain direction
(i.e., only one product composition can be controlled effectively). The dynamics
of the a distillation column can be described by a set of nonlinear, differential al-
gebraic equations (DAEs), whose numerical complexity (in terms of the number of
equations) can increase significantly with the number of theoretical trays, which
can be in the order of hundreds in the high-purity case. The system of interest
in this section is a DAE model of a distillation column which is described in the
work of Skogestad et al. (1988).

The primary assumptions for the DAE model are as follows:

1. Phase equilibrium on each tray;

2. A binary mixture feed;
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Figure 6.1: Schematics of a typical PP-splitter (binary distillation column).

3. Constant relative volatility along the column;

4. Constant molar flows;

5. Top and bottom flows are ideally controlled (i.e., changes of the vapor and
liquid flows have instantaneous effect on the top and bottom flows).

The physical-chemical phenomena are expressed by a set of differential alge-
braic equations (DAEs), which describe the component concentrations, as well as
the vapor and liquid flows along the distillation column. The following equa-
tions describe the component mass balances on the various trays that are num-
bered from the bottom tray b, through the feed tray f , and ends at the top tray d
(b, 2, . . . , n, . . . , f − 1, f, f + 1, . . . ,m, . . . , d):

V ETop :
d(Mdxd)

dt
= Vd−1yd−1 − Ldxd −Dxd,

V Em :
d(Mmxm)

dt
= Vm−1ym−1 + Lm+1xm+1 − Vmym − Lmxm,

V EFeed :
d(Mfxf )

dt
= Fzf + Vf−1yf−1 − Lf+1xf+1 − Vfyf − Lfxf ,

V En :
d(Mnxn)

dt
= Vn−1yn−1 − Ln+1xn+1 − Vnyn − Lnxn,

V EReboiler :
d(Mbxb)

dt
= L2x2 − Vbyb −Bxb.

(6.1)
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In (6.1), Vi is the molar flow of the vapor phase, yi is the mole fraction of the
vapor phase, Li is the molar flow of the liquid phase, xi is the mole fraction of
the liquid phase, F is the feed flow, zf is the mole fraction of the feed, B is the
bottom product flow, and D is the top product (distillate) flow. Moreover, the
equation consist of five separate parts that corresponds to the top tray, top section
trays, feed tray, bottom section trays, and the bottom trays which. These parts
are also known as a section in the distillation column. Parameter M indicates the
molar holdups of the trays, the reboiler, and the condenser distinguished by the
indices (the constant molar holdup value is equal to the liquid amount that can be
contained in each trays).

Figure 6.2: Flow diagram of the trays and the accumulators.

It is often assumed that the vapor and liquid flows are constant on each section of
the distillation column:

Vm = Vn + (1− qf )F,
Vn = Vb,
Lm = Ld,
Ln = Lm + qfF,

(6.2)

where qf is the fraction of liquid in the feed. In reality, the vapor flow depends on
the reboiler heat, and the liquid flow depends on the reflux rate in the distillation



6.2 Case Study: High-purity distillation column 137

Table 6.1: Settings of the high-purity distillation column.

NT Number of trays 110
NF Feed stage location 39
α Relative volatility 1.12
F Molar feed flow 215 kmol/min
xf Mole fraction of the feed 0.65
qf Liquid phase fraction of the

feed
1.0

M Molar holdup (all trays) 30 kmol

tank. However, since we assume that the distillate and bottom flows are ideally
controlled, instant change on heat and reflux rate have an instantaneous impact
on the vapor and liquid flows. Due to this reason, these flows (L and V ) are used
as the input channels for the model, while the output channels will be the top and
the bottom products composition (xd and xb), and feed properties such as flow,
liquid fraction, and mole fraction will act as disturbances.

Figure 6.3: Input-Output diagram of the system.

The liquid flow rate L and the vapor flow rate V (manipulated through the
reflux rate and re-boiler duty, respectively) are used as the manipulated variables
to control the operation of the high-purity distillation column (i.e., u1(k) = L(k)
and u2(k) = V (k)). The system outputs consist of the composition of top (xd)
and bottom (xb) products (i.e., y1(k) = xd(k) and y2(k) = xb(k)). The resulting
distillation column model describes a large-scale (110th order), nonlinear, 2 × 2
multi-input multi-output system. The parameters of the high purity distillation
column under study are given in Table 6.1 and the anatomy is depicted in Fig. 6.1.

The operating region of distillation column describe the variation of the dy-
namic behavior of the system. The variables that can describe such a variation are
the top and bottom product compositions

p(k) = [ xd(k) xb(k) ]⊤.

The operating region is selected such that it entails a large set of local operat-
ing points described by the top and bottom compositions in the region of P =
[0.95, 0.995] × [0.02, 0.1]. These compositions also serve as the scheduling vari-
able p for the LPV-OBF MPC scheme.
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Figure 6.4: Applied excitation signals and measured responses in Dglobal.

Experimental setup

The core element of the experimental setup for this section is the first principle
model of the high purity distillation column. The first-principle model is simu-
lated in continuous-time, while discrete-time input/output data is collected with
a sampling time Ts = 5 min. This time is chosen 20 times faster than the time
constant of the fastest step response of the system for the operating region un-
der investigation (i.e. P = [0.95, 0.995] × [0.02, 0.1]). The inputs of the system
are manipulated through zero-order-hold actuation synchronized with respect to
the sampling time. The generated measurements are corrupted by a discrete-time
output additive white noise v with a signal-to-noise ratio1 (SNR) of 15dB. This is a
realistic noise level in industrial practice. This first principle model is used in two
experiments: an open-loop experiment and a closed-loop experiment.

The open-loop experiment is needed to generate measurement records to ac-
complish the OBF modeling. In this experiment, two data sets are generated
where one serve as the identification data set and the other is used for validation
purposes. The first data set Dglobal consist of N = 2500 samples while the second
data set Dval consists of N = 6000 samples. In the real world, this corresponds to
8.7 and 20.8 days of experimentation time. Such a lengthy experiment can either
be conducted in a continuous manner or in terms of batches of data depending on
the status and usage of the distillation column system. In this experiment, both
data sets are continuously generated using an input signal, see Fig.6.4 and Fig.6.5,
which were designed to excite the transient behavior of the system when visiting

1The signal-to-noise ratio is defined as SNR := 10 · log10
(

∥y−v∥22
∥v∥22

)
.
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several operating points of its operating region. This input signal is a combination
of a deterministic component added to a white noise with uniform distribution
U(−0.5, 0.5) corresponding to a standard deviation of 1/

√
12 . The white noise on

the input is intended to excite the "linear" behavior around the operating points.

For the closed-loop experiment, the first principle model is operated with an
MPC controller to track a given reference trajectory or output specs within the
operating region under investigation. The combination of operating points that
were tracked are as follows:

r1 = [0.96; 0.07],
r2 = [0.98; 0.07],
r3 = [0.98; 0.05],
r4 = [0.95; 0.08].

Each of these references is tracked for 6000 minutes before moving to the subse-
quent reference. The to be commissioned controller need to ensure the actuation
constraints of

umin = [1500, 1500] kmol/min;umax = [5000, 5000] kmol/min.

Remark 6.1 The identification of the high-purity distillation column can be performed
under closed-loop circumstances, where an operational MPC controller and least-costly
experiment design can minimize the loss in production (see Bombois and Scorletti (2012);
Larsson et al. (2013)). However, to preserve the simplicity of the discussion, closed-loop
identification is not considered in this work.

6.2.2 OBF modeling of high purity distillation column

There are two major steps of OBF modeling as presented in the earlier chapters of
this thesis. As presented in Chapter 3 the first step is the selection of OBF poles
while the second step is the choice of identification parameters for each of the
LTV-OBF and LPV-OBF model identifications. The OBF poles need to be selected
such that the OBF model can describe the variation of the linear dynamics of the
system over the operating region under investigation. A group of local LTI models
is necessary for this purpose. The second step, presented in Chapter 4 and 5 is the
selection of the identification parameter for each of the LTV-OBF and LPV-OBF
model w.r.t. identification data set. The resulting identified model can then be
validated on a validation data set.

Estimation of local LTI models

For the identification of the local LTI models of the system, we split the identi-
fication data set Dglobal into 21 groups. These groups are denoted by D

(τ)
local with

τ = 1, . . . , 21 where each has N = 80 samples. From these data sets, LTI models
of the local system behavior are estimated using an output-error (OE) noise model
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Figure 6.5: Applied excitation signals and measured responses in Dval.
.

structure. In particular, the models have been estimated using canonical variate
analysis (CVA) based subspace identification (using the n4sid implementation in
MATLAB) and the orders (na, nb) of the OE models have been chosen to be (2, 2)
based on BIC-based cross-correlation analysis conducted on the available local
data sets Ljung (1999).

The resulting models have been evaluated in terms of the best fit rate (BFR)
Ljung (2006)

BFR = 100% ·max

(
1− ∥y(k)− ŷ(k)∥2

∥y(k)− ȳ∥2
, 0

)
, (6.3)

where ȳ is the mean of the noise-free output y of the original system and ŷ is the
simulated output of the model calculated on validation data. The BFR is com-
puted on a 80 samples long step-response (separate step test for each transfer
channel with amplitude 5 · 10−3 divided by the local DC gain) data generated
by the linearization of the first principle model at the corresponding operating
points. The average value of BFR from all of the 21 identified local models is
(94.95%, 93.47%) for u1 → (y1, y2) and (95.14%, 93.33%) for u2 → (y1, y2).

Pole selection for the OBF model

By using the information of pole location from the collected local LTI models, we
can start the OBF pole selection procedure. First step is to select the configuration
of real and complex conjugate OBF pole w.r.t. the observed the distribution of
the local model poles in the unit disk (depicted in Fig. 6.6). From the distribu-
tion we can see that the local models consists of real poles which can be roughly
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Figure 6.6: Results of the basis selection: sampled poles (◦), resulting pole loca-
tions of the basis (⋆), and the corresponding perimeter line (bold grey).

separated in 3 groups. Hence, pole configuration of 3, 5, and 7 real poles are pos-
sible candidate for OBF pole. Since the number of basis is considered to be small
and moderate, SQP based pole selection algorithm (See Sec 3.4.1 for details) is the
preferred selection method. This methodology guarantees optimality while still
maintains tractable computation for low to moderate number of OBF pole config-
urations. We then compare the normalized upperbound γ̃nb

( proposed in Section
3.6) and the result is shown in table 6.2. From this result, we can see that nb = 5
with the corresponding set of OBF poles of

{λl}5l=1 = {0.3745 0.6273 0.7127 0.8597 0.8871}

gives us the lowest normalized bound compared to the other pole configurations
and hence gives optimal approximation vs complexity tradeoff. The pole location
and the corresponding perimeter line2 are depicted in Fig. 6.6. This result implies
that (i) the selected basis functions have a small representation error w.r.t. the
local LTI models and (ii) further reduction of the error introduced by the series
expansion would require a significantly larger number of basis poles, which only
have a relatively small benefit for the local models identified at the boundary of
the operating region. Hence, we can use the aforementioned set of poles as the
OBF pole for the LTV-OBF and LPV-OBF models of the distillation column.

Identification of LTV-OBF and LPV-OBF models

In Chapter 4, we presented two strategies to do iterative identification of the LTV-
OBF model. These are the Recursive Least square (RLS) and the weighted least square

2Elements on the unit disc with equal value of γ from a given basis poles
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Table 6.2: Comparison of the normalized upperbound γ̃nb
for selected pole con-

figurations.

3 real 5 real 7 real
Normalized upperbound γ̃nb 0.384 0.210 0.265

(WLS) methods. Both strategies require us to select the identification parameters
or weights in which the guideline is presented in Section 4.3.6. Both have the
same purpose to allow adaptation of a linear model with little information on
future variation of the to be controlled system. Since we have shown in Section
4.8 that the performance for well-tuned RLS based and WLS based LTV model are
comparable, we only use the RLS based LTV-OBF models since the selection of
its weight is more straight forward. Based on the measurement data Dglobal, we
found the weight of WRLS = 0.945 corresponds to the minimal BFR (i.e. Eq. 6.3).
The validation results for LTV-OBF model is presented together with LPV-OBF
model in figure 6.7.

Two strategies to do the identification of the LPV-OBF model are presented in
Chapter 5. These strategies are the local and global approaches. The latter tend
to be better at capturing the varying dynamics of the system compared to the
local approach. Since we have the identification data set Dglobal which contains
the valuable information on the transient behavior of the system, we only use
the global approach to do LPV-OBF model identification. The parametrization of
model coefficients (5.8) is done using a 2-variable polynomial function of order n
(i.e., Ψs(p(k)) = pi1(k)p

j
2(k) such that i, j ∈ In0 , i · j > 0 and s = i · (n + 1) + j).

By conducting a simple trial and error experiment with an increasing polynomial
order, the value of n = 3 has been chosen for the LPV-OBF model since increas-
ing the order bring less improvement while rapidly increasing complexity of the
model.

The validation results for both LTV and LPV OBF models w.r.t. validation data
set Dval are presented in Fig. 6.7 and Table 6.3 where the mean squared error (MSE)

MSE = ∥y(k)− ŷ(k)∥22, (6.4)

and the BFR of the simulation error are provided for quantitative comparison pur-
poses. From these results, we can see comparable identification results with the
LPV-OBF model slightly outperforming the LTV-OBF model. This is expected
since the LPV model is more well-equipped to describe the variation of system
dynamics which can be explained or driven by the scheduling variable. However,
we see a slight offset on the LPV model validation result (with the magnitude of
≤ ±1.10−3) that is observed in time span of t = 6000 m until t = 13000 m and
after t = 26000 m in the figure of error w.r.t. y1. The offset occurs since the oper-
ating point in the validation data set are not exactly equal to the operating points
used in the identification data set. This intermediary point cannot be perfectly
described by the selected 3rd order polynomial. As for the LTV-OBF model result,
we can see more variation in the model output since the recursive estimation is
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Table 6.3: BFR and MSE of LPV-OBF and LTV-OBF model w.r.t. validation data
Dval.

LTV Model LPV Model
y1 BFR 96.89% 97.68%

MSE 1.02 · 10−7 5.14 · 10−8

y2 BFR 98.90% 99.90%
MSE 9.07 · 10−8 3.79 · 10−10

affected by the measurement noise. Since both OBF models yield high BFR vali-
dation results, we are confident to use the LTV-OBF and LPV-OBF model for each
of their corresponding MPC schemes.

