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Non-inferiority testing for qualitative microbiological methods: 
Assessing and improving the approach in USP <1223>
Pieta C. IJzerman-Boona, Md Abu Manjub, and Edwin R. van den Heuvel b

aCenter for Mathematical Sciences, MSD, Oss, The Netherlands; bDepartment of Mathematics and Computer Science, 
Eindhoven University of Technology, Eindhoven, The Netherlands

ABSTRACT
The United States Pharmacopoeia (USP) presents two approaches for show-
ing non-inferiority of an alternate qualitative microbiological method versus 
a compendial method. One approach compares the positive rates for the 
alternate and compendial methods at one spike level, while the other one 
compares multiple most probable number (MPN) estimates from a multi- 
spike design using a t-test. In this paper, we discuss these approaches under 
certain assumptions and propose a third approach that can be used for both 
single and multiple dilutions, which we call the generalized MPN (gMPN) 
approach. Simulations, using Poisson distributed numbers of microorgan-
isms in test samples, confirm that the USP approach based on rates is not 
suitable, that the USP approach based on MPNs is appropriate for non- 
inferiority, but the gMPN approach outperforms the MPN-based approach 
and is therefore recommended.
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1. Introduction

To show that a new or alternative qualitative microbiological method is acceptable to replace a current 
or compendial method, the USP <1223> (2015) guideline states that the laboratory must demonstrate 
that the new procedure is as good as or better than the current procedure in terms of the ability to 
detect microorganisms. The USP recommends non-inferiority testing, for which it proposes two 
different approaches.

The first approach is based on the ratio of the proportions pA and pC of positive samples for the 
alternative and the compendial method at a single spike level, respectively, similar to non-inferiority of 
clinical events in clinical trials. A pre-defined non-inferiority margin quantifies what difference is 
allowed. The second approach is based on a comparison of the most probable numbers (MPN) using 
a design with multiple dilutions (Cochran 1950). Absence/presence results obtained from multiple 
dilutions are used to estimate one bacterial density of organisms in the original solution. This is done 
multiple times with the alternative and the compendial method to create repeated estimates of the 
bacterial density. Then non-inferiority is tested on two sets of MPNs using a t-test.

The USP does not provide guidance when to use which of the two non-inferiority approaches, 
neither discusses how to interpret the results from these approaches. Based on a statistical model for 
the detection of microorganisms (IJzerman-Boon and Van den Heuvel 2015), we will assess and 
improve the non-inferiority approaches.

Section 2 describes the two USP approaches, on positive rates and on MPNs, as well as their implicit 
assumptions. Section 3 describes the statistical detection model and proposes a third approach (the 
generalized MPN approach). Section 4 presents different experimental designs to determine MPN 
estimates and explains that under the described distributional assumptions, results for testing non-

CONTACT Edwin R. van den Heuvel e.r.v.d.heuvel@tue.nl Department of Mathematics and Computer Science, Eindhoven 
University of Technology, Eindhoven, The Netherlands

JOURNAL OF BIOPHARMACEUTICAL STATISTICS  
2022, VOL. 32, NO. 6, 915–941 
https://doi.org/10.1080/10543406.2022.2065498

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http:// 
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the 
original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0001-9157-7224
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10543406.2022.2065498&domain=pdf&date_stamp=2022-12-12


inferiority with the MPN are not expected to differ. Subsequently, Sections 5 and 6 describe our 
simulation study and present the results, respectively. Section 7 presents (a discussion on) our 
conclusions.

2. Non-inferiority testing according to USP <1223>

2.1. Approach 1: non-inferiority on positive rates

In order to show non-inferiority, it is required that both methods test similar sets of samples (see 
Section 2.3 for details). The null hypothesis is then formulated as H0 : pA=pC � r0 against the 
alternative hypothesis H1 : pA=pC > r0, with r0 2 0; 1ð Þ the non-inferiority margin. By proposing 
a non-inferiority margin of −0.2 for the difference pA � pC, the USP indirectly suggests a non- 
inferiority margin of r0 ¼ 0:8 for the ratio. Following Farrington and Manning (1990), the null 
hypothesis can be rewritten as H0 : pA � r0pC � 0, and is rejected when 

p̂A � r0p̂C
� �

=ŵ1=2
0 > z1� α; (1) 

with z1� α the 100 1 � αð Þ% percentile of the standard normal distribution, p̂A and p̂C the standard 
estimates of the probabilities pA and pC to detect positive test samples, and ŵ0 the estimated variance of 
p̂A � r0p̂C under the null hypothesis. Thus, when XA and XC are the numbers of positive samples 
among nA and nC test samples tested with the alternative and compendial method, respectively, we 
have p̂A ¼ XA=nA, p̂C ¼ XC=nC, and ŵ0 is 

ŵ0 ¼ ~pA 1 � ~pA
� �

=nA þ r2
0~pC 1 � ~pC
� �

=nC; (2) 

with ~pA and ~pC the maximum likelihood estimators (MLE) under the null hypothesis, i.e. ~pC ¼ ~pA=r0, 
~pA ¼ � b � b2 � 4acð Þ

1=2
h i

= 2að Þ, a ¼ 1þ k, b ¼ � r0 1þ kp̂C
� �

þ kþ p̂A
� �

, c ¼ r0 p̂A þ kp̂C
� �

, and 
k ¼ nC=nA. A 5% significance level is used, i.e. α ¼ 0:05.

