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Abstract
Arithmetical structures on matrices were introduced in Corrales H, Valencia CE 
(Arithmetical structures on graphs. Linear Algebra Appl, 536:120–151, 2018), 
which are finite whenever the matrix is irreducible. We generalize the algorithm that 
computes arithmetical structures on matrices given in Valencia CE, Villagrán RR 
(Algorithmic aspects of arithmetical structures. Linear Algeb Appl, 640:191–208, 
2022), to an algorithm that computes arithmetical structures on dominated polyno-
mials. A dominated polynomial is an integer multivariate polynomial, such that it 
contains a monomial, which is divided by all of its monomials. We give an example 
of a dominated polynomial which is not the determinant of an integer matrix and 
show how the algorithm works on it.
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1  Introduction

Arithmetical structures on matrices were introduced in 2018 by Corrales and 
Valencia in [3], where it was proven that arithmetical structures on irreducible 
matrices are finite. Recently arithmetical structures aroused some interest, see for 
instance [1, 2, 4, 5, 7]. Some algorithmic aspects of arithmetical structures on 
matrices were discussed in [6] where an algorithm that computes them was given.

The main goal of this article is to generalize some of the ideas contained in 
[6] for matrices to dominated polynomials and to get an algorithm that computes 
arithmetical structures on dominated polynomials. A dominated polynomial is 
an integer multivariate polynomial with a monomial which is divided by all its 
monomials. We recall that not every dominated polynomial is the determinant of 
an integer matrix, see for instance Example 2.13.

Now, we recall the definition of an arithmetic structure on a matrix. Given 
a non-negative integer matrix L with zero diagonal (for instance the adjacency 
matrix of a graph), a pair (�, �) ∈ ℕn

+
× ℕn

+
 is called an arithmetical structure on L 

whenever

It is not difficult to check that the vector � is a solution of the polynomial Diophan-
tine equation

Therefore, computing arithmetical structures on matrices consists on computing a 
subset of the solutions of the Diophantine equation defined by the determinant of a 
matrix with variables in the diagonal.

Throughout this article we use the usual partial order over ℝn given by � ≤ � if 
and only if ai ≤ bi for all i = 1,… , n and �,� ∈ ℝn . In a similar way, � < � when-
ever � ≤ � and � ≠ � . It is well known that ≤ is a well partial order over ℕn.

2 � Arithmetical structures on dominated polynomials.

We generalize Algorithms [6, 3.2 and 3.4] given for the determinant of a matrix 
to dominated polynomials. Some concepts are preserved in this new setting and 
others are not. For instance, the concept of d-arithmetical structure is generalized 
easily. However, this does not happen in the case of the r-arithmetical structure.

2.1 � Dominated polynomials

Given a polynomial f, let Mf  be its set of monomials. A monomial p ∈ Mf  is 
called dominant whenever it is divided by every monomial in Mf .

(Diag(�) − L)� t = �
t and gcd(r1,… , rn) = 1.

fL(X) ∶= det(Diag(�) − L) = 0.
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Definition 2.1  A polynomial f is called dominated whenever Mf  has a dominant 
monomial.

It is not difficult to check that if Mf  has a dominant monomial, then it is unique. 
For simplicity we can assume that f is square-free and x1 ⋯ xn is its dominant 
monomial.

Note that if L is a nonnegative integer square matrix with zeros in the diago-
nal, then fL(X) is a square-free dominated polynomial, whose dominant monomial 
is the product of the variables. It is not difficult to check that fL(X) is irreducible 
if and only if the matrix L is irreducible. Moreover, a vector � ∈ ℕn

+
 is an arith-

metical structure on L whenever fL(�) = 0 and the non-constant coefficients of 
fL,�(X) ∶= fL(X + �) are positive, see [3, Remark 2.7]. Now, we define the concept 
of a d-arithmetical structure on an irreducible square-free dominated polynomial.

Definition 2.2  Given a polynomial f with its leading coefficient positive, an arith-
metical structure on f is a vector � ∈ ℕn

+
 such that f (�) = 0 and all the non-constant 

coefficients of f
�
(X) ∶= f (X + �) are positive.

