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Patient care after kidney transplantation requires integration of complex

information to make informed decisions on risk constellations. Many machine

learning models have been developed for detecting patient outcomes in the

past years. However, performance metrics alone do not determine practical

utility. We present a newly developed clinical decision support system (CDSS)

for detection of patients at risk for rejection and death-censored graft

failure. The CDSS is based on clinical routine data including 1,516 kidney

transplant recipients and more than 100,000 data points. In a reader study

we compare the performance of physicians at a nephrology department with

and without the CDSS. Internal validation shows AUC-ROC scores of 0.83 for

rejection, and 0.95 for graft failure. The reader study shows that predictions

by physicians converge toward the CDSS. However, performance does not

improve (AUC–ROC; 0.6413 vs. 0.6314 for rejection; 0.8072 vs. 0.7778 for

graft failure). Finally, the study shows that the CDSS detects partially di�erent

patients at risk compared to physicians. This indicates that the combination of

both, medical professionals and a CDSS might help detect more patients at

risk for graft failure. However, the question of how to integrate such a system

e�ciently into clinical practice remains open.

KEYWORDS

kidney transplantation, decision support (DS), graft failure, machine learning,

rejection

Introduction

Kidney transplantation is the treatment of choice for patients with end-stage kidney

disease (ESKD) although it requires lifelong post-transplant care (1, 2). Graft failure is

often multifactorial (3, 4), therefore it is important to continuously account for a diverse

set of potentially detrimental events in clinical care, depending on individual patient risk
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profiles. The heterogeneity of causes leading to graft failure

makes it very challenging to predict the course of a transplant life

and finally graft failure. Given the high number of graft failures

affected by over-immunosuppression (infections, drug toxicity,

cancer) and under-immunosuppression (rejection), adjustment

of immunosuppressive treatment is one of the most powerful

tools in clinical practice (3–5). However, it is often not clear

how to interpret the current risk profile due to an overwhelming

amount of data to be integrated for decision-making. This

dilemma is further enhanced by the lack of time in clinical

routine. Therefore, clinical decision support systems able to

integrate and interpret the often highly complex status of a

kidney transplant recipient are an interesting option to mitigate

this problem. In recent years, an increasing number of machine

learning (ML) solutions have been developed to support medical

professionals. However, many publications revolve around novel

ML models with the goal of outperforming baselines and

pushing the boundaries in terms of better performance (6, 7).

Only a few approaches go beyond the pure improvement of ML

models and provide detailed technical analyses or insights about

how and what the model has learnt (8, 9). Unfortunately, in

most cases the system is not evaluated together with the end

user. This renders interpretation of the actual impact in clinical

routine difficult. In order to improve medical care in the real

world, ML models not only have to be accurate and precise, they

also need to be embedded in the patient journey and accepted

by medical professionals. In this work, we present a Clinical

Decision Support System aiming to detect in advance patients at

risk of (a) rejection, and (b) death-censored graft failure, to occur

within the next 90 days. Additionally, we evaluate the system

together with medical professionals.

Materials and methods

For simplicity, we refer to death-censored graft failure

as graft failure, physician as MD (medical doctor), ML-

based clinical decision support system as AI, and physicians

with AI support as MD + AI. The study was approved by

the ethics committee of Charité Universitätsmedizin Berlin

(ID: EA4/156/20).

Data

Baseline for this work is TBase (10), a database designed for

kidney transplant recipients (KTR), implemented over 20 years

Abbreviations: AI, artificial intelligence; AUC-ROC, area under the curve

of the receiver operating characteristic; CI, confidence interval; CDSS,

clinical decision support system; DP, data point; ESKD, end-stage kidney

disease; FP, false positives; GBRTs, gradient boosted regression trees; KTR,

kidney transplant recipients; ML, machine learning; MD, medical doctor;

ROC, receiver operating characteristic; TP, true positives.

TABLE 1 Overview of the most relevant features (top 5) of each model

(global features), including its importance (Imp.).

Rejection Graft loss

Feature Imp. Feature Imp.

Serum creatinine (lab value) 12.78 Last transplantation (months) 35.12

Last transplantation (months) 7.66 # of transplantations 23.76

Rejections in last 180 days 7.26 Serum creatinine (lab value) 8.99

Last transplantation (days) 6.69 Last transplantation (days) 3.04

# of lab values last 60 days 3.18 eGFR (lab value) 2.26

ago at Charité. As patients are supposed to receive a follow-

up at the transplant center 3–4 times a year, TBase includes

fine-grained information about the patients over many years

including demographics, laboratory data, medication, medical

notes, diagnoses, radiology, and pathology reports. Death-

Censored Graft Failure is defined as the initiation of renal

replacement therapy (dialysis or re-transplantation). Graft loss

due to death with a functioning graft is not included in the

current work. Rejection is defined according to the Banff 2017

classification (11), as previously described (3).