Note that this approach is applicable to test samples from a single dilution, since a clear extension to 
multiple dilutions (with different probabilities for testing positives) is not known. The USP recom-
mends a spike level of microorganisms for this dilution at which 50–75% of the samples would be 
expected to be positive when tested with the compendial method.

If, instead of testing independent samples from a single dilution with the alternative and compen-
dial method, the same n samples are tested by both methods, then the results can be displayed in 
a 2 × 2 table (Table 1), and a paired test can be applied. In formula (1), we then use (Lachenbruch and 
Lynch 1998) p̂A ¼ XA=n ¼ X11 þ X10ð Þ=n, p̂C ¼ XC=n ¼ X11 þ X01ð Þ=n, resulting in 
p̂A � r0p̂C ¼ X10 þ 1 � r0ð ÞX11 � r0X01ð Þ=n, and we replace the variance estimate (2) by 

ŵ0 ¼½p̂10 1 � p̂10
� �

þ 1 � r0ð Þ
2p̂11 1 � p̂11

� �
þ r2

0p̂01 1 � p̂01
� �

þ 2r0p̂10p̂01 � 2 1 � r0ð Þp̂10p̂11 þ 2r0 1 � r0ð Þp̂01p̂11�=n;
(3) 

where p̂ij ¼ Xij=n. Note that USP <1223> incorrectly suggests a variance of XA X10 þ X01ð Þ=X3
C, which 

is an estimate of the variance of p̂A=p̂C instead of p̂A � r0p̂C.

Table 1. Lay-out of results for a paired test – Numbers of positive and negative samples (associated 
probabilities).

Compendial method

Alternative method Positive Negative Row total

Positive X11 (p11Þ X10 (p10Þ XA (pAÞ

Negative X01 (p01Þ X00 (p00Þ n � XA (1 � pAÞ

Column total XC (pCÞ n � XC (1 � pCÞ n (1Þ
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2.2. Approach 2: non-inferiority on MPNs

For the MPN-based approach, the null hypothesis H0 : log λ Að Þ � log λ Cð Þ � log r0ð Þ needs to be 
rejected in favor of H1 : log λ Að Þ � log λ Cð Þ> log r0ð Þ, where λ A and λ C are the theoretical bacterial 
densities for the alternative and compendial method, respectively. Following Cochran (1950), the 
probability that a sample is tested positively equals p ¼ 1 � expð� λÞ, when λ is the mean number of 
organisms in the test samples and the microbiological method detects organisms perfectly. Given an 
estimate p̂ 2 0; 1ð Þ for the proportion p, based on test samples with volume v taken from a single 
solution with volume V, the bacterial density and corresponding number of organisms in the solution 
are estimated by 

bλ ¼ � log 1 � p̂ð Þ and dMPN ¼ V=vð Þbλ: (4) 

The MPN can also be estimated from a multiple dilution experiment, but then a closed-form 
expression does not exist.

Based on NA and NC MPN estimates or replicates for the two methods, respectively, a t-test for non- 
inferiority can be applied to the log-transformed estimates. Note that there are different ways of 
generating these MPN estimates (further discussed in Section 4), but when all MPNs are trying to 
estimate the same bacterial density and are estimated based on independent samples from the same 
stock solution (Figure 2a), then a two-sample t-test can be used. If �YA and SA denote the average and 
standard deviation of the NA estimates for log λ Að Þ (or equivalently, for log MPNAð Þ) for the alter-
native method, and �YC, SC, and NC for the compendial method, then non-inferiority can be con-
cluded if 

�YA � �YC � t1� α;df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
A

NA
þ

S2
C

NC

s

> log r0ð Þ; (5) 

where t1� α;df denotes the 100 1 � αð Þ% percentile of the t-distribution with the Satterthwaite degrees 
of freedom 

df ¼
S2

A=NA þ S2
C=NC

� �2

S2
A=NAð Þ

2

NA� 1 þ
S2

C=NCð Þ
2

NC � 1

:

In case the MPNs for the two methods are estimated based on samples from the same dilutions 
(Figure 2b), even though in this case the two methods do not test the exact same samples, a paired 
t-test may be more appropriate. When �Y and S2 denote the sample mean and sample variance of the N 
paired differences Ŷ ¼ log bλA