6.2.3 Control synthesis

After we have obtained the LTV and LPV model at hand, we can start synthesizing
the MPC. The proposed LTV-OBF MPC scheme and synthesis are described in the
algorithms of Section 4.7 while the LPV-OBF MPC scheme is described in Section
5.6. The goal for both control schemes is to maintain reference tracking through
4 selected operating points as mentioned in the problem setting section. Essential
steps to synthesize both the LTV-OBF MPC and the LPV-OBF MPC as well as their
key control parameters are given in this section.

LTV-OBF MPC synthesis

The synthesis of the LTV-OBF MPC scheme start with Algorithm 6 and followed
with Algorithm 7. These algorithms requires the control matrices (Q and R) and
prediction-control horizons N . The main purpose of the control matrices is to put
more weight on a particular output-input channel. These matrices also serve as
the tuning parameter that can be used to configure the control performance of the
closed-loop system. We use a value of

Q =

[
1/0.965 0

0 1/0.065

]
R =

[
1/3250 0

0 1/3250

]
(6.5)

which correspond to the normalization of the magnitude of the input and output
of the system. The normalization also meant to give equal importance for both
output and input channels.

The value ofQ andRmatrices, along with the set of possible model coefficients
Θ (Eq.(4.19)), will influence the existence of stabilizing LQR controller K and also
the invariant set (Xf ). These two elements are of paramount importance to the
recursive feasibility and stability of the MPC scheme. The reason is the stability
that is attached to the existence of stabilizing LQR controller and the correspond-
ing invariant set. For the LTV-OBF case, this condition needs to be achieved for
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all possible model parameter θk that is recursively updated in the closed-loop set-
ting (See Section 4.6 for details). The LQR is synthesized by solving the LMIs of
(Eq.(4.58)) 

S (AS +BT )⊤ Sθ̃⊤i T⊤

AS +BT S 0 0

θ̃iS 0 Q−1 0
T 0 0 R−1

 ⪰ 0, (6.6)

for each of the vertices θ̃i of polytope approximation of model set Θ (Eq.(4.18)).
As described in the algorithm, we also inject uniform white noise of U(−0.5, 0.5)
on top of the control action of the MPC. The purpose of this extra excitation is to
not only maintain the persistency of excitation of the data for model estimation
but also to define the set of possible model coefficients Θ in which the LQR con-
troller is synthesized. The LQR control remains valid if the evolution of model
coefficient θk remains inside of the polytope. As indicated in Algorithm 7, when
the identified model travels outside this polytope, then we need to redo the LQR
synthesis. A simple convex hull check can be done to check if θk remains inside
the polytope. The vertices {θ̃i}ni=1 that are used for LQR synthesis as well as the
solution of the LMI (P and K matrices) can be found in Appendix A.10.

Note that the evolution of model coefficient θk also related to the condition
(Eq.(4.53)) which is the last element of the stability of the LTV-OBF MPC scheme
(See Theorem4.4):

θk+1Qk+1(i)θ
⊤
k+1 ⪯ θkQk(i)θ⊤k ∀k ∈ Z, i ∈ N. (6.7)

As described in the Section 4.7, the condition can be monitored to show whether
we can attain close loop stability.

For the prediction-control horizon of the MPC, as described in Section 4.5, our
proposed MPC scheme denotes the horizon as a single term N . The length of the
time horizon will affect the calculation time to solve the MPC problem (4.45). The
length of time horizon will affect the calculation time to solve the MPC problem
(4.45). Sensible selection would be more than the settling time of the LTV-OBF
model, but not long enough such that it burdens the computation of the MPC
problem. For these reason, we select N = 20 samples (i.e. 100minutes) which is
slightly more than the average step response of the distillation column system for
the operating region under investigation (i.e. P = [0.95, 0.995]× [0.02, 0.1]).

LPV-OBF MPC synthesis

The synthesis of the LPV-OBF MPC scheme follows the Algorithm 10 and 11.
These algorithm requires the control matrices (Q, R, and T ), MPC horizons N ,
the steady-state null space Mξ Mξ, and a locally stabilizing LQR controller. For
the control matrix of LPV-OBF MPC, we select:

Q = Inx×nx R =

[
1/3250 0

0 1/3250

]
T = 100 ·

[
1/0.965 0

0 1/0.065

]
, (6.8)
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while the MPC horizon is selected to be N = 20 samples. Notice that the choice
of the R matrix and the N parameter are the same as for the LTV-OBF case due to
similar usage of this two parameters. The value of Q = Inx×nx should be selected
in most cases since Q in the LPV-OBF case affect different state elements where
each correspond to different OBFs (See Eq.(5.1)). This lead to less intuitive tuning
parameter compared to the LTV-OBF case since there is no physical interpretation
of the state for the LPV-OBF model. It is also possible to scale down the Q matrix
w.r.t. the control action matrix R to make the control action more aggressive. The
role of weighting the output channels is now governed by matrix T . Note that
the matrix T does not exist in the LTV-OBF case (see Section 5.4.2 for details) and
this matrix need to be selected to be significantly bigger than matrix Q and R. The
reason why we need a big matrix T is to strongly affect the LPV-OBF MPC cost
function (i.e. Eq.(5.16)) such that it gravitates towards reference tracking via the
tracking cost function:

Vo(ys − r) = ∥ys − r∥2T , (6.9)

where ys is the steady state output and r is the reference. The value of ys is gov-
erned by the coefficient matrix of the LPV-OBF model (See Eq.(5.15)) while the
target steady-state xs is selected from the steady-state null space Mξ by the vari-
able ξ which is one of the arguments of the LPV-OBF MPC cost function.

For the LQR synthesis, although the MPC is synthesized for LPV-OBF model,
there is actually no varying terms in the stability guarantee (See Theorem 5.2):

(A+BK)
⊤
P (A+BK)− P ⪰ Q+K⊤RK. (6.10)

Hence only a single LQR synthesis problem needs to be solved to obtain P andK.
The calculated value of P and K is shown in the Appendix A.11.

Besides the controller part, as described in the Algorithms in Section 5.6, there
are two extra elements that are not directly linked with the MPC scheme but will
inherently affect the LPV-OBF model. These two elements are the information
of scheduling trajectory up to N step ahead (p(k + N)) and the Extended Kalman
Filter (EKF) for the LPV-OBF model. It is mentioned in the problem settings that
the top and bottom composition define the system dynamics. Since our goal is to
track the reference for both of these outputs, we can directly use the reference as
the scheduling variable of the LPV-OBF model. For the EKF, two matrices which
are the QE and RE (of Eq.(5.36)) need to be selected before we can commission
the MPC. The matrix RE describes the confidence of your measurement while the
matrix QE describes the confidence of the prediction. The EKF matrices are given
as follows:

QE = 7.3691 · 10−5.Inx×nx RE =

[
7.3691 · 10−5 0

0 1.3581 · 10−4

]
. (6.11)

Notice that we select the entries of RE to be equal to the variance of the mea-
surement noise (v1 and v2), while the QE matrix has the lowest value of RE for
each of the elements of this matrix. Reason of the QE matrix selection is the good
fit result in the identification step (i.e. Table 6.3). If we notice unsatisfactory con-
trol performance, we can lower the value of QE . The relative value between QE
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Figure 6.8: Tracking performance of the LTV MPC and the LPV MPC through all
tracked operating points.

and RE is the defining condition for the EKF and a low QE value also means that
we are less confident in the prediction capability of our model.

6.2.4 Results and discussion

After we synthesize both the LTV-OBF MPC and LPV-OBF MPC, we can use the
MPCs to control the first principle model of the distillation column. The goal is
to track the reference through a selected combination of operating points as men-
tioned in the problem setting section. The resulting tracking performance is cap-
tured in Figure 6.8 while the computed MSE can be found in Table 6.4. By looking
at Figure 6.8, we can say that both controllers achieve tracking performance with
the LPV-OBF MPC slightly outperforms the LTV-OBF MPC. This result is under-
standable since the fit ratio of the LPV-OBF model also outperforms the LTV-OBF
model (See table 6.3). Judging from this result, we do not need to change our
control parameters and matrices for either of the controllers. However, If we look
closely at this figure, several items can be observed:

• LPV-OBF MPC output already start moving to the next operating points
even before the reference moves to the next operating points

• LTV-OBF MPC output has higher variance compared to LPV-OBF MPC

• LTV-OBF MPC output has bigger transient behavior compared to LPV-OBF
MPC
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Table 6.4: Control performance of LTV-OBF and LPV-OBF MPC w.r.t. reference.

LTV-OBF MPC LPV-OBF MPC
y1 MSE 1.8014 · 10−6 1.3554 · 10−6

y2 MSE 1.3852 · 10−6 1.0075 · 10−6

These items are more apparent in the zoomed version of the result that is depicted
in Figure 6.9.

The first item is an expected behavior due to the target output ys (Definition
5.3) of the MPC cost function is described as ys = C(p(k+N))xs. Since we use the
reference as our scheduling variable (i.e. p(k) = r(k)), then the targeted output
of the closed-loop system at time k is the reference at time k + N . Due to this
behavior, we can say that the LPV-OBF MPC is an anticipative controller. We can
delay this anticipation by lowering the value of N . The only expected drawback
is potentially more aggressive transient behavior of the closed-loop system due to
the shorter horizon. Alternatively, we can modify the definition of the target out-
put to be dependent on the scheduling variable at time k. From this modification,
we can expect a closer closed-loop system behavior to the one that is controlled
by the LTV-OBF MPC.

The second point of interest, the higher output variance of the closed-loop
system output, can be explained due to the injected noise in the input to maintain
the iterative identification of the LTV-OBF model. If the variance is not satisfactory
and leads to deterioration of tracking performance, then we can lower the injected
noise. But this also means that the covariance matrix will be bigger and hence
might lead to difficulties in the LQR control synthesis.
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The third point of interest, the slower transient behavior of the LTV-OBF model,
is simply the result of the LTV-OBF model trying to find a new coefficient θk when
the reference jumps to the new operating points. The evolution of model coeffi-
cient of LTV-OBF model is also part of the stability that is written in Theorem 4.4
(i.e. the condition of (4.53)/(6.7)).

In order to show the stability of the closed loop system, as described in Section
4.7 and 5.6, we monitor the evolution of

x⊤(k + 1)θk+1Qk+1(i)θ
⊤
k+1x(k + 1) ≤ x(k)θkQk(i)θ⊤k x(k) ∀k ∈ Z, i ∈ N. (6.12)

for LTV-OBF MPC case and the target cost function of Vo(ys−r) for LPV-OBF MPC
case. The evolution for these parameters can be observed in figure 6.10.

For the LTV-OBF MPC case, we see that there are three jumping points where
the stability condition is also jumping. These jumping points exactly correspond
to the steep change of the coefficient θk. For this case, the steep change even
drives the coefficient to venture outside the polytope approximation of the model
set Θ. This triggers the necessity of redoing LQR control synthesis (See Algo-
rithm7). Since a stabilizing LQR is found, the stability of the closed-loop system
is then re-guaranteed, and the stability condition decay to the reference state xrk.
Note that the non-smoothness of the LTV-OBF stability parameter is due to the
measurement noise and the induced excitation to maintain persistent excitation
for system identification. The non-smoothness does not impact the stability of the
closed-loop system.

For the LPV-OBF stability, we see a constant value of 0 throughout the exper-
iment. This can be interpreted that the targeted reference r can be fully tracked
by the target steady-state output ys and the change of system dynamics w.r.t. the
change operating points can also be captured by the LPV-OBF model.

From these observations, we can conclude that the LPV-OBF MPC scheme
in this scenario outperforms the LTV-OBF MPC scheme in both tracking perfor-
mance and guarantee of stability for the high purity distillation column case.

6.3 Case Study: Dual distillation columns
6.3.1 Problem Setting

In the second case study, we use a simulated industrial example of a dual distilla-
tion column system. Similar to the first case study, the main purpose of the dual
distillation column is to separate chemical products. However, instead of splitting
into binary products, the additional column act as an intermediary outlet that can
produce a middle cut with a designated purity level. The diagram of the dual
distillation columns can be found in Figure 6.11.

For this study, two identified models of the system from a different moments
in time are provided by the industry. The separate identification instances cor-
respond to the initial commissioning of the Advanced Process Control (APC) and
re-commissioning of the APC. Each of the two identified models are 5× 5 MIMO
discrete Finite Input Response (FIR) models of order 300 with sampling time Ts = 1
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Figure 6.11: Operational flow diagram of the studied of dual distillation columns.



6.3 Case Study: Dual distillation columns 151

−150

−100

−50

0
From: In(1)

T
o

: 
O

u
t(

1
)

10
0

−150

−100

−50

0

50

T
o

: 
O

u
t(

2
)

From: In(2)

10
0

From: In(3)

 

 

10
0

From: In(4)

10
0

From: In(5)

10
0

Bode Diagram

Frequency  (rad/minute)

M
a
g

n
it

u
d

e
 (

d
B

)

Pre Commisioning

Post Commisioning

Figure 6.12: Frequency Response of dual distillation column FIR model
minute. It is not necessary to use all of 5×5 FIR model since the output of interest
(Controlled variable) for the case study are the light product (CV1) and the mid-
dle cut (CV2). Hence, only the corresponding 2x5 FIR models are used for this
case study. This also means that our system is non-square in this case study. The
frequency responses for each model are given in Figure 6.12.

If we look at Figure 6.12, the differences between the frequency responses of
the two models already give a hint why the APC needed to be re-commissioned.
Commonly used linear APC will have difficulty maintaining the performance (e.g.
reference tracking) when the controlled system changes/drift during the APC life-
time. This drift frequently comes due to the wear of the system actuators (pumps,
valve, etc) and or change in the related thermochemical processes (Material varia-
tion, seasonal change, etc). The inevitable performance deterioration due to such
drift is a prominent problem in the industry. Hence, our goal is to show that the
proposed MPC schemes in this thesis can maintain control performance through
the drift and consequently avoid the necessity of APC re-commissioning. Since
the drift cannot be characterized by any measured parameters, only the LTV-OBF
MPC scheme can be realistically applied for this case study.

In order to mimic the drifting behavior, we are using both of the FIR models for
the experiment setup. The drift is then induced by interpolation of both models
where the interpolation is controlled by a priori chosen weighting which will not
be taken into account during the modeling and commissioning of our proposed
LTV-OBF MPC scheme. This way we emulate the drift where dual distillation
columns slowly moves from the initial commissioning to the re-commissioning
state. The experimental setup is depicted in Figure 6.13 while the interpolation
weight is shown in 6.14. Interpolation of the two given models is what we con-
sider as the system of interest for this section. Lastly, from the information on
sensor noise determined based on the instrumentation of the real plant, the gen-
erated measurements of the experimental setup are corrupted by a discrete-time
output additive white noise v with a signal-to-noise ratio3 (SNR) of 25dB. We syn-

3The signal-to-noise ratio is defined as SNR := 10 · log10
(

∥y−v∥22
∥v∥22

)
.
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thetically add this noise to the output measurement for our experiment setup.

