

Frequency response data-driven LPV controller synthesis for MIMO systems

Citation for published version (APA):

Bloemers, T. A. H., Oomen, T. A. E., & Tóth, R. (2022). *Frequency response data-driven LPV controller* synthesis for MIMO systems. 5205-5210. Paper presented at 2022 American Control Conference, ACC 2022, Atlanta, Georgia, United States.

Document status and date: Published: 31/10/2022

Document Version:

Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

[Link to publication](https://research.tue.nl/en/publications/ee261314-b4e8-438d-8e34-fbbbc664e8f1)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Frequency Response Data-driven LPV Controller Synthesis for MIMO Systems

Tom Bloemers, Tom Oomen and Roland Tóth

Abstract— The linear parameter-varying framework enables systematic control design approaches to meet increasing performance requirements and complexity of systems. The aim of this paper is to develop local frequency response data-based analysis and synthesis conditions for multiple-input multiple-output linear parameter-varying systems to facilitate fast tuning. Key advantages are local stability and performance guarantees and a global controller parameterization. The effectiveness of the proposed methods are evaluated based on a simulation example.

I. INTRODUCTION

Using frequency response functions (FRFs) to manually design controllers directly from measurement data is often used in the industry [1]. FRF estimates provide accurate nonparametric system descriptions, which are relatively fast and inexpensive to obtain [2]. This has motivated the development of classical frequency-domain control design techniques, based on graphical tools including Bode plots and Nyquist diagrams with efficient guiding rules and insight.

Data-driven control design techniques based on FRF estimates provide systematic tools to synthesize linear timeinvariant (LTI) controllers. Beyond classical techniques, [3], extensions include more general control structures with a focus on \mathcal{H}_{∞} -performance [4]. The \mathcal{H}_{∞} framework enables the incorporation of model uncertainties in the control design, which has led to the synthesis of stabilizing controllers that achieve robust stability and performance with respect to plant variations [5], [6]. However, this comes at the cost of performance. While these results are confined to the LTI case, the recent push for performance necessitates the direct addressing of nonlinearities, e.g. position dependency.

The concept of linear parameter-varying (LPV) systems provides a systematic framework for synthesis and analysis of gain-scheduled controllers for nonlinear systems [7], overcoming limitations of robust LTI controllers. LPV systems are characterized by a linear relation between the inputoutput (IO) signals. Unlike LTI systems, this map can change over time based on a measurable time-varying signal. This so-called scheduling signal can be used to describe operating condition-dependent dynamics or effectively embedding nonlinear dynamics in the solution set of an LPV system [8]. The LPV framework is supported with well-developed model-based control and identification approaches [8], [9].

Designing LPV controllers directly from measurement data is receiving increased interest. While time-domain approaches have been developed, e.g. [10], frequency domain methods [11], [12] mainly focus on single-input singleoutput (SISO) LPV systems. Common drawbacks of these methods include conservative stability and performance constraints, and limited freedom in the controller parameterization. A practically well-applicable method has been developed in [13], [14] overcoming these limitations. However, the extension to multiple-input multiple-output (MIMO) systems remains difficult because of the non-commutative nature of multivariable systems [15].

Based on recent integral quadratic constraint (IQC) results [16], [17], in this paper we present a novel method to design MIMO LPV controllers directly from frequency-domain measurement data. Key advantages are the local stability and performance guarantees and a global LPV controller parameterization that allows shaping of the poles and zeros based on local frequency-domain information.

The main contribution of this paper is

C1 LPV controller synthesis method for unstable MIMO plants, using only frequency-domain measurement data, with local stability and performance guarantees.

This is achieved by the following sub-contributions.

- C2 Development of local LPV frequency-domain IQC stability and performance analysis conditions.
- C3 Development of a locally stable LPV frequencydomain controller initialization algorithm.

Additional to the preliminary results in [14], a connection to dissipativity theory is established through the IQC theory presented in [17]. This allows for the more general notion of quadratic performance such as passivity, \mathcal{H}_2 , \mathcal{H}_{∞} , etc. The results are evaluated based on a simulation example. Although the theory presented in this paper is in continuoustime, discrete-time results follow analogously, see [18].

Notation: \mathbb{C}^+ denotes the open right-half complex plane and $\mathbb{C}^0 := i\mathbb{R} \cup \{\infty\}$ denotes the extended imaginary axis. \mathcal{L}_2 denotes the space of square integrable functions. \mathcal{RL}_{∞} and $\mathcal{RH}_{\infty} \subset \mathcal{RL}_{\infty}$ are sets of real-rational and proper transfer functions analytic on \mathbb{C}^0 and $\mathbb{C}^0 \cup \mathbb{C}^+$, respectively. The pair $\{N, D\}$ is a Right Coprime Factorization (RCF) of P if D is invertible, $N, D \in \mathcal{RH}_{\infty}^{\times}$, $P = ND^{-1}$ and $\exists X_r, Y_r \in$ $\mathcal{RH}_{\infty}^{\times}$ such that the Bézout identity $X_rD+Y_rN=I$ holds.

T. Bloemers (corresponding author) and R. Toth are with the Control ´ Systems Group, Department of Electrical Engineering, Eindhoven University of Technology. R. Tóth is also with the Systems and Control Laboratory, Institute for Computer Science and Control, Budapest, Hungary. T. Oomen is with Control Systems Technology, Department of Mechanical Engineering, Eindhoven University of Technology, and the Delft Center for Systems and Control, Department of faculty 3mE, TU Delft. Emails: {t.a.h.bloemers, r.toth, t.a.e.oomen}@tue.nl.

