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Chapter 1

Introduction

Computers are ubiquitous in our daily lives, ranging from the small microchip embed-
ded in your debit card to the large data centers that form the foundation of the internet.
Although all of these computers are immensely useful, many people are familiar with
the fact that computers do not always work properly. For example, 80 percent of
users notice bugs in mobile apps [127]. These issues can be (small) inconveniences or
application crashes that can result in the loss of work. However, in a safety critical
environment, computer failure can lead to fatal accidents. Recently, an issue in the
safety alert system of the Boeing 737 Max resulted in two fatal crashes [73]. Other
prominent examples are security exploits that (can) result in sensitive data being leaked
into the public. A recent example being the ProxyLogon exploit targeting Microsoft
Exchange servers [101]. In these cases software problems cause the loss of resources,
privacy and even lives.

The essential observation about these issues is that the actual behaviour of the
computer is not the behaviour intended by its designers. The behaviour of a computer is
governed by two parts: the hardware and the software. The hardware is the collection
of physical components of the computer. The software consists of the instructions
that are executed by the hardware. In 1994, a design flaw in the floating point unit of
certain Intel processors caused inaccurate results, which led to a large recall of sold
processors. This problem, known as the infamous Pentium FDIV bug, has resulted in a
significant increase in the use of rigorous design techniques such as formal verification
at Intel [108]. These efforts among others have significantly reduced the presence of
incorrect behaviour in common general purpose processors. Therefore, most faults
these days are the result of mistakes in the software.

The need for ensuring the correctness of software, where correct means that
the actual behaviour matches the intended behaviour, was quickly identified when
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1 INTRODUCTION

computers first appeared. In the early days a computer was modelled as a device that
computes the output corresponding to the input values. This type of mapping from
inputs to outputs is called a function. For functions and procedures written down
as pseudocode, which is a formal way to describe programs, we are able to verify
properties or invariants of them either by hand or using computer assistance. Although
this is sufficient to prove the behavioural correctness for sequential programs it is
missing the interaction of different components. Furthermore, the sheer complexity of
modern software systems makes applying such an approach to these systems difficult
due to the amount of insight required in both the approach and the system.

There are many complementary techniques to ensure the correctness of software.
For the source code itself there are development processes to improve the quality of
the code such as rigorous programming practices, extensive code reviewing processes
and documenting the source code. Furthermore, the use of high-level languages that
employ expressive type systems and have rules that can be verified by the compiler
can help in avoiding bugs [49]. Sometimes specific programming language features
can be a source of bugs, for example the widespread usage of null pointers [79].

For verifying the behaviour of software directly there are several techniques that
can operate while the software is being executed. For example, we can introduce
runtime assertions to avoid typical sources of bugs such as out-of-bounds errors and
to verify other so-called invariants during execution. Furthermore, tests can be used
to verify the results in specific situations. Finally, a more rigorous approach is model
based testing, which directly compares the behaviour of the executed program directly
with the intended behaviour. These methods are quite effective at detecting issues,
but their disadvantage is that they only guarantee correctness of the software in the
behaviour encountered during execution, which is inherently incomplete.

Formal verification is a technique that aims to verify the complete correctness of
behaviour by modelling behaviour and verifying it directly. This has the advantage that
we can guarantee the correctness of all the behaviour that was modelled. Furthermore,
another advantage is that (part of) the program code can often be directly generated
from the model. There are several (complementary) techniques to perform formal
verification each with their advantages and disadvantages. For example, program
verification tools such as Dafny [96], KeY [35] and VerCors [10], theorem provers
such as Coq [133], Isabelle [107] and PVS [109], and model checking tools such
as CADP [50], FDR [53], LTSmin [12] and mCRL2 [23]. Scalability of these tools
is one of the main challenges for applying formal verification in practice. In this
dissertation we focus on both theoretical and practical scalability improvements of
several techniques employed in model checking of concurrent systems specifically.
Hence the title accelerated verification of concurrent systems.
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1.1 BEHAVIOURAL EQUIVALENCES

s0 s1 s2

s3

s4

coin

coin
reject

candy

snack

dispense

dispense

next

Figure 1.1: Behaviour of a vending machine.

1.1 Behavioural Equivalences
To describe the behaviour of interacting components we need a language that can
express more than only functions. This observation gave rise to the development
of concurrency theory where interaction between components is often modelled as
messages being passed from one to another or data that is being shared. As part of this
theory formal languages called process algebras have been developed to effectively
describe both the sequential and interacting behaviour of processes. We are not going
to delve into the details of process algebra, but we will explain the notion of behaviour
in more concrete terms.

Let’s consider the behaviour of a vending machine. A vending machine is in simple
terms a (physical) machine that accepts money in some form and returns a product
after a choice has been made by the user. This kind of behaviour can be modelled as
an edge-labelled graph as is shown in Figure 1.1. Here, we see a number of states
with names s0,s1, . . . and arrows indicating transitions from one state to another. The
state s0 has an incoming edge without a starting state to indicate that it is the initial
state. We refer to these kind of graphs as state spaces. Every transition is labelled
with a corresponding action that takes place. The interpretation of this graph is as
follows. Whenever the machine is in (for example) state s0, it can accept a coin from
the user and it ends up in state s1. The actions are essentially the externally observable
behaviour of this machine, whereas the exact state that the machine is in cannot be
observed directly.

If we are satisfied with the high-level behaviour of our system we could view this
as the specification of the intended behaviour. However, this model leaves out a lot of
details about the inner workings of a vending machine such as controlling the actuators
that are used to actually dispense the product. Therefore, the actual system designers
could also define an implementation model that contains the more refined behaviour
of the system. There are techniques available to automatically verify whether these

3



1 INTRODUCTION

A

B

C D

E

Figure 1.2: A refinement based software development approach.

specification and implementation models are behaviourally equivalent with respect to
some notion of equivalence. Intuitively, we can for example observe in Figure 1.1 that
after entering either state s2 or s3 the subsequent behaviour is exactly the same, so we
would also consider the states to be indistinguishable. This could be used to verify
that the actual behaviour matches the intended behaviour.

Behavioural equivalence is often considered too strong as a requirement, because
we could view many (different) implementations as correct with respect to a given
specification. Therefore, there are also the weaker notions of certain implementation-
specification refinement relations, such as the weak trace and stable failure relations
presented in [121]. These notions have been used successfully in industrial settings as
a refinement based software development, for example in [8]. The idea is that we can
replace implementations by specifications, which are typically much smaller, during
the verification process.

Consider Figure 1.2 where A,B,C,D and E are components of some software
system. Every component has an implementation indicated by the white part and a
specification indicated by the grey part that is considered to be the interface of that
implementation. The arrows indicate that components are used by other components,
for example component B is used by component A. The main benefit of a refinement
based software development approach is that it can be applied compositionally. This
means that to verify the correctness of component A with respect to its specification
we only need to consider the implementation of A and the interface of B. Thus we can
ignore the fact that B uses components C, D and even indirectly E.

Since the state spaces of these components can be quite large it is important to
use efficient algorithms to perform the refinement checking automatically. In [137]
three variations of an algorithm based on so-called antichains was presented to check
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1.2 COMPOSITIONAL MINIMISATION

(weak) trace, stable failures and failures-divergences refinement. Closer inspection
of the algorithm and surrounding definitions revealed several issues pertaining to
the correctness of these algorithms. Furthermore, our first implementation of this
technique in our open source mCRL2 toolset yielded disappointing performance [23].
Therefore, the first research question we pose is the following.

RQ1 Can we resolve the issues pertaining to the correctness and efficiency of the
antichain-based refinement algorithm presented in [137]?

In Chapter 2 we answer this question positively by slightly adapting the algorithms
to drastically improve their performance. Furthermore, we have resolved several flaws
in the invariants and definitions used in the proof of correctness. The result of this
work is a collection of correct and efficient antichain-based refinement algorithm that
are implemented in the mCRL2 toolset, and are currently used as the backbone in the
commercial model driven engineering toolset Dezyne; see also [8].

1.2 Compositional Minimisation
In the previous section we assumed that the behaviour of a system was modelled as a
graph structure. However, in practice the behaviour is often described in a high-level
description language such as the aforementioned process algebras. These process
algebras have constructs to represent various kinds of behaviour compactly including
the interaction of multiple processes. These interactions are often between multiple
processes that are executed concurrently and pass messages carrying data to each
other. The underlying behaviour is then obtained from this high-level description as a
state space by means of state space exploration. This concurrency often results in a
lot of interleaving behaviour that causes the complete system behaviour to become
very large. This phenomenon is one reason for the so-called state space explosion
problem and a large part of research in the area of formal verification is focussed
on this problem. It is however important to note that this complex behaviour is in
principle part of the system.

There are various techniques described in the literature to deal with the state
space explosion problem and one of them is compositional minimisation. For a
detailed overview of this technique see [51]. Consider the Figure 1.3 where P1,
P2 and P3 are the state spaces of three processes. The basic idea of compositional
minimisation is to minimise the state space of every process by itself with respect
to some equivalence relation, which is a minimal state space representing equivalent
behaviour, before composing these minimised state spaces again to obtained the
complete state space. The node P1 ∥ P2 is the so called parallel composition of P1 and
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(P1 ∥ P2) ∥ P3

P1 ∥ P2

P1 P2

P3

Figure 1.3: Compositional minimisation of state spaces.

P2, which is the behaviour of running these two processes in parallel. Next, P1 ∥ P2
can be minimised again before being put in parallel with component P3. The reason
why this is useful is that for smaller state spaces the amount of possible interleaving is
also reduced. Applying this technique in practice is quite a bit more tricky than this
simple explanation since we do not only have processes that are executed concurrently,
but most often the processes also communicate or synchronise information with each
other. This means that the behaviour of one process can be limited by other processes
and the state space of a single component in isolation can be larger than the complete
system, or even infinitely large.

In the mCRL2 toolset a transformation is applied from the high-level description
into an equivalent non-deterministic monolithic process before further processing. This
monolithic process is a process that only uses a few typical constructs from process
algebra and in particular no longer contains parallel composition. The previously
described compositional approach relies on the parallel composition in the original
process descriptions and is therefore no longer directly applicable. We could consider
adapting this transformation to result in a number of parallel components. However,
in practice it is often quite useful to apply static analysis techniques on the high-
level description to obtain (significant) reductions in the state space of the system.
These static analysis techniques are much easier to implement and prove correct
for monolithic processes and also the implementation of state space exploration is
greatly simplified, which are good reasons to keep the transformation as it is. We
can also observe that in principle the information necessary to apply compositional
minimisation is still contained in this monolithic processes. Therefore, the second
research question that we pose is the following.

RQ2 Can compositional minimisation be applied to a monolithic process by
decomposing it into multiple monolithic processes?

In Chapter 3 we present a technique that can decompose a monolithic process
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1.3 SYMBOLIC MODEL CHECKING

of a certain general structure into multiple smaller components using only operators
available in a process algebra with so-called multi-actions. Note that the mCRL2
language [63] is an example of a process algebra with multi-actions. These multi-
actions are not necessarily widely available in other process algebras, but do present a
nice way to represent actions that occur simultaneously. Furthermore, we demonstrate
using practical examples that the components resulting from our decomposition can be
used for compositional minimisation. Finally, we show on several practical examples
that the resulting decomposition can be explored more efficiently than the monolithic
state space exploration.

1.3 Symbolic Model Checking
In Section 1.1 we considered verifying behaviour by checking whether two models
were in some sense equivalent or a refinement of each other. Although this is a useful
approach for formal verification there might also be specific requirements that (the
behaviour of) the system should exhibit that are not necessarily preserved by the
equivalence or refinement relation. Therefore, another complementary approach is to
specify requirements directly in a formal language, for which examples are the modal
µ-calculus [63] and LTL [113].

Consider the state space presented in Figure 1.1 again. A typical requirement is
that the system does not deadlock, meaning that there is no state without any outgoing
transitions. Since the modal µ-calculus reasons about observable behaviour, i.e., the
actions that take place, we specify this as: after any path of transitions we reach a
state which has at least one outgoing transition. Formally, this would be stated as a
sentence in the modal µ-calculus shown below, for which the details are currently
not important. This property clearly holds for the given state space, and this can also
checked automatically.

[true∗]⟨true⟩true

A more specific requirement might be that after inserting a coin within a finite
number of steps either candy or snack is dispensed from the machine. However, the
infinite path consisting of only coin actions by continuously looping in state s1 shows
that this requirement is not satisfied by the given behaviour. This means that we should
either adapt the specification or refine the requirement. On the other hand, if we just
require that there is an infinite path that consists of alternating coin and snack actions
then that requirement does hold.

The process of automatically verifying whether requirements hold for a process
described by a high-level language is referred to as model checking. One approach is
to encode the model checking question into a so-called parity game [140]. This is a
game that is played on a finite directed graph, such as the example shown in Figure 1.4.
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Every vertex of the graph is owned by either player even, which has a diamond shape
♢, or odd, which has a box shape □. Furthermore, every vertex is labelled by a number
that indicates their priority. The owner and priority of every vertex are determined by
the formula from which the parity game is derived.

2

u0

0

u2

1
u3

2

u4

Figure 1.4: An example parity game

Now that we have introduced the players and the arena on which the game is played
it is time to explain how the game is played. First of all, a token is placed on any of
the vertices of the graph. Next, the owner of the vertex can move the token along any
of their outgoing edges. During this so-called play we keep track of the sequence
of priorities visited by the token and this process essentially continues forever. The
winning condition is that the least priority occurring infinitely often has your parity, so
if it is even then player even wins and otherwise player odd wins. For parity games
it is known that the winning partition, i.e., the disjoint sets of vertices won by player
even and odd respectively, can be computed [140].

These parity games encode information about both the behaviour of the system
and the requirement that is being checked. Therefore, they also suffer from the same
kind of state space explosion as the underlying behaviour. This means that it makes
sense to study compact representations for the vertices and edges of the parity game
that also allow for efficient operations needed for computations. One data structure
that can be exponentially more compact than a naive representation to represent a set
of tuples is the multi-valued decision diagram [102]. In Figure 1.5 we show a number
of tuples and their compact representation using a multi-valued decision diagram.

Recently there has been an effort to extend the capabilities of our mCRL2 toolset
with techniques that utilise symbolic representations of the underlying parity games,
which is based on [89]. Since our toolset has had extensive development on the
explicit counterpart there were many techniques in the explicit setting that could be
applied onto the symbolic techniques. The question was which of these techniques
can also be adapted to symbolic representations, and one of these techniques was
on-the-fly solving of parity games. Similarly to how a labelled transition is derived
from a high-level description there is a process to derive a parity game from a syntactic
representation. The essential idea of on-the-fly solving is that during this exploration
process we can solve the parity game with incomplete information that has been
explored so far to eagerly try to find the winner for the vertex corresponding to the
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⟨2 “a” true⟩
⟨2 “b” true⟩
⟨2 “b” false⟩
⟨7 “a” true⟩
⟨7 “a” false⟩ 2

7

“a”

“b”

“a”

true

false

true

Figure 1.5: A multi-valued decision diagram (right) for the set of tuples on the left.

initial state. This is called eager since it might not yet be possible to determine the
winner for the initial vertex at this time.

RQ3 Can on-the-fly solving be applied effectively to symbolic parity games?

In Chapter 4 we present a notion of incomplete parity games to study the notion of
on-the-fly solving for parity games. We show a method to obtain two winning sets and
an undecided set for the incomplete parity games based on the notion of safe vertices.
Furthermore, we show that this method is optimal in the sense that the undecided
set is as small as possible w.r.t. the set of all possible extensions of the incomplete
parity game. Since parity game solvers have (worst-case) quasi-polynomial, and more
practical exponential, running times we have also studied several partial solvers with
polynomial running time. These partial solvers might only determine winners for
part of the game, but have better performance. For three partial solvers based on
solitaire cycles, winning cycles and fatal attractors we have introduced alternatives that
operate directly on the incomplete parity games without computing the safe vertices
as a preprocessing step. Finally, we have implemented our technique and performed
an experimental evaluation to show that this technique can also work well in practice.

1.4 Thread-safe Term Library
A term is a fundamental concept in mathematics and therefore an equally important
common data structure in computing. Many concepts are terms, such as programs,
specifications and formulas, see for example Figure 1.6. Many operations in computing
are transformations of these terms, one example being the compilation, i.e., the
transformation from a program into executable code. In computer science a term is
a far more commonly used concept than structures such as arrays, lists or matrices.

9
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This makes it remarkable that terms are not a standard data structure in all common
programming languages. Many tools therefore use some kind of internal data structure
to represent and operate on terms and our mCRL2 toolset is no exception.

These so-called first-order terms have a very simple structure that makes them
so versatile. First of all, there is a set of function symbols that are symbols which
can represent mathematical operations such as +, ∗ or any functions such as f or g.
Every function symbol has an associated arity. For example addition (+) must be
applied to two numbers, so its arity is two since its applied to two arguments. Next, we
can construct other terms by applying a function symbol to its appropriate amount of
terms. For example +(3,6) is a term provided that 3 and 6 are two constants, which
are function symbols with arity zero. For binary operations we typically write 3+6
for readability, but in general we prefer the notation f (3,6). As seen before 3+4∗2
is also a term.

+

3 ∗

4 2

Figure 1.6: The
tree representation
of the term 3+4∗
2.

When terms are used inside software there needs to be a
way to effectively create, inspect and manipulate terms inside
the program. For this purpose it makes sense to have a general
purpose term library, which is an implementation that has a
well-defined interface by which it can be invoked.

Therefore, we first introduce some of the desired features
that our term library should have. Since there can be many terms
in use during computation we employ so-called maximal sharing
to ensure that every term only occurs once in memory, i.e., in
the term f (g,g) there is only one instance of g no matter how
complex this term is. This also has the advantage that terms can
be easily compared, since two terms share the same address iff
they are the same. Furthermore, we also have to take care that terms can go out of
scope and must be cleaned up from memory again, which is called garbage collection
since unreachable terms are essentially garbage.

With a steadily increasing number of computational cores in computers, it is also
desirable to have a term library that can be used by multiple threads concurrently.
This would allow for example term rewriting, which is a fundamental operation of
the mCRL2 toolset, to also be applied in parallel since it creates many intermediate
terms during its computation. This would in turn mean that state space generation
can be parallelised, which would reduce the time it takes to perform model checking.
However, the maximal sharing of terms makes this quite non-trivial and previous
attempts have all failed at achieving desirable performance. Therefore, we propose the
following research question.

RQ4 Can a thread-safe term library to store and manipulate terms be developed

10



1.5 CONTRIBUTIONS

that achieves linear speedup compared to an efficient sequential implementation?

In Chapter 5 we present a formal specification of a thread-safe term library, i.e., a
term library that can be used by multiple threads in parallel. We identify the need for a
readers-writer lock implementation, i.e., multiple threads can share a resource or a
writer can obtain exclusive access, that is efficient for read heavy workloads. To this
end we develop a new busy-forbidden protocol that only writes one atomic variable
that is typically in the local cache and reads another that is rarely updated to obtain
read access. For this new protocol we develop a formal specification and model check
the corresponding implementation model with key properties for finite instances up to
seven threads. Furthermore, we also model check the specification of the complete
term library for several finite instances. Finally, we implement a prototype of this term
library in the mCRL2 toolset. Although a perfect linear speedup has not been achieved,
we can demonstrate that that the state space generation scales well for multiple threads,
achieving a 12 times speedup for 16 threads.

1.5 Contributions
The work presented in this dissertation has led to several publications. Chapter 2 is
based on a journal article published in LMCS [93]. The next chapter (Chapter 3) is
based on the journal version of [95] that is under submission at JLAMP. Chapter 4 is
based on a conference article presented at TACAS [94]. Finally, Chapter 5 is based
on a conference article that has been accepted for publication at ISoLA, and was also
fundamental to another publication [66]. In this last work my contribution has been
mostly the benchmarking and implementation of the prototype, but have also been
involved in discussions surrounding the formulas that have been verified. Additional
work that has been carried out, but does not appear in this dissertation, on non-linear
pattern matching automata is published at LMCS [45]. There, my contributions were
the definition and proofs for the so-called consistency automata that are used to deal
with the equality constraints. Finally, I have also been involved in the implementation
of an extension to the decomposition method described in Chapter 3. This extension
to our work has been accepted for publication at FACS.
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Chapter 2

Antichain Algorithms for
Refinement Checking

Refinement is often an integral part of a mature engineering methodology for designing
a (software) system in a stepwise manner. It allows one to start from a high-level
specification that describes the permitted and desired behaviours of a system and arrive
at a detailed implementation that behaves according to this specification. While in
many settings, refinement is often used rather informally, it forms the mathematical
cornerstone in the theoretical development of the process algebra CSP (Communicating
Sequential Processes) by Hoare [78, 121, 122].

This formal view on refinement—as a mathematical relation between a specifi-
cation and its implementation—has been used successfully in industrial settings [61,
52], and it has been incorporated in commercial Formal Model-Driven Engineering
tools such as Dezyne [8]. In such settings there are a variety of refinement relations,
each with their own properties. In particular, each notion of refinement offers specific
guarantees on the (types of) behavioural properties of the specification that carry over
to correct implementations. For instance, trace refinement [122] only preserves safety
properties. The—arguably—most prominent refinement relations for the theory of CSP
are the stable failures refinement [7, 122] and failures-divergences refinement [122].
All three refinement relations are implemented in the FDR [53, 54] tool for specifying
and analysing CSP processes.

Checking for trace refinement, stable failures refinement and failures-divergences
refinement are computationally hard problems; deciding whether there is a refinement
relation between an implementation and a specification, both represented by CSP
processes or labelled transition systems, is PSPACE-hard [87]. In practice, however,
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tools such as FDR are able to work with quite large state spaces. The basic algorithm
for deciding a trace refinement, stable failures refinement or a failures-divergences
refinement between implementation and specification relies on a normalisation of the
specification. This normalisation is achieved by a subset construction that is used to
obtain a deterministic transition system which represents the specification.

As observed in [137] and inspired by successes reported, e.g., in [1, 42, 139],
antichain techniques can be exploited to improve on the performance of refinement
checking algorithms. Unfortunately, a closer inspection of the results and algorithms
in [137] reveals several issues. First, the definitions of stable failures refinement and
failures-divergences refinement used in [137] do not match the definitions of [7, 122],
nor do they seem to match known relations from the literature [55].

Second, as we demonstrate in Example 2.3.3 in this chapter, the results [137,
Theorems 2 and 3] claiming correctness of their algorithms for deciding both non-
standard refinement relations are incorrect. We do note that their algorithm for
checking trace refinement is correct, and their algorithm for checking stable failures
refinement correctly decides the refinement relation defined by [7, 122].

Third, unlike claimed by the authors, the algorithms of [137] violate the antichain
property as we demonstrate in Example 2.3.5. Fourth, their algorithms suffer from
severely degraded performance due to sub-optimal decisions made when designing
the algorithms, leading to an overhead of a factor |Act| · |S|, where Act is the set of
actions and S the set of states of the implementation, as we show in Example 2.3.4.
This factor is even greater, viz. |Act||S|, when using a FIFO (first in, first out) queue
to realise a breadth-first search strategy instead of the stack used for the depth-first
search. Note that there are compelling reasons for using a breadth-first strategy [121];
e.g., the conciseness of counterexamples to refinement.

Our contributions are the following. Apart from pointing out the issues in [137],
we propose new antichain-based algorithms for deciding trace refinement, stable fail-
ures refinement and failures-divergences refinement and we prove their correctness.
We compare the performance of the trace refinement algorithm and the stable fail-
ures refinement algorithm of [137] to ours. Due to the flaw in their algorithm for
deciding failures-divergences refinement, a comparison of this refinement relation
makes little sense. Our results indicate a small improvement in run time performance
for practical models when using depth-first search, whereas our experiments using
breadth-first search illustrate that decision problems, intractable using the algorithm
of [137], generally become quite easy using our algorithm. Finally, we show that
divergence-preserving branching bisimulation [60, 56] minimisation preserves the
desired refinement checking relations and that applying this minimisation as a prepro-
cessing step can yield significant run time improvements.
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Outline In Section 2.1 the preliminaries of labelled transition systems and the
refinement relations are defined. In Section 2.2 a general procedure for checking
refinement relations is described. In Section 2.3 the antichain-based algorithms
of [137] are presented and their issues are described in detail. In Section 2.4 the
improved antichain algorithms are presented and their correctness is shown. Finally, in
Section 2.5 an experimental evaluation is conducted to show the effectiveness of these
changes in practice, followed by the evaluation of applying divergence-preserving
branching bisimulation minimisation as a preprocessing step.

2.1 Preliminaries
In this section the preliminaries of labelled transition systems and the considered
refinement relations are introduced. We follow the standard conventions, notation and
definitions of [19, 122, 59].

2.1.1 Labelled Transition Systems

Let Act be a finite set of actions that does not contain the constant τ , which models
internal actions, and let Actτ be equal to Act∪{τ}.

Definition 2.1.1. A labelled transition system L is a tuple (S, ι ,→) where S is a set
of states; ι ∈ S is an initial state and→⊆ S×Actτ ×S is a labelled transition relation.

We depict labelled transition systems as edge-labelled directed graphs, where vertices
represent states and the labelled edges between vertices represent the transitions. An
incoming arrow with no starting state and no action indicates the initial state. We use
the initial state to refer to a depicted LTS.

For the remainder of this section, we assume that L = (S, ι ,→) is an arbitrary
LTS. We adopt the following conventions and notation. Typically, we use symbols
s, t,u to denote states, U,V to denote sets of states and a to denote actions. A transition
(s,a, t) ∈→ is also written as s a−→ t. The set of enabled actions of state s is defined as
enabled(s) = {a ∈ Actτ | ∃t ∈ S : s a−→ t}.

A sequence is denoted by concatenation, i.e., a0 a1 · · · an−1 where ai ∈ Actτ for all
0≤ i < n is a sequence of actions and Actτ ∗ indicates the set of all finite sequences of
actions. We use σ and ρ to denote a sequence of actions, where ρ typically does not
contain τ . The length of a sequence, denoted as |a0 a1 · · · an−1|, is equal to n. Finally,
we say that any sequence a0 a1 · · · ak such that k ≤ n− 1 is a prefix of a sequence
a0 a1 · · · an−1. A prefix is strict whenever its length is strictly smaller than that of the
sequence itself.
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2 ANTICHAIN ALGORITHMS FOR REFINEMENT CHECKING

The transition relation of an LTS is generalised to sequences of actions as follows:
s ε−→→ t holds iff s = t, and s σ a−→→ t holds iff there is a state u such that s σ−→→ u and u a−→ t.
The weak transition relation =⇒⊆ S×Act∗×S is the smallest relation satisfying:

• s ε
=⇒ s, and

• s ε
=⇒ t if s τ−→ t, and

• s a
=⇒ t if s a−→ t for a ∈ Act, and

• s
ρ σ
=⇒ t if there is a state u such that s

ρ
=⇒ u and u σ

=⇒ t.

Definition 2.1.2. Traces, weak traces and reachable states are defined as follows:
• The traces starting in state s are defined as traces(s) = {σ ∈ Actτ ∗ | ∃t ∈ S :

s σ−→→ t}. We define traces(L ) to be traces(ι).
• The weak traces starting in state s are defined as weaktraces(s)= {ρ ∈Act∗ | ∃t ∈

S : s
ρ

=⇒ t}. We define weaktraces(L ) to be weaktraces(ι).
• the set of states, reachable from s is defined as reachable(s) = {t ∈ S | ∃σ ∈

Actτ ∗ : s σ−→→ t}. We define reachable(L ) to be reachable(ι).

Definition 2.1.3. Labelled transition system L is:
• deterministic if and only if for all states s, t,u and actions a ∈ Actτ if there are

transitions s a−→ t and s a−→ u then t = u.
• concrete if it does not contain transitions labelled with τ , i.e., for all states s it

holds that τ /∈ enabled(s).
• universal if and only if for all states s it holds that enabled(s) = Act.

Lemma 2.1.4. Let L be a deterministic LTS. For all sequences σ ∈ Actτ ∗ and states
s, t,u, if s σ−→→ t and s σ−→→ u then t = u.

The models underlying the CSP process algebra [78, 122] build on observations of
weak traces, failures and divergences. A weak trace observation records the visible
actions that occur when performing an experiment on the system. A failure is a
combination of a set of actions that a system observably refuses and a weak trace
experiment on the system that leads to the observation of the refusals. A refusal
can only be observed when the system has stabilised, meaning that it can no longer
perform internal behaviour. A divergence can be understood as the potential inability
of the system to stabilise, which can happen when the system engages in an infinite
sequence of τ-actions after performing an experiment on the system.

Definition 2.1.5 (Refusals). A state s is stable, denoted by stable(s), if and only
if τ /∈ enabled(s). For a stable state s, the refusals of s are defined as refusals(s) =
P(Act\enabled(s)). For a set of states U ⊆ S its refusals are defined as refusals(U) =
{X ⊆ Act | ∃s ∈U : stable(s)∧X ∈ refusals(s)}.
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Formally, a state s is diverging, denoted by the predicate s⇑, if and only if there is
an infinite sequence of states s τ−→ s1

τ−→ s2
τ−→ ·· · . For a set of states U , we write U⇑,

iff s⇑ for some state s ∈U .

Definition 2.1.6 (Divergences). The divergences of a state s are defined as the function
divergences(s) = {ρ σ ∈ Act∗ | ∃t ∈ S : (s

ρ
=⇒ t∧ t⇑)}. We define divergences(L ) =

divergences(ι).

Observe that a divergence is any weak trace that has a prefix ρ which can reach
a diverging state. This is based on the assumption that divergences lead to chaos. In
theories such as CSP, in which divergences are considered chaotic, chaos obscures
all information about the behaviours involving a diverging state; we refer to this as
obscuring post-divergences details.

Definition 2.1.7 (Stable failures). The set of all stable failures of a state s is de-
fined as failures(s) = {(ρ,X) ∈ Act∗×P(Act) | ∃t ∈ S : (s

ρ
=⇒ t ∧ stable(t)∧X ∈

refusals(t))}. The set of failures with post-divergences details obscured is defined as
failures⊥(s) = failures(s)∪{(ρ,X) ∈ Act∗×P(Act) | ρ ∈ divergences(s)}.

We illustrate these concepts by means of an example.

Example 2.1.8. Consider the LTSs s0 and u0 depicted below.

s0 s1

s2s3

s5

REQ

τ

τ

20

10
10

u0 u1 u2
REQ 20

τ

τ

We observe that states s0,s2,s3,s5 and u0 are stable. For each of these states we
can determine their refusals, e.g., state s0 has the refusals { /0,{10},{20},{10,20}}
as given by refusals(s0). Furthermore, we observe that REQ 20 is a weak trace of
s0 to itself. Consequently, it follows that for example the pairs (REQ 20,{10}) and
(REQ 20,{10,20}) are failures of s0. None of the states in s0 diverge and as such
the corresponding set of divergences are empty and both notions of failures coincide.
However, for state u1 we can see that u1⇑ holds and therefore REQ, but also REQ 10
is a possible divergence of u0, i.e., REQ 10 ∈ divergences(u0). This also means that
(REQ 10,{10})∈ failures⊥(u0) is a failure of u0 with post-divergences details obscured.
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The three models of CSP building on the different powers of observation are the
weak trace model, the stable failures model and the failures-divergences model. The
refinement relations, induced by these models, are called trace refinement, stable
failures refinement and failures-divergences refinement respectively.

Definition 2.1.9 (Refinement). Let L1 and L2 be two LTSs.
• L1 is refined by L2 in trace semantics, denoted by L1 ⊑tr L2, if and only if
weaktraces(L2)⊆ weaktraces(L1).

• L1 is refined by L2 in stable failures semantics, denoted by L1 ⊑sfr L2, if and
only if failures(L2)⊆ failures(L1) and weaktraces(L2)⊆ weaktraces(L1).

• L1 is refined by L2 in failures-divergences semantics, denoted by L1 ⊑fdr

L2, if and only if both failures⊥(L2)⊆ failures⊥(L1) and divergences(L2)⊆
divergences(L1).

The LTS that is typically refined is referred to as the specification, whereas the
LTS that refines the specification is referred to as the implementation.

Remark 2.1.10. We observe that each refinement relation between LTSs is inverted
with respect to the subset relation in its corresponding definition. However, in the
setting of CSP where these refinement relations are fundamental and have been exten-
sively studied [19, 122, 59], refinement is viewed as an ordering between processes
where the process that does not restrict anything, e.g., the process with all failures, is
seen as the smallest, least restrictive specification.

Remark 2.1.11. The notions defined above appear in different formulations in [137].
Their definition of stable failures refinement omits the clause for weak trace inclusion,
and their definition of failures-divergences refinement replaces failures⊥ with failures.
This yields refinement relations different from the standard ones and neither relation
seems to appear in the literature [55].

We conclude with a small example, illustrating the uses of, and differences between
the various refinement relations.

Example 2.1.12. Consider the LTSs s0 and u0 of Example 2.1.8 again and the LTS
t0 depicted in between. We now consider s0 to be the specification of a simplified
automated teller machine.

s0 s1

s2s3

s5

REQ

τ

τ

20

10
10

t0 t1 t2
REQ 20 u0 u1 u2

REQ 20

τ

τ
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In the specification s0 the user can first request, by action REQ, an amount of twenty
from the machine. The machine can then satisfy this request by either choosing to give
twenty directly or by presenting two times ten to the user, which might vary depending
on availability within the machine. Note that the distinction between user-initiated and
response actions is only for the sake of the explanation and is not formally present in
the LTS.

An implementation of this specification is valid if and only if it refines the specifi-
cation in the required refinement semantics. Let us consider t0 as a first implementation
of this machine. The weak traces of t0, consisting of the set {ε,REQ,REQ 20}, are
included in the specification and therefore s0 ⊑tr t0. Trace refinement is suitable for
safety properties; for example the absence of infinite sequences of 10 or 20 actions
without matching requests can be specified in such semantics. However, trace refine-
ment does not preserve liveness properties. In particular, deadlocks are not preserved
by trace refinement. In contrast, stable failures refinement does preserve deadlock
freedom. For instance, the observation of the failure (REQ 20,{REQ,20,10}) of t0
leads to the deadlocked state t2, i.e., a state with no outgoing transitions. This failure
is not among the failures that can be observed of state s0. Consequently, s0 ̸⊑sfr t0.

The second implementation that we consider is u0. The self-loop above state
u1 might indicate that the machine uses (repeated) polling via a potentially unsta-
ble connection to determine whether the user’s bank account permits the requested
withdrawal. Note that u1 is not a stable state; all failures are thus of the shape
(REQ 20 REQ 20 . . . ,{10,20}) and these are permitted observations for the given speci-
fication s0. Therefore, this implementation is a valid stable failures refinement of the
given specification, i.e., s0 ⊑sfr u0. The divergences REQ ρ for sequences ρ ∈ Act∗

cause this implementation not to be valid under failures-divergences refinement, i.e.,
s0 ̸⊑fdr u0. From the perspective of the user, it is indeed questionable whether u0
constitutes a proper implementation, as she may perceive a divergence of the system
as a deadlock.

Note that stable failures refinement is a stronger relation than trace refinement; i.e.,
whenever ⊑sfr holds then also necessarily ⊑tr holds. This does not hold the other way
around as already shown in Example 2.1.12 where s0 ⊑tr t0 and s0 ̸⊑sfr t0. Further-
more, ⊑fdr is incomparable to ⊑tr. In the preceding example, we have u0 ⊑fdr s0, but
u0 ̸⊑tr s0 because REQ 10∈weaktraces(s0) and REQ 10 ̸∈weaktraces(u0). But we also
have s0 ⊑tr t0 and s0 ̸⊑fdr t0, where the latter fails because (REQ 20,{REQ,20,10}) ∈
failures⊥(t0), but (REQ 20,{REQ,20,10}) /∈ failures⊥(s0). Similarly, ⊑fdr is incompa-
rable to⊑sfr. For instance, we have s0⊑sfr u0 and s0 ̸⊑fdr u0 in Example 2.1.12, but also
u0⊑fdr s0 and u0 ̸⊑sfr s0, where for the latter we observe that (REQ,{10})∈ failures(s0)
but (REQ,{10}) /∈ failures(u0).
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2.2 Refinement Checking

In general, the set of weak traces, failures and divergences of an LTS can be infinite.
Therefore, checking inclusion of these sets directly is not always viable. In [121, 122],
an algorithm to decide refinement between two labelled transition systems is sketched.
As a preprocessing step to this algorithm, all diverging states in both LTSs are marked.
The algorithm then relies on exploring the product of a normal form representation of
the specification, i.e., the LTS that is to be refined, and the implementation.

For each state in this product it checks whether it can locally decide non-refinement
of the implementation state with the normal form state. A state for which non-
refinement holds is referred to as a witness. Following [122, 137] and specifically the
terminology of [121], we formalise the product between LTSs that is explored by the
procedure.

Definition 2.2.1 (Product). Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs.
The product of L1 and L2, denoted by L1 ⋉L2, is an LTS (S, ι ,→) such that
S = S1×S2 and ι = (ι1, ι2). The transition relation→ is the smallest relation such
that for all s1, t1 ∈ S1, and s2, t2 ∈ S2 and a ∈ Act:

• If s2
τ−→2 t2 then (s1,s2)

τ−→ (s1, t2).
• If s1

a−→1 t1 and s2
a−→2 t2 then (s1,s2)

a−→ (t1, t2).

The proposition below relates the behaviours of two LTSs to the behaviours of
their product.

Proposition 2.2.2. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs and let
L1 ⋉L2 = (S, ι ,→). For all states (s1, t1),(s2, t2) ∈ S and all sequences ρ ∈ Act∗ it
holds that (s1,s2)

ρ
=⇒ (t1, t2) if and only if s1

ρ−→→1 t1 and s2
ρ

=⇒2 t2.

Proof. First, we can show that the statement holds for the empty sequence by induction
on the length of sequences in τ∗. Using this we can prove the statement for all
sequences in Act∗ by induction on their length using the previous result in the base
case.

The normal form LTS of a given LTS is obtained using a typical subset construc-
tion as is common when determinising a transition system. A difference between
determinisation and normalisation is that the former yields a transition system that
preserves and reflects the set of weak traces of the given LTS. This is not the case
for the latter, which may add weak traces not present in the original LTS. We first
introduce the normal form LTS of a given LTS that is adequate for reducing the trace
refinement and stable failures decision problems to a reachability problem.
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Definition 2.2.3 (Normal form). Let L = (S, ι ,→) be an LTS. The normal form of
L is the LTS norm(L ) = (S′, ι ′,→′), where S′ = P(S), ι ′ = {s ∈ S | ι ε

=⇒ s} and
→′ is defined as U a−→

′
V if and only if V = {t ∈ S | ∃s ∈U : s a

=⇒ t} for all sets of
states U,V ⊆ S and actions a ∈ Act.

Notice that /0 is a state in a normal form LTS. Furthermore, the normal form LTS
is deterministic, concrete and universal.

Since a normal form LTS is concrete, all of its states are stable. The states of the
original LTS comprising a normal form state may not be stable, however. When we
need to reason about the stability and refusals of the set of states U in the LTS L
underlying a normal form LTS, rather than the state U of the normal form LTS, we
therefore write [[U ]]L whenever we wish to stress that we refer to the set of states in
L that comprise U .

The three lemmas stated below relate the set of weak traces of an LTS L to the
set of traces of norm(L ).

Lemma 2.2.4. Let L = (S, ι ,→) be an LTS and let norm(L ) = (S′, ι ′,→′). For all
sequences ρ ∈ Act∗ and states U ∈ S′ such that ι ′

ρ−→→′ U , it holds that ι
ρ

=⇒ s for all
s ∈ [[U ]]L .

Proof. Can be found in Appendix A.1.

Lemma 2.2.5. Let L = (S, ι ,→) be an LTS and let norm(L ) = (S′, ι ′,→′). For all
sequences ρ ∈ Act∗ and for all states s ∈ S such that ι

ρ
=⇒ s, there is a state U ∈ S′

such that s ∈ [[U ]]L and ι ′
ρ−→→′ U .

Proof. Can be found in Appendix A.2.

The lemma below clarifies the role of the state /0 in norm(L ).

Lemma 2.2.6. Let L = (S, ι ,→) be an LTS and let norm(L ) = (S′, ι ′,→′). For all
sequences ρ ∈ Act∗ it holds that ρ /∈ weaktraces(L ) if and only if ι ′

ρ−→→′ /0.

Proof. Can be found in Appendix A.3.

The structure explored by the refinement checking procedure of [121, 122] for two
LTSs L1 and L2 is the product norm(L1)⋉L2 in case of trace refinement and stable
failures refinement. For these structures the related witnesses, where the reachability
of such a witness indicates non-refinement, are then as follows:

Definition 2.2.7 (Witness). Let L1 and L2 be LTSs. A state pair (U,s) of product
norm(L1)⋉L2:
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• is called a TR-witness if and only if U = /0.
• is called an SF-witness if and only if at least one of the following conditions

hold:
– U = /0.
– stable(s) and refusals(s) ̸⊆ refusals([[U ]]L1).

We illustrate the notion of a witness, and in particular the relation between the
reachability of a witness and the (violation of) the corresponding refinement relation
by means of a small example.

Example 2.2.8. Consider the specification s0 and the two implementations t0 and u0
as presented in Example 2.1.12 again. In the figure below the (reachable part of the)
normal form LTS of s0 is depicted on the left, the product norm(s0)⋉ t0 is shown in
the middle and the product norm(s0)⋉u0 is shown on the right.

{s0}

{s3}

{s1,s2,s5}/0

REQ

10

20

10

10,20 REQ

20,REQ

10,20,REQ

({s0}, t0)

({s1,s2,s5}, t1)

({s0}, t2)

REQ

20

({s0},u0) ({s1,s2,s5},u1)

({s0},u2)

REQ

20

τ

τ

We observe that both norm(s0)⋉ t0 and norm(s0)⋉u0 contain no TR-witnesses.
In Example 2.1.12 we had already established that both s0 ⊑tr t0 and s0 ⊑tr u0. For
the product norm(s0)⋉ t0, the state ({s0}, t2) is reachable and an SF-witness since
stable(t2) and {10,20,REQ} ∈ refusals(t2) but {10,20,REQ} /∈ refusals({s0}). In-
tuitively, the product encodes that REQ 20 is a weak trace in both LTSs norm(s0)
and t2 that reaches {s0} and t2 respectively. Similarly, the normal form relates this
weak trace to the reachability of s0 from s0. Therefore, this witness indicates that
(REQ 20,{10,20,REQ}) is a failure of t0, but not a failure of s0, which establishes a
violation of stable failures refinement. Finally, we can observe that norm(s0)⋉ u0
contains no SF-witnesses.

The following lemmas formalise that trace refinement can be decided by checking
reachability of a TR-witness in the product norm(L1)⋉L2. Note that this result,
and the related result for stable failures refinement, was already established in the
literature; for instance, the relation between an SF-witness and the corresponding
refinement relation can be found in [121]. However, the definitions in that paper are
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not explicit and the proof of this correspondence is only sketched. Therefore, we here
provide detailed proofs of these results.

Lemma 2.2.9. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. If L1 ⊑tr

L2 holds then no TR-witness is reachable in norm(L1)⋉L2.

Proof. Suppose that L1 ⊑tr L2 holds. Therefore, it follows that weaktraces(L2)⊆
weaktraces(L1). Now assume that there is a reachable TR-witness ( /0,s) in norm(L1)⋉
L2. We show that this leads to a contradiction. As the pair ( /0,s) is reachable there is a
weak trace ρ ∈Act∗ such that ι

ρ
=⇒ ( /0,s) where ι is the initial state of norm(L1)⋉L2.

From Proposition 2.2.2 it follows that ι2
ρ

=⇒2 s and /0 is reachable by following ρ

in norm(L1). Therefore, ρ ∈ weaktraces(L2) and from Lemma 2.2.6 it follows
that ρ /∈ weaktraces(L1). This contradicts our assumption that weaktraces(L2) ⊆
weaktraces(L1). Hence, no TR-witness is reachable in norm(L1)⋉L2.

Lemma 2.2.10. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. If no
TR-witness is reachable in norm(L1)⋉L2 then L1 ⊑tr L2.

Proof. Suppose that no TR-witness is reachable in norm(L1)⋉L2. Again, we prove
this by contradiction. Assume that L1 ̸⊑tr L2 holds. This means that weaktraces(L2) ̸⊆
weaktraces(L1). Pick a weak trace ρ ∈weaktraces(L2) such that ρ /∈weaktraces(L1).
Then there is a state s ∈ S2 for which ι2

ρ
=⇒2 s. By Lemma 2.2.6 it holds that ρ leads

to the empty set in norm(L1). By Proposition 2.2.2 the pair ( /0,s) is then a reachable
TR-witness in norm(L1)⋉L2. Contradiction.

Theorem 2.2.11. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. Then
L1 ⊑tr L2 holds if and only if no TR-witness is reachable in norm(L1)⋉L2.

Proof. This follows directly from Lemmas 2.2.9 and 2.2.10.

Next, we formalise the relation between stable failures refinement and the reachabil-
ity of an SF-witness. In the proofs for the next two lemmas, we exploit Theorem 2.2.11
and the fact that stable failures refinement is stronger than trace refinement.

Lemma 2.2.12. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. If L1 ⊑sfr

L2 holds then no SF-witness is reachable in norm(L1)⋉L2.

Proof. Suppose that L1 ⊑sfr L2 holds. Therefore, both failures(L2)⊆ failures(L1)
and weaktraces(L2) ⊆ weaktraces(L1). Now assume that there is a reachable SF-
witness (U,s) in norm(L1)⋉L2. We show that this leads to a contradiction. For
(U,s) to be an SF-witness it holds that U = /0 or both stable(s) and refusals(s) ̸⊆
refusals([[U ]]L1). However, since weaktraces(L2)⊆ weaktraces(L1) it follows that
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L1 ⊑tr L2 and, hence, by Theorem 2.2.11, no TR-witness is reachable in norm(L1)⋉
L2. Consequently, U ̸= /0, and therefore it must be that stable(s) and refusals(s) ̸⊆
refusals([[U ]]L1) hold.

As the pair (U,s) is reachable there is a weak trace ρ ∈ Act∗ such that ι
ρ

=⇒ (U,s)
where ι is the initial state of norm(L1)⋉L2. From Proposition 2.2.2 it follows that
ι2

ρ
=⇒2 s and U is reachable by following ρ in norm(L1). Since stable(s) and ι2

ρ
=⇒2

s, it follows that there must be a failure (ρ,X)∈ failures(L2) where s can stably refuse
X ∈ refusals(s), but X /∈ refusals([[U ]]L1). Let (ρ,X) be such. By Lemmas 2.1.4

and 2.2.5 it follows for all states t ∈ S1 where ι1
ρ

=⇒1 t that t ∈ [[U ]]L1 . For each
stable t it holds that X /∈ refusals(t), because X /∈ refusals([[U ]]L1). Therefore, we
conclude that (ρ,X) /∈ failures(L1), which contradicts failures(L2) ⊆ failures(L1).
We conclude that the state (U,s) cannot be an SF-witness.

Lemma 2.2.13. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. If no
SF-witness is reachable in norm(L1)⋉L2 then L1 ⊑sfr L2 holds.

Proof. Suppose that no SF-witness is reachable in norm(L1)⋉L2. Towards a con-
tradiction, assume that L1 ̸⊑sfr L2. By definition of the stable failures refinement this
means that failures(L2) ̸⊆ failures(L1) or weaktraces(L2) ̸⊆ weaktraces(L1). If
weaktraces(L2) ̸⊆weaktraces(L1) then L1 ̸⊑tr L2 and so, by Theorem 2.2.11, there
must be a reachable TR-witness ( /0,s), and, therefore, also a reachable SF-witness.
Contradiction.

Therefore, failures(L2) ̸⊆ failures(L1) and weaktraces(L2) ⊆ weaktraces(L1).
Pick a failure (ρ,X) ∈ failures(L2) such that (ρ,X) /∈ failures(L1). Since it holds
that (ρ,X) ∈ failures(L2), there is a stable state s ∈ S2 such that ι2

ρ
=⇒2 s and X ∈

refusals(s). Since (ρ,X) ∈ failures(L2), also ρ ∈ weaktraces(L2), and therefore
also ρ ∈ weaktraces(L1). By Lemmas 2.1.4 and 2.2.5 weak trace ρ leads to a
unique state U in norm(L1) such that for all states t ∈ S1 with ι1

ρ
=⇒1 t it holds

that t ∈ [[U ]]L1 . For each stable t it holds that X /∈ refusals(t), because (ρ,X) /∈
failures(L1). Therefore, by Lemma 2.2.4 it follows that X /∈ refusals([[U ]]L1). Hence,
refusals(s) ̸⊆ refusals([[U ]]L1). By Proposition 2.2.2 the pair (U,s) is reachable and it
is an SF-witness by definition. Contradiction.

Theorem 2.2.14. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. Then
L1 ⊑sfr L2 holds if and only if no SF-witness is reachable in norm(L1)⋉L2.