� �
� log bλC

� �
of the log-transformed MPN estimates for the alternative 

method minus the compendial method, then non-inferiority can be concluded if 

�Y � t1� α;N� 1
S
ffiffiffiffi
N
p > log r0ð Þ: (6) 

2.3. Implicit assumptions in USP

In the first approach, the non-inferiority claim would only hold for the tested spike that resulted in the 
positive rates for which non-inferiority could be concluded. At that spike level, and under the 
assumption that both methods indeed received samples with similar spike levels, the two methods 
are likely to come to the same pass or fail conclusion. In the USP, this is referred to as decision 
equivalence. However, decision equivalence does not at all imply that the two microbiological methods 
have approximately the same sensitivity. To illustrate this, think of two microbiological methods, one 
detecting only molds, and one detecting only bacteria. When samples with mixtures of bacteria and 
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molds are offered to both methods, the positive rates may be equivalent for the two methods. 
Nevertheless, it is obvious that the methods do not have the same sensitivity for both types of 
microorganisms and as a microbiologist you would never rely on just one method. Another situation 
where two methods might appear to be similar, is if you offer samples with a high spike. Then, even 
a poor test method will return only positive results. In these examples, it is clear that the number of 
positive samples does not only depend on the microbiological method, but also on the numbers of 
organisms in the test samples, and non-inferiority for one spike level (e.g. the level at which 50–75% of 
the samples would be positive with the compendial method) does not necessarily imply non-inferiority 
at other spike levels.

Another implicit assumption is that all samples have the same fixed probability (pA or pC depending 
on the test method), of becoming positive. This would be reasonable only when all samples contain the 
same number of organisms, but creating samples with a fixed number of organisms is currently 
impossible in microbiology. Even when all samples are taken from the same solution, numbers of 
organisms will vary from sample to sample because of sampling variability, and therefore some 
samples have lower probabilities of being detected positively than other samples.

In the second approach, the MPN method implicitly assumes that organisms are distributed 
randomly and unaggregated throughout the solution, such that the number of organisms in a small 
amount or test sample taken from it follows a Poisson distribution (Cochran 1950; Garthright and 
Blodgett 1996). Samples are assumed independent of each other (Garthright and Blodgett 1996), 
which means that the probability of a sample to be positive is not affected by other samples being 
positive or negative. This is practically true when the total volume of all samples constitutes a small 
volume of the total solution, say less than 10%.

Additionally, as Cochran (1950) phrased it for growth-based methods: “each sample, when incubated 
in the culture medium, is certain to exhibit growth when it contains one or more microorganisms”. This 
would imply that every organism is detected by the method. But, if perfect detection is already part of 
our assumptions, what are we demonstrating when we show non-inferiority on MPNs?

3. Non-inferiority testing based on a statistical model for the detection of 
microorganisms

Since the number of positive test samples is not only determined by the method, but also by the 
unknown spike, we need an appropriate model that describes how a positive result is achieved and that 
can separate the spike level from the sensitivity of the method. To do this, we introduce two concepts 
the first concept describes the detection probability to detect one sample as positive as a function of the 
true number of organisms in the sample, the second concept considers a distribution for this unknown 
true number of organisms when we sample from a solution. Full knowledge of the first concept of the 
model would provide full insight into the sensitivity of the method for each possible number of 
organisms in the test sample. The detection probability, which should be an increasing function of the 
number of microorganisms X in the sample, may have parameters that would characterize the 
performance of the method.

3.1. The binomial-Poisson model

Denote the outcome of the test sample by Z, which would be 0 for a negative result, and 1 for a positive 
result. A simple model (IJzerman-Boon and Van den Heuvel 2015; Van den Heuvel and IJzerman- 
Boon 2013) assumes that each microorganism has a fixed probability θ (between 0 and 1) to be 
detected by the microbiological test method. This parameter has been called the detection proportion 
and represents the probability to detect one organism. The detection probability pX that the micro-
biological test would return a positive test result for a sample, i.e. detect at least one organism, can be 
expressed as a conditional probability given the number of organisms X in the sample, 
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pX ¼ PðZ ¼ 1jXÞ ¼ 1 � 1 � θð Þ
X
: (7) 

This model has been referred to as the binomial detection model, since it is based on the binomial 
distribution when the method detects organisms independently from each other. Note that for X ¼ 1, 
the detection probability p1 reduces to the detection proportion θ.

Unfortunately, it is impossible to spike test samples with a fixed number of microorganisms. The 
spike exhibits variability, and therefore we cannot observe the function (7) directly. If the spikes X 
follow a Poisson distribution with a mean of λ, which is a common and often a reasonable distribu-
tional model for count data (Cochran 1950), then the marginal probability to detect a sample as 
positive equals the expected positive rate p and can be written as 

p ¼ P Z ¼ 1ð Þ ¼ 1 � exp � θλð Þ: (8) 

A graphical representation of (7) and (8) is provided in Figure 1.
Based on an experiment, we can estimate the expected positive rate p from (8) as described earlier. 