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nr. 714663) and also from the Ministry of Innovation and Technology NRDI Office within the framework of the Autonomous Systems National Laboratory Program.

Fig. 1: Feedback interconnection of the plant G_p and controller K_p , dependent on the scheduling signal.

Similiarly, $\{\tilde{N}, \tilde{D}\}$ is a Left Coprime Factorization (LCF) $P = \tilde{D}^{-1}\tilde{N}$ if \tilde{D} is invertible, $\tilde{N}, \tilde{D} \in \mathcal{RH}_{\infty}^{\times}$ and $\exists X_l, Y_l \in$ $\mathcal{RH}_{\infty}^{\times}$ such that $\tilde{D}X_l + \tilde{Y}N_l = I$. If $G = G^* \in \mathcal{RL}_{\infty}^{\times}$, then $G \succ 0$ on \mathbb{C}^0 implies that G satisfies the frequency domain inequality (FDI) $G(i\omega) > 0$ for all $\omega \in \mathbb{R} \cup \{\infty\}.$

II. PROBLEM FORMULATION

A. Linear parameter-varying systems

Consider the MIMO continuous-time (CT) LPV system

$$
\mathcal{G}: \begin{cases} \dot{x}(t) &= A(p(t))x(t) + B(p(t))u(t), \\ y(t) &= C(p(t))x(t) + D(p(t))u(t). \end{cases} \tag{1}
$$

Here, $x : \mathbb{R} \to \mathbb{R}^{n_x}$ is the state variable, $u : \mathbb{R} \to \mathbb{R}^{n_u}$ is the input signal, $y : \mathbb{R} \to \mathbb{R}^{n_y}$ is the output signal and $p : \mathbb{R} \to \mathbb{P} \subseteq \mathbb{R}^{n_p}$ the scheduling variable. If the scheduling signal $p(t) \equiv p$ is constant (1) becomes LTI, i.e.,

$$
G_{\mathbf{p}} : \begin{cases} \dot{x}(t) & = A(\mathbf{p})x(t) + B(\mathbf{p})u(t), \\ y(t) & = C(\mathbf{p})x(t) + D(\mathbf{p})u(t). \end{cases} \tag{2}
$$

For a given $p \in \mathbb{P}$, (2) describes the local behavior of (1). We define the Fourier transform of (2) by

$$
Y(i\omega) = G_{\mathcal{P}}(i\omega)U(i\omega),\tag{3}
$$

where $G_{\rm p}(i\omega)$ represents the frozen frequency response function (fFRF) of (1) for constant $p(t) \equiv p \in \mathbb{P}$. Similarly, K denotes an LPV controller with local behavior K_p .

B. Problem formulation

Consider the four-block closed-loop map $T(G_p, K_p)$: $\text{col}(r, d) \mapsto \text{col}(y, u)$ defined by

$$
T(G_{\rm p}, K_{\rm p}) = {K_{\rm p} \choose I} (I + G_{\rm p} K_{\rm p})^{-1} (G_{\rm p} \quad I) \tag{4}
$$

corresponding to the feedback interconnection in Figure 1, where $G_p \in \mathcal{RL}_{\infty}^{n_y \times n_u}$ denotes the local plant for $p(t) \equiv p$ and $K_p \in \mathcal{RL}_{\infty}^{n_u \times n_y}$ the controller. The interconnection in Figure 1 is internally stable if and only if (4) is stable.

The problem addressed in this paper is to synthesize an LPV controller K directly from fFRF data such that for any $p \in \mathbb{P}$, the local aspect of the plant G_p and of the controller $K_{\rm p}$ satisfy the following requirements:

R1 The map $T(G_p, K_p)$ is internally stable.

R2 The map $T(G_p, K_p)$ achieves quadratic performance. Here, quadratic performance refers to performance with respect to a pre-defined quadratic measure, for example a bound on the \mathcal{L}_2 -gain. This is clarified further in Section III-A. Consider the fFRF data $\mathcal{D}_{N, p_{\ell}} = \{G_p(i\omega_k), p_{\ell}\}_{k=1}^N$, obtained at the constant scheduling points $\mathcal{P} = \{p_\ell\}_{\ell=1}^{N_{\text{loc}}} \subset \mathbb{P}$. The frequencies are assumed to be sufficiently dense such

Fig. 2: Feedback interconnection for robust stability (a) and performance (b) analysis.

that is suffices to check a finite number of discrete points only to draw conclusions on the underlying continuous curve. As IQCs form the basis of our results, we give a short introduction to them based on [18] in the next section.

III. INTEGRAL QUADRATIC CONSTRAINTS

A. Considered problem setting

Consider an uncertain dynamic system corresponding to the interconnection in Figure 2a, where

$$
q = G\rho + \mu,\tag{5a}
$$

$$
\rho = \Delta(q) + \eta. \tag{5b}
$$

Here, $G \in \mathcal{RH}_{\infty}^{n_q \times n_\rho}$ is the nominal LTI plant, $\Delta : \mathcal{L}_2^{n_q} \to$ $\mathcal{L}_2^{n_\rho}$ is a causal and bounded operator, and $\mu \in \mathcal{L}_2^{n_q}$ and $\eta \in$ $\mathcal{L}_2^{\tilde{n}_\rho}$ are exogenous input disturbances. Typically, Δ describes the trouble-making component, e.g., uncertain, time-varying, or nonlinear dynamics, which takes values in a pre-defined class Δ . The interconnection in Figure 2a separates the uncertain component from a nominal LTI system. Analysis of (5) follows a similar separation by considering G and Δ separately through an IOC and an FDI, respectively. We introduce the following definitions [17]:

