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Frequency Response Data-driven LPV Controller Synthesis
for MIMO Systems

Tom Bloemers, Tom Oomen and Roland Tóth

Abstract— The linear parameter-varying framework enables
systematic control design approaches to meet increasing perfor-
mance requirements and complexity of systems. The aim of this
paper is to develop local frequency response data-based analysis
and synthesis conditions for multiple-input multiple-output
linear parameter-varying systems to facilitate fast tuning. Key
advantages are local stability and performance guarantees and
a global controller parameterization. The effectiveness of the
proposed methods are evaluated based on a simulation example.

I. INTRODUCTION

Using frequency response functions (FRFs) to manually
design controllers directly from measurement data is often
used in the industry [1]. FRF estimates provide accurate
nonparametric system descriptions, which are relatively fast
and inexpensive to obtain [2]. This has motivated the devel-
opment of classical frequency-domain control design tech-
niques, based on graphical tools including Bode plots and
Nyquist diagrams with efficient guiding rules and insight.

Data-driven control design techniques based on FRF es-
timates provide systematic tools to synthesize linear time-
invariant (LTI) controllers. Beyond classical techniques, [3],
extensions include more general control structures with a
focus on H∞-performance [4]. The H∞ framework enables
the incorporation of model uncertainties in the control de-
sign, which has led to the synthesis of stabilizing controllers
that achieve robust stability and performance with respect
to plant variations [5], [6]. However, this comes at the cost
of performance. While these results are confined to the LTI
case, the recent push for performance necessitates the direct
addressing of nonlinearities, e.g. position dependency.

The concept of linear parameter-varying (LPV) systems
provides a systematic framework for synthesis and analysis
of gain-scheduled controllers for nonlinear systems [7], over-
coming limitations of robust LTI controllers. LPV systems
are characterized by a linear relation between the input-
output (IO) signals. Unlike LTI systems, this map can change
over time based on a measurable time-varying signal. This

T. Bloemers (corresponding author) and R. Tóth are with the Control
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so-called scheduling signal can be used to describe operat-
ing condition-dependent dynamics or effectively embedding
nonlinear dynamics in the solution set of an LPV system
[8]. The LPV framework is supported with well-developed
model-based control and identification approaches [8], [9].

Designing LPV controllers directly from measurement
data is receiving increased interest. While time-domain ap-
proaches have been developed, e.g. [10], frequency domain
methods [11], [12] mainly focus on single-input single-
output (SISO) LPV systems. Common drawbacks of these
methods include conservative stability and performance con-
straints, and limited freedom in the controller parameteri-
zation. A practically well-applicable method has been devel-
oped in [13], [14] overcoming these limitations. However, the
extension to multiple-input multiple-output (MIMO) systems
remains difficult because of the non-commutative nature of
multivariable systems [15].

Based on recent integral quadratic constraint (IQC) results
[16], [17], in this paper we present a novel method to de-
sign MIMO LPV controllers directly from frequency-domain
measurement data. Key advantages are the local stability
and performance guarantees and a global LPV controller
parameterization that allows shaping of the poles and zeros
based on local frequency-domain information.

The main contribution of this paper is
C1 LPV controller synthesis method for unstable MIMO

plants, using only frequency-domain measurement
data, with local stability and performance guarantees.

This is achieved by the following sub-contributions.
C2 Development of local LPV frequency-domain IQC

stability and performance analysis conditions.
C3 Development of a locally stable LPV frequency-

domain controller initialization algorithm.
Additional to the preliminary results in [14], a connection
to dissipativity theory is established through the IQC theory
presented in [17]. This allows for the more general notion
of quadratic performance such as passivity, H2, H∞, etc.
The results are evaluated based on a simulation example.
Although the theory presented in this paper is in continuous-
time, discrete-time results follow analogously, see [18].