However, the sensitivity of the method is reflected by the parameter θ, which cannot be separated from 
the average spike per test sample λ. We can only estimate the product � ¼ θλ. For a single dilution, it is 
estimated by 

�̂ ¼ � log 1 � p̂ð Þ; (9) 

and its corresponding variance would be estimated by τ̂2 ¼ p̂= n 1 � p̂ð Þð Þ (IJzerman-Boon and Van 
den Heuvel 2015). Note that for θ ¼ 1, this estimator is just the MPN estimator for the bacterial 
density λ (Cochran 1950), presented in (4). Hence, our binomial detection model with θ< 1 can be 
viewed as a generalization of the MPN and will be referred to as the generalized MPN.

3.2. Approach 3: non-inferiority on generalized MPNs

Observing that what we estimate is generally not the bacterial density itself, but its product with the 
detection proportion, it becomes clear that comparing the two test methods should be done by 
considering the ratio �A=�C, which equals the accuracy or recovery θA=θC, provided both methods 
tested samples from the same solution with an average spike of λ per test sample. Taking the ratio 
eliminates the spike level λ from the test statistic. Testing from the same solution is important, since 

(a) The detection probabilities  of a positive 
sample and their ratio at  versus the true 
number of organisms in the sample 

(b) The expected positive rates  and their 
ratio and difference versus the average 
number of organisms per sample 

Figure 1. Visualization of conditional and marginal probabilities (7) and (8)
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otherwise the average spike λ does not cancel out when taking the ratio. This recovery or accuracy 
quantifies the relative performance of two qualitative methods and can be used to test non-inferiority 
of the alternative method compared to the compendial method (EP 5.1.6 2017).

Approximate confidence limits for this ratio θA=θC or its logarithm log θA=θCð Þ have been derived 
in IJzerman-Boon and Van den Heuvel (2015). Since in the log-scale a coverage is obtained that is 
closer to the nominal level, non-inferiority would be concluded if 

log �̂A=�̂C

� �
� z1� α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ̂2
C=�̂

2
C þ τ̂2

A=�̂
2
A

q

> log r0ð Þ; (10) 

where z1� α is the 100 1 � αð Þ% percentile of the standard normal distribution.
Expressions (9) and (10) hold for a single dilution. Like with the MPN method, also multiple 

dilution experiments can be used to estimate the (ratio of) detection proportions and corresponding 
confidence limits using maximum likelihood, but closed-form expressions do not exist anymore 
(IJzerman-Boon and Van den Heuvel 2015). Then, a statistical package like SAS® can be used to 
perform the calculations.

3.3. Comparing the gMPN with the USP non-inferiority methods

Figure 1 (solid lines) displays functions (7) and (8) for different values of the detection proportion θ, 
where θC ¼ 0:95 might reflect the compendial method and θA ¼ 0:7 the alternative method. Figure 1a 
shows the detection probabilities that we are interested in, since it provides the performance of the 
alternative and compendial method when they would test samples with a fixed number of micro-
organisms. When using a non-inferiority margin of r0 ¼ 0.8 in this example, the alternative method is 
obviously inferior compared to the compendial method, since the ratio θA=θC (black dot) of the two 
detection proportions for detecting samples with exactly one microorganism (X ¼ 1) is smaller than 
the non-inferiority margin r0 (reference line). Note that it is irrelevant that the ratio of the detection 
probabilities for samples with higher numbers of microorganisms (X > 1) is larger than 0.8, since the 
methods are inferior for detecting one microorganism and thus inferior in detecting microorganisms. 
Figure 1b reflects the expected positive rates (pC for the compendial and pA for the alternative method) 
that we would observe in experimental data as a function of the average spike level. Since test samples 
will vary in their number of microorganisms in practice, they average out the detection probabilities in 
Figure 1a into the positive rates. Figure 1b also shows the ratio (dark dashed line) of these expected 
positive rates that is used to test non-inferiority in the first USP approach and the difference in positive 
rates (light dashed line). For λ ¼ 0, the ratio starts at θA=θC and then increases to 1 for higher spike 
levels. Thus, theoretically we would be able to demonstrate inferiority of the alternative method with 
respect to the compendial method using the ratio of positive rates when we would be able to create 
a dilution with an average number of microorganisms below, say, 0.7, since then the ratio of positive 
rates is less than 0.8 as well. However, there are a few practical concerns. First of all, spiking dilutions is 
(very) imprecise, and we may easily end up with an average spike (far) above 0.7, in which case we may 
declare the alternative method non-inferior (since the ratio of positive rates is then above the non- 
inferiority margin of 0.8). Secondly, the USP suggests spike levels for experimentation for which the 
positive rate of the compendial method is between 50% and 75%, i.e., spike levels that would result in 
non-inferiority since they provide ratios of the positive rates above the non-inferiority margin. 
Performing the experiment in this range would suggest the use of a difference in positive rates,
since it does provide the largest absolute difference between the two methods, but the difference in 
positive rates (pC � pA) would never be larger than 0.2 (an equivalent non-inferiority margin for 
differences when the ratio is 0.8 and the compendial method is close to perfect) for any of the spike 
levels (see the difference curve at the bottom of Figure 1b). Thirdly, even if we would be able to create 
low spike levels, the ratio of the positive rates still provides a somewhat better result than the ratio of 
detection proportions θA=θC since it is larger than this ratio, unless we would spike very close to the 
level of blank samples, but then this would blow up the standard error of the estimated ratio and it 
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would require very large numbers of samples. Finally, even if one would be willing to be less stringent 
and, instead of requiring non-inferiority on detecting a single organism, only require non-inferiority 
on the positive rates from a certain spike level onwards (probably at a more stringent non-inferiority 
margin), the uncertainty of the spike remains a problem, since it is impossible to estimate at which 
spike level the non-inferiority conclusion was drawn, nor does it tell anything about detection at lower 
spike levels or of just one organism.