Note that if f does not have its leading coefficient positive, then it does not have 
any arithmetical structures. However, since either f or −f  has its leading coefficient 
positive, then we can assume that f has positive leading coefficient. From now on, let 
us assume that the leading coefficient is always positive unless the contrary is stated. 
We recall that not every polynomial is the determinant of a matrix with variables in 
the diagonal, see for instance Example 2.13.

If a dominated square-free polynomial f is reducible, that is, f =
∏s

i=1
fi for some 

irreducible square-free polynomial fi , then each fi is a dominated polynomial. More-
over, if �(fi) is the vector with the entries of � that corresponds to the variables of fi , 
then � is an arithmetical structure on f if and only if �(fi) is an arithmetical structure 
on at least one of the fi , and the non-constant coefficients of fi,�(fi)(X) are positive 
and the constant coefficient is non-negative for all i. Thus, if f is a reducible square-
free polynomial, then it has an infinite number of arithmetical structures.

Definition 2.3  Given a square-free dominated polynomial f on n variables, let

This definition generalizes the one given in [6, Section  2]. More precisely, 
if L is a non-negative matrix with zero diagonal, then D(L) = D(fL) where 
fL = det(Diag(�) − L).

Now, let D≥0(f ) =
{
� ∈ ℕn

+

||| all non-constant coefficients of f
�
(X) are positive and f (�) ≥ 0

}
.

2.2 � The algorithm in the dominated polynomial case

Here we give an algorithm that finds the arithmetical structures on a square-free 
irreducible dominated polynomial.

D(f ) = {� ∈ ℕ
n
+
| � is an arithmetical structure on f }.
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If f is an integer multivariate polynomial and all nonconstant coefficients of f are 
positive, let

Now, let minD≥0(f ) be the set of all minimal elements of D≥0(f ) . It is not diffi-
cult to check that min C(f ) exists and it is finite by Dickson’s Lemma. Also, for any 
� ∈ ℤn−1 and 1 ≤ s ≤ n , let �(s) ∈ ℤn be given by

Algorithm 2.4  Input: An integer irreducible square-free dominated polynomial f.
Output: minD≥0(f ) and D(f ) . 

	 (1)	 Let �sf =
�f

�xs
 for all 1 ≤ s ≤ n.

	 (2)	 Compute Ãs = minD≥0(𝜕sf ) for all 1 ≤ s ≤ n.
	 (3)	 Let As = {𝐝(s) |𝐝 ∈ Ãs}.
	 (4)	 For � in 

∏
∶=

∏n

s=1
As:

	 (5)	     � = sup{�1, �2,… , �n}.
	 (6)	     Let S = {s | coef

�
(xs) = 0}

	 (7)	     If |S| = 0:
	 (8)	        For �∗ ∈ min C(Diag(f (X + �)):
	 (9)	           “Add" �∗ + � to minD≥0(f ).
	(10)	     If |S| ≥ 1:
	(11)	        For t ∉ S:
	(12)	           Make ��

t
= �t + 1 , ��

r
= �r for all r ∈ [n] ⧵ {t}

	(13)	           For �∗ ∈ min C(Diag(f (X + �
�

)):
	(14)	             “Add" �∗ + �

� to minD≥0(f ).
	(15)	     If |S| ≥ 2:
	(16)	        For s1, s2 ∈ S ( s1 ≠ s2):
	(17)	           Make ��

s1
= �s1

+ 1 , ��

s2
= �s2

+ 1 , ��

r
= �r for all r ∈ [n] ⧵ {s1, s2}

	(18)	           For �∗ ∈ min C(Diag(f (X + �
�

)):
	(19)	             “Add" �∗ + �

� to minD≥0(f ).
	(20)	 Return minD≥0(f ) and D(f ) = {� ∈ minD≥0(f ) | f (�) = 0}.

C(f ) = {� ∈ ℕ
n
+
| f (X + �) ∈ D≥0(f )}.