Notation: C+ denotes the open right-half complex plane
and C0 := iR∪{∞} denotes the extended imaginary axis. L2

denotes the space of square integrable functions. RL∞ and
RH∞ ⊂RL∞ are sets of real-rational and proper transfer
functions analytic on C0 and C0∪C+, respectively. The pair
{N,D} is a Right Coprime Factorization (RCF) of P if D
is invertible, N,D ∈ RH·×·∞ , P = ND−1 and ∃Xr, Yr ∈
RH·×·∞ such that the Bézout identity XrD + YrN = I holds.
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Gp

Fig. 1: Feedback interconnection of the plant Gp and con-
troller Kp, dependent on the scheduling signal.

Similiarly, {Ñ , D̃} is a Left Coprime Factorization (LCF)
P = D̃−1Ñ if D̃ is invertible, Ñ , D̃ ∈ RH·×·∞ and ∃Xl, Yl ∈
RH·×·∞ such that D̃Xl + Ỹ Nl = I . If G = G∗ ∈ RL·×·∞ ,
then G � 0 on C0 implies that G satisfies the frequency
domain inequality (FDI) G(iω) � 0 for all ω ∈ R ∪ {∞}.

II. PROBLEM FORMULATION

A. Linear parameter-varying systems

Consider the MIMO continuous-time (CT) LPV system

G :

{
ẋ(t) = A(p(t))x(t) +B(p(t))u(t),

y(t) = C(p(t))x(t) +D(p(t))u(t).
(1)

Here, x : R → Rnx is the state variable, u : R → Rnu
is the input signal, y : R → Rny is the output signal and
p : R→ P ⊆ Rnp the scheduling variable. If the scheduling
signal p(t) ≡ p is constant (1) becomes LTI, i.e.,

Gp :

{
ẋ(t) = A(p)x(t) +B(p)u(t),

y(t) = C(p)x(t) +D(p)u(t).
(2)

For a given p ∈ P, (2) describes the local behavior of (1).
We define the Fourier transform of (2) by

Y (iω) = Gp(iω)U(iω), (3)

where Gp(iω) represents the frozen frequency response
function (fFRF) of (1) for constant p(t) ≡ p ∈ P. Similarly,
K denotes an LPV controller with local behavior Kp.

B. Problem formulation

Consider the four-block closed-loop map T (Gp,Kp) :
col(r, d) 7→ col(y, u) defined by

T (Gp,Kp) =

(
Kp

I

)
(I +GpKp)−1

(
Gp I

)
(4)

corresponding to the feedback interconnection in Figure 1,
where Gp ∈ RLny×nu∞ denotes the local plant for p(t) ≡ p
and Kp ∈ RLnu×ny∞ the controller. The interconnection in
Figure 1 is internally stable if and only if (4) is stable.

The problem addressed in this paper is to synthesize an
LPV controller K directly from fFRF data such that for any
p ∈ P, the local aspect of the plant Gp and of the controller
Kp satisfy the following requirements:

R1 The map T (Gp,Kp) is internally stable.
R2 The map T (Gp,Kp) achieves quadratic performance.

Here, quadratic performance refers to performance with
respect to a pre-defined quadratic measure, for example a
bound on the L2-gain. This is clarified further in Section III-
A. Consider the fFRF data DN,p` = {Gp(iωk), p`}Nk=1, ob-
tained at the constant scheduling points P = {p`}Nloc

`=1 ⊂ P.
The frequencies are assumed to be sufficiently dense such

G
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Fig. 2: Feedback interconnection for robust stability (a) and
performance (b) analysis.

that is suffices to check a finite number of discrete points
only to draw conclusions on the underlying continuous curve.
As IQCs form the basis of our results, we give a short
introduction to them based on [18] in the next section.

