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We present a simulation supported Bayesian Network modeling approach to evaluate the performance of bridge
networks with respect to both infrastructure owner’s cost and users’ travel time based on bridge level maintenance
decisions. By combining system decomposition, simulation and Bayesian Networkm (BN) modelling, our approach
enables the construction of a BNmodel of bridge networks where probabilistic information resulting from simulation
are used to populate the conditional probability tables. Our approach is therefore useful when access to actual
conditions of bridges and their monitoring is difficult, and the conditional dependencies accross different networks
elements are not easily quantifiable. Once built, the BN can be used by infrastructure managers as a scenario analysis
tool to assess howmaintenance decisions on individual bridges affect maintenance costs and travel time for the whole
network. The approach is presented on a small-scale bridge network for demonstration purposes.
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1. Introduction

Bridge networks are an essential part of trans-
portation systems which contribute to the urban
and economic development in the area of their
location. Unavailability of bridges may lead to
long diversions and congestions, thus affecting
travel time (Orcesi and Cremona, 2010) and air
pollution, with consequences on the quality of
life. With ageing of bridges, increasing traffic
demand and higher user expectations, infrastruc-
ture managers seek tools to support maintenance
decisions to achieve a trade-off between service
performance requirements and maintenance costs.
To address the above needs, this paper presents

a simulation supported Bayesian network ap-
proach (SSBN) for system level assessment of
bridge networks performance with respect to
maintenance costs and expected travel time. The
resulting model can be used for scenario analysis

to support maintenance decisions.
We model the network as a multi-state sys-

tem which can operate at different performance
levels depending on the conditions of its consti-
tutive bridges. To account for dependencies be-
tween bridges, we take a network-based approach
for the dependeability assessment of bridge net-
works based on the recently introduced concept
of SSBN (El-Awady and Ponnambalam, 2021).
We use simulation to obtain probabilistic informa-
tion to quantify these dependencies. Simulation is
an established approach to approximate the per-
formance of complex systems particularly when
there is a lack of data. For instance, Huseby and
Natvig (2013) developed a discrete-event simul-
tion model to evaluate the availability and critical-
ity of components for a multi-state network flow
system of repairable components.
In the next sections, we demonstrate our

methodology via application to the illustrative
1905
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bridge network in Figure 1.

2. Proposed Methodology

We first decompose the system into three layers of
system resolution, each corresponding to a layer
of the BN model shown in Figure 2. The top
layer, L=0, corresponds to the whole system; two
system performance variables are placed at the
top layer of the BN to indicate the total mainte-
nance costs and the expected travel time for the
whole system (based on an arbitrary traveller who
goes from a road crossing to another crossing in
the network). The next layer of system resolution
is layer L=1, where the system is broken down
into individual road sections, each containing a
bridge. For each road section, we define two ran-
dom variables indicating the maintenance costs
and availability of the road section. Finally, layer
L=2 collects the root variables which represent
the maintenance options for the bridges, expressed
in terms of maintenance rates. The directed arcs
between the nodes of the BN indicate the causality
relationships between the random variables. As
the structure progresses downward from the top
layer L=0 to the bottom layer L=2, it will model
the dependencies between performance across the
three layers from system through road sections
down to maintenance options. To quantify these
dependencies between the random variables, we
need to provide the conditional probabilities asso-
ciated with each random variable in the BN. To
this aim, we resort to simulation. Specifically, we
conduct simulations for each random variable at
layers L = 0; 1, and their results are used to elabo-
rate condictional dependence of the corresponding
random variables (e.g., conditional dependence of
“road 1-2 availability” on “maintenance rate 1” in
Figure 2).
Overall, the methodology consists of the fol-

lowing three steps. (1) Step 1- Model bridge net-
work and, evaluate availability & maintenance
costs of each road section with a bridge. (2) Step
2-Calculate travel time and costs of the whole net-
work: we estimate system level maintenance costs
and expected travel time by means of simulation
based on input from Step 1. (3) Step 3- Build the
BN of the bridge network: the simulation results

Fig. 1. Th focal bridge network & its corresponding
three layers of system resolution.

Fig. 2. The BN structure of the focal bridge network
in three layers which have direct correspondence with
system resolution layers.

from Steps 1 and 2 are used to derive the condi-
tional probability tables of the BN.

