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1Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
2Institut für Quantenmaterie and Center for Integrated Quantum Science

and Technology IQ ST , Universität Ulm, D-89069 Ulm, Germany
(Dated: October 26, 2022)

We analyse the change in the hyperradial Efimovian three-body potential as the two-body inter-
action is tuned from the broad to narrow Feshbach resonance regime. Here, it is known from both
theory and experiment that the three-body dissociation scattering length a− shifts away from the

universal value of −9.7 rvdW, with rvdW = 1
2

(
mC6/~2

)1/4
the two-body van der Waals range. We

model the three-body system using a separable two-body interaction that takes into account the full
zero-energy behaviour of the multichannel wave function. We find that the short-range repulsive
barrier in the three-body potential characteristic for single-channel models remains universal for
narrow resonances, whilst the change in the three-body parameter originates from a strong decrease
in the potential depth. From an analysis of the underlying spin structure we further attribute this
behavior to the dominance of the two-body interaction in the resonant channel compared to other
background interactions.

I. INTRODUCTION

In his seminal papers [1, 2], Vitaly Efimov predicted
the appearance of an infinite and geometrically spaced
set of three-particle bound states as the pairwise interac-
tion becomes resonant. These Efimov states are bound
by a universal attractive potential, decaying asymptoti-
cally as −1/R2 for three particles at root mean square
separation R. In trapped ultracold atomic gases the Efi-
mov effect induces log-periodic peaks in the atom loss
rate, driven by enhanced three-body recombination when
an Efimov trimer crosses into the three-particle contin-
uum [3–6]. The position of the loss peak associated with
the ground state Efimov state sets a characteristic length
scale a−, commonly referred to as the three-body param-
eter. In three-body systems with zero-range interactions,
introducing a three-body parameter is neccessary to reg-
ularise the scale invariant unbounded Efimov spectrum
[5].

Despite its short-range nature, experiment has re-
vealed that the three-body parameter in different atomic
species attains a value close to a− = −9.7 rvdW [7–

11], where rvdW = 1
2

(
mC6/~2

)1/4
is the van der Waals

length associated with the long-range two-body interac-
tion. Subsequent theoretical studies have found that this
“van der Waals universality” originates from a charac-
teristic suppression of the two-body wave function when
r < rvdW, where r is the two-particle separation [12, 13].
This suppression leads to the appearance of a strong
repulsive barrier in the three-body potential at mean
square separations R ≈ 2 rvdW, which shields the par-
ticles from probing the non-universal short-range detail
of the atomic species.

The above-mentioned theoretical analyses are based
on single-channel interaction potentials, which are ex-

∗ j.v.d.kraats@tue.nl

pected to be accurate provided that the intrinsic length
scale r∗ due to the resonance width is much smaller
than the potential range. This broad resonance regime
may be defined by a large resonance strength parame-
ter sres = ā/r∗ � 1 [14], where ā ≈ 0.955978 rvdW is
the mean scattering length of the van der Waals inter-
action [15]. The opposite case of a narrow resonance,
where sres � 1, is characterized by universal behaviour
in terms of the dominant length scale r∗ � rvdW. In
this limit, treatments of the three-body problem which
neglect the details of the van der Waals interaction have
found the three-body parameter to be determined uni-
versally as a− = −10.9 r∗ [6, 16–18]. Connecting the
broad and narrow resonance limits through the interme-
diate regime where sres ≈ 1 with a van der Waals inter-
action model remains to be desired, in particular given
that recent experiments in this regime in 39K have re-
vealed clear deviations from both universal limits [11]. A
key aspect of this problem is the change in structure of
the trimer and its associated potential energy surface as
a function of the resonance strength, which will be the
central topic of this paper.

In this work we study the Efimovian three-body po-
tential using a realistic multichannel two-body van der
Waals interaction, which can be easily tuned to probe a
wide regime of resonance strengths. To solve the three-
body problem we approximate this interaction by a sep-
arable potential which reproduces the zero-energy wave
function of the original interaction. We then derive an ef-
fective three-body potential from the open-channel three-
body wave function, which models the actual three-body
potential that binds the Efimov state. Subsequently we
study the dependence of this potential on the resonance
strength sres, and provide an analysis of our findings in
terms of the multichannel structure underlying the three-
body dynamics.

This paper will be structured as follows. In Sec. II we
outline our approach at the two-body level, first defining
a two-channel model interaction with a Feshbach reso-
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nance that can be tuned from the broad to narrow reso-
nance strength limit. Subsequently we formulate a sep-
arable approximation to this interaction. In Sec. III we
move to the three-body level, which we analyse first in
momentum space to facilitate our actual computations,
and then subsequently in position space for our analysis
of the three-body potential. In Sec. IV we present and
analyse our results, after which we conclude this paper
in Sec. V.

II. TWO-BODY INTERACTION MODELS

A. Model two-channel interaction

In this section we develop a flexible two-channel model
that can be tuned to produce a Feshbach resonance with a
given Breit-Wigner shape [19–21]. We define the Hamil-
tonian,

H(r) =

(
−~2

m∇2 + VLJP(r) W (r)

W (r) −~2

m∇2 + VLJP(r) + εc(B)

)
,

(1)

as a function of the two-body separation r and magnetic
field B. The energy εc(B) > 0 defines the energetic
separation between the open and closed channels. We
take the intrachannel interaction as the following van der
Waals potential,

VLJP(r) = C6

(
r4
0

r10
− 1

r6

)
, (2)

referred to as the Lennard-Jones-Pade (LJP) potential
[22, 23]. By altering the short-range barrier length scale
r0 we tune VLJP(r) such that it supports 8 dimer states.
We have confirmed that with this choice the three-body
parameter in the broad resonance limit has converged to
the universal van der Waals value.