Figure 6.13: Data generating system

The objective of the experiment is to show sustained control performance of
reference tracking from the nominal operating point of light product (y1) and mid-
dle cut (y2) through the unknown drift. The selected reference is r = [0.01 −0.01]
which is an example of a possible operating point used by the industry when oper-
ating the column. The information on the drift is not used for the model update or
during the commissioning of the controller. Last but not least, the designed con-
troller need to obey operating constraint for all of its input −10 ≤ ui ≤ 10;∀ i =
1, . . . , 5.

6.3.2 OBF modeling of the dual distillation column

The first step to deploying any of the proposed OBF MPC schemes is to get the
OBF model of the system of interest. For this case study, although we have both
pre and post commissioned models of the system at hand, we are going to deriver
the LTV-OBF model only from the information of the pre-commissioned plant.
The rationale to use only the information of the pre- commissioned plant is to
show the benefit of using the LTV-OBF MPC scheme to maintain control perfor-
mance irrespective of unknown drift that will happen to the system.
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Figure 6.14: Drift inducing weight.
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Figure 6.15: Hankel singular values of FIR model.

Getting the OBF model

Since we have the FIR model for the pre-commissioned plant, the basis pole can
be inferred directly from the FIR model. This is in a different flavor compared to
calculating the basis pole from a union of local LTI model poles as shown in the
previous case study. Since the OBF construction itself can span the full space of a
stable LTI system, we can always extend the expansion of the OBFs as mentioned
in Section 2.5.2. Such expansion is only necessary if the online iterative identifica-
tion does not yield a good fit to the latest measurement data set.

In order to obtain the pole information from the FIR model of the data gen-
erating system, we are going to transform and reduced the full order model of
the DDC system. The first step is to check the Hankel singular values of the sys-
tem which is depicted in Figure 6.15. From this observation, we can see that the
singular values drop rapidly from the 2nd and the 4th order. The singular value
information is in line with the initial observation of the frequency response shown
in Figure 6.16. It can be seen that the dominant dynamics for most of the input-
output combinations have 2nd order behavior while the 4th input to 1st and 2nd
output have at least 4th order dominant dynamics. From these observations, we
can use the model order reduction technique to obtain 4th order system represen-
tation from the original 300th order FIR model. For this purpose, we use balance
reduction since this method yields us an asymptotically stable minimal realization
in which the controllability and observability Gramians are equal. The balanced
form is comparable to the OBF construction as defined in Definition 2.20. The
resulting reduced-order model frequency behavior is shown in Figure 6.16. The
reduced order model captures the low-frequency behavior of the full order model
while the higher frequency is decently captured since the delta is limited at -40dB.
With these results, we can use the reduced- order model poles of

{λl}4l=1 = {0.8901± i0.1873, 0.9778, 0.9705}

as our OBF poles.
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Figure 6.16: Delta of frequency response between full order and reduced order

With the OBF model at hand, we can start the LTI identification exercise to de-
termine the initial coefficient of the LTV-OBF model. This exercise can be done by
feeding each of the inputs of the pre-commissioned data-generating system with
a uniform white noise of U(−0.01, 0.01) corresponding to a standard deviation of
0.003 with the length of N=400. The selected value corresponds to twice of set-
tling time of the slowest dynamics in the data generating system while the input
magnitude is sufficient to get the system dynamics around the linear operating
point. As a short reminder, the input magnitude is going to directly impact the
state evolution of the OBF model which then affects the covariance matrix of the
identification and also the LQR synthesis (See Section 4.3.4 for details). Lastly,
measurement is corrupted by Gaussian white noise with 25dB SNR similarly to
the experiment setting mentioned in the previous section.

For the LTV-OBF model, we are going to explore both the Weighted Least Square
(WLS) and Recursive Least Square (RLS) iterative identification strategies. We need
to select the weighting for each of these methods as written in (4.22) and (4.23).
The initial value that we use are WRLS = 1 for RLS method and β = 2 with
NWLS = 400 for the WLS method. Since this is an LTI identification, it is expected
that both methods yield the same best fit ratio (Eq (6.3)) and model coefficients.
The BFR are 88% for top output and 86% for middle cut output.

Setting up LTV model parameters

The last step of the LTV-OBF model is to select the weight of RLS and WLS iden-
tification strategy. By using the information that we got from the previous iden-
tification exercise we use β = 2 with NWLS = 400 for the WLS method while for
the RLS method we tune down the weight to WRLS = 0.995. The weight for both
WLS and RLS are meant to allow smooth but continuous adaptation of the LTV-
OBF model coefficient when the system is drifting. In case of deterioration is seen
in control performance after the LTV-OBF MPC has been commissioned, we can
readjust the RLS and WLS weight.
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Figure 6.17: Control performance of LTV MPC with WLS and RLS based models.

6.3.3 LTV Control synthesis

Similar to the previous case study, we start with the selection of the MPC scheme
control matrices (i.e. Q and R matrices for LTV-OBF MPC scheme). We select
control matrices as

Q =

[
100 0
0 100

]
R = Inu×nu (6.13)

due to the magnitude of the output of the system and the information that the FIR
model input channels are already normalized.

Following the LTV-OBF MPC algorithm 6 and 7, we re-iterate a similar proce-
dure as in the first case study. Uniform white noise of U(−0.01, 0.01) is injected in
all input channels and a polytopic approximation is constructed for the covariance
matrix. The vertices of the polytope are then used to construct the set of LMIs to
synthesize the LQR controller. This setup yields solvable LMIs that guarantee the
existence of stabilizing LQR controller matrices P and K. The resulting values
related to the LQR control synthesis can be found in Appendix A.12.

Similar to the previous case, we are monitoring the condition of Eq.(4.53)/
(6.7) to see whether the close loop stability is attained or not. In case the tracking
performance does not meet the expectation and/or covariance matrix needs to be
updated, as described in Section 4.7, we can also adjust the value of Q and R to
put more emphasis on one of the output and/or to weight down the input if it is
too aggressive. Lastly, we select N = 150 minutes as the MPC horizon. This value
is slightly more than the settling time of the system of interest.
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Table 6.5: Control performance of LTV MPC with WLS and RLS based models

RLS adaptation WLS adaptation
y1 MSE 9.9921 · 10−8 1.0068 · 10−7

y2 MSE 3.2953 · 10−8 1.3179 · 10−7
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Figure 6.18: Control performance in the highlighted drift period.

6.3.4 Results and discussion

With all the ingredients for the LTV-OBF MPC at hand, we can commission our
controller in the experimental setup of the dual distillation column. The control
goal is to maintain reference tracking of r = [0.01 − 0.01] from the nominal
operating point of light product (y1) and middle cut (y2) through the unknown
drift. Note that the information of the drift is not used for the model update or the
control synthesis. The result of the experiment can be found in Fig. 6.17 while the
computed MSE can be found in Table 6.5

From these result, we can see that the LTV-OBF MPC perform its job of track-
ing the reference for both outputs through the drift scenario as mentioned in the
problem setting section. The RLS-based LTV-OBF MPC has a slightly better MSE
value compared to the WLS-based strategy especially in the middle cut output
(y2). If we look closely to figure 6.17, there are at least two points of interest from
this figure. The first point of interest is the two transient behaviors when the drift
starts to be induced at T = 1000 minutes and when the system settled to the sec-
ond linear dynamics at T = 2000 minutes while the second point of interest is that
WLS has a slight offset on the middle cut during the drift. These can be easier to
see through the zoomed in version of the results depicted in Figure 6.18.
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The first observed behavior is understandable since when the drift starts to
happen, output measurements will change and hence lead to an abrupt change
in the identified model coefficient. At the same time, the MPC control action also
starts to move away from the nominal point to provide a countermeasure of the
detected change in the system. This action further excites the identification and
provides a distinct spike to drive the coefficient further out from its initial value.
We can tune down WLS and RLS identification weights if the spike in the output
is getting close to the operation constraint. For RLS identification we can increase
the WRLS to be very close to WRLS = 1. However, with such a weighting value,
the model update will be slowed down significantly. A similar thing can be done
for the WLS identification strategy where we can slow down the model update
by taking more points (i.e. increasing NWLS) and reducing the value of WLS.
Note that updating the WLS parameter will have a potential drawback on control
performance.

The second observed behavior is the slight tracking offset for LTV-OBF MPC
with WLS adaptation during the drift. This can be explained since WLS takes
into account older state evolution and measurement of the system and hence will
have a problem when a continuous drift is happening on the system. This is vali-
dated since the control performance becomes better when the system settled into
the post-commissioned behavior. So the weighting parameter of the WLS identi-
fication strategy is a sensitive tuning parameter. By trying to reduce the transient
behavior of the control action when the drift start and ends can lead to an offset
in tracking performance during the drift.

The last observed behavior is the stability of the closed-loop system. We are
monitoring the value of Eq.(6.12) for both WLS and RLS cases in Figure 6.19 (see
Section 4.7 for details). From this figure, non-smooth stability condition similar to
the first case study is also observed. The root cause of this behavior is the noise of
measurement and induced excitation to maintain persistent excitation. If we filter
out the noisy part of Figure 6.19, we see a stable and non-increasing trend which
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shows the closed-loop system is stable throughout a large part of the experiment.
The only two points where the stability is compromised are when the model co-
efficient suddenly moved outside of its initial value when the first drift happen
and when it settled down to the post-commissioned behavior. Another important
behavior that can be observed from the figure is that we also see a similar offset
in the stability condition of the WLS strategy as seen in the tracking performance.
Since the closed-loop system is unable to track the reference, a slight offset also
appears in the stability condition. This value goes down to a lower value as soon
as the system settled into the post-commissioned behavior (t ≥ 2000 min). From
this result, we can conclude that for this particular case RLS identification strategy
outperforms the WLS strategy in terms of tracking the performance and stability
of the closed-loop system.

6.4 Summary

The proposed LTV-OBF MPC and LPV-OBF MPC have been demonstrated in two
industrial case studies. LPV-OBF MPC shows better performance compared to
LTV-OBF MPC in the high purity distillation column case study and also a better
stability guarantee. The LPV scheme itself requires an explicit signal, namely the
scheduling variable, that can describe different system dynamics of the interested
operating regime. Additionally, the LPV-OBF MPC also need longer experiment
time to get correct description on the varying dynamics. On the other hand, the
LTV-OBF MPC does not need explicit signal to describe different system dynam-
ics. This scheme is not only able to tackle varying reference on high purity distil-
lation case, but also maintain reference tracking under unknown drift on the dual
distillation column case. It requires less resources for the identification, but tuning
of the identification parameter can be less intuitive. The slight drawback for the
LTV-OBF MPC scheme is the higher variance due to necessity of extra excitation
to maintain the model update. Note that if we are confident that the plant dynam-
ics remain in the linear regime, the iterative identification of the LTV-OBF model
can be turned off. This also means that we are controlling the system similar to
the standard LTI MPC. After the testing both method in the case study, we can
conclude that LPV-OBF MPC is better for the case when the variations of system
dynamics are known, while LTV-OBF is better when the variations are not known.



7 CHAPTER

Conclusion

This chapter presents the concluding remarks on the research presented
in this thesis. We first revisit the research question posed in the intro-
duction section and verify whether the results given in this thesis give a
sufficient answer to the question. We then further list the contributions
of this thesis before concluding the chapter with several potential future
research directions related.

7.1 Answer to the Research Objective

This thesis has been driven by the growing demand in the process industry where
the standard way of linear control is not enough to maintain the high control per-
formance through its operational period. This problem is embodied in the re-
search objective that is given at the beginning of the thesis:

- Primary research question -

How to reduce the discrepancy between the prediction model
in MPC and the process of interest so as to sustain high per-
formance of the controller? In particular, how and when
should the update of the controller and model take place?

Throughout this thesis, we have shown that it is possible to improve the per-
formance of APC by taking into account model inaccuracy and variation of pro-
cess dynamics that are causing the plant-model mismatch. The solution stems
from the usage of the Orthonormal Basis Function as the foundation to capture the
broad variation of linear system dynamics around a given and even multiple op-
erating points. With the OBF model at hand, we then employ two paradigms of
LTV and LPV in order to capture the variation in process dynamics. The OBF

159
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model coefficient is updated iteratively in each time step either with or without
information about its operational trajectory. In order to establish MPC schemes
for each paradigm, we construct the theoretical foundation that is essential for the
control scheme. Lastly, we have demonstrated that the proposed algorithm can
maintain the control performance in two industrial case studies. After examin-
ing both methods in a simulation environment, we observed that LPV-OBF MPC
is more suited for the case when the variations of system dynamics are known,
while LTV-OBF MPC is more practical when the variations are not known. With
these findings, we conclude that the research objective of the thesis is sufficiently
answered.

7.2 Summary of the Thesis Contribution

In this section we are summarizing the Thesis contribution that help construct the
answer towards the research objective.

In Chapter 2, we provide a concise overview of established theories and their
respective notations that are used throughout this thesis. The includes represen-
tation of LTI, LTV, and LPV system which are the basis framework to describe
system dynamics of interest. Afterward, we introduce the foundational theories
for the OBFs which are key ingredients of understanding OBFs and also construct-
ing OBF-based model. Lastly, we provide notion of optimality on the selection of
OBFs which then become the bridge to the next chapter.

In Chapter 3, we turn the optimality notion described in Chapter 2 into an
OBF pole selection problem. We then propose three different basis pole selection
algorithms to solve this problem:

• The Sequential Quadratic Programming (SQP) algorithm utilize direct compu-
tation of the gradient

• The Randomized Algorithm (RA) provides an alternative selection technique
for where the result can be interpreted in probabilistic sense

• The Sum of Squares (SOSP) algorithm provides a convex global solution to
the relaxed problem definition

Each of the proposed algorithm have a small number of tuning parameters which
is intuitive for the user. We then extend the basis selection problem for a model
of system that is obtained via system identification procedure. Throughout aca-
demic examples we demonstrate the performance and computational load of the
proposed methods. The SQP algorithm excels for a small-medium number of ba-
sis poles while RA algorithm is computationally more efficient for a large number
of basis poles. Due to the relaxation of the SOSP algorithm, it is more suited as a
tool to assess the result of the other two algorithms. With the OBF pole selection
at hand, we can start the next chapters on constructing OBF-based model in LTV
and LPV framework as well as the MPC control synthesis of those models.
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In Chapter 4, we are interested in solving the plant-model mismatch problem
of predictive control in case the cause of the changes in the plant dynamics is
not known. We first formulate LTI-OBF and LTV-OBF based model identification
in the PEM identification settings. Two methods to do iterative identification of
LTV-OBF are proposed:

• Weighted Least Square (WLS) estimation has the advantages of using past data
for estimation

• Recursive Least Square (RLS) do not use the full past data set but has the ease
of tuning parameter selection

With the model at hand, we construct the MPC problem with OBF model as its
prediction model. We start establishing classical feasibility and stability theorems
in the LTI framework and extend it to the LTV framework. In the LTV theorems,
we propose an extra condition to guarantee the stability of the LTV-OBF MPC
controlled system, where the stability of the controlled system can be established
from both the control synthesis and the identification side. The proposed LTV-
OBF MPC is then demonstrated in an academic case study. We shows comparable
performance between WLS and RLS method, with RLS having slightly better per-
formance in the experimental study.