Data selection, enrichment, and cohort
generation

The complete risk prediction scenario is built up around

data points (DP), which describe the particular moment when

new data about a patient is inserted in the database. If one

of the endpoints occurs within the target prediction window

of 90 days, the DP will be labeled as true, otherwise as false.

According to those DPs, patient information (features) which

are available at this moment, are extracted (e.g., the new and

the previous lab values, or the current diagnoses) and used as

input information of our model. Moreover, we enrich the data

by additional information, such as mean scores or gradients of

successive values. Each model uses about 300 different features,

consisting of structured information (e.g., vital parameters,

lab values, medication) and bag-of-word features (single word

features taken from findings or diagnoses). Table 1 provides

an overview of the most relevant features for each model. A

more detailed overview of the features used, is provided in

Supplementary Table 6.

Next, data is filtered to generate a meaningful, reliable,

valid, and realistic dataset: Only data points with a follow-

up data point within the next 15–180 days are used. This

filter has been implemented to exclude gaps in patient follow-

up ensuring reliability of endpoint evaluation. The resulting

dataset is referred to as “cohort.” The cohort includes 1,516

different patients, with a mean of 67.89 data points (moments

during transplant life with new data input) per patient. The
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cohort is then cleaned and divided into a training, development,

and test dataset for ML. An overview about additional data

characteristics as well as the exclusion criteria is provided in the

Supplementary material.

Clinical decision support system

The ML component relies on Gradient Boosted Regression

Trees (GBRTs). In comparison to neural methods, GBRTs can

be quickly trained, and therefore quickly modified and further

optimized, without the need of a strong computer cluster.

Also, tree-based methods are well-established in the context of

CDSS, and can be also easier understood by non-experts, thus

exhibiting some sort of transparency.

The resulting dataset is strongly unbalanced, as it contains a

larger number of negative instances compared to positive ones.

That means, in most cases an endpoint does not occur in the

target period for the given data point (Supplementary Table 3).

As a large portion of negative data can influence the quality of

the classifier, and slows down the training, negative samples are

randomly down-sampled within the training split. Controlled

upsampling (SMOTE) (12), and controlled downsampling

(NCA) (13) did not lead to any significant improvements. For

the final setup, a training ratio of 1:3 was chosen, as it showed

the most promising results during the initial experiments.

For the internal validation, we randomly assigned 70% of the

patients into the training, 15% into the development and 15%

into the test split. This step is repeated 50 times for the cross-

validation. That way, patients within training, development and

test data always change. Therefore, reported mean scores and

95% CI (confidence interval) provide a good approximation of

our model.

For the reader study instead, data is prepared differently:

First, the test set is defined and all patients of the test set removed

from the cohort. The test set contains 120 patients, which

was the sample size calculated in the power analysis shown

in Instructions for participants in Supplementary material. As

endpoints have a low frequency, and to ensure that a sufficient

number of events occur, data points are selected randomly, but

in a controlled way. Each endpoint occurs at least 20 times in

the reader study test set. Then, the remaining patients with their

data points are split into a training and development set, using

a split of 80 and 20%. Note, as opposed to the AI system, the

physician can access the complete patient history, including text

notes, medical reports, and a longer time range than the last two

entries (e.g., laboratory tests) of the last year. The physicians in

the reader study are informed that the endpoint frequencymight

not reflect real-world conditions but (14) are not informed about

the exact distribution.

The final MLmodel relies on GBRTs implemented in python

using scikit-learn, with 300 estimators, a learning rate of 0.1,

max-depth of 3, and a random-state of 0. The model is trained

on a Ubuntu 18.04.3 LTS server with a Intel Core i9-7900X

3.30GHz. The training of the model with ca. 10k training

examples take about 2.5min. This would describe one cross-

validation step in our first experiment. The model with technical

descriptions can be made available on request.

Dashboard

To provide an informative decision support system, a

dashboard was developed including the following information:

(a) current risk score, (b) development of the risk score over time

within a graph, (c) categorization of the risk scores into a traffic

light system (green, yellow, red), as well as (d) presentation of

relevant features which influence the decision of the risk score.