3. Step 1: Model bridge network and
evaluate maintenance costs &
availability of road sections

We model the bridge network as a directed graph
G = {V,A} with nodes (set V ) and edges (set
A) representing the road crossing points and the
road sections respectively. The graph of the fo-
cal bridge network in Figure 1 has four crossing
points and four road sections, two of which (sec-
tions 1-2 and 1-3) contain one bridge each.
The condition of the bridge affects the avail-

ability and maintenance costs associated to the
corresponding road section. For the network in
Figure 1, bridges B1 and B2 insist on road sec-
tions 1-2 and 1-3 respectively. We model each
bridge as a multi-state system and describe the
degradation and maintenance process as a Contin-
uous Time Markov Chain (CTMC). The state of
the bridge is discrete in space and continuous in
time. The bridge evolves through 4 possible states
which we indicate with index z = 1, 2, 3, 4, each
representing a different operative conditions. The
state-space diagram of the aformentioned Markov
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Chain is shown in Figure 3. State z = 1 corre-
sponds to good conditions (full capacity), from
which the bridge can deteriorate either to state z =

2 with rate λ12 = 1
30 where the bridge operates at

partial capacity. From degraded state z = 2, the
bridge can either fail with rate λ23 = 0.05 (and
move to state z = 3) or jump to state z = 4

where the bridge is under maintenance but it is
still operated at a partial capacity. From this state
bridge conditions are restored to ”good” (z = 1)
with a rate λ41. From the failed state the bridge
remains closed until maintenance is executed thus
improving bridge conditions to either state z = 2

or z = 1 with rates λ32 = 0.2 and λ31 = 0.1,
respectively. The maintenance rates depend on
the value taken by the random variables in layer
L = 2 of the BN. As maintenance of a bridge
on average can take three months (Saydam et al.,
2013), in this example, we define maintenance
rate 1 associated to road section 1−2 (indicated by
λ1
24) as follows. It can take either of the two values

indicated in vector RM1 =

(
0.2

0.5

)
: value 0.20

with probability of 0.6, and otherwise, a value
of 0.50. Similarly, maintenance rate 2 for road
section 1− 3, λ2

24 is defined such that it takes one

of the two values in vectorRM2 =

(
0.15

0.4

)
, with

a similar probabilities.
With the given definitions, the matrices Q1,Q2

indicate the transition rate matrix of the corre-
sponding CTMC of roads 1 − 2 & 1 − 3, respec-
tively. In these matrices, cell λzz′ represents the
transition rate from state z to state z′ given that
the current state is state z. In addition, the holding
time of a bridge in state z is exponentially dis-
tributed with parameter λz (the diagonal element
of row z is −λz , and λz =

∑
z′ λzz′ ).

Q1 =

⎛
⎜⎝

⎞
⎟⎠

λ1 = −1
30 λ12 0 0

0 λ2 λ23 λ124
λ31 λ32 λ3 = −0.3 0
1 0 0 λ4 = −1

Q2 =

⎛
⎜⎝

⎞
⎟⎠

λ1 = −1
30 λ12 0 0

0 λ2 λ23 λ224
λ31 λ32 λ3 = −0.3 0
1 0 0 λ4 = −1

We assume that the performance of a road sec-
tion can settle at different levels of its nominal
capacity depending on the operative conditions of
the bridge. We model the performance of a road
section as its operational capacity normalized with
respect to its nominal capacity, thus taking values
between 0 (closure of the road section) and 1 (full
capacity). Therefore for z = 1 the road section op-
erates at its full capacity, while in states z = 2 and
z = 4 we assume that the normalized operational
capacity is 0.6 and 0.4 respectively. We define the
steady state availability Ai−j of a road section
as the steady-state probability that its normalized
operational capacity as defined above is greater
than a given threshold,Ai−j ≥ Âi−j . For the sake
of illustration here, we assume Âi−j = 0.4.
As we consider fixed time horizon, we use

Monte Carlo simulation to simulate a large num-
ber of life histories over a given time horizon T =

600 (months) for each bridge (with a warm-up pe-
riod of 500 during which simulation runs without
collecting results). During each run, which is an
“observation” of the bridge state evolution over
time, we record the realization of the following
random variables: number of times a repair tran-
sition occurs and the percentage of time that the
bridge is in each possible state. By multiplying
the first quantity by the cost of rehabilitation,
we obtain the maintenance costs for each “obser-
vation”. The availability of the road sections is
expressed as the sum of the percentage of time
the bridge is in state z = 2 and z = 4, weighted
by the corresponding normalized operational ca-
pacity. By doing this for each run, and conduct-
ing nsim = 1000 runs, we obtain the cost and
availability vectors for each road section RCi−j

and RVi−j , respectively (where elements of those
vectors show observed total costs & availability of
each road).