In Chapter 5, we are focusing on solving the plant-model mismatch problem
in case the cause of the changes in the plant dynamics is known and measurable.
We first formulate LPV-OBF based model identification in the PEM identification
settings. Two approaches to estimate the LPV-OBF model coeffiecient are intro-
duced:

• Local LPV identification approach can be seen as an interpolation of the dy-
namical behavior of the system

• Global LPV identification approach is a direct identification method based
on a single data set that is measured from the system

For the construction of LPV-OBF MPC problem, we utilizes designated steady-
state target and extra penalty term for tracking purposes. The space of the steady-
state pair is characterized by a vector which is used as an argument of minimiza-
tion for the MPC problem. Such formulation leads to a straightforward formula-
tion of feasibility and stability theorems where the effect of the parameter varia-
tion on the MPC scheme is minimal. We then utilize Extended Kalman Filter to ad-
dress unaccounted changes in system dynamics from the identification of the LPV-
OBF model. The proposed LPV-OBF MPC is then demonstrated in an academic
case study where the global approach slightly outperform the local approach but
require more longer experiment time to obtain the model.

In Chapter 6, we test the performance of both LTV-OBF MPC and LPV-OBF
MPC in realistic industrial case studies that are based on distillation column. The
first case we use first principle model of High Purity Distillation Column, while the
second case we show scenario of drifting on Dual Distillation Column model with
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two identified FIR systems from different time instances. Some observation was
made during the experiment:

• For HPDC case study, the LTV-OBF MPC output has a higher variance com-
pared to LPV-OBF MPC

• The Variance comes from extra excitation signals, but can be turned off if the
model does not need to be updated (i.e. control in LTI-OBF mode)

• LPV-OBF MPC scheme in this scenario outperforms the LTV-OBF MPC scheme
in both tracking performance and guarantee of stability for the high purity
distillation column case

• For DDC case study, since the drift cannot be characterized by any measured
parameters, only the LTV-OBF MPC scheme can be realistically applied for
this case study

• For DDC case study, RLS identification strategy outperform the WLS strat-
egy in terms of tracking performance and stability of the closed-loop system

Throughout this experiment, we are sure that the LPV-OBF MPC is better for the
case when the variations of system dynamics are known, while LTV-OBF is better
when the variations are not known. The LPV-OBF MPC is more of an anticipative
controller where the anticipation time can be lowered by tuning the value of N .

7.3 Recommendations for Future Research

Below are several recommendations for possible future research related to the
topic of this thesis

• Improvement of the basis pole selection: Due to the growth of computation
power over the past year, new computationally expensive approaches for
selection can be explored.

• Utilization of Instrumental Variable or other closed lood identification method:
In the closed loop setting, OE noise model will always be biased. Introduc-
tion of IV to deal with this biased estimate can be explored. It is also inter-
esting to see the impact of the IV for the whole OBF MPC algorithm.

• Extension of the LTV-OBF MPC algorithm with an iterative update on Qk:
As indicated in the remark of Section 4.7, this direction can be explored to
simultaneously establish the closed-loop stability from both the control syn-
thesis and the identification side.

• Reformulation of the LTV-OBF MPC scheme: Notice that the LTV-OBF MPC
scheme presented in this thesis has a different formulation than the LPV-
OBF MPC scheme with target output and target penalty function. The dif-
ference on the formulation stem from the intention of exploring both method
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and obtain the learning from both formulation. Not until the later phase of
the research that we found out that the LPV-OBF MPC formulation gives
ease of formulation and more straight forward stability construction. Due
to this, reformulation of the LTV-OBF MPC scheme can be worked out to be
closer to the LPV-OBF scheme.

• Explore possibilty to implement EKF in the LTV-OBF setting: although the
coefficients of the LTV model are updated for each time step, incorporating
EKF in the total solution can provide extra tool to tackle plant-model mis-
match in the LTV setting.

• Extend the LPV-OBF model structure: the LPV-OBF model constructed in
this thesis is based on piece wise affine assumption of the system dynamic.
Hence, possible extension of the model structure by relaxing this assump-
tion can be explored.

• Comparison with non OBF MPC scheme: This thesis is focusing on the dif-
ferent settings (time and parameter varying) in which OBF MPC can be used.
Practical or theoretical comparison to other well established MPC scheme
can be explored. This will be usefull to give better comparative overview on
the OBF MPC scheme.
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A APPENDIX

Appendix

In this appendix, derivation of expressions as well as proofs of the the-
ories and lemmas of this thesis are presented. The notation of the ap-

pendix correspond to their respective chapters.

A.1 Derivation of gradients in Chapter 3

Each of the nz number of gradient in (3.24) can be distinguished based on that
the gradient elements is required to be computed for a real pole parameter or the
parameters of a complex conjugate pairs of basis poles. For a real pole parameter,
the j-th inequality results in:
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For the complex conjugate parts:
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where the derivatives w.r.t. ai are given by:
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((aiyj − bixj)2 + (aixj + biyj − 1)2), (A.11)

and the derivatives w.r.t bi are given by:

dNci
dbi

=
dNci
dbi

n∏
k=1,k ̸=i

(Nck), (A.12)

dDci
dbi

=
dDci
dbi

n∏
k=1,k ̸=i

(Dck), (A.13)

with

dNci
dbi

= ((bi + yj)
2 + (ai − xj)2)(2bi − 2yj) + . . .

((ai − xj)2 + (bi − yj)2)(2bi + 2yj), (A.14)
dDci
dbi

= (2xj(aiyj + bixj) + 2yj(biyj − aixj + 1)) . . .

((aiyj − bixj)2 + (aixj + biyj − 1)2)− . . .
(2x(aiyj − bixj)− 2y(aixj + biyj − 1)) . . .

((aiyj + bixj)
2 + (biy − aixj + 1)2). (A.15)



A.2 Proof of Theorem 4.1 167

A.2 Proof of Theorem 4.1

Proof: Supposed that K(k) or K exist such that all the conditions in Theorem
4.1 are satisfied. The first condition of Theorem 4.1 guarantees the existence of
optimal input sequence {u∗(i|k)}Ni=0 and the existence of uMPC(k) as the control
law. Such control law lead to a state x(k + 1) = x(i+ 1|k) for the MPC problem at
k+ 1. At time k+ 1, the previous optimal input sequence at time k can be used as
the candidate solution for i = 0, 1, . . . , N − 1:

{u(i|k + 1)}N−1
i=0 = {u∗(i|k)}Ni=1. (A.16)

This solution is not necessary the minimum of (4.29) at time k+1, but the feasibility
is guaranteed since both operational constraints and stability constraints for i =
0, 1, . . . , N − 1 are satisfied by using such an input sequence. Next, we need to
show that both of these constraints are also satisfied for i = N . In order to show
the satisfaction of both constraints, we utilize the definition of extended input uext
of (4.33) which also means that we have a full candidate of input sequence

{u(i|k + 1)}Ni=0 = {uext(i|k)}N+1
i=1 . (A.17)

By using sequence (A.17) we have x(N − 1|k + 1) = x(N |k). Supposed that the
second condition of Theorem 4.1 is satisfied, then we have

x(N |k + 1) = Ax(N |k) +Buext(N |k)
= (A+BK(k))x(N |k) + (I −A−BK(k))xr ∈ Xf

(A.18)

which shows that the stability constraint at i = N for time instance k + 1 is satis-
fied. Lastly, by using sequence (A.17) we know that u(N |k + 1) = K(k)(x(N |k)).
Since we know that x(N |k) ∈ Xf , the condition that is required to ensure that the
operational constraint

umin ≤ u(N |k + 1) ≤ umax, (A.19)

is satisfied, is the third condition of Theorem 4.1:

umin − ur ≤ K(k)(Xf ⊖ xr) ≤ umax − ur. (A.20)

These arguments ensure that the feasibility of MPC problem (4.29) at time k leads
to the feasibility of MPC problem (4.29) at time k + 1. This reasoning can be re-
peated for all k, which also implies the recursive feasibility of the MPC problem.

□

A.3 Proof of Theorem 4.2

Proof: According to definition 4.14, there are three conditions that need to be
satisfied to state that VN is a control Lyapunov function. The conditions are
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1. VN (x(k)) ≥ α1(∥x(k)− xr∥), ∀k ∈ Z,

2. VN (x(k)) ≤ α2(∥x(k)− xr∥), ∀k ∈ Z,

3. VN (Ax(k)+BuMPC(k)) ≤ VN (x(k))−α3(∥Ax(k) +BuMPC(k)− xr∥), ∀k ∈
Z.

The first condition is trivial to show since selecting

α1(∥x(k)− xr∥) =
N∑
k=0

(x(k)− xr)⊤C⊤QC(x(k)− xr), (A.21)

which is a part of the first element of stage cost li(x, u), should satisfy the first
condition for all x ∈ X. Satisfying the second and third conditions require a bit
more work and additional requirements. In this proof we also show that a partic-
ular selection of these requirements lead to satisfaction of both Control Lyapunov
conditions.

By having an MPC problem that is recursively feasible we guarantee the exis-
tence of the MPC control law for all k. Similar to (A.17), at time k + 1 we have a
candidate optimal sequence

{u(i|k + 1)}Ni=0 = {uext(i|k)}N+1
i=1 , (A.22)

which is not necessary optimal at time k + 1. Now denote ṼN (k + 1) as the cost
function of the MPC problem that utilizes the candidate optimal sequence (A.22):

ṼN (k + 1) := VN ({u(i|k + 1)}Ni=0, x(k + 1)). (A.23)

We utilize V ∗
N (k) in Definition 4.2 as the primal optimization of the MPC problem

at time k and without loss of generality we use K instead of K(k) to simplify
notation. Now the relation of V ∗

N (k) and ṼN (k + 1) is given as follows:

ṼN (k + 1) = V ∗
N (k)− l0

(
x(0|k), uMPC(k), x(k)

)
− Vf

(
x(N |k)

)
+ Vf

(
(A+BK)x(N |k) + (I −A−BK(k))xr

)
+ lN

(
x(N |k),Kx(N |k)

)
. (A.24)

In order to show the third condition, first we need to have ṼN (k+1) ≤ V ∗
N (k)x(k)−

l0
(
x(0|k), uMPC(k), x(k)

)
. This can be achieved if

Vf
(
(A+BK)x(N |k)+(I−A−BK(k))xr

)
−Vf

(
x(N |k)

)
+lN

(
x(N |k),Kx(N |k)

)
≤ 0.

(A.25)
With this equation it can be seen that the selection of the terminal cost Vf is crucial
to guarantee satisfaction of (A.25) and making Vf a control Lyapunov function
with control law K and invariant set Xf . One possible selection of the terminal
cost to achieve (A.25) is

Vf
(
x
)
= (x− xr)⊤P (x− xr), (A.26)
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with P ≻ 0. Substituting (A.26) into (A.25) lead to

(x(N |k)−xr)⊤
(
(A+BK)⊤P (A+BK)−P +C⊤QC+K⊤RK

)
(x(N |k)−xr) ≤ 0.

(A.27)
Now this particular selection of terminal cost is interesting since it also provides
a method to select a stabilizing linear controller K as a solution for LQR control
synthesis

(A+BK)⊤P (A+BK)− P ⪯ −(C⊤QC +K⊤RK) (A.28)

which is a uniformly stabilizing linear controller. The invariant set of such con-
troller is equivalent to the level set of (A.26)

Xf = {x|Vf (x) ≤ γ} (A.29)

with 0 < γ ≤ 0. A method to find the value of γ and the related LQR control
synthesis is elaborated further in Section 4.6.

By selecting Vf as (A.26), the first and the second conditions of Theorem 4.2
are achieved. However, since we only have

ṼN (k + 1) ≤ V ∗
N (k)− l0

(
x(0|k), uMPC(k)

)
(A.30)

the third Control Lyapunov condition is not yet achieved since we only have a
possible cost function of ṼN (k + 1) and not the primal optimum of V ∗

N (k + 1).
The last step that is required to complete the proof follows through the optimality
principle where it is stated that

V ∗
N (k + 1) ≤ ṼN (k + 1). (A.31)

This relation satisfies the second control Lyapunov condition and as well the third
condition of

V ∗
N (k + 1) ≤ V ∗

N (k)− l0
(
x(0|k), uMPC(k)

)
. (A.32)

□

A.4 Proof of Theorem 4.3

Proof: The variation ofCk does not violate any of the constraints of MPC problem
for a candidate solution on the next time instant k+1 which is denoted by{u(i|k+
1)}Ni=0:

• The operational constraint remains unchanged for K(k) or K that is invari-
ant with the variation of Ck,

• The stability constraint remains unchanged since Xf is invariant under the
variation of Ck.

Hence, same proof such as written in Theorem 4.1 can be directly applied for the
adaptive case. □
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A.5 Proof of Theorem 4.4

Proof: We follow the same line of reasoning of the stability proof written in The-
orem 4.2 to show that VN |k(·) admits a control Lyapunov function. The recursive
feasibility is needed to guarantee the existence of a solution to the MPC problem
(4.45) for all k. This condition also implies that the constraints of the MPC problem
are also satisfied for all k. The same terminal cost

Vf (x) = (x− xrk)⊤P (x− xrk) (A.33)

is being employed to satisfy the control Lyapunov conditions. The condition on
the controller K is updated based on (4.48).

As a replacement of the optimality principle of (A.31), the relation

VN |k(k + 1) ≤ ṼN |k(k)− l0
(
x(0|k), uMPC(k)

)
(A.34)

is guaranteed by satisfying

N∑
i=0

∥Ck+1
⊤(x(i|k + 1)− xrk)∥Qk+1

≤
N∑
i=0

∥Ck⊤(x(i|k + 1)− xrk))∥Qk (A.35)

The difference between the value function VN |k at time k and k + 1 is only
governed by the summation of the stage cost li|k. The right hand side of (A.35) can
be iteratively computed for each time step k. For arbitrary value of x(i|k + 1), i =
1, . . . , n and xr, the condition (A.35) is achieved by satisfying the condition (4.53):

Ck+1
⊤Qk+1(i)Ck+1 ⪯ C⊤

k Qk(i)Ck ∀k ∈ Z, i ∈ N.

