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Abstract—Disturbances that come from multiple originating
domains, e.g., time, position, or commutation-angle domain, are
often encountered in practice due to the increasing complexity
of mechatronic systems. The aim of this paper is to present a
generalized approach that enables asymptotic rejection of multi-
dimensional disturbances which are periodic in the different
originating domains, e.g., if speed changes, then spatially-periodic
disturbances manifest themselves differently in the time domain.
A multi-dimensional Gaussian process (GP) based internal model
is employed in conjunction with a traditional repetitive control
(RC) setting using non-equidistant observations, allowing to learn
a multidimensional buffer for RC. A case study with a spatio-
temporal disturbance confirms the benefit of this method.

Index Terms—Repetitive control, Internal model control, Gaus-
sian processes, Multi-dimensional disturbances

I. INTRODUCTION

Asymptotic rejection of unknown disturbances plays an
important role to improve the performance of high-precision
mechatronic systems. A key enabler for asymptotic distur-
bance rejection is the internal model principle (IMP), which
states that a model of the unknown disturbance must be
incorporated in a stable feedback loop [1]. Commonly used ex-
amples of IMP include a Proportional Integral (PI) controller,
where a model of a constant disturbance, i.e., an integrator, is
included in the feedback loop [2], and an inverse notch filter to
reject an oscillatory disturbance at a single known frequency.
However, traditional feedback control performance is often
not satisfactory in presence of varying disturbances. Several
add-on type controllers for active disturbance rejection have
been developed, including disturbance-observer-based control
(DOBC) where a good model of the system is essential to es-
timate the exogenous unknown disturbance and consequently
compensate for it, see, e.g., [3].

Engineered systems become increasingly complex, leading
to disturbances that originate from different domains, e.g.,
time, position, or commutation angle [4], [5], referred to as
multi-dimensional disturbances. Examples include an indus-
trial printer where a rotating belt generates a disturbance that
is periodic in the belt-position domain [6], where at the same
time the print head generates a disturbance that is periodic
in time due to its repeating motion [7]. Thermo-mechanical
problems also appear, e.g., in wafer-stages with non-perfect
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commutations functions that induce spatial disturbances, while
at the same time illumination of the wafer induces a thermal
deformation [8], [9]. In view of these multi-dimensional dis-
turbances, traditional internal models are not applicable as they
contain only a single domain, whereas systematic integration
of multiple internal models in different domains is required.

Disturbances that are periodic in the time domain can be
asymptotically rejected using repetitive control (RC), where
an internal disturbance model is learned in a time-domain
memory loop of size is equal to the disturbance period time
[10], [11]. RC is successfully applied to many industrial
applications, including DC motors [12], printing systems [7]
and hard-disk drives [13], [14]. To improve the flexibility
of RC several extensions have been developed recently, e.g.,
multi-period disturbances in the time domain are compen-
sated by using multiple RCs [15]–[17], and robustness for
slight variations in the period-time is improved using multiple
buffers in higher-order RC (HORC) [13], [18]. To cope with
disturbances that are periodic in the position domain, where
observations become non-equidistant, spatial RC is developed
by exploiting spatial internal models [12]. Despite these recent
improvements, existing RC approaches are not applicable
when disturbances are periodic in multiple domains.

Although recent progress is made to enable asymptotic
rejection of repeating disturbances, a unified framework that
systematically integrates multiple domains is not yet available.
Recent developments in RC utilize a Gaussian process (GP)
based internal model to construct spatial [19] and tempo-
ral models [20]. These developments and the flexibility of
GPs enables to systematically design multi-dimensional GP-
based internal models for suppression of multi-dimensional
disturbances in RC which is the aim of this paper. The
main contribution of this paper is (C1) repetitive controller
design for systematic integration of multi-dimensional periodic
disturbances through a Gaussian-process-based buffer with a
multi-dimensional additive periodic kernel, and (C2) a case
study with a spatio-temporal disturbance.