Definition 1 (Well-posedness). *The feedback interconnection* (5) *is well-posed if for each* $col(\mu, \eta) \in \mathcal{L}_2^{n_q + n_\rho}$ there exists *a* unique response $col(q, \rho) \in \mathcal{L}_2^{n_q+n_\rho}$ such that $col(q, \rho)$ *depends causally on* $\text{col}(\mu, \eta)$ *.*

Definition 2 (Stability). *The feedback interconnection* (5) *is stable if it is well-posed and the* \mathcal{L}_2 -gain of the map $\operatorname{col}(\mu, \eta) \mapsto \operatorname{col}(q, \rho)$ *is bounded.*

Definition 3 (Robust stability). *The feedback interconnection* (5) *is robustly stable if it is stable for all* $\Delta \in \Delta$ *.*

B. Integral Quadratic Constraints

Two signals $\rho \in \mathcal{L}_2^{n_\rho}$ and $q \in \mathcal{L}_2^{n_q}$ are said to satisfy the IQC defined by the multiplier $\Pi : i\mathbb{R} \to \mathbb{C}^{(n_q+n_p)\times (n_q+n_p)}$ if

$$
\int_{-\infty}^{\infty} \left(\frac{\hat{q}(i\omega)}{\hat{\rho}(i\omega)}\right)^* \Pi(i\omega) \left(\frac{\hat{q}(i\omega)}{\hat{\rho}(i\omega)}\right) d\omega \ge 0.
$$
 (6)

Here (6) describes the energy distribution along the spectrums of (q, ρ) . In general, Π can be any measurable bounded Hermitian-valued function. By Parseval's theorem, the frequency-domain IQC is equivalent to the time-domain

$$
\mathcal{I}(\Pi, q, \rho) := \left\langle \begin{pmatrix} q \\ \rho \end{pmatrix}, \Pi \begin{pmatrix} q \\ \rho \end{pmatrix} \right\rangle \ge 0, \tag{7}
$$

where Π is also used to denote the time-domain operator equivalent to multiplication with Π in the frequency domain. When $\rho = \Delta(q)$ and there is a Π such that $\mathcal{I}(\Pi, q, \Delta(q)) \geq$ $0, \forall q \in \mathcal{L}_2^{n_q}$, it is possible to describe energy relations between the inputs and outputs of Δ . For stability, consider the IQC theorem of [16]:

Theorem 1. Let $G \in \mathcal{RH}_{\infty}^{n_q \times n_\rho}$ and $\Delta \in \Delta$. Assume that

- *1) for all* $\tau \in [0, 1]$ *the feedback interconnection* (5) *is well-posed for* ∆ *replaced by* τ∆*; and*
- *2) for all* $\tau \in [0,1]$ *and some* $\Pi \in \mathcal{RL}_{\infty}^{(n_q+n_p)\times(n_q+n_p)}$ *the IQC* (6) *is satisfied for* Δ *replaced by* $\tau\Delta$ *.*

Then, the feedback interconnection (5) *is robustly stable if there exists some* $\Pi \in \mathcal{RL}_{\infty}^{(n_q+n_\rho)\times(n_q+n_\rho)}$ *for which the following FDI is satisfied:*

$$
\begin{pmatrix} G(i\omega) \\ I \end{pmatrix}^* \Pi(i\omega) \begin{pmatrix} G(i\omega) \\ I \end{pmatrix} \prec 0, \forall \omega \in \mathbb{R} \cup \{\infty\}. \tag{8}
$$

In the sequel, we will express the FDI $X(i\omega) \prec 0$, $\forall \omega \in$ $\mathbb{R} \cup \{\infty\}$ as $X \prec 0$ on \mathbb{C}^0 .

C. Robust stability analysis

To handle large uncertainty classes, we construct the family of IQC-multipliers $\Pi \subset \mathcal{RL}_{\infty}^{(n_q+n_{\rho})\times (n_q+n_{\rho})}$ such that the IQC (6) holds for all $\Pi \in \Pi$ and for all $\Delta \in \Delta$. For technical reasons, Δ is assumed to be star-shaped, i.e.,

Assumption 1. $\Delta \in \Delta$ *implies that* $\tau \Delta \in \Delta$ *for all* $\tau \in [0, 1]$ *.*

Later, we will drop this assumption. As stated in [17], Theorem 1 can be used for robust stability analysis:

Corollary 2. *Assume that, for all* $\Delta \in \Delta$ *,*

- *1) the feedback interconnection* (5) *is well-posed; and*
- *2) for all* $\Pi \in \Pi$ *, the IOC* (6) *is satisfied.*

Then, the interconnection (5) *is robustly stable if there exists* $a \Pi \in \Pi$ *for which the following FDI is satisfied on* \mathbb{C}^0 *:*

$$
\binom{G}{I}^* \Pi \binom{G}{I} \prec 0. \tag{9}
$$

D. Robust performance analysis

For the analysis of robust performance, we augment the feedback interconnection in Figure 2a with a performance channel as depicted in Figure 2b. The feedback interconnection is is now defined through the linear fractional representation (LFR) such that $w \mapsto z : \mathcal{F}_u(\Delta(q), M)$.