4. Step 2: Analyze whole network
expected travel time and maintenance
costs

I. Markov Chain Traffic Assignment- We first im-
plement the Markov Chain Traffic Assignment ap-
proach developed in (Salman and Alaswad, 2018)
to model traffic dynamics and calculate the ex-
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Fig. 3. State space diagram of an bridge with n = 4
states.

pected travel time based on the availability vec-
tor RVi−j obtained in step 1. Indeed the traffic
dynamics can be modeled using Markov Chains.
First we define the dual graph ofG such that every
road becomes a node of the dual network; two
nodes in the dual network are connected with an
edge if their corresponding roads are connected in
the bridge network (see the dual graph of the focal
bridge network in Figure 4).

Fig. 4. The dual network of the focal bridge network.
The nodes labelled in order to clarify the corresponding
road (e.g., node “1− 2” represents road section 1− 2).

The transition probability matrix P̂ of the
Markov Chain (MC) associated to the dual net-
work, is built based on the average travel time of
the road sections and the junction turning prob-
abilities as follows (Crisostomi et al., 2011). We
define the turning probability from road section
a to road section a′ as da,a

′
(whose value can

be estimated based on collected data), and the
average travel time as ta,a

′
. The set of average

travel times on all road sections is normalized
such that the smallest one is 1. The components
of the transition probability matrix P̂ are then
calculated as follows:

p̂a,a =
ta,a − 1

ta,a
, (1)

p̂a,a′ = (1− p̂a,a)× da,a
′

(2)

where p̂a,a corresponds to the probability of a
loop and U-turn, while p̂a,a′ indicates transition
from roads section a to a′. In this example we
assume that traffic enters and leaves the network
through road section 1−4. We consider traffic sce-
nario 1 with the following travel times in minutes:
{(1− 2, 2), (1− 3, 4), (1− 4, 4), (2− 3, 6)}a. In
addition, we assume values of the junction turning
probabilities da,a

′
and collect them in matrix D̂

(cells across a row sum up to one as they show
probabilities of turning from its corresponding
road to that of the other rows):

D̂ =

1− 2 1− 3 1− 4 2− 3⎛
⎜⎝

⎞
⎟⎠

0 0.2 0.4 0.4 1− 2
0.3 0 0.3 0.4 1− 3
0.4 0.6 0 0 1− 4
0.7 0.3 0 0 2− 3

Then, using equations 1 and 2, transition prob-
ability matrix P̂ will be obtained:

P̂ =

1− 2 1− 3 1− 4 2− 3⎛
⎜⎝

⎞
⎟⎠

0 0.2 0.4 0.4 1− 2
0.15 0.5 0.15 0.2 1− 3
0.2 0.3 0.5 0 1− 4
0.23 0.1 0 0.67 2− 3

The Kemeny constant of this MC provides an
estimation of the performance of the bridge net-
work in terms of average expected travel time.
Indeed it indicates the average expected travel
time from an arbitrary road to a destination chosen
randomly. Kemeny constantKK is given by

KK =
∑
a′

ma,a′πa′ a ∈ A (3)

where ma,a′ is the mean first passage time, and
πa′ is the long run fraction of time that the chain
will be in state a′. The mean first passage time
from road a to a′ is the expected number of
transitions that the MC process needs to make to
reach road a′ (for the first time) when it starts from
road a. Note that each road section corresponds to
a state in the corresponding MC model, and the

aHere, average travel time from two directions on a road (e.g.,
2 → 1, 1 → 2) are assumed to be equal.
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Kemeny constant is independent of the choice of
ab, see (Crisostomi et al., 2011).
To account for the availability of road sections

when calculating the expected travel time in the
network, we simply recalculate the entries of ma-
trix P̂ corresponding to the road sections with
reduced availability as follows. If v′a is the avail-
ability of road sections a′, with v′a < 1, then the
entries in the corresponding row of matrix P̂ are
updated as follows (p̄a,a, p̄a,a′ indicate updated
cells in that row)c.