Proof. This follows directly from Lemmas 2.2.12 and 2.2.13.

One may be inclined to believe that the normal form LTS can also be used to
reduce the failures-divergences refinement decision problem to a reachability problem.
This is, however, not the case as the following example illustrates.
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Example 2.2.15. Reconsider the LTSs t0 and u0 of Example 2.1.12. Note that t0 is a
correct failures-divergences refinement of u0, i.e., u0 ⊑fdr t0. The divergences REQ ρ ,
for ρ ∈ Act∗, of u0 result in specification u0 permitting all these sequences.

{u0} {u1} {u0,u2}

/0

REQ

20

REQ

10,20

10,REQ

10,20

10,20,REQ

({u0}, t0) ({u1}, t1)

({u0,u2}, t2)

REQ

20

Consider the normal form norm(u0) shown above on the left. The pair ({u0,u2}, t2)
in the product norm(u0)⋉ t0 shown on the right, is thus problematic for the analysis
of failures-divergence refinement, as the reachability of this pair might incorrectly
indicate a violation of u0 ⊑fdr t0. In turn, this suggests that in the reachability analysis
of the product, states beyond those reached via a trace constituting a divergence should
not be considered candidate witnesses.

Our solution is to modify the construction of the normal form LTS for failures-
divergences refinement as follows.

Definition 2.2.16 (Failures-divergences normal form). Let L = (S, ι ,→) be an LTS.
The failures-divergences normal form of L is the LTS normfdr(L ) = (S′, ι ′,→′),
where S′ = P(S), ι ′ = {s ∈ S | ι ε

=⇒ s} and→′ is defined as U a−→
′
V if and only if

¬(∃s ∈U : s⇑) and V = {t ∈ S | ∃s ∈U : s a
=⇒ t} for all sets of states U,V ⊆ S and

actions a ∈ Act.

Notice that normfdr(L ) yields a subgraph of norm(L ). As a result, several
properties that we established for norm carry over to normfdr. For instance, normfdr

yields LTSs that are deterministic and concrete. However, contrary to LTSs obtained
via norm, LTSs obtained via normfdr are not guaranteed to be universal. In particular,
a weak trace ρ ∈ weaktraces(L ) is not guaranteed to be preserved in normfdr(L ) if
it is a divergence. Consequently, Lemma 2.2.6, which is essential for Theorems 2.2.11
and 2.2.14, no longer holds in its full generality. We show, however, that for failures-
divergence refinement a slightly different relation between an LTS and its normal form
is sufficient for establishing a theorem that is similar in spirit to the aforementioned
theorems.

Lemma 2.2.17. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈ Act∗ and states U ∈ S′ such that ι ′

ρ−→→′ U it holds that ι
ρ

=⇒ s for all
s ∈ [[U ]]L .
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Proof. Along the same lines as the proof of Lemma 2.2.4.

We mentioned that divergences are not necessarily preserved (as traces) by the
normalisation. In fact, we can be more specific: only minimal divergences are pre-
served in the normal form LTS. The minimal divergences of a state s ∈ S, denoted by
divergencesmin(s), is the largest subset of divergences(s) containing all divergencesa
ρ ∈ divergences(s) for which there is no strict prefix of ρ in divergences(s). For an
LTS L = (S, ι ,→) we define divergencesmin(L ) to be divergencesmin(ι).

Lemma 2.2.18. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈Act∗ such that either ρ /∈ divergences(L ) or ρ ∈ divergencesmin(L )

and for all states s ∈ S such that ι
ρ

=⇒ s there is a state U ∈ S′ such that s ∈ [[U ]]L and
ι ′

ρ−→→′ U .

Proof. Can be found in Appendix A.4.

Lemma 2.2.19. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈ Act∗ and states U ∈ S′ it holds that if ι ′

ρ−→→′ U and not [[U ]]L ⇑ then
ρ /∈ divergences(L ).

Proof. Can be found in Appendix A.5.

Lemma 2.2.20. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈ Act∗ it holds that ρ /∈ (divergences(L )∪weaktraces(L )) if and
only if ι ′

ρ−→→′ /0.

Proof. Can be found in Appendix A.6.

For failures-divergences refinement the state space of normfdr(L1)⋉L2 is ex-
plored for a witness, where reachability of such a witness also indicates non-refinement.
This witness is defined as follows:

Definition 2.2.21 (Failures-divergences witness). Let L1 and L2 be two LTSs. A
state (U,s) of the product normfdr(L1)⋉L2 is called an FD-witness if and only if
[[U ]]L1

⇑ does not hold and at least one of the following conditions hold:
• U = /0.
• stable(s) and refusals(s) ̸⊆ refusals([[U ]]L1).
• s⇑.

We next formalise the correspondence between failures-divergences refinement
and the reachability of an FDR-witness. In the proof of the following theorem we
cannot easily use Theorem 2.2.11 because ⊑fdr is incomparable with both ⊑tr and
⊑sfr.
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Lemma 2.2.22. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. If L1 ⊑fdr

L2 holds then no FD-witness is reachable in normfdr(L1)⋉L2.

Proof. Assume that L1 ⊑fdr L2. We then have that failures⊥(L2) ⊆ failures⊥(L1)
and divergences(L2) ⊆ divergences(L1). Towards a contradiction, assume there
is an FD-witness (U,s) in reachable(normfdr(L1)⋉L2). Let ι be the initial state
of normfdr(L1)⋉L2, and let ρ ∈ weaktraces(ι) be such that ι

ρ
=⇒ (U,s). From

the assumption that (U,s) is an FD-witness it follows that not [[U ]]L1
⇑ and from

Lemma 2.2.19 it follows that ρ /∈ divergences(L1). By Proposition 2.2.2 it holds that
ι2

ρ
=⇒2 s and U is reachable by following ρ in normfdr(L1). Moreover, for (U,s) to

be an FD-witness, at least one of the following must also hold: U = /0, stable(s) and
refusals(s) ̸⊆ refusals([[U ]]L1), or s⇑. We therefore distinguish these three cases:

• Case U = /0. We can assume that s⇑ does not hold, as this is handled by
another case. Then it follows that there is a state t ∈ S2 such that ι2

ρ
=⇒2

s ε
=⇒2 t and stable(t). Let t be such. Consequently, (ρ,X) ∈ failures⊥(L2)

for some X ∈ refusals(t). By Lemma 2.2.20 it holds that the weak trace ρ

reaching the empty set in normfdr(L1) is not a weak trace of L1. Together
with ρ /∈ divergences(L1) it follows, for all possible refusal sets Y ⊆ Act, that
(ρ,Y ) /∈ failures⊥(L1), and so, in particular, (ρ,X) ∈ failures⊥(L1) which
contradicts our assumption that failures⊥(L2)⊆ failures⊥(L1).

• Case stable(s) and refusals(s) ̸⊆ refusals([[U ]]L1). From stable(s) and the
reachability of state s it follows that failures⊥(L2) is not empty. Pick a
failure (ρ,X) ∈ failures⊥(L2) where s can stably refuse X ∈ refusals(s), but
X /∈ refusals([[U ]]L1). By Lemmas 2.1.4 and 2.2.18 it follows for all states

t ∈ S1 where ι1
ρ

=⇒1 t that t ∈ [[U ]]L1 . For each stable t it holds that X /∈
refusals(t), because X /∈ refusals([[U ]]L1). Due to the previous case, we may
assume that U ̸= /0. Then from ρ /∈ divergences(L1) and U ̸= /0 it follows that
(ρ,X) /∈ failures⊥(L1), which leads to a contradiction with the assumption that
failures⊥(L2)⊆ failures⊥(L1).

• Case s⇑. Since ι2
ρ

=⇒2 s and s⇑, also ρ ∈ divergences(L2). However, by
ρ /∈ divergences(L1) this contradicts the assumption that divergences(L2)⊆
divergences(L1).

Lemma 2.2.23. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. If no
FD-witness is reachable in normfdr(L1)⋉L2 then L1 ⊑fdr L2 holds.

Proof. Assume that no FD-witness is reachable in normfdr(L1)⋉L2. Again, we
prove this by contradiction. Assume that L1 ̸⊑fdr L2. By definition of failures-
divergences refinement this means that failures⊥(L2) ̸⊆ failures⊥(L1) or it might be
that divergences(L2) ̸⊆ divergences(L1). Hence, there are two cases to consider:
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• Case divergences(L2) ̸⊆ divergences(L1). Pick a diverging weak trace ρ ∈
divergences(L2) such that ρ /∈ divergences(L1). In this case there is a prefix
of ρ , which we call σ , that leads to a diverging state s ∈ S2 such that ι2

σ
=⇒2 s.

However, by the assumption that ρ /∈ divergences(L1) we know that all states
t ∈ S1 reached by following σ are not diverging. By Lemma 2.2.17 we know
that all t ∈U can be reached by following σ . Therefore state pair (U,s) is an
FD-witness, because s⇑ but not [[U ]]L1

⇑. Contradiction.
• Case failures⊥(L2) ̸⊆ failures⊥(L1). By the previous case, we may, moreover,

assume that divergences(L2) ⊆ divergences(L1). Pick any failure (ρ,X) ∈
failures⊥(L2) such that (ρ,X) /∈ failures⊥(L1). Observe that weak trace ρ /∈
divergences(L1) (and as such ρ /∈ divergences(L2)) as otherwise no such
(ρ,X) exists by definition of failures⊥(L1). Since (ρ,X)∈ failures⊥(L2), there
is a stable state s ∈ S2 such that ι2

ρ
=⇒2 s and X ∈ refusals(s). We distinguish

whether weak trace ρ is among the weak traces of L1 or not:

– Case ρ /∈ weaktraces(L1). By Lemma 2.2.20 this means that ρ is a trace
leading to the empty set in normfdr(L1). By Proposition 2.2.2, a pair ( /0,s)
is then reachable in normfdr(L1)⋉L2. But then that pair is a reachable
FD-witness. Contradiction.

– Case ρ ∈weaktraces(L1). Recall that (ρ,X) /∈ failures⊥(L1) by assump-
tion. By Lemmas 2.1.4 and 2.2.18 there is a unique state V of normfdr(L1)

reachable via weak trace ρ such that for all t ∈ S1 where ι1
ρ

=⇒1 t, it
holds that t ∈ [[V ]]L1 . For each stable state t it holds that X /∈ refusals(t),
because (ρ,X) ∈ failures⊥(L1). Therefore, by Lemma 2.2.17 it follows
that X /∈ refusals([[V ]]L1). Therefore refusals(s) ̸⊆ refusals([[V ]]L1). By
Proposition 2.2.2 the pair (V,s) is reachable and it is an FD-witness by
definition. Contradiction.

Theorem 2.2.24. Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs. Then
L1 ⊑fdr L2 holds if and only if no FD-witness is reachable in normfdr(L1)⋉L2.

Proof. This follows directly from Lemmas 2.2.22 and 2.2.23.

Example 2.2.25. Consider the LTSs t0 and u0 of Example 2.1.12 once more. As
we noted in Example 2.2.15, t0 is a correct failures-divergences refinement of u0. In
the figure below the normal form normfdr(u0) is shown on the left and the product
normfdr(u0)⋉ t0 is shown on the right.
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{u0} {u1}

/0

REQ

10,20

({u0}, t0) ({u1}, t1)
REQ

10,20,REQ

Note that the pair ({u0,u2}, t2), which was reachable in the product norm(u0)⋉ t0, is
no longer reachable in the product normfdr(u0)⋉t0. In fact, no FD-witness is reachable
in the latter product, thus confirming that indeed u0 ⊑fdr t0.

2.3 Antichain Algorithms for Refinement Checking
Notice that Theorems 2.2.11, 2.2.14 and 2.2.24 provide the basis for straightfor-
ward algorithms for deciding trace refinement, stable failures refinement and failures-
divergences refinement: one can explore the product of the normalised specification
and the impementation, looking for a witness on-the-fly. In these algorithms, the
normalisation of the specification LTS dominates the theoretical worst-case run time
complexity of the algorithms. While refinement checking itself is a PSPACE-hard
problem, in practice, the problem can often be solved quite effectively. Nevertheless,
as observed in [137], antichains provide room for improvement by potentially reducing
the number of states of the normal form LTS of the specification that must be checked.

An antichain is a set A ⊆ X of a partially ordered set (X ,≤) in which all distinct
x,y ∈ A are incomparable: neither x ≤ y nor y ≤ x. Given a partially ordered set
(X ,≤) and an antichain A , the membership test, denoted by ⋐, checks whether
A ‘contains’ an element x; that is, x ⋐ A holds true if and only if there is some
y ∈A such that y≤ x. We write Y ⋐∀ A iff y ⋐ A for all y ∈ Y . Antichain A can
be extended by inserting an element x ∈ X , denoted A ⋓ x, which is defined as the
set {y | y = x∨ (y ∈ A ∧ x ̸≤ y)}. Note that this operation only yields an antichain
whenever x ̸⋐ A .

As [137, 1] suggest, the state space of the product (S, ι ,→) between a normal
form of LTS L1 and the LTS L2 induces a partially ordered set as follows. For
(U,s),(V, t) ∈ S, define (U,s) ≤ (V, t) iff s = t and [[U ]]L1 ⊆ [[V ]]L1 . Then the set
(S,≤) is a partially ordered set. The fundamental property underlying the reason why
an antichain approach to refinement checking works is expressed by the following
claim (which we repeat as Proposition 2.4.7, and prove in Section 2.4), stating that the
traces of any state (V,s) in the product can be executed from all states smaller than
(V,s). Notice that this property relies on the fact that the empty set is included as a
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state in the normal form LTS.

Claim 2.3.1. For all states (U,s),(V,s) of normfdr(L1)⋉L2 satisfying (U,s)≤ (V,s)
and for every sequence σ ∈ Actτ ∗ such that (V,s) σ−→→ (V ′, t) there is a state (U ′, t) such
that (U,s) σ−→→ (U ′, t) and (U ′, t)≤ (V ′, t).

The main idea of the antichain algorithms is now as follows: the set of states of
the product that have been explored are recorded in an antichain rather than a set.
Whenever a new state of the product is found that is already included in the antichain
(w.r.t. the membership test ⋐), further exploration of that state is unnecessary, thereby
pruning the state space of the product. While the proposition stated above suggests
this is sound for trace refinement, it is not immediate that doing so is also sound for
refusals and divergences.

Based on the above informal reasoning, [137] presents antichain algorithms that
intend to check for trace refinement, stable failures refinement and failures-divergences
refinement. Before we discuss these algorithms in more detail, see Algorithms 1-3, we
here present their pseudocode for the sake of completeness; in the remainder of this
chapter, we refer to these as the original algorithms.

Remark 2.3.2. For the implementation of refusals in Algorithms 2 and 3 we followed
the definition of refusals provided in [137]. This definition differs subtly from Defini-
tion 2.1.5, by defining, for any (not necessarily stable) state s, refusals(s) = {X | ∃s′ ∈
S : (s ε

=⇒ s′ ∧ stable(s′)∧X ⊆ Act \ enabled(s′))} and refusals(U) = {X | ∃s ∈ U :
X ∈ refusals(s)} for U ⊆ S.

Let us stress that Algorithm 1 correctly decides trace refinement and Algorithm 2
correctly decides stable failures refinement. However, Algorithm 3 fails to correctly
decide failures-divergences refinement. Moreover, it is interesting to note that Algo-
rithms 2 and 3 fail to decide the non-standard relations used in [137], see also the
discussion in Remark 2.1.11. All three issues are illustrated by the example below.

Example 2.3.3. Consider the four transition systems depicted below.

s0 s1 s2 t2 s3 t3

τ

a b

τ

a

a

τ

a

Let us first observe that Algorithm 2 correctly decides that s1 ⊑sfr s0 does not hold,
which follows from a violation of weaktraces(s0) ⊆ weaktraces(s1). Next, observe
that we have s0 ⊑fdr s1, since the divergence of the root state s0 implies chaotic
behaviour of s0 and, hence, any system refines such a system. It is not hard to see,
however, that Algorithm 3 returns false, wrongly concluding that s0 ̸⊑fdr s1.
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Algorithm 1 Antichain-based trace refinement algorithm presented in [137]. The
algorithm returns true if and only if L1 = (S1, ι1,→1) is refined by L2 = (S2, ι2,→2)
in trace semantics.
1: procedure REFINES-TRACE(L1,L2)
2: let working be a stack containing a pair ({s ∈ S1 | ι1

ε
=⇒1 s}, ι2)

3: let antichain← /0
4: while working ̸= /0 do
5: pop (spec, impl) from working
6: antichain← antichain⋓ (spec, impl)
7: for impl a−→2 impl′ do
8: if a = τ then
9: spec′← spec

10: else
11: spec′←{s′ ∈ S1 | ∃s ∈ spec : s a

=⇒1 s′}
12: if spec′ = /0 then
13: return false
14: if (spec′, impl′) ̸⋐ antichain then
15: push (spec′, impl′) into working
16: return true

With respect to the non-standard refinement relations defined in [137], see also
Remark 2.1.11, we observe the following. Since s0 is not stable, we have failures(s0) =
/0 and hence failures(s0) ⊆ failures(s1). Consequently, stable failures refinement as
defined in [137] should hold, but as we already concluded above, the algorithm returns
false when checking for s1 ⊑sfr s0. Next, observe that the algorithm returns true when
checking for s2 ⊑fdr s3. The reason is that for the pair ({s2},s3), it detects that state
s3 diverges and concludes that since also the normal form state of the specification
{s2} diverges, it can terminate the iteration and return true. This is a consequence of
splitting the divergence tests over two if-statements in lines 7 and 8. According to the
failures-divergences refinement of [137], however, the algorithm should return false,
since failures(s3)⊆ failures(s2) fails to hold: we have (a,{a}) ∈ failures(s3) but not
(a,{a}) ∈ failures(s2).

Notice that each algorithm explores the product between the normal form of
a specification, and an implementation in a depth-first, on-the-fly manner. While
depth-first search is typically used for detecting divergences, [121] states a number of
reasons for running a refinement check in a breadth-first manner. Indeed, a compelling
argument in favour of using a breadth-first search is conciseness of the counterexample
in case of a non-refinement.

Each algorithm can be made to run in a breadth-first fashion simply by using
a FIFO queue rather than a stack as the data structure for working. However, our
implementations of these algorithms suffer from severely degraded performance. The
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Algorithm 2 Antichain-based stable failures refinement algorithm presented in [137].
The algorithm returns true if and only if L1 = (S1, ι1,→1) is refined by L2 =
(S2, ι2,→2) in stable failures semantics.
1: procedure REFINES-STABLE-FAILURES(L1,L2)
2: let working be a stack containing a pair ({s ∈ S1 | ι1

ε
=⇒1 s}, ι2)

3: let antichain← /0
4: while working ̸= /0 do
5: pop (spec, impl) from working
6: antichain← antichain⋓ (spec, impl)
7: if refusals(impl) ̸⊆ refusals(spec) then
8: return false
9: for impl a−→2 impl′ do

10: if a = τ then
11: spec′← spec
12: else
13: spec′←{s′ ∈ S1 | ∃s ∈ spec : s a

=⇒1 s′}
14: if spec′ = /0 then
15: return false
16: if (spec′, impl′) ̸⋐ antichain then
17: push (spec′, impl′) into working
18: return true

performance degradation can be traced back to the following three additional problems
in the original algorithms, which also are present (albeit less pronounced in practice)
when utilising a depth-first exploration:

1. The refusal check on line 7 of Algorithm 2 (and line 11 of Algorithm 3) is also
performed for unstable states, which, combined with the definition of refusals
in [137] (see also Remark 2.3.2), results in a repeated, potentially expensive,
search for stable states;

2. In all three algorithms, duplicate pairs might be added to working since working
is filled with all successors of (spec, impl) that fail the antichain membership
test, regardless of whether these pairs are already scheduled for exploration, i.e.,
included in working, or not;

3. In all three algorithms, contrary to the explicit claim in [137, Section 2.2] the
variable antichain is not guaranteed to be an antichain.

The first problem is readily seen to lead to undesirable overhead. The second and
third problem are more subtle. We first illustrate the second problem on Algorithm 1:
the following example shows a case where the algorithm stores an excessive number of
pairs in working. Note that the two other algorithms suffer from the same phenomenon.
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Algorithm 3 Antichain-based failures-divergences refinement algorithm presented
in [137]. The algorithm is claimed to return true iff L1 = (S1, ι1,→1) is refined by
L2 = (S2, ι2,→2) in failures-divergences semantics.
1: procedure REFINES-FAILURES-DIVERGENCES(L1,L2)
2: let working be a stack containing a pair ({s ∈ S1 | ι1

ε
=⇒1 s}, ι2)

3: let antichain← /0
4: while working ̸= /0 do
5: pop (spec, impl) from working
6: antichain← antichain⋓ (spec, impl)
7: if impl⇑ then
8: if not spec⇑ then
9: return false

10: else
11: if refusals(impl) ̸⊆ refusals(spec) then
12: return false
13: for impl a−→2 impl′ do
14: if a = τ then
15: spec′← spec
16: else
17: spec′←{s′ ∈ S1 | ∃s ∈ spec : s a

=⇒1 s′}
18: if spec′ = /0 then
19: return false
20: if (spec′, impl′) ̸⋐ antichain then
21: push (spec′, impl′) into working
22: return true

Example 2.3.4. Consider the family of LTSs L k
n = (Sn, ιn,→n) with states Sn =

{s1, . . . ,sn}, transitions si
a j−→n si−1 for all 1 ≤ j ≤ k, 1 < i ≤ n and ιn = sn; see also

the transition system depicted below. Note that each LTS that belongs to this family is
completely deterministic and concrete.

sn sn−1 . . . s2 s1

ak

...

a1

ak

...

a1

ak

...

a1

Each labelled transition system in this class has n states and k · (n−1) transitions.
Suppose one checks for trace refinement between an implementation and specification
both of which are given by L k

n ; i.e., we test for L k
n ⊑tr L k

n .
Using a depth-first search, Algorithm 1 will add the state reachable via a single step

once for every action, because ({si+1},si+1) is only added to antichain after ({si},si)
has finished exploring its outgoing transitions. This occurs in every state, because the
state reached via such a transition was not visited before. Hence, working contains
exactly i · (k− 1)+ 1 pairs at the end of the i-th iteration, resulting in a maximum
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working stack size of O(n · k) entries. At the end of the n-th iteration antichain
contains all reachable pairs of the product, i.e., antichain is equal to ({si},si) for all
1≤ i≤ n. Emptying working after the n-th iteration involves k antichain membership
tests per entry. Consequently, O(n · k2) antichain membership tests are required to
check L k

n ⊑tr L k
n .

The breadth-first variant of Algorithm 1 also adds the state reachable via a single
step once for every action for the same reason as the depth-first variant. However,
now ({si+1},si+1) is only added to the antichain after all k copies of ({si},si) are
taken from the FIFO queue working. Therefore each entry in working adds k elements
before it is added to antichain, resulting in a maximum queue size of O(kn) at state
({s1},s1). Emptying working results in O(kn+1) antichain membership tests.

Finally, the example below illustrates the third problem of the algorithms, viz., the
violation of the antichain property. We again illustrate the problem on the most basic
of all three algorithms, viz., Algorithm 1. Note that this violation does not influence
the result of antichain membership tests, but it can have an effect on the size of the
antichain which in turn leads to overhead.

Example 2.3.5. Consider the two left-most labelled transition systems depicted below,
along with the (normal form) product (the LTS on the right).

t0

t1 t2

a
b b

s0

s1

a b

({t0},s0)

({t1},s1) ({t1, t2},s1)

a b

Algorithm 1 starts with working containing pair ({t0},s0) and antichain = /0. Inside
the loop, the pair ({t0},s0) is popped from working and added to antichain. The suc-
cessors of the pair ({t0},s0) are the pairs ({t1},s1) and ({t1, t2},s1). Since antichain
contains neither of these, both successors are added to working in line 15. Next,
popping ({t1},s1) from working and adding this pair to antichain results in antichain
consisting of the set {({t0},s0),({t1},s1)}. In the final iteration of the algorithm,
the pair ({t1, t2},s1) is popped from working and added to antichain, resulting in the
set {({t0},s0),({t1},s1),({t1, t2},s1)}. Clearly, since ({t1},s1)≤ ({t1, t2},s1), the set
antichain no longer is a proper antichain.
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2.4 Correct and Improved Antichain Algorithms

We first focus on solving the performance problems of Algorithms 1 and 2. Subse-
quently, we discuss the additional modifications that are required for Algorithm 3 to
correctly decide failures-divergences refinement.

The first performance problem that we identified, viz., the computational overhead
induced by checking for refusal inclusion in non-stable states (which does not occur
when checking for a TR-witness), can be solved in a rather straightforward manner:
we only perform the check to compare the refusals of the implementation and the
normal form state of the specification in case the implementation state is stable. Doing
so avoids a potentially expensive search for stable states.

The second and third performance problems we identified can be solved by rear-
ranging the computations that are conducted; these modifications are more involved.
The essential observation here is that in order for the information in antichain to be
most effective, states of the product must be added to antichain as soon as these are
discovered, even if these have not yet been fully explored. This is achieved by main-
taining, as an invariant, that working ⋐∀ antichain holds true; the states in working
then, intuitively, constitute the frontier of the exploration. We achieve this by ini-
tialising working and antichain to consist of exactly the initial state of the product,
and by extending antichain with all (not already discovered) successors for the state
(spec, impl) that is popped from working. As a side effect, this also resolves the third
issue, as now both working and antichain are only extended with states that have not
yet been discovered, i.e., for which the membership test in antichain fails, and for
which insertion of such states does not invalidate the antichain property.

The modifications we discussed above yield improved algorithms for deciding
trace refinement and stable failures refinement, see the pseudocode of Algorithms 4
and 5. We postpone the discussion of their correctness until after discussing the
modifications required to Algorithm 3 and its proof of correctness. The example we
present below illustrates the impact of our changes.

Example 2.4.1. Consider Example 2.3.4 again, but now using Algorithm 4 to check for
trace refinement. The depth-first variant of this algorithm only adds a successor state to
the working stack once, because for every other outgoing transition it will already be
part of antichain when it is discovered. This results in a maximum working stack size
of at most O(1) entries. For each state and each successor antichain membership is
tested once, resulting in O(n · k) antichain membership tests. This is an improvement
compared to the depth-first variant of Algorithm 4 of a factor n · k in the maximum
working stack size and a factor k in the number of antichain membership tests. The
bounds for the breadth-first variant are identical to the bounds for the depth-first
variant, i.e., maximum O(1) working queue size and O(n · k) number of antichain
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Algorithm 4 The improved trace refinement checking algorithm. The algorithm
returns true iff L1 = (S1, ι1,→1) is refined by L2 = (S2, ι2,→2) in trace semantics.
1: procedure REFINES-TRACENEW(L1,L2)
2: let working be a stack containing a pair ({s ∈ S1 | ι1

ε
=⇒1 s}, ι2)

3: let antichain← /0⋓ ({s ∈ S1 | ι1
ε

=⇒1 s}, ι2)
4: while working ̸= /0 do
5: pop (spec, impl) from working
6: for impl a−→2 impl′ do
7: if a = τ then
8: spec′← spec
9: else

10: spec′←{s′ ∈ S1 | ∃s ∈ spec : s a
=⇒1 s′}

11: if spec′ = /0 then
12: return false
13: if (spec′, impl′) ̸⋐ antichain then
14: antichain← antichain⋓ (spec′, impl′)
15: push (spec′, impl′) into working
16: return true

membership tests. Compared to the breadth-first variant of Algorithm 1, this is an
improvement of a factor kn in the working queue size and a factor kn/n in the number
of antichain membership tests.

We next focus on the soundness problem of Algorithm 3. The source of the
incorrectness of this algorithm can be traced back to the fact that it (partially) explores
the state space of norm(L1)⋉L2, rather than normfdr(L1)⋉L2. As illustrated by
Example 2.2.15, this causes the algorithm to consider states in the product that should
not be considered, thus potentially arriving at a wrong verdict. The fix to this problem
is simple yet subtle, requiring a swap of the divergence tests on lines 7 and 8, and
making the further exploration of the state (spec, impl) conditional on the specification
not diverging.

As all three algorithms presented in this section fundamentally differ (some even
in the relations that they compute) from the original ones, we cannot reuse arguments
for the proof of correctness presented in [137], which are based on invariants that do
not hold in our case, and which rely on definitions, some of which are incomparable to
ours. The correctness of our improved algorithms is claimed by the following theorem,
which we repeat at the end of this section with an explicit proof.

Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs.

• REFINES-TRACENEW(L1, L2) returns true iff L1 ⊑tr L2.
• REFINES-STABLE-FAILURESNEW(L1, L2) returns true iff L1 ⊑sfr L2.
• REFINES-FAILURES-DIVERGENCESNEW(L1, L2) returns true iff L1 ⊑fdr L2.
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Algorithm 5 The improved stable failures refinement checking algorithm. The al-
gorithm returns true iff L1 = (S1, ι1,→1) is refined by L2 = (S2, ι2,→2) in stable
failures semantics.
1: procedure REFINES-STABLE-FAILURESNEW(L1,L2)
2: let working be a stack containing a pair ({s ∈ S1 | ι1

ε
=⇒1 s}, ι2)

3: let antichain← /0⋓ ({s ∈ S1 | ι1
ε

=⇒1 s}, ι2)
4: while working ̸= /0 do
5: pop (spec, impl) from working
6: if stable(impl)∧ refusals(impl) ̸⊆ refusals(spec) then
7: return false
8: for impl a−→2 impl′ do
9: if a = τ then

10: spec′← spec
11: else
12: spec′←{s′ ∈ S1 | ∃s ∈ spec : s a

=⇒1 s′}
13: if spec′ = /0 then
14: return false
15: if (spec′, impl′) ̸⋐ antichain then
16: antichain← antichain⋓ (spec′, impl′)
17: push (spec′, impl′) into working
18: return true

For the remainder of this section we fix two LTSs L1 = (S1, ι1,→1) and L2 =
(S2, ι2,→2). We focus on the proof of correctness of Algorithm 6; the correctness
proofs for Algorithm 4 for deciding trace refinement and Algorithm 5 for deciding
stable failures refinement proceed along the same lines.

First we show termination of Algorithm 6. To reason about the states that have
been processed, we have introduced a ghost variable done which is initialised as the
empty set (see line 4) and each pair (spec, impl) that is popped from working at line 6
is added to done (line 23). For termination of the algorithm, we argue that every state
in the product gets visited, and is added to done, at most once. A crucial observation
in our reasoning is the following property of an antichain: adding elements to an
antichain does not affect the membership test of elements already included. This is
formalised by the lemma below.

Lemma 2.4.2. Let (Z,≤) be a partially ordered set and A ⊆ Z an antichain. For all
elements x,y ∈ Z if x ⋐ A and y ̸⋐ A then x ⋐ (A ⋓ y) holds.

Proof. Assume arbitrary elements x,y ∈ Z such that x ⋐ A and y ̸⋐ A . Recall that
the definition of A ⋓ y results in an antichain {z | z = y∨ (z ∈A ∧ y ̸≤ z)}, because
y ̸⋐ A by assumption. Consider the following two cases:

• Case y≤ x. Then x ⋐ (A ⋓ y) follows from the fact that y ∈ (A ⋓ y).
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Algorithm 6 The corrected failures-divergences refinement checking algorithm. The
algorithm returns true iff L1 = (S1, ι1,→1) is refined by L2 = (S2, ι2,→2) in failures-
divergences semantics.
1: procedure REFINES-FAILURES-DIVERGENCESNEW(L1,L2)
2: let working be a stack containing a pair ({s ∈ S1 | ι1

ε
=⇒1 s}, ι2)

3: let antichain← /0⋓ ({s ∈ S1 | ι1
ε

=⇒1 s}, ι2)
4: { done← /0 }
5: while working ̸= /0 do
6: pop (spec, impl) from working
7: if not spec⇑ then
8: if impl⇑ then
9: return false

10: else
11: if stable(impl)∧ refusals(impl) ̸⊆ refusals(spec) then
12: return false
13: for impl a−→2 impl′ do
14: if a = τ then
15: spec′← spec
16: else
17: spec′←{s′ ∈ S1 | ∃s ∈ spec : s a

=⇒1 s′}
18: if spec′ = /0 then
19: return false
20: if (spec′, impl′) ̸⋐ antichain then
21: antichain← antichain⋓ (spec′, impl′)
22: push (spec′, impl′) into working
23: { done←{(spec, impl)}∪done }
24: return true

• Case y ≰ x. There is an element z∈A such that z≤ x by assumption that x ⋐A .
Because y ≰ x and z ≤ x we also know that y ≰ z. Consequently, z ∈ (A ⋓ y)
and thus also x ⋐ (A ⋓ y).

Next, we prove that done and working are disjoint, which implies that pairs present
in done (which is a set that is easily seen to only grow) are not added to working again.
Showing this property to be true requires two additional observations, viz., (1) pairs in
working and done are contained in antichain, and (2), working contains only unique
pairs, thus representing a proper set (and, by abuse of notation, we will treat it as such).
For the purpose of identifying elements in working we define, for a given index i, the
notation workingi to represent the ith pair on the stack. Now we can describe that all
elements in working are unique by showing that ∀i ̸= j : workingi ̸= working j holds
true. The lemma below formalises these insights.

Lemma 2.4.3. The following invariant holds in the while loop (lines 5-23) of Algo-
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rithm 6:

(done∪working)⋐∀ antichain∧ (∀i ̸= j : workingi ̸= working j) (I)
∧(done∩working) = /0

Proof. Initially, the initial pair is added to both working and antichain, and done is
empty, so the invariant holds trivially upon entry of the while loop.

Maintenance. At line 6 we know that (spec, impl)⋐ antichain from working ⋐∀

antichain. Therefore, it holds that (done∪{(spec, impl)})⋐∀ antichain and (working\
{(spec, impl)})⋐∀ antichain. Furthermore, from ∀i ̸= j : workingi ̸= working j it fol-
lows that (spec, impl) /∈ (working \ {(spec, impl)}). Upon executing line 6 we may
therefore conclude that ((done∪{(spec, impl)})∩ (working\{(spec, impl)})) = /0.

Next, notice that as a result of condition (spec′, impl′) ̸⋐ antichain on line 20, we
have (spec′, impl′) /∈ (done∪working). Let working′ = {(spec′, impl′)}∪ (working\
{(spec, impl)}) and done′ = {(spec, impl)}∪done. From the fact that (spec′, impl′) /∈
working it follows that ∀i ̸= j : working′i ̸= working′ j holds true. At line 21 the
(spec′, impl′) pair is added to antichain and Lemma 2.4.2 ensures that predicate
(done′ ∪working′) ⋐∀ (antichain⋓ (spec′, impl′)) holds. Finally, from the fact that
((done∪{(spec, impl)})∩ (working\{(spec, impl)})) = /0 we can also conclude that
(done′∩working′) = /0.

Finally, we need to show that the elements in done and working are bounded by
the state space of the product normfdr(L1)⋉L2.

Lemma 2.4.4. The invariant (done∪working)⊆ reachable(normfdr(L1)⋉L2) holds
in the while loop (lines 5-23) of Algorithm 6.

Proof. Initially, the pair ({s ∈ S1 | ι1
ε

=⇒1 s}, ι2) is reachable by the empty trace
because this pair is the initial state of normfdr(L1)⋉L2 by definition. Therefore,
working, which only consists of this pair, contains pairs that are reachable as well.
Moreover, done is empty, so the invariant holds upon entry of the while loop.

Maintenance. Let (spec, impl) be a pair that is popped from working and assume
that [[spec]]L1

⇑ does not hold. Note that, by our invariant, there is a trace σ ∈ Actτ ∗,
such that ι

σ−→→ (spec, impl). At line 13 the outgoing transition (impl,a, impl′) is an
element of→2. Line 14 corresponds exactly to the first case of the product definition
(Def. 2.2.1). Similarly, line 16 corresponds exactly to the second case of the product
definition where (spec,a,spec′) is a transition in normfdr(L1) because [[spec]]L1

⇑
does not hold. As such, there is a transition (spec, impl) a−→ (spec′, impl′) in the
product LTS. By definition of a trace and the definition of reachable this means that
(working∪{(spec′, impl′)})⊆ reachable(normfdr(L1)⋉L2). From the observation
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that (spec, impl) was reachable we can conclude that (done∪ {(spec, impl)}) is a
subset of the reachable states as well.

Theorem 2.4.5. Algorithm 6 terminates for finite state, finitely branching LTSs.

Proof. The inner for-loop is bounded as the number of outgoing transitions →2 is
finite. The total number of state pairs in normfdr(L1)⋉L2 is finite since S1 and S2
are finite. From Lemma 2.4.4 it follows that done is a subset of the reachable state
pairs. Furthermore, as (done∩working) = /0 by Lemma 2.4.3 we conclude that done
strictly increases with every iteration. So, only a finite number of iterations of the
while loop are possible.

Note that these observations give an upper bound on the number of states that
can be explored. Especially the absence of duplicates in working and the maximi-
sation of antichain following from (done∪working) ⋐∀ antichain do not hold for
Algorithm 1, 2 and 3, as already observed in Example 2.3.4.

The remainder of this section is dedicated to proving the partial correctness of
Algorithm 6, viz., that when it terminates, the algorithm correctly decides failures-
divergences refinement. We first revisit the claim we made in Section 2.3; before we
restate and prove this claim, we prove a simplified version thereof in the next lemma.

Lemma 2.4.6. For all states (U,s),(V,s) of normfdr(L1)⋉L2 satisfying (U,s) ≤
(V,s) and actions a ∈ Actτ such that (V,s) a−→ (V ′, t) there is a state (U ′, t) such that
(U,s) a−→ (U ′, t) and (U ′, t)≤ (V ′, t).

Proof. Let normfdr(L1)⋉L2 = (S, ι ,→) and let normfdr(L1) = (S′1, ι
′
1,→′1). Take

any two state pairs such that (U,s) ≤ (V,s). Pick an arbitrary pair (V ′, t) ∈ S and
action a ∈ Actτ such that (V,s) a−→ (V ′, t). Now there are two cases to distinguish:

• Case a = τ . Then a transition s τ−→2 t exists and V =V ′. Therefore, there is also
a transition (U,s) τ−→ (U ′, t) and U =U ′. By the assumption that (U,s)≤ (V,s)
we know that (U ′, t)≤ (V ′, t).

• Case a ̸= τ . Then there are transitions V a−→
′
1 V ′ and s a−→2 t. The normalisation

has, by definition, transition V a−→
′
1 V ′ if and only if V ′ = {v′ ∈ S1 | ∃v ∈ [[V ]]L1 :

v a
=⇒1 v′} and not [[V ]]L1

⇑. Let U ′ be equal to {u′ ∈ S1 | ∃u ∈ [[U ]]L1 : u a
=⇒1

u′}. From [[U ]]L1 ⊆ [[V ]]L1 it follows that [[U ′ ]]L1 ⊆ [[V ′ ]]L1 . Furthermore, as

[[V ]]L1
⇑ does not hold it follows that not [[U ]]L1

⇑. Therefore, U a−→
′
1 U ′ exists

and (U,s) a−→ (U ′, t) is a transition in the product with (U ′, t)≤ (V ′, t).

We are now in a position to formally prove the claim that we made in Section 2.3.
For convenience, we repeat the claim as a proposition below.
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Proposition 2.4.7. For all states (U,s),(V,s) of normfdr(L1)⋉L2 satisfying (U,s)≤
(V,s) and for every sequence σ ∈ Actτ ∗ such that (V,s) σ−→→ (V ′, t) there is a state (U ′, t)
such that (U,s) σ−→→ (U ′, t) and (U ′, t)≤ (V ′, t).

Proof. Let normfdr(L1)⋉L2 = (S, ι ,→). The proof is by induction on the length of
sequences in Actτ ∗.

Base case. Take two pairs (U,s),(V,s) ∈ S satisfying (U,s)≤ (V,s). The empty
trace can only reach (U,s) ε−→→ (U,s); similarly, we have (V,s) ε−→→ (V,s). Therefore,
(U,s)≤ (V,s) follows by assumption.

Inductive step. Suppose that the statement holds for all sequences in Actτ ∗ of length
i and take a sequence σ ∈ Actτ ∗ of length i. Take arbitrary states (V,s),(V ′′,r) ∈ S and
action a ∈ Actτ such that (V,s) σ a−→→ (V ′′,r). Then there is a state (V ′, t) ∈ S such that
(V,s) σ−→→ (V ′, t) and (V ′, t) a−→ (V ′′,r). From the induction hypothesis it follows that
for all (U,s) ≤ (V,s) there is a state (U ′, t) ≤ (V ′, t) such that (U,s) σ−→→ (U ′, t). By
Lemma 2.4.6 and the existence of (V ′, t) a−→ (V ′′,r) there is a state (U ′′,r) ≤ (V ′′,r)
such that (U ′, t) a−→ (U ′′,r). We thus conclude that (U,s) σ a−→→ (U ′′,r).

The correctness arguments of Algorithm 6 furthermore require a lemma showing
the anti-monotonicity of FD-witnesses. Such a result is needed because the antichain
algorithms may explore only part of the reachable state space of a product. The anti-
monotonicity property helps to show, however, that the part that is explored contains
all relevant information.

Lemma 2.4.8. For all states (U,s),(V,s) of normfdr(L1)⋉L2 satisfying (U,s) ≤
(V,s) it holds that if (V,s) is an FD-witness then (U,s) is an FD-witness.

Proof. Take arbitrary states (U,s),(V,s) of normfdr(L1)⋉L2 satisfying (U,s) ≤
(V,s) and let (V,s) be an FD-witness. It follows that [[V ]]L1

⇑ does not hold and one
of the following holds: V = /0 or stable(s)∧ refusals(s)⊈ refusals([[V ]]L1) or s⇑. By
monotonicity, [[U ]]L1 ⊆ [[V ]]L1 implies refusals([[U ]]L1)⊆ refusals([[V ]]L1), and not
[[V ]]L1

⇑ implies not [[U ]]L1
⇑. Now, (U,s) is an FD-witness, because [[U ]]L1

⇑ does
not hold and if V = /0 then U = /0, or if stable(s)∧ refusals(s)⊈ refusals([[V ]]L1) then
stable(s)∧ refusals(s)⊈ refusals([[U ]]L1), or s⇑.

Corollary 2.4.9. For all states (U,s),(V,s) of normfdr(L1)⋉L2 where (U,s)≤ (V,s)
and for every sequence σ ∈ Actτ ∗ it holds that if (V,s) can reach an FD-witness with
σ then (U,s) can reach an FD-witness with σ as well.

Proof. Let normfdr(L1)⋉L2 = (S, ι ,→). Take arbitrary states (U,s),(V,s) ∈ S sat-
isfying (U,s) ≤ (V,s). Let (V ′, t) be an FD-witness and σ ∈ Actτ ∗ a trace such
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that (V,s) σ−→→ (V ′, t). By Lemma 2.4.7 there is a pair (U ′, t) ≤ (V ′, t) such that
(U,s) σ−→→ (U ′, t). From Lemma 2.4.8 it follows that state (U ′, t) is an FD-witness.

For a set of states S′ of normfdr(L1)⋉L2, let FDR(S′) be the predicate that
is true if and only if S′ contains an FD-witness. For a state s in the product, we
define the distance to a set of states S′ of the product as the shortest distance from
state s to a state in S′. If S′ is unreachable, the distance is set to infinity. Formally,
DistS′(s) = min{|σ | | σ ∈ traces(L )∧ t ∈ S′∧ s σ−→→ t}, where min{ /0} is defined as
∞. For a set of states S′′, let DistS′(S′′) denote the shortest distance among all states in
S′′, formally DistS′(S′′) = min{DistS′(s) | s ∈ S′′}. We denote the set of all reachable
FD-witnesses in the product normfdr(L1)⋉L2 by F .

Lemma 2.4.10. For all states (U,s),(V,s) of normfdr(L1)⋉L2 satisfying (U,s)≤
(V,s) it holds that DistF ((U,s))≤ DistF ((V,s)).

Proof. Let normfdr(L1)⋉L2 = (S, ι ,→). Take arbitrary states (U,s),(V,s) ∈ S sat-
isfying (U,s) ≤ (V,s). From Corollary 2.4.9 it follows that if (V,s) can reach an
FD-witness by the shortest trace σ then (U,s) can also reach an FD-witness with trace
σ , which by definition means that DistF ((U,s))≤ DistF ((V,s)).

The last lemma implies that whenever a pair is removed from the antichain due to
an insertion of a smaller pair, the inserted (smaller) state pair has a shorter or equal
distance to its closest FD-witness. This property can be used to show that the algorithm
always closes in on an FD-witness during exploration and that pruning parts of the
state space does not remove essential FD-witnesses from the reachable states. The
latter property is captured by the following lemmas.

Lemma 2.4.11. For all states (U,s) of normfdr(L1)⋉L2 it holds that if [[U ]]L1
⇑ then

DistF ((U,s)) is ∞.

Proof. Let normfdr(L1)⋉L2 = (S, ι ,→) and let normfdr(L1) = (S′1, ι
′
1,→′1). Take

an arbitrary state (U,s) ∈ S such that [[U ]]L1
⇑. For any action a ∈ Actτ and state

V ∈ S′1 there is no transition U a−→
′
1 V by definition of normfdr. Consequently, from

(U,s), only τ-transitions due to L2 can be taken. As a result, by definition of the
product and Lemma 2.2.2, for any state (V, t) ∈ S such that (U,s) ε

=⇒ (V, t) it holds
that U =V . Thus, any reachable state (V, t) also satisfies [[V ]]L1

⇑ and therefore cannot
be an FD-witness. Hence, DistF ((U,s)) is ∞.

Lemma 2.4.12. If FDR(reachable(normfdr(L1)⋉L2)) is true then invariant II holds
for every iteration of the while loop (lines 5-23) of Algorithm 6:

DistF (done)> DistF (working)∧DistF (working) = DistF (antichain) (II)
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Proof. Assume that FDR(reachable(normfdr(L1)⋉L2)) holds, so there is a reach-
able FD-witness.

Initialisation. The set done is empty, so DistF (done) = DistF ( /0) = ∞. For
working, which at this point only contains the initial state, the witness is reachable
and therefore DistF (working)< ∞. The initial state is also added to antichain. Thus
DistF (done)> DistF (working)∧DistF (working) = DistF (antichain).

Maintenance. Assume that working is not empty and assume that DistF (done)>
DistF (working) and DistF (working) = DistF (antichain) hold. At line 6 some pair
(spec, impl) is taken from working, so working, which by invariant I represents a set,
becomes equal to working\{(spec, impl)}. Let done′ = done∪{(spec, impl)} and let
N = DistF ((spec, impl)). There are three cases to distinguish.

• Case N >DistF (working∪{(spec, impl)}). Removing (spec, impl) from working
did not change its distance, so DistF (working)=DistF (working∪{(spec, impl)}).
Because N >DistF (working), adding this pair to done yields DistF (working)<
DistF (done′)≤DistF (done). Consider the outgoing transitions (impl,a, impl′)∈
→2 at line 13. The resulting pairs (spec′, impl′) must have a distance of at least
DistF (working), because N−1≥DistF (working). Let working′ = working∪
{(spec′, impl′)}. Then DistF (working) = DistF (working′). Let antichain′ be
antichain if (spec′, impl′) was not inserted and let it be antichain⋓(spec′, impl′)
otherwise. By the invariant it follows that N−1≥ DistF (antichain) and so by
Lemma 2.4.10 if (spec′, impl′) is inserted into antichain its distance will also
not change. Therefore, DistF (done′)>DistF (working′)∧DistF (working′) =
DistF (antichain′).

• Case 0 < N ≤ DistF (working ∪ {(spec, impl)}). Observe that N must be
equal to DistF (working∪{(spec, impl)}). From Lemma 2.4.11 it follows that
[[spec]]L1

⇑ does not hold and so the successors of (spec, impl) are explored.
Invariant II holds upon termination of the inner for-loop at lines 13 to 22. This
follows from an invariant for the inner for-loop, which we state next.
Let antichain′ be equal to the value of variable antichain after line 13 at each
iteration and working′ be equal to the value of variable working. Furthermore,
let T be the set of successors of (spec, impl), due to the transitions emanating
from impl, and let done′ be the successors that have been processed, i.e., done′

is initially empty and (spec′, impl′) is inserted into it after line 17. It can be
shown, using Lemma 2.4.10, that the following is an invariant for the inner
for-loop:

(DistF (T \done′)< N∨DistF (working′)< N)

∧DistF (working′) = DistF (antichain′)

Upon termination we conclude that (T \ done′) = /0. It then follows that
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DistF (T \done′) = ∞. As a consequence, we find that DistF (working′) < N
and therefore Dist(working′)< DistF (done∪{(spec, impl)}).

• Case N = 0. The state (spec, impl) is checked for the FD-witness conditions
and the algorithm terminates.

We conclude with the following result, which underlies the correctness of Algo-
rithm 6.

