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A Fast Smoothing-based Algorithm to Generate l∞-norm Constrained
Signals for Multivariable Experiment Design

Nic Dirkx, Marcel Bosselaar, and Tom Oomen

Abstract— Handling peak amplitude constraints, or equiva-
lently l∞-norm constraints, is an important application demand
in experiment design for system identification. The aim of this
paper is to present a method for the design of excitation signals
with prescribed power spectrum under l∞-norm constraints for
systems with many inputs and outputs. The method exploits
an exponential smoothing function in an iterative algorithm.
Fast convergence is achieved by a computationally efficient con-
struction of the gradient and the Hessian matrix. Experimental
results show excellent convergence behavior that overcomes
local minima, while significantly reducing computation time
compared to existing techniques.

I. INTRODUCTION
The computation of optimal excitation signals plays a

central role in the design of experiments for system iden-
tification. Typically, the aim of optimal experiment design
(OED) is to maximize the signal-to-noise ratio in view of
a selected model quality criterion, yet within the system its
operating constraints [1], [2]. In many practical applications,
including wafer scanners [3] and chemical processes [4],
dealing with l∞-norm constraints on the input and output
signals is key to guarantee safe experiments.
The complexity of OED depends on the constraints, con-
sequently the availability of algorithms heavily depends
on the specific constraints that are imposed. In case of
power constraints, OED problems can often be formulated
as convex optimization programs, with the input spectrum
as decision variable [5], [6]. Such problems can readily be
solved by convex optimization techniques [7]. For l∞-norm
signal constraints, such approach cannot be applied, since
the signal peak amplitude depends not only spectral power,
but also on the phase [8]. The relationship between the peak
amplitude and the phase is highly nonlinear and non-smooth
[9], which complicates optimal design procedures, especially
for multiple inputs multiple outputs (MIMO) systems.
To mitigate the full complexity in solving l∞-norm con-
strained OED problems, various methods have been devel-
oped to solve the related problem of crest-factor minimiza-
tion for signals with prescribed power spectrum. The crest-
factor is the ratio between signal peak amplitude and signal
power [8]. Exact solutions to crest-factor minimization are
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not available, hence methods tend to be of heuristic nature. In
[10], a phase selection law is presented that often yields a low
crest-factor for scalar-valued signals. In [12], [13], a time-
frequency domain swapping method is presented for joint
crest-factor reduction of input and output signals. Extension
of these methods to MIMO systems is complicated due to
the heuristic nature of the algorithms. An optimization-based
approach to crest-factor minimization is presented in [9],
wherein the l∞-norm is iteratively approximated by the lp-
norm. The method can be applied to MIMO systems, but
becomes computationally intensive for systems with many
inputs and outputs.
An alternative approach to achieve a low crest-factor is by
the generation of binary signals that approximate a prescribed
spectrum, since binary signals achieve maximal power for a
given amplitude constraint [11]. In [14], a simulated anneal-
ing approach is employed to globally solve this nonconvex
problem. The method is computationally intensive. Recursive
algorithms based on a receding horizon concept are presented
in [15], [16]. The algorithms are of lower computational
complexity but are not defined for MIMO systems. In [17],
excitation signals are computed from a l∞-norm constrained
time-domain optimization problem, which typically leads
to binary signals. The method involves solving a large
scale semi-definite program, which becomes computationally
intractable for large MIMO systems.
Although many approaches for OED have been developed
for a wide range of system identification problems, tractable
methods for current applications with increasing complexity,
such as many inputs and outputs, are not available. The aim
of this paper is to develop an efficient algorithm for l∞-
norm constrained design of excitation signals with prescribed
power spectrum, that is particularly suitable for large scale
and multivariable experiment design problems.
The main contributions of this paper are:

1. An algorithm for l∞-norm minimization of multivari-
able signals that exploits an exponential smoothing
function to overcome local minima (Section III),

2. an efficient and scalable computation of the gradient
and Hessian matrix, including a quantification of com-
putational complexity (Section IV),

3. an experimental validation on a multivariable Active
Vibration Isolation System (Section V).