For each given data point, two dashboard-graphs (including the

additional information) are generated, one for each endpoint.

Figure 1 presents an example of the dashboard, presenting

the time on the x-axis and the risk score on the y-axis. All data

points of the last year, including corresponding risk scores, are

visualized in the graph. The graph itself is divided into different

zones, a green zone indicating a low risk, a yellow zone which

indicates a higher risk, and a red zone which indicates the

highest risk. Each zone is defined by a threshold, which was

generated on the development set by identifying the optimal F-

Scores–F2 score for the border to the yellow zone, and F0.5 to

indicate the red zone.

Reader study design

Overall, eight physicians, four junior MDs who have

not completed their specialization and four senior MDs

with specialization in internal medicine or nephrology,

participate in the reader study (for participant demographics see

Supplementary Table 5). MDs were to examine all information

available about the kidney transplant recipient in the database

mentioned above (see Data; additionally all string-based

discharge summaries were available to the physicians) and

to forecast the two endpoints, once without and once with

the help of AI. Each MD examines 15 different DPs with

the corresponding patient case history without CDSS, and

then 15 other DPs of different patients with CDSS. The DPs

are randomly assigned to the physicians in both parts of the

study, so that no physician assesses the same patient twice.

Before starting the second part of the experiment, each physician

receives a small tutorial (see Procedure Supplementary material)

to understand the dashboard of the CDSS. In the first step, the

MD receives a data point of the cohort and estimates how likely,

in terms of probability (0–100%), each endpoint might occur in

our target period (90 days). In the second part, the dashboard

with the AI prediction is presented simultaneously with patient

data (MD + AI). In both rounds, each MD has up to 30min

time to study the de-identified medical history of the patients.

Physicians were provided with the exact endpoint definitions.
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FIGURE 1

Visualization of the dashboard, including historic risk scores, a tra�c light system, as well as a model and a decision-based explanation.

TABLE 2 AUC-ROC results on the reader study test set of AI, MD, and

MD + AI for the endpoints death-censored graft failure and rejection.

Endpoint Subject ROC SEN SPE

AI 0.7465 0.5600 0.6947

Rejection MD 0.6413 0.4800 0.8316

MD+AI 0.6314 0.3200 0.8737

AI 0.9415 0.6667 0.9247

Graft loss MD 0.8072 0.5926 0.8387

MD+ AI 0.7778 0.5926 0.8817

On the right side the table shows sensitivity (SEN) and specificity (SPE) with a cut-off of

>0.5 for MDs and F2 for AI.

The bold values indicate the score with the highest value for a particular endpoint.

Significance tests

In order to examine the significance of the different ROC

(Receiver Operating Characteristic) scores in our study, the

implementation of DeLong et al. (14) is applied (paired, one-

tailed, in case of Table 2; and unpaired, one-tailed in case of

Table 3). To explore the significance of the influence of the AI

system, we use a two-tailed t-test implemented in SciPy.

Results

Internal validation

The results of the internal validation are presented in

Table 4. Considering the prediction period of 90 days, our model

shows an AUC-ROC (Area Under the Curve of the Receiver

Operating Characteristic) score of 0.83 and 0.95 for rejection

and graft failure, respectively. The results also show that model

TABLE 3 AUC-ROC performance of junior and senior physician

groups in both parts of the study.

Endpoint Subject groups

Junior MDs Senior MDs

Rejection MD 0.5714 0.7134

MD+ AI 0.7553 0.4870

Graft loss MD 0.8067 0.8108

MD+ AI 0.8276 0.7320

The bold values indicate the score with the highest value for a particular endpoint.

TABLE 4 Risk prediction results in terms of AUC-ROC including 95%

CI during internal validation, using a resampling approach with

50-fold cross validation on retrospective data.

Endpoint Days AUC–ROC

90 0.832 (0.04), 95% CI [0.771, 0.903]

Rejection 180 0.824 (0.03), 95% CI [0.769, 0.892]

360 0.811 (0.04), 95% CI [0.736, 0.868]

90 0.945 (0.02), 95% CI [0.901, 0.970]

Graft failure 180 0.947 (0.01), 95% CI [0.924, 0.969]

360 0.953 (0.01), 95% CI [0.934, 0.972]

performance shows only slight changes when extending the

prediction period to 180 or 360 days.

Reader study

For the reader study, a new ML model is trained from

scratch, using the configuration of the internal validation, but
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FIGURE 2

Performance of MD in comparison to AI and MD + AI, in terms of AUC-ROC on all three endpoints.

using a new split of training, development, and test data, as

described above. The predictions of the ML model on the test

set are used as CDSS for the physicians (MD+ AI).