This paper is outlined as follows, the problem is presented
in Section II. In Section III, the GP-based internal model for
RC is presented (C1), and in Section IV a case study with
a spatio-temporal disturbance is shown (C2). Conclusions are
given in Section V.
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Fig. 1. Disturbance rejection problem with the n-dimensional disturbance
d(k) and the conventional repetitive controller structure R.

II. PROBLEM FORMULATION

A. Control setting
The control problem is depicted in Fig. 1, where P is a

linear time-invariant (LTI) single-input single-output (SISO)
discrete-time (DT) system, C is a stabilizing feedback con-
troller, and R is a repetitive controller (RC) that is designed
in the forthcoming sections. The aim of this paper is to design
R such that the disturbance induced error given by

ed(k) = −(1 + P (q)C(q))−1P (q)d(k), (1)

with q the unit time shift operator, i.e., u(k−1) = q−1u(k), is
minimized in the presence of a multi-dimensional disturbance
signal d(k) that is in general non-periodic in time k ∈ N and
defined in the following section.

B. Multi-dimensional disturbances in RC
The n-dimensional disturbance signal d(k) in Fig. 1 is

the summation of n signals di(k) that are periodic in their
respective domain xi, e.g., position, time, or commutation
angle, with i ∈ {1, 2, . . . n}. This is formally presented in
the following definition, where the notation (̄·) distinguishes
functions from signals.

Definition 1 The discrete disturbance signal d(k) ∈ R
at sample k is obtained by evaluating the continuous
n-dimensional function d̄(x(k)) : Rn → R for any x(k) =[
x1(k) x2(k) . . . xn(k)

]> ∈ Rn, i.e.,

d(k) = d̄(x(k)) =

n∑
i=1

d̄i(xi(k)), (2)

where the additive function d̄ is a sum of n functions d̄i(xi) :
R → R that are periodic in the domain xi, i.e., d̄i(xi) =
d̄i(xi+Ti) for all i where Ti ∈ R is the period that is known in
advance. Furthermore, the signals xi(k) for i = 1, 2, . . . n are
known or can be measured noise-free, possibly uncorrelated
in the general case and non-equidistantly sampled.

The signal di(k) = d̄i(xi(k)) is periodic in time if xi(k)
increases linearly, but in the general case it is assumed that
di is non-periodic in time. The overall disturbance d(k) is
periodic in time if all di are periodic with time-domain
periods ti and there exists a least common multiple t =
lcm(t1, t2, . . . , tn), otherwise d(k) is non-periodic in time.
This is further illustrated in the following motivating example.

Magnet array

Coils

p1
p2

Fig. 2. Picture of a prototype magnetically levitated platform (maglev) on
an array of permanent magnets used to carry a sample for Atomic Force
Microscopy (AFM) [21]. If commutation is non-perfect then the magnets
induce a disturbance as function of the positions x1 and x2.
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Fig. 3. Example 1: 2-dimensional disturbance mapping d̄(x1, x2) as function
of x1 and x2, with periods T1 = 50 and T2 = 75 (top). The resulting
disturbance d(k) if x1 = 2x2 when d(k) is periodic in time ( ) and for
varying x1 and x2 rendering d(k) is non-periodic in time ( ) (bottom).

Example 1 (2-dimensional disturbance in a maglev-stage)
Consider the prototype magnetically levitated platform to
carry a sample for atomic force microscopy in Fig. 2.
Here, a 2-dimensional disturbance d(x1(k), x2(k)) acts on
the platform if the commutation is non-perfect, where the
position signals x1(k) and x2(k) are not correlated, see [21]
for details. To replicate this setting, set n = 2 in (2) where
x1 and x2 are the positions on the magnet array. The 2-
dimensional disturbance function d̄(x1, x2) is replicated with
d̄1 = 1

2 sin(2π x1

T1
) and d̄2 = 1

2 sin(2π x2

T2
) where T1 = 75 and

T2 = 50 represent for example the magnet pitch, the resulting
d̄(x1, x2) is depicted in Fig. 3. Consider the following cases.

i) If x1(k) = 2x2(k) such that the platform moves diago-
nally and there is a static relation between x1 and x2, i.e.,
the matrix X̄ =

[
x̄(1) x̄(2) . . . x̄(k)

]
∈ Rn×k is it



not full row rank, then d(k) manifests periodic in time.
The signal d1(x1(k)) has time-domain period 1

2T1 = 37.5
samples and d2(x2(k)) has T2 = 50 samples, hence
lcm(50, 37.5) = 150 samples, see Fig. 3 in ( ).

ii) If x1 and x2 vary continuously as in the top right in Fig. 3
in ( ), then X̄ is full row rank and there is no static
relation. This renders d(k) non-periodic in time ( ).