Theorem 2.4.13. Algorithm 6 returns false if and only if an FD-witness is reachable
in the product normfdr(L1)⋉L2.

Proof.
=⇒ ) Assume that Algorithm 6 returns false. This occurs when the current pair
(spec, impl) satisfies the conditions of an FD-witness, as shown in lines 7, 8, 11
and 18 of Algorithm 6. All pairs taken from working are reachable according to
Lemma 2.4.4, so this FD-witness is also reachable.
⇐= ) Assume that an FD-witness is reachable in the product of normfdr(L1)⋉
L2, i.e., F ̸= /0. Then invariant II of Lemma 2.4.12 holds:

DistF (done)> DistF (working)∧DistF (working) = DistF (antichain)

Towards a contradiction, assume that Algorithm 6 returns true. The algorithm re-
turns true if and only if working is empty, which means that DistF (working) =
DistF ( /0) = ∞. The initial state ι of normfdr(L1)⋉L2 is equal to ({s ∈
S1 | ι1

ε
=⇒1 s}, ι2) and can reach an FD-witness by assumption. Therefore,

DistF (ι)<∞. Initially ι was inserted into antichain so by Lemma 2.4.2 follows
that ι ⋐ antichain and from Lemma 2.4.10 it follows that DistF (antichain)<∞.
Contradiction, so we conclude that if Algorithm 6 terminates then it returns false.
Since termination is shown in Theorem 2.4.5 we establish that the algorithm
returns false.

We here note that analogues of Theorem 2.4.13 for Algorithms 4 and 5 can be
proved along the same lines. In particular, invariants I and II, fundamental in proving
termination, and proved in Lemmas 2.4.3 and 2.4.4, can be shown to hold for both
algorithms using the same arguments (where, of course, the counterpart of invariant II
relies on a distance to the set of TR-witnesses or SF-witnesses). Proposition 2.4.7 also
holds for the product norm(L1)⋉L2, and Lemma 2.4.8 and Corollary 2.4.9 hold for
TR-witnesses and SF-witnesses in the product norm(L1)⋉L2. Without going into
these details, we here claim the correctness for Algorithms 4 and 5.

Theorem 2.4.14. Algorithm 4 returns false if and only if a TR-witness is reachable in
the product norm(L1)⋉L2. Algorithm 5 returns false if and only if an SF-witness is
reachable in the product norm(L1)⋉L2.
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We finish with restating the formal claim of correctness of all three improved
algorithms.

Let L1 = (S1, ι1,→1) and L2 = (S2, ι2,→2) be two LTSs.
• REFINES-TRACENEW(L1, L2) returns true iff L1 ⊑tr L2.
• REFINES-STABLE-FAILURESNEW(L1, L2) returns true iff L1 ⊑sfr L2.
• REFINES-FAILURES-DIVERGENCESNEW(L1, L2) returns true iff L1 ⊑fdr L2.

Proof. From Theorem 2.4.13 we can conclude that Algorithm 6 returns false if and
only if an FD-witness is reachable. By Theorem 2.2.24 an FD-witness is only reachable
if and only if L1 does not refine L2 in failures-divergences semantics. Virtually the
same arguments apply for trace and stable failures refinement.

2.5 Experimental Validation
We have conducted several experiments to compare the run time of the various al-
gorithms to show that solving the identified issues actually improves the run time
performance in practice. For this purpose we have implemented a depth-first and
breadth-first variant for each of the original algorithms (Algorithms 1, 2 and 3) and
improved algorithms (Algorithms 4, 5 and 6) in a branch of the mCRL21 toolset [23]
as part of the ltscompare tool, which is implemented in C++. As the name of the tool
suggests it can be used to check for various preorder and equivalence relations between
labelled transition systems.

The data structures used in these implementations compute most concepts, e.g.,
the antichain membership test and insertion, in the same way. However, the imple-
mentations of Algorithms 5 and 6 perform the check at line 6, or line 11 respectively,
according to the definition of refusals we presented in Definition 2.1.5, whereas the
implementations of Algorithms 2 and 3 compute the refusal check with an additional
local search, according to the definition given in [137], see also Remark 2.3.2.

We first revisit Example 2.3.4 in Section 2.5.1, illustrating that the performance
overhead we predict for the original algorithm for checking trace refinement also
manifests itself in practice. In Section 2.5.2, we then analyse the performance of
the algorithms on practical examples consisting of a model of an industrial system
and models of concurrent data structures. Finally, in Section 2.5.3, we analyse the
effect of using a cheap state space minimisation algorithm on the total run time of the
algorithms.

All experiments and measurements have been performed on a machine with an
Intel Core i7-7700HQ CPU 2.80Ghz and a 16GiB (16∗10243 bytes) memory limit

1www.mcrl2.org
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imposed by ulimit -Sv 16777216. The source modifications and experiments can
be obtained from the downloadable package [91].

2.5.1 Experiment I: Example 2.3.4

We have used our implementations of Algorithms 1 and 4 to measure the run time
(in seconds) for checking the trace refinement L k

n ⊑tr L k
n , for all combinations of

parameters n,k ∈ {10,20, . . . ,500}, as described in Example 2.3.4. The results of
these measurements are shown as two three-dimensional plots in Figure 2.1.

Figure 2.1: The run time results for Example 2.3.4 using the depth-first variant of
Algorithm 1 on the left and our Algorithm 4 on the right.
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These plots show a quadratic growth of Algorithm 1 in the parameter k and a linear
growth in the parameter n. For Algorithm 4 the asymptotic growth is linear in both
k and n. These observed growths coincide with the analysis that was presented in
Example 2.3.4 for Algorithm 1 and on page 35 for Algorithm 4. Note that the scale
of the vertical axes of both plots, displaying the run time, differs by two orders of
magnitude and the highest runtime (for the n = 500 and k = 500 case) of Algorithm 1
is a factor 170 higher than that of Algorithm 4. As there is no difference in the data
structures the difference in run time is entirely due to the different way of inspecting
and extending working and antichain.

The breadth-first variant of Algorithm 1 was unable to complete the smallest, i.e.,
n = k = 10, case within the given memory limit. However, as shown in Figure 2.2 the
run time performance of the breadth-first variant of the improved algorithm is almost
equivalent to its depth-first variant.
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Figure 2.2: The run time for Example 2.3.4 using the breadth-first variant of Algo-
rithm 4.
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2.5.2 Experiment II: Practical Examples
The experiments that we consider are taken from two sources. First, a model of an
industrial system that first exposed the performance issues in practice of a control
system modelled in the Dezyne language [8] . This example is of a more traditional
flavour, in which the specification is an abstract description of the behaviours at the
external interface of a control system, and the implementation is a detailed model that
interacts with underlying services to implement the expected interface. For reasons of
confidentiality, the industrial model cannot be made available.

Second, we consider several linearisability tests of concurrent data structures.
These models have been taken from [112], and consist of six implementations of
concurrent data types that, when trace refining their specifications, are guaranteed to
be linearisable. As in [137], we approximate trace refinement by the stronger stable
failures refinement. For these models, the implementation and specification pairs are
based on the same descriptions; the difference between the two is that the specification
uses a simple construct to guarantee that each method of the concurrent data structure
executes atomically. This significantly reduces the non-determinism and the number
of transitions in the specification models.

In Table 2.1 the origin of each model, the number of states and transitions of
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each implementation and specification LTS, and whether the stable failures refinement
relation holds is shown.

Table 2.1: The number of states and transitions in each benchmark.

Model Ref. states spec trans. spec ⊑sfr states impl trans. impl

Industrial - 24 45 True 24 551 45 447
Coarse set [74] 50 488 64 729 True 55 444 145 043
Fine-grained set [74] 3 720 3 305 True 5 077 9 006
Lazy set [74] 3 565 3 980 True 24 496 41 431
Optimistic set [74] 25 435 28 154 True 234 332 389 344
Non-blocking queue [125] 1 248 1 473 False 3 030 5 799
Treiber stack [134] 87 389 124 740 True 205 634 564 862

The run time measurements of both Algorithms 2 and 5 with both the depth-first
and breadth-first variants is shown in Table 2.2. The run times that we report are the
averages obtained from five consecutive runs.

Table 2.2: Run time comparison between Algorithm 2 and Algorithm 5 using depth-
first (df) and breadth-first (bf) exploration.

Model Alg. 2 df (s) Alg. 2 bf (s) Alg. 5 df (s) Alg. 5 bf (s)

Industrial 1.36 296.29 0.15 0.17
Coarse set 9.15 † 8.61 9.06
Fine-grained set 0.37 † 0.32 0.46
Lazy set 1.19 † 1.02 1.26
Optimistic set 16.96 † 14.13 22.67
Non-blocking queue 0.03 0.17 0.02 0.09
Treiber stack 148.39 † 137.52 352.59

Here, we observe that the depth-first variant of both algorithms perform similarly
with a small run time advantage for Algorithm 5. However, for the breadth-first variants
our algorithm is able to complete all experiments, whereas Algorithm 2 reaches the
memory limit, indicated by †, in five cases and only completes two cases successfully.

To gain more insight into the performance differences between both algorithms
we repeat the experiments and report a number of performance metrics. The reported
metrics are the maximum working size and the number of antichain membership
test that fail (misses), succeed (hits) and the maximum antichain size during the
exploration. We report the maximum size instead of its size upon termination as these
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do not necessarily coincide, because inserting an element can evict one or more pairs
in antichain. The following two tables (Tables 2.3 and 2.4) show the discussed metrics
for the depth-first variant of both algorithms.

Table 2.3: Performance metrics for the depth-first variant of Algorithm 2.

Model working max antichain hits antichain misses antichain max

Industrial 74 36 544 43 419 43 091
Coarse set 96 93 330 58 438 55 444
Fine-grained set 60 5 786 7 575 5 077
Lazy set 61 21 184 30 771 24 496
Optimistic set 96 234 692 354 068 238 726
Non-blocking queue 52 548 672 591
Treiber stack 101 1 238 727 756 692 234 118

Table 2.4: Performance metrics for the depth-first variant of Algorithm 5.

Model working max antichain hits antichain misses antichain max

Industrial 69 36 369 43 090 43 091
Coarse set 96 93 330 58 438 55 444
Fine-grained set 60 5 786 7 575 5 077
Lazy set 61 21 184 30 771 24 496
Optimistic set 96 234 692 354 068 238 728
Non-blocking queue 43 520 641 634
Treiber stack 101 1 238 727 756 692 234 119

We observe in Tables 2.3 and 2.4 that only for the industrial and non-blocking
queue models the performance metrics are different. An explanation for this is that
because the antichain membership test is delayed (in Algorithm 2), more pairs are
added to working and these additional pairs increase the number of antichain checks.
In all other cases, the difference in run time can only be the result of the different
refusal computation implementation, as the number of antichain operations is the
same.

The following two tables (Tables 2.5 and 2.6) show the obtained performance
metrics for the breadth-first variants of both algorithms. In the experiments where the
refinement checking terminates early, due to reaching the memory limit, we report the
last observed measurements.
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Table 2.5: Performance indicators for the breadth-first variant of Algorithm 2.

Model working max antichain hits antichain misses antichain max

Industrial 549 263 5 459 028 12 888 388 43 091
Coarse set 4 710 289 13 870 7 807 403 3 629
Fine-grained set 6 604 516 180 669 15 547 890 1 900
Lazy set 6 726 497 130 523 14 852 835 4 306
Optimistic set 6 366 524 38 649 14 238 042 4 439
Non-blocking queue 6 262 3 078 14 560 274
Treiber stack 5 829 902 76 114 8 340 606 4 811

Table 2.6: Performance indicators for the breadth-first variant of Algorithm 5.

Model working max antichain hits antichain misses antichain max

Industrial 2 243 36 369 43 090 43 091
Coarse set 3 411 96 167 60 332 55 444
Fine-grained set 434 7 192 9 657 5 077
Lazy set 1 748 24 340 35 192 24 496
Optimistic set 15 209 292 525 434 218 234 352
Non-blocking queue 338 3 426 4 032 2 675
Treiber stack 139 218 2 411 614 1 523 830 214 795

From these results it is clear to see that for the breadth-first variant of Algorithm 2,
delaying the antichain insertion of discovered state pairs results in an enormous
overhead. The size of the antichain remains quite small, which causes many discovered
pairs to fail the antichain membership test. As each pair that fails the membership test
is added to working, it causes the working queue to grow rapidly, until it reaches the
memory limit. On the other hand, for Algorithm 5 we can observe that the number
of successful (and unsuccessful) antichain membership test is quite similar to its
depth-first variant. There can be some differences between these variants as the pairs
are discovered in a different order. The increase of the working size has the same
reason as for ordinary breadth-first search, which depends on the out degree of the
visited pairs.

To verify that the difference in performance of the depth-first variants is due
to the changes of the refusal computation we have implemented another variant of
Algorithm 2 with the stability check of impl added. The run time impact of this change
for both depth-first and breadth-first variants of Algorithm 2 is shown in Table 2.7.

As expected, the run time for this alternative depth-first variant closely matches
the run time of the depth-first variant of the improved algorithm. The alternative
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Table 2.7: Run time results for Algorithm 2 with the stability check of impl.

Model Alg. 2 df (s) Alg. 2 bf (s)
Industrial 0.17 26.32
Coarse set 9.59 †
Fine-grained set 0.36 †
Lazy set 1.12 †
Optimistic set 15.85 †
Non-blocking queue 0.03 †
Treiber stack 156.67 †

breadth-first variant of Algorithm 2 is still not able to complete most experiments,
but the industrial case has improved quite significantly. However, the non-blocking
queue experiment now reaches the set memory limit. For this we provide the following
explanation. Note that in case of a failing refinement the exploration stops when a
suitable (SF-)witness has been found, which must exist as stable failures refinement
does not hold. Recall that the computation of refusals for (possibly) unstable states
as defined in [137], see Remark 2.3.2, has been implemented using a separate local
search for stable states. We think that in the previous case such an SF-witness was
found for an unstable state using this local search. However, in the alternative version
the algorithm continues the exploration of the LTSs when encountering an unstable
state (in L2), which causes the working queue to reach the memory limit.

Finally, we repeat the same experiments while checking for failures-divergences
refinement. This has only been done for Algorithm 6 as the original algorithm for
failures-divergences refinement is incorrect. The run time measurements and the
expected result of the failures-divergences refinement check are presented in Table 2.8.

Table 2.8: The run time results for checking failures-divergences refinement using
Algorithm 6.

Model Alg. 6 df (s) Alg. 6 bf (s) ⊑fdr

Industrial 0.05 0.05 False
Coarse set 8.68 9.29 True
Fine-grained set 0.33 0.48 True
Lazy set 1.04 1.33 True
Optimistic set 14.55 23.81 True
Non-blocking queue 0.08 0.10 True
Treiber stack 140.70 363.34 True
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The run time results of Table 2.8 show that deciding failures-divergences refine-
ment has a similar performance to deciding stable failures.

2.5.3 State Space Minimisation as Preprocessing

The size of the transition systems has a major impact on the practical run time of the
refinement checking algorithms we studied, as can also be seen from, e.g., Tables 2.1
and 2.2. Note that this is particularly true of the size of the specification LTS, whose
normal form can be exponentially larger than the specification itself. As an alternative
to the pruning achieved using antichains, reducing the size of the specification as a
preprocessing step to checking for refinement may therefore be an effective tool in
improving on the practical run time of these algorithms. Of course, it is desirable that
the computational overhead of the reduction remains minimal. One possibility is to
minimise transition systems using one of the many equivalence relations available for
labelled transition systems, see, e.g. [60, 13]. When choosing such an equivalence it is
important that it has the property that, apart from an appealing run time complexity,
the observations, i.e., weaktraces, failures and divergences, that are extracted from
equivalent states are the same.

Strong bisimilarity is known to preserve the weaktraces, failures and divergences
observations of equivalent states. However, a more substantial state space reduction
can often be achieved by considering equivalences that treat the special action τ as
invisible, as the given LTSs often contain τ-transitions. In [122], Roscoe suggests to
use a variant of weak bisimulation, viz., divergence respecting weak bisimulation, to
minimise a transition system. For divergence respecting weak bisimulation it is known
that it is a suitable abstraction; see the following theorem [122, Theorem 9.2].

Theorem 2.5.1. Let L =(S, ι ,→) be an LTS. For two states s, t ∈ S that are divergence
respecting weak bisimilar it holds that weaktraces(s)=weaktraces(t), divergences(s)=
divergences(t), failures(s) = failures(t). Hence, also failures⊥(s) = failures⊥(t).

From a computational point of view, however, (divergence respecting) weak bisim-
ulation is not particularly promising. For instance, the best known algorithm [116] for
computing weak bisimulation has a worst-case time complexity of O(m ·n), where n
is the number of states and m the number of transitions. Such run time complexities
are non-neglible and may result in an undesirable overhead.

In practice, divergence-respecting weak bisimulation often coincides with diver-
gence preserving branching bisimulation and it has the far more appealing worst-case
run time complexity of O(m · logn) [83], which is equivalent to the run time com-
plexity of computing strong bisimulation [110]. Furthermore, the implementation
for divergence preserving branching bisimulation is also far more efficient than the
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one for divergence-respecting weak bisimulation in the mCRL2 toolset. Divergence-
preserving branching bisimulation is stronger than divergence respecting weak bisim-
ulation, i.e., two states that are divergence-preserving branching bisimilar are also
divergence respecting weak bisimilar. Divergence-preserving branching bisimilarity
is, by Theorem 2.5.1, therefore a suitable abstraction.

Remark 2.5.2. Note that Theorem 6.1 of [57] states that when comparing two systems
of which one contains no τ-transitions, weak and branching bisimilarity coincides. It
is argued that this often applies when comparing specifications with implementations.
This trivially generalises to divergence-respecting weak and divergence preserving
branching bisimilarity. Also in case of our benchmarks, both relations yield only
a minimal difference in size for all models, with the exception of the industrial
implementation model. For that model, however, the costs of computing the weak-
bisimulation reduction far exceeds the costs of performing the refinement check.
Perhaps this could be partially mitigated by more efficient (divergence respecting)
weak bisimulation algorithms, but that has not been further investigated.

The algorithm that decides divergence-preserving branching bisimulation equiva-
lence between two states can also be adapted to a minimisation procedure with the
same O(m · logn) time complexity. We have made the preprocessing step of minimi-
sation modulo divergence-preserving branching bisimulation available as an option
in our tool. In Table 2.9 the number of states and transitions of each model of Sec-
tion 2.5.2, after minimisation modulo divergence-preserving branching bisimulation,
and whether the specification and implementation LTSs are divergence-preserving
branching bisimilar is shown.

Table 2.9: The number of states and transitions after diverging preserving branch-
ing bisimulation minimisation and whether the LTSs are equivalent in divergence-
preserving branching bisimulation semantics denoted by -db.

Model states spec trans. spec -db states impl trans. impl

Industrial 24 45 False 4 626 14 380
Coarse set 1 089 3 618 True 1 089 3 618
Fine-grained set 92 210 True 92 210
Lazy set 92 210 True 92 210
Optimistic set 170 410 True 170 410
Non-blocking queue 119 274 False 163 378
Treiber stack 7 988 26 070 True 7 988 26 070

Observe that for most of the models, the minimised implementation and specifica-
tion LTSs are of equal size; indeed, in those cases the implementation and specification
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are divergence-preserving branching bisimulation equivalent, so no further stable
failures refinement check would be needed.

One option would therefore be to apply the minimisation to both implementation
and specification LTSs. This approach turns out to be beneficial for the Treiber stack
example, obtaining a run time of 3 seconds to determine stable failures refinement.
The approach is not beneficial for the other examples. Moreover, minimising the
implementation might even be less effective in case the refinement relation between
specification and implementation does not hold, in which case the refinement check
will probably quickly determine this fact.

We therefore measure the effect of using minimised specifications, but unmodified
implementations. The run time measurements of checking stable failures refinement
using Algorithms 2 and 5 using the minimised specification LTS is shown in Table 2.10.
The time that it takes to compute the divergence-preserving branching bisimulation
minimisation is presented in the last column and the other measurements are the run
time of the algorithm including preprocessing.

Table 2.10: Run time comparison between the original algorithm (Algorithm 2)
and the improved algorithm (Algorithm 5) using depth-first (df) and breadth-first
(bf) exploration where the specification is reduced modulo divergence-preserving
branching bisimulation.

Model Alg. 2 df (s) Alg. 2 bf (s) Alg. 5 df (s) Alg. 5 bf (s) Reduction (s)

Industrial 1.38 293.10 0.16 0.17 0.01
Coarse set 0.74 † 0.69 0.69 0.10
Fine-grained set 0.04 † 0.04 0.04 0.01
Lazy set 0.21 † 0.15 0.15 0.01
Optimistic set 2.52 † 1.59 1.57 0.04
Non-blocking queue 0.02 0.04 0.02 0.02 0.01
Treiber stack 8.19 † 6.61 11.71 0.24

Comparing these results with Table 2.2 shows that reducing the specification mod-
ulo divergence-preserving branching bisimulation can indeed substantially improve
the performance of the antichain-based algorithms. In particular, it never degrades the
performance of our algorithms as the preprocessing time is negligible. For failures-
divergences refinement the results, using Algorithm 6, are similar, as is shown in
Table 2.11.
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Table 2.11: The run time results for checking failures-divergences refinement using Al-
gorithm 6 where the specification is reduced module divergence-preserving branching
bisimulation.

Model Alg. 6 df (s) Alg. 6 bf (s)

Industrial 0.05 0.06
Coarse set 0.75 0.70
Fine-grained set 0.04 0.04
Lazy set 0.15 0.15
Optimistic set 1.61 1.70
Non-blocking queue 0.02 0.02
Treiber stack 6.76 12.13

2.6 Conclusion
Our study of the antichain-based algorithms for deciding trace refinement, stable
failures refinement and failures-divergences refinement presented in [137] revealed that
the failures-divergences refinement algorithm is incorrect. All three algorithms perform
suboptimally when implemented using a depth-first search strategy and poorly when
implemented using a breadth-first search strategy. Furthermore, all three algorithms
violate the claimed antichain property. We propose alternative algorithms for which
we have shown correctness and which utilise proper antichains. Our experiments
indicate significant performance improvements for deciding trace refinement, stable
failures refinement and a performance of deciding failures-divergences refinement that
is comparable to deciding stable failures refinement. We also show that preprocessing
using divergence-preserving branching bisimulation offers substantial performance
benefits. The implementation of our algorithms is available in the open source toolset
mCRL2 [23] and is currently used as the backbone in the commercial F-MDE toolset
Dezyne; see also [8].

In this work we have only focussed on comparing the performance of the erro-
neous antichain-based algorithms to the corrected algorithms. However, an interesting
comparison would be between the corrected antichain-based algorithms and the classi-
cal refinement checking algorithms based on normalisation of the specification for a
wide variety of (practical) specifications. The classical algorithm either normalise the
specification completely before checking refinement, or normalise the specification
on-the-fly. Such a comparison could be useful in order to decide which algorithm
should be applied when. Similarly, different statespace reduction algorithms could be
compared within the mCRL2 toolset. However, currently such a comparison might
not be useful since the mCRL2 toolset implements for example weak bisimulation
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using a preprocessing step followed by branching bisimulation, which might not be
the most efficient implementation. Finally, our implementation could be compared
to the state-of-the-art algorithms implemented in the FDR [54] toolset, but this has
proven to be difficult due to the different input languages that these toolsets have.

In terms of theoretical contributions an interesting route would be to see if an-
tichains can also be employed in other refinement algorithms, for example to algo-
rithms used to decide so-called fair testing refinement [119]. Initial findings suggest
that this might be possible, but further research in this direction would be needed to
obtain correct and efficient refinement algorithms for fair testing.
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Chapter 3

Decomposing Monolithic
Processes in a Process Algebra
with Multi-actions

The mCRL2 language [63] is a process algebra that can be used to specify the be-
haviour of communicating processes with data parameters. It has the usual ACP-style
operators for modelling non-deterministic choice, sequential composition, parallel
composition and recursion. A powerful yet somewhat unconventional language con-
struct of mCRL2 is the multi-action, which allows for specifying that atomic actions
can happen simultaneously.

Specifications written in mCRL2 can be analysed using the corresponding mCRL2
toolset [23]. The mCRL2 toolset [23] translates a process specification to an equiv-
alent monolithic recursive process, replacing all interleaving parallelism by non-
determinism, action prefixing and recursion.

Translating a complicated process specification into a simpler normal form, in this
case the monolithic process, has several advantages due to the fact that we only have
to deal with a simple structure instead of the full process algebra in all subsequent
analyses. First of all, the design and implementation of state space exploration
algorithms can be greatly simplified. Furthermore, the design of effective static
analysis techniques on the global behaviour of the specification is also easier.

Such static analysis techniques can help to reduce the size of the state space
underlying the monolithic process, where the size is the sum of the number of states
and transitions. One example is a static analysis to detect live variables as presented
in [114], where variables are live whenever their values influence the behaviour. Other
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Machine(0, false)

Machine(3, true) Machine(2, true)

Machine(1, true)

Machine(0, true)Machine(1, false)

HtoggleI
HcountI

HcountI

HcountI
HtoggleI

HcountI

Figure 3.1: Behaviour of a machine that alternates between two modes of operation.
The transitions are labelled with multi-sets, indicated as HI, of actions.

MachineV (0)

MachineV (3)

MachineV (2)

MachineV (1)

Hsync1
V (false)I

Hsync1
V (true)I

Hcount,tagI

Hcount,tagIHcount,tagI

MachineW (false) MachineW (true)

Htoggle,sync1
W (false)I

Htoggle,sync1
W (true)I

Figure 3.2: Behaviour of the decomposition processes.

static analysis are the elimination of constant parameters as presented in [67]. However,
the static analysis techniques available at the moment are not always strong enough to
mitigate the state space explosion problem for this monolithic process even though
its state space can often be minimised with respect to some equivalence relation after
state space exploration.

In this chapter, we define a decomposition technique (which we refer to as a cleave)
of a monolithic process. Our technique takes as input such a process and a partitioning
of its data parameters, and it produces two new processes. To illustrate the idea,
consider a machine that alternates between two modes, where switching modes has
a certain delay. The behaviour of this machine is modelled by the labelled transition
system in Figure 3.1. Assume that this machine is described by a single recursive
mCRL2 process with two parameters: a natural number representing the counter for
the delay and a Boolean for representing the mode of the machine. Using the partition
that ‘splits’ these two parameters, our technique will decompose this machine into two
recursive processes (components) with their respective behaviour shown in Figure 3.2.
Observe that indeed the states of a component rely on only one of the two parameters.
Note that the transition systems of both components include sync and tag actions that
do not occur in the transition system of the original machine. These are generated
by our technique and are needed to model the interface between the two components
such that under a suitable synchronisation context the parallel composition of these
components is equivalent (strongly bisimilar) to the original monolithic process.
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Decomposing a monolithic process may help to partly sidestep the state space
explosion that is due to the interleaving of parallel processes that is encoded in the
monolithic process. This follows from the observation that the state spaces of the
components resulting from a decomposition can be (much) smaller than the state space
of the monolithic process; these may therefore be easier to obtain. By first minimising
the state spaces of these components with respect to bisimilarity before computing
their composition, also the state space of the latter remains (much) smaller than that of
the monolithic process. Since strong bisimilarity is a congruence for all operators of
mCRL2, the resulting state space is still strongly bisimilar to that of the monolithic
process, meaning that no information is lost.

Theoretically, the main challenge in defining a decomposition technique is to
ensure that it results in components that, when combined appropriately, behave in-
distinguishably from the monolithic process from which they were derived. This
is the problem of finding a valid decomposition. We illustrate that there may be
multiple valid decompositions of a monolithic process. The main practical challenge
is therefore to identify a universally applicable decomposition technique that yields
valid decompositions, and which is capable of sidestepping the state space explosion
problem. In this chapter, we show that the techniques that we develop can, to a large
extent, be automated. Moreover, we provide detailed proofs of the main results and
include an extensive set of experiments.

Summarising the contributions of our work are as follows:
• we formalise the notion of a decomposition (see Section 3.2) and the notion of

validity of a decomposition,
• we present a generally applicable decomposition technique and provide sufficient

conditions for this decomposition to be valid (see Section 3.3),
• we show that state invariants [68] can be used to obtain even smaller state spaces

by restricting the interfaces of the components resulting from the decomposition
(Section 3.4),

• we provide algorithms that, based on a user-defined selection of process param-
eters, extract two components from a monolithic process (see Section 3.5),

• we confirm the practical applicability of our techniques on several cases in (see
Section 3.6).

Related Work Several different techniques are related to this type of decomposition.
Most notably, the work on decomposing Petri nets into a set of automata [14] also
aims to speed up state space exploration by means of decomposition. However, Petri
nets have a clear structure and lack (possibly complex) data expressions that must be
taken into account. The work on functional decomposition [18] describes a technique
to decompose a specification based on a partitioning of the action labels for a basic
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fragment of LOTOS, where processes have no data parameters. In [85] it was shown
how this type of decomposition can be achieved for mCRL2 processes. These works
use the structure of the original process specification to perform a decomposition
with the intention to distribute the components, and are not necessarily interested
in compositional verification techniques and it is not clear whether reductions can
be achieved in this way. Furthermore, a decomposition technique was used in [68]
to improve the efficiency of equivalence checking. However, that work considers
processes that are already in a parallel composition and further decomposes them
based on the actions that occur in each component.

Decompositional minimisation is also related to compositional minimisation, in
which the objective is to replace the state space of each component in a (given) parallel
composition by an equivalent, smaller state space, while preserving the behaviour of
the original specification [130, 131]. A problem that is common to compositional
minimisation and decompositional minimisation is that the size of the state spaces
belonging to individual components summed together might still exceed the size of
the original state space [51]. One way to (partly) avoid this is by specifying interface
constraints (also known as environmental constraints or context constraints), see [62,
28]. The state invariants in our work serve a similar purpose, but the mechanism is
different since interface constraints are action-based whereas invariants are state-based.
Another possibility is to find a more suitable order in which components are explored
and minimised, since the order heavily influences the size of the intermediate state
spaces. Heuristics for determining this order can be very effective in practice [34];
such heuristics are also relevant for the application of our decomposition technique.

One advantage of the decomposition technique over compositional minimisation is
that our interfaces can be derived from the conditions present in the monolithic process.
These interfaces can also be further strengthened with state invariants. Secondly,
the components resulting from the decomposition are not limited to the user-defined
processes present in the specification. Our decomposition technique is thus more
flexible, and may yield more optimal compositions. Indeed, the case studies on which
we report support both observations.

3.1 Preliminaries
We assume the existence of an abstract data theory that describes data sorts, where
sorts are sometimes referred to as types in other contexts. Each sort D has an associated
non-empty semantic domain denoted by D. The existence of sorts Bool and Nat with
their associated Boolean (B) and natural number (N) semantic domains respectively,
with standard operators is assumed. Furthermore, we assume the existence of an
infinite set of sorted variables. We use e : D to indicate that e is an expression (or
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variable) of sort D. The set of free variables of an expression e is denoted FV(e), and
a variable that is not free is called bound. An expression e is closed iff FV(e) = /0. A
substitution σ is a total function from variables to closed data expressions of their
corresponding sort. For a substitution σ , we write σ [x← e] to denote the substitution
σ ′ such that σ ′(x) = e and for all y ̸= x, we have σ ′(y) = σ(y). We use σ(e) to denote
the syntactic replacement of variables in expression e by their substituted expression.

An interpretation function, denoted by [[. . .]], maps syntactic objects to values
within their corresponding semantic domain. We assume that [[e]] for closed expres-
sions e is already defined. Semantic objects are typeset in boldface to differentiate
them from syntax, e.g., the semantics of expression 1+1 is 2. We denote data equiv-
alence by e ≈ f , which is true iff [[e]] = [[ f ]]; for other operators we use the same
symbol in both syntactic and semantic domains. Data equivalence is lifted to equiv-
alence of substitutions in the usual way, i.e., σ ≈ σ ′ iff for all variables x we have
σ(x)≈ σ ′(x). We adopt the usual principle of substitutivity; i.e., for all substitutions
σ ,σ ′ and expressions e it holds that if σ ≈ σ ′ then σ(e)≈ σ ′(e).

We denote a vector of length n+ 1 by d⃗ = ⟨d0, . . . ,dn⟩. The empty vector is
denoted by ⟨⟩. Two vectors are equivalent, denoted by ⟨d0, . . . ,dn⟩ ≈ ⟨e0, . . . ,en⟩, iff
their elements are pairwise equivalent, i.e., di ≈ ei for all 0≤ i≤ n. Given a vector
⟨d0, . . . ,dn⟩ and a subset I ⊆ N, we define the projection, denoted by ⟨d0, . . . ,dn⟩|I , as
the vector ⟨di0 , . . . ,dil ⟩ for the largest l ∈N such that i0 < i1 < .. . < il ≤ n and ik ∈ I for
0≤ k ≤ l. For a vector ⟨d0 : D0, . . . ,dn : Dn⟩ we write d⃗ : D⃗ and denote the projection
for a subset of indices I ⊆ N by d⃗|I : D⃗|I . Finally, we define Vars(d⃗) = {d0, . . . ,dn}.

A multi-set over a set A is a total function m : A→ N; we refer to m(a) as the
multiplicity of a and we write H. . .I for a multi-set where the multiplicity of each
element is either written next to it or omitted when it is one. For instance, Ha : 2,bI
has elements a and b with multiplicity two and one respectively, and all other elements
have multiplicity zero. For multi-sets m,m′ : A→N, we write m⊆m′ iff m(a)≤m′(a)
for all a ∈ A. Multi-sets m+m′ and m−m′ are defined pointwise: (m+m′)(a) =
m(a)+m′(a) and (m−m′)(a) = max(m(a)−m′(a),0) for all a ∈ A.

3.1.1 Labelled Transition Systems
Let Λ be the set of (sorted) action labels. We use Da to indicate the sort of action
label a ∈ Λ. The set of all multi-sets over {a(e) | a ∈ Λ,e ∈ Da} is denoted Ω. Note
that Da is the semantic domain of Da. In examples we often omit the expression and
parentheses whenever Da consists of a single element.

Definition 3.1.1. A labelled transition system with multi-actions, abbreviated LTS, is
a tuple L = (S,Act,→) where S is a set of states; Act ⊆Ω and→⊆ S×Act×S is a
labelled transition relation.
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We typically use ω to denote an element of Act and we write s ω−→ t whenever
(s,ω, t) ∈→. As usual, a finite LTS can be depicted as an edge-labelled directed graph,
where vertices represent states, the labelled edges represent the transitions. The left
graph of Figure 3.2 (see page 58) depicts an LTS with four states and five transitions,
which are labelled with multi-actions Hcount, tagI,Hsync1

V (true)I and Hsync1
V (false)I.

The size of a labelled transition system is given by the number of states and transitions
combined.

We recall the well-known strong bisimulation equivalence relation on states of an
LTS [104].

Definition 3.1.2. Let L = (S,Act,→) be an LTS. A binary relation R ⊆ S×S is a
(strong) bisimulation relation iff for all s Rt:

• if s ω−→ s′ then there is a state t ′ ∈ S such that t ω−→ t ′ and s′ Rt ′, and
• if t ω−→ t ′ then there is a state s′ ∈ S such that s ω−→ s′ and s′ Rt ′.

States s and t are bisimilar, denoted s- t, iff s Rt for a bisimulation relation R.

3.1.2 Linear Process Equations
We draw inspiration from the process algebra mCRL2 [63] to describe the elements
of an LTS; similar language concepts and constructs may appear in other shapes
elsewhere; for example ACP [6], CCS [103] and SCCS [104].

Definition 3.1.3. Multi-actions are defined as follows:

α ::= τ | a(e) | α|α

Constant τ represents the empty multi-action and a ∈ Λ is an action label with an
expression e of sort Da. The semantics of a multi-action α , given a substitution σ ,
is denoted by [[α ]]σ and is an element of Ω. It is defined inductively as follows:
[[τ ]]σ = HI, [[a(e)]]σ = Ha([[σ(e)]])I and [[α|β ]]σ = [[α ]]σ + [[β ]]σ . If α is a closed
expression then the substitution is typically omitted.

Example 3.1.4. Consider the multi-action toggle|sync1
W (false). Since this is a closed

expression, the semantics Htoggle,sync1
W (false)I of the multi-action is independent of

a substitution. The semantics of the multi-action toggle|sync1
W (x), in the context of

substitution σ satisfying σ(x) = true is Htoggle,sync1
W (true)I.

The states and transitions of an LTS are described by means of monolithic processes
called linear process equations, which consist of a number of condition-action-effect
statements, referred to as summands. Each summand symbolically represents a partial
transition relation between the current and the next state for a multi-set of action labels.
Let PN be a set of (sorted) process names.
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Definition 3.1.5. A linear process equation (LPE) is an equation of the form:

P(d : D) = ∑
e0:E0

c0→ α0 .P(g0)+ . . . + ∑
en:En

cn→ αn .P(gn)

Where P ∈ PN is the process name, d is the process parameter, and each:
• Ei is a sort ranged over by sum variable ei (where ei ̸= d),
• ci is the enabling condition, a boolean expression so that FV(ci)⊆ {d,ei},
• αi is a multi-action τ or a1

i ( f 1
i )| . . . |a

ni
i ( f ni

i ) such that each ak
i ∈ Λ and f k

i is an
expression of sort Dak

i
such that FV( f k

i )⊆ {d,ei},
• gi is an update expression of sort D, satisfying FV(gi)⊆ {d,ei}.

The +-operator denotes a non-deterministic choice among the summands of a
given LPE; the ∑-operator describes a non-deterministic choice among the possible
values of the associated sum variable bound by the ∑-operator. We omit the ∑-operator
when the sum variable does not occur freely within the condition, action and update
expressions. We use +i∈I for a finite set of indices I ⊆ N as a shorthand for a number
of summands.

Note that similar structures also occur elsewhere. For example in Extended Finite
State Machines [27] or Symbolic Transition Graphs [72], process parameters are
sometimes called state variables and summands are referred to as transitions.

We often consider LPEs where the parameter sort D represents a vector; in that
case we write d0 : D0, . . . ,dn : Dn to indicate that there are n+ 1 parameters where
parameter di has sort Di. Similarly, we also generalise the action sorts and the sum
operator in LPEs, where we permit ourselves to write a( f0, . . . , fk) and ∑e0:E0,...,el :El

,
respectively.

Let P be the set of expressions P(ι), where P ∈ PN and ι is a closed expression of
sort D (the sort of P). The labelled transition system induced by a (set of) LPE(s) is
then formally defined as follows.

Definition 3.1.6. The operational semantics associated with expressions of P is the
LTS (P,Ω,→), where the transition relation → is defined as the smallest relation
obtained as follows: for each LPE P(d : D) =+i∈I ∑ei:Ei ci→ αi .P(gi) and for all
indices i ∈ I, closed expressions ι : D and substitutions σ such that σ(d) = ι there is a

transition P(ι)
[[σ(αi)]]−−−−→ P(σ(gi)) iff [[σ(ci)]] = true.

For a given expression P(ι), we refer to the part of the LTS that is reachable from
P(ι) as the state space. Note that in defining the transition system in Definition 3.1.6, in
the interpretation of an LPE a syntactic substitution is applied to the update expressions
to define the reached state. This means that different closed syntactic expressions
that correspond to the same semantic object, e.g., 1+1 and 2 for our assumed sort
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Nat, result in different states. As stated by the lemma below, such states are always
bisimilar.

Lemma 3.1.7. For all closed expressions e,e′ : D such that [[e≈ e′ ]] = true we have
P(e)-P(e′).

For any given state space we can therefore consider a representative state space
where for each state a unique closed expression is chosen that is data equivalent. In
examples we always consider the representative state space.

Example 3.1.8. Consider the following LPE, modelling a machine that alternates
between two modes. The event that signals a switch between these two modes is
modelled by action toggle; switching between modes happens after a number of clock
cycles and is dependent on the mode in which the machine is running (3 cycles for one
mode, 1 cycle for the other). The machine keeps track of its mode using a Boolean
parameter s, and parameter n keeps track of the number of cycles left before switching
modes.

Machine(n : Nat,s : Bool) = (n > 0)→ count .Machine(n−1,s)
+(n≈ 0)→ toggle .Machine(if(¬s,3,1),¬s)

Note that the expression if(¬s,3,1) models the reset of the clock cycle count upon
switching modes. A representative state space of Machine(0, false), where the machine
is initially off, is shown in Figure 3.1 (see page 58).

3.1.3 A Process Algebra of Communicating Linear Process Equa-
tions

We define a minimal language to express parallelism and interaction of LPEs; the op-
erators are taken from mCRL2 [63] and similar-styled process algebras. Let Comm be
the set of communication expressions of the form a0| . . . |an→ c where a0, . . . ,an,c∈Λ

are action labels.

Definition 3.1.9. The process algebra is defined as follows:

S ::= ΓC(S) | ∇A(S) | τH(S) | S ∥ S | P(ι)

Here, A⊆ 2Λ→N is a non-empty finite set of finite multi-sets of action labels, H ⊆ Λ is
a non-empty finite set of action labels and C⊆ Comm is a finite set of communications.
Finally, we have P(ι) ∈ P.
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The set S contains all expressions of the process algebra. Operator ΓC describes
communication, ∇A action allowing, τH action hiding and ∥ parallel composition; the
elementary objects are the processes, defined as LPEs.

The operational semantics of expressions in S are defined in Definition 3.1.12.
We introduce three auxiliary functions on Ω that are used in the semantics. First of
all, the auxiliary function γC defined below specifies the result of applying a set C of
communications to a multi-action. A communication a0| . . . |an→ c specifies that in a
multi-action the actions a0(d), . . . ,an(d) synchronise when carrying the same values,
and result in action c(d). Since multiple communications may be applicable at the
same time, definition γ is naturally recursive.

Definition 3.1.10. Given ω ∈Ω we define γC, where C ⊆ Comm, as follows:

γ /0(ω) = ω

γC(ω) = γC\C1(γC1(ω)) for C1 ⊂C

γ{a0|...|an→c}(ω) =


Hc(d)I+ γ{a0|...|an→c}(ω− Ha0(d), . . . ,an(d)I)

if Ha0(d), . . . ,an(d)I⊆ ω

ω otherwise

For γC to be well-defined we require that the left-hand sides of the communi-
cations do not share labels. Furthermore, the action label on the right-hand side
must not occur in any other left-hand side. For example γ{a|b→c}(a|d|b) = c|d, but
γ{a|b→c,a|d→c}(a|d|b) and γ{a|b→c,c→d}(a|d|b) are not allowed.

Next, we define an auxiliary function θH(ω) that defines the transformation that
takes place when using the hiding operator τH(S). This function yields a multi-action
in which all the action labels that occur in H are removed. Note that the multi-action
becomes τ when all action labels are hidden.

Definition 3.1.11. Let ω ∈Ω and H ⊆Λ. We define θH(ω) as the multi-action ω ′ ∈Ω

defined as:

ω
′(a(d)) =

{
0 if a ∈ H
ω(a(d)) otherwise

Finally, given a multi-action α we write α to denote the multi-set of action labels
that occur in α , e.g., a(3)|a(2)|b(5) = Ha : 2,bI. Formally, a(e) = HaI, τ = HI and
α|β = α +β . We define ω for ω ∈Ω in a similar way.

Definition 3.1.12. The LTS (S,Ω,→) associated with expressions of S is defined by
the rules below and the transition relation given in Definition 3.1.6 for each expression
in P. For any ω,ω ′ ∈Ω, expressions P,P′,Q,Q′ of S and sets C ⊆ Comm, A⊆ 2Λ→N

and H ⊆ Λ:
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COM
P ω−→ P′

ΓC(P)
γC(ω)−−−→ ΓC(P′)

ALLOW
P ω−→ P′

∇A(P)
ω−→ ∇A(P′)

ω ∈ A∪{HI}

HIDE
P ω−→ P′

τH(P)
θH (ω)−−−→ τH(P′)

PAR
P ω−→ P′ Q ω ′−→ Q′

P ∥ Q ω +ω ′−−−−→ P′ ∥ Q′

PARR
Q ω−→ Q′

P ∥ Q ω−→ P ∥ Q′
PARL

P ω−→ P′

P ∥ Q ω−→ P′ ∥ Q

Note that for ALLOW the condition ω ∈ A∪{HI} must be satisfied in order for the
rule to be applicable.

Observe that PARL and PARR are distinct rules from PAR. Rule PAR expresses
that a transition from both P and Q happen simultaneously, whereas rules PARR and
PARL cover the case in which only one of the two processes involved in the parallel
composition executes a transition. Furthermore, observe that it is not possible to
disallow the occurrence of a τ-transition, because the condition τ ∈ A∪{HI} rule
ALLOW is true for any A since τ = HI .

Example 3.1.13. Consider the following LPE that models a drill component in which
each toggle action leads to a drill action.

Drill(t : Bool) = (¬t)→ toggle .Drill(true)

+ (t)→ drill .Drill(false)

Suppose that we wish to study the interaction of LPEs Machine of Example 3.1.8
and Drill, assuming that their toggle actions must synchronise, resulting in a toggle′

action. Let C = {toggle|toggle→ toggle′} be the communication that specifies this
synchronisation, and let A = {Htoggle′I,HdrillI,HcountI} be the set of multi-action
labels we allow. The interaction between LPEs Machine and Drill can be specified by
the expression ∇A(ΓC(Machine(0, false) ∥ Drill(false))) in the algebra. An example
derivation is depicted below, invoking (from top to bottom) rule PAR, then COM and
finally ALLOW:

Machine(0, false)
HtoggleI−−−−−→Machine(3, true) Drill(false)

HtoggleI−−−−−→ Drill(true)

Machine(0, false) ∥ Drill(false)
Htoggle:2I−−−−−−→Machine(3, true) ∥ Drill(true)

ΓC(Machine(0, false) ∥ Drill(false))
Htoggle′I−−−−−→ ΓC(Machine(3, true) ∥ Drill(true))

∇A(ΓC(Machine(0, false) ∥ Drill(false)))
Htoggle′I−−−−−→ ∇A(ΓC(Machine(3, true) ∥ Drill(true)))
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Observe that in the last step in the derivation, rule ALLOW is applicable since
Htoggle′I ∈ A∪{HI}. Note that we cannot derive a HtoggleI transition for the expres-
sion ∇A(ΓC(Machine(0, false) ∥ Drill(false))), even though by, e.g., PARL, we can

derive Machine(0, false) ∥ Drill(false)
HtoggleI−−−−→Machine(3, true) ∥ Drill(false). The

reason for this is that HtoggleI /∈ A∪{HI}.

3.2 The Decomposition Problem

The state space of a monolithical LPE may grow quite large and generating that
state space may either take too long or require too much memory. We are therefore
interested in decomposing an LPE into two or more LPEs, where the latter are referred
to as components, such that the state spaces of the resulting components are smaller
than that of the original state space. Such a decomposition is considered valid iff the
original state space is strongly bisimilar to the state space of these components when
combined under a suitable context (i.e., an expression with a ‘hole’) that specifies how
to combine the components. We formalise this problem as follows.

Definition 3.2.1. Let P(d⃗ : D⃗) = φ be an LPE and ι⃗ : D⃗ a closed expression. The LPEs
P0(d⃗|I0 : D⃗|I0) = φ0 to Pn(d⃗|In : D⃗|In) = φn, for sets of indices I0, . . . , In ⊆ N, are a valid
decomposition of P and ι⃗ iff there is a context C such that:

P(⃗ι)-C[P0(⃗ι|I0) ∥ . . . ∥ Pn(⃗ι|In)]

where C[P0(⃗ι|I0) ∥ . . . ∥ Pn(⃗ι|In)] is an expression in S. We refer to the expression
C[P0(⃗ι|I0) ∥ . . . ∥ Pn(⃗ι|In)] as the composition.

In the next sections, we will show that a suitable context C can be constructed
using the operators from S, and we define a decomposition technique that results
in exactly two components (a cleave). The technique can, in principle, be applied
recursively to these two components. The primary benefit of a valid decomposition is
that a state space that is equivalent to the original state space can be obtained using
compositional minimisation, which can result in a state space that is immediately be
significantly smaller than the state space resulting from monolithic exploration. First,
the state space of each component is derived separately. The composition can then
be derived from the component state spaces, exploiting the rules of the operational
semantics. The component state spaces can be minimised modulo bisimilarity, which
is a congruence with respect to the operators of S before deriving the results of the
composition expression.
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3.3 A Solution to the Decomposition Problem
A basic observation that we exploit in our solution to the decomposition problem is that
when hiding label c in a multi-action α|c, we are left with multi-action α , provided
that c does not occur in α . When the multi-action α is an event that is possible
in a monolithic LPE and the label c is the result of a communication between two
components, we can effectively exchange information between multiple components,
without this information becoming visible externally. The example below illustrates
the idea using a naive but valid solution to the decomposition technique on the LPE of
Example 3.1.8.

Example 3.3.1. Reconsider the LPE Machine we defined earlier, and consider the
two components depicted below.