A Feshbach resonance is induced when a closed-channel
bound state becomes degenerate with the open-channel
threshold energy. Inspired by Ref. [19], we take the res-
onant state to be the second bound state in the LJP
potential, as counted from the threshold energy. In the
absence of coupling, the bound state with negative en-
ergy −εb relative to threshold will become resonant with
the open-channel if εc(Bres) = εb. If the magnetic field is
tuned away from Bres the bound state shifts linearly in
accordance with the open-closed channel magnetic mo-
ment difference δµ [14]. Thus,

εc(B) = εb + δµ (B −Bres) . (3)

The off-diagonal couplings W (r) shift the bare reso-
nant magnetic field Bres to the dressed resonant value
B0. On resonance, the s-wave scattering length diverges,
parametrised by the relation [14],

a(B) = abg

(
1− ∆B

B −B0

)
. (4)

Here abg is the background scattering length in the open-
channel potential. We model the coupling by a Gaussian
potential, also used in Ref. [21],

W (r) = βe−α(r−rW )2 . (5)

The coupling parameters α, β and rW may be tuned to
produce a certain magnetic field width,

∆B =
k→0

π

abgkδµ
| 〈φres|W |ψε〉|2. (6)

Here |φres〉 is the unit normalised wave function of the
resonant bound state, |ψε〉 is the energy normalised
scattering wave function in the open-channel, and k =√
mε/~2. To simplify our approach we have elected to

fix rW = 0.15 rvdW [24]. In van der Waals potentials it is
possible to approximate B0 using the techniques of mul-
tichannel quantum defect theory (MQDT) [25–29]. This
leads to the direct relation,

B0 = Bres +

[
rbg(1− rbg)

1 + (1− rbg)2

]
∆B, (7)

where rbg = abg/ā.
The two-channel model outlined in this section takes a

set of experimental resonance parameters {abg,∆B,B0}
as input. Then the equations derived above map these to
a set of model parameters {r0, α, β,Bres}, which subse-
quently fix the Hamiltonian H. The resulting resonance
strength is then obtained as [14],

sres =
m

~2
āabgδµ∆B, (8)

which quantifies the ratio r∗/ā as mentioned in Sec. I.

B. EST separable potential

As pointed out in previous studies, the universal van
der Waals three-body parameter and three-body poten-
tial can be reproduced by accounting for the full finite-
range detail of the van der Waals interaction [12]. Sim-
ilarly it was recently shown that reproducing the three-
body recombination rate for resonances of intermediate
strength in 39K requires an inclusion of the exact three-
body spin structure in the Hamiltonian [30]. Such ap-
proaches however, are complicated numerically, and not
conducive to our goal of developing a simple and flexible
model. Fortunately it was pointed out in Refs. [13, 31]
that van der Waals universality can be reproduced using
a much simpler model, based on the Ernst, Shakin and
Thaler (EST) separable potential [32]. In this section we
develop such an approach for our multichannel interac-
tion. The crucial point is that we approximate the inter-
action in such a way that the full two-body wave function
at zero energy is taken into account, whilst retaining the
simplicity of a single-term separable potential.
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We define V (r) as the part of H(r) that vanishes as
r → ∞. The associated operator is approximated using
a separable interaction V sep, defined as,

V sep = |g〉 ξ 〈g| . (9)

The states |g〉 are referred to as the form factors of the
potential. Given an exact eigenstate |ψ〉 of the Hamilto-
nian H, we define the separable potential as,

|g〉 = V |ψ〉 , ξ−1 = 〈ψ|V |ψ〉 . (10)

With these definitions one may show that |ψ〉 is also an
eigenfunction of the Hamiltonian where V is replaced
with V sep, with the exact same eigenvalue [32]. Similar
to Ref. [13], we take |ψ〉 to be the zero-energy scattering
state, such that our model takes as input the low-energy
scattering detail of the actual interaction. The separable
interaction has an associated separable t-matrix, given
by the Lipmann-Schwinger equation [33],

tsep(z) = V sep + V sepG0(z)tsep(z). (11)

Here G0(z) = (z −H0)−1 is the Green’s function associ-
ated with the free Hamiltonian H0 = H − V . We define
its s-wave eigenstates as |k, σ〉, where k = |k| is the rel-
ative momentum and σ = {1, 2} the scattering channel
with associated two-body energy εσ at infinite separa-
tion. We always assume that only the lowest channel
σ = 1 is energetically open. Expressed in this basis we
obtain,

tsep
σ′,σ(z, k′, k) = gσ′(k′)τ(z)g∗σ(k), (12)

where tsep
σ′,σ(z, k′, k) = 〈k′, σ′|tsep(z)|k, σ〉 and gσ(k) =

〈k, σ|g〉. The function τ(z) is given by,

τ−1(z) =
m

~2

[
2π2

a
|g1(0)|2

+ 4π
∑

σ

∫ ∞

0

dk
k2
(
mz
~2

)
|gσ(k)|2(

k2 + mεσ
~2

) (
k2 + mεσ

~2 − mz
~2

)
]
,

(13)

for particle mass m and open channel form factor g1(k).
This form is inspired by Ref. [6], and uses the fact that
the zero-energy on-shell transition matrix is related to
the scattering length as t1,1(0, 0, 0) = ~2a/(2π2m). The
form factors can be computed directly from Eq. (10), by
inserting complete sets of position states. Our normali-
sation gives 〈r|k, σ〉 ∼ sin (kr)/(kr) |σ〉, and we expand
the scattering wavefunction into channel functions uσ(r)
as,

〈r|ψ〉 ∼
∑

σ

uσ(r)

r
|σ〉 . (14)

Then the form factors, normalised such that g1(0) = 1,
are given by,

gσ(k) =

∑
σ′

∫∞
0
dr sin (kr) Vσ,σ′(r) uσ′(r)

k
∑
σ′

∫∞
0
dr r V1,σ′(r) uσ′(r)

, (15)

0 5 10 15 20 25 30 35

k [r−1
vdW]

−40

−20

0

g σ
(k

)

sres

g1

g2

1.0 100.0

0 2 4

−5

0

5

FIG. 1. The form factors gσ(k) as a function of momentum
k, tuned to two different resonance strengths. Inset shows a
zoom of the low momentum regime, where one observes the
normalisation go(0) = 1.

where Vσ,σ′ = 〈σ|V |σ′〉. To illustrate the EST poten-
tial we plot the functions gσ(k) in Fig. 1, using as input
the two-channel model from the previous section tuned
to a broad and intermediate resonance strength. Since
the open-channel component of the wave function is in-
dependent of sres (see Sec. IV B), the open-channel form
factors are much less sensitive to changes in the resonance
strength than the closed-channel form factors.