Smooth approximations provide a solution to deal with non-
smoothness and non-convexity at the same time, and are
applied in non-smooth convex [18], [19] and non-convex op-
timization [20], [22] to accelerate convergence and increase
parameter space exploration.
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Notations: Operator � denotes the element-wise product.
Operations X = F(x) and x = F−1(X) denote the Discrete
Fourier Transform (DFT) of x and the inverse DFT of X [8],
respectively. x denotes the complex conjugate of x.

II. PROBLEM FORMULATION

A. Experiment design for system identification

In system identification the goal is to estimate a system
model from measured data. The identification setup is given
by the discrete-time input-output relation

y(n) = G(z) ∗ u(n) + ν(n), (1)

where G(z) represents a ny × nu open-loop or closed-
loop LTI system to be identified, with z the z-domain
operator. Signal u(n) ∈ Rnu is a user-defined vector-valued
excitation signal, where n = [0, . . . , N−1] the discrete-time
index, for sample size N . Signal y ∈ Rny represents the
measurements, perturbed by an independent and identically
distributed random sequence ν. Note that y may encompass
both input and output signals, via suitable choice of G.
The quality of the identified model of G depends on the
design of the excitations u. OED consists in the computation
of optimal excitation signals u within constraints:

uopt = minimize
u

I(G, u)

subject to l∞(yp) ≤ cp, p = 1, . . . , ny,
(2)

where criterion I expresses the quality of the to-be-identified
model, yp is the pth signal in y and cp denotes the correspond-
ing constraint value. The l∞-norm is defined as follows.

Definition 1: The l∞-norm of a scalar-valued signal x(n)
is defined as its absolute peak value in the interval [0, N−1],

l∞(x) = max
n∈[0,N−1]

|x(n)|. (3)

B. Signal parametrization

Multisine excitation signals u with a band-limited spec-
trum [8] are considered, i.e., for the qth input,

uq(n,A,Φ) =

Nk∑
k=1

aqk cos

(
2πkn

N
+ φqk

)
, (4)

where Nk ≤ 1/2N−1 is the excited frequency band, and the
amplitudes aqk > 0 ∀q, k and phases φqk = [0, 2π), ∀q, k
are collected in A and Φ, respectively.
The output signals yp in (1) for multisine inputs uq in (4),
assuming ν = 0, are given by

yp(n) =

nu∑
q=1

Nk∑
k=1

bpqk cos

(
2πkn

N
+ ξpqk

)
, (5)

with bpqk = aqk|Gpqk| and ξpqk = φqk +∠Gpqk, and where
|Gpqk| and ∠Gpqk denote the magnitude and the phase of
entry [p, q] of G at the kth spectral line, respectively.

C. Objective: l∞-norm constrained excitation design

Solving the OED problem (2) consists in the design of
both the spectral magnitudes A and the phases Φ in (4).
In the present paper, it is assumed that computation of the
magnitudes in view of some selected criterion I in (2) has
been performed as prior step, e.g., by convex spectrum design
approaches in [5], [6]. The design problem considered in
this paper is the subsequent phase design step to generate
l∞-norm bounded signals, for such prescribed spectral mag-
nitudes. By using the equivalence between l∞(yp) ≤ cp,∀p
and l∞(ȳ) ≤ 1 with ȳ = [y1/c1, . . . , yny

/cny
], this problem

is formulated as the unconstrained l∞-norm minimization
problem over Φ, i.e.,

minimize
Φ

l∞ (ȳ(Φ)) . (6)

Prior knowledge of G is required to solve (6), which is
assumed available, e.g., from preliminary identification [6].
Solving (6) is non-straightforward since 1) the function
l∞(ȳ(Φ)) is non-convex in the variables Φ, 2) the function
l∞(ȳ(Φ)) is non-smooth and not differentiable over the entire
domain of Φ, and 3) identification problems tend to be large
in the number of variables, especially for systems with many
inputs and outputs. Consequently, a dedicated and efficient
strategy is required to solve (6). The concept of the strategy
is presented in the next section.