III. INTEGRAL QUADRATIC CONSTRAINTS

A. Considered problem setting

Consider an uncertain dynamic system corresponding to
the interconnection in Figure 2a, where

q = Gρ+ µ, (5a)
ρ = ∆(q) + η. (5b)

Here, G ∈ RHnq×nρ∞ is the nominal LTI plant, ∆ : Lnq2 →
Lnρ2 is a causal and bounded operator, and µ ∈ Lnq2 and η ∈
Lnρ2 are exogenous input disturbances. Typically, ∆ describes
the trouble-making component, e.g., uncertain, time-varying,
or nonlinear dynamics, which takes values in a pre-defined
class ∆. The interconnection in Figure 2a separates the
uncertain component from a nominal LTI system. Analysis
of (5) follows a similar separation by considering G and
∆ separately through an IQC and an FDI, respectively. We
introduce the following definitions [17]:

Definition 1 (Well-posedness). The feedback interconnection
(5) is well-posed if for each col(µ, η) ∈ Lnq+nρ2 there exists
a unique response col(q, ρ) ∈ Lnq+nρ2 such that col(q, ρ)
depends causally on col(µ, η).

Definition 2 (Stability). The feedback interconnection (5)
is stable if it is well-posed and the L2-gain of the map
col(µ, η) 7→ col(q, ρ) is bounded.

Definition 3 (Robust stability). The feedback interconnection
(5) is robustly stable if it is stable for all ∆ ∈∆.

B. Integral Quadratic Constraints

Two signals ρ ∈ Lnρ2 and q ∈ Lnq2 are said to satisfy the
IQC defined by the multiplier Π: iR→C(nq+nρ)×(nq+nρ) if∫ ∞

−∞

(
q̂(iω)
ρ̂(iω)

)∗
Π(iω)

(
q̂(iω)
ρ̂(iω)

)
dω ≥ 0. (6)

Here (6) describes the energy distribution along the spec-
trums of (q, ρ). In general, Π can be any measurable
bounded Hermitian-valued function. By Parseval’s theorem,
the frequency-domain IQC is equivalent to the time-domain

I(Π, q, ρ) :=

〈(
q
ρ

)
,Π

(
q
ρ

)〉
≥ 0, (7)
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where Π is also used to denote the time-domain operator
equivalent to multiplication with Π in the frequency domain.
When ρ=∆(q) and there is a Π such that I(Π, q,∆(q)) ≥
0, ∀q ∈ Lnq2 , it is possible to describe energy relations
between the inputs and outputs of ∆. For stability, consider
the IQC theorem of [16]:

Theorem 1. Let G ∈ RHnq×nρ∞ and ∆ ∈∆. Assume that
1) for all τ ∈ [0, 1] the feedback interconnection (5) is

well-posed for ∆ replaced by τ∆; and
2) for all τ ∈ [0, 1] and some Π ∈ RL(nq+nρ)×(nq+nρ)

∞
the IQC (6) is satisfied for ∆ replaced by τ∆.

Then, the feedback interconnection (5) is robustly stable if
there exists some Π ∈ RL(nq+nρ)×(nq+nρ)

∞ for which the
following FDI is satisfied:(

G(iω)
I

)∗
Π(iω)

(
G(iω)
I

)
≺ 0, ∀ω ∈ R ∪ {∞}. (8)

In the sequel, we will express the FDI X(iω) ≺ 0, ∀ω ∈
R ∪ {∞} as X ≺ 0 on C0.

C. Robust stability analysis

To handle large uncertainty classes, we construct the
family of IQC-multipliers Π⊂RL(nq+nρ)×(nq+nρ)

∞ such that
the IQC (6) holds for all Π ∈ Π and for all ∆ ∈ ∆. For
technical reasons, ∆ is assumed to be star-shaped, i.e.,

Assumption 1. ∆∈∆ implies that τ∆∈∆ for all τ ∈ [0, 1].

Later, we will drop this assumption. As stated in [17],
Theorem 1 can be used for robust stability analysis:

Corollary 2. Assume that, for all ∆ ∈∆,
1) the feedback interconnection (5) is well-posed; and
2) for all Π ∈ Π, the IQC (6) is satisfied.