(1) If p̂a,a = 0, then,

• p̄a,a = (1− v ′a),
• p̄a,a′ = p̂a,a′ × v ′a ∀p′a,a′ > 0

(2) If p̂a,a �= 0, then,

• p̄a,a = p̂a,a + (1− p̂a,a)× (1− v ′a),
• p̄a,a′ = p̂a,a′ × v ′a ∀p′a,a′ > 0

For traffic scenario 1, with road section a = 1− 2
as reduced availability v ′a = 0.9, then we obtain
the new transition matrix which we call P̄:

P̄ =

1− 2 1− 3 1− 4 2− 3⎛
⎜⎝

⎞
⎟⎠

0.1 0.18 0.36 0.36 1− 2
0.15 0.5 0.15 0.2 1− 3
0.2 0.3 0.5 0 1− 4
0.23 0.1 0 0.67 2− 3

To model uncertainty with respect to the incom-
ing & outgoing traffic flows, we can consider mul-
tiple traffic scenarios. That is, we assume average
travel time t on road 1 − 4 (as a channel through
which traffic flows into & leaves from the focal
bridge network) can take different values on a
finite set of possible scenarios according to a prob-
ability distribution. So, in addition to scenario 1,
we define another traffic scenario, called “scenario
2” which average travel time on roads (in minutes)
in Figure 1 are defined similar to scenario 1 as
follows: {(1 − 2, 2), (1 − 3, 4), (1 − 4, 8), (2 −
3, 6)}. With these values and using equations 1-2,
transition probability matrix will be:

P̂′ =

1− 2 1− 3 1− 4 2− 3⎛
⎜⎝

⎞
⎟⎠

0 0.2 0.4 0.4 1− 2
0.15 0.5 0.15 0.2 1− 3
0.1 0.15 0.75 0 1− 4
0.23 0.1 0 0.67 2− 3

bSo, instead of writing KK(a) with a ∈ A = {1 − 2, 1 −
3, 1− 4.2− 3}, we writeKK.
cNote that we have

∑
a′∈A p̄a,a′ =

∑
a′∈A p′

a,a′ = 1.

Next, we model uncertainty of incoming &
outgoing traffics, and use that in simulation &
calculation of Kemeny constant (expected travel
time within the system). Here, we assume that the
rate of having scneario 1 follows a Bernoulli dis-
tribution with r = 0.6 (and scenario 2 occurs with
probability 1 − r probability). Therefore, if over
three simulation experiments, if scenario 1 occurs
twice, then for two runs, travel time is estimated
by Kemeny constant of the MC with P̂, and only
one simulation experiment, it is estimated by the
MC with P̂′.

II. Simulation Process- Here we use vectors
RCi−j andRVi−j obtained in Step 1 for each road
section as “observed data” from which empiri-
cal distributions are constructed, and simulate the
bridge network as a system with uncertain inputs
using the bootstrap resampling method in (Bar-
ton and Schruben, 2001). Formally, we sample
nb = 300 values with replacement from that vec-
tor, order those resampled values, and call them
{v(1), v(2), .., v(nb)}. Next using the ordered re-
sampled values, we construct a distribution func-
tion with F̂ (x0) = 0, F̂ (xnb+1) = 1, and for
intervals x(i) ≤ x ≤ x(i+1), F̂ (x ) = α × i

nb+1 +

(1− α)× i+1
nb+1 , where α =

x(i+1)−x

x(i+1)−x(i)
.

For a given traffic scenario, we therefore (1)
build the empirical distributions from vectors
RCi−j andRVi−j to calculate the estimated avail-
ability and maintenance costs (shown by RC∗i−j)
for each road section, (2) We specify the incom-
ing/outgoing traffic flow scenario, and apply the
MCTA method, where we account for the esti-
mated availability of road sections as seen before
to calculate the Kemeny constant representing an
estimate of the expected travel time within the
network, (3) We sum the costs estimate accross
all road sections in the network to obtain the
maintenance costs for the entire network, and add
a stochastic term to account for stochasticity of
the coordination costs as RC∗1−2 + RC∗1−3 + 2 ∗
Beta(2, 5)∗0.1∗(RC∗1−2+RC∗1−3). In this added
term, Beta(2, 5) is a random number generated
from beta distribution, and multiplication of terms
by 2 (i.e., the length of the shortest path between
roads 1 − 2 & 1 − 3 over the bridge network)
is included in the equation to represent economic



1910 Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

dependencies among maintenance costs of the two
roads. We repeat this procedure for 400 runs of
simulations, with each run providing “observed”
values of travel time and maintenance costs for
the network, which are then collected into the
vector of expected travel time RT and expected
maintenance costs RC for the entire network.