D. Gradual smoothing strategy

The key idea of the presented approach is to solve the non-
smooth problem (6) via a sequence of approximate smooth
problems, wherein the level of smoothness is gradually
reduced. A similar strategy is employed in [9], using lp-norm
approximations of the l∞-norm to solve (6). In the present
paper, an exponential smoothing function is employed that
achieves accurate approximations. Besides obtaining a differ-
entiable problem, a gradual smoothing strategy reduces the
susceptibility to local minima, as exemplified next.

Example 1: Consider a scalar-valued signal u as in (4)
with Nk = 52, a1k =

√
2/Nk, ∀k and uniformly distributed

random phases φ1k ∈ [0, 2π), k = 1, . . . , Nk−2. The contour
maps of l∞(u) and the approximations are shown in Fig. 1.

The method is formalized in the next section.

III. A SMOOTHING-BASED ALGORITHM TO
l∞-NORM MINIMIZATION

A. Smooth approximation function

To handle the complexity introduced by both the non-
smoothness and the non-convexity in (6), the function
l2∞ (ȳ(Φ)) is approximated by the smooth function,

L(ȳ, σ) = σ ln

N̄−1∑
n=0

exp

(
ȳ2(n)

σ

) , (7)

where N̄ = nyN and σ > 0. This function is based on
the exponential penalty function presented in [21], [23] for
solving convex programs with inequality constraints. It is
also applied for smoothing of minmax problems in [22].
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Fig. 1. Illustration of convergence behavior with and without smoothing strategy for Example 1. (a) Contour map of non-smooth l∞(u) as function of
φ51, φ52, with multiple local minima (×) and single global minimum (×). For this example, without a smoothing strategy, iteratively stepping in the
steepest descent direction (black lines) from either of the numbered initial points leads to locally optimal solutions. (b) To improve performance, a gradual
smoothing strategy is applied, depicted by the contour maps of the sequence of two smooth approximations of l∞(u), with local minima (×) and the
global minimum of l∞(u) (×). Left: First, a high level of smoothing is applied. For this example, the approximant has a single local minimum (×) close
to the global minimum (×) or the original problem. As a result, by iteratively stepping in the steepest descent direction from the numbered initial points,
near global convergence is achieved. Right: Taking the previous solution as a new starting point, a next optimization is performed using a lower level of
smoothing by which the global minimum is attained for all initial conditions.

Furthermore, (7) is a specific form of the log-sum-exp func-
tion encountered in inference and classification in machine
learning, e.g., [25]. Properties of the function L(ȳ, σ) are
given in the following.

Lemma 1: Consider the function L(ȳ, σ) for σ > 0. Then,
i) l2∞(ȳ) ≤ L(ȳ, σ) ≤ l2∞(ȳ) + σ ln(N),

ii) limσ→0 L(ȳ, σ) = l2∞(ȳ),
iii) L(ȳ, σ) is increasing with respect to σ.
iv) L(ȳ, σ) is twice continuously differentiable everywhere.
v) The gradient ∇ΦL(ȳ, σ) is expressed as

∇ΦL(ȳ, σ) =
∂L

∂φ
=
∑N̄−1

n=0
λn(Φ, σ)∇Φȳ

2(Φ, n), (8)

where

λn(Φ, σ) =
exp(ȳ2(n)/σ)∑N̄−1
n=0 exp(ȳ2(n)/σ)

,

N̄−1∑
n=0

λn = 1. (9)

See [25], [22] for a proof. Numerically stable implementa-
tions of L that avoid overflow are addressed in [22], [24].
The optimization problem based on L is formulated next.

B. Optimization problem formulation

The smoothing function L(ȳ, σ) is exploited to approx-
imate the original non-smooth problem (6) by the smooth
problem

argmin
Φ

L (ȳ(Φ), σ) (10)

for some selected σ > 0. To obtain a quadratic form that is
compatible with Gauss-Newton-type (GN) algorithms [26],
the following equivalent problem to (10) is considered,

argmin
Φ

L̃ (ȳ(Φ), σ) , (11)

where
L̃(ȳ, σ) =

1

2
εT (ȳ, σ)ε(ȳ, σ), (12)

with ε(ȳ, σ) =
[
exp

(
ȳ2(0)

2σ

)
, . . . , exp

(
ȳ2(N̄−1)

2σ

)]T
. The

gradients of L and L̃ are equal up to a scale factor, since

∇ΦL(ȳ, σ) = σL̃−1(ȳ, σ)∇ΦL̃(ȳ, σ), (13)

and hence L and L̃ have identical minimizers.
Various optimization algorithms may be employed to solve
(11). Typically, the parameters Φ are updated iteratively by
an update law of the form

Φi+1 = Φi − (Hi)−1(J i), (14)

with i the iteration index, and where J and H contain
curvature information of L̃. In the next section, an iterative
algorithm is presented for solving (6).