Then, the interconnection (5) is robustly stable if there exists
a Π ∈ Π for which the following FDI is satisfied on C0:(

G
I

)∗
Π

(
G
I

)
≺ 0. (9)

D. Robust performance analysis

For the analysis of robust performance, we augment the
feedback interconnection in Figure 2a with a performance
channel as depicted in Figure 2b. The feedback interconnec-
tion is is now defined through the linear fractional represen-
tation (LFR) such that w 7→ z : Fu(∆(q),M).(

q
z

)
=

(
Mqρ Mqw

Mzρ Mzw

)(
ρ
w

)
, ρ = ∆(q). (10)

where M ∈ RH(nq+nz)×(nρ+nw)
∞ is the nominal plant. We

assume that (10) is well-posed for all ∆ ∈∆. We intend to
impose performance criteria on w 7→ z through the IQC

Id(Πd, z, w) :=

〈(
z
w

)
,Πd

(
z
w

)〉
≤ ε‖w‖2, (11)

where ε > 0 and Πd is a frequency dependent performance
index confined to the set

Πd⊂
{

Πd∈RL(nz+nw)×(nz+nw)
∞

∣∣∣Πd11<0 onC0
}
. (12)

The family Πd represents a measure of quadratic perfor-
mance such as passivity, L2 or H2 performance. Next, we
extend Corollary 2 for robust performance [18].

Definition 4 (Robust performance). The feedback intercon-
nection (10) achieves robust performance w.r.t. (12) if it is
robustly stable and if there exists some Πd ∈ Πd such that
(11) holds for all trajectories of (10) generated by w ∈ Lnw2 .

Corollary 3. Assume that, for all ∆ ∈∆,
1) the LFR (10) is well-posed; and
2) for all Π ∈ Π the IQC (6) is satisfied.

Then, the interconnection (10) is robustly stable and achieves
robust performance if there exist Π ∈ Π and Πd ∈ Πd which
satisfy the following FDI on C0:
Mqρ Mqw

I 0
Mzρ Mzw

0 I


∗(

Π 0
0 Πd

)
Mqρ Mqw

I 0
Mzρ Mzw

0 I

≺ 0. (13)

If ρ = ∆(q) = ∆q, then the IQC (6) reads as∫ ∞
−∞

q̂∗(iω)

(
I

∆̂(iω)

)∗
Π(iω)

(
I

∆̂(iω)

)
q̂(iω)dω ≥ 0,

which in turn is satisfied if the following FDI holds:(
I

∆̂(iω)

)∗
Π(iω)

(
I

∆̂(iω)

)
< 0 on C0. (14)

Remark. Since Πd11 < 0, (13) implies (9) for G replaced
by Mqρ. Hence, by Corollary 2, (10) is robustly stable.

IV. FOUR-BLOCK IQC ANALYSIS

In this section, stability and performance conditions are
presented for the considered four-block problem, satisfying
Requirements R1 and R2. This forms Contribution C2.

Assume that for all frozen p ∈ P, the plant admits the
LCF Gp = D−1Gp

NGp
and the controller admits the RCF

Kp = NKpD
−1
Kp

. Then for all p ∈ P, the map w 7→ z :
T (Gp,Kp) in Figure 1 can be equivalently expressed by

T (Gp,Kp) = NzD
−1Nw, (15)

with

Nz =

(
NKp

DKp

)
, Nw =

(
NGp

DGp

)
, D = NwNz. (16)

Note that in (16) the dependency on p is dropped for brevity.
This parameterization allows for unstable subsystems within
the IQC framework as is further exploited in the next section.

A. Reformulated representation

With controller synthesis in mind, the main difficulty in
(15) is the nonlinear appearance of the controller factors NKp

and DKp
. For that reason, we represent (15) by the following

LFR such that w 7→z :T (Gp,Kp) = Fu(∆,M), with

M =

(
(Iny −D) (Iny −D)Nw

Nz NzNw

)
, ∆ = Iny . (17)
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Here, ∆ does not represent a usual uncertainty, but a known
quantity that results in an LFR of (15). Next, we exploit this
specific LFR to obtain IQC analysis and synthesis conditions.