5. Step 3: Building Bayesian Network
model

We use the results of simulation in Step 2,
namely vectors RT and RC as a source informa-
tion to materialize the conditional dependencies
among the random variables of the BN model. A
Bayesian Network (BN) is a probabilistic acyclic
graph with nodes representing random variables
and directed arcs representing causal relation-
ships between variables. Formally, a Bayesian
Network is a 3-triple (XB,GB,PB) where XB =

{X0, X1
1 , X

1
2 , X̄

0, X̄1
1 , X̄

1
2 , X

2
1 , X

2
2} is a set of

nodes which represent random variables.
Variables X0, X̄0 indicate system costs &

travel time at layer L = 0 (the superscript number
of a variable shows the layer to which it belongs).
Similarly, variables X1

1 , X
1
2 (X̄

1
1 , X̄

1
2 ) represent

costs (availability) of roads 1− 2 & 1− 3, respec-
tively. Lastly, variables X2

1 , X
2
2 indicate mainte-

nance rates 1 and 2.
Also, GB is a set of directed edges and, set

PB provides conditional probability densities that
characterise conditional dependence among vari-
ables,
PB = {f(X0|X1

1 , X
1
2 ), f(X

1
1 |X2

1 ), f(X
1
2 |X2

2 ),
f(X̄0|X̄1

1 , X̄
1
2 ), f(X̄

1
1 |X̄2

1 ), f(X̄
1
2 |X2

2 )}.
As mentioned in the previous section, the com-

ponents of vectors RT and RC are treated as “re-
alizations” of the random variablesX0, X̄0 which
indicate system costs and travel time at layer L =

0 of the BN. Similarly, the components of vectors
RCi−j and RVi−j are treated as “realizations”
of the maintenance costs and availability of road
section i − j. To identify discretization intervals
for each random variable in a wise manner, we fit
a probability density function ĝ to these vectors
based on Maximum Likelihood method. For each
of the obtained density functions, we calculate the
High Density Region (HDR) as follows (Hynd-

man, 1996). The 100(1− β)% HDR is the subset
J(ĝ) of the sample space of random variable X
such that J(ĝ) = {x : ĝ(x) ≥ gβ}, where ĝβ
is the largest constant such that P (X ∈ J(ĝ)) ≥
1− β with β = 0.6.
For the sake of illustration, we then divide the

sample space of each random variables at layers
L = 0, 1 into nd = 3 intervals. We divide subset
J(ĝ) of the sample space into nd − nx intervals
where nx is the number of segments/intervals
between regions of the identified subset J(ĝ)

(nd >> nx). For example, if J(ĝ) = (0.1, 0.4) ∪
(0.8, 0.9) for random variable X̄1

1 with sample
space of x ∈ [0, 1], then, nx = 3 (as there are
three intervals among HDR intervals, (0.0, 0.1],
[0.4, 0.8], and [0.9, 1)).
For each random variable we use the discretiza-

tion intervals to define the corresponding discre-
tised data vector. We define function MD map-
ping each random variable to its discretized data
vector (u = 1, 2):MD(X0) = RC,MD(X̄0) =

RT , MD(X1
u) = RCu, MD(X̄1

u) = RVu.
Moreover, using the identified discretization inter-
vals for variablesX1

1 , X
1
2 , X̄

1
1 , X̄

1
2 , functionMD′

maps these variables to the relevant discretised
input vactor of step 2 (u = 1, 2): MD′(X1

u) =

RC′u,MD′(X̄1
u) = RV ′u.

We can now estimate the conditional probabili-
ties by using maximum likelihood estimators (see
page 299 Pousi et al., 2013) as follows:

P (X0 = d|X1
1 = d1, X

1
2 = d2) =

{ NN
N NN ,N ≥ 0
1
nd

N = NN = 0

where d, d1, d2 ∈ {0, 1, 2, .., nd − 1} are inte-
gers which we use to refer to the interval within
which the corresponding random variable takes
its value (e.g. X1

1 = d1 = 2 means that ran-
dom variable X1

1 takes value within the third
interval). N indicates the number of simulation
records within vectors MD′(X1

1 ),MD′(X1
2 )

with X1
1 = d1, X

1
2 = d2, while NN indicates

the number of simulation records within vectors
MD(X0),MD′(X1

1 ),MD′(X1
2 ) with X0 =

d, X1
1 = d1, X

1
2 = d2. Furthermore, in the case

of having N = NN = 0, then, we consider lack
of information about that conditional probability,
and therefore, each of the nd possible values for
the random variable conditioned on the other vari-
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ables are considered to have an equal likelihood.
This approach is used for calculation of other
conditional probabilities.