(2.1)(�(s))i =

⎧
⎪⎨⎪⎩

�i if 1 ≤ i < s,

1 if i = s,

�i−1 if s < i ≤ n.
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The vector at step (5) is the supremum or maximum of the set of vectors 
{�1,… , �n} under the usual (entry by entry) order. The function “add" at steps (9), 
(14) and (19) means that we add the corresponding vector to the set minD≥0(L) 
whenever it is not greater than other vector already in the set. Afterwards, by elimi-
nating from the set any vector greater than that vector, then the minimality of the set 
is ensured. The proof of the correctness of Algorithm 2.4 will be similar to the one 
given for [6, Algorithm 3.2]. Thus we begin by extending [6, Lemma 3.1] for the 
polynomial case.

Lemma 2.5  If f = ax1x2 + b1x1 + b2x2 + c with a, b1, b2, c ∈ ℤ and a ≥ 1 , then

where d+
1
= max(1, ⌈ 1−b2

a
⌉) and d+

2
= max(1, ⌈ 1−b1

a
⌉).

Proof  A vector � = (d1, d2) ∈ ℤ2 is in D≥0(f ) if and only if d1, d2 ≥ 1 , 
ad1 + b2, ad2 + b1 ≥ 1 and

We set d+
1
= max(1, ⌈ 1−b2

a
⌉) and d+

2
= max(1, ⌈ 1−b1

a
⌉) . It is clear that if 

� ∈ D≥0(f ) , then � ≥ (d+
1
, d+

2
) . On the other hand, if (d1, d2) ≥ (d+

1
, d+

2
) , 

then the only condition left for � to be in D≥0(f ) is 2.2. Therefore, if 
ad+

1
d+
2
+ b1d

+
1
+ b2d

+
2
+ c ≥ 0, then minD≥0(f ) = {(d+

1
, d+

2
)} . Henceforth, let us 

assume that

and

Thus d+
1
≤ d1 <

−(c+b2d
+
2
)

ad+
2
+b1

 and in order to fulfill condition (2.2), we have that 

d2 ≥
−(c+b1d1)

ad+b2
 . Also note that max(d+

2
,
−(c+b1d1)

ad1+b2
) =

−(c+b1d1)

ad1+b2
 by (2.4). Then

Finally, if

then we have that max(d+
2
,
−(c+b1d1)

ad1+b2
) = d+

2
 and d1 ≥

−(c+b2d
+
2
)

ad+
2
+b1

. Thus

minD≥0(f ) = min

{(
d, max

(
d+
2
,

⌈−(c + b1d)

ad + b2

⌉))||| d ∈ ℕ+, d
+
1
≤ d ≤ max

(
d+
1
,

⌈−(c + b2d
+
2
)

ad+
2
+ b1

⌉)}
,

(2.2)ad1d2 + b1d1 + b2d2 + c ≥ 0.

(2.3)ad+
1
d+
2
+ b1d

+
1
+ b2d

+
2
+ c < 0 (≤ −1)

(2.4)ad1d
+
2
+ b1d1 + b2d

+
2
+ c < 0.

min

�
(d1, ⌈

−(c + b1d1)

ad1 + b2
⌉)� d+

1
≤ d1 ≤ ⌊−(c + b2d

+
2
)

ad+
2
+ b1

⌋
�

⊆ minD≥0(f ).

(2.5)ad1d
+
2
+ b1d1 + b2d

+
2
+ c ≥ 0,
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We conclude that

Clearly, this can be restated so that we have the result. 	�  ◻

Remark 2.6  Note that D≥0(f ) is an infinite set, but by Dickson’s Lemma minD≥0(f ) is 
finite. Also f is monotone, that is, if g(x1, x2) = f (x1 + d+

1
, x2 + d+

2
) has positive non-

constant coefficients and therefore g(x1 + 𝜖
�

1
, x2 + 𝜖

�

2
) > g(x1 + 𝜖1, x2 + 𝜖2) > g(x1, x2) 

for every (𝜖�

1
, 𝜖

�

2
) > (𝜖1, 𝜖2) > 0.