AI vs. MD vs. AI + MD

The results of the reader study are presented in Table 2

and Figure 2. The results show that AI outperforms MDs (graft

failure 0.9415 vs. 0.8072, p= 0.005; rejection 0.7465 vs. 0.6413, p

= 0.063). Moreover, MDs achieve slightly better results without

CDSS. Finally, the table shows that using our cut-off (F2 for AI

and> 0.5 forMDs) AI has got a higher sensitivity in comparison

to MDs alone.

Comparison of the results of junior MDs and senior MDs

are presented in Table 3. Without AI, senior MDs tend to score

higher than junior MDs (graft failure 0.8108 vs. 0.8067; rejection

0.7134 vs. 0.5714). Moreover, junior MDs achieve higher results

with CDSS for rejection (0.5714 vs. 0.7553, p = 0.075). Also,

junior MDs with AI score higher than senior MDs with AI. And

finally, senior MDs achieve a better score without AI.

Influence of the clinical decision support
system

To explore the influence of the CDSS on physicians, we

calculate the difference of each prediction to the predictionmade

by the AI. MDs make a prediction in terms of probability (0–

100%) and AI in terms of regression (0–100). Table 5 shows

the mean difference scores, for all MDs as well as for junior

and senior MDs separately. An additional box plot of the mean

distance is presented in Figure 3. The table shows that in all cases

the mean distance decreases if the physicians have access to the

CDSS, and so does the standard deviation. Without the CDSS,

physicians have on average a mean distance of 6 (overestimation

TABLE 5 Mean distance with standard deviation of estimation made

by MD and MD + AI, to the prediction of the AI system.

All MDs Junior MDs Senior MDs

MD 6.26 (31.35) 7.99 (31.72) 4.53 (31.02)

MD+ AI −0.06 (23.83) −1.84 (24.05) 1.73 (23.57)

95% CI [1.75, 10.87] [3.54, 16.12] [−3.84, 9.44]

Distance score is calculated by subtracting the AI prediction from the human prediction.

The lower line shows the 95% confidence interval (CI).

of risk in comparison to AI). With the CDSS, the mean distance

decreases in all cases, notably strong for junior MDs. Moreover,

in the case of junior MD + AI, the mean distance to AI is

below zero, which means that predictions are on average slightly

below the score of the AI. In case of all MDs and junior MDs,

the differences between MD and MD + AI are significant (p

< 0.001). In the case of senior MDs we do not observe a

significant difference. In addition to this, Figure 3 indicates that

the variation of the predictions decreases with CDSS. In all three

cases (MD + AI, junior MD + AI and senior MD + AI), more

predictions are located closer to the prediction of the AI (located

closer to the mean).

Accuracy of the predictions

The probability score of the physicians (cutoff = 50%) and

the regression risk score (cutoff = F2-score; yellow and red

zone in dashboard) were transformed into binary predictions:

endpoint occurs, and endpoint does not occur (1/0).

Figure 4 presents the true/false positive predictions of the AI,

as well as the physicians with and without CDSS. The figures

show that in all cases some true positives (TPs) are not identified

either by MD, AI, or MD + AI. Moreover, the figures present
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FIGURE 3

Box plot shows the distance of the estimations of medical doctors as well as medical doctors with clinical decision support system (CDSS), to

the estimations of the CDSS alone.

a large overlap, particularly for graft failure. Considering only

MD and AI, the figure also shows that both make important

contributions toward detecting many TPs. Even though AI

scores higher in terms of ROC, it is not capable of detecting

all critical cases, similar to MDs. Conversely, both together

can detect more patients at risk beforehand, in comparison to

MD or AI alone. For example, seven Rejections were accurately

predicted by both MD and AI, and additionally MD detected

five rejections not detected by AI, and AI seven rejections not

detected by MD alone.

The results indicate that MD + AI is oriented toward the

AI system. Therefore, we can see a larger overlap between those

two, and a smaller overlap to MD. AI was able to detect TPs

that have not been identified by MD, and a reasonable amount

of these is included in MD + AI. Yet, there are some TPs that

have only been detected by AI alone. MD + AI did not lead to

new TPs that had not been identified beforehand by either AI

or MD.

As for false positives (FPs), AI has, except for graft failure,

always the highest number of FPs. In case of rejection, AI makes

29 FP predictions, while the MDs makes only 16 and MD + AI

only 12 FPs, respectively.