$$
\begin{pmatrix} q \\ z \end{pmatrix} = \begin{pmatrix} M_{\mathbf{q}\rho} & M_{\mathbf{q}\mathbf{w}} \\ M_{\mathbf{z}\rho} & M_{\mathbf{z}\mathbf{w}} \end{pmatrix} \begin{pmatrix} \rho \\ w \end{pmatrix}, \qquad \rho = \Delta(q). \tag{10}
$$

where $M \in \mathcal{RH}_{\infty}^{(n_q+n_z)\times(n_\rho+n_w)}$ is the nominal plant. We assume that (10) is well-posed for all $\Delta \in \Delta$. We intend to impose performance criteria on $w \mapsto z$ through the IQC

$$
\mathcal{I}_{\mathrm{d}}(\Pi_{\mathrm{d}}, z, w) := \left\langle \begin{pmatrix} z \\ w \end{pmatrix}, \Pi_{\mathrm{d}} \begin{pmatrix} z \\ w \end{pmatrix} \right\rangle \le \epsilon \|w\|^2, \qquad (11)
$$

where $\epsilon > 0$ and Π_d is a frequency dependent performance index confined to the set

$$
\Pi_{\mathrm{d}} \subset \left\{ \Pi_{\mathrm{d}} \in \mathcal{RL}_{\infty}^{(n_z + n_w) \times (n_z + n_w)} \; \middle| \; \Pi_{\mathrm{d}11} \succcurlyeq 0 \text{ on } \mathbb{C}^0 \right\}. \tag{12}
$$

The family Π_d represents a measure of quadratic performance such as passivity, \mathcal{L}_2 or \mathcal{H}_2 performance. Next, we extend Corollary 2 for robust performance [18].

Definition 4 (Robust performance). *The feedback interconnection* (10) *achieves robust performance w.r.t.* (12) *if it is robustly stable and if there exists some* $\Pi_d \in \Pi_d$ *such that* (11) *holds for all trajectories of* (10) *generated by* $w \in \mathcal{L}_2^{n_w}$.

Corollary 3. *Assume that, for all* $\Delta \in \Delta$ *,*

- *1) the LFR* (10) *is well-posed; and*
- *2) for all* $\Pi \in \Pi$ *the IQC* (6) *is satisfied.*

Then, the interconnection (10) *is robustly stable and achieves robust performance if there exist* $\Pi \in \Pi$ *and* $\Pi_d \in \Pi_d$ *which* satisfy the following FDI on \mathbb{C}^0 :

$$
\left(\begin{array}{cc|c} M_{\rm q\rho} & M_{\rm qw} \\ I & 0 \\ \hline M_{\rm z\rho} & M_{\rm zw} \\ 0 & I \end{array}\right)^* \left(\begin{array}{cc|c} \Pi & 0 \\ \hline 0 & \Pi_{\rm d} \end{array}\right) \left(\begin{array}{cc|c} M_{\rm q\rho} & M_{\rm qw} \\ I & 0 \\ \hline M_{\rm z\rho} & M_{\rm zw} \\ 0 & I \end{array}\right) \prec 0. \quad (13)
$$

If $\rho = \Delta(q) = \Delta q$, then the IQC (6) reads as

$$
\int_{-\infty}^{\infty} \hat{q}^*(i\omega) \left(\frac{I}{\hat{\Delta}(i\omega)}\right)^* \Pi(i\omega) \left(\frac{I}{\hat{\Delta}(i\omega)}\right) \hat{q}(i\omega) d\omega \geq 0,
$$

which in turn is satisfied if the following FDI holds:

$$
\begin{pmatrix} I \\ \hat{\Delta}(i\omega) \end{pmatrix}^* \Pi(i\omega) \begin{pmatrix} I \\ \hat{\Delta}(i\omega) \end{pmatrix} \succcurlyeq 0 \text{ on } \mathbb{C}^0. \tag{14}
$$

Remark. *Since* $\Pi_{d11} \geq 0$, (13) *implies* (9) *for* G *replaced by* Mqρ*. Hence, by Corollary 2,* (10) *is robustly stable.*

IV. FOUR-BLOCK IQC ANALYSIS

In this section, stability and performance conditions are presented for the considered four-block problem, satisfying Requirements R1 and R2. This forms Contribution C2.

Assume that for all frozen $p \in \mathbb{P}$, the plant admits the LCF $G_{\rm p} = D_{G_{\rm p}}^{-1} N_{G_{\rm p}}$ and the controller admits the RCF $K_{\rm p} = N_{K_{\rm p}} D_{K_{\rm p}}^{-1}$. Then for all ${\rm p} \in \mathbb{P}$, the map $w \mapsto z$: $T(G_{\rm p}, K_{\rm p})$ in Figure 1 can be equivalently expressed by

$$
T(G_{\rm p}, K_{\rm p}) = N_{\rm z} D^{-1} N_{\rm w},\tag{15}
$$

with

$$
N_{\rm z} = \begin{pmatrix} N_{K_{\rm p}} \\ D_{K_{\rm p}} \end{pmatrix}, \ N_{\rm w} = \begin{pmatrix} N_{G_{\rm p}} & D_{G_{\rm p}} \end{pmatrix}, \ D = N_{\rm w} N_{\rm z}.
$$
 (16)

Note that in (16) the dependency on p is dropped for brevity. This parameterization allows for unstable subsystems within the IQC framework as is further exploited in the next section.

A. Reformulated representation

With controller synthesis in mind, the main difficulty in (15) is the nonlinear appearance of the controller factors N_{K_p} and D_{K_p} . For that reason, we represent (15) by the following LFR such that $w \mapsto z$: $T(G_p, K_p) = \mathcal{F}_u(\Delta, M)$, with

$$
M = \begin{pmatrix} (I_{n_y} - D) & (I_{n_y} - D)N_{\rm w} \\ N_{\rm z} & N_{\rm z}N_{\rm w} \end{pmatrix}, \quad \Delta = I_{n_y}.
$$
 (17)

Here, Δ does not represent a usual uncertainty, but a known quantity that results in an LFR of (15). Next, we exploit this specific LFR to obtain IQC analysis and synthesis conditions.