At the next time instance k + 1, this condition can be achieved by adjusting
the sequence of weighting matrices Qk+1(i) for all i and/or restricting the value
of Ck+1 which comes from the iterative identification of model coefficient θk+1.
Suppose that Qk(i) is independent of i, then only a single matrix Qk+1 that needs
to be adjusted with respect to Ck+1.

□

A.6 Proof of Theorem 5.1

Proof: The feasibility of the MPC problem (5.18) is straightforward to show. By
selecting Xwf = ProjX(O

K,w
∞,η ) we get (5.29). If PPV−MPC is feasible at time k then

there exist a solution (uext(i|k), ξ) that achieves

(x(i|k), uext(i|k)) ∈ Z, for all i ∈ N

and
(x(N |k), ξ) ∈ Xwf .
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The admissible set Z does not depend on the target r or the scheduling variable p
thanks to Assumption 5.1. In the next time step k, the existence of a solution for
(5.18) is guaranteed since we can use

(uext(i|k + 1), ξ) = (uext(i+ 1|k), ξ), for all i ∈ N.

Since the set (5.28) is constructed based on (5.27) we get

(x(i|k + 1), uext(i|k + 1)) ∈ Z, for all i ∈ N, (A.36)

and
(x(N |k + 1), ξ) ∈ Xwf , (A.37)

for free. As mentioned in Section 5.4.3 the only condition that is needed for this
purpose is that the matrix A + BK is Hurwitz. Note that the local controller K
is independent of the scheduling variable p, and the invariant set OK,w∞,η is also
independent of p and remains the same for a selected control law K. Hence, as
long as PPV−MPC is feasible at time k the problem is feasible and remains feasible
for future time instances. □

A.7 Proof of Theorem 5.2

Proof: According to Definition 4.14 there are three conditions that need to be
satisfied to state that VN is a control Lyapunov function. The conditions are

1. VN (x(k)) ≥ α1(∥x(k)− xs∥), ∀k ∈ Z,

2. VN (x(k)) ≤ α2(∥x(k)− xs∥), ∀k ∈ Z,

3. VN (Ax(k)+BuMPC(k)) ≤ VN (x(k))−α3(∥Ax(k) +BuMPC(k)− xs∥), ∀k ∈
Z.

The first condition is trivial to show since selecting

α1(∥x(k)− xs∥) =
N∑
i=1

∥x(i|k)− xs∥2Q, (A.38)

which is a part of the cost function (5.16), should satisfy the first condition for all
x ∈ X. Satisfying the second and third conditions require a bit more work and
additional requirements. In this proof we also show that a particular selection of
these requirements lead to the satisfaction of both Control Lyapunov conditions.

By having an MPC problem that is recursively feasible, we guarantee the exis-
tence of the MPC control law for all k. Hence, at time k + 1 we have a candidate
optimal sequence

{u(i|k + 1)}Ni=0 = {uext(i|k)}N+1
i=1 , (A.39)
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which is not necessary optimal at time k + 1. Now denote ṼN (k + 1) as the cost
function of the MPC problem that utilizes the candidate optimal sequence (A.39):

ṼN (k + 1) := VN ({u(i|k + 1)}Ni=0, x(k + 1)). (A.40)

Now consider V ∗
N (k) in Definition 5.4 as the primal optimal cost of the MPC prob-

lem at time k. Now the relation of V ∗
N (k) and ṼN (k + 1) is given as follows:

ṼN (k + 1) = V ∗
N (k)− ∥x(0|k)− xs∥2Q − ∥u(0|k)− us∥2R
− ∥x(N |k)− xs∥2P + ∥(A+BK)x(N |k)− xs∥2P

+ ∥x(N |k)− xs∥2Q + ∥u(N |k)− us∥2R. (A.41)

In order to show the third condition, first we need to have ṼN (k + 1) ≤ V ∗
N (k) −

∥x(0|k)− xs∥2Q − ∥u(0|k)− us∥2R. This can be achieved if

∥(A+BK)x(N |k)− xs∥2P−∥x(N |k)− xs∥2P+∥x(N |k)− xs∥2Q+∥u(N |k)− us∥2R ≤ 0.
(A.42)

The left hand side of (A.42) can be collected into

(x(N |k) − xs)⊤
(
(A + BK)⊤P (A + BK) − P + Q + K⊤RK

)
(x(N |k) − xs).

(A.43)

This relation also provide a method to select a stabilizing linear controller K as a
solution of the LQR control synthesis problem

(A+BK)⊤P (A+BK)− P ⪯ −(Q+K⊤RK) (A.44)

which is the second condition of this theorem.

However, since we only have

ṼN (k + 1) ≤ V ∗
N (k)− ∥x(0|k)− xs∥2Q − ∥u(0|k)− us∥2R, (A.45)

the third Control Lyapunov condition is not yet achieved since we only have pos-
sible cost function value ṼN (k + 1) and not the primal optimum of V ∗

N (k + 1).
The last step that needs to be done to complete the proof is to use the optimality
principle

V ∗
N (k + 1) ≤ ṼN (k + 1). (A.46)

In the parameter-varying case, this optimality principle holds if the third condi-
tion of

Ṽo(ys − r)− Vo(ys − r) ≤ 0, (A.47)

is satisfied. From this condition, we can see that the target penalty function Vo
have additional role in stability beside dictating the selection of ξ for tracking.
This condition also implies the required situation for the end value of p(N), or the
trajectory of p(k) (Assumption 5.1), such that a stability statement can be made.

By using (A.46), the second and third control Lyapunov condition of

V ∗
N (k + 1) ≤ V ∗

N (k)− ∥x(0|k)− xs∥2Q − ∥u(0|k)− us∥2R, (A.48)

are satisfied. □
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A.8 Matrices and parameters used in the simulation
study of Chapter 4

Vertices considered for the LQR problem of the Oracle-MPC

θ̃orc1 =

[
0.0217 −0.0154 −0.0289 0.0191
0.0188 −0.0159 0.0120 0.0094

]
(A.49)

θ̃orc2 =

[
0.0265 −0.0196 −0.0312 0.0211
0.0112 0.0104 −0.0025 0.0030

]
(A.50)

θ̃orc3 =

[
0.0244 −0.0177 −0.0304 0.0203
0.0152 −0.0133 0.0074 0.0063

]
(A.51)

θ̃orc4 =

[
0.0286 −0.0218 −0.0304 0.0210
0.0024 0.0038 0.0072 −0.0036

]
(A.52)

θ̃orc5 =

[
0.0272 −0.0203 −0.0313 0.0212
0.0090 −0.0088 −0.0001 0.0013

]
(A.53)

LQR solution of the Oracle-MPC

Porc =


0.0664 −0.0107 −0.0006 0.0001
−0.0107 0.0380 0.0003 0.0003
0.0006 0.0003 0.0670 −0.0108
0.0001 0.0003 −0.0108 0.0381

 (A.54)

Korc =

[
0.4845 −0.6373 0.1831 −0.3991
0.1369 −0.3235 −0.4475 −0.4903

]
.10−3 (A.55)

Vertices considered for the LQR problem of the Fixed-MPC

θ̃fixed1 =

[
0.0217 −0.0154 −0.0289 0.0191
0.0188 −0.0159 0.0120 0.0094

]

LQR solution of the Fixed-MPC

Pfixed =


0.0739 −0.0118 0 −0.0002
−0.0118 0.0432 −0.0001 0.0006

0 0.0001 0.0741 −0.0117
−0.0002 0.0006 −0.0117 0.0431

 (A.56)

Kfixed =

[
−0.4167 −1.0147 0.1588 −0.3600
0.1176 −0.2915 −0.4349 0.7456

]
.10−3 (A.57)

Vertices considered for the LQR problem of the LPV-OBF MPC WLS and the
RLS
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θ̃wls1 = θ̃rls1 =

[
0.0604 0.6978 −0.0588 0.7091
0.1603 0.6167 −0.720 0.7265

]
(A.58)

θ̃wls2 = θ̃rls2 =

[
0.0947 −0.7160 −0.0490 0.7090
0.1946 −0.7971 −0.0622 0.7264

]
(A.59)

θ̃wls3 = θ̃rls3 =

[
−0.6282 −0.0311 −0.7654 0.0054
−0.5283 −0.1122 −0.7786 0.0228

]
(A.60)

θ̃wls4 = θ̃rls4 =

[
0.7856 0.0032 −0.7652 0.0072
0.8855 0.0778 0.7785 0.0246

]
(A.61)

θ̃wls5 = θ̃rls5 =

[
0.0622 0.6979 −0.0675 −0.7051
0.1622 0.6168 −0.0807 −0.6878

]
(A.62)

θ̃wls6 = θ̃rls6 =

[
0.7852 0.0130 0.6489 −0.0015
0.8851 −0.0681 0.6357 0.0159

]
(A.63)

θ̃wls7 = θ̃rls7 =

[
−0.6286 0.0213 0.6487 −0.0033
−0.5287 −0.1024 0.6355 0.0141

]
(A.64)

θ̃wls8 = θ̃rls8 =

[
−0.0966 0.7159 0.0577 −0.7052
0.1965 −0.7970 0.0709 0.6878

]
(A.65)

LQR solution of the LPV-OBF MPC WLS and the RLS

Pwls = Prls =


8.5660 0.3724 −0.2216 0.0003
0.3724 1.8737 0.0294 0.0035
−0.2216 0.0294 8.4983 0.4488
0.0003 0.0035 0.4488 1.8478

 (A.66)

Kwls = Krls =

[
−9.6388 1.3569 −0.2382 0.0737
−0.1744 0.0882 −8.7961 1.0285

]
.10−3 (A.67)

A.9 Matrices and parameters used in the simulation
study of Chapter 5

LPV-OBF model coefficients {ϑs}3s=1 of local approach for y1

{ϑs}3s=1 =

 7.6799 −0.8861 −5.7001 0.1920
−0.4854 1.6811 −1.0636 −0.3600
−0.2109 0.3089 −0.0928 −0.0662

 .10−2 (A.68)

LPV-OBF model coefficients {ϑs}3s=1 of local approach for y2

{ϑs}3s=1 =

17.8533 −9.0150 −7.1565 1.9351
31.8995 −3.7210 −23.6405 0.8064
−3.9230 3.7467 0.0253 −0.8032

 .10−2 (A.69)
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Transposed LPV-OBF model coefficient for global approach {ϑs}16s=1

{ϑs}16s=1
⊤
=



2.4925 1.4487
−1.8914 2.4762
−2.4864 −0.7387
−0.5793 −0.1517
−0.3048 −0.7413
0.5851 −0.3332
−0.3664 0.1967
−0.5176 −0.0560
−1.8523 −0.5759
0.8968 −1.8233
1.8943 0.4051
0.6854 0.3010
0.0704 0.1590
−0.0882 0.0621
0.1456 −0.1061
0.0575 −0.1331



(A.70)

LQR of both LPV-OBF MPC local and global

P =


4.9043 1.4766 0.0000 0.0000
1.4766 1.5595 0.0000 0.0000
0.0000 0.0000 4.9038 1.4767
0.0000 0.0000 1.4767 1.5594

 (A.71)

K =

[
1.1463 −0.3020 0.0000 0.0000
0.0000 0.0000 1.1469 0.3022

]
(A.72)

A.10 Matrices and parameters for LTV-OBF MPC in
Chapter 6 HPDC/case1

P matrix is truncated due to limited paper space

P = [PLTV 1 PLTV 2] (A.73)

PLTV 1 =



13.8691 10.6177 4.4313 1.7764 0.3047
10.6177 15.5923 9.8897 3.9008 0.1735
4.4313 9.8897 12.6860 7.0918 0.2188
1.7764 3.9008 7.0918 8.9553 2.4466
0.3047 0.1735 0.2188 2.4466 2.6758
−0.3245 −0.7472 −0.3448 0.0851 −0.0620
−0.7325 −0.9323 −0.8576 0.0729 0.1484
−0.6317 −0.9986 −0.9977 −0.2441 0.2367
0.1885 −0.1525 −0.5104 −0.3522 0.0152
0.3234 0.2892 0.1089 0.0090 0.0624


(A.74)
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PLTV 2 =



−0.3245 −0.7325 −0.6317 0.1885 0.3234
−0.7472 −0.9323 −0.9986 −0.1525 0.2892
−0.3448 −0.8576 −0.9977 −0.5104 0.1089
0.0851 0.0729 −0.2441 −0.3522 0.0090
−0.0620 0.1484 0.2367 0.0152 0.0624
11.4632 7.1726 2.1544 0.3611 −0.2745
7.1726 11.9976 6.4368 1.4989 −0.4208
2.1544 6.4368 9.5335 4.8755 −0.2866
0.3611 1.4989 4.8755 7.8836 2.1488
−0.2745 −0.4208 −0.2866 2.1488 2.8980


(A.75)

K matrix and the vertices are transposed due to limited paper space

K⊤ =



−6.4533 0.8045
−6.3846 1.0416
−4.5186 0.8562
−2.4405 0.5849
−0.1864 0.1268
−1.6258 −1.7889
−2.0516 −0.5892
−2.1794 0.2923
−2.1298 0.3729
−0.6427 0.0682


.10−3 (A.76)

θ̃⊤tv1 =



−0.0561 −0.0574
0.2889 0.2880
−0.0914 −0.0916
−0.0207 −0.0205
−0.1224 −0.1225
−0.5166 −0.5153
−0.6298 −0.6289
−0.3699 −0.3697
−0.2286 −0.2288
−0.1872 −0.1871


θ̃⊤tv2 =



−0.1168 −0.1180
0.2815 0.2806
0.0524 0.0521
−0.0681 −0.0679
0.1325 0.1324
0.6608 0.6621
0.0469 0.0478
−0.3765 −0.3763
−0.4280 −0.4282
−0.3432 −0.3430


θ̃⊤tv3 =



−0.2083 −0.2095
0.0601 0.0592
0.1758 0.1756
0.0422 0.0424
0.2841 0.2839
−0.4798 −0.4785
0.4709 0.4718
0.2549 0.2552
−0.3652 −0.3654
−0.4361 −0.4359


(A.77)

θ̃⊤tv4 =



−0.2004 −0.2016
−0.3122 −0.3131
0.0196 0.0194
0.0267 0.0268
0.0385 0.0384
0.2104 0.2117
−0.4662 −0.4654
0.4262 0.4265
0.2399 0.2397
−0.5981 −0.5979


θ̃⊤tv5 =



0.0024 0.0012
0.1029 0.1020
−0.1826 −0.1828
−0.0042 −0.0040
−0.1746 −0.1747
−0.1026 −0.1013
0.3605 0.3613
−0.4395 −0.4393
0.6226 0.6224
−0.4504 −0.4503


