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Entropic Security

An encryption scheme is called perfect if the ciphertext reveals no information whatsoever about the plaintext. For perfect
encryption of classical plaintexts the length of the key needs to be at least the entropy of the plaintext, and the simplest cipher is
the One-Time Pad (OTP) or Vernam cipher . In the quantum setting, perfect encryption of an n-qubit plaintext state requires a
key length of 2n bits, and the simplest cipher achieving this kind of encryption is the Quantum One-Time Pad (QOTP) [1, 2, 3].

If one does not aim for perfect security, it is possible to get information-theoretic guarantees about the encryption even with
shorter keys, as long as a lower bound is known on the min-entropy of the plaintext. The notion of (t, ε)-entropic security has been
introduced [4, 5], stating that the adversary’s advantage in guessing any function of the plaintext is upper bounded by ε if the
min-entropy of the plaintext (conditioned on Eve’s side information) is at least t. It can be seen as an information-theoretic version
of semantic security. It has been shown that (t, ε)-entropically secure encryption of an n (qu)bit plaintext can be achieved with key
length n− t + 2 log 1

ε [5, 6, 7]. In the quantum case the t can become negative when Eve’s quantum memory is entangled with the
plaintext state.

We introduce a new key expansion method for entropically secure encryption, both classical and quantum [8]. The main idea is to
postfix a pseudorandom string f (k) to the short key k, instead of creating an entirely new string from k. For the computation of
f (k) we use finite-field multiplication with a public random string. Our key expansion is faster than previous schemes.

1. The Quantum One-Time Pad

Let H2 denote the Hilbert space of a qubit. Let Z and X be single-qubit Pauli operators, in
the standard basis given by

(
1 0
0 −1

)
and

(
0 1
1 0

)
. The simplest way to encrypt an n-qubit state

φ ∈ D(H⊗n
2 ) is to encrypt each qubit independently. The key is β = (β1, . . . , βn) ∈ {0, 1}2n,

with βi = (si, ti).

Fβ(φ) = UβφU
†
β where Uβ =

n⊗
i=1

XsiZti. (1)

If the input state is entangled with the Eve’s state i.e. φAE ∈ D(HA⊗HE), then the effect
of QOTP encryption is

φAE 7→ Fβ(φ
AE) = (Uβ ⊗ 1E)φAE(U †

β ⊗ 1E). (2)

It holds that 2−2n
∑

β∈{0,1}2n Fβ(φ
AE) = 1/2n ⊗ φE for any φAE ∈ D(HA ⊗HE).

2. Entropic Security in the Quantum Setting

Entropic security has been generalized to the fully quantum setting where both the plaintext
and ciphertext are quantum states. Desrosiers [6] introduced definitions of entropic security
and entropic indistinguishability for quantum ciphers.

Definition: Strong entropic security in the quantum setting (Def.4 in [7]).
An encryption system R is called strongly (t, ε)-entropically secure if for all states φAE

satisfying Hmin(A|E)φ ≥ t, all interpretations {(pi, σAE
i )} of φAE, all adversaries A and all

functions f , it holds that∣∣∣Pr[A(R(σAE
i )) = f (i)]− Pr[A(R(φA)⊗ σE

i ) = f (i)]
∣∣∣ ≤ ε. (3)

Here ‘interpretation’ means φAE =
∑

i piσ
AE
i .

Definition: Entropic indistinguishability in the quantum setting (Def.3 in [7]).
An encryption system R : D(HA) → D(HA′) is called (t, ε)-indistinguishable if

∃ΩA′∈D(HA′)
Hmin(A|E)φ ≥ t =⇒

∥∥∥R(φAE)− ΩA′ ⊗ φE
∥∥∥
1
≤ ε. (4)

Similar to the classical setting, these definitions are equivalent up to parameter changes.
Theorem 1 in [7]: (t − 1, ε/2)-entropic indistinguishability implies strong (t, ε)-entropic
security for all functions.

Desrosiers also introduced a scheme with a key length of n− t+ 2 log 1
ε using a similar key

expansion method as [5]. Here t is the min-entropy of the quantum state. The analysis
in [6] applies only if Eve is not entangled with the plaintext. Desrosiers and Dupuis [7]
generalized the analysis, with conditional quantum min-entropy as defined by Renner [9],
and showed that the results hold even with entanglement. They also proved a minimum
required key length of n− t− 1.

3. Our scheme

Message state: φA ∈ D(H⊗n
2 )

Key: k ∈ {0, 1}ℓ
The construction shown below is for the case ℓ > n. The case ℓ < n is similar.

Random public strings: u ∈ {0, 1}ℓ and v ∈ {0, 1}2n−ℓ

Expanded key: b(k, u, v) = k∥(uk + v)lsb

Encryption: Enc(k, φA) =
(
u, v, Fb(k,u,v)(φ

A)
)

4. Results

If the key length is set as ℓ = n− t + 2 log 1
ε + 3 then our scheme is (t, ε)-entropically

secure.

•Our key expansion is faster than all previous constructions, while achieving the shortest
known key length. In particular, a factor 2 in speed is gained in the unentangled quantum
case without further assumptions on Eve.

•The scheme works both for quantum and classical one-time pads.

•Our security proofs are a bit more straightforward.

•We make slightly weaker assumptions on the plaintext, working with collision entropy
instead of min-entropy.
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