Remark. *Even though the uncertainty singleton* (17) *violates Assumption 1, the IQC theory presented can be applied without modifications as mentioned in [17, Chapter 2.10.1].*

B. Four-block IQC multipliers

Consider the set of all LTI real full-block operators $p =$ Δq defined by $p(t) = \Delta(\delta)q(t)$. Here, δ takes values in the polytope consisting of the single generator $\Lambda := \text{co} \{ \delta^1 \} =$ co{1}. This corresponds to (17) and confines Δ to the singleton

$$
\Delta_{\text{Iti},\text{re},\text{fb}} := \left\{ \tilde{\Delta}(\delta) \middle| \delta \in \Lambda \right\}.
$$
 (18)

We can now state that the IQC (6) is satisfied for all $\Delta \in$ $\Delta_{\text{lti},\text{re},\text{fb}}$ with $\Pi = \Pi^* \in \mathcal{RL}_{\infty}^{(n_q + n_\rho) \times (n_q + n_\rho)}$, if

$$
\begin{pmatrix} I_{n_q} \\ \tilde{\Delta}(\delta^1) \end{pmatrix}^\top \Pi(i\omega) \begin{pmatrix} I_{n_q} \\ \tilde{\Delta}(\delta^1) \end{pmatrix} \succcurlyeq 0 \text{ on } \mathbb{C}^0, \tag{19a}
$$

$$
\begin{pmatrix} 0_{n_q} \\ I_{n_\rho} \end{pmatrix}^\top \Pi(i\omega) \begin{pmatrix} 0_{n_q} \\ I_{n_\rho} \end{pmatrix} \preccurlyeq 0 \text{ on } \mathbb{C}^0, \tag{19b}
$$

and hence, the family of IQC multipliers reads as

$$
\Pi_{\mathrm{Iti},\mathrm{re},\mathrm{fb}} := \left\{ \Pi \in \mathcal{RL}_{\infty}^{(n_q + n_\rho) \times (n_q + n_\rho)} \right. \left| (19) \right\}.
$$
 (20)

A proof follows by combining (6) with (19).

C. Four-block analysis problem

In this subsection, we present analysis conditions to assess locally the quadratic performance of $T(G_{\rm p}, K_{\rm p})$ w.r.t. $\Pi_{\rm d}$, constituting to Contribution C2. Applying Corollary 3 to the LFR (17) results in the performance analysis conditions

$$
\left(\begin{array}{c|c}\nM_{\mathbf{q}\rho} & M_{\mathbf{q}\mathbf{w}} \\
\hline\n\frac{I}{M_{\mathbf{z}\rho}} & M_{\mathbf{z}\mathbf{w}} \\
0 & I\n\end{array}\right)^* \left(\begin{array}{c|c}\n\Pi & 0 \\
\hline\n0 & \Pi_{\mathbf{d}}\n\end{array}\right) \left(\begin{array}{c|c}\nM_{\mathbf{q}\rho} & M_{\mathbf{q}\mathbf{w}} \\
\hline\n\frac{I}{M_{\mathbf{z}\rho}} & M_{\mathbf{z}\mathbf{w}} \\
0 & I\n\end{array}\right) \prec 0,
$$
\n
$$
\Pi \in \mathbf{\Pi}_{\mathrm{lti}, \mathrm{re}, \mathrm{fb}}, \quad \Pi_{\mathbf{d}} \in \mathbf{\Pi}_{\mathrm{d}}, \quad \forall \mathrm{p} \in \mathbb{P}, \quad \mathrm{on} \ \mathbb{C}^0. \quad (21)
$$

When considering the data \mathcal{D}_{N, p_ℓ} , with LCF $G_p = D_{G_p}^{-1} N_{G_p}$ and RCF $K_{\rm p} = N_{K_{\rm p}} D_{K_{\rm p}}^{-1}$, the FDIs (21) result in a convex optimization problem in the variables Π and Π_d .

Taking for example the performance index

$$
\Pi_{d} := \left\{ \text{diag}(\gamma^{-1}I, -\gamma I) \in \mathbb{S}^{n_z + n_w} \middle| 0 < \gamma \leq \gamma_b \right\}, \tag{22}
$$

with $\gamma_b > 0$ implies a bound on the induced \mathcal{L}_2 -gain, i.e., $\|\mathcal{F}_u(\Delta, M)\|_{\infty} < \gamma_b$. The choice of (22) allows to minimize over γ subject to (21) to obtain an upper bound on the worst-case \mathcal{L}_2 -gain from w to z. Although (21) is convex for analysis, it is non-convex for synthesis due to the nonlinear relation between the IQC multiplier and the controller.

V. FOUR-BLOCK IQC CONTROLLER SYNTHESIS

For synthesis, the relation between Π and $\{N_{K_{\rm p}}, D_{K_{\rm p}}\}$ is nonlinear and (21) is non-convex. Hence, forming the main contribution of this paper, we propose an algorithm that iterates between finding a suitable IQC multiplier and a controller, similar to the DK-iterations in μ -synthesis.

Algorithm 1: IQC synthesis iterations

1 Set $\kappa = 0$. Initialize the controller $\{N_{K_p}^{(\kappa)}\}$ $L_{K_{\mathrm{p}}}^{(\kappa)},D_{K_{\mathrm{p}}}^{(\kappa)}\}.$ 2 while Π_d *converges and* $\kappa \leq \kappa_{\text{max}}$ do
3 | Set $\kappa = \kappa + 1$. Set $\kappa = \kappa + 1$.