C. A descent algorithm

This section presents Algorithm 1, that enables accurately
solving (6) by a joint minimization of the smoothing function
L(ȳ, σ) and a gradual decrease of the smoothing parameter.
The algorithm bears resemblance to that in [22] for solving
minmax problems, but differs in the selection of the search
direction and the control of the smoothing parameter.
In step 2, a Steepest Descent (SD) direction [26] is selected.
Step 3 involves a Wolfe condition [26] to determine the step
size αi. Step 4 sets the parameters J ,H in (14) that give
rise to a SD algorithm. The Φ-parameters are updated in step
5. In step 6, approximation parameter σi is controlled by the
rate of descent of the function L. Properties ii) and iii) in
Lemma 1 enable the following result.

Theorem 1: Let {L(Φi, σi)} be the sequence generated
by Algorithm 1 for i→∞. Then,
(i) Sequence {L(Φi, σi)} is monotonically non-increasing.

(ii) The point Φ∞ is a stationary point of l∞(ȳ(A,Φ)).
Proof: (i) For fixed σi > 0, −di is a descent direction

of L̃ and L, where the latter follows from (13). Step 3
guarantees that L(Φi+1, σi) ≤ L(Φi, σi). Step 6 guarantees
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Algorithm 1 Smoothing-based l∞-norm minimization
1: (Initialization). Given A and G, choose initial phases Φ0

and σ0, αmax, c, ε > 0, τ ∈ (0, 1) and set i = 0.
2: (Direction generation). di = ∇ΦL̃(Φi, σi).
3: (Armijo line search). Find the largest αi, 0 < αi < αmax

that satisfies the sufficient descent condition,

L(Φi − αidi, σi) ≤ L(Φi, σi)− αicσi

L̃(Φi, σi)
∇ΦL̃

T (Φi, σi)di.

4: (Select H and J ). Hi = 1,J i = αidi.
5: (Φ-parameter update). Φi+1 = Φi − (Hi)−1(J i).
6: (σ-parameter update). σi+1 = τ qσi, where q ← 1 if
|L(Φi, σi)− L(Φi+1, σi)| < ε and q ← 0 otherwise.

7: (Termination). Stop if a stopping criterion is met, other-
wise set i← i+ 1 and return to step 2.

that σi+1 ≤ σi. Thus, by property iii) in Lemma 1,
L(Φi+1, σi+1) ≤ L(Φi+1, σi) ≤ L(Φi, σi). (ii) For fixed
σi > 0, steps 2-5 guarantee that L(Φi, σi) is reduced towards
a stationary point for i → ∞. Step 6 guarantees reduction
of σ by q ← 1 when a stationary point is sufficiently
approached. Hence, σi → 0 for i → ∞. Property ii)
in Lemma 1 implies that a stationary point of L(Φi, σi)
is a stationary point l2∞(ȳ(Φi), σi) for σi → 0, which is
formalized in [22, Theorem 3.1].
The convergence properties in Theorem 1 are preserved for
any other parameter update in step 5 that reduces L in each
iteration. This is exploited in Section IV for the selection of
more advanced solvers.
A key aspect of Algorithm 1 is that a gradual refinement of
the approximation reduces the sensitivity to local minima.
Next result shows that certain local minima vanish when
σ →∞.

Theorem 2: Consider the parameter set M = {Φ :∑N̄−1
n=0 ∇Φȳ

2(Φ, n) 6= 0}. Suppose that the set Φ∗ =
{

Φ ∈
M : ∇ΦL(ȳ(Φ), σ) = 0

}
for σ → ∞ is non-empty and

includes local minimizers to L(ȳ(Φ), σ). Then, the set Φ∗ is
empty for σ → 0.