Table 6 shows positive predictive values (PPV) and

sensitivity. The table shows that physicians alone can detect 48%

of rejections and 63% of graft failures, while the PPV (precision)

is 41 and 53%. The combination of both, MD and AI (MD

U AI, not MD + AI), leads to an increased sensitivity, with a

similar PPV level, in comparison to MD and MD + AI. For

graft failure, 80% of the patients at risk can be detected, while

only every second prediction is a FP–which is similar to the PPV

of MD alone.

Interpretation of false positives and false
negatives

From a medical perspective, we observe that in case of FPs

certain risk factors were present, and additionally that some

endpoints occurred shortly after the target period of 90 days.

Regarding FNs the retrospective second analysis revealed that

no obvious known risk factors were present making it difficult to

detect the endpoints for medical professionals.

Endpoints predicted only by AI

Six endpoints are accurately predicted by AI but neither by

MDs alone, nor by MD+AI. These data points are particularly

interesting, as preventive measures, such as a closer monitoring

could have avoided their occurrence if MDs would trust the

CDSS enough to adjust the measures. Although difficult to

objectively evaluate, from a medical perspective most of these

cases are not obvious at first sight suggesting the potential for AI

to detect additional kidney transplant recipients at risk.

Discussion

Given the complexity of care after kidney transplantation

and the diverse amount of potentially harming events, we
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FIGURE 4

Overview of True Positives (TP) and False Positives (FP). The outer white rim describes the number of positives/negatives for each endpoint. The

inner side of each circle indicates the number of true/false positives of AI, MD, and MD + AI. Moreover, the overlapping circles show the overlaps

of true/false positive predictions between the di�erent participants. The yellow circle of the AI system represents data points which were flagged

with a yellow or red tra�c light in the dashboard. To understand the example, take for instance TPs-Rejection: Overall 25 rejections (25 positives

of 120 data points) occurred, from which 6 have not been detected by anyone in the study. AI predicted 14 (5 + 2 + 5 + 2) correctly, while MD

predicted 12 (4 + 1 + 5 + 2), and MD+AI predicted 8 (1 + 5 + 2) correctly. Five TPs are predicted by all (see intersection of all three circles).

Moreover, two TPs are predicted only by MD and AI, and two other TPs only by MD + AI and AI. Only one TP is identified by MD and MD + AI.

Finally, 4 TPs are predicted correctly only by MD, and 5 other TPs only by AI. MD + AI does not predict any additional TP which is already found

by MD or AI. The lower row presents the same scenario for falsely predicted data points. A more detailed overview including also the results for

the red and yellow warning of the tra�c light system is included in the Supplementary material.

evaluated a newly developed clinical decision support system

(CDSS) for detection of patients at risk for rejection and graft

failure in a reader study, in order to analyze assumptions made

by physicians with and without the CDSS. First, our results

shows that AI achieves better scores compared to physicians on

our prediction tasks. Senior MDs perform better than junior

MDs, but do not improve with the CDSS. Junior MDs with

CDSS instead improve their capability to detect patients at risk.

The fact that senior MDs alone perform better than junior MDs

alone, might not be surprising. However, the reason why senior

physicians have problems with the CDSS contrary to junior

physicians remains unclear. One possible explanation is that

junior MDs might be more open to new technologies. Also,

as senior MDs have much more experience, they might have a

stronger confidence in their opinion. This assumption might be

supported by the fact that junior MDs converge stronger toward

the suggestion of the CDSS. More studies are needed, to fully

explore the reasons for these observations.

Another important result is that physicians and AI are

able to detect different patients at risk. This highlights the

potential benefit of a CDSS and provides strong arguments for

its integration into clinical practice. At the same time, more

research is needed on the appropriate mode of integration, given

that AI resulted in many FPs and its recommendation did not

improve senior MDs capabilities. Ultimately, multiple forms

of explanations in a CDSS need to be explored and possibly
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TABLE 6 Positive predictive value (PPV) and sensitivity (SEN) of MD

and AI.

Endpoint Rejection Graft loss

PPV SEN PPV SEN

MD 0.41 0.48 0.53 0.63

AI 0.33 0.56 0.72 0.67

MD ∪ AI 0.33 0.76 0.52 0.81

The lower part of the table shows the union between MD and AI. Aligning the risk score

to either zero or one, union means that we set the risk of a patient to one, if one of both

identifies a potential risk.

The bold values indicate the score with the highest value for a particular endpoint.

adapted to the experience, the self-confidence and the affinity

for technology of the different users.