θ̃⊤tv6 =



0.2329 0.2316
0.2147 0.2138
−0.4149 −0.4151
−0.5979 −0.5977
0.5709 0.5707
−0.0246 −0.0233
−0.0615 −0.0606
0.1432 0.1434
0.1295 0.1293
0.0028 0.0029


(A.78)
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θ̃⊤tv7 =



0.2643 0.2631
0.3617 0.3608
0.1458 0.1455
0.6769 0.6771
0.4960 0.4958
0.0339 0.0352
−0.1279 −0.1271
0.0267 0.0269
0.2335 0.2333
0.0156 0.0157


θ̃⊤tv8 =



0.1826 0.1813
−0.1897 −0.1906
0.8009 0.8006
−0.3613 −0.3612
0.2108 0.2106
−0.0694 −0.0681
−0.0929 −0.0920
−0.2638 −0.2635
0.1701 0.1699
−0.0072 −0.0070


θ̃⊤tv9 =



0.4447 0.4434
−0.6704 −0.6712
−0.2796 −0.2799
0.1999 0.2001
0.2137 0.2135
−0.0591 −0.0577
0.0160 0.0169
−0.3143 −0.3141
−0.2586 −0.2588
−0.1471 −0.1470


(A.79)

θ̃⊤tv10 =



0.7377 0.7365
0.2500 0.2492
0.1051 0.1049
−0.0760 −0.0759
−0.4373 −0.4374
0.0359 0.0372
0.0452 0.0461
0.3023 0.3025
−0.1378 −0.1380
−0.2672 −0.2671


θ̃⊤tv11 =



0.0559 0.0547
−0.2911 −0.2920
0.0904 0.0902
0.0229 0.0231
0.1211 0.1209
0.5168 0.5181
0.6320 0.6329
0.3708 0.3711
0.2264 0.2262
0.1885 0.1887


θ̃⊤tv12 =



0.1166 0.1153
−0.2837 −0.2845
−0.0533 −0.0536
0.0704 0.0706
−0.1338 −0.1340
−0.6607 −0.6593
−0.0447 −0.0438
0.3774 0.3777
0.4258 0.4256
0.3445 0.3446


(A.80)

θ̃⊤tv13 =



0.2081 0.2068
−0.0623 −0.0631
−0.1768 −0.1770
−0.0400 −0.0398
−0.2853 −0.2855
0.4800 0.4813
−0.4687 −0.4678
−0.2541 −0.2538
0.3630 0.3628
0.4373 0.4375


θ̃⊤tv14 =



0.2002 0.1989
0.3100 0.3092
−0.0206 −0.0208
−0.0244 −0.0242
−0.0398 −0.0400
−0.2102 −0.2089
0.4685 0.4694
−0.4254 −0.4251
−0.2421 −0.2422
0.5994 0.5995


θ̃⊤tv15 =



−0.0026 −0.0039
−0.1051 −0.1059
0.1816 0.1814
0.0064 0.0066
0.1733 0.1731
0.1027 0.1041
−0.3582 −0.3574
0.4404 0.4407
−0.6248 −0.6250
0.4517 0.4519


(A.81)
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θ̃⊤tv16 =



−0.2331 −0.2343
−0.2169 −0.2178
0.4139 0.4137
0.6001 0.6003
−0.5722 −0.5724
0.0248 0.0261
0.0637 0.0646
−0.1423 −0.1420
−0.1317 −0.1319
−0.0015 −0.0013


θ̃⊤tv17 =



−0.2645 −0.2657
−0.3639 −0.3647
−0.1467 −0.1469
−0.6747 −0.6745
−0.4973 −0.4974
−0.0337 −0.0324
0.1302 0.1310
−0.0258 −0.0255
−0.2357 −0.2359
−0.0143 −0.0141


θ̃⊤tv18 =



−0.1828 −0.1840
0.1875 0.1866
−0.8018 −0.8020
0.3636 0.3638
−0.2121 −0.2122
0.0696 0.0709
0.0951 0.0960
0.2647 0.2649
−0.1723 −0.1725
0.0085 0.0086


(A.82)

θ̃⊤tv19 =



−0.4449 −0.4461
0.6681 0.6673
0.2787 0.2784
−0.1976 −0.1974
−0.2150 −0.2152
0.0592 0.0605
−0.0138 −0.0129
0.3152 0.3154
0.2564 0.2562
0.1484 0.1485


θ̃⊤tv20 =



−0.7379 −0.7392
−0.2522 −0.2531
−0.1061 −0.1063
0.0783 0.0785
0.4360 0.4358
−0.0358 −0.0344
−0.0430 −0.0421
−0.3014 −0.3012
0.1356 0.1354
0.2685 0.2686


(A.83)

A.11 Matrices and parameters for LPV-OBF MPC in
Chapter 6 HPDC/case1

LPV-OBF model coefficient for global approach {ϑs}120s=1
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{ϑs}120s=1
⊤
=



−1.8545 8.9413
1.6703 8.2037
5.6753 −27.5218
0.5173 1.9983
−3.4866 −16.5507
−5.7889 28.1644
−0.9305 −3.3733
−0.3754 −1.3838
1.8103 8.3121
1.9682 −9.5838
−0.1149 −3.4547
−0.0409 −1.3333
0.3702 11.2011
0.4964 0.5162
0.0349 2.9097
−0.3948 −12.0596
0.8937 −0.0942
−0.6752 −0.4249
0.0153 −1.5894
0.1394 4.3131
1.5948 −11.3540
−0.7791 −11.5456
−4.9133 35.6576
−0.2896 −5.6312
1.6484 24.8830
5.0450 −37.3098
−0.0652 6.3492
0.3144 4.5060
−0.8723 −13.2861
−1.7264 13.0053
0.3347 −4.6877
−0.1965 −12.2092
−0.9850 14.8794
0.2702 2.0692
0.3875 25.2058
0.9649 −15.7202
0.0899 7.9549
−0.2990 −3.5602
−0.1894 −12.9220
−0.3146 5.5273
−0.6004 5.9958

...
...





...
...

−0.3346 7.1825
1.8393 −19.3085
−0.2694 0.6224
0.7205 −14.9486
−1.8781 20.7110
−0.1225 −6.0411
0.3038 0.4272
−0.3888 7.7256
0.6392 −7.3990
1.6857 −5.6382
−1.2038 −8.8765
−5.1747 17.3465
−0.6166 −2.3771
2.5457 18.0730
5.2945 −17.7157
0.8737 3.5084
0.4879 1.7178
−1.3365 −9.1581
−1.8056 6.0073
0.1506 2.3449
−0.1817 1.1507
−0.4713 −7.7450
−0.3963 −0.0889
0.4108 −2.5222
0.4900 8.4729
−0.9120 −0.2265
0.5748 0.0484
−0.2384 1.3820
−0.1691 −3.0728
−1.5494 12.2249
0.8712 11.6453
4.7698 −38.3742
0.2195 5.2509
−1.8273 −25.0424
−4.8942 40.1325
0.1027 −6.1296
−0.2479 −4.1575
0.9591 13.3472

...
...





...
...

−0.3944 3.7267
0.1653 11.9115
1.1698 −11.9022
−0.2439 −1.5877
−0.3275 −24.6485
−1.1553 12.6472
−0.1118 −8.0813
0.2752 3.0931
0.1604 12.6618
0.3800 −4.4704
0.6067 −5.7882
0.3363 −7.2297
−1.8588 18.6670
0.2705 −0.6482
−0.7239 15.0471
1.8982 −20.0506
0.1244 6.0250
−0.3052 −0.3983
0.3906 −7.7772
−0.6461 7.1723
1.3505 3.1441
0.9164 4.0498
−4.2046 −9.7770
−0.4816 −2.3289
−1.8208 −8.1129
4.3606 10.1297
−0.1614 −0.8691
0.5251 2.5231
0.9018 4.0542
−1.5065 −3.4968
−1.1822 −5.9759
−1.2249 −2.1218
3.6999 18.4622
0.4981 1.5237
2.4511 4.2220
−3.8566 −19.0089
0.2379 1.1967
−0.5553 −1.7336
−1.2230 −2.0915
1.3388 6.5226


(A.84)
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LQR of LPV-OBF MPC

P =

[
PLPV 0

0 PLPV

]
(A.85)

with

PLPV =


4.3955 3.6629 1.3480 0.5804 0.0411
3.6629 9.2355 6.1262 2.2505 0.1534
1.3480 6.1262 10.1923 6.4840 0.4077
0.5804 2.2505 6.4840 11.1608 4.1273
0.0411 0.1534 0.4077 4.1273 4.6916

 (A.86)

Transposed K matrix

K⊤ =



0.8124 0.0000
0.4735 0.0000
0.2050 0.0000
0.0915 0.0000
0.0066 0.0000
0.0000 0.8124
0.0000 0.4735
0.0000 0.2050
0.0000 0.0915
0.0000 0.0066


(A.87)

A.12 Matrices and parameters for MPC in Chapter 6
DDC/case2

PLTV = [PLTV 1 PLTV 2 PLTV 3] (A.88)

P matrix is truncated due to limited paper space
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PLTV 1 =



3.1251 −2.5563 6.5102 −0.6443 −6.1922 −2.8919 −0.0951
−2.5563 8.0741 −11.6502 2.4152 17.0408 7.8433 0.0501
6.5102 −11.6502 22.0498 −2.4284 −26.4909 −11.5793 −2.1235
−0.6443 2.4152 −2.4284 1.5239 4.9286 2.6861 −1.4085
−6.1922 17.0408 −26.4909 4.9286 38.4591 17.2567 1.7655
−2.8919 7.8433 −11.5793 2.6861 17.2567 8.5027 −0.6176
−0.0951 0.0501 −2.1235 −1.4085 1.7655 −0.6176 5.4133
3.2262 −7.9782 11.7641 −3.0026 −17.0983 −8.3358 1.9167
−1.1387 −0.6018 −0.5062 −0.2543 −1.2967 −0.4151 −0.2092
2.2854 −6.3167 9.5505 −1.8553 −13.4611 −6.3214 −0.0892
−16.0032 29.9766 −54.3126 6.8850 68.0791 29.9918 5.0946
−8.3371 13.2762 −26.7091 1.9820 30.6309 12.4664 4.6002
22.1701 −59.8377 91.9137 −17.2589 −130.7269 −59.6597 −2.2402
4.0412 3.0075 −0.6391 1.0372 6.8454 1.0067 1.3692
−5.6317 14.7433 −26.0848 2.5443 35.5520 14.7473 8.0326
7.8798 −24.9533 31.6067 −11.5594 −51.9822 −27.0827 10.4623
−0.9352 2.2575 −2.8374 1.2630 4.5170 2.5501 −1.7751
−0.0342 0.3974 −0.4762 0.1645 0.8187 0.3579 −0.1336
−3.6775 9.7404 −13.2826 4.2874 20.3219 10.4394 −3.9640
−0.6151 1.9030 −2.4246 0.8853 3.9313 2.0730 −0.9034


(A.89)

PLTV 2 =



3.2262 −1.1387 2.2854 −16.0032 −8.3371 22.1701 4.0412
−7.9782 −0.6018 −6.3167 29.9766 13.2762 −59.8377 3.0075
11.7641 −0.5062 9.5505 −54.3126 −26.7091 91.9137 −0.6391
−3.0026 −0.2543 −1.8553 6.8850 1.9820 −17.2589 1.0372
−17.0983 −1.2967 −13.4611 68.0791 30.6309 −130.7269 6.8454
−8.3358 −0.4151 −6.3214 29.9918 12.4664 −59.6597 1.0067
1.9167 −0.2092 −0.0892 5.0946 4.6002 −2.2402 1.3692
9.2064 0.2328 6.3572 −30.3898 −12.9063 60.3364 −1.7345
0.2328 2.7679 0.5415 4.1166 1.5645 4.3995 −4.5095
6.3572 0.5415 5.4649 −24.6965 −11.3205 47.9840 −1.0762
−30.3898 4.1166 −24.6965 149.7394 72.9015 −239.6697 −1.9930
−12.9063 1.5645 −11.3205 72.9015 39.6453 −110.6774 −2.3403
60.3364 4.3995 47.9840 −239.6697 −110.6774 465.5145 −14.6373
−1.7345 −4.5095 −1.0762 −1.9930 −2.3403 −14.6373 30.7797
−12.3852 0.9023 −11.4550 67.0327 29.6612 −108.8341 7.5582
29.6112 2.3749 19.3144 −78.4178 −27.0700 181.2225 −9.5438
−3.0866 −0.1913 −1.8055 6.8036 2.2520 −16.4570 0.5066
−0.4572 −0.1185 −0.3164 1.1382 0.4647 −2.8673 0.8612
−11.6690 −0.7741 −7.6749 32.7248 12.5593 −72.1580 2.6702
−2.3062 −0.2258 −1.4684 5.6863 1.8787 −13.7601 0.7179


(A.90)
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PLTV 3 =



−5.6317 7.8798 −0.9352 −0.0342 −3.6775 −0.6151
14.7433 −24.9533 2.2575 0.3974 9.7404 1.9030
−26.0848 31.6067 −2.8374 −0.4762 −13.2826 −2.4246
2.5443 −11.5594 1.2630 0.1645 4.2874 0.8853
35.5520 −51.9822 4.5170 0.8187 20.3219 3.9313
14.7473 −27.0827 2.5501 0.3579 10.4394 2.0730
8.0326 10.4623 −1.7751 −0.1336 −3.9640 −0.9034
−12.3852 29.6112 −3.0866 −0.4572 −11.6690 −2.3062
0.9023 2.3749 −0.1913 −0.1185 −0.7741 −0.2258
−11.4550 19.3144 −1.8055 −0.3164 −7.6749 −1.4684
67.0327 −78.4178 6.8036 1.1382 32.7248 5.6863
29.6612 −27.0700 2.2520 0.4647 12.5593 1.8787
−108.8341 181.2225 −16.4570 −2.8673 −72.1580 −13.7601
7.5582 −9.5438 0.5066 0.8612 2.6702 0.7179
53.9739 −31.5931 1.1271 0.4170 11.6224 2.2308
−31.5931 109.2799 −11.7810 −1.6250 −41.4615 −8.5630
1.1271 −11.7810 1.7444 0.2417 4.9048 0.9282
0.4170 −1.6250 0.2417 0.1531 0.6390 0.1148
11.6224 −41.4615 4.9048 0.6390 16.9231 3.4791
2.2308 −8.5630 0.9282 0.1148 3.4791 0.8819


(A.91)