Note that the EST model as developed here straight-
forwardly simplifies in the case of a single-channel in-
teraction (broad resonance limit), where one will need
just a single radial wave function as input. For single-
channel interactions we evaluate the radial Schrödinger
equation using the potential following Numerov method
[34], whilst we apply a mapped grid DVR method in the
multichannel case [35, 36]. We emphasize that the EST
model is based on the zero-energy wave function, and
hence loses accuracy when used to describe deep bound
states. To illustrate this behaviour we have computed
the shallow dimer energy around the 8th potential reso-
nance in the two-channel model, both by a direct numer-
ical solution of the multichannel Schrödinger equation,
and via the EST potential of this section. In the lat-
ter case a dimer solution is found through the condition
τ−1(ε) = 0, with ε < 0 the binding energy. The two
results are compared in Fig. 2, where one observes that
the EST potential is most accurate near threshold, and
is thus naturally suited to treat states near resonance.
For smaller scattering lengths the EST potential becomes
inaccurate for the broad resonance where the dimer be-
comes too strongly bound, but remains reasonably ac-
curate in describing narrower resonances. In this paper
we only concern ourselves with the near resonant regime
a � rvdW, where the EST potential is accurate regard-
less of the resonance strength. Finally, while we will limit
ourselves to the two-channel interaction of Sec. II A, the
EST potential as developed here can take any multichan-
nel interaction as input. This means that next to simple
model two-channel interactions one could also use more
realistic molecular potentials with many spin-channels.
In Appendix C, we apply this method to analyse a Fes-
hbach resonance in 39K, and subsequently compare the
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0.0 0.2 0.4 0.6 0.8
1
a [r−1

vdW]

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−
κ

2b
[r
−

1
vd

W
]

sres = 0.1

sres = 100.0

Universal

FIG. 2. Binding wavenumber κ2b =
√
m|ε| /~2 of the Fes-

hbach dimer that manifests in the two-channel model of Sec.
II A, as a function of inverse scattering length. Results are
shown both with the EST model potential (solid lines), and
a direct solution of the multichannel Schrödinger equation
(dotted lines). We show results for two different resonance
strengths, and additionally plot the universal resonant result
κ2b ∼ 1/a.

obtained three-body parameter to experiment.

III. THREE-BODY APPROACH

A. The ESC-EST model

At the three-body level we formulate what will hence-
forth be referred to as an effective single-channel (ESC)
model. In this approach we only include the influence of
the closed channel on the shape of the two-body t-matrix,
neglecting the multichannel structure on the three-body
level. This approximation significantly simplifies the
model whilst retaining the characteristic change in three-
body parameter near narrow resonance [18]. We start
by writing the momentum-space three-body wavefunc-
tion Ψ(k,p) of the bound-state into the Faddeev decom-
position [37],

Ψ(k,p) = (1 + P+ + P−) Ψ̄(k, p), (16)

where P+/− are cyclic/anticyclic permutation opera-
tors of the particle indices, {k, p} are the dimer and
atom-dimer Jacobi momenta respectively, and Ψ̄(k, p) ≡
〈k, p|Ψ̄〉 is the s-wave Faddeev component. For a three-
body bound state with energy E < 0 the Faddeev com-
ponent is determined by the following integral equation
[38, 39]

Ψ̄(k, p) = 2

∫
d3q

[
E − 3

4

~2p2

m
− ~2k2

m

]−1

t

(
E − 3

4

~2p2

m
, k,
∣∣∣q +

p

2

∣∣∣
)

Ψ̄
(∣∣∣p +

q

2

∣∣∣, q
)
.

(17)

Here t(z, k, p) is the single-channel s-wave two-body tran-
sition matrix. In the ESC-EST model we take this equa-
tion and make the replacement t → tsep

1,1 , i.e. we insert
the open-channel component of the separable transition
matrix into the single-channel three-body equations. We
shall discuss the assumptions on the three-body spin-
structure inherent to this approach in more detail in Sec.
IV C. To model the sres � 1 broad resonance limit we ad-
ditionally introduce a ”bare” single-channel (SC) model.
Here the closed-channel is completely eliminated and the
Efimov effect is induced via a potential resonance in the
interaction potential. This SC-EST model is equivalent
to the approach taken in Refs. [13, 31, 40].

Going forward we write the three-body bound state
energy in terms of a wavenumber κ =

√
m|E|/~2. Upon

substitution of the separable transition matrix as defined
by Eqs. (12, 13) in Eq. (17) the Faddeev component can
be computed as,

Ψ̄(k, p) = − F (κ, p)g1(k)
3
4p

2 + k2 + κ2
. (18)

Here the function F (κ, p) is given by the Skorniakov-Ter-
Martirosian (STM) equations [41],

τ−1 (Z(κ, p))F (κ, p) + 2

∫
d3q Z(κ,p,q)F (κ, q) = 0,

(19)

with mZ(κ, p)/~2 = −κ2 − 3p2/4 and,

Z(κ,p,q) =
g∗1
(
|q + 1

2p|
)
g1

(
| 12q + p|

)

p2 + q2 + p · q + κ2
. (20)

Upon discretization on a momentum grid the STM equa-
tions become matrix equations which can be solved to
obtain the three-body wavenumber κ and the Faddeev
component Ψ̄(k, p).

B. Effective three-body potential

The momentum space approach as outlined in the pre-
vious section will be used for our numerical computa-
tions. However, for the analysis of the Efimovian three-
body potential, we need to make a transformation to po-
sition space. In this section we give a brief overview of the
hyperspherical formalism in which the Efimovian poten-
tial is usually expressed. For a more detailed discussion
of the formulation we refer to Refs. [5, 42–44].

For identical particles, the Jacobi dimer separation ri
and atom-dimer separation ρi are transformed to a hy-
perradius R and hyperangle αi,

tanαi =

√
3ri

2ρi
, R2 = r2

i +
4

3
ρ2
i , (21)

Here i = 1, 2, 3 denotes the Jacobi index, which we will
suppress in this section. As the notation implies, R is
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invariant to a change in Jacobi set. The hyperangle α
is often denoted together with the polar and azimuthal
angles of the unit vectors r̂ and ρ̂ as Ω. The three-body
wavefunction in these coordinates may be expanded into
a complete and orthonormal set of hyperangular functions
Φν(R,Ω), by the following expansion,

Ψ(R,Ω) =
1

R
5
2

∞∑

ν=0

fν(R)Φν(R,Ω). (22)

The hyperangular functions Φν(R,Ω) are eigenfunc-
tions of the angular momentum part of the three-body
Schrödinger equation. The index ν is usually referred to
as the hyperspherical channel, and the associated expan-
sion coefficient fν(R) as the hyperradial wave function.
It obeys the following set of coupled equations [45],

[
− d2

dR2
+
λν(R)− 1

4

R2
+ κ2 +Qνν(R)

]
fν(R)

+
∑

ν′ 6=ν

[
Qνν′(R) + 2Pνν′(R)

d

dR

]
fν′(R) = 0.