Hence, if all signals xi are uncorrelated the disturbance is non-
periodic in time. Next, the limitations of traditional temporal
buffers for the disturbances in Definition 1 are outlined.

C. Limitations of traditional RC
In traditional RC, a time-domain memory z−N in a feed-

back loop is used to model the time-domain periodic distur-
bance. In the case of multi-dimensional disturbances, the main
challenges that arise for RC are twofold, first, the memory loop
must combine multiple domains, second, due to variations in
x(k) the error data is non-equidistant in x(k). To compensate
for the disturbance, the buffer must be a continuous function
that is constructed from non-equidistant data and can be
evaluated at any x(k) ∈ Rn. This implies that traditional
memory loops, which rely on time-domain periodicity, cannot
be used. Alternative RC approaches use non-equidistant data
in the position-domain [22] by employing a Gaussian process
(GP), but combining multiple uncorrelated domains in RC is
not yet available.

D. Problem definition
The aim of this paper is to learn the multi-dimensional

disturbance with an additive GP and suitable prior through
a periodic kernel function in the underlying domains. By
exploiting structure and periodicity in d̄, the functions d̄i are
learned jointly from non-equidistant and non-periodic data.

III. MULTI-DIMENSIONAL REPETITIVE CONTROL

A. Multi-dimensional buffer for RC
The multi-dimensional GP-based RC R is depicted in Fig.

4, where GPB is the multi-dimensional GP-based buffer that
replaces the time-domain memory z−N from traditional RC,
and L is a stable learning filter. GP regression is performed
at every sample k to learn a model of the multi-dimensional
disturbance function d̄(x), based on N data points that are
non-equidistant in the domains x. For compensation in RC,
the GP-based model can be evaluated at any x(k) ∈ Rn.

The data for GP regression consists of the past N values of
yd(k) ∈ R and the corresponding x(k). These are collected in
Y (k) ∈ RN and X(k) ∈ Rn×N respectively given by

Y (k) =
[
yd(k) yd(k − 1) . . . yd(k −N + 1)

]>
, (3a)

X(k) =
[
x(k)> x(k − 1)> . . . x(k −N + 1)>

]>
. (3b)

Define the n-dimensional training data set DN (k) = (X,Y )
containing N pairs (yd(k), x(k)).

The number of data points N may vary over time and is not
correlated with the periodicity, which is the case in traditional
memory loops. The periodicity in each of the underlying
domains is embedded in the multi-dimensional prior as will
be shown in the remainder of this section.

L

R

GPB
`(k) yd(k) fRC(k)

+

e(k)

x(k)

Fig. 4. Multi-dimensional repetitive controller R with learning filter L
Gaussian-process-based buffer GPB .

B. GP regression for multi-dimensional disturbances
In this section, the multi-dimensional internal disturbance

model of d̄ is learned from the data DN through Gaussian
process regression. In GP regression is a distribution over func-
tions is inferred from data and a suitable prior distribution [23],
[24]. The n-dimensional and potentially non-equidistant data
DN is used to learn the posterior distribution over functions,
that can be evaluated at any x̄ ∈ Rn for compensation in
RC. Next, the prior knowledge and posterior distribution are
defined to give an expression for the GP-RC output fRC(k).