K matrix and the vertices are transposed due to limited paper space

K⊤
orc =



−0.1033 0.7975 0.0095 −0.1159 0.2188
−0.3178 −0.6997 0.1590 −0.1544 −0.1494
−0.0344 1.5379 −0.1247 0.0450 0.1790
−0.0801 −0.1815 0.0027 −0.0643 −0.1912
−0.2987 −1.6836 0.1419 −0.3020 −0.1828
−0.2267 −1.0637 0.0556 −0.1112 −0.2476
0.0848 −0.0939 0.0531 −0.0158 0.5444
0.1672 0.8246 −0.0722 0.1023 0.4096
0.0156 −0.3838 −0.4049 0.1427 −0.0887
0.2187 0.7477 −0.2899 0.0830 0.1572
−0.3576 −4.3226 −0.2709 0.0773 −0.4473
−0.0695 −2.0111 0.2715 0.1621 −0.1020
1.8045 6.2185 −1.2508 0.7748 1.2618
0.6537 3.0831 −0.1449 −0.7890 0.7174
0.0284 −1.6813 −0.5096 −0.4211 0.8286
0.6643 2.1046 −0.1388 0.5729 1.6916
−0.0330 −0.1955 0.0394 −0.0333 −0.3484
0.0122 0.0527 0.0144 −0.0230 −0.0669
−0.2126 −0.8938 0.1346 −0.1650 −0.8006
−0.0473 −0.1574 0.0193 −0.0445 −0.1334



(A.92)
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θ̃⊤tv1 =



2.9969 −1.2892
−10.9441 1.5302
16.2904 −3.6052
−2.7590 −0.5226
−22.3824 0.6521
−9.1454 −0.5713
−1.3249 1.1479
10.5804 −0.6017
1.8665 −0.5692
9.6751 −2.2213
−39.6454 6.4579
−20.2297 8.8703
79.2116 −8.5846
−12.4640 0.6420
−18.0098 −2.1990
30.7208 3.5098
−2.8073 0.2812
−0.3879 0.8142
−12.4704 0.3193
−2.3078 −0.2537



θ̃⊤tv2 =



3.0029 −1.2832
−11.0271 1.4472
16.3355 −3.5601
−2.8823 −0.6459
−22.5141 0.5203
−9.2866 −0.7125
−1.0332 1.4396
10.9152 −0.2669
2.0087 −0.4270
8.7256 −3.1708
−39.3174 6.7859
−20.1953 8.9047
79.2441 −8.5521
−12.2115 0.8946
−18.0961 −2.2854
31.1574 3.9464
−2.5986 0.4899
−0.9266 0.2755
−12.8027 −0.0130
−2.3693 −0.3153



θ̃⊤tv3 =



3.0282 −1.2579
−11.1732 1.3011
16.2733 −3.6223
−2.7360 −0.4996
−22.3971 0.6374
−9.0028 −0.4287
−1.1622 1.3106
10.5867 −0.5954
2.3875 −0.0482
9.3108 −2.5856
−38.9753 7.1280
−20.1032 8.9968
79.0640 −8.7322
−12.3367 0.7693
−18.5438 −2.7330
30.8250 3.6141
−2.9704 0.1181
−1.0714 0.1307
−12.0762 0.7135
−2.0926 −0.0386


(A.93)

θ̃⊤tv4 =



2.8801 −1.4060
−11.2924 1.1820
16.4264 −3.4692
−2.8514 −0.6150
−22.3683 0.6662
−9.1674 −0.5933
−1.0833 1.3895
10.5743 −0.6078
1.8159 −0.6198
9.4683 −2.4281
−39.2901 6.8132
−20.1787 8.9213
79.1510 −8.6451
−12.3663 0.7397
−18.6096 −2.7989
30.5564 3.3454
−3.0309 0.0577
−1.0975 0.1046
−13.2362 −0.4465
−2.0532 0.0008



θ̃⊤tv5 =



2.8390 −1.4471
−11.3521 1.1222
15.8108 −4.0849
−2.6790 −0.4426
−22.1787 0.8558
−9.3059 −0.7318
−1.2931 1.1797
10.6039 −0.5782
1.7906 −0.6451
9.4628 −2.4336
−39.0506 7.0527
−20.5433 8.5568
79.2380 −8.5581
−12.6323 0.4737
−17.9658 −2.1551
30.9590 3.7480
−2.8422 0.2463
−1.3177 −0.1156
−12.6163 0.1734
−2.4679 −0.4138



θ̃⊤tv6 =



3.0146 −1.2715
−11.0470 1.4273
16.3763 −3.5193
−2.2772 −0.0408
−22.7869 0.2476
−9.3925 −0.8184
−0.7990 1.6738
10.7650 −0.4171
1.9878 −0.4479
9.4116 −2.4849
−39.1611 6.9422
−20.2668 8.8332
79.5899 −8.2062
−12.3496 0.7564
−17.9998 −2.1890
30.7121 3.5011
−3.3506 −0.2621
−1.0403 0.1619
−12.5957 0.1939
−2.3439 −0.2899


(A.94)
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θ̃⊤tv7 =



2.6228 −1.6633
−11.2045 1.2698
16.4018 −3.4938
−3.0184 −0.7820
−22.5578 0.4767
−9.8277 −1.2536
−0.9321 1.5407
10.1333 −1.0488
2.0536 −0.3821
9.2719 −2.6246
−39.0534 7.0499
−20.2407 8.8593
79.1789 −8.6173
−12.3751 0.7309
−18.2175 −2.4068
30.6351 3.4241
−2.8467 0.2418
−0.8233 0.3788
−12.5079 0.2818
−2.5564 −0.5023



θ̃⊤tv8 =



2.9076 −1.3785
−10.5238 1.9505
16.3029 −3.5927
−2.7815 −0.5452
−21.9136 1.1209
−9.6459 −1.0718
−1.1723 1.3006
10.7992 −0.3829
2.1957 −0.2400
9.4537 −2.4428
−39.2238 6.8795
−20.2873 8.8127
79.1135 −8.6827
−12.2448 0.8612
−18.3421 −2.5313
30.8835 3.6726
−3.2480 −0.1595
−1.0546 0.1476
−12.7114 0.0783
−2.5163 −0.4623



θ̃⊤tv9 =



3.1484 −1.1377
−10.9012 1.5732
16.2369 −3.6587
−2.9077 −0.6714
−22.3408 0.6937
−9.3185 −0.7445
−1.0682 1.4046
10.6896 −0.4925
2.0501 −0.3856
9.2078 −2.6886
−38.6306 7.4727
−20.3710 8.7290
79.3715 −8.4247
−12.9501 0.1559
−18.2597 −2.4489
30.7880 3.5771
−3.0520 0.0365
−0.5101 0.6920
−12.8224 −0.0328
−2.2014 −0.1474


(A.95)

θ̃⊤tv10 =



3.0193 −1.2668
−11.0003 1.4741
16.2705 −3.6251
−2.8456 −0.6093
−22.2627 0.7718
−9.2025 −0.6284
−0.8740 1.5989
10.3991 −0.7830
2.1176 −0.3181
9.7839 −2.1125
−38.9058 7.1975
−20.2336 8.8664
79.7508 −8.0453
−12.0689 1.0371
−18.2994 −2.4886
31.2023 3.9914
−2.6534 0.4351
−0.8599 0.3422
−12.7905 −0.0008
−2.3421 −0.2881



θ̃⊤tv11 =



3.6418 −0.6443
−10.8962 1.5782
16.0864 −3.8092
−2.9109 −0.6745
−22.3976 0.6369
−9.4842 −0.9102
−1.1201 1.3527
10.3124 −0.8697
1.8410 −0.5947
9.3619 −2.5345
−39.0185 7.0848
−19.9179 9.1822
79.1253 −8.6709
−12.2135 0.8926
−17.9237 −2.1129
30.6533 3.4423
−2.9290 0.1595
−1.1187 0.0835
−12.7005 0.0892
−2.1837 −0.1297



θ̃⊤tv12 =



3.5417 −0.7444
−11.3010 1.1734
16.2256 −3.6700
−2.9454 −0.7090
−22.4145 0.6200
−9.4483 −0.8742
−0.9704 1.5024
10.6230 −0.5591
2.3255 −0.1102
9.3972 −2.4993
−39.3668 6.7365
−20.8878 8.2122
79.2922 −8.5039
−12.2851 0.8209
−18.3790 −2.5683
30.6842 3.4732
−2.9427 0.1459
−0.8857 0.3165
−12.6810 0.1087
−2.4851 −0.4311


(A.96)
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θ̃⊤tv13 =



3.1504 −1.1357
−10.9842 1.4901
16.5510 −3.3446
−2.3257 −0.0893
−22.4115 0.6230
−9.2562 −0.6822
−1.4238 1.0490
10.0601 −1.1220
1.9629 −0.4728
9.1885 −2.7079
−39.0236 7.0797
−20.5835 8.5166
79.0573 −8.7389
−12.2628 0.8432
−18.2657 −2.4550
31.1299 3.9189
−3.0395 0.0490
−0.8269 0.3753
−12.8170 −0.0273
−2.3690 −0.3150



θ̃⊤tv14 =



3.0350 −1.2511
−11.0184 1.4560
16.6145 −3.2811
−3.1566 −0.9203
−22.8471 0.1874
−9.3643 −0.7902
−1.5670 0.9059
10.8380 −0.3441
2.0221 −0.4136
9.6866 −2.2099
−38.8666 7.2367
−20.4315 8.6685
79.1656 −8.6306
−12.2660 0.8400
−18.0647 −2.2539
30.9493 3.7384
−3.0068 0.0817
−1.0789 0.1233
−12.6933 0.0964
−2.3853 −0.3313



θ̃⊤tv15 =



3.1169 −1.1692
−11.5992 0.8751
16.4797 −3.4159
−2.8669 −0.6305
−22.1362 0.8982
−9.5453 −0.9713
−1.0511 1.4217
10.6188 −0.5633
2.2191 −0.2166
9.4738 −2.4227
−39.1696 6.9338
−20.1076 8.9924
79.1003 −8.6958
−12.3722 0.7338
−17.8936 −2.0829
31.2567 4.0458
−3.3120 −0.2234
−0.7371 0.4650
−12.7407 0.0489
−2.1219 −0.0679


(A.97)

θ̃⊤tv16 =



3.0469 −1.2392
−11.0471 1.4272
16.9010 −2.9946
−2.8113 −0.5749
−21.9737 1.0608
−9.2713 −0.6973
−0.9503 1.5225
10.6093 −0.5728
1.8872 −0.5485
9.3345 −2.5619
−39.0022 7.1011
−20.5906 8.5094
79.3093 −8.4868
−12.3474 0.7586
−17.8643 −2.0536
30.5904 3.3795
−2.7455 0.3430
−1.0979 0.1043
−12.4875 0.3022
−2.0681 −0.0141



θ̃⊤tv17 =



3.0675 −1.2186
−10.9606 1.5138
16.4781 −3.4175
−2.6423 −0.4059
−22.4740 0.5605
−9.1788 −0.6047
−0.9131 1.5597
10.4816 −0.7005
2.5771 0.1414
9.5901 −2.3063
−39.1764 6.9269
−20.1899 8.9101
78.9348 −8.8613
−12.7336 0.3724
−17.9099 −2.0992
30.8245 3.6136
−2.6766 0.4120
−1.1298 0.0723
−12.9651 −0.1754
−2.5106 −0.4566



θ̃⊤tv18 =



3.0267 −1.2594
−11.0015 1.4728
16.4409 −3.4547
−3.1332 −0.8969
−22.3198 0.7147
−9.1014 −0.5274
−1.3556 1.1172
10.2217 −0.9604
2.2756 −0.1601
9.1571 −2.7393
−39.4080 6.6953
−20.2472 8.8529
79.7459 −8.0503
−12.5915 0.5146
−18.0283 −2.2176
30.8596 3.6486
−3.2586 −0.1701
−1.1784 0.0238
−12.6978 0.0919
−2.3691 −0.3151


(A.98)
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θ̃⊤tv19 =



3.0865 −1.1996
−11.3535 1.1208
16.4084 −3.4872
−2.7074 −0.4710
−22.1423 0.8922
−9.0663 −0.4923
−1.3257 1.1471
10.6780 −0.5040
2.1625 −0.2732
9.2730 −2.6235
−38.8535 7.2498
−20.0828 9.0173
79.3286 −8.4676
−12.1087 0.9974
−18.0417 −2.2309
30.4696 3.2587
−3.0119 0.0766
−0.7553 0.4469
−12.8019 −0.0123
−2.8956 −0.8416



θ̃⊤tv20 =



3.2440 −1.0420
−11.0716 1.4028
16.5782 −3.3174
−3.0100 −0.7736
−22.3479 0.6866
−9.0350 −0.4610
−0.7401 1.7327
10.5184 −0.6637
1.6345 −0.8012
9.4460 −2.4504
−39.1558 6.9475
−20.2240 8.8760
79.0648 −8.7313
−12.5826 0.5235
−18.3178 −2.5071
31.0954 3.8845
−3.1618 −0.0732
−1.0217 0.1804
−12.5125 0.2772
−2.8290 −0.7750



θ̃⊤tv21 =



3.0277 −1.2584
−11.1543 1.3200
16.3280 −3.5676
−2.9748 −0.7384
−22.3669 0.6675
−9.2851 −0.7110
−0.7622 1.7107
10.4678 −0.7143
2.2783 −0.1574
9.0688 −2.8277
−38.5414 7.5619
−20.4873 8.6127
79.1689 −8.6272
−12.1639 0.9422
−18.1557 −2.3449
30.9498 3.7388
−3.2736 −0.1851
−1.4470 −0.2449
−12.9447 −0.1550
−2.3827 −0.3286


(A.99)

θ̃⊤tv22 =



3.0218 −1.2643
−11.0714 1.4030
16.2830 −3.6126
−2.8515 −0.6151
−22.2352 0.7993
−9.1439 −0.5698
−1.0539 1.4189
10.1330 −1.0491
2.1362 −0.2995
10.0183 −1.8782
−38.8694 7.2339
−20.5217 8.5783
79.1364 −8.6597
−12.4164 0.6896
−18.0693 −2.2586
30.5131 3.3022
−3.4823 −0.3938
−0.9083 0.2938
−12.6124 0.1773
−2.3211 −0.2671



θ̃⊤tv23 =



2.9965 −1.2896
−10.9252 1.5491
16.3452 −3.5505
−2.9978 −0.7614
−22.3522 0.6822
−9.4277 −0.8536
−0.9249 1.5480
10.4614 −0.7206
1.7574 −0.6783
9.4331 −2.4633
−39.2115 6.8918
−20.6138 8.4862
79.3166 −8.4796
−12.2912 0.8148
−17.6217 −1.8110
30.8455 3.6345
−3.1105 −0.0220
−0.7635 0.4387
−13.3389 −0.5492
−2.5978 −0.5438