(23)

Here λν(R) is the eigenvalue associated with the hyper-
angular function Φν(R,Ω), where R is interpreted as a
parameter of the eigenvalue equation. Eq. (23) defines
an infinite set of equations coupled through the presence
of the coupling potentials,

Pνν′(R) = −〈Φν |
∂

∂R
|Φν′〉Ω ,

and

Qνν′(R) = −〈Φν |
∂2

∂R2
|Φν′〉Ω .

(24)

The inner products on the right-hand side should be
taken over the space of angular coordinates Ω. The
coupling potentials quantify the dependence of the hy-
perangular distribution on the hyperradius, and are of-
ten referred to as non-adiabatic contributions to the
three-body problem [45]. In the so called scale-free re-
gion, where rvdW � R � |a|, one may show that the
eigenvalue λ becomes independent of the hyperradius
[5]. This has the consequence that all non-adiabatic
contributions vanish and the coupled set presented in
Eq. (23) uncouples into single particle Schrödinger equa-
tions with ”effective” hyperradial three-body potentials
Um(R) = (λν − 1

4 )/R2. The Efimov channel ν = 0 has

eigenvalue λ0 = −s2
0, with s0 ≈ 1.00624. Thus the as-

sociated three-body potential is attractive, inducing the
Efimov effect with its characteristic 1/R2 scaling. In the
scale-free region all channels with ν 6= 0 have associated
three-body potentials that are purely repulsive [45].

Due to the non-trivial behaviour of the coupling po-
tentials in the short-range regime, the full behaviour of
the effective potential is very complicated. Upon solving
the STM equation (19) however, we can use the three-
body wave function to derive an approximation to the

TABLE I. Parameters of the physical resonances used as a
starting point for our computations. The value of sres in the
last column will be varied with all other parameters held fixed.
Data taken from (39K: [46]), (85Rb: [47, 48]) and (133Cs: [14,
49]).

Species B0 [G] abg [rvdW] δµ [EvdW/G] sres
39K 33.50 -0.31 -0.154 2.46
85Rb 155.04 -5.40 -0.517 28.6
133Cs -11.7 17.02 1.21 565
133Cs 547.0 24.74 0.94 167

Efimovian three-body potential. First we formulate the
three-body probability as,

P̄Ω(R) ∼ R5

∫ π
2

0

dα sin2(2α)

∫ 1

−1

dx |Ψ(R,α, x)|2,
(25)

where Ψ(R,α, x) is obtained by a Fourier transforma-
tion of Eq. (16). By virtue of the orthonormality of
the hyperangular functions Φ(R,Ω) it is possible to use
the three-body probability to derive an effective three-
body potential, a method also applied in Ref. [13]. The
validity of this method relies on the efficiency of the hy-
perspherical expansion in Eq. (22). In the scale-free
region the Efimov channel is the only attractive channel,
such that we are justified in neglecting all higher lying
repulsive channels which suppress the local probability
[12]. Then the expansion contains only one term, and

the resulting three-body probability is equal to |f0(R)| 2.
Since we can choose f0(R) to be real by the normalisa-
tion of the wave function, the following expression for an
effective three-body potential follows from Eq. (23),

Ueff(R) =
1√

P̄Ω(R)

d2

dR2

√
P̄Ω(R)− κ2. (26)

At unitarity this effective potential is expected to be a
good approximation of the actual Efimov potential, pro-
vided that the hyperradius not be too small such that
coupling to higher lying channels is negligible. In par-
ticular it is sufficiently accurate to reproduce the char-
acteristic repulsive barrier around R ≈ 2 rvdW and the
potential well which appear for broad resonances, as was
shown in Ref. [13].

IV. RESULTS

To fix the degrees of freedom in the model of Sec. II A
we take sets of resonance parameter measured from phys-
ical resonances, summarised in table I. We then shift the
resonance strength sres away from the physical value by
altering ∆B, keeping all other parameters fixed. As re-
ported in Ref. [50], the change in the three-body pa-
rameter with varying resonance strength becomes more
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abrupt as abg approaches the value of a− in the open-
channel potential. We check whether our model repro-
duces this behaviour by artifically altering the Rubidium
resonance such that abg = −9.75 rvdW, noting that the
open-channel LJP potential has a three-body parameter
a− = −10.85 rvdW in the EST approximation.

A. Efimov spectra

We first apply our model to the computation of the
Efimov spectra and associated three-body parameters as
a function of the Feshbach resonance strength. First, we
show in Fig. 3 the spectrum of the two lowest lying Efi-
mov states for finite scattering lengths surrounding the
Feshbach resonance. Comparing with the broad resonant
limit sres →∞, we find that as the resonance strength is
decreased the Efimov spectrum is squeezed into a smaller
area of the (κ, 1/a) plane, corresponding to an increase
of the three-body parameter |a−|. Alternatively one can
also define the three-body parameter via the wavenum-
ber κ∗ of the ground state trimer at resonance, which
decreases as the resonance becomes narrow.