Remark. Even though the uncertainty singleton (17) violates
Assumption 1, the IQC theory presented can be applied
without modifications as mentioned in [17, Chapter 2.10.1].
B. Four-block IQC multipliers

Consider the set of all LTI real full-block operators p =
∆q defined by p(t) = ∆̃(δ)q(t). Here, δ takes values in the
polytope consisting of the single generator Λ := co{δ1} =
co{1}. This corresponds to (17) and confines ∆ to the
singleton

∆lti,re,fb :=
{

∆̃(δ)
∣∣∣ δ ∈ Λ

}
. (18)

We can now state that the IQC (6) is satisfied for all ∆ ∈
∆lti,re,fb with Π = Π∗ ∈ RL(nq+nρ)×(nq+nρ)

∞ , if(
Inq

∆̃(δ1)

)>
Π(iω)

(
Inq

∆̃(δ1)

)
< 0 on C0, (19a)(

0nq
Inρ

)>
Π(iω)

(
0nq
Inρ

)
4 0 on C0, (19b)

and hence, the family of IQC multipliers reads as

Πlti,re,fb :=
{

Π ∈ RL(nq+nρ)×(nq+nρ)
∞

∣∣∣ (19)
}
. (20)

A proof follows by combining (6) with (19).

C. Four-block analysis problem
In this subsection, we present analysis conditions to assess

locally the quadratic performance of T (Gp,Kp) w.r.t. Πd,
constituting to Contribution C2. Applying Corollary 3 to the
LFR (17) results in the performance analysis conditions

Mqρ Mqw

I 0
Mzρ Mzw

0 I


∗(

Π 0
0 Πd

)
Mqρ Mqw

I 0
Mzρ Mzw

0 I

 ≺ 0,

Π ∈ Πlti,re,fb, Πd ∈ Πd, ∀p ∈ P, on C0. (21)

When considering the data DN,p` , with LCF Gp = D−1Gp
NGp

and RCF Kp = NKpD
−1
Kp

, the FDIs (21) result in a convex
optimization problem in the variables Π and Πd.

Taking for example the performance index

Πd :=
{

diag(γ−1I,−γI) ∈ Snz+nw
∣∣ 0 < γ ≤ γb

}
, (22)

with γb > 0 implies a bound on the induced L2-gain, i.e.,
‖Fu(∆,M)‖∞ < γb. The choice of (22) allows to minimize
over γ subject to (21) to obtain an upper bound on the
worst-case L2-gain from w to z. Although (21) is convex for
analysis, it is non-convex for synthesis due to the nonlinear
relation between the IQC multiplier and the controller.

V. FOUR-BLOCK IQC CONTROLLER SYNTHESIS

For synthesis, the relation between Π and {NKp
, DKp

}
is nonlinear and (21) is non-convex. Hence, forming the
main contribution of this paper, we propose an algorithm
that iterates between finding a suitable IQC multiplier and a
controller, similar to the DK-iterations in µ-synthesis.

Algorithm 1: IQC synthesis iterations

1 Set κ = 0. Initialize the controller {N (κ)
Kp
, D

(κ)
Kp
}.

2 while Πd converges and κ ≤ κmax do
3 Set κ = κ+ 1.
4 Multiplier optimization: Given {N (κ)

Kp
, D

(κ)
Kp
},

solve (21) and obtain {Π(κ),Π
(κ)
d }.

5 Controller synthesis: Given {Π(κ)}, solve (24)
and obtain {N (κ)

Kp
, D

(κ)
Kp
,Π

(κ)
d }.

A. IQC-multiplier iteration

Given NKp
, DKp

and hence M , the multiplier iteration
boils down to an IQC performance analysis problem and
(21) can be rendered affine in Π, Πd for a given performance
multiplier family Πd. See Section IV-C.