θ̃⊤tv24 =



3.1446 −1.1415
−10.8061 1.6682
16.1920 −3.7036
−2.8824 −0.6460
−22.3810 0.6535
−9.2631 −0.6890
−1.0037 1.4691
10.4739 −0.7082
2.3290 −0.1067
9.2756 −2.6209
−38.8967 7.2066
−20.5383 8.5617
79.2295 −8.5667
−12.2615 0.8445
−17.5558 −1.7451
31.1141 3.9032
−3.0501 0.0384
−0.7374 0.4648
−12.1789 0.6108
−2.6372 −0.5832


(A.100)



A.12 Chapter 6 case 2 matrices and parameters 187

θ̃⊤tv25 =



3.1857 −1.1004
−10.7464 1.7280
16.8077 −3.0879
−3.0548 −0.8184
−22.5707 0.4638
−9.1246 −0.5505
−0.7940 1.6789
10.4443 −0.7378
2.3543 −0.0814
9.2811 −2.6154
−39.1362 6.9671
−20.1738 8.9263
79.1425 −8.6537
−11.9956 1.1104
−18.1996 −2.3889
30.7115 3.5006
−3.2387 −0.1502
−0.5172 0.6849
−12.7988 −0.0091
−2.2226 −0.1686



θ̃⊤tv26 =



3.0101 −1.2760
−11.0514 1.4229
16.2421 −3.6535
−3.4566 −1.2202
−21.9625 1.0720
−9.0380 −0.4639
−1.2881 1.1848
10.2832 −0.8989
2.1570 −0.2787
9.3323 −2.5641
−39.0257 7.0776
−20.4502 8.6498
78.7906 −9.0056
−12.2783 0.8278
−18.1657 −2.3550
30.9585 3.7475
−2.7304 0.3582
−0.7947 0.4075
−12.8193 −0.0297
−2.3465 −0.2925



θ̃⊤tv27 =



3.4019 −0.8842
−10.8939 1.5804
16.2167 −3.6790
−2.7154 −0.4790
−22.1916 0.8429
−8.6028 −0.0287
−1.1550 1.3179
10.9149 −0.2672
2.0913 −0.3444
9.4720 −2.4244
−39.1335 6.9699
−20.4763 8.6237
79.2016 −8.5945
−12.2528 0.8533
−17.9479 −2.1372
31.0354 3.8245
−3.2343 −0.1457
−1.0116 0.1906
−12.9072 −0.1175
−2.1341 −0.0800


(A.101)

θ̃⊤tv28 =



3.1171 −1.1690
−11.5747 0.8997
16.3156 −3.5801
−2.9523 −0.7159
−22.8357 0.1988
−8.7846 −0.2105
−0.9148 1.5580
10.2490 −0.9331
1.9491 −0.4866
9.2902 −2.6062
−38.9630 7.1403
−20.4297 8.6703
79.2670 −8.5291
−12.3831 0.7230
−17.8234 −2.0126
30.7870 3.5760
−2.8330 0.2555
−0.7803 0.4218
−12.7037 0.0860
−2.1741 −0.1201



θ̃⊤tv29 =



2.8763 −1.4098
−11.1973 1.2770
16.3815 −3.5141
−2.8261 −0.5897
−22.4085 0.6260
−9.1119 −0.5379
−1.0189 1.4539
10.3586 −0.8235
2.0948 −0.3409
9.5361 −2.3604
−39.5562 6.5471
−20.3460 8.7540
79.0090 −8.7871
−11.6777 1.4283
−17.9058 −2.0950
30.8825 3.6716
−3.0290 0.0596
−1.3248 −0.1227
−12.5926 0.1970
−2.4890 −0.4350



θ̃⊤tv30 =



3.0053 −1.2808
−11.0982 1.3761
16.3480 −3.5477
−2.8881 −0.6518
−22.4866 0.5479
−9.2280 −0.6539
−1.2131 1.2597
10.6491 −0.5330
2.0273 −0.4084
8.9600 −2.9365
−39.2810 6.8223
−20.4834 8.6166
78.6297 −9.1665
−12.5590 0.5470
−17.8661 −2.0553
30.4682 3.2572
−3.4275 −0.3390
−0.9750 0.2271
−12.6246 0.1651
−2.3483 −0.2943


(A.102)
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θ̃⊤tv31 =



2.3829 −1.9032
−11.2023 1.2720
16.5320 −3.3636
−2.8229 −0.5865
−22.3518 0.6827
−8.9462 −0.3722
−0.9670 1.5058
10.7358 −0.4463
2.3039 −0.1318
9.3820 −2.5145
−39.1684 6.9349
−20.7992 8.3009
79.2552 −8.5409
−12.4144 0.6916
−18.2418 −2.4310
31.0173 3.8063
−3.1520 −0.0635
−0.7162 0.4859
−12.7146 0.0751
−2.5067 −0.4527



θ̃⊤tv32 =



2.3829 −1.9032
−11.2023 1.2720
16.5320 −3.3636
−2.8229 −0.5865
−22.3518 0.6827
−8.9462 −0.3722
−0.9670 1.5058
10.7358 −0.4463
2.3039 −0.1318
9.3820 −2.5145
−39.1684 6.9349
−20.7992 8.3009
79.2552 −8.5409
−12.4144 0.6916
−18.2418 −2.4310
31.0173 3.8063
−3.1520 −0.0635
−0.7162 0.4859
−12.7146 0.0751
−2.5067 −0.4527



θ̃⊤tv33 =



2.8743 −1.4118
−11.1142 1.3601
16.0675 −3.8282
−3.4081 −1.1717
−22.3378 0.6967
−9.1742 −0.6002
−0.6632 1.8096
10.9881 −0.1940
2.1820 −0.2537
9.5554 −2.3411
−39.1633 6.9400
−20.1335 8.9665
79.3232 −8.4729
−12.3650 0.7410
−17.8997 −2.0890
30.5407 3.3297
−3.0415 0.0470
−1.0080 0.1941
−12.5981 0.1916
−2.3214 −0.2674


(A.103)

θ̃⊤tv34 =



2.9896 −1.2965
−11.0801 1.3942
16.0040 −3.8916
−2.5772 −0.3408
−21.9023 1.1322
−9.0662 −0.4921
−0.5201 1.9527
10.2102 −0.9719
2.1228 −0.3129
9.0573 −2.8391
−39.3203 6.7830
−20.2855 8.8145
79.2149 −8.5812
−12.3618 0.7442
−18.1008 −2.2900
30.7212 3.5102
−3.0741 0.0144
−0.7561 0.4461
−12.7218 0.0679
−2.3051 −0.2511



θ̃⊤tv35 =



2.9078 −1.3783
−10.4992 1.9751
16.1388 −3.7569
−2.8669 −0.6305
−22.6131 0.4214
−8.8851 −0.3111
−1.0360 1.4368
10.4294 −0.7527
1.9258 −0.5099
9.2701 −2.6263
−39.0173 7.0860
−20.6094 8.4906
79.2802 −8.5160
−12.2557 0.8503
−18.2718 −2.4611
30.4138 3.2028
−2.7690 0.3195
−1.0978 0.1044
−12.6743 0.1153
−2.5685 −0.5145



θ̃⊤tv36 =



2.9778 −1.3083
−11.0513 1.4230
15.7174 −4.1782
−2.9225 −0.6861
−22.7757 0.2588
−9.1591 −0.5851
−1.1367 1.3361
10.4389 −0.7432
2.2577 −0.1780
9.4094 −2.4871
−39.1846 6.9187
−20.1264 8.9736
79.0712 −8.7250
−12.2804 0.8256
−18.3011 −2.4904
31.0801 3.8691
−3.3354 −0.2469
−0.7371 0.4651
−12.9276 −0.1379
−2.6223 −0.5683


(A.104)
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θ̃⊤tv37 =



2.9572 −1.3289
−11.1379 1.3364
16.1403 −3.7553
−3.0915 −0.8551
−22.2754 0.7591
−9.2517 −0.6776
−1.1740 1.2989
10.5666 −0.6155
1.5678 −0.8679
9.1538 −2.7427
−39.0105 7.0929
−20.5271 8.5729
79.4457 −8.3505
−11.8943 1.2118
−18.2555 −2.4448
30.8460 3.6350
−3.4044 −0.3159
−0.7051 0.4971
−12.4500 0.3397
−2.1798 −0.1258



θ̃⊤tv38 =



2.9980 −1.2881
−11.0969 1.3774
16.1776 −3.7180
−2.6005 −0.3642
−22.4295 0.6050
−9.3290 −0.7550
−0.7315 1.7414
10.8265 −0.3556
1.8693 −0.5664
9.5868 −2.3096
−38.7788 7.3245
−20.4699 8.6302
78.6346 −9.1615
−12.0364 1.0696
−18.1371 −2.3264
30.8110 3.6000
−2.8224 0.2661
−0.6565 0.5456
−12.7173 0.0724
−2.3213 −0.2673



θ̃⊤tv39 =



2.9381 −1.3480
−10.7449 1.7294
16.2100 −3.6856
−3.0264 −0.7900
−22.6070 0.4275
−9.3641 −0.7901
−0.7614 1.7115
10.3701 −0.8120
1.9824 −0.4533
9.4709 −2.4255
−39.3333 6.7700
−20.6343 8.4658
79.0519 −8.7442
−12.5192 0.5868
−18.1238 −2.3130
31.2009 3.9899
−3.0691 0.0194
−1.0796 0.1225
−12.6131 0.1765
−1.7948 0.2592


(A.105)

θ̃⊤tv40 =



2.7806 −1.5055
−11.0269 1.4474
16.0402 −3.8554
−2.7238 −0.4874
−22.4014 0.6330
−9.3954 −0.8214
−1.3470 1.1259
10.5298 −0.6523
2.5103 0.0746
9.2979 −2.5986
−39.0310 7.0723
−20.4930 8.6070
79.3157 −8.4805
−12.0453 1.0607
−17.8477 −2.0369
30.5751 3.3642
−2.9192 0.1693
−0.8132 0.3889
−12.9026 −0.1129
−1.8614 0.1926



(A.106)
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Samenvatting

De steeds groeiende vraag naar zowel consumenten- als industriële producten
verhoogt de chemische stof en petrochemische industrieën om de kwaliteit

en de hoeveelheid van hun productie. De bedrijven die de core business hebben
in de procesindustrie zijn met elkaar kompetitie om de markt te domineren. On-
twikkeling van de stroom procestechnologieën bieden bedrijven een concurren-
tievoordeel om hun leidende marktposities. Dit proefschrift onderzoekt nieuwe
methoden om de prestaties van Advanced Process Control (APC) door rekening te
houden met modelonnauwkeurigheid en variatie in procesdynamiek die de mis-
match van het fabrieksmodel veroorzaakt. Het controlemechanisme is gebaseerd
op orthonormale basisfuncties (OBF’s) als een nieuw voorspellingsmodel.

Het eerste deel van dit proefschrift, Hoofdstuk 2-3, Adressen manieren om
optimaal te selecteren basispolen van het OBFs-model uit een eindige set sys-
teempolen. Verder bieden wij een methode om ons voorgestelde algoritme te ge-
bruiken voor een model van een systeem dat wordt verkregen via de systeemi-
dentificatieprocedure. Ten slot, door een simulatie uit te voeren studie bleek
dat de voorgestelde methoden beter zijn dan de staat van het kunstbasisselectie-
algoritme met behoud van een enigszins computationele belasting van elk algo-
ritme. Dit leidt tot mogelijke directe implementatie in de industriële praktijk.

Het tweede deel van dit proefschrift, Hoofdstuk 4, behandelde het geval waarin
het OBF gebaseerd voorspellingsmodel per regelcyclus wordt aangepast om het
tijdsafhankelijke gedrag van het systeem van belang. De aanpassing is gebaseerd
op een iteratieve identificatieprocedure van de coëfficiënten van het OBF-gebaseerd
voorspellingsmodel. Gebruik van systeemidentificatie voor OBF-gebaseerd model
een groot voordeel van directe toepasbaarheid van het PEM-identificatieraamwerk
en daarmee de consistente schatting van de OBF-modelcoëfficiënten. Daarna is
het MPC-schema voor OBF-gebaseerd voorspellingsmodel is opgesteld. De MPC-
regeling, de haalbaarheid en stabiliteitsresultaten, worden vervolgens uitgebreid
tot het tijdsafhankelijke geval. De voorgestelde MPC wordt eerst getest in een
academische casestudy, waar we hebben aangetoond dat de voorgestelde meth-
ode de in de tijd variërende dynamiek van een vastgesteld systeem bevestigd en
erin slagen om het doel van het volgen van instelpunten te bereiken.

Het derde deel van dit proefschrift, Hoofdstuk 5, behandeld het geval waarin
het OBF-analysemodel beschrijft variaties in de dynamiek van het systeem van be-
lang dat kan worden afgeleid door een extern signaal dat de planningsvariabele
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wordt genoemd. Er worden twee LPV-identificatiebenaderingen geboden om het
LPV-OBF-model te identificatie voordat de MPC in gebruik wordt genomen. De
lokale LPV-identificatiebenadering kan worden gezien als een interpolatie van het
dynamische gedrag van het systeem, terwijl de globale LPV-identificatiemethode
een directe identificatiemethode is op basis van een enkele dataset die vanuit het
systeem wordt gemeten. Daarna wordt het MPC-schema LPV-OBF opgesteld.
Het MPC-schema maakt gebruik van een aangewezen stationair doel en een extra
straftermijn voor trackingdoeleinden. De ruimte van het stationaire paar wordt
afgeleid door een vector die wordt gebruikt als argument voor minimalisering
van het MPC-probleem. Een soortgelijke instelling helpt ons bij het vaststellen
van haalbaarheid en stabiliteitsgaranties van het MPC-schema. De voorgestelde
MPC wordt eerst getest in academische casestudy’s, waar we laten zien dat de
voorgestelde methode de parametervariabele dynamiek van een vastgesteld sys-
teem kan bevestigen en erin slaagt het doel van het volgen van instelpunten te
bereiken.

Het laatste deel van dit proefschrift is waar de voorgestelde LTV-OBF MPC
en LPV-OBF MPC zijn getest in twee industriële casestudies. Destillatiekolom
met hoge zuiverheid case en Dual distillatiekolom case die gemeengoed zijn in de
procesindustrie, worden gebruikt voor de demonstratie. Elk van de voorgestelde
controles blinkt uit in verschillende toestanden waarin de kennis van de variaties
van systeemdynamiek het belangrijkste element wordt dat de twee voorgestelde
MPC-schema’s onderscheidt.
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