The shift in three-body parameters can be more clearly
seen in Fig. 4, where we show a scan of |a−| and κ∗
from the broad to narrow resonance limit. For the sake
of comparison, Fig. 4 also contains experimental data
for a select set of physical resonances. As the resonance
strength decreases, the three-body parameter |a−| shows
a monotonous increase, consistent with findings in earlier
studies such as Refs. [50, 51], but inconsistent with the
findings of Ref. [52] which finds the reverse behaviour.
Consequently we obtain a better match with the experi-
mental data for 39K than for 7Li, which similarly trends
to smaller values of |a−| for decreasing sres. Recent work
has shown that both an increasing and decreasing |a−|
may be obtained by including the multichannel struc-
ture in the three-body equations [18], which by defini-
tion is neglected in the ESC model. Within the narrow
resonance limit our results approach the universal limit
a− = −10.9 r∗. The effect of the background scatter-
ing length can mainly be observed in the intermediate
strength regime, where larger negative values of abg tend
to push the three-body parameter closer to the universal
broad resonance value for a larger portion of the reso-
nance strength regime. This finding is consistent with
more artificial models of the two-body interaction such
as the approach adopted in Ref. [50]. However, our more
realistic EST model strongly suppresses the sensitivity
of the three-body parameter to the background scatter-
ing length. This is especially true for the binding wave
number κ∗, whose dependence on abg is negligible on the
scale of Fig. 4. This behaviour shows some correspon-
dence with the effective range in multichannel van der
Waals potentials, which also becomes independent of abg

on resonance [53]. Hence any abg dependence originates
from higher order terms in the effective range expansion,
which are seemingly small in our model [50]. To verify
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FIG. 3. Binding wave number of the two lowest lying Efimov
states as a function of the inverse scattering length, computed
at two different resonance strengths. For a > 0 the atom-
dimer thresholds from Fig. 2 are plotted with thin lines. Grey
lines show the energies obtained from a single-channel SC-
EST model, which corresponds with the broad-resonance limit
sres →∞.

that a strong abg dependence is inherent to more artifi-
cial interaction potentials we have compared our results
to three-body parameters obtained from a constant in-
teraction with a simple ultraviolet cut-off. The results
are presented in Appendix D.

B. Three-body repulsion

Having confirmed that the three-body parameter in
our model scales as expected in both the narrow and
broad resonance limits, we now move on to a position
space analysis using the formalism of Sec. III B. Given
that our results are largely insensitive to abg at the po-
sition of the resonance, we limit ourselves in this section
to the 39K resonance with abg = −0.31 rvdW. Before
analyzing the three-body state directly it is instructive
to consider the two-body scattering wave function 〈r|ψ〉
of Eq. (14) that is used to construct the EST poten-
tial. To this end we plot the open and closed channel
radial components of the wave function for a set of dif-
ferent resonance strengths in Fig. 5, normalised such
that the wave function asymptotes to 1 for r � rvdW.
As predicted by multichannel resonance theory the open-
channel amplitude |u1(r)| is sres independent, whilst the
closed-channel amplitude |u2(r)| scales as ∼ 1/

√
sres [55].

Previous analyses of single-channel van der Waals inter-
actions have connected the suppression of the two-body
wave function below distances of 1 rvdW to the appear-
ance of a universal repulsive barrier in the three-body
potential at R ≈ 2 rvdW [12, 13]. In the two-channel
case this suppression persists in the open-channel com-
ponent, whilst there appears an increase in total short-
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FIG. 4. Plots of the three-body parameters as a function of resonance strength, for negative abg in Fig. (a) and positive abg
in Fig. (b). In the top panels we show the inverse of the dissociation scattering length a− associated with the ground state
Efimov trimer. Here solid coloured lines show the results of the ESC-EST model, for different background scattering lengths.
Scatter points represent experimental data, measured in 133Cs (green) [7], 7Li (purple) [8, 9], 85Rb (dark blue) [10] and 39K
(dark red) [11, 54]. The colour of the line plots is chosen to match the data points, e.g. the red plots were computed using
resonance parameters matching a resonance in 39K . Experimental data obtained for specific resonances taken as starting points
for the ESC-EST model (see table I), are shown as a star in the appropriate colour. In the narrow resonance limit sres � 1
we illustrate the limiting behaviour a− = −10.9 r∗ as a thick black dashed line. In the bottom panels we plot the trimer
binding wavenumber κ∗ at resonance. Here, results for different background scattering length practically overlap on the scale
shown here, so we use scatter plots to distinguish between them. In both the upper and lower panels the three-body parameter
obtained with a single-channel EST model, correspondent with the broad resonance limit sres � 1, is shown as a black dotted
line.

range two-body probability due to finite lifetime of the
closed-channel state.

To examine the effect of the closed-channel on the
three-body level we first compute the three-body prob-
ability in the {R,α} plane, by omitting the integration
over the hyperangle in Eq. (25). The results are shown in
Fig. 6. Here the effect of the open-channel suppression is
highlighted by plotting the boundary beyond which any
two particles approach below the van der Waals length.
As expected, the three-body probability is strongly sup-
pressed beyond this boundary for the broad resonance
(first two panels of Fig. 6), where the closed-channel
component is small. Interestingly, as we tune our in-
teraction towards the narrow resonance regime and the
closed-channel amplitude increases we see no additional
penetration of the region of open-channel suppression.
Instead, we find that both the average and the spread of
the three-body wave function in the hyperradial coordi-
nate increase. This suggests that the open-channel sup-
pression of two-body probability remains a dominant fac-
tor for small hyperradii, strongly suppressing the three-
body probability regardless of resonance strength. The
increase in closed-channel two-body amplitude mainly
impacts the intermediate to long distance regime where
R > 2 rvdW. As has been noted before [12, 13], the
appearance of a three-body repulsive barrier is associ-

ated with a repulsive potential energy peak due to the
non-adiabatic correction Q00(R) in Eq. (23), reminiscent
of an angular momentum barrier. This peak arises due
to a squeezing of the hyperangular distribution function
Φ(R,Ω) as R decreases, driven by the short-range two-
body suppression. Our results in Fig. 6 show that the
location of this barrier remains universally determined by
the van der Waals length also near a narrow resonance.

We now proceed by integrating out the hyperangle to
obtain P̄Ω(R) and use Eq. (26) to derive the effective
three-body potential. The results are plotted in Fig.
7, where for the sake of comparison we also show the
result with a single-channel interaction (correspondent
with sres →∞), and the universal ∼ 1/R2 potential from
zero-range theory giving the limitR/rvdW →∞ [5]. Con-
sistent with Fig. 6, a decreasing resonance strength man-
ifests most strongly in the intermediate to long distance
regime, where we observe a strong decrease in the depth
of the effective potential that pushes the Efimov state
closer to threshold. This is consistent with a decrease
of the binding energy κ∗ as noted in Fig. 4. To verify
whether this behaviour continues into the narrow reso-
nance limit, we have tracked the effective potential up to
sres = 0.01. Here the potential at larger separations be-
comes practically flat, signifying that all hyperradii have
approximately equal probability. To obtain a more quan-
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black dashed line. Format inspired by Ref. [13]

titative characterisation of the decrease in depth we plot
the minimum of the effective potential as a function of
sres, shown in the inset of Fig. 7. In the broad reso-
nance limit we find that the depth of the barrier scales
with 1/

√
sres, and is hence inversely proportional to the

closed-channel amplitude as plotted in Fig. 5. Consistent
with Fig. 6 the position of the repulsive barrier is set by
the van der Waals length with the relation R ≈ 2 rvdW,
regardless of the resonance strength.