MachineV (n : Nat) = ∑
s:Bool

(n > 0)→ count|sync0
V (n,s) .MachineV (n−1)

+ ∑
s:Bool

(n≈ 0)→ sync1
V (n,s) .MachineV (if(¬s,3,1))

MachineW (s : Bool) = ∑
n:Nat

(n > 0)→ sync0
W (n,s) .MachineW (s)

+ ∑
n:Nat

(n≈ 0)→ toggle|sync1
W (n,s) .MachineW (¬s)

Each component describes part of the behaviour and knows the value of parameter n
or s, but not the other. To cater for this, it is ‘over-approximated’ by a sum variable.
The state space of MachineV (0) is shown below. The synchronisation actions sync
expose the non-deterministically chosen values of the unknown parameters.

MachineV (0)

MachineV (3)

MachineV (2)

MachineV (1)

Hsync1
V (0, true)I

Hsync1
V (0, false)I

Hcount,sync0
V (3, true)I

Hcount,sync0
V (3, false)I

Hcount,sync0
V (2, false)I

Hcount,sync0
V (2, true)I

Hcount,sync0
V (1, true)I

Hcount,sync0
V (1, false)I

Enforcing synchronisation of the sync actions, the context C can be chosen as follows
to achieve a valid decomposition:

∇{HtoggleI,HcountI}(τ{sync0,sync1}
(Γ{sync0

V |sync
0
W→sync0,sync1

V |sync
1
W→sync1}

(MachineV (0) ∥MachineW (false))))
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Unfortunately the state space of MachineW (false) in the above example is infinitely
branching and it has no finite state space that is strongly bisimilar to it, rendering
the decomposition useless in practice. We will subsequently develop a more robust
solution.

3.3.1 Separation Tuples
To obtain a useful decomposition it can be beneficial to reduce the number of param-
eters that occur in the synchronisation actions, because these then become a visible
part of the transitions in the state spaces of the individual components. In the worst
case, as illustrated by LPE MachineW of Example 3.3.1, synchronisation actions lead
to a component having an infinite state space despite the fact that the state space of the
original LPE is finite.

One observation we exploit is that in some cases we can actually remove the
synchronisation for summands completely. For instance, in the first summand of
Machine in Example 3.1.8, the value of parameter s remains unchanged and the
condition is only an expression containing parameter n. We refer to summands with
such a property as independent summands, whereas the other summands are dependent.
When defining the context C, we can allow a component to execute multi-actions
of its independent summands without enforcing a synchronisation with the other
component. This allows, for instance, component MachineV to independently execute
(multi-)action count without synchronising the values of s and n with MachineW .

We must ensure that each dependent summand of the monolithic LPE is covered
by both components that we extract from the LPE. However, an independent summand
of one component does not need a corresponding summand in the other component.
Therefore, the summands that we extract for a given component are identified by a
set of indices J of the summands of the monolithic LPE. Of these, we furthermore
can identify summands that are dependent and summands that are independent. The
indices for the latter are collected in a set K.

A third observation that can be utilised is that for the dependent summands, there is
some degree of flexibility for deciding which component will contribute to which part
of the summand of the monolithic LPE. More specifically, by carefully distributing
the enabling condition c and action expression α of a summand of the monolithic
LPE over the two components, the amount of information that needs to be exchanged
between these two components when they execute their respective summands, can be
minimised. That is, the synchronisation of ‘missing’ parameters, i.e., the parameters
of the other component, might be avoided when the condition and action expressions
of one component no longer contain that parameter.

The final observation is that the synchronisation actions of dependent summands
can be used to synchronise the result of arbitrary expressions instead of only process
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parameters. This can be used when distributing equality conditions over the two
components, i.e., conditions of the form e≈ e′, where one side of the equality (e.g.,
expression e) can be put into the synchronisation action of one component and the
other side of the equality (expression e′) into the other component. We use the term
synchronisation expression to refer to the expression passed along an argument to the
synchronisation action.

Note that the way we distribute the list of process parameters of the monolithic LPE
over the two components may affect which summands can be considered independent.
For instance, had we decided to assign the (multi-)action count to MachineW and
toggle to MachineV , we would not be able to declare count’s summand independent.
Consequently, the set of process parameter indices U , assigned to a component, and
the set K are mutually dependent.

To capture this relation, we introduce the concept of a separation tuple. The
concept of a separation tuple, a 6-tuple which we introduce below, formalises the
required relation between the sets of indices for independent summands K, summands
J and process parameters U , and the conditions c, and action α and a vector of
data expressions h⃗ that we call synchronisation expressions of a component. We use
indexed sets to define the condition, action and update expressions for every dependent
summand. For elements in an indexed set we use subscript notation to indicate the
index of that element.

Definition 3.3.2. Let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be an LPE. A separation
tuple for P is a 6-tuple (U,K,J,cU ,αU ,⃗hU ) where U ⊆N is a set of parameter indices,
K ⊆ J ⊆ I are two sets of summand indices, and cU ,αU and h⃗U are sets of condition,
action and synchronisation expressions respectively, indexed by indices from J \K.
We require that for all i∈ (J \K) it holds that FV(cU

i )∪FV(αU
i )∪FV(⃗hU

i )⊆Vars(d⃗)∪
{ei}, and for all i ∈ K it holds that FV(ci)∪FV(αi)∪FV(g⃗i|U )⊆ Vars(d⃗|U )∪{ei}.

A separation tuple induces an LPE, where Uc = N\U , as follows:

PU (d⃗|U : D⃗|U ) = +
i∈(J\K)

∑
ei:Ei,d⃗|Uc :D⃗|Uc

cU
i → α

U
i |synci

U (⃗h
U
i ) .PU (g⃗i|U )

+ +
i∈K

∑
ei:Ei

ci→ αi|tag .PU (g⃗i|U )

We assume that action label synci
U , for any i ∈ I, and label tag does not occur in α j,

for any j ∈ I, to ensure that these action labels are fresh.

Observe that for independent summands the action label is extended with a tag
action in Definition 3.3.2. This label is (only) needed to properly deal with overlapping
multi-actions, as we illustrate below in Example 3.3.3.
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Example 3.3.3. Consider the following LPE.

P(x : Bool,y : Bool) = x→ a .P(false,y)

+ y→ b .P(x, false)

+(x∧¬y)→ a|b .P(false, false)

Suppose we decompose LPE P with indices I = {0,1,2} using the separation tuples
(V,{0},{0,2},{x2},{a2},{⟨⟩2}) and (W,{1},{1,2},{(¬y)2},{b2},{⟨⟩2}), where V =
{0} and W = {1}, and assuming that the summands of P are indexed from top to
bottom by 0, 1 and 2 respectively. Now assume that we had omitted the tag action
in Definition 3.3.2, in which case these separation tuples would induce the following
LPEs:

PV (x : Bool) = x→ a .PV (false)

+ x→ a|sync2
V .PV (false)

PW (y : Bool) = y→ b .PW (false)

+(¬y)→ b|sync2
W .PW (false)

Observe that both PV (true)
HaI−−→ PV (false) and PW (true)

HbI−−→ PW (false) are transitions
for these components. This also means that due to (among others) rule PAR, PV (true) ∥
PW (true) can perform action Ha,bI. Note that P(true, true) does not have an outgoing
transition labelled with Ha,bI, but (the reachable) process P(true, false) does have an
outgoing Ha,bI transition. There is, however, no composition expression that prevents
Ha,bI in PV (true) ∥ PW (true) and allows Ha,bI in PV (true) ∥ PW (false). The tag label
provides the tools for making this distinction by only allowing at most one tag action
to be present, and therefore disallowing Ha,b, tag, tagI.

The components, induced by two separation tuples, can be (re)combined in a
context that enforces synchronisation of the sync events and which hides their commu-
nication trace. This ensures that all actions left can be traced back to the monolithic
LPE from which the components are derived. Under specific conditions, this is
achieved by the following context.

Definition 3.3.4. Let P(d⃗ : D⃗) = +i∈I ∑ei:Ei ci → αi . P(⃗gi) be an LPE with the
separation tuples (V,KV ,JV ,cV ,αV ,⃗hV ) and (W,KW ,JW ,cW ,αW ,⃗hW ) for P. Let
PV (d⃗|V : D⃗|V ) = φV and PW (d⃗|W : D⃗|W ) = φW be the induced LPEs according to Def-
inition 3.3.2. Let ι⃗ : D⃗ be a closed expression. Then the composition expression is
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defined as:

τ{tag}(∇{αi | i∈I}∪{αi|tag | i∈(KV∪KW )}(τ{synci | i∈I}(

Γ{synci
V |sync

i
W→synci | i∈I}(PV (⃗ι|V ) ∥ PW (⃗ι|W )))))

Before we proceed to identify the conditions under which two separation tuples
induce a valid decomposition using the above context, we revisit Example 3.1.8 to
illustrate the concepts introduced so far.

Example 3.3.5. Reconsider the LPE presented in Example 3.1.8 with V = {0} and
W = {1}. The separation tuple (V,{0},{0,1},{(n≈ 0)1},{τ1},{⟨s⟩1}) and the tuple
(W, /0,{1},{true1},{toggle1}, {⟨s⟩1}) for Machine induce component MachineV and
MachineW respectively.

MachineV (n : Nat) = (n > 0)→ count|tag .MachineV (n−1)

+ ∑
s:Bool

(n≈ 0)→ τ|sync1
V (s) .MachineV (if(¬s,3,1))

MachineW (s : Bool) = true→ toggle|sync1
W (s) .MachineW (¬s)

Note that we omitted the ∑-operator in the first summand of MachineV since sum
variable s does not occur as a free variable in the expressions; for similar reasons, the
∑-operator is omitted in MachineW . The state spaces of components MachineV (0)
and MachineW (false) are shown in Figure 3.2. We obtain the following composition
according to Definition 3.3.4:

τ{tag}(∇{HtoggleI,HcountI,Hcount,tagI}(τ{sync0,sync1}(

Γ{sync0
V |sync

0
W→sync0,sync1

V |sync
1
W→sync1}(MachineV (0) ∥MachineW (false)))))

This composition expression is strongly bisimilar to Machine(0, false) shown in Fig-
ure 3.1. Note that the state space of MachineV (0) has four states and transitions, and
the state space of MachineW (false) has two states and transitions, which are both
smaller than the original state space. Their composition has the same size as the
original state space and no further minimisation can be achieved (note that the state
space of Figure 3.1 is already minimal).

3.3.2 Cleave Correctness Criteria
It may be clear that not every decomposition which satisfies Definition 3.3.4 yields
a valid decomposition (in the sense of Definition 3.2.1). For example, replacing the
condition expression true in Example 3.3.5 of the summand in PW by false would not

72



3.3 A SOLUTION TO THE DECOMPOSITION PROBLEM

result in a valid decomposition. Our aim in this section is to present the necessary and
sufficient conditions to establish that the state space of the monolithic LPE is bisimilar
to the state space of the composition expression resulting from Definition 3.3.4. We
prove this in Theorem 3.3.12.

Consider a decomposition of an LPE P according to Definition 3.3.4, induced by
separation tuples (V,KV ,JV ,cV ,αV ,⃗hV ) and (W,KW ,JW ,cW ,αW ,⃗hW ). We abbreviate
the composition expression of Definition 3.3.4 by C[PV (d⃗|V )||PW (d⃗|W )]. Recall that
components PV and PW yield a valid decomposition of P if there is a bisimulation
relation between P(d⃗) and C[PV (d⃗|V )||PW (d⃗|W )]. A bisimulation relation requires
that related states can mimic each other’s steps. Since three LPEs are involved (the
LPE P and the two interacting components, induced by the separation tuples), we
must consider situations that can emerge from any of these three LPEs executing a
(multi-)action for states related by the bisimulation relation.

P(d⃗) C[PV (d⃗|V )||PW (d⃗|W )]

P(⃗gi) C[PV (g⃗i|V )||PW (d⃗|W )]

(a) Independent: i ∈ KV

P(d⃗) C[PV (d⃗|V )||PW (d⃗|W )]

P(⃗gi) C[PV (d⃗|V )||PW (g⃗i |W )]

(b) Independent: i ∈ KW

αi αiαi αi

Figure 3.3: Two of the possible situations that must be considered when showing
the validity of the decomposition of Definition 3.3.4: the execution of independent
summands depicted in situations (a) and (b).

Two of the three relevant scenarios that must be considered are depicted in Fig-
ure 3.3. Note that in all relevant scenarios, the initiative of the transition may be with
either P(d⃗), or with the composition C[PV (d⃗|V )||PW (d⃗|W )].

Suppose that the monolithic LPE P can take a step due to some summand i ∈ I, for
which also i ∈ KV . In that case—case (a) in Figure 3.3—Definition 3.3.4 guarantees
that the free variables of their condition, action and update expressions are taken
from d⃗|V ; (multi-)action αi matches (multi-)action αi|tag after hiding tag. However,
this is not sufficient to guarantee full independence of both components: what may
happen is that the execution of a summand that is assumed to be independent still
modifies the value of a process parameter of the other component, violating the idea of
independence, and resulting in a target state in the composition that cannot be related
to the target state of the monolithic LPE. In order to guarantee true independence, we
must require that the W -projection on the update expression g⃗i of P does not modify
the corresponding parameters. Case (b) in Figure 3.3 is dual. Formally, we require
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(IND): for all r ∈ KV we have g⃗r |W = d⃗|W and for all r ∈ KW we demand g⃗r |V = d⃗|V .
Note that in case KV and KW overlap, condition (IND) guarantees that the involved
summands only induce self-loops since whenever g⃗r |W = d⃗|W and g⃗r |V = d⃗|W then
g⃗r = d⃗; thus no updates take place. Finally, observe that (IND) is also a sufficient
condition for the monolithic LPE P to match a (multi-)action αr in both cases (a) and
(b) of Figure 3.3, because the matching summand must occur in either PV or PW .

P(d⃗) C[PV (d⃗|V )||PW (d⃗|W )]

P(⃗gi) C[PV (g⃗i |V )||PW (g⃗i|W )]

αi αi

Figure 3.4: The third possible situation that must be considered when showing the
validity of the decomposition of Definition 3.3.4: the synchronous execution of
summands.

The more complex scenario that must be considered is when PV and PW (must)
synchronise to mimic the behaviour of P; see Figure 3.4 due to the structure of C.
Suppose again that the monolithic LPE P can execute an αi action due to summand
i ∈ I, but in this case, neither i ∈ KV , nor i ∈ KW . First, observe that the only option to
match the behaviour of this summand is if a component covers at least all summands
not already covered by the other component. We must therefore require at least the
following condition (SYN): JV = I \KW and JW = I \KV . It then follows from
KV ⊆ JV (and KW ⊆ JW ) that JV ∩ JW are the summands that induce synchronisation
and that these are disjoint from the independent summands; which are in KV ∪KW .

Second, observe that the enabledness of summand i in P depends on the enabling
condition ci. Consequently, if ci holds true, then the i-indexed conditions cV

i and
cW

i must also hold true. Moreover, since we are dealing with dependent summands,
the multi-action expression αV

i |αW
i must reduce to αi under these conditions. Also

the additional synchronisation vectors h⃗V and h⃗W must agree, for otherwise the sync
actions of both components cannot participate in the synchronisation. Note that
we do not need to explicitly require relating the update expressions of P and the
components PV and PW resulting from the execution of their i-indexed summands,
since this property is already guaranteed by construction; see Definition 3.3.2. We
collectively refer to the above requirements by condition (ORI).

Vice versa, whenever both components can simultaneously execute their i-indexed
summand, we must ensure that also the monolithic LPE P can execute its i-indexed
summand. Condition (COM) ensures that this requirement is met. Note that PV and
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PW only synchronise on summands with equal indices due to the synchronisation on
sync actions that is enforced. A technical complication in formalising requirement
(COM), however, is that the sum variables of the individual components carry the same
name in all three LPEs. In particular, from the fact that both individual components
can successfully synchronise, we cannot deduce a unique value assigned to these
homonymous sum-variables. We must therefore also ensure that the update expressions
of the components, resulting from executing the r-indexed summands, indeed is the
same as could have resulted from executing the r-indexed summand in P. Since this
property is not guaranteed by the construction of Definition 3.3.2, there is a need to
explicitly require it to hold.

A pair of separation tuples of P satisfying the above requirements is called a cleave
of P. Below, we formalise this notion, together with the requirements we informally
introduced above. We defer a formal proof of correctness of these requirements to the
end of this section.

Definition 3.3.6. Let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be an LPE with the sep-
aration tuples (V,KV ,JV ,cV ,αV ,⃗hV ) and (W,KW ,JW ,cW ,αW ,⃗hW ) for P as defined
in Definition 3.3.2. The two separation tuples are a cleave of P iff the following
requirements hold.

SYN. JV = I \KW and JW = I \KV .

IND. For all r ∈ KV , g⃗r |W = d⃗|W , and for all r ∈ KW , g⃗r |V = d⃗|V .

ORI. For all r ∈ (JV ∩ JW ) and substitutions σ satisfying [[σ(cr)]], also:

• [[σ(cV
r )]] and [[σ(cW

r )]], and
• [[σ (⃗hV

r )]] = [[σ (⃗hW
r )]], and

• [[σ(αV
r |αW

r )]] = [[σ(αr)]].

COM. For all r∈ (JV ∩JW ) and substitutions σ and σ ′ satisfying [[σ(cV
r )]] and [[σ ′(cW

r )]]

and [[σ (⃗hV
r )]] = [[σ ′(⃗hW

r )]], there is a substitution ρ such that [[ρ(d⃗|V )]] = [[σ(d⃗|V )]]
and [[ρ(d⃗|W )]] = [[σ ′(d⃗|W )]] and:

• [[ρ(cr)]], and
• [[σ(αV

r )|σ ′(αW
r )]] = [[ρ(αr)]], and

• [[σ(g⃗r |V )]] = [[ρ(g⃗r |V )]], and
• [[σ ′(g⃗r |W )]] = [[ρ(g⃗r |W )]].

Example 3.3.7. We argue that the separation tuples inducing the decomposition
obtained in Example 3.3.5 are a cleave indeed. First of all, the requirements SYN
and IND can be checked quite easily. The requirements ORI and COM both have
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to be checked for the summand with index one. Consider the requirement ORI with
a substitution σ assigning any value to n (and any value to other variables due to
totality) such that [[σ(n ≈ 0)]] holds. It follows directly that both [[σ(n ≈ 0)]] and
[[σ(true)]] hold. Furthermore, ⟨s⟩ is the same synchronisation expression on both sides
and [[σ(τ|toggle)]] = [[σ(toggle)]] by definition. For the requirement COM consider
any two substitutions σ and σ ′ such that both [[σ(n ≈ 0)]] and [[σ ′(true)]] hold and
[[σ(⟨s⟩)]] = [[σ ′(⟨s⟩)]]. For substitution ρ we can choose n to be zero and s to be
equal to σ(s). The most interesting observation is that then indeed [[σ(if(¬s,3,1))]] =
[[ρ(if(¬s,3,1))]] and that [[σ ′(¬s)]] = [[ρ(¬s)]]. The other conditions are also satisfied
and thus this is a cleave. We can also observe that leaving out the synchronisation of s
does not yield a cleave since there is no substitution ρ meeting the conditions in COM
when substitutions σ and σ ′ disagree on the value of s.

Informally, we have already argued that the decomposition yields a state space
that is bisimilar to the original monolithic LPE. We finish this section with a formal
claim stating that a cleave induces a valid decomposition of a monolithic LPE. For
this, we first introduce several auxiliary results and concepts. In particular, the proof
of correctness of our claim relies on the notion of bisimulation up to [105].

Definition 3.3.8. Let L = (S,Act,→) be an LTS. A binary relation R ⊆ S×S is a
strong bisimulation up to - iff for all s Rt it holds that:

• if s ω−→ s′ then there is a state t ′ ∈ S such that t ω−→ t ′ and s′-R- t ′.
• if t ω−→ t ′ then there is a state s′ ∈ S such that s ω−→ s′ and t ′-R- s′.

where the notation -R- denotes the relational composition, which is defined as
-R- = {(s, t) ∈ S×S | ∃s′ ∈ S, t ′ ∈ S : s- s′∧ s′ Rt ′∧ t ′- t}.

Proposition 3.3.9 (See [105]). If R is a strong bisimulation up to - then R⊆ -

This result establishes that if R is a strong bisimulation up to - then for any pair
(s, t) ∈ R we can conclude that s- t.

We introduce two technical auxiliary lemmas to relate the transition induced by
some expression P ∈ S to the transitions induced by applying the allow, hide and
communication operators, in the same order as the composition expression defined in
Definition 3.3.4, to P. The reader may skip their proofs because these are standard,
but we nevertheless include these for the sake of completeness.

Lemma 3.3.10. Given expressions P,Q ∈ S, a set of multi-sets of action labels A⊆
2Λ→N, two sets of action labels H ′,H ⊆ Λ, a set of communications C ⊆ Comm. If

P ω ′−→ Q and θH(γC(ω
′)) ∈ A′ with A′ = A∪{HI} then:

τH ′(∇A(τH(ΓC(P))))
θH′ (θH (γC(ω

′)))
−−−−−−−−−→ τH ′(∇A(τH(ΓC(Q))))
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Proof. We can derive the following:

HIDE

ALLOW

HIDE

COM
P ω ′−→ Q

ΓC(P)
γC(ω

′)−−−−→ ΓC(Q)

τH(ΓC(P))
θH (γC(ω

′))−−−−−−→ τH(ΓC(Q))

∇A(τH(ΓC(P)))
θH (γC(ω

′))−−−−−−→ ∇A(τH(ΓC(Q)))
θH(γC(ω

′)) ∈ AHI

τH ′(∇A(τH(ΓC(P))))
θH′ (θH (γC(ω

′)))
−−−−−−−−−→ τH ′(∇A(τH(ΓC(Q))))

Lemma 3.3.11. Given expressions P,Q′ ∈ S, a set of multi-sets of action labels
A⊆ 2Λ→N, two sets of action labels H ′,H ⊆Λ and a set of communications C⊆Comm.
If:

τH ′(∇A(τH(ΓC(P))))
ω−→ Q′

then there are Q ∈ S and ω ′ ∈ Ω such that Q′ = τH ′(∇A(τH(ΓC(Q)))), and ω =

θH ′(θH(γC(ω
′))), P ω ′−→ Q and θH(γC(ω

′)) ∈ A∪{HI}.

Proof. Pick arbitrary expressions P,Q′ ∈ S, a set of multi-sets of action labels A ⊆
2Λ→N, two sets of action labels H ′,H ⊆Λ and a set of communications C⊆Comm. As-
sume that τH ′(∇A(τH(ΓC(P))))

ω−→Q′. By the syntactic structure of τH ′(∇A(τH(ΓC(P)))),
we must conclude that transition τH ′(∇A(τH(ΓC(P))))

ω−→Q′ must be due to rule HIDE
and Q′ must be of the shape τH ′(Q1) for some expression Q1 and ω = θH ′(ω1) for
some ω1:

HIDE
∇A(τH(ΓC(P)))

ω1−→ Q1

τH ′(∇A(τH(ΓC(P))))
θH′ (ω1)−−−−→ τH ′(Q1)

Now, we find that only the ALLOW rule has a conclusion that permits us to derive
∇A(τH(ΓC(P))))

ω1−→ Q1, in which case Q1 must be of the shape ∇A(Q2) for some
expression Q2, and ω1 ∈ A∪{HI}:

ALLOW
τH(ΓC(P))

ω1−→ Q2

∇A(τH(ΓC(P)))
ω1−→ ∇A(Q2)

ω1 ∈ A∪{HI}

Observe that Q′ is also of the shape τH ′(∇A(Q2)). Again, a transition τH(ΓC(P))))
ω1−→

Q2 can only be derived when Q2 is of the shape τH(Q3), for some expression Q3, and
ω1 = θH(ω2) for some ω2:

HIDE
ΓC(P)

ω2−→ Q3

τH(ΓC(P))
θH (ω2)−−−−→ τH(Q3)
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Note that then Q′ is of the shape τH ′(∇A(τH(Q3))). Finally, only the COM rule allows
us to derive ΓC(P)

ω2−→ Q3, in which case Q3 is of the form ΓC(Q4), for some Q4, and
ω2 = γC(ω3) for some ω3.

COM
P

ω3−→ Q4

ΓC(P)
γC(ω3)−−−−→ ΓC(Q4)

For this derivation to exist it must be true that for some expression Q4, transition P
ω3−→

Q4 exists and that Q′ is of the form τH ′(∇A(τH(ΓC(Q4)))), and ω = θH ′(θH(γC(ω3)))
for some ω3. Furthermore, it must hold that ω1 = θH(γC(ω3)) ∈ A∪{HI}.

We now formalise the correctness of the cleave in Theorem 3.3.12. The proof of
this Theorem is a formalisation of the informal reasoning presented in the beginning
of this section.

Theorem 3.3.12. Let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be an LPE with the sep-
aration tuples (V,KV ,JV ,cV ,αV ,⃗hV ) and (W,KW , JW ,cW ,αW ,⃗hW ) for P that are a
cleave as defined in Definition 3.3.6. For every closed expression ι⃗ : D⃗ the composition
expression defined in Definition 3.3.4 is strongly bisimilar to P(⃗ι) and, hence, a valid
decomposition according to Definition 3.2.1.

Proof. Let A = {αi | i ∈ I}∪{αi|tag | i ∈ (KV ∪KW )}, H ′ = {tag}, H = {synci | i ∈
I} and C = {synci

V |synci
W → synci | i ∈ I}. Let R be the least relation such that

P(⃗ι ′)R τH ′(∇A(τH(ΓC(PV (⃗ι ′|V ) ∥ PW (⃗ι ′|W ))))) for closed expressions ι⃗ ′ : D⃗. We show
that R is a strong bisimulation relation up to -.

Pick any closed expression ι⃗ : D⃗ and assume that P(⃗ι) R τH ′(∇A(τH(ΓC(PV (⃗ι|V ) ∥
PW (⃗ι|W ))))).

• Assume that P(⃗ι) ω−→ Q′. Then there is an index r ∈ I and substitution σ such
that σ(d⃗) = ι⃗ for which it holds that [[σ(cr)]], ω = [[σ(αr)]] and Q′ = P(σ(g⃗r)).
There are three cases to consider based on the index r.

– Case r ∈ KV . This is essentially the case visualised in Figure 3.3 (a),
where the initiative comes from the monolithic process. We derive the

transition PV (⃗ι|V )
[[σ(αr)|tag]]−−−−−−−→ PV (σ(g⃗r |V )), because [[σ(cr)]] holds. Rule

PARL allows us to derive the transition PV (⃗ι|V ) ∥ PW (⃗ι|W )
[[σ(αr)|tag]]−−−−−−−→

PV (σ(g⃗r |V )) ∥ PW (⃗ι|W ). By definition, θH ′(θH(γC(σ(αr)|tag))) = σ(αr)
and σ(αr) ∈ A∪{HI}. From Lemma 3.3.10 we conclude that:

τH ′(∇A(τH(ΓC(PV (⃗ι|V ) ∥ PW (⃗ι|W )))))
σ(αr)−−−→

τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (⃗ι|W )))))
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By IND it holds that g⃗r |W = ι⃗|W . Finally, by definition it follows that
P(σ(g⃗r))R τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (σ(g⃗r |W )))))).

– Case r ∈ KW . Follows the same line of reasoning as for case r ∈ KV .
– Case r ∈ I \ (KV ∪KW ). This is the more complex situation sketched in

Figure 3.4. From requirement SYN we obtain r ∈ JV ∩ JW . We derive
the following transitions using requirement ORI. First, from [[σ(cV

r )]] and
[[σ(cW

r )]] it follows that both:

PV (⃗ι|V )
[[σ(αV

r |syncV
r (⃗h

V
r ))]]−−−−−−−−−−−→ PV (σ(g⃗r |V ))

and PW (⃗ι|W )
[[σ(αW

r |syncW
r (⃗hW

r ))]]−−−−−−−−−−−−→ PW (σ(g⃗r |W ))

Furthermore, [[σ(αr)]] = [[σ(αV
r |αW

r )]] and by rule PAR we then derive:

PV (⃗ι|V ) ∥ PW (⃗ι|W )
[[σ(αr)|syncV (σ (⃗hV

r ))|syncW (σ (⃗hW
r ))]]−−−−−−−−−−−−−−−−−−−−−→

PV (σ(g⃗r |V )) ∥ PW (σ(g⃗r |W ))

Note that from [[σ(h⃗V
r ]] = [[σ(h⃗W

r )]] it follows that:

θH(γC([[σ(αr)|syncV (σ (⃗hV
r ))|syncW (σ (⃗hW

r ))]])) = [[σ(αr)]]

Since [[σ(αr)]] ∈ A∪{HI} follows from αr ∈ A∪{HI}, Lemma 3.3.10
allows us to derive that:

τH ′(∇A(τH(ΓC(PV (⃗ι|V ) ∥ PW (⃗ι|W )))))
[[σ(αr)]]−−−−→

τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (σ(g⃗r |W ))))))

Finally, P(σ(g⃗r))R τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (σ(g⃗r |W )))))).

• Case τH ′(∇A(τH(ΓC(PV (⃗ι|V ) ∥ PW (⃗ι|W )))))
ω−→ Q′. By Lemma 3.3.11 there

is an expression Q ∈ S such that Q′ = τH ′(∇A(τH(ΓC(Q)))), and a multi-

action ω ′ ∈ Ω such that ω = θH ′(θH(γC(ω
′))), PV (⃗ι|V ) ∥ PW (⃗ι|W )

ω ′−→ Q and
θH(γC(ω

′)) ∈ A∪{HI}. There are three cases where a parallel composition

results in a transition. Suppose that PV (⃗ι|V ) ∥ PW (⃗ι|W )
ω ′−→ Q is due to:

– Rule PARL and PV (⃗ι|V )
ω ′−→ P′V , allowing us to derive transition PV (⃗ι|V ) ∥

PW (⃗ι|W )
ω ′−→ P′V ∥ PW (⃗ι|W ). This is the scenario depicted in Figure 3.3 (a),

where the initiative to execute an action comes from the composition
expression. Pick an arbitrary index r ∈ JV . Assume that r ∈ JV \KV . Then
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the action expression contains an action labelled syncV
r , which means that

θH(γC(ω
′)) /∈ A∪{HI}. Contradiction.

Hence, we conclude that r ∈ KV . From PV (⃗ι|V )
ω ′−→ P′V , we conclude that

there must be a substitution σ such that σ(d⃗|V ) = ι⃗|V for which [[σ(cr)]],
ω ′= [[σ(αr)|tag]] and P′V =PV (σ(g⃗r |V )). Let σ be that substitution. Since
requirement IND holds, we know that g⃗r |W = d⃗|W . We may therefore

conclude that P(⃗ι) ω ′−→ P(σ(g⃗r)). Finally, we may also conclude that
P(σ(g⃗r))R τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (σ(g⃗r |W ))))).

– Rule PARR and PW (⃗ι|W )
ω ′−→ P′W . Follows the same line of reasoning as

for rule PARL.
– Rule PAR, and PV (⃗ι|V )

ωV−→ P′V and PW (⃗ι|W )
ωW−−→ P′W , allowing us to derive

a transition PV (⃗ι|V ) ∥ PW (⃗ι|W )
ωV+ωW−−−−−→ P′V ∥ P′W , where ωV +ωW = ω ′.

Observe that this is the case depicted in Figure 3.4. Note that PV (⃗ι|V )
ωV−→

P′V implies that there is a substitution σ such that [[σ(cV
r )]] holds, ωV =

[[σ(αV
r |syncV

r (h⃗V
r ))]] and P′V = PV ([[σ(g⃗r |V )]]). Likewise, there must be a

substitution σ ′ for which [[σ ′(cW
r )]] holds, ωW = [[σ ′(αW

r |syncW
r (h⃗W

r )]])
and P′W = PW ([[σ ′(g⃗r |W )]]). Let σ and σ ′ be such substitutions.
From the observation that θH(γC(ωV +ωW )) ∈ A∪{HI} holds, it follows
that γC(ωV +ωW ) = ω + HsyncrI, for some index r ∈ I, because only a
single tag is allowed with original action labels. Therefore, it also follows
that r ∈ I \ (KV ∪KW ) and [[σ(h⃗V

r )]] = [[σ ′(h⃗W
r )]] holds.

From requirement COM it follows that there is a substitution ρ such
that [[ρ(cr)]] holds and [[σ(αV

r )|σ ′(αW
r )]] = [[ρ(αr)]]. We conclude that

P(⃗ι) ω−→ P(ρ(g⃗r)).
Furthermore, [[σ(g⃗r |V )]] = [[ρ(g⃗r |V )]], and [[σ ′(g⃗r |W )]] = [[ρ(g⃗r |W )]] and
therefore by Lemma 3.1.7 it follows that both:

PV (σ(g⃗r |V ))-PV (ρ(g⃗r |V ))

and PW (σ ′(g⃗r |W ))-PW (ρ(g⃗r |W ))

By the congruence of strong bisimilarity with respect to S we obtain that:

τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (σ ′(g⃗r |W )))))-

τH ′(∇A(τH(ΓC(PV (ρ(g⃗r |V )) ∥ PW (ρ(g⃗r |W )))))

Finally, P(ρ(g⃗r))R τH ′(∇A(τH(ΓC(PV (ρ(g⃗r |V )) ∥ PW (ρ(g⃗r |W )))).
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It follows that [[P(⃗ι|V )]]-[[τH ′(∇A(τH(ΓC(PV (⃗ι|V ) ∥PW (⃗ι|W )))))]] from Proposition 3.3.9.

3.4 State Invariants
The separation tuples inducing the decomposition obtained in Example 3.3.5 are
indeed a cleave as shown in Example 3.3.7, but this is by no means the only cleave for
process Machine. For instance, also the decomposition we obtained in Example 3.3.1
can be achieved by means of a cleave. The infinite branching of MachineW (false) in
that example is, however, problematic for the purpose of compositional minimisation.
While in this case, as shown by Example 3.3.5, we could avoid the infinite branching
of MachineW (false) by reducing the amount of synchronisation, this might not always
be possible.

Another way to restrict the behaviour of the components is to strengthen the condi-
tion expressions of each summand, thus limiting the number of outgoing transitions.
We show that so-called (inductive) state invariants [9] can be used for this purpose.
These state invariants are typically formulated by the user based on the understanding
of the modelled behaviour.

Definition 3.4.1. Given an LPE P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci → αi .P(⃗gi). A Boolean
expression ψ such that FV(ψ)⊆ Vars(d⃗) is called a state invariant iff the following
holds: for all i∈ I and substitutions σ satisfying [[σ(ci∧ψ)]], also [[σ [d⃗← σ (⃗gi)](ψ)]]
should hold.

The essential property of a state invariant is that whenever it holds for some given
state it is guaranteed to hold for all states reachable from that state. This follows
relatively straightforward from its definition. Next, we define a restricted LPE where
(some of) the condition expressions are strengthened with a Boolean expression.

Definition 3.4.2. Given an LPE P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci → αi .P(⃗gi), a Boolean
expression ψ such that FV(ψ) ⊆ Vars(d⃗) and a set of indices J ⊆ I. We define the
restricted LPE, denoted by Pψ,J , as follows:

Pψ,J(d⃗ : D⃗) =+
i∈J

∑
ei:Ei

ci∧ψ → αi .Pψ,J (⃗gi)

+ +
i∈(I\J)

∑
ei:Ei

ci→ αi .Pψ,J (⃗gi)

Note that if the Boolean expression ψ in Definition 3.4.2 is a state invariant for
the given LPE then for all closed expressions ι⃗ : D⃗ and substitutions σ for which
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[[σ [d← ι ](ψ)]] holds, it holds that P(⃗ι)-Pψ,J (⃗ι), for any J ⊆ I. Therefore, we can
use a state invariant of an LPE to strengthen all of its condition expressions.

Moreover, a state invariant of the original LPE can also be used to restrict the
behaviour of the components obtained from a cleave, as formalised in the following the-
orem. Note that the set of indices is used to only strengthen the condition expressions
of summands that introduce synchronisation, because the condition expressions of inde-
pendent summands cannot contain the other parameters as free variables. Furthermore,
the restriction can be applied to independent summands before the decomposition.
The theorem below states that the validity of the decomposition does not change by
strengthening the components (induced by separation tuples) using state invariants.

Theorem 3.4.3. Let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be an LPE with the sepa-
ration tuples (V,KV ,JV ,cV ,αV ,⃗hV ) and (W,KW ,JW ,cW ,αW ,⃗hW ) for P. Let ψ be a
state invariant of P. For every closed expression ι⃗ : D⃗ and substitution σ for which
[[σ [d← ι ](ψ)]] holds, the following expression, where C = JV ∩ JW , is a valid decom-
position:

τ{tag}(∇{αi | i∈I}∪{αi|tag | i∈(KV∪KW )}(τ{synci | i∈I}(Γ{synci
V | sync

i
W→synci | i∈I}(

Pψ,C
V (⃗ι|V ) ∥ Pψ,C

W (⃗ι|W )))))

Proof. Let R be the relation where P(⃗ι ′)R τH ′(∇A(τH(ΓC(P
ψ,C
V (⃗ι ′|V ) ∥ Pψ,C

W (⃗ι ′|W )))))

for closed expression ι⃗ ′ exactly when [[σ [d← ι⃗ ′](ψ)]] holds for some substitution σ .
We show that R is a strong bisimulation relation up to -.

Pick a pair P(⃗ι)R τH ′(∇A(τH(ΓC(P
ψ,C
V (⃗ι|V ) ∥ Pψ,C

W (⃗ι|W ))))).

• Case P(⃗ι) ω−→ Q′. Then there is an index r ∈ I and substitution σ for which
σ(d⃗) = ι⃗ such that [[σ(cr)]], ω = [[σ(αr)]] and Q′ = P(σ(g⃗r)). Furthermore, we
know that [[σ(ψ)]] holds by definition of R, and, hence also [[σ [d← σ(g⃗r)](ψ)]].
There are three cases to consider based on the index r.
In case r ∈ I \ (KV ∪KW ), which, because of condition SYN, implies that
r ∈ (JV ∩ JW ), we can conclude that [[σ(cV

r ∧ cW
r ∧ψ)]] holds. Therefore, using

the same arguments as in the proof of Theorem 3.3.12 for this case, we can
deduce that the composition of the two processes can match that ω-transition.
Therefore, we can conclude that P(σ(g⃗r))R τH ′(∇A(τH(ΓC(P

ψ,C
V (σ(g⃗r |V )) ∥

Pψ,C
W (σ(g⃗r |W )))))).

The other cases of r in the proof of Theorem 3.3.12 deal with unrestricted sum-
mands since r ̸∈C. Hence, we only need the additional observation that [[σ [d⃗←
σ(g⃗r)](ψ)]], from which we conclude P(σ(g⃗r))RτH ′(∇A(τH(ΓC(P

ψ,C
V (σ(g⃗r |V )) ∥

Pψ,C
W (σ(g⃗r |W )))))).
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• Case τH ′(∇A(τH(ΓC(P
ψ,C
V (⃗ι|V ) ∥ Pψ,C

W (⃗ι|W )))))
ω−→ Q′. Similarly to the proof of

Theorem 3.3.12 we have three cases to consider.
For the case Pψ,C

V (⃗ι|V )
ωV−→ P′V and Pψ,C

W (⃗ι|W )
ωW−−→ P′W and rule PAR we ob-

serve that if [[σ(cV
r ∧ψ)]] holds then [[σ(cV

r )]] holds as well, and similarly if
[[σ ′(cW

r ∧ψ)]] holds, then also [[σ ′(cW
r )]] holds. The remainder of the proof

proceeds along the lines of the proof of Theorem 3.3.12. Since for the substi-
tution ρ it holds that [[ρ(cr)]] and [[ρ(ψ)]] by definition of R, it also follows
that [[ρ[d⃗ ← ρ(g⃗r)](ψ)]] holds. Therefore, we can conclude that P(ρ(g⃗r))R
τH ′(∇A(τH(ΓC(PV (ρ(g⃗r |V )) ∥ PW (ρ(g⃗r |W )))).

Consider the second case where Pψ,C
V (⃗ι|V )

ω ′−→P′V and rule PARL is used to derive

Pψ,C
V (⃗ι|V ) ∥ Pψ,C

W (⃗ι|W )
ω ′−→ P′V ∥ Pψ,C

W (⃗ι|W ). We observe that r ∈ (JV \KV ), and
hence r ̸∈C, so the condition expression of the restricted LPE is not modified,
and, therefore, the proof again follows the same line of reasoning as in the proof
of Theorem 3.3.12. Finally, we note that because [[σ(cr)]] holds and [[σ(ψ)]] by
definition of R, it follows that [[σ [d⃗← σ(g⃗r)](ψ)]]. Therefore, it also follows
that P(σ(g⃗r))R τH ′(∇A(τH(ΓC(PV (σ(g⃗r |V )) ∥ PW (σ(g⃗r |W ))))).

Observe that the predicate n≤ 3 is a state invariant of the LPE Machine in Exam-
ple 3.1.8. Therefore, we can consider the process Machineψ,I

W in Example 3.3.1 for
the composition expression, which is finite. This would yield two finite components.
However, the state space of Machineψ,I

W is still larger than that of PW in Example 3.3.5.

Finally, we remark that the restricted state space contains deadlock states whenever
the invariant does not hold. These deadlocks can be avoided by applying the invariant
to the update expression of each parameter instead of the parameter itself without
affecting the correctness.

3.5 Implementation

While Theorem 3.3.12 and Definition 3.3.6 together provide the conditions that guar-
antee that a cleave yields a valid decomposition, requirements (ORI) and (COM) of
definition 3.3.6 are difficult to ensure (and verify) due to the semantic nature of these
requirements. In this section, we show how, in practice, one can cheaply approximate
these correctness requirements by means of a static analysis that relies only on the
expressions that occur in an LPE.
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3.5.1 Computing a Cleave

For the remainder of this section let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be the LPE
that we analyse. We assume that the indices for the cleave parameters V and W , such
that V ∪W = {0, . . . ,n}, are given by the user. Computing a promising parameter
partitioning automatically is left as future work.

The CLEAVE procedure that is defined in Algorithm 7 yields two separation tuples
for P such that these form a cleave. Apart from the user-supplied sets of indices V
and W , this algorithm takes an additional input M which we will explain later. The
algorithm loops over all summands of the given LPE P and for each summand decides
whether the summand is independent by checking the conditions for independent
summands. If a summand is independent (i.e., meets requirement (IND), which
can be checked cheaply), and its condition is independent of the parameters of W
(which we approximate by checking whether the relevant expressions of the summand
do not contain parameters from W ), it is added to KV ; if it is independent and its
condition is independent of the parameters of V , it is added to KW . Otherwise, the
summand is not independent and we continue to compute the condition, action and
synchronisation expressions for this dependent summand in both separation tuples. In
order to construct the synchronisation expressions, we compute a set of variables S,
which we call synchronisation variables, that mirrors the set of parameters of the other
component that may occur within relevant expressions in the summand.

Algorithm 7 relies on two subroutines: one routine to split the (multi-)action of a
dependent summand over the two components, and one routine to split its condition
expression. The routine for splitting a (multi-)action is detailed in Algorithm 8. This
algorithm first checks whether the given (multi-)action only depends on the parameters
of one component (by checking whether only parameters from dV or dW occur) and
possibly on sum variables (in the set E). If so, then it makes sense to put that action
expression in that component. In that case the action expression does not induce any
(additional) synchronisation of parameters. There may be cases in which a (multi-
)action relies on parameters of both V and W ; since in that case it is impossible to make
a decent choice, we rely on input M, supplied by the user, to resolve the distribution.

The routine for computing the condition expression of each component is described
by Algorithm 9. We assume that the condition expression is of the shape

∧
c∈C c where

each element c is a clause to simplify the analysis. Note that this can always be
achieved by preprocessing the expression. Ideally, the clauses are as small as possible.
We provide special treatment for clauses that are equality conditions, i.e., expressions
of the form h≈ h′. For these type of conditions it is possible to use the synchronisation
vector to ensure that h is equal to h′ whenever synchronisation takes place, which
can be advantageous over synchronising the dependencies of h or h′ if h is closely
related to one component and h′ to the other component. However, this is not useful
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Algorithm 7 Given an LPE P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi), two sets of indices
V,W ⊆ N and a function specifying user-defined choices M : I → 2N returns two
separation tuples that are a cleave as defined in Definition 3.3.6.
1: procedure CLEAVE(P,V,W,M)
2: dV ← Vars(d⃗|V ),dW ← Vars(d⃗|W )

3: KV ,KW ← /0, /0
4: cV ,cW ,αV ,αW , h⃗V , h⃗W ← /0, /0, /0, /0, /0, /0
5: for i ∈ I do
6: if FV(ci)∪FV(αi)∪FV(g⃗i)⊆ dV ∪{ei}∧ g⃗i |W = d⃗|W then
7: KV ← KV ∪{i}
8: else if FV(ci)∪FV(αi)∪FV(g⃗i)⊆ dW ∪{ei}∧ g⃗i |V = d⃗|V then
9: KW ← KW ∪{i}

10: else
11: (αV ,αW )← SPLITACTION(αi,dV ,dW ,{ei},M(i))
12: S← ((FV(g⃗i |V )∪FV(αV ))\dV )∪ ((FV(g⃗i|W )∪FV(αW ))\dW )

13: (cV ,cW , h⃗V , h⃗W )← SPLITCONDITION(ci,dV ,dW ,{ei},S)
14: S← S∪ ((FV(cV )∪FV(h⃗V ))\dV )∪ ((FV(cW )∪FV(h⃗V ))\dW )
15: s⃗← ⟨⟩
16: for s ∈ S do
17: s⃗← s⃗◁ ⟨s⟩
18: cV ← cV ∪{i : cV },cW ← cW ∪{i : cW }
19: αV ← αV ∪{i : αV },αW ← αW ∪{i : αW }
20: h⃗V ← h⃗V ∪{i : h⃗V ◁ s⃗}, h⃗W ← h⃗W ∪{i : h⃗W ◁ s⃗}
21: JV ← (I \KW )∪KV ,JW ← (I \KV )∪KW

22:
23: return (V,KV ,JV ,cV ,αV ,⃗hV ),(W,KW ,JW ,cW ,αW ,⃗hW )

for equality conditions that compare an expression to a constant. Therefore, we also
check whether both expressions h and h′ contain free variables.

The set of clauses that cannot be dealt with using synchronisation (the set C′ in
the algorithm) must be distributed over both components. For correctness it would be
sufficient to return the set of clauses C′, but we can improve on this by weakening the
conditions using the routine COMPUTECONDITION, see Algorithm 10. Consider the
call to COMPUTECONDITION on line 14 with the clauses C′ and a set of parameters
dV , the sum variables E and the synchronisation variables S. The idea of this procedure
is to select all clauses in C′ that contain (some of the) variables in dV ∪E ∪S. This is
useful since for local parameters in dV we need to keep the conditions anyway and for
variables in S \dV we want to keep conditions that can restrict their possible values
as these variables will be introduced as sum variables (which is a non-deterministic
choice). However, every selected clause might depend on variables that are not yet in
S′ (which is initially equal to S), which is why we iterate until we reach a fixed point.
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Algorithm 8 Given a multi-action α = a0( f 0)| . . . |ak( f k) and sets of variables dV ,
dW and E and a set of indices M ⊆ N, SPLITACTION computes the resulting pair of
multi-actions that satisfy the property in Lemma 3.5.1.
1: procedure SPLITACTION(α,dV ,dW ,E,M)
2: αV ,αW ← τ,τ
3: for 0≤ i≤ k do
4: if FV( f i)⊆ (dV ∪E)∧FV( f i)⊈ (dW ∪E) then
5: αV ← αV |ai( f i)
6: else if FV( f i)⊆ (dW ∪E)∧FV( f i)⊈ (dV ∪E) then
7: αW ← αW |ai( f i)
8: else
9: if i ∈M then

10: αV ← αV |ai( f i)
11: else
12: αW ← αW |ai( f i)

13:
14: return (αV ,αW )

Note that there are cases for which adding all clauses that depend on variables
S′ in this manner is not necessarily optimal. For instance, if we have an expression
x < y, for natural numbers x,y, and only y is included in S′ then adding x to S′

introduces synchronisation for both x and y, whereas with a more careful analysis the
synchronisation of x could be avoided. It is unlikely that this issue can be avoided in
general, but we can imagine that specific instances can be avoided by analysing the
structure of each clause.

3.5.2 Proof of Correctness
We conclude with a proof of correctness for the presented static analysis.

Lemma 3.5.1. Let α be a multi-action, and dV , dW and E three sets of variables
and M ⊆ N a set of indices. Let (αV ,αW ) be the pair of (multi-)actions returned by
SPLITACTION(α,dV ,dW ,E,M). For all substitutions σ it holds that [[σ(αV |αW )]] =
[[σ(α)]].