Even though AI tends to outperform MDs, we need to keep

in mind that ROC is just a score, which does not easily translate

into a clinical benefit. When regarding sensitivity, specificity,

and positive predictive value on the given task, we observe

that physicians achieve higher sensitivity at the price of low

specificity. One could conclude that MDs are more “cautious”

than the AI used in this experiment. However, how can we

benefit from such a system? The union of AI and MD could

detectmore critical patients—possibly by notifying the physician

at the end of the treatment in case of a risk. Conversely, toomany

false alarms might also decrease the trust in such a system and

might require too many resources (15). To integrate such a risk

prediction model into clinical care, more extensive studies are

required. More reliable results might increase the trust in the

new technology and lead to a better efficiency.

The main goal of this study was to create a baseline model

at a specific transplant center and to compare it to physicians’

predictions and study its influence on their decision making.

Hence, we are only able to compare ourmodel to others available

in terms of metrics and not directly on the same dataset.

Recently, the most influential model is the iBox prognostication

score, which uses 8 functional, histological, and immunological

variables to predict 3, 5, and 7 year allograft survival with a

Cox proportional hazards (PH) model, starting at the time of

first allograft biopsy (16). It achieves a C-statistic of 0.81 during

external validation, while our model shows AUC-ROC of 0.95

for a shorter prediction period of 90 days. While Cox PH is

the statistical method of choice when making predictions for

right-censored time-to-event data, it needs a clearly defined

starting point. Making predictions only at the time of first

allograft biopsy is impractical in the context of routine care,

where our model is planned to be implemented. Additionally,

a very long prediction time of up to 7 years is useful for the

purpose of iBox—to serve as a surrogate endpoint in clinical

trials, but not to guide everyday clinical decisions. Therefore,

we chose to include every assessment of laboratory values

as a distinct datapoint and make predictions for a shorter

time-period of 90 days. By using this approach, observations

are not statistically independent, but it enables the model to

learn from more observations per patient and include data

from the whole transplant lifespan. Most of the other models

to predict allograft survival use comparable methodology and

prediction time period as iBox but achieve worse results in terms

of AUC-ROC or C-statistic. Only few models report results for a

prediction period of 90 or 180 days, mostly achieving AUC-ROC

values below 0.8 (17).

Our results are also relevant to a number of ethical

issues surrounding AI-driven clinical decision support systems

(18). Besides debates on what it takes to trust medical AI

and institutions deploying them (19), and who bears moral

and/or legal responsibilities for outcomes (20), there are also

opportunities: AI could play a part in empowering health

systems, health institutions, and clinicians by making capacities

widely accessible (21). Our result that less experienced MDs

improve their accuracy with the CDSS at hand provides a

concrete example for such visions.

Similar to well-established diagnostic tests, or medical

guidelines that are part of clinical routine, it might be possible

that AI becomes an important part of evidence-based medicine

in future. Thus, systems with high predictive power can even

be perceived as having epistemic authority in their own right

(22): instead of AI being a mere decision aid, burdens of proof

in case of deviation from system recommendations might shift

to MDs, and individuals and institutions might systematically

defer to them. Our results indicate that reality will likely be

more fragmented for at least two reasons. First, since our system

and MDs have different strengths, system-, user-, and context-

specific understanding of these strengths will be essential

toward potentially reaping the benefits of a “convergence of

human and artificial intelligence” (23) when seeking to optimize

health outcomes. Second, the normative significance of various

performance metrics is not definite and self-explanatory but

requires continuous context-sensitive reflection and weighing

involving different stakeholders. Besides, investigating the

retrospective question, which factors caused false predictions,

the prospective issue of what consequences a false prediction has

for the patient will play a role in these discourses. For example,

when predicting graft failure or rejection, the harms from FPs

differ from those of FNs. Each way of privileging and weighing

the metrics discussed reflects slightly different risk-benefit-

tradeoffs, and high predictive power along one dimension, while

promising and desirable, does not necessarily render the tool a

gold standard for the task at hand.

While we use a large fine-grained German database

collecting all routine clinical data for more than 20 years this

approach has also some limitations. Ideally the model should

be externally validated and may be adopted to a different data

structure. It is important to highlight that the model should

not be seen as an universal “out of the box” model. Instead, it

provides a good “baseline” model, which can be improved or

may provide the basis for a lean model that is easy to implement

in different contexts. However, these issues are beyond the
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scope of this article, where we focused on the human-machine

interaction that can influence future design and implementation

of ML-models in kidney transplant care.
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