Proof: From (9) it follows that λn → 1/N̄,∀n for σ →
∞. Hence, by (8) the gradient becomes ∇ΦL(ȳ(Φ), σ) =

1/N̄
∑N̄−1
n=0 ∇Φȳ

2(Φ, n) 6= 0 for ∀Φ ∈ M. Thus, L(ȳ, σ)
has no local minima for Φ ∈ M for σ → ∞, since M is
void.
Although global convergence cannot be guaranteed in gen-
eral, experience has shown that gradual smoothing tends to
lead to low signal peak amplitude values. The results of
Algorithm 1 for the multisine defined in Example 1 are
shown in Fig. 1.

IV. A FAST AND SCALABLE ALGORITHM
A. Efficient gradient and Hessian computation

The computation of the gradient and Hessian matrix are
typically the most time-consuming operations in optimiza-
tion. A direct computation of the gradient via differentiation
of L̃ in (12) leads to the expression

∇ΦL̃ =
[∑ny

p=1(JTp,1εp)
T , . . . ,

∑ny

p=1(JTp,nu
εp)

T
]T
, (15)

where εp(n) = exp
(
y2p(n)

2c2pσ

)
and Jp,q ∈ RN×Nk represent

submatrices of the Jacobian J , with elements [n, u] given by

[Jp,q]nu =
∂εp(n)

∂φqu
= −yp(n)

cpσ
εp(n)bpquSpqu(n), (16)

and Spqu(n) = sin (2πkun/N + ξpqu).
An alternative and significantly more efficient method for
computing the gradient is presented in the following re-
sult. The method exploits structural properties to formulate
the gradient as a circular convolution, to benefit from the
computational advantages of the DFT in circulant matrix
multiplication [27].

Theorem 3: The vectors JTp,qεp in (15) are given by

JTp,qεp =
1

cpσ
Im

(
ηp,q �

[
INk

0Nk

]T
F−1 (D−p +D+

p

))
, (17)

where

ηp,q = 1/
√

2
[
bpq1e

jξpq1 , . . . , bpqNke
jξpqNk

]T
,

D−p = F(c−p )�F
[
ρp

0Nk

]
, D+

p = F(c+p )�F
[
Pρp
0Nk

]
,

(18)

with P an Nk ×Nk exchange matrix,

c−p =
[
[Zp]0, . . . , [Zp]Nk−1, 0, [Zp]Nk−1, . . . , [Zp]1

]T
,

c+p = [[Zp]Nk+1, . . . , [Zp]2Nk , 0, [Zp]2, . . . , [Zp]Nk ]
T
,

ρp = 1/
√

2

nu∑
w=1

[
bpw1e

jξpw1 , . . . , bpwNke
jξpwNk

]T
,

(19)

and where [Zp]u is the DFT of zp = exp(y2
p/(c

2
pσ)) at frequency

line u, with [Zp]−u = [Zp]u.
Proof: Substituting yp(n) in (16) by (5), performing

the multiplication by εp, and using zp(n) = ε2
p(n) gives,

[JTp,qεp]u = −bpqu
cpσ

N−1∑
n=0

nu∑
w=1

Nk∑
v=1

zp(n)Spqu(n)Cpwv(n)bpwv

where Cpwv(n) = cos(2πkvn/N + ξpwv). Using that
SpquCpwv = 1

2 (Spqu−pwv + Spqu+pwv) with Spqu±pwv :=
sin (2π(ku ± kv)n/N + (ξpqu ± ξpwv)) and, by Euler’s law,
sin a± b = −Im(e−j(a±b)), the elements of JTp,qεp satisfy

[JTp,qεp]u =
bpqu
2cpσ

Im
nu∑
w=1

Nk∑
v=1

(
[Zp]u−ve

−j(ξpqu−ξpwv)+

[Zp]u+ve
−j(ξpqu+ξpwv)

)
bpwv. (20)