Proof. Observe that procedure SPLITACTION terminates. The statement follows
directly from the fact that every action expression is syntactically put into either αV or
αW .

Lemma 3.5.2. Let C be a set of clauses and S a set of variables. Then procedure
COMPUTECONDITION(C,S) terminates and the set of clauses C′ it returns satisfies
C′ ⊆C and for all variables x ∈ S if there is a clause c′ ∈C for which x ∈ FV(c′) then
c′ ∈C′.
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Algorithm 9 Given a Boolean expression of the shape
∧

c∈C c and sets of vari-
ables dV , dW , E and S, for which FV(

∧
c∈C c) ⊆ (dV ∪ dW ∪E ∪ S). The procedure

SPLITCONDITION computes two condition expressions and two synchronisation vec-
tors that satisfy the property in Lemma 3.5.3.
1: procedure SPLITCONDITION(

∧
c∈C c,dV ,dW ,E,S)

2: h⃗V , h⃗W ← ⟨⟩
3: C′←C
4: for c ∈C do
5: if c = h≈ h′ ∧FV(h) ̸= /0∧FV(h′) ̸= /0 then
6: if FV(h)⊆ dV ∧FV(d′)⊆ dW then
7: h⃗V ← h⃗V ◁ ⟨h⟩
8: h⃗W ← h⃗W ◁ ⟨h′⟩
9: C′←C′ \{c}

10: else if FV(h)⊆ dW ∧FV(h′)⊆ dV then
11: h⃗V ← h⃗V ◁ ⟨h′⟩
12: h⃗W ← h⃗W ◁ ⟨h⟩
13: C′←C′ \{c}
14: CV ← COMPUTECONDITION(C′,dV ∪E ∪S)
15: CW ← COMPUTECONDITION(C′,dW ∪E ∪S)
16: return (

∧
c∈CV

c,
∧

c∈CW
c, h⃗V , h⃗W )

Proof. First of all, observe that this procedure terminates since for the set of variables
S′,S′′ on line 10 it holds that S′ and S′′ can only grow with elements in

⋃
c∈C FV(c)

this mean that they can only grow by a finite amount. For every clause c added to C′

on lines 2 and 8 it holds that c ∈C, so C′ ⊆C.
We need to show that for all variables x ∈ S if there is a clause c′ ∈C for which

x∈ FV(c′) then c′ ∈C′ holds. Finally, if S is empty then this statement holds. Therefore,
assume that S is not empty and we show that the statement is a loop invariant of the
do-while loop starting on line 4. Upon entry of the loop the statement does not hold,
but since it is a do-while loop the body will be executed at least once. Pick an arbitrary
variable x ∈ S′ at line 5 then also x ∈ S′′. For all c ∈C if x ∈ FV(c) then c ∈C′ on
the line 10 since FV(c)∩S′′ ̸= /0 and the fact that clauses are never removed from C′.
Therefore, the statement holds after a single iteration of the while loop. Next, we
observe that the statement is maintained in every iteration of the while loop since no
elements are removed from C′.

Lemma 3.5.3. Let
∧

c∈C c be a condition and dV , dW , E and S four sets of variables
such that FV(

∧
c∈C c)⊆ (dV ∪dW ∪E∪S). Let (

∧
c∈CV

c,
∧

c∈CW
c, h⃗V , h⃗W ) be the tuple

returned by SPLITCONDITION(
∧

c∈C c,dV ,dW ,E,S). For all substitutions σ it holds
that [[σ(

∧
c∈C c)]] iff [[σ(

∧
c∈CV

c)]] and [[σ(
∧

c∈CW
c)]] and [[σ(h⃗V )]] = [[σ(h⃗W )]].
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Algorithm 10 Given a set of Boolean expressions C and a set of synchronised variables
S computes, COMPUTECONDITION computes a set subset of conditions that satisfy
the property in Lemma 3.5.2.
1: procedure COMPUTECONDITION(C,S)
2: C′←{c ∈C | FV(c) = /0}
3: S′← S
4: do
5: S′′← S′

6: for c ∈C do
7: if FV(c)∩S′′ ̸= /0 then
8: C′←C′ ∪{c}
9: S′← S′ ∪FV(c)

10: while S′′ ̸= S′

11:
12: return C′

Proof. Pick an arbitrary substitution σ .
=⇒ ) Assume that [[σ(

∧
c∈C c)]] holds. Since CV ⊆ C by Lemma 3.5.2 it follows

that [[σ(
∧

c∈CV
c)]] holds. Similarly, [[σ(

∧
c∈CW

c)]] holds as well. Furthermore,
consider any expression of the form h≈ h′ ∈C for which both FV(h) ̸= /0 and
FV(h′) ̸= /0 and also FV(h)⊆ dV and FV(h′)⊆ dW . Then from [[σ(

∧
c∈C c)]] it

follows that [[σ(h)]] = [[σ(h′)]]. Similarly, whenever FV(h)⊆ dW and FV(h′)⊆
dV it holds that [[σ(h′)]] = [[σ(h)]]. Therefore, it follows that [[σ(h⃗V )]] =

[[σ(h⃗W )]].
⇐= ) Assume that [[σ(

∧
c∈CV

c)]] and [[σ(
∧

c∈CW
c)]] and [[σ(h⃗V )]] = [[σ(h⃗W )]] hold.

For all clauses of the form h≈ h′ ∈C for which h≈ h′ /∈ (CV ∪CW ) we know
that [[σ(h)]] = [[σ(h′)]] because [[σ(h⃗V )]] = [[σ(h⃗W )]] and by the construction
of these vectors. Furthermore, by Lemma 3.5.2 we know that for all variables
x ∈ (dV ∪E ∪ S) if there is a clause c ∈ C′ for which x ∈ FV(c) then c ∈ CV .
Similarly, for variables x ∈ (dW ∪E ∪ S) if there is a clause c ∈C′ for which
x ∈ FV(c) then c ∈CW . Finally, for all c ∈C′ for which FV(c) = /0 it holds that
c ∈ (CV ∩CW ). Since FV(

∧
c∈C c) ⊆ (dV ∪ dW ∪E ∪ S) we can conclude that

CV ∪CW =C′. Therefore, from [[σ(
∧

c∈CV
c)]] and [[σ(

∧
c∈CW

c)]] it follows that
[[σ(

∧
c∈C c)]].

Lemma 3.5.4. Let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be an LPE with two sets of
indices V,W ⊆N and an indexed set of index sets M. Let tuples (V,KV ,JV ,cV ,αV ,⃗hV )

and (W,KW ,JW ,cW ,αW ,⃗hW ) be the result of CLEAVE(P,V,W,M); as defined in Algo-
rithm 7. Then these tuples are separation tuples for P as defined in Definition 3.3.2.

Proof. First of all, we will argue that the procedure CLEAVE (Algorithm 7) terminates.
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This follows almost directly from the finiteness of I and the finiteness of all expres-
sions in the LPE. The procedures SPLITACTION and SPLITCONDITION terminate by
Lemmas 3.5.1 and 3.5.3.

Next, we show that (V,KV ,JV ,cV ,αV ,⃗hV ) and (W,KW ,JW ,cW ,αW ,⃗hW ) are in-
deed separation tuples according to Definition 3.3.2. Due to line 21 it follows that
KV ⊆ JV and cV , αV and h⃗V are all indexed sets over JV \KV . For all indices
i ∈ (JV \KV ) we observe that SPLITACTION (Algorithm 8) indeed yields two ac-
tion expressions for which FV(αV

i )⊆ FV(αi). Also SPLITCONDITION (Algorithm 9)
returns two Boolean conditions for which FV(cV

i )⊆ FV(ci) due to Lemma 3.5.3 and

two synchronisation expressions for which FV(h⃗V
i ) ⊆ FV(ci). Finally, it holds that

S ⊆ (Vars(d⃗)∪ {ei}) after line 12 since P is an LPE and after line 14 due to the
observation that FV(cV

i ) ⊆ FV(ci) and FV(h⃗V
i ) ⊆ FV(ci) (and similarly for cW

i and

h⃗W
i ).

Therefore, for all i∈ (JV \KV ) it holds that FV(cV
i )∪FV(αV

i )∪FV(⃗hV
i )⊆Vars(d⃗)∪

{ei} on line 20. Finally, for all i ∈ KV it holds that FV(ci)∪ FV(αi)∪ FV(g⃗i|V ) ⊆
Vars(d⃗|V )∪{ei} due to line 6. Thus (V,KV ,JV ,cV ,αV ,⃗hV ) is a separation tuple. The
same arguments can be used to show that the tuple (W,KW ,JW ,cW ,αW ,⃗hW ) is a
separation tuple.

Theorem 3.5.5. Let P(d⃗ : D⃗) =+i∈I ∑ei:Ei ci→ αi .P(⃗gi) be an LPE with two sets of
indices V,W ⊆ N and an indexed set of index sets M. Let (V,KV ,JV ,cV ,αV ,⃗hV ) and
(W,KW ,JW ,cW ,αW ,⃗hW ) be the separation tuples returned by CLEAVE(P,V,W,M);
as defined in Algorithm 7. Then these separation tuples are a cleave as defined in
Definition 3.3.6.

Proof. We verify the requirements of Definition 3.3.6. First of all, requirement SYN
holds trivially and requirement IND also holds due to line 6 and 8. Next, we show
that requirements ORI and COM are satisfied. Pick an arbitrary index r ∈ (JV ∩ JW ).

• Case requirement ORI. Pick a substitution σ satisfying [[σ(cr)]]. Then [[σ(cV
r )]]

and [[σ(cW
r )]] hold, and also [[σ(h⃗V

r )]] = [[σ(h⃗W
r )]] by Lemma 3.5.3 and the

construction of the separation tuples. Furthermore, [[σ(αV
r |αW

r )]] is equal to
[[σ(αr)]] by Lemma 3.5.1.

• Case requirement COM. Consider two subsitutions σ and σ ′ satisfying [[σ(cV
r )]]

and [[σ ′(cW
r )]] and [[σ (⃗hV

r )]] = [[σ ′(⃗hW
r )]]. Furthermore, let ρ be a substitution

such that [[ρ(d⃗|V )]] = [[σ(d⃗|V )]] and [[ρ(d⃗|W )]] = [[σ ′(d⃗|W )]].
First, we show that the synchronisation of variables in S on line 16 of Al-
gorithm 7 put the necessary restrictions on σ and σ ′. For every variable
x ∈ S we know from [[σ (⃗hV

r )]] = [[σ ′(⃗hW
r )]] and the construction on line 16
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that [[σ(x)]] = [[σ ′(x)]]. Note that the order of insertion into s⃗ does not matter
since the variables are added to both h⃗W

r and h⃗W
r in the same order. This means

that [[ρ(x)]] = [[σ(x)]] (and thus equal to [[σ ′(x)]]).
From (FV(cV

r )\dV )⊆ S it follows that [[σ(cV
r )]] = [[ρ(cV

r )]]. The same argument
applies to cW

r for which [[σ(cW
r )]] = [[ρ(cW

r )]]. Furthermore, since FV(h⃗V
r )⊆ dV

and FV(h⃗W
r )⊆ dW thus [[σ(h⃗V

r )]] = [[ρ(h⃗V
r )]] and [[σ(h⃗W

r )]] = [[ρ(h⃗W
r )]]. There-

fore, we can also conclude that [[ρ(cr)]] holds since all equality conditions are
satisfied by the synchronisation.
Finally, from (FV(αV

r ) \ dV ) ⊆ S and (FV(αW
r ) \ dW ) ⊆ S it also follows that

[[σ(αV
r )|σ ′(αW

r )]] = [[ρ(αV
r |αW

r )]], which by Lemma 3.5.1 is equal to [[ρ(αr)]].
Similarly, by (FV(g⃗r |V )\dV )⊆ S it follows that [[σ(g⃗r |V )]] = [[ρ(g⃗r |V )]] and the
same for [[σ(g⃗r |W )]] = [[ρ(g⃗r |W )]].

3.6 Case Studies
We have implemented our prototype based on the previously described algorithms to
carry out several experiments using specifications written in the high-level language
mCRL2 [63], a process algebra generalising the one of Section 3.1.3. To apply the
decomposition technique we use the LPEs that the mCRL2 toolset [23] generates as
part of the pre-processing step that the toolset performs before further analyses of the
specifications are conducted. We compare the results of the monolithic exploration
and the exploration based on the decomposition technique. The sources for these
experiments can be obtained from the downloadable artifact [92].

Since the decomposition technique is not fully automated yet and several aspects
are left as future work we use the practical examples to demonstrate the effectiveness
of the technique and point out interesting observations that could be used to improve
the cleave algorithm and eventually lead to a completely automated approach. In
these case studies we did not manually choose the action label splitting; which means
that input M in Algorithm 7 is always the empty function. Therefore, all actions are
generated in the W -component when the best choice cannot be made. Furthermore, we
only specified an invariant when it is explicitly stated. All experiments are performed
on a laptop with an Intel Core i7-7700HQ CPU and 32GB main memory. The only
exception is the connect four experiment, which has been performed on a machine
with an Intel Xeon Gold 6136 CPU and 15TB main memory.

3.6.1 Alternating Bit Protocol
The alternating bit protocol (ABP) is a communication protocol that uses a single con-
trol bit, which is sent along with the message, to implement a reliable communication
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channel over two unreliable channels [63]. The specification contains four processes:
one for the sender, one for the receiver and two for the unreliable communication
channels.

First, we choose the partitioning of the parameters such that one component
(ABPV ) contains the parameters of the sender and one communication channel, and
the other component (ABPW ) contains the parameters of the receiver and the other
communication channel. See Table 3.1 for details concerning their state spaces. We
observe that component ABPV is already larger than the original state space and that it
cannot be minimised further, illustrating that traditional compositional minimisation
is, in this case, not particularly useful. The composition of the minimised components
ABPV ||ABPW is shown under ABPV ||W . This shows that it is possible to derive a
(slightly) smaller state space.

Table 3.1: Metrics for the alternating bit protocol.

Model original minimised

#states #trans #states #trans
ABP 182 230 48 58
ABPV 204 512 204 512
ABPW 64 196 60 192
ABPV∥W 172 220 48 58
ABPψ

V 52 90 22 44
ABPψ

W 22 44 20 42
ABPψ

V∥W 172 220 48 58
ABP′V 5 35 5 35
ABP′W 78 126 28 46
ABP′V∥W 76 90 48 58

The main reason for this disappointing result is because the behaviour of each
process heavily depends on the state of the other processes, resulting in large compo-
nents, as this information is lost in the decomposition. We can encode such global
information as a state invariant based on the control flow parameters (see [114] for
a formal definition of the notion of a control flow parameter). The second cleave
(ABPψ

V ∥ ABPψ

W ) for the same parameter partitioning is obtained by restricting the
components using this invariant. This does yield a useful decomposition as the state
spaces of these components are both smaller than the original state space, even though
their composition has again a state space that is only fractionally smaller than that of
the monolithic LPE. Finally, we have obtained a cleave into components ABP′V and
ABP′W where the partitioning is not based on the original processes. Here we have
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a process ABP′V for the data parameter that contains the message that is being sent
and all other parameters are in component ABP′W . This yields a very effective cleave
as shown in Table 3.1. However, this example is so small that there is hardly any
difference in execution times, which are less than a second.

3.6.2 Decomposing Monolithic Processes
The Chatbox specification [120] describes a chat room facility in which four users
can join, leave and send messages. This specification is interesting because it is
described as a monolithic process, which means that compositional minimisation is
not applicable in the first place. There are (at most) four users in the chatbox, so we
can perform a cleave where the behaviour of one user is separated from the behaviour
of the other users.

In Table 3.2 we use Chatbox0 to indicate the component for user 0 and Chatbox123
for the component containing users 1, 2 and 3. The size of the components (Chatbox0
and Chatbox123) before and after minimisation modulo strong bisimulation are pre-
sented to show that these are small and can be further reduced. Furthermore, their
composition (Chatbox0123) shows that indeed the decomposition technique can be
used quite successfully, because the result under exploration is much smaller than
the original state space. Since component Chatbox123 contains (at most) three users
we can also apply another cleave to obtain the components Chatbox′1 and Chatbox′23.
In the implementation we only need to add prefixes to the synchronisation and tag
action labels since these may not already occur in the LPE. After this computing
the composition Chatbox′123 shows that this is even more efficient than computing
Chatbox123 directly.

However, we can improve upon these results even further by adapting the specifica-
tion. Inspecting the Chatbox specification more carefully reveals that many summands
of the LPE have disjunctive enabling conditions. These lead to additional synchroni-
sation since the condition cannot be split easily into the two components. We have
manually adapted the Chatbox to a strongly bisimilar variant Chatbox∗ which avoids
these disjunctive enabling conditions. The resulting decomposition shown in Table 3.2
shows that the amount of synchronisation transitions can be greatly reduced this way.

Another example of a monolithic process is the Connect Four specification, which
models the behaviour of a game played by two players on a board with seven columns
and four rows. Using the decomposition procedure we first obtain a component for
the left-most column and a component for the six remaining columns. Next, we apply
the decomposition to the process for the six remaining columns recursively until we
have one component for every column. In Table 3.2 we can see the state space of
the process for only column seven. We have left out the state spaces of the other
components for a single column since these are all similar in size. Then we compose
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columns six and seven, which is the state space listed under Connect Four67 and the
composition of column five, six and seven is listed under Columns Connect Four5−7,
etcetera. Repeating this process until we have composed all the columns shows that
we can obtain a state space that is roughly half in size compared to the original state
space in the number of states and transitions.

Table 3.2: State space metrics for the chatbox [120] and a connect four specification.

Model exploration minimised

#states #transitions #states #transitions
Chatbox 65 536 2 621 440 16 144
Chatbox0 128 4 352 128 3 456
Chatbox123 512 37 888 8 440
Chatbox0∥123 1 024 22 528 16 144
Chatbox′1 32 1 344 16 1 120
Chatbox′23 16 1 280 4 276
Chatbox′1∥23 128 8 192 16 144

Chatbox∗ 65 536 720 896 16 144
Chatbox∗0 128 768 128 768
Chatbox∗1 32 224 32 224
Chatbox∗23 16 216 4 52
Chatbox∗1∥23 128 1 920 8 104
Chatbox∗0∥123 1 024 11 776 16 144

Connect Four 4 571 392 011 18 814 446 993 418 390 653 2 079 589 075
Connect Four7 31 1 664 31 1 664
Connect Four67 961 40 992 961 40 992
Connect Four5···7 29 791 908 876 23 327 713 264
Connect Four4···7 723 137 13 059 584 503 723 9 158 684
Connect Four3···7 15 615 413 204 751 466 13 560 351 180 369 650
Connect Four2···7 420 370 881 4 541 332 512 326 297 880 3 628 882 674
Connect Four1···7 2 388 678 550 10 967 818 533 418 390 653 2 079 589 075

3.6.3 Practical Specifications
The Register specification [77] describes a wait-free handshake register and the WMS
specification is a workload management system [118], used at CERN. For these
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two experiments we found that partitioning the parameters into a set of control flow
parameters and remaining parameters yields good results. For WMS we observed that
one control flow parameter was only used in the initialisation part of the process. This
meant that splitting it off from the data parameters caused this initialisation to become
possible in every state, leading to many unnecessary synchronisation transitions.
Therefore, we have also performed an alternative cleave into components WMS′V and
WMSW , whose components are (much) smaller.

Table 3.3: State space metrics for Hesselink’s wait-free handshake register [77] and a
workload management system used at CERN [118].

Model exploration minimised

#states #transitions #states #transitions
Register 914 048 1 885 824 1 740 3 572
RegisterV 464 10 672 464 10 672
RegisterW 97 280 273 408 5 760 16 832
RegisterV∥W 76 416 157 952 1 740 3 572

WMS 155 034 776 2 492 918 760 44 526 316 698 524 456
WMSV 212 992 5 144 576 212 992 2 801 664
WMSW 1 903 715 121 945 196 414 540 26 429 911
WMSV∥W 64 635 040 1 031 080 812 44 526 316 698 524 456
WMS′V 311 296 7 159 808 294 912 6 815 744
WMS′W 345 527 26 084 118 75 121 5 665 871
WMS′V∥W 64 635 040 1 049 716 700 44 526 316 698 524 456

3.6.4 Execution Times
We also consider the total execution time and maximum amount of memory required
to obtain the original state space using exploration and the state space obtained using
the decomposition technique. The execution times in seconds or hours required to
obtain the state space under ‘exploration’ in Tables 3.2 and 3.3, excluding the final
minimisation step of the original or composition state space which are only shown for
reference. The cost of the static analysis of the cleave itself was in the range of several
milliseconds.

Although in most cases the decomposition improves both runtime and peak mem-
ory usage this does not hold for the Connect Four specification. Here, we observe that
the peak memory usage is much higher. This memory peak is caused by the strong
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Table 3.4: Execution times and maximum memory usage measurements.

Model monolithic decomposition

time memory time memory
Chatbox 4.76s 21.9MB 0.2s 15.7MB
Register 7.94s 99.7MB 1.56s 47.7MB
WMS 2.4h 15.1GB 0.8h 11.8GB
WMS′ 2.4h 15.1GB 0.6h 3.0GB
Connect Four 25h 437GB 20h 543GB

bisimulation minimisation step for the process for columns two to seven. Although
this seems worse at first we must note that the final minimisation step requires far
more memory and time, whereas with the decomposition we obtain a state space that
is almost half in size of monolithic exploration directly.

3.7 Conclusion

We have presented a decomposition technique, referred to as cleave, that can be applied
to any monolithic process with the structure of an LPE and have shown that the result is
always a valid decomposition. Furthermore, we have shown that state invariants can be
used to improve the effectiveness of the decomposition. We consider defining a static
analysis to automatically derive the parameter partitioning for the practical application
of this technique as future work. Furthermore, the cleave is currently not well-suited
for applying the typically more useful abstraction based on (divergence-preserving)
branching bisimulation minimisation [56]. The reason for this is that τ-actions are
‘decorated’ with synchronisation actions and tags. As a result these actions become
visible, and therefore effectively branching bisimilarity yields the same reduction as
strong bisimilarity.

It seems that the way communication is formalised in the process algebra that we
consider is essential to achieve a valid (i.e., strong bisimulation preserving) decompo-
sition based on the data parameters. In any process algebra in which the synchronised
parallel composition between processes (similar to our rule Par) is renamed into a
single invisible action, often also denoted by τ , such as CCS [103] and CSP [78] it
is impossible for a parallel composition of two components to mimic a visible transi-
tion of the monolithic process that requires synchronisation of data since we cannot
distinguish which transition of the monolithic process it belongs to, and therefore
preserve strong bisimulation. If communication does result in a visible transition then
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an expressive relabelling operator could be used to rename the resulting communi-
cation. Here, expressive means that it must for example be able to ignore the action
data parameters that are used purely to synchronise data, but also rename actions to τ .
However, such a relabelling operator is often not present in process algebras, because
it does not behave nicely with respect to congruence. Finally, in the presence of global
variables the synchronisation between components could easily be achieved, but then
the question is how the state space of individual components can be derived. However,
finding the exact minimal set of features required for a process algebra to achieve a
cleave could be an interesting future direction.

On a more practical note, the main disadvantage of the current implementation is
that the parameters must be provided by the user, and this requires quite some insight
into the specification. As proposed earlier possible future work would be to employ
the techniques in [114] to analyse the dependencies in order to automatically find a
decent partitioning. Furthermore, we could use information about the original process
specification from which the monolithic process is derived to guide the partitioning.
In its current form the technique is difficult to apply to systems with infinite data sorts
since manual analysis is required to preserve the finiteness of the components. The
optimal parameter partitioning is also an algorithmic optimisation problem since the
choice for the partition also influences the sizes of the intermediate state spaces.

Another disadvantage of the current technique is that only specific summands of
the components can synchronise with each other due to the unique indices assigned to
the synchronisation actions. However, some early experiments suggest that it might
be more efficient to allow different summands of the components to synchronise with
each other whenever different summands of the monolithic LPE deal with the same
action labels. Finally, the technique could be extended to allow splitting into more than
two components, yielding synchronisation over multiple components simultaneously.
This is also related to the problem of nested applications of the cleave procedures.
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Chapter 4

On-The-Fly Solving for
Symbolic Parity Games

A parity game is a two-player game with an ω-regular winning condition, played
by players ♢ (‘even’) and □ (‘odd’) on a directed graph. The true complexity of
solving parity games is still a major open problem, with the most recent breakthroughs
yielding algorithms running in quasi-polynomial time, see, e.g., [86, 25]. Apart from
their intriguing status, parity games pop up in various fundamental results in computer
science (e.g., in the proof of decidability of a monadic second-order theory). In
practice, parity games provide an elegant, uniform framework to encode many relevant
decision problems, which include model checking problems, synthesis problems and
behavioural equivalence checking problems.

Often, a decision problem that is encoded as a parity game, can be answered by
determining which of the two players wins a designated vertex in the game graph.
Depending on the characteristics of the game, it may be the case that only a fraction of
the game is relevant for deciding which player wins a vertex. For instance, deciding
whether a transition system satisfies an invariant can be encoded by a simple, solitaire
(i.e., single player) parity game. In such a game, player □ wins all vertices that
are sinks (i.e., have no successors), and all states leading to such sinks, so checking
whether sinks are reachable from a designated vertex suffices to determine whether this
vertex is won by □, too. Clearly, as soon as a sink is detected, any further inspection
of the game becomes irrelevant.

A complicating factor is that in practice, the parity games that encode decision
problems are not given explicitly. Rather, they are specified in some higher-order
logic such as a parameterised Boolean equation system, see, e.g. [33]. Exploring the
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parity game from such a higher-order specification is, in general, time-and memory-
consuming. To counter this, symbolic exploration techniques have been proposed,
see e.g. [88]. These explore the game graph on-the-fly and exploit efficient symbolic
data structures such as LDDs [41] to represent sets of vertices and edges. Many
parity game solving algorithms can be implemented quite effectively using such data
structures [89, 124, 126], so that in the end, exploring the game graph often remains
the bottleneck.

In this chapter, we study how to combine the exploration of a parity game and
the on-the-fly solving of the explored part, with the aim to speed-up the overall
solving process. The central problem when performing on-the-fly solving during
the exploration phase is that we have to deal with incomplete information when
determining the winner for a designated vertex. Moreover, in the symbolic setting, the
exploration order may be unpredictable when advanced strategies such as chaining
and saturation [29] are used.

To formally reason about all possible exploration strategies and the artefacts they
generate, we introduce the concept of an incomplete parity game, and an ordering
on these. Incomplete parity games are parity games where for some vertices not all
outgoing edges are necessarily known. In practice, these could be identified by, e.g.,
the todo queue in a classical breadth-first search. The extra information captured by
an incomplete parity game allows us to characterise the safe set for a given player α .
This is a set of vertices for which it can be established that if player α wins the vertex,
then she cannot lose the vertex if more information becomes available. We prove an
optimality result for safe sets, which, informally, states that a safe set for player α is
also the largest set with this property (see Theorem 4.2.12).

The vertices won by player α in an α-safe set can be determined using a standard
parity game solving algorithm such as, e.g., Zielonka’s recursive algorithm [140] or
Priority Promotion [4]. However, these algorithms may be less efficient as on-the-fly
solvers. For this reason, we study three symbolic partial solvers: solitaire winning
cycle detection, forced winning cycle detection and fatal attractors [81]. In particular
cases, first determining the safe set for a player and only subsequently solving the game
using one of these partial solvers will incur an additional overhead. As a final result,
we therefore prove that all these solvers can be (modified to) run on the incomplete
game as a whole, rather than on the safe set of a player (see Propositions 4.3.5-4.3.11).

As a proof of concept, we have implemented an (open source) symbolic tool for the
mCRL2 toolset [23], that explores a parity game specified by a parameterised Boolean
equation system and solves these games on-the-fly. We report on the effectiveness
of our implementation on typical parity games stemming from, e.g., model checking
and equivalence checking problems, showing that it can speed up the process with
several orders of magnitude, while adding low overhead if the entire game is needed
for solving.
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Related Work Our work is related to existing techniques for solving symbolic parity
games such as [89, 88], as we extend these existing methods with on-the-fly solving.
Naturally, our work is also related to existing work for on-the-fly model checking.
This includes work for on-the-fly (explicit) model checking of regular alternation-free
modal mu-calculus formulas [99] and work for on-the-fly symbolic model checking of
RCTL [3]. There are also other works related to these so-called local model checking
techniques such as [128] and [44]. These present specialised algorithms that attempt
to solve the model checking problem by (lazily) exploring as little as possible from
the underlying model.

Compared to these our method is more general as it can be applied to the full
modal mu-calculus with data, which subsumes RCTL and the alternation-free subset.
Our method is also lazy in a certain sense since the early termination can ensure that
we do not explore the complete underlying method. However, compared to the existing
methods it is agnostic to the exploration strategy that is employed and the (partial)
solvers that are being used. Optimisations such as the observation that checking LTL
formulas of type AG reduces to reachability checks [43] are a special case of our
methods and partial solvers. Furthermore, our methods are not restricted to model
checking problems only and can be applied to any parity game, including decision
problems such as equivalence checking [26].

Our idea of incomplete parity games is related to three-valued modal logics as
presented in [20]. Here, a partial structure is defined where the solution to the model
checking question is also the solution for the complete structure. However, naturally
the solution can also be indeterminate when the partial information is not sufficient to
make a definite conclusion about the full structure. Our main contribution here is that
we define similar concepts for parity games and prove certain optimality results.

Outline In Section 4.1 we recall parity games. In Section 4.2 we introduce in-
complete parity games and show how partial solving can be applied correctly. In
Section 4.3 we present several partial solvers that we employ for on-the-fly solving. In
Section 4.4 we discuss the implementation of these techniques. Finally, in Section 4.5
we apply the presented techniques to several practical examples.

4.1 Preliminaries
A parity game is an infinite-duration, two-player game that is played on a finite directed
graph. The objective of the two players, called even (denoted by ♢) and odd (denoted
by □), is to win vertices in the graph.

Definition 4.1.1. A parity game is a directed graph G = (V,E, p,(V♢,V□)), where
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• V is a finite set of vertices, partitioned in sets V♢ and V□ of vertices owned by ♢
and □, respectively;

• E ⊆V ×V is the edge relation;
• p : V → N is a function that assigns a priority to each node.

Henceforth, let G = (V,E, p,(V♢,V□)) be an arbitrary parity game. Throughout
this chapter, we use α to denote an arbitrary player and ᾱ denotes the opponent. We
write vE to denote the set of successors {w ∈ V | (v,w) ∈ E} of vertex v. The set
sinks(G) is defined as the largest set U ⊆V satisfying for all v ∈U that vE = /0; i.e.,
sinks(G) is the set of all sinks: vertices without successors. If we are only concerned
with the sinks of player α , we write sinksα(G); i.e., sinksα(G) =Vα ∩sinks(G). We
write G∩U , for U ⊆V , to denote the subgame (U,(U×U)∩E, p↾U ,(V♢∩U,V□∩U)),
where p↾U (v) = p(v) for all vertices v ∈U .

2

u1

3
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u2

1
u3

2

u4

Figure 4.1: An example parity game

Example 4.1.2. Consider the graph depicted in Figure 4.1, representing a parity game.
Diamond-shaped vertices are owned by player ♢, whereas box-shaped vertices are
owned by player □. The priority of a vertex is written inside the vertex. Vertex u0 is a
sink owned by player □.

Plays and strategies. The game is played as follows. Initially, a token is placed on a
vertex of the graph. The owner of a vertex on which the token resides gets to decide
the successor vertex (if any) that the token is moved to next. A maximal sequence of
vertices (i.e., an infinite sequence or a finite sequence ending in a sink) visited by the
token by following this simple rule is called a play. A finite play π is won by player ♢
if the sink in which it ends is owned by player □, and it is won by player □ if the sink
is owned by player ♢. An infinite play π is won by player ♢ if the minimal priority
that occurs infinitely often along π is even, and it is won by player □ otherwise.

A strategy σα : V ∗Vα →V for player α is a partial function that prescribes where
player α moves the token next, given a sequence of vertices visited by the token. A
play v0 v1 . . . is consistent with a strategy σ if and only if σ(v0 . . .vi) = vi+1 for all i
for which σ(v0 . . .vi) is defined. Strategy σα is winning for player α in vertex v iff all
plays consistent with σα and starting in v are won by α . Player α wins vertex v if and
only if she has a winning strategy σα for vertex v. The parity game solving problem
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asks to compute the set of vertices W♢, won by player ♢ and the set W□, won by player
□. Note that since parity games are determined [140, 100], every vertex is won by
one of the two players. That is, the sets W♢ and W□ partition the set V .

Example 4.1.3. Consider the parity game depicted in Figure 4.1. In this game,
the strategy σ♢, partially defined as σ♢(πu1) = u2 and σ♢(πu2) = u1, for arbitrary
π , is winning for player ♢ in u1 and u2. Player □ wins vertex u3 using strategy
σ□(πu3) = u4, for arbitrary π . Note that player ♢ is always forced to move the token
from u4 to u3. Vertex u0 is a sink, owned by player □, and hence, won by player
♢.

Dominions. A strategy σα is said to be closed on a set of vertices U ⊆V iff every
play, consistent with σα and starting in a vertex v ∈U remains in U . If player α has a
strategy that is closed on U , we say that the set U is α-closed. A dominion for player
α , also called α-dominion, is a set of vertices U ⊆V such that player α has a strategy
σα that is closed on U and which is winning for α . Note that the sets W♢ and W□ are
dominions for player ♢ and player □, respectively, and, hence, every vertex won by
player α must belong to an α-dominion.

Example 4.1.4. Reconsider the parity game of Figure 4.1. Observe that player □
has a closed strategy on {u3,u4}, which is also winning for player □. Hence, the set
{u3,u4} is an □-dominion. For a similar reason, the set {u0,u1,u2} is a ♢-dominion.
On the other hand, the set {u2,u3,u4} is ♢-closed. However, none of the strategies for
which {u2,u3,u4} is closed for player ♢ is winning for her; therefore {u2,u3,u4} is
not an ♢-dominion.

Predecessors, control predecessors and attractors. Let U ⊆V be a set of vertices.
We write pre(G,U) to denote the set of predecessors {v ∈ V | ∃u ∈U : u ∈ vE} of
U in G. The control predecessor set of U for player α in G, denoted cpreα(G,U),
contains those vertices for which α is able to force entering U in one step. It is defined
as follows:

cpreα(G,U) = (Vα ∩pre(G,U))∪ (Vᾱ \ (pre(G,V \U)∪ sinks(G)))

Note that both pre and cpre are monotone operators on the complete lattice (2V ,⊆).
The α-attractor to U in G, denoted Attrα(G,U), is the set of vertices from which player
α can force play to reach a vertex in U :

Attrα(G,U) = µZ.(U ∪ cpreα(G,Z))

The α-attractor to U can be computed by means of a fixed point iteration, starting at
U and adding α-control predecessors in each iteration until a stable set is reached. We
note that the α-attractor to an α-dominion D is again an α-dominion.
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Example 4.1.5. Consider the parity game G of Figure 4.1 once again. The ♢-control
predecessors of {u2} is the set {u1}. Note that since player □ can avoid moving
to u2 from vertex u3 by moving to vertex u4, vertex u3 is not among the ♢-control
predecessors of {u2}. The ♢-attractor to {u2} is the set {u1,u2}, which is the largest
set of vertices for which player ♢ has a strategy to force play to the set of vertices
{u2}.

4.2 Incomplete Parity Games
In many practical applications that rely on parity game solving, the parity game is
gradually constructed by means of an exploration, often starting from an ‘initial’
vertex. This is, for instance, the case when using parity games in the context of
model checking or when deciding behavioural preorders or equivalences. For such
applications, it may be profitable to combine exploration and solving, so that the costly
exploration can be terminated when the winner of a particular vertex of interest (often
the initial vertex) has been determined. The example below, however, illustrates that
one cannot naively solve the parity game constructed so far.
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Figure 4.2: A parity game where the dotted edges are not yet known.

Example 4.2.1. Consider the parity game G in Figure 4.2, consisting of all vertices
and only the solid edges. This game could, for example, be the result of an exploration
starting from u4. Then G∩ {u0,u1,u2,u3,u4,u5} is a subgame for which we can
conclude that all vertices form an ♢-dominion. However, after exploring the dotted
edges, player □ can escape to vertex u4 from vertex u5. Consequently, vertices u4 and
u5 are no longer won by player ♢ in the extended game. Furthermore, observe that
the additional edge from u3 to u5 does not affect the previously established fact that
player ♢ wins this vertex.

To facilitate reasoning about games with incomplete information, we first introduce
the notion of an incomplete parity game.

102



4.2 INCOMPLETE PARITY GAMES

Definition 4.2.2. An incomplete parity game is a structure ⅁ = (G, I), where G
is a parity game (V,E, p,(V♢,V□)), and I ⊆ V is a set of vertices with potentially
unexplored successors. We refer to the set I as the set of incomplete vertices; the set
V \ I is the set of complete vertices.

Observe that (G, /0) is a ‘standard’ parity game. We permit ourselves to use
the notation for parity game notions such as plays, strategies, dominions, etcetera,
also in the context of incomplete parity games. In particular, for ⅁ = (G, I), we
write pre(⅁,U) and Attrα(⅁,U) to indicate pre(G,U) and Attrα(G,U), respectively.
Furthermore, we define ⅁∩U as the structure (G∩U, I∩U).

Intuitively, while exploring a parity game, we extend the set of vertices and
edges by exploring the incomplete vertices. Doing so gives rise to potentially new
incomplete vertices. At each stage in the exploration, the incomplete parity game
extends incomplete parity games explored in earlier stages. We formalise the relation
between incomplete parity games, abstracting from any particular order in which
vertices and edges are explored.

Definition 4.2.3. Let ⅁= ((V,E, p,(V♢,V□)), I) and ⅁′ = ((V ′,E ′, p′,(V ′♢,V
′
□)), I

′) be
incomplete parity games. We write ⅁⊑ ⅁′ iff the following conditions hold:

(1) V ⊆V ′, V♢ ⊆V ′♢ and V□ ⊆V ′□;

(2) E ⊆ E ′ and ((V \ I)×V )∩E ′ ⊆ E;

(3) p = p′↾V ;

(4) I′∩V ⊆ I

Conditions (1) and (3) are self-explanatory. Condition (2) states that on the one
hand, no edges are lost, and, on the other hand, E ′ can only add edges from vertices
that are incomplete: for complete vertices, E ′ specifies no new successors. Finally,
condition (4) captures that the set of incomplete vertices I′ cannot contain vertices that
were previously complete. We note the following.

Lemma 4.2.4. The ordering ⊑ is reflexive, anti-symmetric and transitive.

Proof. Reflexivity is trivial. For anti-symmetry we only need the observation that if
A ⊆ B and B ⊆ A then A = B. We show transitivity, i.e., that ⅁ ⊑ ⅁′′ holds, where
⅁′′ = ((V ′′,E ′′, p′′,(V ′′♢ ,V

′′
□)), I

′′) and ⅁⊑ ⅁′ ⊑ ⅁′′. Transitivity of (1) and (3) follows
from the transitivity of ⊆ and the definition of ↾. For (2) we have to show that
((V \ I)×V )∩E ′′ ⊆ E, but this follows from the fact that E ′ ⊆ E ′′ and ((V \ I)×
V )∩E ′ ⊆ E. Finally, for (4) show that I′′∩V ⊆ I. Since I′′∩V ′ ⊆ I′ it follows that
I′′ ∩V ′ ∩V ⊆ I′ ∩V and thus I′′ ∩V ⊆ I′ ∩V , because V ⊆ V ′. Furthermore, since
I′∩V ⊆ I it follows that I′′∩V ⊆ I.
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Example 4.2.5. Suppose that ⅁ = (G, I) is the incomplete parity game depicted
in Figure 4.2, where G is the game with all vertices and only the solid edges, and
I = {u3,u5}. Then ⅁⊑ ⅁′, where ⅁′ = (G′, I′) is the incomplete parity game where
G′ is the depicted game with all vertices and both the solid edges and dotted edges,
and I′ = /0.

Let us briefly return to Example 4.2.1. We concluded that the winner of vertex u4
(and also u5) changed when adding new information. The reason is that player □ has
a strategy to reach an incomplete vertex owned by her. Such an incomplete vertex may
present an opportunity to escape from plays that would be non-winning otherwise.
On the other hand, the incomplete vertex u3 has already been sufficiently explored to
allow for concluding that this vertex is won by player ♢, even if more successors are
added to u3. This suggests that for some vertices, we can decide their winner in an
incomplete parity game and preserve that winner in all future extensions of the game.
We formally characterise this set of vertices in the definition below.

Definition 4.2.6. Let ⅁= (G, I), with G = (V,E, p,(V♢,V□)) be an incomplete parity
game. The α-safe vertices for ⅁, denoted by safeα(⅁), is the set V \Attrᾱ(G,Vᾱ ∩ I).

Example 4.2.7. Consider the incomplete parity game ⅁ of Example 4.2.5 once more.
We have safe♢(⅁) = {u0,u1,u2,u3} and safe□(⅁) = {u0,u1,u2,u4,u5}.

In the remainder of this section, we show that it is indeed the case that while
exploring a parity game, one can only safely determine the winners in the sets
safe□(⅁) and safe♢(⅁), respectively. More specifically, we show (Lemma 4.2.8)
that all α-dominions found in safeα(⅁) are preserved in extensions of the game, and
(Lemma 4.2.10) the vertices not in safeα(⅁) are not necessarily won by the same
player in extensions of the game.

Lemma 4.2.8. Given two incomplete games ⅁ and ⅁′ such that ⅁ ⊑ ⅁′. Any α-
dominion in ⅁∩ safeα(⅁) is also an α-dominion in ⅁′.

Proof. Let ⅁= (G, I), with G = (V,E, p,(V♢,V□)) be an incomplete parity game, and
⅁′ = (G′, I′), with G′ = (V ′,E ′, p′,(V ′♢,V

′
□)). Assume that ⅁ ⊑ ⅁′ and suppose that

D ⊆ V is an α-dominion in G∩ safeα(⅁). Observe that since V ⊆ V ′, also D ⊆ V ′.
This means that player α must have a strategy σ that is closed on D and for which
every play consisting with that strategy and starting in a vertex in D is winning for α .
Let σ be such a strategy. We define strategy σ ′ as follows. Let π = v0 . . .vn ∈V ∗Vα

be an arbitrary path through D. Then σ ′(π) = σ(π) whenever σ is defined for π , and
σ ′(π) = v′ for an arbitrary v′ ∈ {v′′ ∈ D | (vn,v′) ∈ E} ⊆ {v′′ ∈ D | (vn,v′) ∈ E ′} in
case {v′′ ∈ D | (vn,v′) ∈ E} ̸= /0 and σ is not defined for π .
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Consider an arbitrary play v0 v1 . . . in G′, consistent with σ ′ and starting in v0 ∈D.
Suppose that there is some vertex on this play that is not in D. Let vi be the first such
vertex; i.e., v j ∈ D for all j < i. We distinguish two cases.

• Assume σ is defined for v0 v1 . . .vi−1. Then σ(v0 v1, . . .vi−1) ∈ D, since σ is
closed on D in G. But then also σ ′(v0 v1 . . .vi−1) = vi ∈ D. Contradiction.

• Next, assume that σ is not defined for v0 v1 . . .vi−1. We distinguish two further
cases.

– Case vi−1 ∈ Vα . Since σ is closed on D in G, it must be the case that
{v′′ ∈V | (vi−1,v′′)∈ E}⊆D. By construction, σ ′(v0 v1 . . .vi−1) = vi ∈D.
Contradiction.

– Case vi−1 ∈ Vᾱ . Since σ is closed on D in G, it must be the case that
{v′′ ∈ V | (vi−1,v′′) ∈ E} ⊆ D. Furthermore, since D ⊆ V ∩ safeα(⅁),
(I′∩V )⊆ I and (V \ I)×V )∩E ′ ⊆ E, also {v′′ ∈V ′ | (vi−1,v′′)∈ E ′}⊆D.
But then also vi ∈ D. Contradiction.

Since all cases lead to a contradiction, we find that vi ∈D. But then all plays consistent
with σ ′ must remain in D.

It remains to argue that σ ′ is a winning play. However, this follows from the fact
that all plays π , starting in D and consistent with σ ′ are also plays consistent with σ .
Since σ was a winning strategy for player α , also σ ′ is winning for α in (G′, I′).

Example 4.2.9. Recall that in Example 4.2.7, we found that safe♢(⅁)= {u0,u1,u2,u3}.
Observe that in the incomplete parity game ⅁ of Example 4.2.5, restricted to vertices
{u0,u1,u2,u3}, all vertices are won by player ♢, and, hence, {u0,u1,u2,u3} is an
♢-dominion. Following Lemma 4.2.8 we can indeed conclude that this remains an
♢-dominion in all extensions of ⅁, and, in particular, for the (complete) parity game
⅁′ of Example 4.2.5.

Lemma 4.2.10. Let ⅁ be an incomplete parity game. Suppose that W is an α-
dominion in ⅁. If W ̸⊆ safeα(⅁), then there is an (incomplete) parity game ⅁′ such
that ⅁⊑ ⅁′and all vertices in W \ safeα(⅁) are won by ᾱ .

Proof. Let ⅁= (G, I) be an incomplete parity game, with G = (V,E, p,(V♢,V□)), and
assume that W ⊆V is an α-dominion. Suppose that W ̸⊆ safeα(⅁).

Let G′ = (V ′,E ′, p′,(V♢,V□)), with V ′ = V ∪{z}, for fresh vertex z /∈ V , E ′ =
E ∪{(v,z) | v ∈ I}, p′↾V= p and p′(z) = 0, and V ′α =Vα ∪{z} and V ′ᾱ =Vᾱ . Then it
follows that ⅁⊑ ⅁′ for ⅁′ = (G′, /0).

Pick a vertex v ∈W \ safeα(⅁). Then v ∈ Attrᾱ(G,Vᾱ ∩ I), so player ᾱ must have
a strategy to force play to Vᾱ ∩ I. Let σᾱ be this strategy. We define a new strategy
σ ′ᾱ which, for sequences v0 . . .vn for which vn /∈ Vᾱ ∩ I is defined as σᾱ , and for
vn ∈ Vᾱ ∩ I, we have σ ′ᾱ(v0 . . .vn) = z. Let σα be an arbitrary strategy for player α .
Consider a play π , starting in v, which is consistent with both σα and σ ′ᾱ . Then there
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must be a vertex w on that play such that w ∈ I, since σ ′ᾱ forces play to Vᾱ ∩ I. But
then, by construction, π must be finite and end in sink z /∈W . Note that vertex z ∈V ′ is
won by ᾱ , so we find that π is won by ᾱ . Since σα is an arbitrary strategy by player α ,
we can conclude that all plays consistent with σ ′ᾱ are won by ᾱ and therefore vertex v
is won by ᾱ , too. Hence, all vertices in W \ safeα(⅁) are won by ᾱ in ⅁′.

As a corollary of the above lemma, we find that α-dominions that contain vertices
outside of the α-safe set are not guaranteed to be dominions in all extensions of the
incomplete parity game.

Corollary 4.2.11. Let ⅁ be an incomplete parity game. Suppose that W is an α-
dominion in ⅁. If W ̸⊆ safeα(⅁), then there is an (incomplete) parity game ⅁′ such
that ⅁⊑ ⅁′ and W is not an α-dominion in ⅁′.

The theorem below summarises the two previous results, claiming that the sets
safe♢(⅁) and safe□(⅁) are the optimal subsets that can be used safely when combining
solving and the exploration of a parity game.

Theorem 4.2.12. Let ⅁ = (G, I), with G = (V,E, p,(V♢,V□)), be an incomplete
parity game. Define Wα as the union of all α-dominions in ⅁∩ safeα(⅁), and let
W? = V \ (W♢ ∪W□). Then W? is the largest set of vertices v for which there are
incomplete parity games ⅁α and ⅁ᾱ such that ⅁⊑ ⅁α and ⅁⊑ ⅁ᾱ and v is won by α

in ⅁α and v is won by ᾱ in ⅁ᾱ .

Proof. Let ⅁, with G = (V,E, p,(V♢,V□)) be an incomplete parity game. Pick a vertex
v ∈W?. Suppose that in G, vertex v ∈W? is won by player α . Let ⅁α = ⅁. Then
⅁⊑ ⅁α and v is also won by α in ⅁α .

Next, we argue that there must be a game ⅁ᾱ such that ⅁⊑ ⅁ᾱ and v is won by
ᾱ in ⅁ᾱ . Since v ∈W? is won by player α in G, v must belong to an α-dominion
in G. Towards a contradiction, assume that v ∈ safeα(⅁). Then there must also be
a α-dominion containing v in G∩ safeα(⅁), since ᾱ cannot escape the set safeα(⅁).
But then v ∈Wα . Contradiction, so v /∈ safeα(⅁). So, v must be part of an α-dominion
D in G such that D ̸⊆ safeα(⅁). By Lemma 4.2.10, we find that there is an incomplete
parity game ⅁ᾱ such that ⅁⊑ ⅁ᾱ and all vertices in D\safeα(⅁), and vertex v ∈D in
particular, are won by ᾱ in ⅁ᾱ .