Next example illustrates how to calculate minD≥0(f ) in the two variable case.

Example 2.7  Let f = f (x1, x2) = 2x1x2 − 7x1 − 10x2 + 16 and let d+
1
 and d+

2
 be as in 

Lemma 2.5. It is not difficult to check that (d+
1
, d+

2
) = (6, 4) and

And therefore D(f ) = {(6, 13), (24, 4)}.

Now we proceed to prove that Algorithm 2.4 is correct.

Theorem 2.8  Algorithm 2.4 computes the sets minD≥0(f ) and D(f ) for any integer 
multivariate irreducible square-free dominated polynomial f.

Proof  First, without loss of generality we can assume that every variable in X 
appears in some monomial of f and that |X| = n . In the case of a matrix L, induction 
on the size of L and the n − 1 minors of (Diag(X + �) − L) corresponds to induction 
on the degree of f and its first partial derivatives, respectively. Thus, we will proceed 
by induction on the number of variables in X, which is the degree of f.

If f = f (X) is a square-free dominated polynomial with |X| = 2 and positive 
leading coefficient, we have that X = {x1, x2} and f = ax1x2 + b1x1 + b2x2 + c and 
therefore the result follows by Lemma 2.5.

Now, assume that the algorithm is correct for every number of variables up to 
n − 1 and let X = {x1,… , xn} and f be an integer multivariate irreducible square-free 
dominated polynomial of degree n with positive leading coefficient. It is not difficult 

min{� ∈ D≥0(f )� 2.3 and2.5 holds} = {(⌈−(c + b2d
+
2
)

ad+
2
+ b1

⌉, d+
2
)}.

minD≥0(f ) =

⎧⎪⎨⎪⎩

min

�
{(d, ⌈ −(c+b1d)

ad+b2
⌉)� d+

1
≤ d ≤ ⌊ −(c+b2d

+
2
)

ad+
2
+b1

⌋} ∪ {(⌈ −(c+b2d
+
2
)

ad+
2
+b1

⌉, d+
2
)}
�

if 2.3 holds,

{(d+
1
, d+

2
)} otherwise.

minD≥0(f ) =min

{(
d, max

(
4,

⌈−(16 − 7d)

2d − 10

⌉))||| d ∈ ℕ+, 6 ≤ d ≤ 24

}

=min

{
(6, 13), (7, 9), (8, 7), (9, 6), (10, 6), (11, 6), (12, 5), (13, 5), (14, 5), (15, 5),

(16, 5), (17, 5), (18, 5), (19, 5), (20, 5), (21, 5), (22, 5), (23, 5), (24, 4)

}

=
{
(6, 13), (7, 9), (8, 7), (9, 6), (12, 5), (24, 4)

}
.



436	 São Paulo Journal of Mathematical Sciences (2023) 17:430–439

1 3

to check that steps (1) to (5) of Algorithm 2.4 create a set of vectors Δ , such that if 
� ∈ Δ , then the nonconstant coefficients of any monomial of degree at least 2 in 
f (x1 + d1,… , xn + dn) are positive. Moreover, the nonconstant coefficients of any 
term of degree one of f (X + �) are non-negative whereas the constant term may be 
negative.

If S = � implies that every nonconstant coefficient of f (X + �) is positive, see 
Step (7). Steps (10) - (12) and steps (15) - (17) handle the other two cases. That 
is, we have that all nonconstant coefficients of f (X + �

�

) are positive. Let Δ� be the 
set of all of these vectors obtained at steps of Algorithm 2.4. We will prove that in 
steps (8)-(9), (13)-(14), (18)-(19) and (20), the algorithm increases the vectors in 
Δ

� further so that we get all the vectors in minD≥0(f ) . Note that if ��

∈ Δ
� , then by 

the definition of C(f ) every vector � ≥ �
′ , such that f (X + �) has all of its noncont-

ant coefficients positive and the constant non-negative coefficient can be reached on 
steps (8)-(9), (13)-(14) and (18)-(19). Therefore we only need to prove that every 
� ∈ minD≥0(f ) is reached by some vector in Δ�.