B. Controller iteration

Given Π and let Πd ∈ Πd. Rearrange (13) to obtain(
I
M

)∗(
Π̃22 Π̃>12
Π̃12 Π̃11

)(
I
M

)
≺ 0 on C0,

∀p ∈ P and a Πd ∈ Πd, (23)

where Π̃22 = diag(Π22, Πd22), Π̃11 = diag(Π11, Πd11) and
Π̃12 = diag(Π>12, Π>d12). Assuming Π̃11 � 0, (23) can be
rendered affine in M , with M defined in (17), as follows(

Π̃22 + He
(

Π̃12M
)

M∗

M −Π̃−111

)
≺ 0 on C0,

∀p ∈ P and a Πd ∈ Πd. (24)

Considering the data DN,p` , (24) is convex which, given a
Π ∈ Π, results in an optimal controller Kp.

C. IQC synthesis algorithm

To summarize the main contribution of the paper, Algo-
rithm 1 presents the controller synthesis procedure. Conver-
gence of Πd depends on the chosen family of performance
multipliers Πd. For example, if Πd defines the passivity
multipliers (see [18]) then one iteration suffices.

The described algorithm constructs, at each iteration,
pairs of multipliers and stabilizing controllers from fFRF
data DN,p` . Although global convergence of Algorithm 1
is not guaranteed, separately, the multiplier and controller
iterations are convex when considering the data DN,p` .
Therefore, we can guarantee monotonic convergence because
for {N (κ)

Kp
, N

(κ)
Kp
} given, there always exists a {Π(κ),Π

(κ)
d }

with performance better than or equal to iteration κ − 1.
Conversely, the same argument applies.

D. Controller initialization

This section describes the initialization of the controller
{NKp

, DKp
} in Algorithm 1, forming Contribution C3. The

following theorem is based on our preliminary work [14,
Theorem 1] for stability analysis of SISO systems.
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Theorem 4. Let {NGp
, DGp

} and {NKp
, DKp

} denote an
LCF and RCF of Gp and Kp, respectively, and D is as in
(16). The following conditions are equivalent: For all p ∈ P,

4a) D−1 ∈ RHny×ny∞ .
4b) There exists a multiplier Γp ∈ RHny×ny∞ such that

He (D(iω)Γp(iω)) � 0, on C0.

Proof. (⇒) Assume 4a) and let Q = D−1. This implies
that the Bézout identity is satisfied for X = NKpQ and
Y = DKpQ. Hence, 4b) is satisfied by setting Γp = Q

because He(ÑGp
X + D̃Gp

Y ) = I for all ω ∈ R ∪ {∞}.
(⇐) Assume 4b) and let U = DΓp. Note that U,U−1 ∈
RHny×ny∞ , because 4b) implies that DΓp is bi-proper and
has no right half-plane (RHP) zeros. Then D = UΓ−1p

satisfies the Bézout identity, therefore D−1 ∈ RHny×ny∞ .
Thus, 4b) implies 4a). This completes the proof.

Given the data DN,p` , Theorem 1 provides FDIs for the
analysis of internal stability of (15). We can exploit this
theorem to synthesize a stabilizing controller by absorbing
Γp in the controller such that N̄Kp = NKpΓp and D̄Kp =
DKp

Γp such that Kp = N̄Kp
Γp(D̄Kp

Γp)−1 = NKp
D−1Kp

.

E. Controller parameterization

Similar to our preliminary work [14], the controller is
parameterized by orthonormal basis functions. Let

NKp
(s) =

∑nN
i=0Wi(p)φi(s), (25a)

DKp
(s) =

∑nD
i=0 Vi(p)ϕi(s), (25b)

where {φi}nNi=0 and {ϕi}nDi=0 are sequences of basis functions
with φ0 = ϕ0 = 1, nD ≥ nN , and coefficient functions

Wi(p) =
∑m
`=1 W̆

`
i ψ`(p), Vi(p) =

∑m
`=1 V̆

`
i ψ`(p). (26)

Here, the coefficient functions Wi ∈ Rnu×ny and Vi ∈
Rny×ny are formed by a chosen functional dependence on
the frozen scheduling variable p, e.g., affine, polynomial, or
rational, characterized by the basis functions {ψ`}m`=1.

The concept in this paper is that the global behavior of the
controller K is tuned based on the local information DN,p`
and parameterization (25). For more information on the basis
functions and the selection hereof, see [14].