Herein, [Zp]u±v =
∑N−1
n=0 zp(n)e−j(2π(ku±kv)n/N is equal

to the DFT of zp at frequency lines (ku ± kv). Due to the
specific element-wise construction, (20) is expressed as the
sum of two matrix-vector products involving a Toeplitz and
a Hankel matrix, which allows writing

JTp,qεp =
1

cpσ
Im(Ψ−p,q + Ψ+

p,q), (21)

with

Ψ−p,q = ηp,q � T (Z−p )ρp, Ψ+
p,q = ηp,q � T (Z+

p )Pρp. (22)
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Here, T (a) is the Toeplitz matrix with basis vector a,

T (a) =


a0 a−1 . . . a−(n−1)

a1 a0
. . .

...
...

. . . . . . a−1

an−1 . . . a1 a0

 , a =


a−(n−1)

a−(n−2)

...
an−2

an−1

 ,
and the basis vectors Z−p and Z+

p are defined by

Z−p =
[
[Zp]−(Nk−1), [Zp]−(Nk−2), . . . , [Zp]Nk−2, [Zp]Nk−1

]T
,

Z+
p =

[
[Zp](Nk−2), [Zp](Nk−1), . . . , [Zp]2Nk−1, [Zp]2Nk

]T
.

By embedding the matrices T (Z±p ) into circulant matri-
ces C(c±p ) with basis column vectors c±p defined in (19),
expression (22) is expressed as a circular convolution. Us-
ing the circular convolution theorem to expresss C(c)b =
F−1(F(c) � F(b)) [27], allows formulating Ψ±p,q = ηp,q �[
INk

0Nk

]
F−1(D±p,q), with D±p,q and ηp,q defined in (18).

Insertion into (21) and rearranging completes the proof.
In GN-type algorithms, the Hessian matrix ∇2

ΦL̃ is approxi-
mated based on the Jacobian matrix J , e.g., classical GN
employs ∇2

ΦL̃ ≈ JTJ . A fast method for constructing
H = JTJ based on the DFT is presented next.

Theorem 4: Let J be the Jacobian matrix composed of
the submatrices Jp,q in (16) for p = 1, . . . , ny and q =
1, . . . , nu. Let Hi,j ∈ RNk×Nk for i, j = 1, . . . nu be the
submatrices of H = JTJ . Then,

Hi,j =

ny∑
w=1

1

c2wσ
2

Re(Γ−w,i,j − Γ+
w,i,j) (23)

where [Γ±w,i,j ]uv =
bwiubwjv

2 e
√
−1(φwiu±φwjv)[Qw,i,j ]u±v .

Herein, [Qw,i,j ]u±v is defined as the DFT of qw,i,j :=
exp

(
y2
w/(c

2
wσ)

)
x2 at frequency lines (ku ± kv), where

[Qw,i,j ]−u = [Qw,i,j ]u.
The proof follows the lines of [9, Appendix A].

B. Computational complexity
The complexity of the computation of the gradient and the

Hessian is quantified in Table I for a SISO system. Herein, a
comparison is performed between: direct computation from
(16), the approach presented in [9] for the Lp-norm based
method, and the fast approach by Theorems 3 and 4. The
Fast Fourier Transform (FFT) implementation of the DFT
is assumed. The complexity of the gradient and Hessian
computation scales with nynu and nyn2

u, respectively.
Evidently, by exploiting circular convolution theory, the fast
approach eliminates the quadratic complexity in Nk in the
gradient computation for both the direct approach (since
NNk > N2

k ) and the Lp approach. For the Hessian, the
cubic complexity in Nk in the direct method is eliminated
in the Lp and the fast method by employing the FFT.

C. Solver selection
The performance of Algorithm 1 for three different solvers

is compared: 1) GN with modified Levenberg-Marquardt
regularization (GNLM) [28], 2) SD, and 3) the Polak-Ribière
Conjugate Gradient (PRCG) method [29]. Steps 2-4 in Al-
gorithm 1 are appropriately adjusted and the corresponding

TABLE I
COMPLEXITY OF GRADIENT AND HESSIAN COMPUTATIONS.