To supplement our findings we have also computed
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FIG. 7. Plot of the effective three-body potential as a func-
tion of the hyperradius, computed with starting parameters
taken from the 39K resonance as outlined in table I. Solid
coloured lines show the effective potential at different values
of the resonance strength parameter. In the regime of small
hyperradius R . rvdW there appear unphysical and mean-
ingless oscillations in the potential as artifacts of the model
[13], which we have removed from the plot to avoid unnecces-
sary clutter. Black dashed line shows the effective potential
computed by using the associated SC-EST model. The black
dotted line shows the asymptotic ∼ 1/R2 Efimov attraction
as follows from the zero-range theory. Plot includes an inset
showing the scaling of the minimum Umin(R) with sres.

three-body effective potentials for particles interacting
via exponentially decaying potentials, common in nuclear
physics. Here the three-body parameter is likewise differ-
ent compared to the single-channel van der Waals inter-
action, but in contrast to our multichannel results there
is a genuine shift in the location of the three-body repul-
sive barrier. This suggests that the change in three-body
potential as observed in Fig. 7 originates from genuine
multichannel effects, which we will analyse more in the
next section. The analysis of the nuclear potentials can
be found in Appendix A.

C. Analysis in spin-position space

To gain better physical understanding of the origin
of the observations made in the previous section, it is
instructive to consider the multichannel effects on the
three-body level in more detail. To this end we general-
ize our theoretical description and write the open-channel
two-body state as |aa〉, where |a〉 is the lowest single-
particle spin state and the underbar denotes symmetriza-
tion. A Fesbach resonance is induced by tuning a bound
state in an arbitrary closed channel |bc〉 to the scattering
threshold, which strongly enhances the effective interac-
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tion strength in the |aa〉 channel via the presence of the
bound state (see Appendix B).

We consider now the effect of the enhanced interaction
at the three-body level. In the pure open channel state
|aaa〉, every pair of particles interacts via the strong reso-
nant van der Waals interaction which induces the Efimov
effect. Together with the suppression of two-body proba-
bility when r < rvdW, this will drive the particles towards
equilateral three-body configurations in which all nuclear
distances are maximized. As mentioned in the previ-
ous section, these dynamics are recognized in the hyper-
spherical picture via the non-adiabatic potential Q00(R),
which forms a strong repulsive barrier at small hyperradii
[12, 13]. In the multichannel case, the physical picture
is complicated by the presence of a closed-channel three-
body state |bca〉. In this state there appears an asymme-
try in the strength of the two-particle interactions, given
that two of the three pairs exist in the non-resonant chan-
nels |ab〉 and |ac〉. Hence the interaction with the third
particle is much weaker than the interaction felt by the
two particles in the resonant state, altering the resulting
dynamics.

With these effects in mind we now turn our attention
once more to the results presented in Fig. 7. As we de-
crease the resonance strength, the lifetime of the closed-
channel state increases, scaling as 1/sres. Consequently
the attractive interaction with the third particle weakens,
due to the imbalance between the background interac-
tions and the resonant interaction in the |aaa〉 channel.
This leads to a gradual decrease of the depth of the effec-
tive potential, as the coupling to the closed channel |bca〉
stretches the three-body state to more elongated config-
urations. To illustrate this behaviour we have computed
the closed-channel component 〈bca|Ψ̄〉 of the three-body
wave function, which in our formalism can be obtained
as,

〈kp; bca|Ψ̄〉 = − F (κ, p)g2(k)

κ2 + εc(B) + k2 + 3
4p

2
, (27)

where we have inserted the closed-channel form factor
g2(k). From this expression we derive the closed-channel
three-body probability Pbca, plotted in Fig. 8. Here
one clearly observes the stretching of the wave function
that occurs near a narrow resonance, which is directed
along the ρ coordinate quantifying the separation of the
third particle. In the limit of a very narrow resonance,
the third particle is free to drift towards separations far
beyond rvdW, consistent with a flat three-body poten-
tial. In contrast the shape of the probability along the
dimer separation r is relatively unaffected by the reso-
nance strength, and in fact follows the structure of the
two-body closed channel wave function as shown in Fig.
5. Fig. 8 also shows that there is no repulsive barrier
at small hyperradii in the closed channel state, which as
discussed above is due to the asymmetry between the
interaction strengths at the two-particle level. The fact
that a universal short-range repulsive barrier still remains
also for narrow resonances is due to the influence of the
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FIG. 8. Contour plots of three-body probability Pbca(r, ρ) ∼
r2ρ2| 〈rρ; bca|Ψ〉| 2 in the plane of Jacobi coordinates r and
ρ, for a broad and narrow Feshbach resonance. Note that
〈bca|Ψ〉 = 〈bca|Ψ̄〉 since 〈abc|Ψ̄〉 and 〈acb|Ψ̄〉 vanish in the
ESC Faddeev equations by the absence of background inter-
actions [18]. The drawings show the changing structure of the
Efimov state, where particles in the closed channel |bc〉 are
drawn with a cross.

open-channel component, where a universal barrier due
to Q00(R) always exists and is independent of resonance
strength. This prevents coupling to the closed-channel
state for small hyperradii, hence preserving the short-
range suppression of the wave function, as clearly ob-
served in Figs. 6 and 7.

As a final note we comment that the relative unim-
portance of the background interactions is actually an
underlying assumption in the ESC model of the three-
body problem. As discussed in detail in Ref. [18], Eq.
(19) is obtained by taking the limit in which interactions
in the non-resonant channels |ab〉 and |ac〉 are turned
off completely. While this is a valid assumption for most
practical systems as we have argued above, there are spe-
cial cases where such an approach is expected to be in-
correct. For example, if the resonant closed channel state
is taken as |ab〉, i.e. just one particle changes its state,
then both the open and closed channel three-body states
have purely resonant interactions. We can expect this
to alter the behaviour of the three-body potential, and
indeed it was shown in Ref. [18] that for closed channels
of this type the scaling of the three-body parameter with
sres is actually inverted.