Comparing formula (10) on generalized MPNs with formulas (5) and (6) on MPNs shows that both 
approaches actually evaluate the same thing, since the logarithm of a ratio equals the difference of the 
logarithms. Although the MPN approach implicitly assumes that the method is perfect, the similarity 
between (4) and (9) explains why a difference between MPNs, which would be an internal conflict with 
the assumption that two perfect methods are used to estimate the bacterial density of the same 
solution, may be attributed to or interpreted as a difference in detection between the two methods. 
The difference between the MPN approach and the generalized MPN approach is that in the latter 
approach all data are used to come up with one combined generalized MPN estimate for the ratio 
�A=�C and its standard error, while in the MPN approach, first multiple MPN estimates are generated 
and those are used as the data in the calculations.

4. Independent and paired experimental designs for the MPN approach

MPN experiments with multiple dilutions can be executed in different ways. One way is to generate all 
MPN estimates for both methods based on independent dilution series from the same stock solution 
(Figure 2a). This implies that the MPNs can be considered independent estimates for the same 
bacterial density and that the two-sample t-test for independent samples can be used. Instead of 
creating different dilution series per method, one could take samples for both methods from the same 
dilutions simultaneously (Figure 2b). This would prevent that potential pipetting errors in creating the 
dilutions would lead to different results between the methods. This experiment provides paired data at 
the level of the dilutions. There is no formal approach mentioned in the USP to properly address this 
pairing, but the paired MPN t-test, in the USP only suggested for the rare case where the exact same 
samples are tested with both methods, is applicable to this design as well.

An alternative for both cases, which may be more practical if testing cannot be performed on 
one day, would be that multiple stock solutions are used, from each of which one dilution series is 
created for the alternative method and one for the compendial method (Figure 2c). In this case, data 
are paired at the level of the stock solutions. The disadvantage of this paired design is that the bacterial 
densities will vary with stock solution due to variation in spiking. Nevertheless, the paired MPN t-test 
can be applied in this case.

Finally, one could use different stock solutions for the two methods, but this should be avoided, 
because differences observed between the two methods might then be caused by differences in the 
spikes λ for the two methods, rather than differences in detection by the methods.

In general, these different designs and ways of pairing samples may lead to different correlation 
structures between the samples. This might require different statistical analysis methods or, when 
analyzed using the same statistical methods ignoring correlations, could lead to different results. If, 
however, the number of organisms N in the stock solution follows a Poisson distribution and samples 
are generated from that solution using binomial or multinomial sampling, then the numbers of 
organisms in the individual samples also follow a Poisson distribution. In addition, independence
between the samples can be proven in this case, even though the experimental design suggests 
dependent samples (Appendix 1). Under this assumption, it therefore does not matter whether the 
different samples are collected in an independent or dependent way. This simplifies simulations, since 
the different ways of pairing in MPN experiments (Figure 2) can be ignored, and the independent 
Poisson data generated to evaluate the independent two-sample t-test on MPNs, can also be used to 
evaluate the paired MPN t-test, after pairing MPN estimates randomly. Thus, under our Poisson 
assumptions, the MPN estimates are independent, and the paired t-test cannot be expected to gain 
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(a) independent 10-fold dilution series all created from the same stock solution – 
independent data 

(b) independent 10-fold dilution series created from the same stock solution - data paired 
at the dilutions

(c) independent 10-fold dilution series from multiple stock solutions - data paired at the 
stock solutions

Figure 2. Experiments to generate multiple MPN estimates in a 3 × 3 design for 2 methods.