To define prior knowledge assuming that d̄(x) can be
represented as a GP, i.e.,

d̄(x) ∼ GP(0, κ(x, x′)), (4)

where κ(x, x′) is an n-dimensional covariance function that
describes the prior covariance between x and x′, and the
prior mean function is assumed to be zero a priori. Moreover,
DN contains noisy observations of the true disturbance, i.e.,
Y (X) = d̄(X) + ε where ε ∼ N (0, σ2

nIN ) is zero-mean and
follows an independent, identically distributed Gaussian distri-
bution. To determine the posterior distribution at x∗(k) ∈ Rn
using DN and prior knowledge (4) for compensation, assume
a joint normal distribution between the test points x∗(k) ∈ Rn
and the training points DN (X,Y )[

Y
d̄∗

]
∼ N

([
0
0

]
,

[
K + σ2

nIN K∗
K>∗ K∗∗

])
, (5)

where K ∈ RN×N is the covariance function κ(X,X)
evaluated at (X,X), and similar for K∗ = κ(X,X∗) ∈ RN×1
and K∗∗ = κ(X∗, X∗) ∈ R. The posterior distribution at the
test points x∗ is given by p(d̄∗|D, X∗) = N (d̄,Σ) with

d̄(X∗) = K>∗ (K + σ2
nIN )−1Y, (6a)

Σ(k) = K∗∗ −K>∗ (K + σ2
nIN )−1K∗ (6b)

the posterior mean and covariance respectively, see, e.g., [24].
For compensation in RC, the most likely sample from the
posterior distribution (6), i.e., the posterior mean d̄(X∗), is
used. The RC output for a test point x∗(k) is given by

fRC(k) = K>∗ (K + σ2
nIN )−1Y (k). (7)

The choice κ is essential to obtain an accurate model and be
able to extrapolate beyond the given data points.

C. Multi-dimensional kernel selection
A suitable prior covariance function κ in (4) where peri-

odicity in each of functions d̄i is incorporated together with
the additive structure in Definition 1 allows combine multiple



Fig. 5. Example 2 with a 2-dimensional spatio-temporal kernel K(x1, x2) = K1(x1)+K2(x2) (fourth), that is the sum of two periodic kernels K1(x1, x′1)
(first) and K2(x2, x′2) (third) with periods T1 = 100 and T2 = 150. Samples are taken from their corresponding prior distributions N (0, κi(X,X)) that
are periodic with T1 and T2 respectively. The kernel K1(x1(k), x′1(k)) is also shown as function of k (second) where both the kernel and a random sample
is non-periodic. Finally, the sum of K1 and K2 yields K(x̄(k)) (fourth) that is non-periodic.

domains in a single GP-based buffer for RC. Assume that the
functions d̄i for i = 1, 2, . . . , n can be modeled as a GP, i.e.,
d̄i(xi) ∼ GP(0, κi(xi, x

′
i)), where κi(xi, x′i) is the covariance

function that specifies prior knowledge regarding d̄i. Since,
each d̄i is periodic and smooth, a periodic covariance function

κi(xi, x
′
i) = σ2

f,i exp

(−2

l2i
· sin2

(
π|xi − x′i|

Ti

))
, (8)

is used where li is the smoothness, Ti the period and σf,i
a gain, see, e.g., [24, Chapter 4]. Consequently, the multi-
dimensional covariance function κ for d̄(x) in (4) is

κ(x, x′) =

n∑
i=1

κi(xi, x
′
i), (9)

which is an additive n-dimensional covariance function [25].
As a result, a sample taken from the prior distribution

N (0, κ(X,X ′)) with covariance function (9) is smooth and
can be decomposed in a sum of smooth and periodic functions
in each of the underlying domains xi as illustrated next.

Example 2 (Spatio-temporal kernel) Consider n = 2 in (9)
with hyperparameters T1 = 100, T2 = 150, l1 = l2 = 1
and σ2

f,1 = σ2
f,2 = 1. The signal x1(k) is a position signal

that varies over time and x2 = k, i.e., a spatio-temporal
setting. The kernel matrices K1(x1, x

′
1), K2(k, k′) and the

sum K(x, x′) = K1(x1, x
′
1) + K2(k, k′) and samples drawn

from the corresponding prior distributionsN (0,Ki) are shown
in Fig. 5. The following observations are made.
• The kernel matrix K1(x1, x

′
1) with period T1 = 100

is large for any pair (x1, x
′
1) where |x1 − x′1| ≈ 100

and is small elsewhere. This implies that x1 and x′1 are
correlated if i) they are close together (smoothness) or
they are Ti samples apart (periodicity). A random sample
from N (0, κ(X,X ′)) is shown below, which is indeed
periodic and smooth similar to K2 with period 150.