Finally, we argue that W? cannot be larger. Pick a vertex v /∈W?. Then there must
be some player α such that v ∈Wα , and, consequently, there must be an α-dominion
D⊆ ⅁∩safeα(⅁) such that v ∈D. But then by Lemma 4.2.8, we find that v is won by
α in all incomplete parity games ⅁′ such that ⅁⊑ ⅁′.
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4.3 On-the-fly Solving

In the previous section we saw that for any solver solveα , which accepts a parity game
as input and returns an α-dominion Wα , a correct on-the-fly solving algorithm can be
obtained by computing Wα = solveα(⅁∩ safeα(⅁)) while exploring an (incomplete)
parity game ⅁. While this approach is clearly sound, computing the set of safe vertices
can be expensive for large state spaces and potentially wasteful when no dominions
are found afterwards. In the next section, we introduce safe attractors which, as we
show, can be used to search for specific dominions without first computing the α-safe
set of vertices. A similar notion was also introduced in [21].

4.3.1 Safe Attractors

We start by observing that the α-attractor to a set U in an incomplete parity game
⅁ does not make a distinction between the set of complete and incomplete vertices.
Consequently, it may wrongly conclude that α has a strategy to force the play to U
when the attractor strategy involves incomplete vertices owned by ᾱ . We thus need to
make sure that such vertices are excluded from consideration. This can be achieved by
considering the set of unsafe vertices Vᾱ ∩ I as potential vertices that can be used by
the other player to escape. We define the safe α-attractor as the least fixed point of the
safe control predecessor. The latter is defined as follows for a set of vertices U :

spreα(⅁,U) = (Vα ∩pre(⅁,U))∪ (Vᾱ \ (pre(⅁,V \U)∪ sinks(⅁)∪ I))

Lemma 4.3.1. Let ⅁ be an incomplete parity game. For all vertex sets X ⊆ safeα(⅁)
it holds that cpreα(⅁∩ safeα(⅁),X) = spreα(⅁,X).

Proof. Let ⅁= (G, I), with G = (V,E, p,(V♢,V□)), be an incomplete parity game and
let ⅁′ = ⅁∩ safeα(⅁) = (G′, I ∩ safeα(⅁)), with G′ = (V ′,E ′, p′,(V ′♢,V

′
□)). Pick an

arbitrary vertex set X ⊆ safeα(⅁).
• ad cpreα(⅁′,X) ⊆ spreα(⅁,X). Let v ∈ cpreα(⅁′,X) ⊆ safeα(⅁). We distin-

guish two cases: v ∈V ′α and v ∈V ′ᾱ .
– Case v ∈ V ′α . Then, by definition of the control predecessor, also v ∈

V ′α ∩ pre(⅁′,X). Since V ′α ⊆ Vα , it suffices to show that v ∈ pre(⅁,X).
But this follows instantly since ⅁′ is a substructure of ⅁. Hence, v ∈
Vα ∩pre(⅁′,X)⊆ spreα(⅁,X).

– Case v∈V ′ᾱ . Since v∈ cpreα(⅁′,X), we then also have v∈V ′ᾱ \(pre(⅁′,V ′\
X)∪ sinks(⅁′)), so v /∈ pre(⅁′,V ′ \X)∪ sinks(⅁′).
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Suppose v ∈ I. Since v ∈ V ′ᾱ ⊆ Vᾱ , also v ∈ Vᾱ ∩ I, and therefore v ∈
Attrᾱ(⅁,Vᾱ ∩ I). But this contradicts v ∈ safeα(⅁) =V \Attrᾱ(⅁,Vᾱ ∩ I).
Hence, v /∈ I. Next, suppose that v ∈ sinks(⅁). Since v /∈ sinks(⅁′), vertex
v was removed from ⅁′, and, hence, v /∈ safeα(⅁). Contradiction, so
v /∈ sinks(⅁). Finally, suppose that v ∈ pre(⅁,V \X). Then there must
be a vertex w ∈ vE for which w ∈ V \X and w ̸∈ V ′ \X . However, then
w /∈ safeα(⅁) and also v /∈ safeα(⅁) since v ∈Vᾱ . So, v /∈ pre(⅁,V \X).
Hence, we can conclude that v ∈Vᾱ \ (pre(⅁,V \X)∪ sinks(⅁)∪ I).

We may thus conclude that v ∈ spreα(⅁,X).
• ad cpreα(⅁′,X) ⊇ spreα(⅁,X). Let v ∈ spreα(⅁,X). We again use a case

distinction to show that v ∈ cpreα(⅁′,X).
– Case v ∈Vα . Then also v ∈ pre(⅁,X), so for some w ∈ vE, we have w ∈

X ⊆ safeα(⅁). But then also v ∈ safeα(⅁), since α can move to a vertex
in X , preventing plays passing through v from reaching Vᾱ ∩ I. Hence,
v∈Vα ∩safeα(⅁) =V ′α . Since X ⊆ safeα(⅁), we also have v∈ pre(⅁′,X).
Hence, v ∈V ′α ∩pre(⅁′,X).

– Case v ∈ Vᾱ . Then v /∈ pre(⅁,V \X)∪ sinks(⅁)∪ I. Assume that v ∈
pre(⅁′,V ′ \X). Since ⅁′ is a subgraph of ⅁ and V ′ \X ⊆V \X , we then
have v ∈ pre(⅁,V \X). Contradiction. Next, assume that v ∈ sinks(⅁′).
But this contradicts v /∈ sinks(⅁), since sinks(⅁′)⊆ sinks(⅁). Finally, we
know that v /∈ pre(⅁,V \X). This means that all successors of v must be in
X , i.e., we find that vE ⊆ X ⊆ safeα(⅁). But then, since v /∈ sinks(⅁)∪ I,
we have v /∈ Attrᾱ(⅁,Vᾱ ∩ I), so v ∈ safeα(⅁). Hence, v ∈V ′α .

We may therefore conclude that v ∈ cpreα(⅁′,X).

The safe α-attractor to U , denoted SAttrα(⅁,U), is the set of vertices from which
player α can force to safely reach U in ⅁:

SAttrα(⅁,U) = µZ.(U ∪ spreα(⅁,Z))

Lemma 4.3.2. Let ⅁ be an incomplete parity game, and X ⊆ safeα(⅁). Then Attrα(⅁∩
safeα(⅁),X) = SAttrα(⅁,X).

Proof. We show by means of an induction that the fixed point approximants Ai of
Attrα(⅁∩ safeα(⅁),X) are equal to the approximants Bi of SAttrα(⅁,X) and that
Ai ⊆ safeα(⅁). Initially, A0 = B0 = /0, which are equal and /0⊆ safeα(⅁).

Inductive step, assume that Ai = Bi and Ai ⊆ safeα(⅁). We can show that
X ∪ cpreα(G∩ safeα(⅁),Ai) = X ∪ spreα(⅁,Bi). First, using Lemma 4.3.1 we can
conclude that cpreα(⅁∩ safeα(⅁),Ai) = spreα(⅁,Ai). From Ai = Bi it follows that
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X ∪ cpreα(G∩ safeα(⅁),Ai) = X ∪ spreα(⅁,Bi). Finally, it holds that cpreα(G∩
safeα(⅁),Ai)⊆ safeα(⅁) by definition.

In particular, we can conclude the following:

Corollary 4.3.3. Let ⅁ be an incomplete parity game, and X ⊆ safeα(⅁) be an
α-dominion. Then SAttrα(⅁,X) is an α-dominion for all ⅁′ satisfying ⅁⊑ ⅁′.

One application of the above corollary is the following: since on-the-fly solving
is typically performed repeatedly, previously found dominions can be expanded by
computing the safe α-attractor towards these already solved vertices.

Another corollary is the following, which states that we can always safely attract
towards complete sinks.

Corollary 4.3.4. Let ⅁= (G, I) be an incomplete parity game and let ⅁′ be such that
⅁⊑ ⅁′. Then SAttrα(⅁,sinksᾱ(⅁)\ I) is an α-dominion in ⅁′.

4.3.2 Partial Solvers
In practice, a full-fledged solver, such as Zielonka’s algorithm [140] or one of the
Priority Promotion variants [4], may be costly to run often while exploring a parity
game. Instead, cheaper partial solvers may be used that search for a dominion of a
particular shape. We study three such partial solvers in this section, with a particular
focus on solvers that lend themselves for parity games that are represented symbolically
using, e.g., BDDs [22], MDDs [102] or LDDs [41]. For the remainder of this section,
we fix an arbitrary incomplete parity game ⅁= ((V,E, p,(V♢,V□)), I).

Winning solitaire cycles. A simple cycle in ⅁ can be represented by a finite sequence
of distinct vertices v0 v1 . . . vn satisfying v0 ∈ vnE. Such a cycle is an α-solitaire cycle
whenever all vertices on that cycle are owned by player α .

Observe that if all vertices on an α-solitaire cycle have a priority that is of the
same parity as the owner α , then all vertices on that cycle are won by player α .
Formally, these are thus cycles through vertices in the set Pα ∩Vα , where P♢ =
{v ∈V \sinks(⅁) | p(v) mod 2 = 0} and P□ = {v ∈V \sinks(⅁) | p(v) mod 2 = 1}.
Let C α

sol(⅁) represent the largest set of α-solitaire winning cycles. Then C α
sol(⅁) =

νZ.(Pα ∩Vα ∩pre(⅁,Z)).

Proposition 4.3.5. The set C α
sol(⅁) is an α-dominion and we have C α

sol(⅁)⊆ safeα(⅁).

Proof. We first prove that C α
sol(⅁)⊆ safeα(⅁). We show, by means of an induction

on the fixed point approximants Ai of the attractor, that C α
sol(⅁)∩Attrᾱ(⅁,Vᾱ ∩ I) =

/0. The base case follows immediately, as C α
sol(⅁)∩A0 = C α

sol(⅁)∩ /0 = /0. For the
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induction, we assume that C α
sol(⅁)∩Ai = /0; we show that also C α

sol(⅁)∩ ((Vᾱ ∩ I)∪
cpreᾱ(⅁,Ai)) = /0. First, observe that C α

sol(⅁) ⊆ Vα ; hence, it suffices to prove that
C α
sol(⅁)∩ (Vα \ (pre(⅁,V \Ai)∪ sinks(⅁)) = /0. But this follows immediately from

the fact that for every vertex v ∈ C α
sol(⅁), we have v ∈ Pα ∩Vα ∩pre(⅁,C α

sol(⅁)); more
specifically, we have vE ∩C α

sol(⅁) ̸= /0 for all v ∈ C α
sol(⅁).

The fact that C α
sol(⅁) is an α-dominion follows from the fact that for every vertex

v ∈ C α
sol(⅁), there is some w ∈ vE ∩C α

sol(⅁). This means that player α must have a
strategy that is closed on C α

sol(⅁). Since all vertices in C α
sol(⅁) are of the priority that

is beneficial to α , this closed strategy is also winning for α .

Observe that winning solitaire cycles can be computed without first computing the
α-safe set. Parity games that stand to profit from detecting winning solitaire cycles
are those originating from verifying safety properties.

Winning forced cycles. In general, a cycle in safeα(⅁), through vertices in P♢ can
contain vertices of both players, providing player □ an opportunity to break the cycle
if that is beneficial to her. Nevertheless, if breaking a cycle always inadvertently leads
to another cycle through P♢, then we may conclude that all vertices on these cycles
are won by player ♢. We call these cycles winning forced cycles for player ♢. A
dual argument applies to cycles through P□. Let C α

for(⅁) represent the largest set of
vertices that are on winning forced cycles for player α . More formally, we define
C α
for(⅁) = νZ.(Pα ∩ safeα(⅁)∩ cpreα(⅁,Z)).

Lemma 4.3.6. The set C α
for(⅁) is an α-dominion and we have C α

for(⅁)⊆ safeα(⅁).

Proof. The fact that C α
for(⅁) ⊆ safeα(⅁) follows immediately from the fact that for

all v ∈ C α
for(⅁), we have v ∈ Pα ∩ safeα(⅁)∩ cpreα(⅁,C α

for(⅁)).
We next show that C α

for(⅁) is an α-dominion. Pick an arbitrary vertex v ∈ C α
for(⅁).

If v∈Vα , then vE∩C α
for(⅁) ̸= /0, so player α has a strategy to move to another vertex in

C α
for(⅁). In case v∈Vᾱ , then vE ⊆C α

for(⅁), so any play passing through v is guaranteed
to next visit a vertex in C α

for(⅁). Hence, player α has a closed strategy on C α
for(⅁).

Since C α
for(⅁)⊆ Pα , such a closed strategy must be winning for α .

A possible downside of the above construction is that it again requires to first
compute safeα(⅁), which, in particular cases, may incur an additional overhead.
Instead, we can compute the same set using the safe control predecessor. We define
C α
s-for(⅁) = νZ.(Pα ∩ spreα(⅁,Z)).

Proposition 4.3.7. We have C α
for(⅁) = C α

s-for(⅁).

Proof. Let τ(Z) = Pα ∩ spreα(⅁,Z). We use set inclusion to show that C α
for(⅁) is

indeed a fixed point of τ .
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• ad C α
for(⅁)⊆ τ(C α

for(⅁)). Pick a vertex v∈C α
for(⅁). By definition of C α

for(⅁), we
have v ∈ Pα ∩ safeα(⅁)∩ cpreα(⅁,C α

for(⅁)). We can observe that safeα(⅁)∩
cpreα(⅁,C α

for(⅁)) = safeα(⅁)∩cpreα(⅁∩safeα(⅁),C α
for(⅁)). But then, since

C α
for(⅁)⊆ safeα(⅁), we find, by Lemma 4.3.1, that cpreα(⅁∩safeα(⅁),C α

for(⅁))=
spreα(⅁,C α

for(⅁)). Hence, v ∈ Pα ∩ spreα(⅁,C α
for(⅁)) = τ(C α

for(⅁)).
• ad C α

for(⅁) ⊇ τ(C α
for(⅁)). Again pick a vertex v ∈ τ(C α

for(⅁)). Then v ∈ Pα ∩
spreα(⅁,C α

for(⅁)). Since C α
for(⅁)⊆ safeα(⅁), by Lemma 4.3.1, we again have

spreα(⅁,C α
for(⅁)) = cpreα(⅁∩safeα(⅁),C α

for(⅁)). But then it must be the case
that v∈ safeα(⅁). Moreover, cpreα(⅁∩safeα(⅁),C α

for(⅁))⊆ cpreα(⅁,C α
for(⅁)).

So v ∈ Pα ∩ safeα(⅁)∩ cpreα(⅁,C α
for(⅁)) = C α

for(⅁).
We show next that for any Z = τ(Z), we have Z ⊆ C α

for(⅁). Let Z be such. We first
show that for every v ∈ Z ∩Vα , there is some w ∈ vE ∩Z, and for every v ∈ Z ∩Vᾱ ,
we have v /∈ sinks(⅁), v /∈ I and vE ⊆ Z. Pick v ∈ Z ∩Vα . Then v ∈ τ(Z)∩Vα =
Pα ∩Vα ∩ spreα(⅁,Z)⊆ pre(⅁,Z). But then vE ∩Z ̸= /0. Next, let v ∈ Z∩Vᾱ . Then
v ∈ τ(Z)∩Vᾱ = Pα ∩Vᾱ ∩ spreα(⅁,Z)⊆Vᾱ \ (pre(⅁,V \Z)∪ sinks(⅁)∪ I). So v /∈
pre(⅁,V \Z)∪ sinks(⅁)∪ I. Consequently, vE ⊆ Z, v /∈ sinks(⅁) and v /∈ I.

Since for every v ∈ Z∩Vα , we have vE∩Z ̸= /0, there must be a strategy for player
α to move to another vertex in Z. Let σ be this strategy. Moreover, since for all
v ∈ Z∩Vᾱ we have vE ⊆ Z, we find that σ is closed on Z and since Z∩ sinks(⅁) = /0,
strategy σ induces forced cycles. Moreover, since Z ⊆ Pα , we can conclude that all
vertices in Z are on winning forced cycles.

Finally, we must argue that Z ⊆ safeα(⅁). But this follows from the fact that
Z∩Vᾱ ∩ I = /0, and, hence, also Z∩Attrᾱ(⅁,Vᾱ ∩ I) = /0. Since Z is contained within
Pα ∩ safeα(⅁), we find that Z ⊆ C α

for(⅁).

Fatal attractors. Both solitaire cycles and forced cycles utilise the fact that the
parity winning condition becomes trivial if the only priorities that occur on a play
are of the parity of a single player. Fatal attractors [81] were originally conceived to
solve parts of a game using algorithms that have an appealing worst-case running time;
for a detailed account, we refer to [81]. While ibid. investigates several variants, the
main idea behind a fatal attractor is that it identifies cycles in which the priorities are
non-decreasing until the dominating priority of the attractor is (re)visited. We focus
on a simplified (and cheaper) variant of the psolB algorithm of [81], which is based
on the concept of a monotone attractor, which, in turn, relies on the monotone control
predecessor defined below, where P≥c = {v ∈V | p(v)≥ c}:

Mcpreα(⅁,Z,U,c) = P≥c∩ cpreα(⅁,Z∪U)

The monotone attractor for a given priority is then defined as the least fixed point
of the monotone control predecessor for that priority, formally MAttrα(⅁,U,c) =
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µZ.Mcpreα(⅁,Z,U,c). A fatal attractor for priority c is then the largest set of ver-
tices closed under the monotone attractor for priority c; i.e., F α(⅁,c) = νZ.(P=c∩
safeα(⅁)∩MAttrα(⅁∩ safeα(⅁),Z,c)), where P=c = P≥c \P≥c+1.

Lemma 4.3.8 (See [81], Theorem 2). For even priority c, we have that MAttr♢(⅁∩
safeα(⅁),F♢(⅁,c),c)⊆ safe♢(⅁) and also MAttr♢(⅁∩ safeα(⅁),F♢(⅁,c),c) is an
♢-dominion. If c is odd then we have MAttr□(⅁∩safeα(⅁),F□(⅁,c),c)⊆ safe□(⅁)
and MAttr□(⅁∩ safeα(⅁),F□(⅁,c),c) is an □-dominion.

Our simplified version of the psolB algorithm, here dubbed solB− computes fatal
attractors for all priorities in descending order, accumulating ♢ and □-dominions and
extending these dominions using a standard ♢ or □-attractor. This can be implemented
using a simple loop over these priorities.

In line with the previous solvers, we can also modify this solver to employ a safe
monotone control predecessor, which uses a construction that is similar in spirit to
that of the safe control predecessor. Formally, we define the safe monotone control
predecessor as follows:

sMcpreα(⅁,Z,U,c) = P≥c∩ spreα(⅁,Z∪U)

The corresponding safe monotone α-attractor, denoted sMAttrα(⅁,U,c), is defined as
follows: sMAttrα(⅁,U,c) = µZ.sMcpreα(⅁,Z,U,c). We define the safe fatal attractor
for priority c as the set F α

s (⅁,c) = νZ.(P=c∩ sMAttrα(⅁,Z,c)). Similar to the safe
attractor case using a standard inductive argument we can show the following.

Lemma 4.3.9. Let ⅁ be an incomplete parity game, and X ⊆ safeα(⅁). Then it holds
that MAttrα(⅁∩ safeα(⅁),X ,c) = sMAttrα(⅁,X ,c) for any player α and priority c.

Proof. We show by means of an induction that the fixed point approximants Ai of
MAttrα(⅁∩ safeα(⅁),X ,c) are equal to the approximants Bi of sMAttrα(⅁,X ,c) and
Ai ⊆ safeα(⅁). Initially, A0 = B0 = /0 and /0⊆ safeα(⅁).

Inductive step, assume that Ai =Bi and Ai⊆ safeα(⅁). We observe that Mcpreα(⅁∩
safeα(⅁),Ai,X ,c) = P≥c ∩ cpreα(⅁∩ safeα(⅁),X ∪Ai), which by Lemma 4.3.1 is
equal to P≥c ∩ spreα(⅁,X ∪Ai) since X ∪Ai ⊆ safeα(⅁). Therefore, Mcpreα(⅁∩
safeα(⅁),Ai,X ,c)= sMcpreα(⅁,Ai,X ,c). Furthermore, it also holds that Mcpreα(⅁∩
safeα(⅁),Ai,X ,c)⊆ safeα(⅁).

Lemma 4.3.10. Let ⅁ be an incomplete parity game and X a set of vertices such
that X ⊆ sMAttrα(⅁,X ,c). Then sMAttrα(⅁,X ,c) ⊆ safeα(⅁) for any player α and
priority c.

Proof. Let ⅁= (G, I), with G = (V,E, p,(V♢,V□)), be an incomplete parity game. We
show, by means of an induction on the fixed point approximants Ai of the attractor,
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that sMAttrα(⅁,X ,c)∩Attrᾱ(⅁,Vᾱ ∩ I) = /0. The base case follows immediately, as
sMAttrα(⅁,X ,c)∩A0 = sMAttrα(⅁,X ,c)∩ /0 = /0.

For the induction, we assume that sMAttrα(⅁,X ,c)∩Ai = /0; we show that also
sMAttrα(⅁,X ,c)∩ ((Vᾱ ∩ I)∪ cpreᾱ(⅁,Ai)) = /0. First of all, since spreα(⅁,Z)∩
Vᾱ ∩ I = /0, for any Z, it follows that sMAttrα(⅁,X ,c)∩Vᾱ ∩ I = /0. It remains to
show that sMAttrα(⅁,X ,c)∩ cpreᾱ(⅁,Ai) = /0, which is equal to showing that P≥c∩
spreα(⅁,sMAttrα(⅁,X ,c)∪X)∩ cpreᾱ(⅁,Ai) = /0. Since X ⊆ sMAttrα(⅁,X ,c) we
have that sMAttrα(⅁,X ,c)∪X = sMAttrα(⅁,X ,c), and therefore it suffices to show
that spreα(⅁,sMAttrα(⅁,X ,c))∩ cpreᾱ(⅁,Ai) = /0. Consider any vertex v in the set
spreα(⅁,sMAttrα(⅁,X ,c)). We distinguish two cases. If v ∈ Vα then we have that
vE ∩ sMAttrα(⅁,X ,c) ̸= /0 and thus v ̸∈ (Vα \ (pre(⅁,V \Ai)∪ sinks(⅁))). Otherwise,
v ∈Vᾱ and we have that vE ⊆ sMAttrα(⅁,X ,c) and therefore v /∈Vᾱ ∩pre(⅁,Ai).

Thus we conclude that sMAttrα(⅁,X ,c)∩ cpreᾱ(⅁,Ai) = /0.

We conclude with the correctness of safe fatal attractors.

Proposition 4.3.11. Let ⅁ be an incomplete parity game. We have F♢
s (⅁,c) =

F♢(⅁,c) for even c and for odd c we have F□
s (⅁,c) = F□(⅁,c).

Proof. The proof proceeds along the lines of that of Proposition 4.3.7. Let c be an
even priority and let τ(Z) = P=c∩sMAttr♢(⅁,Z,c). We show that F♢(⅁,c) is indeed
a fixed point of τ .

By definition of F♢(⅁,c), we know that F♢(⅁,c) is equal to P=c∩ safe♢(⅁)∩
MAttr♢(⅁∩ safe♢(⅁),F♢(⅁,c),c). Since F♢(⅁,c) ⊆ safe♢(⅁) we know that the
monotone attractor MAttr♢(⅁∩safe♢(⅁),F♢(⅁,c),c) = sMAttr♢(⅁,F♢(⅁,c),c) by
Lemma 4.3.9. Furthermore, sMAttr♢(⅁,F♢(⅁,c),c) ⊆ safe♢(⅁) by Lemma 4.3.10
and thus F♢(⅁,c) = P=c∩ sMAttr♢(⅁,F♢(⅁,c),c) = τ(F♢(⅁,c)).

Next, we show that for any Z = τ(Z) it holds that Z ⊆F♢(⅁,c). Let Z be such.
By Lemma 4.3.10 we have that Z ⊆ safe♢(⅁) since Z ⊆F♢

s (⅁,c) and F♢
s (⅁,c) ⊆

sMAttr♢(⅁,F♢
s (⅁,c),c). Therefore, by Lemma 4.3.9 it follows that sMAttr♢(⅁,Z,c)=

MAttr♢(⅁∩ safe♢(⅁),Z,c). Thus we conclude that Z = P=c∩ safe♢(⅁)∩MAttr♢(⅁∩
safe♢(⅁),Z,c) and therefore Z ⊆F♢(⅁,c).

The proof for odd priority c is completely dual.

Similar to algorithm solB−, the algorithm solB−s computes safe fatal attractors
for priorities in descending order and collects the safe-α-attractor extended dominions
obtained this way.
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4.4 Implementation
We have implemented a symbolic exploration technique for parity games in the mCRL2
toolset [23]. The toolset converts each model and property combination into a so-called
parameterised Boolean equation system [70], abbreviated as PBES. The properties
are written in the modal µ-calculus with data [69] and the models in the mCRL2
specification language [63].

We have implemented a translation from a PBES into a format that straightfor-
wardly encodes the underlying parity game based on the translation presented in [89].
From this syntactic representation we derive a so-called symbolic parity game by
means of an exploration algorithm. These symbolic parity games are parity games
where the vertices V of the underlying graph are (n-)tuples of natural numbers. In
these tuples we encode the player and priority of every vertex and the data parameters
of the PBES. These data parameters are derived from the model and property and
occur as parameters in the PBES. The natural numbers are mapped to complex data
such as lists and sets that can be specified in the mCRL2 specification language.

The vertices and edges of the symbolic parity game can be efficiently encoded us-
ing multi-valued decision diagrams [102], abbreviated as MDD. In the implementation
we use MDD-like data structures called List Decision Diagrams (LDDs), and the cor-
responding Sylvan implementation [41], for this representation. Sylvan offers efficient
implementations for set operations and relational operations such as successors and
predecessors.

The effectiveness of our on-the-fly reachability analysis relies, to a large extent, on
the assumption that the set of edges is the union of predominantly sparse relations that
can be represented efficiently; i.e., E = E1 ∪ ·· · ∪Em. Our tool exploits techniques
such as read and write dependencies [89, 12], and uses sophisticated exploration
strategies such as chaining and saturation [29] for the exploration. We illustrate the
basic idea of sparseness below.

Example 4.4.1. Consider the predicates V and E defined below, describing the graph
(V,E), where x and y are variables and their primed counterparts represent the ‘next
state’:

V (x,y) = x≤ 10∧ y≤ 2
E (x,y,x′,y′) = (x′ = (x+1) mod 10∧ y = y′)∨ (x = x′∧ y′ = (y+1) mod 2)

The set of edges E can be described as the union of set E1 = {⟨(x,y),(x′,y)⟩ | x′ =
(x+1) mod 10} and E2 = {⟨(x,y),(x,y′)⟩ | y′ = (y+1) mod 2}, restricted to V . Since
the edges in E1 only change the value of x, one can, intuitively, represent E1 efficiently
as a relation on shorter tuples: E ′1 = {⟨x,x′⟩ | x′ = (x+1) mod 10}; likewise, E2 has a
concise representation.
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4.4.1 Solving Parity Games

For all three on-the-fly solving techniques of Section 4.3, we have implemented 1) a
variant that runs the standard (partial) solver on the α-safe subgame and removes
the found dominion using the standard attractor (within that subgame), and 2) a
variant that uses (partial) solvers with the safe attractors. Moreover, we also conduct
experiments using a full solver running on an α-safe subgame. This full solver is based
on Zielonka’s recursive algorithm [140], which remains one of the most competitive
algorithms in practice, both explicitly and symbolically [124, 39].

An important design aspect is to decide how the exploration and the on-the-fly
solving should interleave. For this we have implemented a time based heuristic that
keeps track of the time spent on solving and exploration steps. The time measurements
are used to ensure that (approximately) ten percent of total time is spent on solving
by delaying the next call to the solver. We do not terminate the partial solver when it
requires more time, and thus it is only approximate. As a result of this heuristic, cheap
solvers will be called more frequently than more expensive (and more powerful) ones,
which may cause the latter to explore larger parts of the game graph.

We have also considered two other heuristics that we have eventually discarded,
but that could be revisited as future work. One simple heuristic is to use the number
of breadth first search iterations as measure and perform solving every n iterations.
The disadvantage here is that typically the number of vertices encountered at every
level first grows exponentially, followed by a long tail where only relatively few new
vertices are found. In this last section the solver would therefore be triggered often,
but not much information is added. Therefore, another heuristic was based on the idea
that in explicit representations it is often natural to consider the amount of vertices that
have been explored as a measure. However, for symbolic representations there is not a
direct correspondence between the amount of vertices represented and the number of
nodes in the corresponding decision diagram. Therefore, a more natural approach was
to consider the amount of nodes as a measure and perform solving when a number
of new nodes had been added. In practice it turned out that computing the number
of nodes can be expensive for large problems, which is undesirable for a heuristic.
However, perhaps the implementation could be improved to avoid this overhead.

4.5 Experimental Results

We experimentally evaluate the techniques of Section 4.3. For this, we use games
stemming from practical model checking and equivalence checking problems. Our
experiments are run, single-threaded, on an Intel Xeon 6136 CPU @ 3 GHz PC. The
sources for these experiments can be obtained from the downloadable artefact [92].
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4.5.1 Cases
Table 4.1 provides an overview of the models and a description of the properties that
are being checked. The properties are written in the modal µ-calculus with data [69].
For the equivalence checking case we have mutated the original model to introduce
a defect. For each property, we indicate the nesting depth (ND) and alternation
depth [30] and whether the parity game is solitaire (Yes/No). The nesting depth
indicates how many different priorities occur in the resulting game; for our encoding
this is at most ND+2 (the additional ones encode constants ‘true’ and ‘false’). The
alternation depth is an indication of a game’s complexity due to alternating priorities.

Table 4.1: Models and formulas.

Model Ref. Prop. Result ND AD Sol. Description

SWP [132] 1 false 1 1 Y No error transition
2 false 3 3 N Infinitely often enabled then infinitely often taken

WMS [118] 1 false 1 1 Y Job failed to be done
2 false 1 1 Y No zombie jobs
3 true 3 2 Y A job can become alive again infinitely often
4 false 2 2 N Branching bisimulation with a mutation

BKE [11] 1 true 1 1 Y No secret leaked
2 false 2 1 N No deadlock

CCP [111] 1 false 2 1 N No deadlock
2 false 2 1 N After access there is always accessover possible

PDI n/a 1 true 2 1 N Controller reaches state before it can connect again
2 false 2 1 N Connection impermissible can always happen or we

establish a connection
3 false 3 1 N When connected move to not ready for connection and

do not establish a connection until it is allowed again
4 true 2 1 N The interlocking moves to the state connection closed

before it is allowed to succesfully establish a connection

We use MODEL-i to indicate the parity game belonging to model MODEL and
property i. Models SWP, BKE and CCP are protocol specifications. The model PDI is
a specification of a EULYNX SCI-LX SySML interface model that is used for a train
interlocking system. Finally, WMS is the specification of a workload management
system used at CERN. Using tools in mCRL2 [23], we have converted each model and
property combination into a so-called parameterised Boolean equation systems [70], a
higher-level logic that can be used to represent the underlying parity game. The toolset
also contains tools to encode strong bisimilarity and related equivalences into a PBES
based on the theory presented in [26].

Parity games SWP-1, WMS-1, WMS-2 and BKE-1 encode typical safety properties
where some action should not be possible. In terms of the alternation-free modal mu-
calculus with regular expressions, such properties are of the shape [true∗.a]false. These
properties are violated exactly when the vertex encoding ‘false’ can be reached. Parity
games SWP-2, WMS-3 and WMS-4 are more complex properties with alternating
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priorities, where WMS-4 encodes branching bisimulation using the theory presented
in [26]. The parity games BKE-2 and CCP-1 encode a ‘no deadlock’ property given
by a formula which states that after every path there is at least one outgoing transition.
Finally, CCP-2 and all PDI cases contain formulas with multiple fixed points that yield
games with multiple priorities but no (dependent) alternation.

Table 4.2: Experiments with parity games where on-the-fly solving cannot terminate
early. All run times are in seconds. The number of vertices is given in millions.
Memory is given in gigabytes. Bold-faced numbers indicate the lowest value.

Game Strategy Vertices (106) Explore (s) Solve (s) Total (s) Mem (GB)

BKE-1 full 40 640 65 705 14
solitaire 40/40 629/615 153/100 782/715 15/15
cycles 40/40 635/644 149/160 785/804 15/15
fatal 40/40 624/625 152/164 776/789 15/15
partial 40 651 147 798 15

PDI-1 full 114 27 0.1 28 2
solitaire 114/114 28/27 4/0 33/28 2/2
cycles 114/114 29/28 7/7 36/35 2/2
fatal 114/114 28/28 4/7 32/35 2/2
partial 114 28 9 37 2

PDI-4 full 474 286 0 287 2
solitaire 474/474 284/281 46/14 331/295 2/2
cycles 474/474 284/287 92/91 376/378 2/2
fatal 474/474 285/283 80/91 365/374 2/2
partial 474 286 64 350 2

4.5.2 Results

In Tables 4.2 and 4.3 we compare the on-the-fly solving strategies presented in Sec-
tion 4.3. In the ‘Strategy’ column we indicate the on-the-fly solving strategy that is
used. Here full refers to a complete exploration followed by solving with the Zielonka
recursive algorithm. We use solitaire to refer to solitaire winning cycle detection,
cycles for forced winning cycle detection, fatal to refer to fatal attractors and finally
partial for on-the-fly solving with a Zielonka solver on safe regions. For solvers with
a standard variant and a variant that utilises the safe attractors the first number in a cell
in the table indicates the result of applying the (standard) solver on safe vertices, and
the second number (following the slash ‘/’) indicates the result when using the solver
that utilises safe attractors.

The column ‘Vertices’ indicates the number of vertices explored in the game. In
the next columns we indicate the time spent on exploring and solving specifically and
the total time in seconds. We exclude the initialisation time that is common to all
experiments. Finally, the last column indicates memory used by the tool in gigabytes.
We report the average of 5 runs and have set a timeout (indicated by ‡) at 1200 seconds
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Table 4.3: Experiments with parity games in which at least one partial solver terminates
early. All run times are in seconds. The number of vertices is given in millions. For
solvers with two variants the first number indicates the result of applying the solver
on safe vertices, and following the slash ‘/’ the result when using the solver that uses
safe attractors. Memory is given in gigabytes. Bold-faced numbers indicate the lowest
value.

Game Strategy Vertices (106) Explore (s) Solve (s) Total (s) Mem (GB)

SWP-1 full 13304 ‡ n/a ‡ ‡
solitaire 15.1/0.4 8.5/1.4 27.3/0.1 35.8/1.5 2.8/1.5
cycles 25.2/0.9 12.3/1.8 42.7/1.0 55.0/2.8 3.2/1.5
fatal 15.1/0.4 9.0/1.3 29.4/0.4 38.4/1.7 3.1/1.5
partial 27.1 13.1 50.4 63.5 3.6

SWP-2 full 1987 ‡ n/a ‡ ‡
solitaire 1631/1987 ‡/‡ 163/11 ‡/‡ ‡/‡
cycles 1774/1774 ‡/‡ 154/91 ‡/‡ ‡/‡
fatal 0.007/0.007 0.9/0.9 0.4/0.2 1.3/1.0 1.4/1.2
partial 0.007 0.9 0.4 1.3 1.4

WMS-1 full 270 2.8 0.4 3.3 0.2
solitaire 270/240 2.8/2.5 0.8/0.4 3.6/2.9 0.3/0.2
cycles 270/270 2.9/3.2 0.8/8.0 3.7/11.2 0.3/0.5
fatal 270/270 2.6/3.2 0.8/8.5 3.4/11.7 0.3/0.5
partial 270 2.7 0.8 3.5 0.3

WMS-2 full 317 3.3 0.3 3.6 0.2
solitaire 7/7 0.2/0.2 1.0/0.5 1.2/0.8 0.1/0.1
cycles 7/66 0.2/0.8 1.0/2.7 1.2/3.4 0.1/0.2
fatal 7/66 0.2/0.7 1.0/2.9 1.3/3.6 0.1/0.2
partial 7 0.2 1.1 1.3 0.1

WMS-3 full 317 2.6 0.1 2.7 0.2
solitaire 317/317 2.6/2.6 0.4/0.3 3.1/2.9 0.2/0.2
cycles 317/317 2.7/2.7 0.4/0.6 3.1/3.3 0.2/0.2
fatal 5/1 0.2/0.1 0.5/0.1 0.7/0.2 0.1/0.1
partial 5 0.2 0.3 0.5 0.1

WMS-4 full 366 ‡ n/a ‡ ‡
solitaire 0.03/0.03 38/38 0.8/0.1 39/38 2/2
cycles 0.03/0.03 37/37 0.8/0.3 38/37 2/2
fatal 0.03/0.03 37/37 0.8/0.3 38/37 2/2
partial 0.03 37 0.7 38 2

BKE-2 full 119 942 36.5 979 28
solitaire 0.0007/0.0001 0.2/0.1 0.0/0.0 0.2/0.2 0.9/0.9
cycles 0.0007/0.0003 0.2/0.2 0.0/0.0 0.2/0.2 0.9/0.9
fatal 0.0007/0.0003 0.2/0.2 0.0/0.0 0.2/0.2 0.9/0.9
partial 0.0007 0.2 0.0 0.2 0.9

CCP-1 full 0.4 28 4.2 32 2
solitaire 0.003/0.003 1.0/1.0 0.1/0.1 1.1/1.1 2/2
cycles 0.003/0.003 1.0/1.0 0.1/0.1 1.1/1.1 2/2
fatal 0.006/0.003 1.3/1.1 0.1/0.1 1.4/1.2 1.5/1.5
partial 0.003 1.0 0.1 1.1 1.5

CCP-2 full 0.9 35 33 68 1.7
solitaire 0.02/0.007 1.6/1.1 0.2/0.0 1.8/1.1 1.5/1.5
cycles 0.02/0.007 1.9/1.1 0.2/0.1 2.1/1.2 1.5/1.5
fatal 0.02/0.007 1.6/1.2 0.2/0.1 1.8/1.3 1.5/1.5
partial 0.02 1.6 0.2 1.8 1.5

PDI-2 full 229 31 12 43 2
solitaire 229/229 33/32 34/12 67/45 2/2
cycles 30/30 15/14 3/5 17/19 2/2
fatal 30/30 15/15 3/5 18/19 2/2
partial 123 23 29 51 2

PDI-3 full 436 228 8 236 2
solitaire 436/436 230/228 36/32 266/260 2/2
cycles 78/162 65/102 19/64 84/166 2/2
fatal 75/84 64/67 19/23 83/90 2/2
partial 110 82 30 112 2
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per run. Table 4.2 contains all benchmarks that require a full exploration of the game
graph, providing an indication of the overhead in cases where this is unavoidable;
Table 4.3 contains all benchmarks where at least one of the partial solvers allows
exploration to terminate early.

For games SWP-1, WMS-1, WMS-2 in Table 4.3 we find that solitaire, and in
particular the safe attractor variant, is able to determine the solution the fastest. Also,
for all entries in Table 4.2 this is the solver with the least overhead. Next, we observe
that for cases such as WMS-1 and PDI-3 using the safe attractor variants of the solvers
can be detrimental. Our observation is that first computing safe sets (especially using
chaining) can be quick when most vertices are owned by one player and one priority.
On the other hand, the computation of the safe attractor requires computing the vertices
of the opposing player that are forced to reach the target set in one step, which is more
involved than computing the α-predecessors. There are also cases WMS-3, WMS-4,
CCP-1 and CCP-2 where the safe attractor variants are faster and these cases all have
multiple priorities. In cases where these solvers are slow (for example PDI-3) we also
observe that more states are explored before termination, because the earlier mentioned
time based heuristic results in calling the solver significantly less frequently.

For parity games SWP-2 and WMS-3 only fatal and partial are able to find a
solution early, which shows that more powerful partial solvers can be useful. From
Table 4.2 and the cases in which the safe attractor variants perform poorly we learn
that the partial solvers can, as expected, cause overhead. This overhead is in our bench-
marks on average 30 percent, but when it terminates early it can be very beneficial,
achieving speed-ups of up to several orders of magnitude.

4.6 Conclusion
In this work we have developed the theory to reason about on-the-fly solving of parity
games, independent of the strategy that is used to explore games. In addition to that,
we have introduced the notion of safe vertices, shown their correctness, proven an
optimality result, and we have studied partial solvers and shown that these can be made
to run without determining the safe vertices first; which can be useful for on-the-fly
solving. Finally, we have demonstrated the practical purpose of our method and
observed that solitaire winning cycle detection with safe attractors is almost always
beneficial with minimal overhead, but also that more powerful partial solvers can be
useful.

Based on our experiments, one can make an educated guess which partial solver
to select in particular cases; we believe that this selection could even be steered by
analysing the parameterised Boolean equation system representing the parity game
can be potential future work. It would furthermore be interesting to study (practical)
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improvements for the safe attractors, and their use in Zielonka’s recursive algorithm.
Here, other practical improvements would be to investigate other heuristics to trigger
of the partial solvers as hinted on earlier. Another interesting idea was to use the
information derived from the partial solving to remove vertices from the todo set of
the breadth-first search that have already been solved.

There is also future work that is not directly related to this chapter, but is related to
extending the symbolic verification techniques present in the mCRL2 toolset. First
of all, for the explicit verification the ability to generate counter examples for failing
verification as presented in [138] and based on [32] is extremely useful. However,
applying this technique to symbolic parity games, although theoretically sound, is not
feasible in the way that it is currently implemented. Therefore, making it practical to
generate counter examples in this symbolic setting should be considered future work.
Finally, since symbolic solving has shown potential in dealing with large state spaces
it also makes sense to look into combining it with the decompositional minimisation
approach presented in Chapter 3.
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Chapter 5

A Thread-safe Term Library

A term is a fundamental concept in mathematics and therefore an equally important
common data structure in computing. Many concepts are terms, such as programs,
specifications and formulas. Many operations in computing are term transformations,
such as compilation. In computer science a term is a far more commonly used concept
than structures such as arrays, lists or matrices. This makes it remarkable that terms
are not a standard data structure in all common programming languages. However,
many functional languages and newer languages such as Haskell [71] and Rust [123]
provide so-called algebraic types that can be used to define them.

To our knowledge the first general purpose term library, which is a programming
library that facilitates the creation and manipulation of terms, stems from the realm of
program transformations. In [5, 84, 17, 15, 16] an ATerm library of so called annotated
terms has been proposed, which are terms with meta information. Stripping away
all additional features from this ATerm format, a very plain and elegant term data
structure remains to represent so-called terms.

These terms are defined in the standard way. We start out with a given set of
function symbols F where each function symbol f ∈ F has an arity ar f . Each constant
function symbol, i.e., with arity 0, is a term. Given a function symbol f ∈ F with
arf > 0, and terms t1, . . . , tarf , the expression f (t1, . . . , tarf ) is also a term. These are
the only two ways to construct a term.

Note that terms are only a representation of other concepts and some ‘constants’
could actually represent variables when defining operations on these terms. As an
example we can have function symbols {0,1,x,y,+} and terms 0+1, x+1 and x+ y.
The ‘constants’ x and y would allow for different operations than the constants 0 and 1
as it is natural to define a substitution operation for the constant x, which would be
less natural for the constant 0. In a similar way terms with binders can be represented
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naturally. For instance in the term λx.t the λ is just a binary function symbol where
the first subterm must be a constant (representing a variable), and then operations on
this term must take the variable binding into account.

As in the ATerm library, terms are stored in a maximally shared way and once
created, terms are stable structures in memory until they are deallocated. This is
achieved by a technique introduced already in early implementations of Lisp called
hash consing [37], where terms of a similar structure are effectively shared using
hash table. This leads to a smaller memory footprint, because equal terms are only
stored once. Furthermore, comparing terms syntactically is constant time, because two
terms are equal iff they occupy the same address in memory. Also note that maximal
sharing avoids any serialising and deserialising terms to communicate them between
threads as done in [5], because this can be achieved by sharing the address of the
term. A disadvantage of this approach is that subterms cannot be replaced directly,
because these subterms may be shared by other terms. Instead of a hash table we
could also consider other associative mappings, such as provided by a CTrie [115], but
their reduced memory consumption compared to hash tables often results in reduced
performance. The sharing of terms also requires additional bookkeeping to keep
track of which terms can still be accessed directly or as part of another term by the
program, such that terms can be deallocated from memory when they are no longer in
relevant; this process is called garbage collection. An alternative is to perform direct
destruction, where a term is immediately cleaned up when it not relevant. However,
often terms with reference count zero could potentially become relevant again within
a short time.

With a steadily increasing number of computational cores in computers, it is desirable
to have a thread-safe implementation of a term library and this was already stressed
in the original publication. Thread-safety means that multiple threads can access and
create terms concurrently in the same data structure without it resulting in incorrect
behaviour or even program crashes, for example by reading data that has not been
properly initialised yet. In our search, we have only found one unpublished thread-safe
Java implementation of the ATerm library [90]. Other implementations of thread-safe
term (or graph) libraries do exist as part of larger implementations, for example in
the Haskell runtime. However, these implementations are not easily extracted and
studied by themselves, and also often do not offer the maximal sharing guarantee.
Therefore, we study the design and specification of a new thread-safe term library as a
programming library by itself.

In our term library terms are static structures in memory, which makes inspecting
terms inherently thread-safe. However, the creation and deletion of terms need to take
thread-safety into account. This could be achieved by ensuring mutual exclusion of
these operations, essentially ensuring that only one thread operates on the term library
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at the same time. However, as the operations to create and destroy terms are compu-
tationally very cheap, even a small overhead required for thread-safe operations on
terms can increase the time of these operations by an order of magnitude. Furthermore,
many of algorithms that utilise the term library create and destroy terms frequently
and this causes heavy contention on the mutual exclusion variables, which is often
undesirable. Therefore, such a naive approach would not work and we need a more
fine-grained approach.

Since terms have a tree-like structure it might be expected that concurrent tree
algorithms, such as provided by the EXCESS project [135] or the PAM library [129], to
provide a possible solution. These tree libraries are focused on manipulating the trees
themselves concurrently, for example adding and removing nodes, and rebalancing
the tree when required. However, that is different from our terms since these are
static structures in memory, and only the creation and destruction of terms can happen
concurrently. Instead, we essentially require thread-safety for the following procedures.
The creation process consists of performing a lookup in the shared hash table, and
actually inserting the element when it has not been found, for the purpose of hash
consing. Furthermore, we need a thread-safe mechanism to keep track of which terms
are still relevant. We note that destruction only updates the bookkeeping required to
keep track of terms and actually only results in the term being removed from memory
when it is garbage collected.

First of all, we observe instead of mutual exclusion we only require the behaviour
of so-called readers-write locks [31] to ensure that creation and destruction of terms
can happen simultaneously (=readers), but garbage collection and hash table resizing
(=writer) must be done with exclusive access. We will refer to read access as shared
access and write access as exclusive access. Furthermore, we observe that shared access
happens far more often in practice than exclusive access. There are several algorithms
for read-dominated readers-write locks in the literature [38, 97, 80, 24]. These
algorithms often provide almost no contention to acquire shared access. However,
the algorithms do often keep track of additional information to prevent starvation of
threads and to deal with high contention scenarios, and these features make them
potentially slower due to access to (atomic) variables that are shared between threads.
Instead, for our term library we will assume that every thread is performing work
related to manipulating terms and makes progress towards completing the task at hand.
Furthermore, we assume that the amount of threads closely matches the number of
physical cores present in the machine.

Given these two assumptions, we design a new busy-forbidden protocol that is
also read-optimised, and builds on the ideas of the existing algorithms in taking into
account the cache structure of modern processors, but avoids contention on shared
access. In this new protocol, obtaining shared access only requires two writes to
an atomic variable that is only written to by the current thread and rarely read, and
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one read of an atomic variable that is only rarely written to. Therefore, these shared
variables are almost always available in the local cache. It is well-known that the
design of thread-safe protocols and data structures is quite subtle and certain issues
only rarely occur in practice. One example of such a problem is the infamous so-called
“ABA problem” [36]. In short, this problem can occur when an algorithm relies on a
value A being the same, by for example a compare-and-swap, to indicate that the state
has not changed, whereas actually the value A had been temporarily replaced by a
value B and thereby invalidating the assumption that no changes took place.

These kind of subtle problems make it essential to formally study the design of
these protocols. Therefore, we used the mCRL2 language [63] and corresponding
model checking toolset [23] to design both the busy-forbidden protocol and the term
library. Using model checking we prove their correctness properties for finite instances
before we implemented the prototype. The complete formal specification of the
behaviour and the properties is given in Appendix B.