922 P. C. IJZERMAN-BOON ET AL.



power. To the contrary, due to a lower number of degrees of freedom used in the paired t-value, 
confidence intervals will get wider, leading to lower power for non-inferiority. Simulations will not be 
shown but are available on request.

5. Simulations

To compare the performance of the two USP approaches, based on the positive rate (referred to as 
USP1) and the (independent two sample) t-test on MPNs (referred to as USP2), with the general-
ized MPN approach (referred to as gMPN), simulations were performed for different parameter 
settings and designs. USP1 and gMPN were compared using designs with a single dilution with 
various spike levels (λ¼ 0:5 to 3), from which 200 samples per method were taken 
(nA ¼ nC ¼ n ¼ 200Þ. Multiple dilution designs were used to compare USP2 and gMPN. Typical 
MPN designs include 3 two-fold or ten-fold dilutions with 3 or 5 samples tested per dilution (USP 
<1223> 2015; De Man 1983; Garthright and Blodgett 2003). These designs are denoted by 3 × 3 or 
3 × 5, and we repeated them 22 or 13 times to get a total sample size of almost 200. In order to 
see whether changing the number of samples per dilution would make a difference, we also 
evaluated designs with other numbers of test samples per dilution (3 × 4, 3 × 6, . . . , 3 × 33). 
The 3 two-fold or ten-fold dilutions were chosen at λ¼ 4; 2; 1 and λ¼ 20; 2; 0:2, i.e. such that the 
middle dilution would have a spike level of λ¼ 2.

We assumed a detection proportion of θC ¼ 0:8 for the compendial method and evaluated the Type 
I error rate of (incorrectly) concluding non-inferiority at the non-inferiority margin of r0 ¼ 0:8 
(θA ¼ 0:64) proposed in the guideline and at a lower ratio of 0:7 (θA ¼ 0:56). For the evaluation of 
the power to (correctly) conclude non-inferiority, we assumed equal detection proportions 
θA ¼ θC ¼ 0:8, a non-inferior and lower detection proportion (θA ¼ 0:9θC ¼ 0:72), and a superior 
detection proportion ðθA ¼ 1:1θC ¼ 0:88) for both non-inferiority margins r0 ¼ 0:8 and r0 ¼ 0:7. For 
all parameter settings, 10,000 simulations were performed.

Assuming independence between the samples, simulation results were generated by drawing the 
true number of organisms in each sample from a Poisson distribution with mean λ for a single 
dilution, and λ divided by the appropriate dilution factor for samples from a dilution series. The 
detection probability for each sample was then calculated using formula (7), and the outcome of the 
sample was positive if this probability was larger than a random number between 0 and 1, and negative 
otherwise. The simulated data were analyzed using the different approaches USP1, USP2, and gMPN. 
SAS and R codes for such analyses are presented in Appendix 2. For the USP2 approach, MPN 
replicates sometimes failed. In those cases, the MPN for the alternative and/or the compendial method 
could not be estimated because all samples in all dilutions were positive or negative for that method. In 
simulations where this occurred, the t-test was calculated based on the remaining MPN replicates, as 
one would usually do in practice. For all three methods, the Type I error and power were estimated by 
the percentage of simulations for which non-inferiority was concluded. Failure rates were estimated by 
the percentage of MPN replicates for which all samples were positive (all samples negative did not 
occur) out of the total number of MPN replicates across all simulations. Note that the expected failure 
percentages can also be calculated theoretically based on formula (8). For example, for a 3 × k design 

with spike levels λ1, λ2, and λ3, this would be 100 �
Q3

i¼1
1 � exp � θλið Þð Þ

k.

6. Results

First, we compared USP1 and gMPN on their Type I error rates. Table 2 shows the expected Type 
I error rates of around 5% for the gMPN approach, but unacceptably high Type I errors for USP1. 
These Type I errors increase rapidly with the spike level up to almost 100% when λ� 3, which means 
that the USP1 approach based on the positive rates almost always concludes non-inferiority, while in 
fact the alternative method detects one organism with a probability of only 80% of that of the 
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compendial method, which is exactly equal to the selected non-inferiority margin. Also when the ratio 
of detection proportions is chosen below the non-inferiority margin of 0.8 (θA ¼ 0:7θC ¼ 0:56), USP1 
still shows rapidly increasing probabilities beyond 5% when the spike level increases from 1.5 to above 
(Appendix 3, Table C1), while the gMPN shows probabilities below nominal (as expected). The last 
two columns in Table 2 show that when the ratio of positive rates equals the non-inferiority margin 
(which can only occur at one specific spike level), the Type I error of USP1 is around 5%. The ratio of 
detection proportions is then already far below the non-inferiority margin of 0.8 and the gMPN shows 
Type I errors below nominal.