- 4 Multiplier optimization: Given $\{N_{K_{\rm p}}^{(\kappa)}\}$ $L_{K_{\mathrm{p}}}^{(\kappa)}, D_{K_{\mathrm{p}}}^{(\kappa)}\},$ solve (21) and obtain $\{\Pi^{(\kappa)}, \Pi^{(\kappa)}_{d}\}$ $\begin{pmatrix} \kappa \\ \mu \end{pmatrix}$.
- 5 Controller synthesis: Given $\{\Pi^{(\kappa)}\}\,$, solve (24) and obtain $\{N_{K_{\rm p}}^{(\kappa)}\}$ $L_{K_\mathrm{p}}^{(\kappa)}, D_{K_\mathrm{p}}^{(\kappa)}, \Pi_\mathrm{d}^{(\kappa)}$ $\binom{(\kappa)}{\mathbf{d}}$.

A. IQC-multiplier iteration

Given $N_{K_{\rm p}}, D_{K_{\rm p}}$ and hence M, the multiplier iteration boils down to an IQC performance analysis problem and (21) can be rendered affine in Π , Π_d for a given performance multiplier family Π_d . See Section IV-C.

B. Controller iteration

Given Π and let $\Pi_d \in \Pi_d$. Rearrange (13) to obtain

$$
\left(\frac{I}{M}\right)^{*} \left(\begin{array}{c|c}\tilde{\Pi}_{22} & \tilde{\Pi}_{12}^{\top} \\ \tilde{\Pi}_{12} & \tilde{\Pi}_{11}\end{array}\right) \left(\frac{I}{M}\right) \prec 0 \text{ on } \mathbb{C}^{0},
$$

\n
$$
\forall p \in \mathbb{P} \text{ and a } \Pi_{d} \in \mathbf{\Pi}_{d}, \quad (23)
$$

where $\tilde{\Pi}_{22} = \text{diag}(\Pi_{22}, \Pi_{d22}), \tilde{\Pi}_{11} = \text{diag}(\Pi_{11}, \Pi_{d11})$ and $\tilde{\Pi}_{12} = \text{diag}(\Pi_{12}^{\top}, \Pi_{d12}^{\top})$. Assuming $\tilde{\Pi}_{11} \succ 0$, (23) can be rendered affine in M , with M defined in (17), as follows

$$
\begin{pmatrix} \tilde{\Pi}_{22} + \text{He} \left(\tilde{\Pi}_{12} M \right) & M^* \\ M & -\tilde{\Pi}_{11}^{-1} \end{pmatrix} \prec 0 \text{ on } \mathbb{C}^0, \forall p \in \mathbb{P} \text{ and a } \Pi_d \in \mathbf{\Pi}_d. \quad (24)
$$

Considering the data $\mathcal{D}_{N, p_{\ell}}$, (24) is convex which, given a $\Pi \in \Pi$, results in an optimal controller K_{p} .

C. IQC synthesis algorithm

To summarize the main contribution of the paper, Algorithm 1 presents the controller synthesis procedure. Convergence of Π_d depends on the chosen family of performance multipliers Π_d . For example, if Π_d defines the passivity multipliers (see [18]) then one iteration suffices.

The described algorithm constructs, at each iteration, pairs of multipliers and stabilizing controllers from fFRF data $\mathcal{D}_{N,p_{\ell}}$. Although global convergence of Algorithm 1 is not guaranteed, separately, the multiplier and controller iterations are convex when considering the data $\mathcal{D}_{N, p_{\ell}}$. Therefore, we can guarantee monotonic convergence because for $\{N_{K_{\mathrm{p}}}^{(\kappa)}\}$ $N_{K_{\rm p}}^{(\kappa)}, N_{K_{\rm p}}^{(\kappa)}\}$ given, there always exists a $\{\Pi^{(\kappa)},\Pi_{\rm d}^{(\kappa)}\}$ \hat{d} \hat{f} with performance better than or equal to iteration $\kappa - 1$. Conversely, the same argument applies.

D. Controller initialization

This section describes the initialization of the controller ${N_{K_{\rm p}}, D_{K_{\rm p}}}$ in Algorithm 1, forming Contribution C3. The following theorem is based on our preliminary work [14, Theorem 1] for stability analysis of SISO systems.

Theorem 4. Let $\{N_{G_{\rm p}}, D_{G_{\rm p}}\}$ and $\{N_{K_{\rm p}}, D_{K_{\rm p}}\}$ denote an *LCF and RCF of* G_p *and* K_p *, respectively, and* D *is as in* (16)*. The following conditions are equivalent: For all* $p \in \mathbb{P}$ *,*

- *4a)* $D^{-1} \in \mathcal{RH}_{\infty}^{n_y \times n_y}$.
- *4b) There exists a multiplier* $\Gamma_{p} \in \mathcal{RH}_{\infty}^{n_y \times n_y}$ *such that*

$$
\text{He}\left(D(i\omega)\Gamma_{\mathbf{p}}(i\omega)\right)\succ 0,\text{ on }\mathbb{C}^0
$$

.

