

Efficient model-free iterative learning control for massive MIMO systems using stochastic approximation

Citation for published version (APA):
Aarnoudse, L., & Oomen, T. (2021). Efficient model-free iterative learning control for massive MIMO systems using stochastic approximation. 24. Abstract from Benelux Workshop on Systems and Control 2021, Rotterdam, Netherlands.

Document status and date:

Published: 01/01/2021

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 17. Nov. 2023

Efficient Model-Free Iterative Learning Control for Massive MIMO Systems using Stochastic Approximation

Leontine Aarnoudse^{1,*}, Tom Oomen¹

¹Control Systems Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands *Email: l.i.m.aarnoudse@tue.nl

1 Background

Iterative learning control (ILC) aims to achieve high performance while providing robustness against model errors. Typical optimization-based ILC approaches use models combined with experimental data [1], and existing databased methods such as [2] are experimentally expensive. This research aims to develop an efficient model-free ILC approach for massive MIMO systems using an unbiased gradient estimate that is obtained from a single experiment.

2 Problem formulation

Consider a MIMO system $J \in \mathbb{R}^{n_o N \times n_i N}$ with n_i inputs and n_o outputs, given in lifted form by

$$e = r - Jf \tag{1}$$

with input $f \in \mathbb{R}^{n_i N \times 1}$, error $e \in \mathbb{R}^{n_o N \times 1}$ and unknown exogenous disturbance $r \in \mathbb{R}^{n_o N \times 1}$. The criterion

$$\mathcal{J}(f) = \|e\|_{W_e}^2 + \|f\|_{W_f}^2 \tag{2}$$

with $||x||_W = \sqrt{x^\mathsf{T} W x}$ is minimized iteratively using a gradient descent algorithm with parameter update

$$f_{j+1} = f_j - \varepsilon_j g(f_j) \tag{3}$$

with step size ε_i and gradient

$$g(f_j) = -2J^{\mathsf{T}} W_e e_j + 2W_f f_j.$$
 (4)

The gradient can be obtained using a model, or through $n_i \times n_o$ dedicated experiments on the adjoint of the system J [2, 3]. This research aims instead to use an approximation $\hat{g}(f_j)$ obtained from a single experiment.

3 Approach

A stochastic approximation adjoint ILC (SAAILC) approach is proposed, in which an unbiased approximation of the gradient is obtained from a single experiment as

$$\hat{g}(f_j) = -2\mathcal{T}^{n_i} A_j J A_j \mathcal{T}^{n_o} W_e e_j + 2W_f f_j. \tag{5}$$

The entries of matrix A_j are samples from a symmetric Bernoulli ± 1 distribution, and \mathcal{T} is a time-reversal operator, for which it holds that $\mathcal{T}J^{11}\mathcal{T}=(J^{11})^{\mathsf{T}}$ for a SISO system J^{11} . Estimate (5) replaces $g(f_j)$ in (3), and since

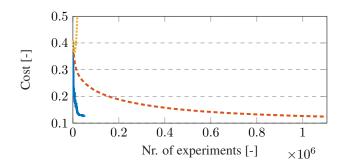


Figure 1: The cost as a function of the number of experiments in adjoint ILC for a non-symmetric 21×21 MIMO system. SAAILC (—) requires far fewer experiments to reach the same cost as non-symmetric deterministic adjoint ILC (—), while symmetric deterministic adjoint ILC (—) results in a diverging cost.

 $\mathbb{E}(\hat{g}(f_j)) = g(f_j)$, the resulting algorithm can be interpreted as a Robbins-Monro type stochastic gradient descent algorithm, for which convergence can be shown.

The proposed SAAILC approach is experimentally advantageous compared to the deterministic approach in [2], which essentially applies the method by [3] to each subsystem of J subsequently, thus requiring $n_i \times n_o$ dedicated experiments to obtain the gradient for a non-symmetric n_i by n_o system.

4 Results

In Figure 1, SAAILC is illustrated using a random non-symmetric 21×21 MIMO system. It is shown that SAAILC achieves the same cost as the deterministic MIMO adjoint ILC algorithm, while reducing the number of required experiments significantly. In addition, it is shown that assuming that the system is symmetric in order to reduce the number of experiments results in a diverging cost.

References

- [1] S. Gunnarsson and M. Norrlöf, "On the design of ILC algorithms using optimization," *Automatica*, vol. 37, no. 12, pp. 2011–2016, 2001.
- [2] J. Bolder, S. Kleinendorst, and T. Oomen, "Data-driven multivariable ILC: Enhanced performance by eliminating L and Q filters," *Int. J. Robust Nonlinear Control*, vol. 28, no. 12, pp. 3728–3751, 2018.
- [3] B. Wahlberg, M. B. Syberg, and H. Hjalmarsson, "Non-parametric methods for L2-gain estimation using iterative experiments," *Automatica*, vol. 46, no. 8, pp. 1376–1381, 2010.