Table 3 shows for the same single dilution design the power for non-inferiority when the 
detection proportions of the alternate and compendial method are equal (θA ¼ θC ¼ 0:8). With 
200 samples per method, the powers for USP1 are very high (over 95% for spike levels of λ¼ 1:5 
or higher), but we know that this is at the cost of highly inflated Type I errors. For the gMPN 
method, the power using a non-inferiority margin of r0 ¼ 0:8 attains a maximum value of about 
57% for λ� 2. To increase the power, one should either test even more samples than n ¼ 200 
per method or relax the non-inferiority margin. When a margin of r0 ¼ 0:7 instead of r0 ¼ 0:8 
would be applied, then the power for the gMPN approach would be sufficient, with a maximum 

value of 89% for the optimal spike level, and still values above 80% when the average spike level 
is between 1 and 3. Please note that other values than 0.8 for the equal detection proportions 
would have led to similar results at slightly different spike levels, since results are driven by the 
product � ¼ θλ in formula (8). Appendix 3, Tables C2 and C3 show results for the power when 
detection proportions differ, i.e. for θA;θCð Þ ¼ 0:72; 0:8ð Þ or 0:88; 0:8ð Þ: Apart from the powers 
being lower or higher, respectively, than for θA;θCð Þ ¼ 0:8; 0:8ð Þ, the pattern is the same.

To evaluate the second USP approach, which uses a t-test on a set of estimated MPNs, we simulated 
multiple dilution designs and compared the Type I error and the power of USP2 with that of the 
gMPN approach. Table 4 shows that the Type I error rates for a detection proportion ratio at the non- 
inferiority margin of 0.8 (θA ¼ r0θC ¼ 0:64) are all close to the nominal 5% level for the gMPN 
approach, while for the USP2 approach they are in most cases smaller and below 4.5%. Only for 

Table 3. Power (%) to conclude non-inferiority with approaches USP1 and gMPN for a single dilution design using a non-inferiority 
margin of r0 ¼ 0:8 or r0 ¼ 0:7, detection proportions θA;θCð Þ ¼ 0:8; 0:8ð Þ and n ¼ 200 samples.

Density λ 0.5 1.0 1.5 2.0 2.5 3.0
Expected positive rates (%) pA ¼ pC 32.97 55.07 69.88 79.81 86.47 90.93

Non-inferiority margin r0 ¼ 0:8 USP1 46.8 79.1 95.2 99.6 100.0 100.0
gMPN 35.0 48.4 54.8 57.2 53.3 52.2

r0 ¼ 0:7 USP1 79.7 98.6 100.0 100.0 100.0 100.0
gMPN 64.2 82.2 86.6 88.7 87.6 85.0

Table 2. Type I error rate (%) to conclude non-inferiority with approaches USP1 and gMPN for a single dilution design using a non- 
inferiority margin of r0 ¼ 0:8, detection proportion θC ¼ 0:8, θA chosen such that θA=θC ¼ r0 or pA=pC ¼ r0, and n ¼ 200 samples.

Density λ 0.5 1.0 1.5 2.0 2.5 3.0 2.0 3.0
Detection proportion θA 0.64 0.509 0.433

θA=θC 0.80 0.636 0.542
Expected positive rates (%) pA 27.39 47.27 61.71 72.20 79.81 85.34 63.85 72.74

pC 32.97 55.07 69.88 79.81 86.47 90.93 79.81 90.93
pA=pC 0.831 0.858 0.883 0.905 0.923 0.939 0.80

USP1 8.3 17.9 38.8 67.6 91.4 99.1 5.2 5.4
gMPN 5.1 5.4 4.8 5.4 5.0 4.7 0.0 0.0
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dilution factor 2 in the 3 × 3, 3 × 4 and 3 × 5 designs, the Type I error for the USP2 approach is 
somewhat inflated, probably because of the higher number of failed MPN replicates in the compendial 
than in the alternative group, leading to elimination of the MPN replicates for which the compendial 
method had all samples positive. All failure rates were in line with the theoretical expected value. For 
a ratio of detection proportions below the non-inferiority margin (θA ¼ 0:7θC ¼ 0:56), probabilities 
for both USP2 and gMPN are below the nominal 5% level, but the pattern is the same (Appendix 3, 
Table C4).

Results in Table 5 show that the power for gMPN is stable across the different designs. For 
USP2 with dilution factor 2, the power seems to decrease with a decreasing number of replicates, 
while it is stable for dilution factor 10, until the number of replicates drops below 5. This may be 
due to a low number of degrees of freedom that is then used in the t-test. Note that for dilution 
factor 2, more failures occurred than for dilution factor 10, since the different dilutions are more 
likely to have only positives if they are closer together. The failure rate also decreases when the 
number of samples per dilution increases, since it becomes more difficult for a replicate to fail, 
i.e. to have all samples in all dilutions positive. Except for the 3 × 3 × 22 design with dilution 
factor 2, the power for USP2 is always smaller than for gMPN. A reason for USP2 having lower 
power than gMPN is most likely that USP2 compares multiple (depending on the number of 
replicates 22, 16, etc.) MPN estimates between the two methods but does not use the precision of 
the MPN estimates themselves, while the gMPN approach uses all data together without 
discarding or losing information.