Proof. (\Rightarrow) Assume 4a) and let $Q = D^{-1}$. This implies that the Bézout identity is satisfied for $X = N_{K_p}Q$ and $Y = D_{K_p}Q$. Hence, 4b) is satisfied by setting $\Gamma_p = Q$ because $\text{He}(\tilde{N}_{G_p}X + \tilde{D}_{G_p}Y) = I$ for all $\omega \in \mathbb{R} \cup \{\infty\}.$

(←) Assume 4b) and let $U = D\Gamma_p$. Note that U, U^{-1} ∈ $\mathcal{RH}_{\infty}^{n_y \times n_y}$, because 4b) implies that $D\Gamma_p$ is bi-proper and has no right half-plane (RHP) zeros. Then $D = U\Gamma_{\rm p}^{-1}$ satisfies the Bézout identity, therefore $D^{-1} \in \mathcal{RH}_{\infty}^{n_y \times n_y}$.
Thus, 4b) implies 4a). This completes the proof. Thus, 4b) implies 4a). This completes the proof.

Given the data $\mathcal{D}_{N, p_{\ell}}$, Theorem 1 provides FDIs for the analysis of internal stability of (15). We can exploit this theorem to synthesize a stabilizing controller by absorbing $\Gamma_{\rm p}$ in the controller such that $\bar{N}_{K_{\rm p}} = N_{K_{\rm p}} \Gamma_{\rm p}$ and $\bar{D}_{K_{\rm p}} =$ $\overline{D}_{K_p} \Gamma_p$ such that $K_p = \overline{N}_{K_p} \Gamma_p (\overline{D}_{K_p} \Gamma_p)^{-1} = N_{K_p} D_{K_p}^{-1}$.

E. Controller parameterization

Similar to our preliminary work [14], the controller is parameterized by orthonormal basis functions. Let

$$
N_{K_{\rm p}}(s) = \sum_{i=0}^{n_N} W_i({\rm p})\phi_i(s), \tag{25a}
$$

$$
D_{K_{\mathcal{P}}}(s) = \sum_{i=0}^{n} V_i(\mathbf{p}) \varphi_i(s), \qquad (25b)
$$

where $\{\phi_i\}_{i=0}^{n_N}$ and $\{\varphi_i\}_{i=0}^{n_D}$ are sequences of basis functions with $\phi_0 = \varphi_0 = 1$, $n_D \ge n_N$, and coefficient functions

$$
W_i(\mathbf{p}) = \sum_{\ell=1}^m \breve{W}_i^{\ell} \psi_{\ell}(\mathbf{p}), \quad V_i(\mathbf{p}) = \sum_{\ell=1}^m \breve{V}_i^{\ell} \psi_{\ell}(\mathbf{p}). \tag{26}
$$

Here, the coefficient functions $W_i \in \mathbb{R}^{n_u \times n_y}$ and $V_i \in$ $\mathbb{R}^{n_y \times n_y}$ are formed by a chosen functional dependence on the frozen scheduling variable p, e.g., affine, polynomial, or rational, characterized by the basis functions $\{\psi_{\ell}\}_{\ell=1}^m$.

The concept in this paper is that the global behavior of the controller K is tuned based on the local information $\mathcal{D}_{N,p_{\ell}}$ and parameterization (25). For more information on the basis functions and the selection hereof, see [14].

VI. RESULTS

Consider the two-mass-spring-damper system connected by a parameter-varying (e.g. position dependent) spring

$$
G: M\ddot{q}(t) + D\dot{q}(t) + K(p(t))q(t) = u(t), \qquad (27)
$$

where $q \in \mathbb{R}^2$ denotes the position of the two masses, $u \in \mathbb{R}^2$ is the input signal, $y = q$ is the output signal and $p \in \mathbb{P}$ the scheduling variable, with $\mathbb{P} = [-1, 1]$. Here,

$$
M = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}, \quad D = \begin{pmatrix} d+d_l & -d \\ -d & d+d_r \end{pmatrix},
$$

$$
K(p(t)) = \begin{pmatrix} k_0 & -k_0 \\ -k_0 & k_0 + k_r \end{pmatrix} + \begin{pmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{pmatrix} p(t).
$$

Figure 3 shows the local behavior obtained at an equidistant grid $p(t) \equiv p \in \mathcal{P} = \{-1, 0, 1\}$. We observe that the

Fig. 3: Magnitude plots of the fFRFs of G_p for $p \in \mathcal{P}$ = $\{-1, 0, 1\}$ (blue) and the interpolated LPV model (dashed orange).

parameter-varying dynamics manifest itself in terms of a shift in the low-frequency gain and resonance frequencies.

The objective is to control the position of both masses simultaneously subject to variations in the spring stiffness. In terms of control design, the control objectives are specified in terms of weighting filters on the four-block map (4), shown in Figure 4, where the goal is to minimize the \mathcal{L}_2 -gain.

We synthesize (i) a data-driven LPV controller according to Algorithm 1, where $N_{K_{\rm p}}$ and $D_{K_{\rm p}}$ are parameterized by 4th order Laguerre basis functions with affine dependence on p. For comparison, we also design (ii) a data-driven LTI controller and (iii) a model-based LPV controller. The LTI controller is designed at the nominal operating point $p = 0$, with N_{K_p} and D_{K_p} parameterized as in the datadriven LPV control design. To synthesize the model-based LPV controller, first local LTI models are estimated based on the fFRF data in Figure 3 using frequency-domain subspace identification [19]. Next, an LPV model is interpolated through matching the input-output behavior of the local models and the considered LPV model [20], see Figure 3. Finally, a polytopic LPV controller is designed [9]. The controllers achieve \mathcal{L}_2 -gains of 1.78, 2.41 and 1.78, respectively.

First, the tracking performance is evaluated locally for $p \in$ P in Figure 5. The data-driven LPV controller has better performance for mass m_1 , but has a slightly slower response for mass m_2 compared to the LTI and model-based designs. In Figure 6, tracking results are shown for a time-varying scheduling trajectory. Similar conclusions can be drawn.