VI. RESULTS

Consider the two-mass-spring-damper system connected
by a parameter-varying (e.g. position dependent) spring

G : Mq̈(t) +Dq̇(t) +K(p(t))q(t) = u(t), (27)

where q ∈ R2 denotes the position of the two masses, u ∈ R2

is the input signal, y = q is the output signal and p ∈ P the
scheduling variable, with P = [−1, 1]. Here,

M =
(
m1 0
0 m2

)
, D =

(
d+dl −d
−d d+dr

)
,

K(p(t)) =
(
k0 −k0
−k0 k0+kr

)
+
(
k1 −k1
−k1 k1

)
p(t).

Figure 3 shows the local behavior obtained at an equidistant
grid p(t) ≡ p ∈ P = {−1, 0, 1}. We observe that the

Fig. 3: Magnitude plots of the fFRFs of Gp for p ∈ P =
{−1, 0, 1} (blue) and the interpolated LPV model (dashed
orange).

parameter-varying dynamics manifest itself in terms of a shift
in the low-frequency gain and resonance frequencies.

The objective is to control the position of both masses
simultaneously subject to variations in the spring stiffness. In
terms of control design, the control objectives are specified in
terms of weighting filters on the four-block map (4), shown
in Figure 4, where the goal is to minimize the L2-gain.

We synthesize (i) a data-driven LPV controller according
to Algorithm 1, where NKp

and DKp
are parameterized by

4th order Laguerre basis functions with affine dependence
on p. For comparison, we also design (ii) a data-driven
LTI controller and (iii) a model-based LPV controller. The
LTI controller is designed at the nominal operating point
p = 0, with NKp

and DKp
parameterized as in the data-

driven LPV control design. To synthesize the model-based
LPV controller, first local LTI models are estimated based on
the fFRF data in Figure 3 using frequency-domain subspace
identification [19]. Next, an LPV model is interpolated
through matching the input-output behavior of the local mod-
els and the considered LPV model [20], see Figure 3. Finally,
a polytopic LPV controller is designed [9]. The controllers
achieve L2-gains of 1.78, 2.41 and 1.78, respectively.

First, the tracking performance is evaluated locally for p ∈
P in Figure 5. The data-driven LPV controller has better
performance for mass m1, but has a slightly slower response
for mass m2 compared to the LTI and model-based designs.
In Figure 6, tracking results are shown for a time-varying
scheduling trajectory. Similar conclusions can be drawn.

A possible explanation for the discrepancies is the avail-
able freedom in the controller parameterization that the data-
driven LPV and LTI methods exploit to minimize the L2-
gain. The performance of the model-based LPV controller
depends on the quality of the LPV model. Hence accurate
identification and interpolation is required to achieve good
controllers. The results show the benefit of the data-driven
LPV controller, which is able to increase the performance
compared to the LTI controller, while avoiding a difficult
LPV modeling and identification procedure. Note that we
only guarantee stability and performance locally. Stability
and performance of the nonlinear system are only guaranteed
for sufficiently slow variations of the scheduling variable.
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Fig. 4: Maximum singular values of the fFRFs of (4) with
data-driven LPV (blue), LTI (orange) and model-based LPV
(yellow) controllers, and weighting filters (black).

Fig. 5: Unit step responses of mass m1 and m2 for frozen
p ∈ P , for the data-driven LPV (blue), LTI (orange) and
model-based LPV (yellow) controllers, respectively.

Fig. 6: Simulation results. The top and middle figures show
the reference (black) and position of mass m1 and m2

for the LPV (blue), LTI (orange) and model-based LPV
(yellow) controllers, respectively. The bottom plot shows the
scheduling trajectory.

VII. CONCLUSIONS

This paper presents an approach to directly synthesize
MIMO LPV controllers from frequency-domain data. The
approach exploits a specific linear fractional representation
of the four-block closed-loop interconnection such that it
fits within the IQC framework. Coprime factorizations of
the plant and controller are utilized to allow for a rational
controller parameterization. The results are demonstrated by
means of a simulation example.
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