Furthermore, we also require a thread-safe hash table for the purpose of performing
hash consing concurrently. Early attempts to create a thread-safe term library led
to intriguing wait-free algorithms [76, 47, 48] for the underlying hash table. The
assumption was that thread synchronisation was the root cause of performance issues,
and this is avoided when algorithms are wait-free. However, the complexity of these
algorithms and the amount of accesses to shared variables between threads made these
unsuitable in practice. There are in fact thread-safe hash table implementations in the
literature [136, 106, 75] that do perform well in practice. However, the implemen-
tations of these hash tables proved difficult to be integrated into our prototype and
also came with strong assumptions, for example only allowing a single global hash
table. Instead, we observe that with some common adaptations, namely essentially
introducing a Treiber [134] stack, to an open addressing hash table, inspection and
construction can happen concurrently. This worked well in practice and we leave the
integration of more sophisticated thread-safe hash table implementations as future
work.

In this chapter we present a thread-safe term library and formally verify properties
on it. One limitation of the current verification is that we are only able to verify
finite instances, but we consider proving the correctness for any number of threads
important future work. For the garbage collection we have compared two thread-
safe bookkeeping mechanisms for garbage collection, one using atomic operations
for reference counting and one that employs explicit thread-local root sets. We
have implemented a parallel state space exploration algorithm, which is often the
main bottleneck in the verification of large systems, in order to also apply it in
practice. Furthermore, we have performed a number of micro-benchmarks as well as a
single practical benchmark focused on so-called strong scaling, which measures the
solution time for increasing amounts of processors given a fixed size problem. This is

124



5.1 THREAD-SAFE TERM LIBRARY

reasonable since for state space exploration, our main use case, the sequential part of
the problem, for example writing it to disk, also increases with the size of problem.
Furthermore, we are generally interested in verifying a given system and property as
fast as possible.

The new term library is competitive with our existing sequential term library. Our
experiments show that the new term library scales well when terms are heavily shared,
as is the case for our practical application. However, when terms are not heavily
shared then hash consing and shared access between threads becomes a bottleneck, in
which case the maximal sharing guarantee only provides constant time comparison.
For the practical case of state space exploration it is already beneficial when only two
processors are available, and achieves speed ups of a factor 12 on 16 processors and
a factor 16 when using all 32 processors. In general, we find that using thread-local
protection sets scales far better than atomic reference counting. Furthermore, we show
that the solution with a standard C++ readers-writer lock, where it is called a shared
mutex, and especially the Java implementation of [90] are substantially slower than
our implementation with the busy-forbidden protocol. It is intended that the new
thread-safe term library will form the heart of the new release of the mCRL2 toolset.
The implemented prototype, also as part of the mCRL2 toolset.

Outline In Section 5.1 the specification and implementation of the term data struc-
ture, also referred to as term library, is described. In Section 5.2 our new protocol of
a readers-writer lock is specified, called the busy-forbidden protocol, and its imple-
mentation is discussed. Then in Section 5.3 we introduce the corresponding mCRL2
models and properties, and describe the model checking efforts in detail. Furthermore,
in Section 5.4 the term library with the busy-forbidden protocol is compared to several
alternative implementations to showcase its performance in practice. Finally, we
present a conclusion in Section 5.5.

5.1 Thread-safe Term Library

In [15, 16] a general purpose term library has been proposed called the ATerm
library. A term is a very frequently used concept within computer science. The
original motivation for terms as a basic data structure came from research in software
transformation [84, 17]. The model checking toolset mCRL2 uses terms to represent
all internal concepts, such as modal formulas, transition systems and process speci-
fications [63]. We propose a new thread-safe general purpose term library with the
behaviour described in the remainder of this section.
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5.1.1 External Behaviour
Terms are constructed out of functions symbols, or for short functions, from some
given set F . Each function f ∈ F has a number of arguments arf , generally called the
arity of f . A function symbol with arity 0 is called a constant.

Definition 5.1.1. Let F be a set of function symbols. The set of terms TF over F is
inductively defined as follows:

if f ∈ F, f has arity arf and t1, . . . , tarf ∈ TF , then f (t1, . . . , tarf ) ∈ TF .

An example of terms are simple numeric expressions. The function symbols are
0,1,2,3,+,∗ where 0,1,2,3 are constants and + and ∗ have arity 2. An example of a
term as a tree structure is given in Figure 5.1.

+

3 ∗

4 2

Figure 5.1: The
tree representation
of the term 3+4∗
2.

The term library in [15, 16] allows term annotations, hence
the name ATerm, but we do not use this feature. The original
ATerm library also supported special terms representing numbers,
strings, lists and even ‘blobs’ containing arbitrary data. We made
our own implementation of a term library where besides terms as
defined in Definition 5.1.1, there are also facilities for lists and
64-bit machine numbers. As these are in many respects the same
as terms constructed out of function symbols, we ignore these
additional features for our specification. Instead, the term library
provides the following limited set of operations on terms:

Create. Given a function symbol f and terms t1, . . . , tarf con-
struct a term f (t1, . . . , tarf ). This operation can fail when there is
not enough memory.
Destroy. Indicate that a term t will not be accessed anymore by this thread. Terms
that are not accessed by any thread must ultimately be garbage collected.
Argument. Obtain the i-th subterm ti of a term f (t1, . . . , tarf ).
Function. Obtain the function symbol f of a term f (t1, . . . , tarf ).
Equality. For terms t and u determine whether t and u are equal. Note that due to
maximal sharing this operation only requires constant time.

The typical usage pattern of terms is that they are visited very often by inspecting
arguments or function symbols. Creation of a term is also a very frequent operation,
but in the majority of cases (more than 90 percent) a term is created that already exists
in memory and only a lookup has to be performed. The garbage collection and hash
table resizes are performed internally and only triggered infrequently compared to all
the other operations.
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5.1.2 Behavioural Properties
Our term library guarantees the following properties, checked using model checking
on models of finite instances of our term library, see Section 5.3.3.

1. A term and all its subterms remain in existence at exactly the same address, with
unchanged function symbol and arguments, as long as it is not destroyed.

2. Two stored terms t1 and t2 always have the same non-null address iff they are
equal.

3. Any thread that is not busy creating or destroying a term, can always initiate the
creation of a new term or the destruction of any term that this thread has access
to.

4. Any thread that started creating a term or destroying a term, will eventually
successfully finish this task provided there is enough memory to store one more
term than those that are accessible. But it is required that other threads behave
fairly, in the sense that they will not continually create and destroy terms or stall
other threads by busy waiting.

Note that the properties above imply some notion of deallocation in the sense that if a
thread makes and destroys terms, and these are not deallocated, at some point no new
terms can be created due to a lack of memory and in that case property 4 above would
be violated.

5.1.3 Implementation

f

f

c

Figure 5.2:
The tree rep-
resentation of
f (c, f (c,c)).

Terms are immutable maximally shared tree structures in memory.
This means that if two (sub)terms are the same, they are represented
by the same object in memory, as shown in Figure 5.2. Terms in
our term library can be copied, constructed and accessed in parallel.
Note that copying of terms is observably the same as creating a
term with the same function symbol and arguments, but can be
implemented more efficiently.

By storing terms as maximally shared trees, the only nontrivial
operations on terms are the creation of a new term and the destruc-
tion of an existing term. Due to the immutable nature of terms it
is not possible to simply replace a subterm of a term. If a subterm
must be changed, the whole surrounding term must be copied.
From the perspective of the programmer this means that we indeed
have no operations to modify terms. However, this immutability makes these terms
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very suitable for parallel programming. Threads can safely traverse protected terms in
memory as they can be sure that they will not change.

The maximal sharing is implemented in the term library using hash consing, which
is implemented using a hash table as follows. Whenever a term with function symbol
f and arguments t1, . . . , tarf is created, a lookup is performed on the hash table to
determine whether f (t1, . . . , tarf ) already exists. If this is the case, its current address
is returned. Otherwise, a new term f (t1, . . . , tarf ) is allocated and inserted in the hash
table, and its address is returned.

Terms that are accessible, either directly or as subterm, by thread must be identified
as such in some way, which we call protecting the term as it prevents the term from
being garbage collected. There are essentially two fundamentally different ways to
keep track of the protected terms. The first one is to keep a reference count in each
created term, counting how many references there are to the term. When the term
is created, the reference count is incremented, and when a term is destroyed, the
reference count is decremented. If the term has reference count 0, its address is freed
up, also called deallocated, during garbage collection.

The other way to protect terms is to maintain a set of addresses where terms are
being stored, which is often referred to as root set and we refer to these addresses
as variables. A mark-and-sweep garbage collection algorithm can be used where
the subterms of protected terms are recursively marked, and all unmarked terms are
finally freed up. In our current implementation garbage collection is performed by a
single thread. There are also parallel garbage collection algorithms where creation
and destruction can happen simultaneously, for example in [48]. These algorithms
are generally complex and in our use case we are not bound by real-time constraints.
In our current benchmarks we also find that garbage collection requires only a small
fraction of the total time. However, performing the marking and sweeping phases using
multiple threads simultaneously could be potentially beneficial to further improve
scalability, so we consider this to be potential future work.

In the parallel setting we must ensure so-called sequential consistency when
changing reference counts since these changes must always be immediately visible
in other threads. Sequential consistency here means that these updates must behave
atomically as if interleaved one after each other. Changing reference counts is a very
frequent operation and often leads to cache contention as the reference counts are
accessible by all threads simultaneously. Operations on the protection sets are more
complex than changing a reference count, but they can be performed locally in a thread
and only require shared access to the readers-writer lock. Furthermore, variables in the
root set can be reused when assignments are performed on them, whereas references
count must be updated on every assignment, so depending on the structure of the
program there are far less changes to the root set when compared to reference counts.

We use a hash table with open hashing, which is also referred to as separate
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chaining. Here, we use a linked list as a so-called bucket list to deal with collisions of
terms in the table. If the term does not exist, it is added using a compare and swap
operation to the bucket list of the appropriate entry of the hash table. If in the mean
time another thread creates the same term, the compare and swap fails, informing the
thread that it has to inspect the hash table again to find out whether the term came
into existence. This is the Treiber’s stack [134]. We remark that it is safe to use
because terms are only deleted from the hash table during garbage collection, and
during garbage collection no new terms are allowed to be constructed. This is a fairly
simplistic parallel hash table implementation, but our prototype shows that this works
well enough in practice. Further research into more complicated, but potentially more
effective, hash table implementations is left as future work.

Accessing terms during garbage collection and resizing, also called rehashing, the
hash table is perfectly safe. However, it is not allowed to create or copy terms while
garbage collection or resizing is being performed. Therefore, we require a mutual
exclusion protocol where either multiple threads can create and copy terms simulta-
neously, which we call the shared tasks, or one thread can be involved in garbage
collection or rehashing, which is called the exclusive task. This is the behaviour of a
readers-writer lock [117] where multiple readers or at most one writer can access a
shared resource, where reading is the shared task, and writing is the exclusive task.
As we remarked earlier creating and copying terms is done very frequently, and thus
shared access must be very cheap and exclusive access can be expensive. For this
purpose, we developed a completely new protocol, called the busy-forbidden protocol,
to serve our needs.

Next, we present the pseudocode for the procedures described so far. Table 5.1 con-
tains the code for creating and destroying terms. The functions protect, unprotect
and protected refer to the protection mechanisms described previously, in which
protected(t) will return true if and only if the term t is protected by some thread. In
this code enter_shared, leave_shared, enter_exclusive and leave_exclusive
are part of the busy-forbidden protocol described in the next section.

The function h is a hash function that takes a function symbol f, and subterms
t1, . . . , tn, and calculates a position in the table. The hash table is represented by the
variable table. It has an array of buckets buckets where every element b contains an
atomic pointer b.top to a so-called node list that allows atomic loads and an atomic
compare-and-swap operation cmpswap, which returns true iff it is successful. The
node list is a singly-linked list of Node objects that have a head and tail pointing to
the head and tail of the list respectively.
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create(thread p, symbol f , subterms t1, . . . , tn)
{

enter_shared(p)
hash← h( f , t1, . . . , tn)
bucket← table.buckets[hash % |table.buckets|]
t← insert(bucket, f, t1, . . . , tn)
protect(p, t)
leave_shared(p)
return t

}

insert(bucket b, symbol f , subterms t1, . . . , tn)
{

old_head← b.top
node← b.top
do
{

if node.head = f (t1, . . . , tn)
return node.head

node← node.tail
}
while (node ̸= NULL)
t← construct f (t1, . . . , tn)
if not cmpswap(b.top,old_head,Node(t,old_head))
{

destruct t
return insert(b, f , t1, . . . , tn)

}
return t

}
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destroy(thread p, term t)
{

unprotect(p);
if necessary()

GC(p)
}

GC(thread p)
{

enter_exclusive(p);
forall t ∈ table
{

if not protected(t)
remove t;

}
leave_exclusive(p);

}

Table 5.1: Pseudocode for the thread-safe term library.

Garbage collection has a necessary condition to define when it should be called.
In principle it can be called after every destroy, but in practice heuristics can be
used to only have constant overhead per created term. This can be achieved by
initialising a counter with the current number of terms at the end garbage collection
that is decremented on every term creation, and only garbage collect when the counter
reaches zero again.

Using an mCRL2 model of the behaviour of the term library, the behavioural
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properties mentioned in Section 5.1.2 have been model checked for finite instances.
This is described in more detail in Section 5.3.3.

5.2 Busy-Forbidden Protocol
In this section we study the busy-forbidden protocol in more detail. As mentioned
before, the busy-forbidden protocol is designed for the situation where shared access
is frequent whereas exclusive access is infrequent.

5.2.1 External Behaviour
We first look at the external behaviour of this protocol. As indicated above, threads can
request for shared or exclusive access by calling one of the two functions enter_shared
and enter_exclusive. The functions starting with leave are used to indicate that
access is no longer required.

We make the external behaviour more precise by modelling it as a state automaton,
whose behaviour is equivalent to the mCRL2 specification used for verification later
on. From the perspective of a single thread, the behaviour is depicted in Figure 5.3.
The function calls are modelled by actions named Enter/Leave shared/exclusive
call respectively. Returning from the function is modelled by actions with names
ending with return. This protocol guarantees that at most one thread can be in state
Exclusive and if a thread is in state Exclusive, no thread is in state Shared, and vice
versa, if there are threads in state Shared, then there is no thread in the state Exclusive.

The center state, labelled Free, indicates that the thread is not involved in the
protocol, i.e., it is outside the shared and exclusive sections. Following the arrows in a
clockwise fashion, a thread obtains access. In the state EnterS the thread requested
shared access, and it will get it when there are no threads in the states LOS or Exclusive.

Our main goal was to ensure that the behaviour of Figure 5.3 for multiple threads
is so-called divergence-preserving branching bisimilar to the implementation that is
described later on [57, 58]. The reason is that this equivalence relation preserves
not only safety but also most liveness properties. This allows us to replace the large
implementation model, which contains a lot of intrinsic details, by the much smaller
specification model when verifying the term library itself.

Divergence preserving branching bisimulation does not remove τ-loops, i.e., loops
of internal actions, compared to typical branching bisimulation. There are various
self-loops introduced in the model to account for infinite loops that are unlikely, or
even impossible under fair scheduling, and to ensure equivalence of behaviour to the
implementation model. Therefore, these actions are marked improbable, and are seen
as internal actions.
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LOE1 There are no threads
in or able to enter Exclusive.

Shared Shared access. No concurrent
access to Exclusive possible.

EnterS Entering shared.
LeaveS Leaving shared.

Free The thread is outside any
exclusive or shared section.

LeaveE2 Leaving exclusive.
EnterE Entering exclusive.

LeaveE1 Leaving exclusive. No threads
in or able to enter Exclusive.

LOE2 There are no threads in
or able to enter Exclusive.

Exclusive Exclusive access. There are
no threads in or able to enter
Exclusive or Shared.

LOS No threads in or able to enter
Exclusive or Shared.

Figure 5.3: The external behaviour of the busy-forbidden protocol.

5.2.2 Implementation

The implementation code for entering and leaving the exclusive sections is presented
in Table 5.2. The busy-forbidden protocol is implemented by assigning to each thread
two atomic flags, called busy and forbidden. The busy flag indicates that the current
thread is in its shared section and can only be written to by this thread. The flag
forbidden indicates that some thread is having exclusive access. There is one busy and
one forbidden flag per thread.
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enter_shared(thread p)
{

p.busy← true;
while p.forbidden
{

p.busy← false;
if mutex.timed_lock()
{

mutex.unlock();
}
p.busy← true;

}
}
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enter_exclusive(thread p)
{

mutex.lock();
while exists thread q with

¬q.forbidden
{

select thread r
r.forbidden← true;
if r.busy or sometimes
{

r.forbidden← false;
}

}
}
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leave_shared(thread p)
{

p.busy← false;
}
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leave_exclusive(thread p)
{

while exists thread q with
q.forbidden

{
select thread r
usually do

r.forbidden← false;
sometimes do

r.forbidden← true
}
mutex.unlock();

}
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Table 5.2: Pseudocode description of the busy-forbidden protocol.

Besides the flags there is one generic mutual exclusion variable, called mutex. The
variable mutex can not only be locked and unlocked, but also provides a timed lock
operation timed_lock(). It tries to lock the mutex, and if that fails after a certain time,
it returns false without locking it. This timed mutex is only important for performance,
and can also be omitted altogether.

When entering the shared section, a thread generally only accesses its own busy
and forbidden flags as forbidden is almost always false. These flags are only rarely
accessed by other threads and therefore almost always available in the local cache
of the core executing the thread. In the rare case when the forbidden flag is set, this
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thread backs off using mutex to try again later. In principle the while-loop can be
iterated indefinitely, giving rise to the internal loop in state EnterS in the specification.
Leaving the shared section only consists of setting the busy flag of the thread to false.

Accessing the exclusive section is far more expensive. By using mutex, mutual
access to the exclusive section is obtained. Subsequently, the forbidden flag for each
thread p is set to true, unless the busy flag of thread p is set, as in this case the forbidden
flag must be set to false again. There is a non immediately obvious scenario where
one thread refuses to leave the shared section, and two other threads p2 and p3 want to
access the shared, respectively, exclusive section. Thread p3 cannot obtain exclusive
access, but hence should not indefinitely block shared access for p2. Hence, p3 must
set the forbidden flag of p2 to false if busy of p1 is true. Without the sometimes part
the implementation is not divergence preserving bisimilar to the specification, because
then r.busy being false on line 9 leads to a state without an internal loop, which does
not occur in the specification, if all forbidden flags are set. Without the sometimes
part, a matching specification would become substantially more complex exhibiting
exactly when which forbidden flag is set, rendering the specification far less abstract.

When leaving the exclusive section a thread resets all forbidden flags of the other
threads. Again, if this is done in a predetermined sequence the divergence preserving
branching bisimilar external behaviour becomes very complex, as this sequence has
an influence on the precise sequence other threads can enter the shared section. By
resetting and sometimes even setting the forbidden flag, a comprehensible provably
equal external behaviour is obtained, although it leads to another loop of internal
actions in the specification. Practically, re-resetting is not needed, and certainly not
for our term library. However, it is interesting to further investigate the optimal use of
the timing of mutex in enter_shared, as well as the optimal rate of occurrence of
the sometimes instructions for generic uses of the busy-forbidden protocol.

5.2.3 Behavioural Properties
We also formulate a number of natural requirements that should hold for this protocol.
These requirements have been formulated as modal properties and verified using model
checking.

1. There should never be more than one thread present in the exclusive section.

2. There should never be a thread present in the exclusive section while one or
more threads are present in the shared section.

3. When a thread requests to enter the shared section, it will be granted access
within a bounded number of steps, unless there is another thread in the exclusive
section.
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4. When a thread requests to enter the exclusive section, it will be granted access
within a bounded number of steps, unless there is another thread in the shared
or in the exclusive section.

5. When a thread requests to leave the exclusive/shared section, it will leave it
within a bounded number of steps.

6. A thread not in the exclusive or shared section can instantly start to enter the
exclusive or shared section.

For properties 3, 4, and 5 granting access and leaving can be indefinitely postponed if
other threads are entering and leaving exclusive and shared sections, or when other
threads are in the while loops, continuously writing forbidden and busy flags. This
means that these properties only hold under fair scheduling assumptions for the threads.

5.3 Modelling and Verifying the Algorithms
We have made models of the busy-forbidden protocol and the thread-safe term library
in the process modelling language mCRL2 [63] based on the pseudocode in both
Table 5.1 and 5.2. Furthermore, we have formalised the informal requirements listed
in Sections 5.1.1 and 5.2.3 in the modal mu-calculus, and verified them using the
mCRL2 toolset [23].

The models and formulas can be found in Appendices B.1 and B.2, respectively.
Due to the nature of model checking, we only verify the models for finite instances.
We repeatedly found that when protocols or distributed systems are erroneous, the
problems already reveal themselves in small instance [64]. After verification succeeded
on finite instances we have not encountered any issues during the execution of the
protocol in practice. The protocol and library have not been proven correct in general
for any number of threads and terms. Proving the specification and implementation
of the busy-forbidden protocol equal is conceivable using a variant of the Cones and
Foci method [65, 46], and this is considered future work. Unfortunately, we do not
know of any effective method to prove modal formulas on models with a complexity
such as ours automatically for any number of threads and terms, and consider this an
important direction of research.

5.3.1 The mCRL2 Language and Modal Formulas
The mCRl2 language is a modelling language based on CCS (Calculus of Communi-
cating Processes) [103] and ACP (Algebra of Communicating Processes) [2]. Note
that the process algebra with multi-actions that we have defined in Chapter 3 was
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derived from the mCRL2 language, so the following concepts will be very similar.
The behaviour of processes is given by the atomic actions that are observed, which in
our case represent the function calls and access to (global) variables, and the special
action τ represents internal behaviour. We again assume the existence of standard data
types as Bool representing B and Nat representing N with standard operators.

Processes can be sequentially composed using the dot (‘.’) operator. Alternative
composition, where non-deterministically one of the options can be chosen, is denoted
using a plus (‘+’), or in general by a summation (‘Σ’), and parallel composition is
denoted by ∥. Using the comm and allow operators, the synchronisation of parallel
components can be specified to achieve message passing or communication. For
example, we can specify that a storep action can only occur iff a corresponding store f
action can occur with the exact same values for its arguments. Furthermore, an if-then-
else is written as c→p⋄q where the behaviour of process p is executed iff c is true,
and otherwise the behaviour of process q takes place.

Recursive behaviour is denoted using equations of the form X = p, e.g., X = a .X
is the process that can perform an infinite number of a actions. The process variables
X can have data parameters. For example, a counter process can be defined as
C(n : Nat) = up .C(n+1). We also allow functions as process parameters, for example
the process variable Y (m : Nat→ Bool) uses a mapping m from natural numbers to
booleans. The function update m[n 7→ b] specifies that m[n 7→ b](k) equals b if k = n
and equals m(k) otherwise.

We also have the modal mu-calculus to specify behaviour requirements of these
processes. Formulas consist of conjunctions (∧), disjunctions (∨), implications (→),
negations (¬), predicates and quantifiers. The diamond modality ⟨a⟩φ is valid iff an
action a can occur after which φ holds. The dual box modality [a]φ holds iff after
every possible a action φ holds. The actions inside these modalities are generalised
to regular formulas. First, an action formula represents a set of multi-actions and is
either a multi-action, a predicate over multi-actions with quantifiers over data, or the
usual set operations union (∪), intersection (∩) and complement (U). Next, regular
formulas are the typical sequential composition (.), choice (+) and Kleene star (∗).
For example: the formula ⟨a . (b∪ c)⟩true only holds if we can either do an a action
followed by a b or c action. Furthermore, we also have sets of actions where true
represents the set of all actions with the typical set union (∪), intersection (∩) and
complement (U). An often occurring pattern is [true∗]φ expressing that φ must hold
in all states reachable via a sequence of actions.

We can also write recursive formulas using the minimal fixed point operator µX .φ
and the maximal fixed point operator νX .φ . For example the maximal fixed point
operator can be used to construct the formula νX .⟨a⟩X , which expresses that we must
be able to perform action a after which the same formula still holds. Thus this formula
only holds if we can perform an infinite amount of a actions.
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A noteworthy fixed point construction, used in several properties, is the following:

νX .µY.([a∪b]Y ∧ [b]X ∧⟨true∗ .a⟩true) (5.1)

Here we state that an a action must always be able to occur within a finite amount of
steps, unless a b action occurs infinitely often. This construction is useful for properties
in which we state that something may eventually happen given fair scheduling (the b
action does not occur infinitely often).

The fixed point operators also allow us to pass on parameters in the same way
we can do for process variables. This allows us, for example, to keep track of the
number of times that a given action has occurred, e.g., given a system with the actions
in and out, we can state that each out action needs a corresponding in action using the
following fixed point:

νX(n:N= 0).[in∪out]X(n)∧ [in]X(n+1)∧ [out](n > 0∧X(n−1)).

Here n keeps track of the difference between the amount of in and out actions. We use
n:N= 0 to state that n is a natural number and is initially 0. The left-hand side of the
conjunction (n > 0∧X(n−1)) states that an out action may only occur if n is greater
than 0.

5.3.2 Modelling and Verifying the Busy-Forbidden Protocol
The process specification given in Table 5.3 exactly matches the external behaviour
(or specification) shown in Figure 5.3. We define P to be the (finite) set of threads and
we define S to be a data set representing the set of states:

S = { Free, EnterS, LOE1, Shared, LeaveS,
EnterE, LOE2, LOS, Exclusive, LeaveE1, LeaveE2 }

Initially, s(p) = Free for all p ∈ P. The conditions for performing transitions are the
same as the conditions in the diagram of the external behaviour.

The implementation model is described in great detail in Appendix B.1, but
generally follows the pseudocode presented in Table 5.2 translated into mCRL2.
Both models use the eight externally observable actions mentioned earlier, such as
enter_shared_call and enter_shared_return. Note that the mutex.timed_lock()
statement is omitted as it is only important for performance and not for correctness.
We have shown for finite instances up to seven threads that these are divergence pre-
serving branching bisimilar when abstracting the ‘improbable’ actions and performing
non-deterministic choice for the ‘sometimes’ statement.

As the next step, we transformed the six requirements discussed in Section 5.2.3
into modal logic formulas, and verified them on the specification. Note that these
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BF(s : P→ S) =
∑p:P .(

(s(p)≈ Free)
→enter_shared_call(p) .BF(s[p 7→ EnterS])

+ (s(p)≈ EnterS)
→ ((¬∃p′:P. s(p′) ∈ {LOS,Exclusive})→ τ .BF(s[p 7→ LOE1])
⋄ improbable .BF(s))

+ (s(p)≈ LOE1)
→enter_shared_return(p) .BF(s[p 7→ Shared])

+ (s(p)≈ Shared)
→leave_shared_call(p) .BF(s[p 7→ LeaveS])

+ (s(p)≈ LeaveS)
→leave_shared_return(p) .BF(s[p 7→ Free])

+ (s(p)≈ Free)
→enter_exclusive_call(p) .BF(s[p 7→ EnterE])

+ (s(p)≈ EnterE∧¬∃p′:P. s(p′) ∈ {LOE2,LOS,Exclusive})
→ τ .BF(s[p 7→ LOE2])

+ (s(p)≈ LOE2)
→ improbable .BF(s)

+ (s(p)≈ LOE2∧¬∃p′:P. s(p′) ∈ {LOE1,Shared})
→ τ .BF(s[p 7→ LOS])

+ (s(p)≈ LOS)
→enter_exclusive_return(p) .BF(s[p 7→ Exclusive])

+ (s(p)≈ Exclusive)
→leave_exclusive_call(p) .BF(s[p 7→ LeaveE1])

+ (s(p)≈ LeaveE1)
→ improbable .BF(s)

+ (s(p)≈ LeaveE1)
→ τ .BF(s[p 7→ LeaveE2])

+ (s(p)≈ LeaveE2)
→leave_exclusive_return(p) .BF(s[p 7→ Free])
)

Table 5.3: Specification of the busy-forbidden protocol corresponding to Figure 5.3.
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νX(nshared : Nat = 0, nexclusive : Nat = 0).
(∀p:P.[enter_shared_return(p)]X(nshared +1,nexclusive) )

∧ (∀p:P.[enter_exclusive_return(p)]X(nshared ,nexclusive +1) )
∧ (∀p:P.[leave_shared_call(p)]X(nshared−1,nexclusive) )
∧ (∀p:P.[leave_exclusive_call(p)]X(nshared ,nexclusive−1) )
∧ [

(∃p:P.enter_shared_return(p) )
∩ (∃p:P.enter_exclusive_return(p) )
∩ (∃p:P.leave_shared_call(p) )
∩ (∃p:P.leave_exclusive_call(p) )
]X(nshared ,nexclusive)

∧ ¬(nexclusive > 0∧nshared > 0)
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Table 5.4: The modal formula for property 2: “There should never be a thread present
in the exclusive section while one or more threads are present in the shared section”.

properties are preserved by divergence preserving branching bisimulation, so verifying
these properties again for the implementation model is not necessary. We only discuss
property 2 as an illustration of what such formulas look like, and the other formulas
are presented in Appendix B.1.1. The informal description of the property reads:

2. There should never be a thread present in the exclusive section while one or
more threads are present in the shared section.

The corresponding modal formula is shown in Table 5.4. We use a maximal fixpoint
with two data parameters, namely nshared and nexclusive, both initially being 0. The
argument nshared indicates the number of threads present in the shared section, and
nexclusive the number in the exclusive section. On line 2 through 5, we keep track of the
amount of threads present in each section, updating the variables after each respective
action. On line 6 through 11, we say that our variables stay the same, after any action
that is not one of the four aforementioned actions. Finally, on line 12, we say that
threads are only allowed to be either present in exclusive or are present in shared.

These properties were verified for up to 7 threads on the specification model. For
comparison, the specification model has about three million states and the imple-
mentation model about 11 billion states. We uncovered a number of issues in earlier
versions and obtained various insights during development while doing the verification
for 2 and 3 threads. The verification with more threads, although increasingly time
consuming, did not lead to any additional insight.

139



5 A THREAD-SAFE TERM LIBRARY

5.3.3 Modelling and Verification of the Term Library

We also modelled the implementation of the thread-safe term library following the
pseudocode shown in Table 5.1.

The model uses four externally observable actions, such as create_call and
create_return, to represent calling and returning from either the create or the
destroy functions, specified in Section 5.1.1. The action create_return(t,a, p)
represents a create(t) call by thread p returning the address a where t is stored.

To reduce complexity of verification we assume a correct hash table implemen-
tation, which means that we do not model the behaviour of the bucket list and hash
functions explicitly. Instead the hash table is modelled as a simple associative array,
with atomic contains and insert operations. The model is primarily concerned with
the thread-safe creation and garbage collection of terms, and therefore the typical term
structure, where terms contain subterms, is also not part of the model, and thus we
model only constant terms.

The four properties discussed in Section 5.1.2 were also translated into modal logic
and verified using model checking. We have verified that these properties hold for up
to 3 threads, using 3 different terms and 4 possible addresses. We use the specification
of the busy-forbidden protocol in this model and this resulted in a state space of 800
million states The use of the implementation model for the busy-forbidden protocol
would lead to a far larger state space. Furthermore, we were unable to verify our
properties on larger state spaces as they became too large. For example the state space
of the aforementioned setup with 4 threads instead of 3 already has 129 billion states,
which could only be inspected using symbolic representations using the techniques
described in Chapter 4.

5.4 Performance Evaluation

We have implemented a sequential and a parallel version of the term library in C++ as
part of our mCRL2 toolset [23]. These implementations are almost identical except
for the synchronisation primitives added to the parallel version where necessary. For
the parallel version we compare the busy-forbidden protocol to the readers-writer
lock implementation present in the C++ standard library, where it is called a shared
mutex. Furthermore, we have implemented both reference counting and root protection
sets as garbage collection strategies in both implementations for comparison. We
compare these implementations with the sequential term library as it is currently
used in the mCRL2 toolset [63] and to both a thread-safe [90] and a sequential Java
implementations of the ATerm library. All reported measurements are the average of
five runs with an AMD EPYC 7452 32-Core processor, unless stated otherwise.
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Figure 5.4: The experimental results. 141
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Figure 5.5: Additional benchmarks and legend.

The results are listed in the plots in Figures 5.4 and 5.5, and for completeness
we also present the exact values as tables in Appendix B.3. In these plots the y-axis
indicates the wall clock time in seconds and the x-axis the number of threads (indicates
as #threads). The legend for all plots is presented in Table 5.5c, with the following
explanation. Triangles are the parallel reference counted implementation and the
squares the parallel protection set implementation. For the sequential versions we
have circles for the reference counted variant, diamonds for the protection set variant
and plusses for the original implementation. Finally, the dashed line indicates the
thread-safe Java implementation and the dotted line is our thread-safe implementation
where the busy-forbidden protocol has been replaced by the standard shared lock. This
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last implementation uses protection sets. Furthermore, we note that for the sequential
implementations the lines are extended horizontally for easier comparison.

In Figure 5.4 we report on three experiments, one per row, designed to obtain
insight in how the new library performs for certain micro-benchmarks. In the left
column all threads access the same shared term, whereas in the right column each
thread operates on its own term, but due to hash consing these terms are all stored in
the globally shared hash table.

In Figure 5.4 (a) we measure how expensive it is to create a term in parallel that
does not yet exist, which is uncommon in practice. Each thread creates a term t400000
defined as follows. The term t0 is equal to a constant c and ti is f (ti−1, ti−1) for a
function symbol f of arity two, which is the most common arity used in practice. Note
that due to sharing, this term consists of 400 001 term nodes. In (b) each thread creates
a term t400000/#threads instead where c is a unique constant for each thread, creating a
total of 400000+#threads term nodes. In Figures 5.4 (c) and (d) we measure the time
it takes to create 1000/#threads instances of the terms used in (a) and (b) respectively.
This measures the time it requires to create terms that are already present in the hash
table, and this essentially boils down to a hash table lookup.

In the lower diagrams, i.e., (e) and (f), we measure the time required to perform
1000/#threads breadth-first traversals on a term t20, where again in (f) these terms are
unique per thread. The traversals do not employ the shared structure, hence 221−1
terms are visited per traversal.

First, we observe that our term library completely outperforms the Java imple-
mentation, which is generally in line with the expectation that efficient memory
management and offline compilation in C++ outperforms Java implementations. In
diagram (d) the Java results are even left out as Java consistently requires more than
100 seconds. Furthermore, we observe that the shared lock is slower than the busy-
forbidden protocol in the equal comparison where both use protection sets in all cases.
Similarly, we can observe that the reference counted variant is overall slower than vari-
ant using a protection set. For traversing terms no locking is required, and therefore,
no difference is observed with the dotted line hidden under the line of boxes.

The thread-safe term library outperforms the parallel Java version and the im-
plementation with a standard shared lock for all cases for the protection set variant.
The thread-safe term library scales poorly for the case where new terms are created
that do not yet exist in the hash table. Similarly, there is only a speed up of about
two on 16 threads, and a slightly worse speed up for 32 threads, for the case where
distinct existing terms are created. However, we measure that about 90 percent of
terms already exist in the hash table in our practical applications. For this use case the
thread-safe term library with the busy-forbidden protocol and protection sets scales
well with the number of threads, achieving a speed up of 10 on 32 threads for creating
existing shared terms, and is competitive with the sequential implementation. For
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term traversal it scales well up to 8 threads, after which memory accesses seemingly
become the bottleneck.

We observe in Figure 5.4 (c) that the reference counting implementation for a
few threads is unexpectedly inefficient. In order to understand this, we retried the
experiments on an Intel i7-7700HQ processor, reported in Figure 5.5 (a). Here, none
of the anomalies occur, and notably, Java even outperforms the standard shared lock
implementation with more threads. Unfortunately, we have no explanation for this,
but it is in line with our general observation that compiler and processor can have a
large influence on the benchmark results.

The dedicated benchmarks are promising, but in order to get insight in the be-
haviour of the term library in practical situations, we incorporated the term library
in the mCRL2 toolset and used it to generate the state space of the 1394 firewire
protocol [98]. These results are shown in Figure 5.5b This is a fairly naive parallel
breadth-first search implementation where multiple threads work through the todo
queue and perform term rewriting steps in parallel to determine the states reachable
from the current state. With protection sets, two threads are already sufficient to
outperform all sequential implementations, and we achieve a speed up of 12 for 16
threads, and a speed up of 16 for 32 threads. Reference counting is clearly a less viable
option, most likely due to heavy contention on the atomic reference counters due to
the amount of sharing.

5.5 Conclusion
We present a formal specification of a thread-safe term library, i.e., a term library that
can be used by multiple threads in concurrently, and several behavioural properties.
We identify the need for a readers-writer lock implementation, i.e., multiple threads
can read a resource simultaneously or a single writer can obtain exclusive access, that
is efficient for read heavy workloads. To this end we develop a new busy-forbidden
protocol that only writes one atomic variable twice that is typically in the local cache
and reads another variable that is rarely updated to obtain read access. For this new
protocol we also develop a formal specification and model check the corresponding
implementation model for key properties on finite instances up to seven threads.
Furthermore, we have also model checked the specification of the complete term
library for several finite instances. Finally, we have implement this term library in the
mCRL2 toolset and show that the state space generation scales well up to 16 threads on
a machine with 32 physical cores. Furthermore, for the micro-benchmarks we observe
that it scales well for the shared term case and generally we observe that protection sets
scale far better than reference counting as a garbage collection protection mechanism.
Therefore, we can conclude that for heavy use of maximal sharing we can achieve
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fairly linear speed up, but also with the insight that maximal sharing comes at a large
cost for parallelism.

We consider the verification of the busy-forbidden protocol, and eventually the
term library itself, for any number of threads important future work. Furthermore,
there are several orthogonal features present in the actual implementation on top of the
busy-forbidden protocol that have not been formally verified. For example, in practice
we required a mechanism to allow nested entries into the shared section, which we
have implemented by means of a counter. Another possible extension would be to
allow upgrading a shared section into an exclusive section, which is also a feature
commonly found in readers-writer locks. To this end, it would also be interesting to
compare various implementations of readers-writer locks to each other practically.
This would be a large undertaking since the implementations of some protocols are
unavailable and furthermore we have found that the pseudocode sometimes contained
insufficient information to be implemented reliably.

Other practical improvements would be to introduce more sophisticated thread-
safe hash table implementations for comparison to our naive thread-safe hash table
implementation. Similarly, introducing concurrent garbage collection techniques could
be implemented to further improve the scalability of the approach. Finally, we have
only parallelised the state space exploration process, but it would also be interesting
to parallelise other expensive steps used in verification, for example the state space
minimisation or the refinement checking algorithms presented in Chapter 2.
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Chapter 6

Conclusions and Future Work

In this dissertation we have studied improvements to various algorithms that are
used for the verification of concurrent systems. This has led to promising practical
improvements to these algorithms, but also showed many open challenges in verifying
actual practical systems efficiently. All presented algorithms have been implemented
and are available in the open source toolset mCRL2 [23], including the new tools
lpscleave and lpscombine to perform the cleave procedure presented in Chapter 3.
This means that they can be used and also form the basis for further (practical)
improvements. In the remainder of this chapter we will reflect on the proposed
research questions and the work that has been carried out as part of this dissertation.

First, in Chapter 2 we have concerned ourselves with the following research
question.

RQ1 Can we resolve the issues pertaining to the correctness and efficiency of the
antichain-based refinement algorithm presented in [137]?

We have shown that all three algorithms perform suboptimally when implemented
using a depth-first search strategy and poorly when implemented using a breadth-
first search strategy. Furthermore, all three algorithms violate the claimed antichain
property. In Chapter 2 we proposed new algorithms for which we have shown cor-
rectness and which utilise proper antichains. Our experiments indicate significant
performance improvements for deciding trace refinement, stable failures refinement
and a performance of deciding failures-divergences refinement that is comparable to
deciding stable failures refinement. We also show that preprocessing using divergence-
preserving branching bisimulation offers substantial performance benefits. Therefore,
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we can answer this research question positively. The resulting algorithms are currently
used as the backbone in the commercial F-MDE toolset Dezyne; see also [8].

We proposed several ideas of future work related to these algorithms, for example
comparison to the state-of-the-art or between more classical approaches to deciding
refinement. Also comparing different state space minimisation techniques, or ap-
plying the antichain based technique to decide other refinement algorithms such as
fair testing [119]. In addition to this, with the introduction of our thread-safe term
library it would be interesting to see if the refinement algorithms can be parallelised,
for example by exploring different parts of the implementation model concurrently.
Similar algorithms have already been implemented in FDR4.

As a next step, we concerned ourselves with effectively applying compositional
minimisation to a monolithic process by decomposing it into a number of parallel
components to efficiently obtain a reduced state space, in order to answer the following
research question.

RQ2 Can compositional minimisation be applied to a monolithic process by
decomposing it into multiple monolithic processes?

In Chapter 3 we have presented a decomposition technique, a cleave, that can
be applied to any monolithic process as an LPE and have shown that it is always a
valid decomposition, which answers this research question positively. Furthermore,
we have shown that state invariants can be used to improve the effectiveness of the
decomposition. However, we have also found out that deriving an effective parameter
partitioning can be difficult. Many experiments had to be performed in order to show
that the technique can be effective. This means that in its current form it is not yet
suited for a practical application in most general cases, and finding the most effective
decomposition using heuristics is important future work.

On a more positive note, recent work has shown that the developed lpscleave and
lpscombine tools can successfully be used for compositional minimisation for speci-
fications where there are a number of clearly separated components, which was not
(easily) achievable in the mCRL2 toolset without these tools. Furthermore, additional
work has been carried out to apply a cleave to the typically more useful abstraction
based on (divergence-preserving) branching bisimulation minimisation [56]. Overall,
this shows promising results towards the improvements of these algorithms and the
development of robust compositional minimisation within the mCRL2 toolset. Further-
more, since the introduction of efficient symbolic model checking techniques within
the mCRL2 toolset, it could also be interesting to determine how two symbolically
represented state spaces could be efficiently composed.

Next, in Chapter 4 we have concerned ourselves with the following research
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question.

RQ3 Can on-the-fly solving be applied effectively to symbolic parity games?

To this end, we have developed the theory to reason about on-the-fly solving of
parity games, independent of the strategy that is used to explore games. In addition to
that, we have introduced the notion of safe vertices, shown their correctness, proven
an optimality result, and we have studied partial solvers and shown that these can
be made to run without determining the safe vertices first; which can be useful for
on-the-fly solving. Finally, we have demonstrated the practical purpose of our method
and observed that solitaire winning cycle detection with safe attractors is almost always
beneficial with minimal overhead, but also that more powerful partial solvers can be
useful. Therefore, we can conclude that this research question has a positive answer.

We have hinted at several improvements to the on-the-fly algorithms such as
choosing the most efficient solver, or practical improvements to the heuristics and
procedures used in the symbolic solving algorithms. Overall, the introduction of
symbolic model checking to the mCRL2 toolset has resulted in being able to verify
state space far larger than was possible with explicit state model checking. This
includes automatically verifying that the first player has a winning strategy for the
connect four game played on the full 7x6 board, which resulted in a parity game of
about 1016 vertices. On-the-fly solving was only one of the features available in the
explicit state verification tools that has now been transferred to the symbolic setting.

An important feature missing from the symbolic verification tools is the ability to
generate an effective counter example for failing verification, or alternatively a witness
for succeeding verification. Applying the technique presented in [138] to symbolic
parity games is theoretically sound, but is not practically feasible in the way that it
is currently implemented. However, this is crucial when trying to understand why
the modelled behaviour is wrong, or why the modal formula is ill-formulated, and
therefore important future work. Furthermore, the techniques employed in symbolic
verification within the mCRL2 toolset are rather primitive and state-of-the-art symbolic
verification tools, such as LTSmin, implement far more sophisticated heuristics and
algorithms that should be studied and incorporated in order to further scale up the
models that can be verified.

Finally, another important aspect for scaling is the ability utilise multi-core proces-
sors efficiently, for which we have posed the following research question.

RQ4 Can a thread-safe term library to store and manipulate terms be developed
that achieves linear speedup compared to an efficient sequential implementation?

149



6 CONCLUSIONS AND FUTURE WORK

In Chapter 5 we present a formal specification of a thread-safe term library, i.e.,
a term library that can be used by multiple threads in parallel. We have designed
and verified an efficient readers-writer lock implementation, i.e., multiple threads
can share a resource or a writer can obtain exclusive access, that is efficient for read
heavy workloads called the busy-forbidden protocol. Finally, we implement this term
library in the mCRL2 toolset and show that the state space generation scales well for
multiple threads, with the observation that protection sets scale better than reference
counting as protection mechanism. Unfortunately, in general we must concede that no
linear speed up could be achieved for cases where threads operate on different terms.
However, for the case where terms are heavily shared among each other as well as
among the threads a speed up of 10 was achieved with 32 threads on a processor with
32 cores.

Therefore, the conclusion would be that for cases where terms are not heavily
shared, the overhead of maximal sharing (i.e., hash consing) in a thread-safe context
is generally undesirable with our proposed implementation. However, we have also
demonstrated that for our practical use case of state space exploration it scales well
up to 16 threads on a machine with 32 physical cores, due to the amount of sharing
that takes place. Overall, the verification of the busy-forbidden protocol and the term
library revealed several scalability issues. For example the checking equivalence
of the busy-forbidden protocol implementation and specification took more than a
week of computation power. Here, investigating the implementation of symbolic
equivalence checking, or minimisation, algorithms could help deal with this problem,
for example the ones described in [82] or [40]. Similarly, the thread-safe term library
was only verified for a small number of threads, terms and addresses due to the cost of
verification efforts. Therefore, it remains the case that scalability of formal verification
algorithms should be an active area of research for the foreseeable future, and most
likely a combination of techniques, including the ones described in this dissertation,
are necessary in order to overcome the challenge of formally verifying large scale
software systems.
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Appendix A

Antichain-based Refinement
Checking Proofs

This appendix contains detailed proofs for several auxiliary lemmas used in Chapter 2.

A.1 Proof of Lemma 2.2.4

Lemma 2.2.4. Let L = (S, ι ,→) be an LTS and let norm(L ) = (S′, ι ′,→′). For all
sequences ρ ∈ Act∗ and states U ∈ S′ such that ι ′

ρ−→→′ U , it holds that ι
ρ

=⇒ s for all
s ∈ [[U ]]L .

Proof. We use induction on the length of sequences in Act∗ to prove the statement.

Base case. First, ι ′
ε−→→′U iff U = ι ′ by definition. The state ι ′ is equal to {s | ι ε

=⇒
s} as defined in the normalisation. Hence, for every state s ∈ [[ι ′ ]]L we have ι

ε
=⇒ s.

Inductive case. Pick any sequence ρ ∈ Act∗ of length i and suppose that the
statement holds for all sequences in Act∗ of length i. Take an arbitrary state V ∈ S′

and action a ∈ Act such that ι ′
ρ a−→→′ V . Then there is a state U ∈ S′ such that ι ′

ρ−→→′ U
and U a−→

′
V . By definition of normalisation there is a transition U a−→

′
V if and only

if V = {t ∈ S | ∃s ∈U : s a
=⇒ t}. So for all states t ∈ [[V ]]L there is a state s ∈ [[U ]]L

such that s a
=⇒ t. By the induction hypothesis it holds that for all s ∈ [[U ]]L there is a

weak transition ι
ρ

=⇒ s. But then we may conclude that ι
ρ a
=⇒ t for all t ∈ [[V ]]L .
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A.2 Proof of Lemma 2.2.5
Lemma 2.2.5. Let L = (S, ι ,→) be an LTS and let norm(L ) = (S′, ι ′,→′). For all
sequences ρ ∈ Act∗ and for all states s ∈ S such that ι

ρ
=⇒ s, there is a state U ∈ S′

such that s ∈ [[U ]]L and ι ′
ρ−→→′ U .

Proof. We proceed using an induction on the length of sequences in Act∗.
Base case. Let s ∈ S and suppose ι

ε
=⇒ s. Then s ∈ [[ι ′ ]]L , since ι ′ is defined as

{s ∈ S | ι ε
=⇒ s}. Moreover, we trivially have ι ′

ε−→→′ ι ′.
Inductive step. Pick any sequence ρ ∈ Act∗ of length i and suppose that the

statement holds for all sequences in Act∗ of length i. Take an arbitrary state t ∈ S
and action a ∈ Act such that ι

ρ a
=⇒ t. Then there is a state s ∈ S such that ι

ρ
=⇒ s and

s a
=⇒ t. Fix such a state s ∈ S. From the induction hypothesis it then follows that

there is a state U ∈ S′ such that s ∈ [[U ]]L and ι ′
ρ−→→′ U . Fix this state U ∈ S′. Let

V be equal to {t ∈ S | ∃u ∈U : u a
=⇒ t}; then by definition, U a−→

′
V . It follows that

ι ′
ρ a−→→′ V . Finally, t ∈ [[V ]]L follows from s a

=⇒ t and s ∈ [[U ]]L .