Method Gradient ∇ΦL̃ = JT ε Hessian JT J
Direct O(NNk) O(NN2

k )
Lp, [9] O(N logN +N2

k ) O(N logN +N2
k )

Fast O (N logN +Nk logNk) O(N logN +N2
k )

TABLE II
COMPUTATIONAL PERFORMANCE FOR DIFFERENT SOLVERS.

Solver J H iters time
GNLM ∇ΦL̃ JT J + λdiag(JT J) 255 3.8
SD α∇ΦL̃ 1 734 0.8
PRCG α(∇ΦL̃+ βr) 1 322 0.3

parameters J ,H in step 4 are given in Table II. Herein, λ is
the LM parameter that ensures well-conditioned and positive
definite H [28]. Parameter β is the PR parameter, and r is
the previous step direction [29]. In the sequel, the tuning
parameters {σ0, αmax, c, ε, τ} = {1, 0.1, 10−4, 10−4, 0.7}
are used, which generally produce high-performance results.
Table II shows the results averaged over 100 simulations
(performed on a standard laptop) with uniform spectral
magnitudes, random initial phases Φ, and N = 2 ·105, Nk =
103, nu, ny = 1, b11k =

√
2/Nk ∀k. All solvers achieve

l∞(ȳ) = 1.38. GNLM requires the fewest iterations, yet
requires the most time due to the computation of the Hessian.
This motivates the use of the first-order solvers SD and
PRCG. PRCG achieves the best performance by mitigating
the typical chatter behavior of SD. In the next section, Alg.
1 is experimentally evaluated on a multivariable system.

V. EXPERIMENTAL VALIDATION
A. Experiment description

The presented algorithm is experimentally validated on
a closed-loop controlled Active Vibration Isolation System
(AVIS) with 6 inputs and 6 outputs [30]. A scalar-valued
multisine signal u is applied to the first system input. The
signal u has a uniform spectrum, a length of N = 215, and
Nk = 3000. The constraints are imposed onto the 6 outputs,
6 input voltages, and 6 controller outputs, hence ny = 18
and dim(G) = 18× 1. The spectra of y are all non-uniform
due to the closed-loop dynamics in G between u and y.

B. Results
1) Optimized signals: The output signals yp/cp, p =

1, . . . , 6 before and after optimization are shown in Fig. 2.
Peak amplitude reduction up to a factor 3 is achieved.

2) Performance comparison: The smoothing-based al-
gorithm is compared to several existing crest-factor mini-
mization techniques. The results are shown in Fig. 3. The
random method [13] generates random realizations with
φk ∈ [0, 2π), ∀k and retains the realization with lowest
l∞-norm. This method hardly shows convergence. Schroeder
phase selection [10] is fast but leads to a constraint excess of
a factor > 2.5. The time-frequency domain swapping algo-
rithm [12] is originally a SISO method, and is applied to the
worst-case signal per iteration. This method fails to converge
in the multivariable setting, since the optimization of a single
signal yp deteriorates the other signals. The Lp-method [9],
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Fig. 2. Signals y1, . . . , y6 before (–) and after (–) optimization using
the smoothing-based approach.
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Fig. 3. Convergence of l∞(ȳ) versus computation time for different
methods. The smoothing-based algorithm outperforms existing methods
significantly in view of computation time and achieved cost.

using sequence p = {22, 23, . . . , 29}, converges in ∼40
iterations, but the computation time of ∼500s is substantial.
The smoothing method refers to Alg. 1 with PRCG solver,
and gradient computation by Theorem 3. This method shows
convergence in ∼150 iterations, and is ∼50 times faster
than the Lp method. This demonstrates the capability of the
presented algorithm for multivariable l∞-norm constrained
signal design, as well as its high computational efficiency.

VI. CONCLUSIONS
The presented method enables designing l∞-norm con-

strained excitation signals to improve the quality of identified
models of large MIMO systems. This is realized by an
optimization-based approach that exploits a sequence of
smooth approximations of the non-smooth objective func-
tion, to achieve a high level of robustness against local min-
ima. Low computational complexity is achieved by exploit-
ing structural properties in the gradient and Hessian matrix
and results from circular convolution theory. Experimental
results show a drastic improvement in the achieved l∞-norm
and the computation time compared to existing techniques.
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