In order to prove this, for every � ∈ D≥0(f ) , let �|s be the vector equal to � with-
out the s-th entry. That is,

Then for every s ∈ [n] , we have that �|s ∈ D≥0(�sf ) and there exists 𝐮̃ ∈ minD≥0(�sf ) 
such that 𝐮̃ ≤ 𝐮|s . Consequently, we have that

where �(s) is as in equation (2.1). In other words, every � ∈ minD≥0(f ) is greater or 
equal than a vector presented by step (5). Therefore let � ∈ minD≥0(f ) and let � ≤ � 
be such vector given at step (5). Then, assume that there is no vector �′

≥ � in Δ� 
such that � ≥ �

′ . Note that S = {s | coef
�
(xs) = 0} ≠ � and that any vector in Δ� can 

not be greater or equal than � . Thus � = � + a�
�
 for some a ∈ ℕ+ and some s ∈ S , 

where �
�
∈ ℕn is the standard unit vector with its s-th entry equal to 1. Therefore 

coef
�
(xs) = 0 , a contradiction since � ∈ minD≥0(f ) . Concluding that there is a vec-

tor �′

≥ � in Δ� such that � ≥ �
′ and therefore the algorithm computes minD≥0(f ) 

and D(f ) . 	�  ◻

Next example illustrates how Algorithm 2.4 works on a polynomial which is 
not the determinant of a matrix with variables in the diagonal.

Example 2.9  Let f = x1x2x3 − 19x1 + 2x2 + 3x3 − 23 be the irreducible polynomial 
given in Example 2.13. Step (2) of Algorithm 2.4 gives us

From step (3) and Lemma 2.5 we get that minD≥0(�2f ) = minD≥0(�3f ) = {(1, 1)} 
and

(�|s)i =
{

�i, if 1 ≤ i ≤ s − 1,

�i+1, if s ≤ i ≤ n − 1.

max
s∈[n]

{
(𝐮̃(s))i

}
≤ 𝐮i,

�1f = x2x3 − 19 �2f = x1x3 + 2 �3f = x1x2 + 3.
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Continuing with Algorithm 2.4 we have the following set of vectors to search,

Note that f
�
(X) has positive constant term for almost every vector � ∈ Π , except for 

(1, 5, 4). That is, only the vector (1, 5, 4) has the chance to be an arithmetical struc-
ture on f. Indeed, since

then D(f ) = {(1, 5, 4)}.

Next Figure illustrate the geometry of Lemma 2.5. Let PG be the green region, 
which corresponds to D≥0(f ) since it is the portion of the ℕ+-grid “above" (d+

1
, d+

2
) 

and such that f ≥ 0 . More precisely, D≥0(f ) = PG ∩ ℕ2
+
 . Furthermore, it is not dif-

ficult to see that if g is a polynomial of degree n, then D≥0(g) = P ∩ ℕn
+
 for some 

unbounded n-dimensional polytope P (Fig. 1).
We recall that if f is a square-free dominated polynomial without any arithmetical 

structure, then this does not imply (as next example shows) that f = 0 has not inte-
ger solutions.

Example 2.10  Let g = x1x2 + 17x1 − 12x2 + 27 . By Lemma 2.5 we have that

On the other hand, since g(13, 1) = 249 , then D(g) = � . Nevertheless g = 0 has six-
teen different solutions in ℤ2 . Moreover four of them are solutions in ℕ2

+
 , namely

minD≥0(�1f ) = {(1, 19), (19, 1), (2, 10), (10, 2), (3, 7), (7, 3), (4, 5), (5, 4)}.