A.3 Proof of Lemma 2.2.6
Lemma 2.2.6. Let L = (S, ι ,→) be an LTS and let norm(L ) = (S′, ι ′,→′). For all
sequences ρ ∈ Act∗ it holds that ρ /∈ weaktraces(L ) if and only if ι ′

ρ−→→′ /0.

Proof.
=⇒ ) We use induction on the length of the sequences in Act∗.
Base case. The implication holds vacuously since ε ∈ weaktraces(L ).
Inductive step. Pick a sequence ρ ∈ Act∗ of length i and suppose that the
implication holds for all sequences of length i. Assume an arbitrary action
a ∈ Act such that ρ a /∈ weaktraces(L ). From ρ a /∈ weaktraces(L ) it follows
that there is no state t ∈ S such that ι

ρ a
=⇒ t. We distinguish two cases:

– Case ρ /∈ weaktraces(L ). From the induction hypothesis we obtain ι ′
ρ−→

→′ /0 and /0 a−→
′

/0 by definition. We may therefore also conclude ι ′
ρ a−→→′ /0.

– Case ρ ∈ weaktraces(L ). Then there is a state s ∈ S such that ι
ρ

=⇒ s.
Since L ′ is deterministic there is a unique state U ∈ S′ such that both
s ∈ [[U ]]L and ι ′

ρ−→→′ U by Lemmas 2.2.5 and 2.1.4. For all states u ∈ S
satisfying ι

ρ
=⇒ u (which exist as ρ ∈ weaktraces(L )) there cannot be a

state t ∈ S such that u a
=⇒ t by the observation that ρ a /∈ weaktraces(L ).

Therefore, U a−→
′

/0 and thus also ι ′
ρ a−→→′ /0.
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⇐= ) Suppose ι ′
ρ−→→′ /0. Towards a contradiction, assume that ρ ∈weaktraces(L ).

Then there is a state s ∈ S such that ι
ρ

=⇒ s. By Lemma 2.2.5, there must be
some U ∈ S′ such that s ∈ [[U ]]L and ι ′

ρ−→→′ U . Since L ′ is deterministic, by
Lemma 2.1.4, we obtain that this state U must be such that U = /0.

A.4 Proof of Lemma 2.2.18
Lemma 2.2.18. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈Act∗ such that either ρ /∈ divergences(L ) or ρ ∈ divergencesmin(L )

and for all states s ∈ S such that ι
ρ

=⇒ s there is a state U ∈ S′ such that s ∈ [[U ]]L and
ι ′

ρ−→→′ U .

Proof. Proof by induction on the length of sequences that are not divergences, or
minimal divergences.

Base case. The empty trace ε satisfies ε /∈ divergences(L ) or ε ∈ divergencesmin(L )

by definition. Hence, we must show that for all states s ∈ S satisfying ι
ε

=⇒ s there is a
state U ∈ S′ such that s ∈ [[U ]]L and ι ′

ε−→→′U . We know that if ι
ε

=⇒ s then s ∈ [[ι ′ ]]L ,
because ι ′ is defined as {s ∈ S | ι ε

=⇒ s} in the normalisation. Finally, we also know
that ι ′

ε−→→′ ι ′.
Inductive step. Suppose that the statement holds for all sequences of length

i that are either not divergences or minimal divergences of L . Pick a sequence
ρ ∈ Act∗ of length i, an arbitrary state t ∈ S and action a ∈ Act such that ι

ρ a
=⇒ t

and ρ a /∈ divergences(L ) or ρ a ∈ divergencesmin(L ). Note that whenever ρ a /∈
divergences(L ) or ρ a∈ divergencesmin(L ) then ρ /∈ divergences(L ). From ι

ρ a
=⇒ t

it follows that there is a state s ∈ S such that ι
ρ

=⇒ s and s a
=⇒ t. By our induction

hypothesis it then follows that there is a state U ∈ S′ such that s ∈ [[U ]]L and ι ′
ρ−→→′ U .

For all states u ∈ [[U ]]L it holds that ι
ρ

=⇒ u by Lemma 2.2.17, so by definition of
divergences it must be that u⇑ does not hold and hence [[U ]]L ⇑ does not hold. Let V be
equal to {v∈ S | ∃u∈U : u a

=⇒ v} such that U a−→
′
V by definition of the normalisation.

It follows that ι ′
ρ a−→→′ V . Finally, t ∈ [[V ]]L follows from s a

=⇒ t and s ∈ [[U ]]L .

A.5 Proof of Lemma 2.2.19
Lemma 2.2.19. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈ Act∗ and states U ∈ S′ it holds that if ι ′

ρ−→→′ U and not [[U ]]L ⇑ then
ρ /∈ divergences(L ).
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Proof. Let ρ ∈ Act∗ and U ∈ S′ be such that ι ′
ρ−→→′ U and not [[U ]]L ⇑. Towards a

contradiction, assume that ρ ∈ divergences(L ). We distinguish two cases:

• ρ ∈ divergencesmin(L ). Let t ∈ S be such that ι
ρ

=⇒ t and t⇑. Note that
due to the determinism of normfdr(L ) and Lemma 2.2.18, for all s ∈ S such
that ι

ρ
=⇒ s, we have s ∈U . Hence also t ∈U . But t⇑ then implies [[U ]]L ⇑.

Contradiction.
• ρ /∈ divergencesmin(L ). Then ρ = ρ ′ρ ′′ for some ρ ′ ∈ divergencesmin(L ).

Let t ∈ S be such that ι
ρ ′
=⇒ t and t⇑. Then, by Lemma 2.2.18, there must

be some V ∈ S′ such that ι ′
ρ ′−→→′ V and t ∈ V . Let V be such. Since t⇑ and

t ∈ V , V has no outgoing transitions in normfdr(L ). In particular, we cannot

have V
ρ ′′−→→′ U , and because normfdr(L ) is deterministic, we also cannot have

ι ′
ρ−→→′ U . Contradiction.

A.6 Proof of Lemma 2.2.20

Lemma 2.2.20. Let L = (S, ι ,→) be an LTS and let normfdr(L ) = (S′, ι ′,→′). For
all sequences ρ ∈ Act∗ it holds that ρ /∈ (divergences(L )∪weaktraces(L )) if and
only if ι ′

ρ−→→′ /0.

Proof.
=⇒ ) Proof by induction on the length of sequences in Act∗.
Base case. The implication holds vacuously since ε ∈ weaktraces(L ).
Inductive step. Suppose that the statement holds for all sequences Act∗ of length
i. Pick a sequence ρ ∈ Act∗ of length i. Take an arbitrary action a ∈ Act such
that ρ a /∈ (divergences(L )∪weaktraces(L )). From ρ a /∈ weaktraces(L ) it
follows that there is no state t ∈ S such that ι

ρ a
=⇒ t. From ρ a /∈ divergences(L )

it follows that ρ /∈ divergences(L ). Now, there are two cases to distinguish:

– Case ρ /∈ weaktraces(L ). From the induction hypothesis we obtain ι ′
ρ−→

→′ /0 and /0 a−→
′

/0 by definition. Thus ι ′
ρ a−→→′ /0.

– Case ρ ∈ weaktraces(L ). There is a state s ∈ S such that ι
ρ

=⇒ s. Since
L ′ is deterministic there is a unique state U ∈ S′ such that s ∈ [[U ]]L and
ι ′

ρ−→→′ U by Lemma 2.2.18 and 2.1.4. We may furthermore conclude that
[[U ]]L ⇑ does not hold. Because ρ a /∈ weaktraces(L ), no state u ∈ S for
which ι

ρ
=⇒ u satisfies u a

=⇒ t, for any state t. Therefore, by definition,
U a−→

′
/0, and thus ι ′

ρ a−→→′ /0.
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⇐= ) Suppose ι ′
ρ−→→′ /0. From the observation that [[ /0]]L ⇑ does not hold and

Lemma 2.2.19 it follows that ρ /∈ divergences(L ). Towards a contradiction,
assume that ρ ∈ weaktraces(L ). Then there is a state s ∈ S such that ι

ρ
=⇒ s.

By Lemma 2.2.20, there must be some U ∈ S′ such that s ∈ [[U ]]L and ι ′
ρ−→→′U .

Since L ′ is deterministic, by Lemma 2.1.4, we obtain that this state U must be
such that U = /0. Contradiction.
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Appendix B

Threadsafe Term Library
Formalisation

This appendix contains a detailed explanation of the mCRL2 process specifications
and modal mu-calculus formulae used to verify the thread-safe term library described
in Chapter 5

B.1 mCRL2 Specifications for the Busy-Forbidden Pro-
tocol

In this section we give the formal mCRL2 specifications of the implementation and
the external behaviour (or specification) of the busy forbidden protocol that are used
to perform the model checking and equivalence checking. Entering the shared section
is specified in Table B.1 and leaving it in Table B.2. Note that we use actions to model
the assignments to variables, for example storep(Busy(p), true, p) corresponds to the
assignment of true to p.busy in the implementation pseudocode. The process algebra
has no global variables and we use an additional process and actions to read from and
write to these variables. For the atomic flags we introduce a struct F that is defined
below to declare a busy and a forbidden flag per thread.

sort F = struct Busy(P) | Forbidden(P)

Table B.3 shows the behaviour of the Busy and Forbidden flags for every thread and
the mutex variable. We model the ‘while’ construction in the pseudocode by recursion
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EnterShared(p : P) =
enter_shared_call(p) .
TryBothFlags(p) .
enter_shared_return(p)

TryBothFlags(p : P) =
storep(Busy(p), true, p) . (

loadp(Forbidden(p), true, p) .
storep(Busy(p), false, p) . improbable .TryBothFlags(p)

+ loadp(Forbidden(p), false, p)
)

Table B.1: mCRL2 specification for the implementation of enter_shared.

LeaveShared(p : P) =
leave_shared_call(p) .
storep(Busy(p), false, p) .
leave_shared_return(p)

Table B.2: mCRL2 specification for the implementation of leave_shared.

and have added the improbable action to ensure equivalence modulo divergence-
preserving branching bisimulation. Similarly, entering the exclusive section is specified
in Table B.4 and leaving it in Table B.5. Observe that we use a typewriter font
(for example enter_shared_call) to indicate visible actions and a italics front
(for example storep) to indicate internal actions that will be hidden for divergence-
preserving branching bisimulation reductions. Here, we use a set forbidden (and for
leaving allowed) to keep track of the threads whose forbidden flag has already been
set to true.

Table B.6 shows the specification for the behaviour of a thread. Each thread
repeatedly tries to (non-deterministic) enter and leave either a shared or exclusive
section. Finally, Table B.7 contains the complete mCRL2 specification of the various
processes in a parallel composition and the necessary communication to deal with the
atomic flags and mutex.

B.1.1 Modal Formulas
In this section we explain the modal formulas corresponding to the informal properties
listed in Section 5.2.3. The formula for the property 1 is shown in Table B.9 and
states that when a thread enters the exclusive section, no other thread may enter that
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Flags(flags : F → Bool) =
∑ f :F,p:P .(

∑b:Bool .store f ( f ,b, p) .Flag(flags[ f 7→ b])
+ load f ( f ,flags( f ), p) .Flag(flags)

)

Mutex(locked : Bool) =
∑p:P .(

locked
→ lockm(p) .Mutex(true)
⋄ unlockm(p) .Mutex(false)
)

Table B.3: mCRL2 specifications for the atomic flags and the mutex.

EnterExclusive(p : P) =
enter_exclusive_call(p)
lockp(p) .
SetAllForbiddenFlags(p, /0) .
enter_exclusive_return(p)

SetAllForbiddenFlags(p : P, forbidden : Set(P)) =
(∀p′:P.p ∈ forbidden)
→ internal
⋄ ∑p′:P .storep(Forbidden(p′), true, p) . (

loadp(Busy(p′), false, p) .
SetAllForbiddenFlags(p, forbidden∪{p′})

+ loadp(Busy(p′), true, p) .
storep(Forbidden(p′), false, p) . improbable .
SetAllForbiddenFlags(p, forbidden\{p′})

+ storep(Forbidden(p′), false, p) . improbable .
SetAllForbiddenFlags(p, forbidden\{p′})
)

Table B.4: mCRL2 specification for the enter_exclusive function shown in Ta-
ble 5.2.
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LeaveExclusive(p : P) =
leave_exclusive_call(p) .
AllowAllThreads(p, /0) .
unlockp(p) .
leave_exclusive_return(p)

AllowAllThreads(p : P, allowed : Set(P)) =
(∀q:P.q ∈ allowed)
→ internal
⋄ ∑p′:P .(

storep(Forbidden(p′), false, p) .
AllowAllThreads(p, allowed∪{p′})

+ storep(Forbidden(p′), true, p) . improbable
AllowAllThreads(p, allowed\{p′})
)

Table B.5: mCRL2 specification for the leave_exclusive function shown in Ta-
ble 5.2.

Thread(p : P) =
EnterShared(p) .
LeaveShared(p) .
Thread(p)

+ EnterExclusive(p) .
LeaveExclusive(p) .
Thread(p)

Table B.6: mCRl2 specification for a thread p interacting with the protocol.
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allow({
store, load,
lock,unlock,
internal, improbable,
enter_shared_call,enter_shared_return,
leave_shared_call,leave_shared_return,
enter_exclusive_call,enter_exclusive_return,
leave_exclusive_call,leave_exclusive_return
},comm({

store f |storep→ store,
load f |loadp→ load,
lockm|lockp→ lock,
unlockm|unlockp→ unlock
},
Thread(p1) ||

...
Thread(p|P|) ||
Flags(λ f :F.false) ||
Mutex(false)
)

)

Table B.7: mCRL2 specification for the busy-forbidden protocol.
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section till it leaves the section. The formulas for properties 3 and 4 are presented
in Tables B.8 and B.10 and use data parameters to count the number of threads in
the exclusive section or in any section respectively. Furthermore, these formulas and
the formula for property 5 in Table B.11 utilise the following construction that was
presented in Equation 5.3.1 of Section 5.3.1 to state that some action a must be able
to occur. Observe that under strong fairness assumptions this means that this action
actually will occur. Note that these are two subformulas with identical structure for
shared and exclusive sections respectively.

νX .µY.([a∪b]Y ∧ [b]X ∧⟨true∗ .a⟩true)

Finally, the property 6 presented in Table B.12 uses boolean parameters to keep
track of whether any thread is in the shared or exclusive sections respectively. This is
more efficient than keeping track of the exact amount of threads.
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νX(nexclusive : Nat = 0).
[∃p:P. enter_exclusive_call(p)]X(nexclusive +1)

∧ [∃p:P. leave_exclusive_return(p)]X(nexclusive−1)
∧ [

(∃p:P. enter_exclusive_call(p))
∩ (∃p:P. leave_exclusive_return(p))
] X(nexclusive)

∧ ∀p:P.[enter_shared_call(p)]
νY (n′exclusive : Nat = nexclusive).µZ(n′′exclusive : Nat = n′exclusive). (
[

enter_shared_return(p)
∩ (∃p′:P. enter_shared_call(p′))
∩ (∃p′:P. enter_exclusive_call(p′))
∩ (∃p′:P. leave_exclusive_return(p′))
∩ improbable
] (

((n′′exclusive ≈ 0) =⇒ Z(n′′exclusive))
∧ ((n′′exclusive > 0) =⇒ Y (n′′exclusive))

)
∧ [∃p′:P. enter_shared_call(p′)]Y (n′′exclusive)
∧ [∃p′:P. enter_exclusive_call(p′)]Y (n′′exclusive +1)
∧ [∃p′:P. leave_exclusive_return(p′)]Y (n′′exclusive−1)
∧ [improbable]Y (n′′exclusive)
∧ ⟨true∗ .enter_shared_return(p)⟩true

)

Table B.8: Modal formula for property 3: “When a thread requests to enter the shared
section, it will be granted access within a bounded number of steps, unless there is
another thread in the exclusive section”.

[true∗]
[∃p∈P : enter_exclusive_return(p)]
[∃p∈P : leave_exclusive_call(p)

∗
]

[∃p∈P : enter_exclusive_return(p)]
false
Table B.9: Modal formula for property 1: “There should never be more than one thread
present in the exclusive section”.
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νX(nblocking : Nat = 0).
[∃p:P. enter_exclusive_call(p)]X(nblocking +1)

∧ [∃p:P. enter_shared_call(p)]X(nblocking +1)
∧ [∃p:P. leave_shared_return(p)]X(nblocking−1)
∧ [∃p:P. leave_exclusive_return(p)]X(nblocking−1)
∧ [

(∃p:P. enter_exclusive_call(p))
∩ (∃p:P. leave_exclusive_return(p))
∩ (∃p:P. enter_shared_call(p))
∩ (∃p:P. leave_shared_return(p))
] X(nexclusive)

∧ ∀p:P.[enter_exclusive_call(p)]
νY (n′blocking : Nat = nblocking).µZ(n′′blocking : Nat = n′blocking). (

[
enter_exclusive_return(p)

∩ (∃p′:P. enter_shared_call(p))
∩ (∃p′:P. leave_shared_return(p))
∩ (∃p′:P. enter_exclusive_call(p′))
∩ (∃p′:P. leave_exclusive_return(p′))
∩ improbable
] (

((n′′blocking ≈ 0) =⇒ Z(n′′blocking))

∧ ((n′′blocking > 0) =⇒ Y (n′′blocking))

)
∧ [∃p′:P. enter_shared_call(p′)]Y (n′′blocking +1)
∧ [∃p′:P. leave_shared_return(p′)]Y (n′′blocking−1)
∧ [∃p′:P. enter_exclusive_call(p′)]Y (n′′blocking +1)
∧ [∃p′:P. (p′ ̸≈ p) ∧ enter_exclusive_return(p′)]Y (n′′blocking−1)
∧ [improbable]Y (n′′exclusive)
∧ ⟨true∗ .enter_exclusive_return(p)⟩true

)

Table B.10: Modal formula for property 4: “When a thread requests to enter the
exclusive section, it will be granted access within a bounded number of steps, unless
there is another thread in the shared or in the exclusive section”.
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[true∗] ∀p:P.(
[leave_shared_call(p)]νX .µY.(

[
leave_shared_return(p)

∩ (∃p′:P. enter_exclusive_call(p′))
∩ (∃p′:P. enter_shared_call(p′))
∩ improbable
] Y

∧ [
(∃p′:P. enter_exclusive_call(p′))

∪ (∃p′:P. enter_shared_call(p′))
∪ (improbable)
] X

∧ ⟨true∗ .leave_shared_return(p)⟩true
)

∧ [leave_exclusive_call(p)]νX .µY.(
[

leave_exclusive_return(p)
∩ (∃p′:P. enter_exclusive_call(p′))
∩ (∃p′:P. enter_shared_call(p′))
∩ improbable
] Y

∧ [
(∃p′:P. enter_exclusive_call(p′))

∪ (∃p′:P. enter_shared_call(p′))
∪ (improbable)
] X

∧ ⟨true∗ .leave_exclusive_return(p)⟩true
)

)

Table B.11: Modal formula for property 5: “When a thread requests to leave the
exclusive/shared section, it will leave it within a bounded number of steps”.
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∀p:P.νX(bshared : Bool = false, bexclusive : Bool = false).
[enter_shared_call(p)]X(true,bexclusive)

∧ [leave_shared_return(p)]X(false,bexclusive)
∧ [enter_exclusive_call(p)]X(bshared , true)
∧ [leave_exclusive_return(p)]X(bshared , false)
∧ [

enter_shared_call(p)
∩ leave_shared_return(p)
∩ enter_exclusive_call(p)
∩ leave_exclusive_return(p)
] X(nshared ,nexclusive)

∧ ((¬nshared ∧¬nexclusive) =⇒ (
⟨enter_exclusive_call(p)⟩true

∧ ⟨enter_shared_call(p)⟩true
))

Table B.12: Modal formula for property 6: “A thread not in the exclusive or shared
section can instantly start to enter the exclusive or shared section”.

B.2 mCRL2 Specifications for the Term Library

In this section we give the formal mCRL2 specifications of the implementation and
the external behaviour (or specification) of the term library forbidden protocol that
are used to perform the model checking. Creating a term is specified in Table B.13
and destroying a term in Table B.16. In this model, the set P corresponds to the set
containing all threads, T to the set containing all terms and A to the set containing all
memory addresses. The set A⊥ = A∪{⊥} with ⊥ ̸∈ A contains the extra element ⊥
meaning no address or a NULL pointer. To ensure finiteness and reduce the complexity
of the model, the set T only contains a finite amount of constants, i.e., terms of arity
zero.

First of all, we introduce processes EnterShared, LeaveShared, EnterExclusive
and LeaveExclusive to interact with the busy-forbidden specification BF specified
in Table 5.3. To distinguish between the term library and the protocol all actions
such as enter_shared_call are split into action enter_shared_callbf for the
protocol and enter_shared_callp for the term library. Finally, we have the process
MainMemory to model the main memory by keeping track of used memory addresses,
the process HashTable which model a hash table as an associative array and process
ReferenceCounter to track a reference counter for every address (or term). Destroying
a term is specified in Table B.16, which uses the same other processes as the creation
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function. Again there are two separate processes to model the behaviour of the while
loop.

The specification in Table B.18 models the behaviour of each thread. Each thread
repeatedly tries to either create a term it does not yet know, which means that it is not
destroyed, or destroys one it does. Finally, Table B.17 shows the complete specification
including the communication between various processes used to model the thread-safe
term library. The comm and allow operators specify the communication between the
various components.

B.2.1 Requirements as Modal Formulas
To verify the model of the thread-safe term library we again specify a number of
modal formulas for the properties described in Section 5.1.2. The modal formula for
property 1 specified in Table B.19 uses mapping a from addresses to terms and the
finite set owners containing all threads that own/protect term t as data parameters. If
at any point in time a create(t) returns a different address than the current address,
then the term must not be owned by any thread. The modal formula in Table B.20 for
property 2 uses the same constructs to check whether terms on the same address are
also equivalent.

The formula for property 3 shown in Table B.21 uses a boolean parameter busy
to keep track of whether the thread p is creating (or destroying) a term. Furthermore,
the parameter known is a finite set containing all terms that thread p knows. If at any
point in time busy is false, then the process must be able to start destroying any term
in known and start creating any term not currently in known. Finally, for property 4
the formula shown in Table B.22 uses again the construction which (under fairness)
indicates that term creating (and destroying) will finish within a finite number of
steps. Note that these are two subformulas with identical structure for creation and
destruction respectively.
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Create(p : P, t : T, lm : T → A⊥) =
create_call(p, t) .
EnterShared(p) .
Create2(p, t, lm)

Create2(p : P, t : T, lm : T → A⊥) =
∑a:A⊥ .(

containsp(t,a, p) .
(a≈⊥)
→∑a′:A . (

construct_termp(t ,a′ , p) . (
insertp(t ,a′ , true , p) .
Create3(p, t, lm, a′)

+ insertp(t, a′, false, p) .
destruct_termp(t, a′, p) .
Create2(p, t, lm)
))

⋄ Create3(p, t, lm, a)
)

Create3(p : P, t : T, lm : T → A⊥, a : A) =
protectp(t, a, p) .
LeaveShared(p) .
create_return(p, t, a) .
Thread(p, lm[t 7→ a])

Table B.13: mCRL2 specification for the create function shown in Table 5.1.
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EnterShared(p : P) =
enter_shared_callp(p) .
enter_shared_returnp(p)

LeaveShared(p : P) =
leave_shared_callp(p) .
leave_shared_returnp(p)

EnterExclusive(p : P) =
enter_exclusive_callp(p) .
enter_exclusive_returnp(p)

LeaveExclusive(p : P) =
leave_exclusive_callp(p) .
leave_exclusive_returnp(p)

Table B.14: mCRL2 processes used to communicate with the busy-forbidden protocol.
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MainMemory(used : FSet(A)) =
∑p:P,t:T,a:A .(

(a ̸∈ used)
→ construct_termmm(t,a, p) .MainMemory(used∪{a})
⋄ destruct_termmm(t,a, p) .MainMemory(used\{a})
)

HashTable(m : T → A⊥) =
∑t:T,p:P .(

containsht(t,m(e), p) .HashTable(m)
+ ∑a:A .(m(e)≈⊥)
→ insertht(t,a, true, p) .HashTable(m[e 7→ a)
⋄ insertht(t,a, false, p) .HashTable(m)

+ deleteht(t, p) .HashTable(m[e 7→ ⊥])
)

ReferenceCounter(counter : A→ Nat) =
∑t:T,p:P . protectrc(t,a, p) .
ReferenceCounter(counter[a 7→ counter(a)+1]

+ ∑t:T,p:P . unprotectrc(t,a, p) .
ReferenceCounter(counter[a 7→ counter(a)−1]

+ ∑t:T,p:P . protectedrc(t,a,counter(a) ̸≈ 0, p) .
ReferenceCounter(counter)

Table B.15: mCRL2 specifications of the main memory, hash table and reference
counters used in the term library specification.
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Destroy(p : P, t : T, lm : T → A⊥) =
destroy_call(p, t) .
unprotectp(t, lm(t), p) . (

skip
+ skip .GC(p) ) .
destroy_return(p) .
T hread(p, lm[t 7→ ⊥])

GC(p : P) =
EnterExclusive(p) .
GC2(p, /0)

GC2(p : P, checked : FSet(T )) =
(∀t:T .t ∈ checked)
→LeaveExclusive(p)
⋄ ∑t:T .(t ̸∈ checked)→ (

containsp(t, ⊥, p) .
GC2(p, checked∪{t}

+ ∑a:A .containsp(t, a, p) . (
protectedp(a, true, p) .
GC2(p, checked∪{t})

+ protectedp(a, false, p) .
destruct_termp(t, a, p) .
deletep(t, p) .
GC2(p, checked∪{t})
)

)

Table B.16: mCRL2 specification for the destroy function shown in Table 5.1.
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allow({
construct_term,destruct_term,
contains, insert,delete,
protect,unprotect,protected,
skip,
improbable,
enter_shared_call,enter_shared_return,
leave_shared_call, leave_shared_return,
enter_exclusive_call,enter_exclusive_return,
leave_exclusive_call, leave_exclusive_return,
create_call,create_return,
destroy_call,destroy_return
},comm({

construct_termmm|construct_termp→ construct_term,
destruct_termmm|destruct_termp→ destruct_term,
containsht |containsp→ contains,
insertht |insertp→ insert,
deleteht |deletep→ delete,
protectrc|protectp→ protect,
unprotectrc|unprotectp→ unprotect,
protectedrc|protectedp→ protected,
enter_shared_callbf|enter_shared_callp→ enter_shared_call,
enter_shared_returnbf|enter_shared_returnp→ enter_shared_return,
leave_shared_callbf|leave_shared_callp→ leave_shared_call,
leave_shared_returnbf|leave_shared_returnp→ leave_shared_return,
enter_exclusive_callbf|enter_exclusive_callp→ enter_exclusive_call,
enter_exclusive_returnbf|enter_exclusive_returnp →

enter_exclusive_return,
leave_exclusive_callbf|leave_exclusive_callp→ leave_exclusive_call,
leave_exclusive_returnbf|leave_exclusive_returnp→ leave_exclusive_return
},
Thread(p1) ||

...
Thread(p|P|) ||
MainMemory( /0) ||
HashTable(λ t:T.⊥) ||
ReferenceCounter(λa:A. 0) ||
BF(λ p:P.Free)
)

)

Table B.17: mCRL2 specification for the thread-safe term library.174
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T hread(p : P, lm : T → A⊥) =
(∑t:T .(lm(t)≈⊥)→ Create(p, t, lm))

+ (∑t:T .(lm(t) ̸≈ ⊥)→ Destroy(p, t, lm))

Table B.18: mCRL2 specification of a thread p interacting with the term library.

∀t:T .νX(a : A⊥ =⊥, owners : FSet(P) = /0).
(∀p:P,a′:A.

[create_return(p, t,a′)] (
X(a′,owners∪{p})

∧ (a ̸≈ a′ =⇒ owners≈ /0)
)

)
∧ (∀p : P. [destroy_call(p, t)]X(a,owners\{p}))
∧ [

∃p:P,a′:A.create_return(p, t,a′)
∩ ∃p:P.destroy_call(p, t)
] X(a,owners)

Table B.19: Formulation of property 1: “A term and all its subterms remain in existence
at exactly the same address, with unchanged function symbol and arguments, as long
as it is not destroyed”.

∀a:A,t1:T .νX(t : T = t1,owners : FSet(P) = /0).
(∀p:P,t2:T .

[create_return(p, t2,a)] (
X(t2,owners∪{p})

∧ (t ̸≈ t2 =⇒ owners≈ /0)
)

)
∧ (∀p:P. [destroy_call(p, t)]X(t,owners\{p}))
∧ [

∃p:P,t ′:T .create_return(p, t ′,a)
∩ ∃p:P.destroy_call(p, t)
] X(t,owners)

Table B.20: Modal formula for property 2: “Two accessible terms t1 and t2 always
have the same non-null address iff they are equal”.
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∀p:P. νX(busy : Bool = false,known : FSet(T ) = /0).
(¬busy)→ (

(∀t:T .(t ̸∈ known) =⇒ [τ∗]⟨τ∗.create_call(p, t)⟩true)
∧ (∀t:T .(t ∈ known) =⇒ [τ∗]⟨τ∗.destroy_call(p, t)⟩true)

)
∧ [

(∃t:T .create_call(p, t))
∪ (∃t:T .destroy_call(p, t))
] X(true,known)

∧ (∀t:T . [∃a:A.create_return(p, t,a)]X(false,known∪{t}))
∧ (∀t:T . [destroy_return(p, t)]X(false,known\{t}))
∧ [

(∃t:T .create_call(p, t))
∩ (∃t:T .destroy_call(p, t))
∩ (∃t:T,a:A.create_return(p, t,a))
∩ (∃t:T .destroy_return(p, t))
] X(busy,known)

Table B.21: Modal formula for property 3: “Any thread that is not busy creating or
destroying a term, can always initiate the creation of a new term or the destruction of
any term that this thread has access to”.
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([true∗]∀p:P,t:T .[create_call(p, t)] νXc. µYc.(
∀p′:P.(p ̸≈ p′) =⇒

[
(∃t ′:T . create_call(p′, t ′))

∪ (∃t ′:T . destroy_call(p′, t ′))
∪ improbable
] Xc

∧ [
(∃a:A. create_return(p, t,a))

∩ (∃p′:P.(p ̸≈ p′)∩ (∃t ′:T . create_call(p′, t ′)))
∩ (∃p′:P.(p ̸≈ p′)∩ (∃t ′:T . destroy_call(p′, t ′)))
∩ improbable
] Yc

∧ ⟨true∗ .∃a:A. create_return(p, t,a)⟩true
) )

∧
([true∗]∀p:P,t:T .[destroy_call(p, t)] νXd . µYd .(

∀p′:P.(p ̸≈ p′) =⇒
[

(∃t ′:T . create_call(p′, t ′))
∪ (∃t ′:T . destroy_call(p′, t ′))
∪ improbable
] Xd

∧ [
destroy_return(p, t)

∩ (∃p′:P.(p ̸≈ p′)∩ (∃t ′:T . create_call(p′, t ′)))
∩ (∃p′:P.(p ̸≈ p′)∩ (∃t ′:T . destroy_call(p′, t ′)))
∩ improbable
] Yd

∧ ⟨true∗ .destroy_return(p, t)⟩true
) )

Table B.22: Modal formula(s) for property 4: “Any thread that started creating a
term or destroying a term, will eventually successfully finish this task provided there
is enough memory to store one more term than those that are accessible. But it is
required that other threads behave fairly, in the sense that they will not continually
create and destroy terms or stall other threads by busy waiting”.
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B.3 Experimental Results as Tables

In this section we show the exact values for the values that are shown in the plots in
Figures 5.4 and 5.5.

#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 0.03 0.11 0.22 0.14 0.26 0.34 0.28 0.29 0.39 0.51 0.53
parallel protection set 0.03 0.07 0.07 0.20 0.15 0.28 0.20 0.17 0.32 0.34 0.32
sequential reference counter 0.02
sequential protection set 0.02
original aterm library 0.01
parallel java 0.26 0.46 0.68 1.32 1.25 1.20 1.51 1.41 1.36 1.48 1.51
std::shared_mutex 0.03 0.12 0.18 0.32 0.24 0.22 0.38 0.47 0.47 0.55 0.50
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 0.51 0.59 0.50 0.54 0.49 0.53 0.54 0.48 0.5 0.48 0.52
parallel protection set 0.35 0.39 0.32 0.39 0.33 0.41 0.39 0.38 0.38 0.37 0.39
parallel java 1.40 1.51 1.44 1.43 1.38 1.67 1.77 1.87 1.77 1.78 1.85
std::shared_mutex 0.58 0.62 0.63 0.67 0.72 0.74 0.76 0.79 0.83 0.83 0.88
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 0.50 0.53 0.50 0.49 0.53 0.51 0.51 0.49 0.48 0.48
parallel protection set 0.43 0.37 0.39 0.41 0.39 0.39 0.42 0.44 0.39 0.41
parallel java 1.68 1.95 1.68 1.82 1.81 1.65 1.94 1.94 2.09 1.86
std::shared_mutex 0.91 0.95 0.96 0.99 0.98 1.04 1.02 1.10 1.11 1.16

Table B.23: Wall-clock time in seconds for creating new terms (shared) shown in
Figure 5.4a.

#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.07 0.06 0.06 0.06
parallel protection set 0.03 0.05 0.03 0.04 0.03 0.03 0.04 0.05 0.05 0.05 0.06
sequential reference counter 0.02
sequential protection set 0.02
original aterm library 0.01
parallel java 0.26 0.25 0.28 0.26 0.28 0.28 0.28 0.35 0.33 0.35 0.32
std::shared_mutex 0.03 0.04 0.04 0.05 0.10 0.04 0.04 0.09 0.09 0.09 0.09
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 0.06 0.05 0.05 0.07 0.06 0.06 0.05 0.06 0.07 0.06 0.06
parallel protection set 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.05 0.06 0.06 0.06
parallel java 0.33 0.35 0.32 0.34 0.33 0.34 0.33 0.35 0.33 0.34 0.34
std::shared_mutex 0.09 0.10 0.10 0.10 0.10 0.09 0.11 0.09 0.12 0.11 0.13
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 0.07 0.06 0.05 0.06 0.06 0.07 0.07 0.07 0.06 0.06
parallel protection set 0.06 0.06 0.05 0.07 0.06 0.06 0.05 0.05 0.05 0.06
parallel java 0.37 0.34 0.35 0.35 0.37 0.35 0.34 0.34 0.35 0.34
std::shared_mutex 0.13 0.11 0.14 0.09 0.15 0.18 0.15 0.13 0.16 0.13

Table B.24: Wall-clock time in seconds for creating new terms (distinct) shown in
Figure 5.4b.
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#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 9.01 35.1 11.5 19.0 9.81 10.6 6.40 6.00 4.90 4.85 3.88
parallel protection set 4.07 2.51 1.66 1.39 1.07 0.96 0.81 0.75 0.67 0.59 0.53
sequential reference counter 4.01
sequential protection set 3.65
original aterm library 4.57
parallel java 104 136 106 103 91.7 84.2 75.5 71.1 64.5 61.6 57.5
std::shared_mutex 6.51 14.2 15.1 15.1 18.7 20.7 22.0 33.3 28.1 25.4 24.5
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 3.51 3.10 2.86 2.77 2.66 2.45 2.61 2.43 2.33 2.27 2.17
parallel protection set 0.49 0.46 0.43 0.41 0.40 0.39 0.37 0.36 0.35 0.32 0.31
parallel java 54.3 51.9 49.4 48.7 46.5 47.7 47.9 48.1 48.6 47.7 46.6
std::shared_mutex 22.8 22.7 23.1 22.6 22.5 22.9 23.2 23.7 24.7 24.1 24.3
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 2.16 2.10 2.08 2.04 2.03 1.97 1.82 1.87 1.81 1.81
parallel protection set 0.32 0.31 0.29 0.3 0.28 0.27 0.29 0.28 0.28 0.29
parallel java 45.9 45.4 45.8 44.9 44.8 42.4 42.4 42.9 42.1 42.1
std::shared_mutex 24.7 24.4 25.0 25.1 25.4 25.5 26.0 26.7 27.5 28.3

Table B.25: Wall-clock time for creating existing terms (shared).

#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 9.02 5.15 3.95 3.05 2.64 2.25 2.38 2.41 2.42 2.49 2.24
parallel protection set 3.96 2.66 2.58 2.44 2.27 1.76 1.92 1.86 1.95 1.91 1.79
sequential reference counter 4.02
sequential protection set 3.71
original aterm library 4.58
parallel java 106 212 218 227 260 266 274 276 295 272 287
std::shared_mutex 6.46 13.8 15.5 15.7 18.3 18.5 24.6 33.2 26.9 25.0 23.7
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 2.22 2.27 2.26 2.20 2.39 2.55 2.63 2.58 2.72 2.67 2.67
parallel protection set 1.78 1.76 1.77 1.75 1.81 1.82 1.97 2.05 2.04 2.07 2.07
parallel java 275 287 296 2912 281 286 280 284 294 292 314
std::shared_mutex 22.7 22.4 22.9 22.6 22.2 22.7 23.2 23.8 24.7 24.1 24.1
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 2.69 2.69 2.77 2.76 2.8 2.77 2.82 2.84 2.86 2.92
parallel protection set 2.07 2.10 2.15 2.05 2.12 2.11 2.17 2.22 2.27 2.22
parallel java 311 308 315 316 324 330 339 332 343 352
std::shared_mutex 24.4 24.4 25.3 25.3 25.9 25.7 26.3 27.1 27.8 28.7

Table B.26: Wall-clock time for creating existing terms (distinct).
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B THREADSAFE TERM LIBRARY FORMALISATION

#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 15.7 8.63 5.93 4.60 3.87 3.41 3.00 2.79 2.50 2.45 2.21
parallel protection set 16.7 8.90 6.07 4.66 3.93 3.37 3.01 2.80 2.55 2.41 2.34
sequential reference counter 16.8
sequential protection set 18.2
original aterm library 16.4
parallel java 34.6 34.5 36.0 36.7 36.1 33.6 30.9 28.4 26.4 25.0 22.9
std::shared_mutex 16.2 8.71 5.95 4.54 3.86 3.34 3.01 2.74 2.53 2.40 2.29
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 2.17 2.21 2.23 2.32 2.24 2.14 2.30 2.21 2.11 2.21 2.09
parallel protection set 2.28 2.21 2.30 2.35 2.21 2.26 2.35 2.25 2.33 2.28 2.21
parallel java 17.8 20.6 17.7 19.1 22.3 19.5 19.6 20.4 21.9 21.6 21.5
std::shared_mutex 2.25 2.33 2.28 2.24 2.21 2.22 2.29 2.15 2.24 2.04 2.24
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 2.17 2.18 2.13 2.07 2.06 2.09 2.06 2.05 2.13 2.10
parallel protection set 2.26 2.15 2.12 2.16 2.13 2.07 2.09 2.16 2.03 2.03
parallel java 17.6 19.2 18.4 20.6 22.7 20.8 18.5 22.5 23.6 19.4
std::shared_mutex 2.24 2.12 2.18 2.05 2.05 2.2 2.16 2.17 2.02 2.07

Table B.27: Wall-clock time for traversing terms (shared).

#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 18.4 9.61 6.41 4.93 4.10 3.56 3.14 2.88 2.63 2.51 2.34
parallel protection set 17.0 8.80 6.03 4.59 3.85 3.39 3.00 2.78 2.56 2.40 2.28
sequential reference counter 15.9
sequential protection set 18.3
original aterm library 17.4
parallel java 34.5 34.2 35.8 37.0 35.5 33.8 30.1 28.3 27.1 23.4 21.9
std::shared_mutex 16.5 8.59 5.98 4.63 3.99 3.47 3.07 2.88 2.60 2.49 2.43
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 2.36 2.33 2.33 2.28 2.24 2.19 2.26 2.22 2.16 2.20 2.11
parallel protection set 2.31 2.38 2.28 2.31 2.20 2.21 2.21 2.13 2.21 2.16 2.18
parallel java 21.1 17.5 20.9 17.3 18.7 20.8 23.0 18.4 21.6 23.0 22.8
std::shared_mutex 2.56 2.52 2.50 2.41 2.32 2.25 2.4 2.37 2.25 2.34 2.39
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 2.27 2.16 2.16 2.13 2.10 2.34 2.13 2.06 2.16 2.05
parallel protection set 2.27 2.15 2.16 2.17 2.12 2.08 2.11 2.10 2.06 2.04
parallel java 18.3 22.2 22.3 22.5 18.7 21.7 22.2 19.3 22.8 19.5
std::shared_mutex 2.18 2.30 2.27 2.34 2.14 2.28 2.08 2.10 2.38 2.26

Table B.28: Wall-clock time for traversing terms (distinct).

#Threads 1 2 3 4 5 6 7 8 9 10 11
parallel reference counter 61.0 87.6 90.1 83.1 67.0 57.4 56.2 53.3 50.0 46.5 43.4
parallel protection set 62.8 31.7 21.5 16.5 13.4 11.2 9.79 8.67 7.78 7.15 6.54
sequential reference counter 60.0
sequential protection set 52.9
original aterm library 40.2
#Threads 12 13 14 15 16 17 18 19 20 21 22
parallel reference counter 43.3 41.4 38.8 38.1 37.3 35.5 35.2 35.2 33.9 33.2 32.5
parallel protection set 6.07 5.68 5.37 5.06 4.85 4.83 4.72 4.67 4.60 4.56 4.49
#Threads 23 24 25 26 27 28 29 30 31 32
parallel reference counter 31.7 31.3 30.8 29.4 28.7 28.1 28.0 27.9 27.0 26.6
parallel protection set 4.44 4.37 4.32 4.23 4.17 4.15 4.11 4.07 4.02 3.99

Table B.29: Wall-clock time for state space exploration.
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B.3 EXPERIMENTAL RESULTS AS TABLES

#Threads 1 2 3 4 5 6 7 8
parallel reference counter 10.0 10.4 4.42 4.08 3.22 2.74 2.38 2.22
parallel protection set 5.68 3.09 2.36 1.60 1.52 1.30 1.14 1.02
sequential reference counter 4.61
sequential protection set 4.20
original aterm library 4.83
parallel java 130 73.0 50.4 40.5 32.1 29.5 28.5 29.2
std::shared_mutex 10.3 38.1 42.1 41.0 40.7 41.7 42.7 46.2

Table B.30: Wall-clock time for creating existing terms (shared, Intel).
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Summary

Accelerated Verification of Concurrent Systems

Computers are ubiquitous in our daily lives, ranging from the small chip in your debit
card to the data centres that form the foundation of the internet. The behaviour of
these computers is described by software. Implementing this software correctly, which
means that the actual behaviour is equal to the intended behaviour, is notoriously
difficult. This is especially true for concurrent systems where interaction between
computers must also be taken into account.

A key ingredient to ensure the correctness of software is to specify its behaviour
in a way that can be analysed formally. In our setting we specify this behaviour
as processes using a process algebra. Model checking is a technique that considers
a model of the specification and automatically verifies that the specified behaviour
matches the intended behaviour, which must also be specified. The behavioural model
of a specification is in our case defined by a state space consisting of all possible states
of the system and a transition relation between states that defines the (nondeterministic)
choices in each state. A major obstacle for the verification of practical systems is the
size of these state spaces. In this dissertation we investigate several ways to tackle this
problem.

We identify several issues pertaining to the soundness and performance in existing
antichain-based refinement algorithms and propose new, correct, antichain-based algo-
rithms. Refinement is a model checking technique that checks whether the behaviour
of one process refines the behaviour of another process. It is the basis of a stepwise
development methodology in which the correctness of a system can be established by
proving, or computing, that a system refines its specification.

We define a decomposition technique to effectively obtain the state space of a so
called monolithic process. A monolithic process is a single recursive equation with data
parameters, which only uses non-determinism, action prefixing, and recursion. For the
decomposition we can show that a composition of these processes is strongly bisimilar
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to the monolithic process under a suitable synchronisation context. Minimising the
resulting processes before determining their composition can be used to derive a state
space that is smaller than the one obtained by a monolithic exploration.

Another model checking technique considers a specification and a property written
in a formal language and decides whether the specification satisfies this property,
which is called the model checking problem. Parity games are a typical encoding
used for this model checking problem. We formalise how to use on-the-fly solving
techniques of parity games can be applied during the exploration process, and show
that this can help to decide the decision problem more efficiently by terminating early.

Finally, we propose a thread-safe term library that can be used as the basis for
concurrent model checking algorithms, including the previously described ones. Terms
are one of the fundamental data structures used for computing and therefore are also
extensively used in the toolset where our techniques have been implemented. To this
end we define a new efficient multiple-reader/single write mutual exclusion algorithm
that has been shown to be correct used model checking. Using the new library in an
existing state space generation tool, very substantial speed ups can be obtained.
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Samenvatting

Versnelde Verificatie van Gelijktijdige Systemen

Computers zijn onmisbaar is ons dagelijks leven, van de kleine microprocessoren in
een pinpas tot de datacentra die de fundering van het internet vormen. Het gedrag
van deze computers wordt daarbij door programmatuur beschreven. Deze program-
matuur correct implementeren, waarbij correct betekent dat het daadwerkelijke gedrag
dezelfde is als het bedoelde gedrag, is welbekend een lastig probleem. Dit geldt zeker
voor systemen die met elkaar communiceren, omdat daarbij ook rekening moet worden
gehouden met het gedrag dat door de communicatie wordt beïnvloed.

Een essentiële methode om de correctheid van programmatuur te garanderen
is door het gedrag op te schrijven op een manier dat het formeel bestudeerd kan
worden. Dit gedrag wordt in ons geval beschreven als een proces in een zogeheten
proces algebra. Model verificatie is een techniek die een specificatie model bekijkt
en automatisch verifieert of het beschreven gedrag identiek is aan het vereiste gedrag,
waarbij dat laatste ook moet worden beschreven. Het specificatie gedrag wordt in
dit geval definieert als een toestandsruimte bestaande uit alle mogelijke toestanden
van het system en een transitie relatie tussen toestanden die de niet-deterministische
keuze in elke toestand aanduidt. Een groot obstakel voor de verificatie van praktische
systemen is de grootte van deze toestandsruimtes. In dit proefschrift onderzoeken we
verschillende manieren om dit specifieke probleem aan te pakken.

We identificeren meerdere problemen met betrekking tot de correctheid en effi-
ciëntie in bestaande op zogeheten ‘antichain’ gebaseerde verfijning algoritmes in de
literatuur en beschrijven nieuwe, correcte, ‘antichain’ gebaseerde verfijning algoritmes.
Verfijning is een model verificatie techniek die beslist of het gedrag van een systeem
het gedrag van een ander model in zekere zin verfijnt. Deze techniek is de basis voor
een stapsgewijze programmatuur ontwikkel techniek waarbij de correctheid van het
systeem wordt gegeven door een verfijning van componenten en hun bijbehorende
specificatie te bewijzen, of te berekenen.
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We definiëren een decompositie techniek om op een effectieve manier de toes-
tandsruimte van een zogenaamd monolithisch proces te verkrijgen. Een monolithisch
proces is een proces dat bestaat uit een enkele recursieve vergelijking met data pa-
rameters, dat alleen niet deterministische keuze en actie prefix gebruikt. Voor deze
decompositie kunnen we laten zien dat een specifieke compositie van de componenten
equivalent is aan de oorspronkelijke monolithisch proces onder sterke bisimulatie voor
een bepaalde synchronisatie context. Het reduceren van de resulterende processen vo-
ordat de compositie wordt berekend kan ertoe leiden dat de verkregen toestandsruimte
direct kleiner is dan de toestandsruimte die verkregen wordt uit de monolithische
exploratie.

Een andere model verificatie techniek beschouwt een specificatie van het systeem
en een formule geschreven in een wiskundige taal en probeert te verifiëren of de
formule geldt voor deze specificatie, dit is het “model checking” probleem. Pariteit
spellen worden typisch gebruikt om dit probleem te coderen. We formaliseren hoe een
oplos methode gebruikt kan worden tijdens het exploratie proces, en laten zien dat op
deze manier de exploratie mogelijk eerder gestopt kan worden omdat de oplossing van
het spel eerder gevonden kan worden.

Ten slot formaliseren wij een term programmatuur bibliotheek die door meerdere
threads (‘draden’) tegelijk benaderd kan worden, en die gebruikt kan worden als basis
voor parallelle model verificatie algoritmes, inclusief de algoritmes die eerder zijn
beschreven. Termen zijn een fundamentele data structuur voor de berekeningen en
wordt daarom uitsluitend gebruikt in de applicatie waarin we onze technieken hebben
geïmplementeerd. Voor efficiëntie definiëren we een nieuwe protocol om meerdere
lezers en een enkele schrijver exclusieve toegang te verlenen dat correct bewezen is
met behulp van model verificatie technieken voor eindige instanties. Deze nieuwe term
programmatuur bibliotheek is gebruikt om substantiële versnellingen te verkrijgen in
het toestandsruimte exploratie proces.
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