• The kernel K1(x1(k), x′1(k)) and its samples are non-
periodic in time. Plot two in Fig. 5 shows K1 and its
sample directly as a function of time k instead of x1(k),
this yields a non-periodic kernel and non-periodic sample
that depends on the specific variation of x1(k) over time.

• The 2-dimensional additive kernel K(x, x′) with x =[
x1 x2

]>
is non-periodic as a function of k in the

general case. Samples taken from the corresponding prior
distributionN (0, κ(X,X ′)) are the sum of a sample from
the individual prior distributions in the time domain due
to the additive kernel structure.

Example 2 shows that the n-dimensional kernel K(x̄(k)) is
non-periodic while the underlying kernels K1(x1, x

′
1) and

K2(x1, x
′
1) are periodic in x1 and x2 respectively. This allows

to integrate multiple domain with their periodicity, while
perform GP regression with time-domain data. Also, note
that the discrepancies between coils are averaged out with a
periodic kernel. These differences can be taken into account
with a locally periodic kernel, see, [26].

D. Design procedure for GP-based RC

Procedure 1 (Multi-dimensional RC design)
Given a model of the process sensitivity SP perform;

1) Design L ≈ (SP )−1 with S = (1 + SP )−1 as a stable
inverse as in [10], [11], e.g., using ZPETC [27].

2) Select N ∈ N, determine n in Definition 1 by identifying
the sources of the disturbance, and select the kernel
hyperparameters in (9). As a guideline one can select N
as the sum of the underlying periods, i.e, N =

∑n
i=1 Ti.

3) At each time step k:
a) Add the new sample (xi(k), yd(k)) to DN and com-

pute the RC output using (7).
b) If DN exceeds N , remove (x(k − N), yd(k − N))

from DN .

Conditions for closed-loop stability for the presented approach
are equivalent to the results in [22] and omitted due to space
restrictions. Moreover, there is a trade-off in the number of
data points N used for GP regression, i.e., a better model can
be obtained at the cost of increased computational complexity.
Several approaches are available to reduce the computational
complexity of GP regression, see, e.g., [22], [28].
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Fig. 6. Top plot: spatio-temporal disturbance d̄(p, k) = d̄1(k) + d̄2(p)
that is non-periodic in time ( ) from which observations ( ) are used for
GP regression yielding the posterior mean ( ) and variance ( ). The
position signal p is given in ( ). Center plot: underlying temporally periodic
disturbance component d̄k ( ) with period T1 = 150 and the GP estimate
( ). Bottom plot: underlying spatially periodic disturbance component d̄p
( ) with period T2 = 100 and the GP estimate ( ) as function of position.

Remark 1 If L is won-causal with nl samples preview, then
implement its causal part Lc as learning filter and replace x(k)
by x(k − nl) in (3b) to include preview.

Remark 2 If the smoothness in (8) is large, it may be
redundant to use all data points for GP regression, i.e., two
neighboring samples are highly correlated. As a measure for
redundancy, the singular values of (K + σ2

nIN ) can be used,
i.e., if the new singular value is small for a newly data point
it can be discarded from DN .