V. CONCLUSION AND OUTLOOK

In this work we have analysed the change in the Efi-
movian three-body potential as the Feshbach resonance
strength is tuned from the broad to narrow resonance
regime. For this purpose we have developed a two-
channel separable model that takes into account the
full coupled-channels low-energy scattering wave func-
tion. Our numerical results show that as the resonance
strength is tuned away from the broad limit, the associ-
ated change in the three-body parameter a− originates
from a decrease of the three-body potential depth in the
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intermediate distance regime where R > 2 rvdW. In con-
trast, the three-body repulsive barrier that is observed
in single-channel models at R ≈ 2 rvdW remains univer-
sally determined by the van der Waals length. We have
interpreted our observations to originate from the rela-
tive weakness of background interactions between non-
resonant spin-channels compared to the resonant inter-
action that exists in the open channel and drives the Efi-
mov effect. Hence our results should apply generally to
systems in which the Feshbach resonance is sufficiently
isolated.

There are several possible opportunities for extensions
of our approach. Our physical picture of the decreas-
ing three-body attraction for narrow resonances rests on
the assumption that the interaction between closed and
open-channel particles is off-resonant, such that it may
be neglected. Consequently we expect that the presence
of a resonant third-channel alters the behaviour of the po-
tential significantly, which could be accurately captured
in a three-channel EST model. Another point of interest
is the analysis of special closed-channel configurations of
the type |ab〉, where it is known that the value of |a−|
decreases for a narrow resonance [18]. Such a system
however is not easily analysed with our model, since the
trimer wave function becomes more localised in the short-
range where the effective three-body potential is not a
useful construct.
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Appendix A: Comparison with nuclear interactions

In Sec. IV C we argue that our observations in the
multichannel model arise due to a distinct interplay be-
tween the different possible spin-states on the three-body
level. It is known however that the value of |a−| can also
increase with different kinds of asymptotic three-body in-
teractions, without any need for additional spin-channels.
In this appendix we contrast the changing three-body po-
tential in systems of this type with our previous multi-
channel results, to show that the underlying mechanisms
are indeed fundamentally different. Specifically we will
consider single-channel EST models based on two-body
interactions that decay exponentially in the long range,
common in nuclear physics. For this class of interac-
tions the short-range two-body suppression looks rather
different from the van der Waals potential, where ”short-
range” is now interpreted as r < re/2, with re the effec-
tive range constant. To illustrate the differences we plot
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FIG. 9. Two-body radial wave functions at the appearance
of the eighth potential resonance of the three nuclear interac-
tions in Eq. (A1) and the LJP van der Waals interaction in
Eq. (2). All distances have been expressed in the associated
effective range scale re/2.

in Fig. 9 the two-body wave function at unitarity for the
following set of nuclear potentials,

VPT ∼ −η cosh−2 (r) ,

VYk ∼ −
η

r
exp (−r) ,

VGs ∼ −η exp
(
−r2

)
,

(A1)

which respectively are the usual Pöschl-Teller (PT),
Yukawa (Yk), and Gaussian (Gs) potentials [12, 31].
The strength parameter η is used to tune the poten-
tial towards resonance. Similar to the case of van der
Waals interactions, the short-range suppression in the
two-body wave function leads to the formation of a three-
body repulsive barrier and hence a universal value for the
three-body parameter in the limit of broad Feshbach res-
onances. As was shown in Ref. [31], this universal value
matches the three-body parameter that one obtains when
using a simple step function as input into the EST model,
which is zero for r < re/2 and unity everywhere else. In-
deed for an infinite number of two-body bound states
the PT, Yk and Gs wave functions in Fig. 9, will all
approach step functions [31]. This is not the case for the
LJP interaction, whose infinitely deep limit is obtained
by taking r0 → 0, yielding a pure (but ill-behaved) van
der Waals potential. Interesting for this work is the fact
that the three-body parameter |a−| obtained from the
step-function limit in a single-channel model is ∼ 19 %
larger than the value obtained from the van der Waals
interaction [31]. In our multichannel model we similarly
observe an increased value of |a−| when sres is decreased
away from the broad resonance limit. Evidently however
the associated change in the two-body wave function is
very different, as becomes clear when comparing Figs.
5 and 9. Whereas in the multichannel model the open-
channel component that underlies the Efimov state was
unchanged, for the interactions in this section there is a
clear change in the short-range suppression in the open-
channel. As shown in Fig. 10, this subsequently leads to
a shift in the location of the three-body barrier, which
is absent in the multichannel model as explained in Sec.
IV C.
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Efimov attraction as follows from the zero-range theory.

Appendix B: Comparison of resonant to background
interactions

In Sec. IV C we argue that the interaction in the open
channel |aa〉 will dominate any background interactions
in other channels due to the enhanced coupling to a near-
threshold bound state in the closed channel. To quantify
this effect more precisely we can compute an EST po-
tential associated with the closed channel bound state
|ϕ〉, given as Vb = V |ϕ〉 〈ϕ|V |ϕ〉−1 〈ϕ|V . This poten-
tial may be interpreted as an effective potential for the
bound state which we use to quantify the strength of the
two-body interaction. In Fig. 11 we plot the magnitude
of 〈r|Vb|r〉 compared to the LJP potential that quantifies
a background van der Waals interaction. One clearly ob-
serves that the effective interaction in the closed channel
can augment the background interaction by several or-
ders of magnitude, which supports our physical picture.