A possible explanation for the discrepancies is the available freedom in the controller parameterization that the datadriven LPV and LTI methods exploit to minimize the \mathcal{L}_2 gain. The performance of the model-based LPV controller depends on the quality of the LPV model. Hence accurate identification and interpolation is required to achieve good controllers. The results show the benefit of the data-driven LPV controller, which is able to increase the performance compared to the LTI controller, while avoiding a difficult LPV modeling and identification procedure. Note that we only guarantee stability and performance locally. Stability and performance of the nonlinear system are only guaranteed for sufficiently slow variations of the scheduling variable.

Fig. 4: Maximum singular values of the fFRFs of (4) with data-driven LPV (blue), LTI (orange) and model-based LPV (yellow) controllers, and weighting filters (black).

Fig. 5: Unit step responses of mass m_1 and m_2 for frozen $p \in \mathcal{P}$, for the data-driven LPV (blue), LTI (orange) and model-based LPV (yellow) controllers, respectively.

Fig. 6: Simulation results. The top and middle figures show the reference (black) and position of mass m_1 and m_2 for the LPV (blue), LTI (orange) and model-based LPV (yellow) controllers, respectively. The bottom plot shows the scheduling trajectory.

VII. CONCLUSIONS

This paper presents an approach to directly synthesize MIMO LPV controllers from frequency-domain data. The approach exploits a specific linear fractional representation of the four-block closed-loop interconnection such that it fits within the IQC framework. Coprime factorizations of the plant and controller are utilized to allow for a rational controller parameterization. The results are demonstrated by means of a simulation example.

REFERENCES

- [1] T. Oomen, "Advanced motion control for precision mechatronics: Control, identification, and learning of complex systems," *IEEJ Journal of Industry Applications*, vol. 7, no. 2, pp. 127–140, 2018.
- [2] R. Pintelon and J. Schoukens, *System Identification: A Frequency Domain Approach*, 2nd ed. John Wiley & Sons, 2012.
- [3] E. Grassi, K. S. Tsakalis, S. Dash, S. V. Gaikwad, W. MacArthur, and G. Stein, "Integrated system identification and PID controller tuning by frequency loop-shaping," *IEEE Trans. Control Syst. Technol.*, vol. 8, no. 5, pp. 842–847, 2001.
- [4] S. Khadraoui, H. Nounou, M. Nounou, A. Datta, and S. P. Bhattacharyya, "A model-free design of reduced-order controllers and application to a DC servomotor," *Automatica*, vol. 50, no. 8, pp. 2142– 2149, 2014.
- [5] A. Karimi and C. Kammer, "A data-driven approach to robust control of multivariable systems by convex optimization," *Automatica*.
- [6] A. Karimi *et al.*, "Robust H[∞] controller design using frequencydomain data via convex optimization," *Int. J. Robust Nonlin Control*, 2018.
- [7] J. S. Shamma and M. Athans, "Gain scheduling: Potential hazards and possible remedies," *IEEE Trans. Control Syst. Mag.*, vol. 12, no. 3, pp. 101–107, 1992.
- [8] R. Tóth, *Modeling and identification of linear parameter-varying systems*. Springer, Heidelberg, 2010.
- [9] C. Hoffmann and H. Werner, "A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations," *IEEE Trans. Control Syst. Technol.*, vol. 23, no. 2, pp. 416–433, 2015.
- [10] S. Formentin, D. Piga, R. Tóth, and S. M. Savaresi, "Direct learning of LPV controllers from data," *Automatica*, vol. 65, pp. 98–110, 2016.
- [11] A. Karimi and Z. Emedi, "H[∞] gain-scheduled controller design for rejection of time-varying narrow-band disturbances applied to a benchmark problem," *European Journal of Control*, vol. 19, no. 4, pp. 279–288, 2013.
- [12] T. Bloemers, R. Tóth, and T. Oomen, "Towards Data-Driven LPV Controller Synthesis Based on Frequency Response Functions," in *Proc. of the IEEE Conf. Decis. Control*, 2019.
- [13] ——, "Frequency-domain data-driven controller synthesis for unstable LPV systems," in *Proc. of the 4th IFAC Workshop on LPV Systems*, 2021.
- [14] ——, "Frequency response data based LPV controller synthesis applied to a control moment gyroscope," *IEEE Trans. Control Syst. Technol.*, 2021, arXiv preprint arXiv:2109.05774.
- [15] A. Rantzer and A. Megretski, "A Convex Parameterization of Robustly Stabilizing Controllers," *IEEE Trans. Autom. Control*, vol. 39, no. 9, pp. 1802–1808, 1994.
- [16] A. Megretski and A. Rantzer, "System analysis via integral quadratic constraints," *IEEE Trans. Autom. Control*, vol. 42, no. 6, pp. 819–830, 1997.
- [17] J. Veenman, *A general framework for robust analysis and control: an IQC based approach*. Logos Verlag Berlin, 2015.
- [18] J. Veenman, C. W. Scherer, and H. Köroğlu, "Robust stability and performance analysis based on IQC," *European Journal of Control*, vol. 31, pp. 1–32, 2016.
- [19] T. McKelvey and M. Gibanica, "FSID-A frequency weighted MIMO frequency domain identification and rational matrix approximation method for Python, Julia and Matlab," in *Proc. of the 19th IFAC Symposium on System Identification*, 2021, pp. 403–408.
- [20] D. Vizer, G. Mercere, O. Prot, E. Laroche, and M. Lovera, "Linear fractional lpv model identification from local experiments: an \mathcal{H}_{∞} based optimization technique," in *Proc. of the 52nd IEEE Conf. on Decis. and Control*, 2013.