Π =

{
(1, 1, 19) (1, 2, 10) (1, 3, 7) (1, 4, 5)

(1, 19, 1) (1, 10, 2) (1, 7, 3) (1, 5, 4)

}
.

f(1,5,4)(X) = x1x2x3 + 4x1x2 + 5x1x3 + x2x3 + x1 + 6x2 + 8x3 + 0,

minD≥0(g) = {(13, 1)}.

x2

x1
1

d+2

←− c+b1d
+
1

ad+
1 +b2

0 1 d+1
↓

− c+b2d
+
2

ad+
2 +b1

Fig. 1   The blue line represents the curve f = 2x1x2 − 7x1 − 10x1 + 16 = 0 for x1 ≥ 5.8 and the yellow 
points are the elements in minD≥0(f ) (Color figure online)
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None of them found by the algorithm, since the condition of having all non-
constant coefficients positive is not fulfilled by any of them. For instance 
f (x1 + 11, x2 + 214) = x1x2 + 231x1 − x2.

Defining an r-arithmetical structure on an integer square-free dominated poly-
nomial is a more difficult task. On the other hand, the r-arithmetical structures 
on L and Lt are equal if and only if L is symmetric. Also, fL(X) = fLt (X) for any 
L ∈ Mn(ℤ) because the determinant of a matrix is invariant under the transpose, 
that is, det(L) = det(Lt) . Moreover, if M is a matrix without rows or columns equal 
to zero, then D(L) = D(Lt) . That is, the polynomial fL(X) does not distinguish 
between L and Lt . However r-arithmetical structures on L and Lt are not equal 
when L is not symmetric. Therefore in general we may not try to extract the infor-
mation of the r-arithmetical structures from fL(X) . Next example illustrates the 
previous discussion.

Example 2.11  If L =

(
0 1

3 0

)
 , then fL(x1, x2) = fLt (x1, x2) = x1x2 − 3 and therefore

Thus D(fL) = {(1, 3), (3, 1)} = D(fLt ) and R(fL) = {(1, 1), (1, 3)} ≠ {(1, 1), (3, 1)} = R(fLt ).

Remark 2.12  If f is an irreducible polynomial which is the determinant of a matrix 
with variables in the diagonal irreducible, then it comes from an irreducible matrix.

A symmetric Z-matrix M is an almost non-singular M-matrix with det(M) = 0 
if and only if there exists a positive vector � such that

where kerℚ(M) = ⟨�⟩ and K(M) is the critical group of M, see [3, Proposition 3.4]. 
Then it is feasible to define the order of the critical group of a d-arithmetical struc-
ture on a polynomial f as

Given any non-negative matrix with zero diagonal L such that every of its rows are 
different from � , then (L�, �) is the canonical arithmetical structure on L. In gen-
eral for integer multivariate polynomials we can not recover the concept of canoni-
cal arithmetical structure. Furthermore, some polynomials are extremal in the sense 
that they have very few arithmetical structures. We illustrate this idea at the next 
example.

Example 2.13  If g = x1x2x3 − 19x1 + 2x2 + 3x3 + b , then

{(1, 4), (5, 16), (9, 60), (11, 214)}.

A(L) = {((1, 3), (1, 1)), ((3, 1), (1, 3))} and A(Lt) = {((1, 3), (3, 1)), ((3, 1), (1, 1))}.

Adj(M) = |K(M)| � t� > �,

|K(f , �)| = gcd(coef f�(X)(x1),… , coef f�(X)(xn)).
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Which implies that b ∈ ±{25, 41, 59, 115} . It is not difficult to check by [6, Propo-
sition 3.7] that f (x1, x2, x3) = x1x2x3 − 19x1 + 2x2 + 3x3 − 23 is not the determi-
nant of a matrix with variables in the diagonal. Evaluating, it is easy to see that 
(d1, d2, d3) ∈ ℕ3

+
 is an arithmetical structure on f if and only if

Thus we have that D(f ) = {(1, 5, 4)} . A follow up problem would be to study this 
type of polynomials, where we have a single d-arithmetical structure.
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b =
−114

n
− n where n ∈ Div(114) = ±{1, 2, 3, 6, 19, 38, 57, 114}.

d2d3 − 19 ≥ 1 and (d2d3 − 19)d1 + 2d2 + 3d3 = 23.
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