Appendix C: Analysis of a physical resonance

Since the ESC-EST model can take any arbitrary mul-
tichannel interaction as input, we can also perform a
more detailed analysis of a specific physical resonance.
To test such an approach we have analysed the 39K
resonance as summarised in table I, using the Born-
Oppenheimer corrected molecular interaction formulated
in Ref. [46] as input. This resonance has recently re-
ceived some interest in the literature since experimental
data of the three-body parameter has revealed a signif-
icant shift away from the universal value [11, 30]. With
our model we extract a value a− = −13.56 rvdW, which
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using the molecular potential of [46] as input.

indeed falls outside the van der Waals universal region.
In Fig. 12 we show our result amongst the set of exper-
imental results also presented in Fig. 4. Evidently the
ESC-EST model produces a three-body parameter that
is consistent with the current experimental data, and in
particular falls within the uncertainty interval of the re-
sult of Ref. [11]. We should note however that the data
for potassium is also consistent with our more approxi-
mate van der Waals model presented in the main text,
so we can at present not say whether the accuracy of
this method will extend to other atomic species as well.
The lithium data for example suggests a downward trend
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FIG. 13. Comparison of the three-body parameter a− in Fig.
(a) and κ∗ in Fig. (b) as a function of the resonance strength
for the ESC-EST model shown with solid coloured lines, and
the cut-off form factor model shown with dashed coloured
lines. The experimental data shown before in Fig. 4 is also
included. Both figures show the SC-EST result with a black
dotted line, correspondent with the broad resonance limit for
the EST interaction. Note that the solid lines for κ∗ practi-
cally overlap.

of the three-body parameter, which has not been seen in
any of our test cases and would likely require a more fun-
damental change in our approach, as was also mentioned
in Sec. IV A.

Appendix D: Comparison of EST approach with a
momentum cutoff

As mentioned in section IV our results show a signifi-
cant decrease in sensitivity to the background scattering

length compared to simpler models of the interaction.
To test this observation we have performed computations
with a different and much less complex separable poten-
tial, defined as,

Ṽ =
~2

mΛ

(
λoo λoc

λco λcc

)
|g〉 〈g| . (D1)

The momentum Λ defines a cut-off scale for the form
factors

g(k) =

{
1 k < Λ

0 k ≥ Λ
. (D2)

This model reduces to a contact interaction in the limit
Λ → ∞, such that the scale Λ−1 acts analogous to the
range of the potential. Using the techniques of Feshbach
resonance theory one can derive a mapping from the in-
put resonance parameters abg and r∗ to appropriate val-
ues of the λoo/oc/co/cc coefficients. This model has been
taken directly from Ref. [18], and we refer the reader to
this paper for more details of this approach. In Fig. 13
we show a comparison between the three-body parame-
ter as obtained for negative scattering lengths presented
in Fig. 4(a), and the results we obtain with this model.

To present the results in van der Waals units we have
rescaled the broad resonant universal value of |a−| in the
cut-off model to match that of the ESC-EST model. Be-
cause the two models produce different ground state ra-
tios κ∗|a−| , this choice leads to a slightly different value
of the universal κ∗ value for both models. What we
want to emphasize here is the significant reduction in
the sensitivity to the background scattering length that
we find with our more realistic EST separable potential
compared to the much simpler model with a cut-off form
factor.
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[55] T. Köhler, K. Góral, and P. S. Julienne, Rev. Mod. Phys.
78, 1311 (2006).

https://doi.org/10.1103/PhysRevLett.109.240401
https://doi.org/10.1103/PhysRevA.103.052805
https://doi.org/10.1103/PhysRevA.103.052805
https://doi.org/10.1103/PhysRevA.61.022721
https://doi.org/10.1103/PhysRevA.61.022721
https://doi.org/10.1103/PhysRevA.73.042705
https://doi.org/10.1103/PhysRevA.73.042705
https://doi.org/10.1038/nphys3071
https://doi.org/10.1140/epjd/e2007-00185-6
https://doi.org/10.1103/PhysRevA.26.2441
https://doi.org/10.1103/PhysRevA.26.2441
https://doi.org/10.1063/1.447000
https://doi.org/10.1063/1.447046
https://doi.org/10.1063/1.447046
https://doi.org/10.1103/PhysRevA.88.052701
https://doi.org/10.1103/PhysRevA.88.052701
https://doi.org/10.1103/PhysRevA.100.042710
https://doi.org/10.1103/PhysRevA.100.042710
https://doi.org/10.1103/PhysRevA.103.022825
https://doi.org/10.1103/PhysRevLett.112.105301
https://doi.org/10.1103/PhysRevLett.112.105301
https://doi.org/10.1103/PhysRevC.8.46
https://doi.org/10.1103/PhysRevC.8.46
https://doi.org/10.1063/1.4891809
https://doi.org/10.1063/1.1630031
https://doi.org/10.1063/1.1630031
https://doi.org/10.1103/PhysRevA.103.032817
https://doi.org/10.1007/978-3-642-82081-6
https://doi.org/10.1007/978-3-642-82081-6
https://doi.org/10.1017/9781108499996
https://doi.org/10.1017/9781108499996
https://doi.org/10.1103/PhysRevA.94.032705
https://doi.org/10.1103/PhysRevA.94.032705
https://www.osti.gov/biblio/4322571
https://www.osti.gov/biblio/4322571
https://doi.org/10.1088/0022-3700/1/5/309
https://doi.org/10.1007/BF01442345
https://doi.org/https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1103/PhysRevA.67.022505
https://doi.org/10.1103/PhysRevA.67.022505
https://doi.org/10.1103/PhysRevA.78.012503
https://doi.org/10.1103/PhysRevA.67.060701
https://doi.org/10.1103/PhysRevA.67.060701
https://doi.org/10.1103/PhysRevLett.82.3589
https://doi.org/10.1103/PhysRevA.87.032517
https://doi.org/10.1103/PhysRevA.97.033623
https://doi.org/10.1103/PhysRevA.97.033623
https://doi.org/10.1140/epjb/e2012-30841-3
https://doi.org/10.1140/epjb/e2012-30841-3
https://doi.org/10.1103/PhysRevA.86.052516
https://doi.org/10.1103/PhysRevA.84.022706
https://doi.org/10.1103/PhysRevLett.111.053202
https://doi.org/10.1103/RevModPhys.78.1311
https://doi.org/10.1103/RevModPhys.78.1311

	The Efimovian three-body potential from broad to narrow Feshbach resonances
	Abstract
	I INTRODUCTION
	II Two-body interaction models
	A Model two-channel interaction
	B EST separable potential

	III Three-body approach
	A The ESC-EST model
	B Effective three-body potential

	IV Results
	A Efimov spectra
	B Three-body repulsion
	C Analysis in spin-position space

	V Conclusion and outlook
	 Acknowledgments
	A Comparison with nuclear interactions
	B Comparison of resonant to background interactions
	C Analysis of a physical resonance
	D Comparison of EST approach with a momentum cutoff
	 References