6. Results and discussion

The results obtained are illustrated in Table 1
and Figures 5-6. Table 1 summarizes the intervals
within which each random variable in the BN
can take its value when nd = 3. Figures 5-6
summarize the structure (see Figure 2) and the
marginal probabilities of all the values taken by
the corresponding nodes. As the value of cell λ2

in matrix Q1 is higher than that of Q2 (elements
of vector RM1 have higher values than those of
RM2), we expect bridge B1 to have a shorter
holding time in maintenace than bridge B2 (mean
of exponential distribution with paramter λ is 1

λ ).
In this line, while the BN variables related to
road 1 − 2 (X1

1 , X̄
1
1 ) and that of road 1 − 3

(X1
2 , X̄

1
2 ) have similar marginal distribution, we

observe higher availability & lower cost intervals
for the former group than those of the latter ones.
In addition, one may note that the derived intervals
in Table 1 are subset of possible intervals for a
variable (e.g., for X̄1

1 , (0.81, 1] ⊂ [0, 1]) as they
are obtained from simulation. Lastly, the reader
may note that the shown travel times are in the
number of steps of the MC associated with the
dual network, and since travel times on roads are
normalized, and the shortest was 2 minutes, then,
the shown travel times should be multiplied by 2
to get travel times in minutes.
As mentioned earlier, the developed BN model

can be used for scenario analysis. For instance,
we used the “cpquery” function in “bnlearn” li-
brary in R to estimate the conditional probabil-
ity of having system travel time be less than
7.47*2 minutes (X̄0 ∈ 0, 1) and cost be in range
(2873.52, 5747.04)] (X0 = 1) given that the
desired periodic preventive maintenance rate 1 is
0.2 (X2

1 = 0). Those estimations of P (X̄0 ∈
0, 1|X2

1 = 0), P (X0 = 1|X2
1 = 0) based on 1000

samples of the conditional probabilities are shown
in Figure 7.

Table 1. BN variables, intervals & values.

Var Interval d, d1, d2

Road 1-3, availability: X̄1
2

(0.78, 0.86] 0
(0.86, 0.93] 1
(0.93, 1.0] 2

Road 1-2, availability: X̄1
1

(0.81, 0.88] 0
(0.88, 0.94] 1
(0.94, 1.0] 2

Road 1-3, cost:X1
2

(0.0, 1962.93] 0
(1962.93, 3925.87] 1
(3925.87, 5888.8] 2

Road 1-2, cost:X1
1

(0.0, 1475.44] 0
(1475.44, 2950.88] 1
(2950.88, 4426.32] 2

System time: X̄0
(5.6, 6.53] 0
(6.53, 7.47] 1
(7.47, 10.41] 2

System cost:X0
(0.0, 2873.52] 0

(2873.52, 5747.04] 1
(5747.04, 8620.56] 2

Fig. 5. BN for travel time with related marginal distri-
butions.

7. Conclusions

This paper presents a simulation supported
Bayesian Network modeling approach to assess
the performance of bridge networks. The ap-
proach has been demonstrated on a small scale
bridge network. It can be used by infrastructure
managers as a scenario analysis tool to support
maintenance decisions. Once built, the BN allows
to model how the effects of different maintenance
rates at bridge level, propagate accross the net-
work thus affecting travel time and maintenance
costs. For applicability to large scale networks,
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Fig. 6. BN for maintenance costs and related marginal
distributions.

Fig. 7. Estimated probabilities of X̄0 ∈ 0, 1 &X0 =
1, conditioned onX2

1 = 0.

we will further introduce an additional step to
the methodology which uses MCTA and the Ke-
meny constant to identify subnetworks which can
be considered as independent according to their
traffic dynamics. In the BN model this will trans-
late into an additional layer between the “system”
layer (whole network, currently layer L = 0) and
the road sections layers (currently L = 1).
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