IV. REJECTING 2D SPATIO-TEMPORAL DISTURBANCES

The rejection of spatio-temporal disturbances through
GPRC is shown in the following case study. These dis-
turbances are encountered in, e.g., printing systems with a
temporally periodic motion and at the same time a roller with
varying angular velocity for paper transportation that induces
a spatially periodic disturbance [6], [29]. A similar setting is
considered in the following case study.
A. System and spatio-temporal disturbance

Consider the control setting in Fig. 1 with

P =
0.05(z + 1)

z2 − 1.98z + 1
, C =

5.005(z + 1)(z − 0.81)

(z + 0.52)(z − 0.03)
,

the system and stabilizing feedback controller. A spatio-
temporal disturbance as in Definition 1 is present for n = 2,
where the spatial and temporal functions are

d̄1(k) = 1
2 sin

(
2π
T1
k
)

+ 1
10 sin

(
4 2π
T1
k
)

d̄2(p) = 1
2 sin

(
2π
T2
p
)

+ 3
10 sin

(
3 2π
T2
p
)
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Fig. 7. The 2-norm of the estimation errors for d̄1 ( ) and d̄2 ( ) computed
over the periods T1 and T2 respectively, normalized by the period length Ni

in samples. An accurate estimate is obtained after i = 2 periods.

respectively, with periods T1 = 150 and T2 = 100 as show
in the second and third plot in Fig. 6 in ( ). The (roller)
velocity of p(k) varies over time, see ( ) in Fig. 6, rendering
d(k) non-periodic in time, see ( ) in Fig. 6 (top plot) as in
Example 1. Moreover, d(k) is subject to additive zero-mean
normally distributed white noise with variance σ2

n = 10−6.

B. Multi-dimensional GPRC design
The L filter is designed with Procedure 1. All available data

is used for GP regression such that N increases over time.
Note that N is a design parameter, i.e., there is a trade-off
between small N to reduce computation time and large N for
estimation performance. The hyperparameters are chosen as
T1 = 150, T2 = 100, l1 = l2 = 1, σf,1 = σf,2 = 0.5 and
σ2
n = 10−6. By increasing l, a less high-frequency RC output

is obtained to improve robustness against model errors [20].

C. Estimation performance
First, the estimation performance of the GP without RC is

investigated with a small number of noisy observations N =
220 for training. Consequently, predictions are made outside of
the training data and compared with the true disturbance. The
result is shown in Fig. 6, where ( ) are the observations, ( )
the posterior mean, and 99.7% the confidence bound ( ).

An accurate estimate of the true disturbance, that is non-
periodic in time, is obtained by estimating the underlying
periodic functions (second an third plot) which is accurately
extrapolated with periodic priors. Where the estimate deviates
from the true disturbance the variance increases indicating that
the estimate is less reliable.

D. GP-based RC results
Control performance is analyzed with the error in Fig. 8

without GP-RC ( ) and with GP-RC ( ). As a measure for
convergence the 2-norm of the estimation error for d1(p) and
d2(k) is computed for i = 1, 2 during the periods T1 and T2
respectively, see Fig. 7. The following observations are made:
• The non-periodic multi-dimensional disturbance is com-

pletely suppressed with GP-based RC in the first few
samples, see Fig. 8. The bottom plot in Fig. 8 shows the
moving mean of e on a log-scale confirming that GPRC
reduces the error up to the contribution of the noise ( ).

• The non-periodic disturbance is learned through the pe-
riodic functions in the time and position domain. The
2-norm of the estimation error for d̄i is shown in Fig. 7
indicating that after i = 2 periods the estimation errors
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are converged. This implies that also with fewer data good
control performance can be obtained.

To conclude, the considered GP-based multi-dimensional
buffer for RC enables the rejection of multi-dimensional
disturbances for arbitrary variations in x(k) over time.

V. CONCLUSION

The rejection of a multi-dimensional disturbance that is
potentially non-periodic in time and periodic in multiple un-
correlated underlying domains, e.g., position, time, or commu-
tation angle, is enabled through a multi-dimensional GP-based
buffer in the traditional RC setting. Traditional disturbance
models in RC cannot cope with the non-periodicity in the time-
domain and integrating multiple domains requires new internal
models for RC. In this approach, a new GP-based multi-
dimensional internal disturbance model is generated by taking
into account the underlying structure and periodicity in each of
the domains through a multi-dimensional covariance function.
Consequently, the GP-buffer is used for compensation. The
approach is validated by means of a case study where a
spatio-temporal disturbance is rejected for arbitrary position
variations. Ongoing work focuses on utilizing the GP posterior
variance as varying learning gain in RC.
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