Comparing the gMPN results of Table 5 with Table 3 shows that the power for a single dilution 
experiment with a close to optimal spike level is higher than for a multiple dilution experiment, which 
includes only part of the data at the optimal spike level. Diluting further away from the optimal spike 
level decreases the power for both methods, which is also clear when comparing dilution factor 10 with 
dilution factor 2. Also, designs with five dilutions (not shown) would have lower power than designs 
with three dilutions.

Table 4. Type I error rate (%) to conclude non-inferiority with approaches USP2 and gMPN for multiple dilution designs using 
a non-inferiority margin of r0 ¼ 0:8, detection proportions θA;θCð Þ ¼ 0:64; 0:8ð Þ and n~200 samples.

Design r0 ¼ 0:8 Failed MPNs (%) for USP2

n~200 n λ USP2 gMPN Alternative Compendial

3 × 3 × 22 198 4,2,1 6.8 4.9 6,843 (3.1) 16,384 (7.4)
3 × 4 × 16 192 5.2 5.0 1,521 (1.0) 5,028 (3.1)
3 × 5 × 13 195 4.5 5.0 421 (0.3) 1,712 (1.3)
3 × 6 × 11 198 4.1 4.6 126 (0.1) 590 (0.5)
3 × 7 ×  9 189 4.3 5.0 35 (0.0) 225 (0.3)
3 × 8 ×  8 192 4.5 4.8 4 (0.0) 89 (0.1)
3 × 11 × 6 198 4.4 4.9 - 2 (0.0)
3 × 13 × 5 195 4.5 5.1 - -
3 × 16 × 4 192 4.3 5.1 - -
3 × 22 × 3 198 3.5 5.0 - -
3 × 33 × 2 198 2.8 5.0 - -

3 × 3 × 22 198 20,2,0.2 3.8 4.8 133 (0.1) 373 (0.2)
3 × 4 × 16 192 3.9 5.1 7 (0.0) 31 (0.0)
3 × 5 × 13 195 3.7 4.9 1 (0.0) 2 (0.0)
3 × 6 × 11 198 3.9 4.9 - 1 (0.0)
3 × 7 ×  9 189 4.1 4.8 - -
3 × 8 ×  8 192 4.2 4.9 - -
3 × 11 × 6 198 4.2 5.0 - -
3 × 13 × 5 195 4.6 5.3 - -
3 × 16 × 4 192 4.5 5.4 - -
3 × 22 × 3 198 4.1 5.3 - -
3 × 33 × 2 198 2.7 5.1 - -
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Using a non-inferiority margin of r0 ¼ 0:7 instead of r0 ¼ 0:8 would, with a dilution factor of 2, 
be sufficient to increase the power to values above 80% for gMPN and USP2 with the 3 × 3 × 22 
design, but not for USP2 with the other designs with less replicates.

Appendix 3, Tables C5 and C6 show results for the power when detection proportions differ, i.e. for 
θA;θCð Þ ¼ 0:72; 0:8ð Þ or 0:88; 0:8ð Þ: Apart from the powers being lower or higher, respectively, than 

for θA;θCð Þ ¼ 0:8; 0:8ð Þ, the pattern is the same.

7. Conclusions

This paper presented the two USP <1223> non-inferiority approaches (USP1 on positive rates, 
USP2 on MPNs) and a statistical model that helped to interpret these approaches and that led to 
a third approach (generalized MPNs). Simulations illustrated the performance of the three 
approaches. It can be concluded that USP1 on positive rates is not suitable, since it concludes 
non-inferiority too often when the alternate method is inferior in detecting a single organism. 
This becomes even more severe for higher spike levels (already at 2–3 CFU/sample, which is still 
far below the spike level of 10–50 CFU that USP suggests), for which the expected positive rates 
become closer to 100% and closer to each other. Obviously, for sufficiently high spike levels, also 
a poor method has no difficulty detecting positive samples. Hence, the positive rate is not a good 
measure to evaluate the method performance, since it is influenced not only by the method but 
also by the spike level, and the conclusion of non-inferiority would only hold for the spike level 
tested, which cannot be estimated. Even if one would consider non-inferiority on the positive 
rates from a certain spike level onwards sufficient, then the spiking uncertainty in microbiology 
and the fact that the power changes rapidly with the spike level, make it very difficult to set up 
an experiment that guarantees this. Due to this dependence on the spike level, there is also no 
easy way to choose a lower significance level to get the Type I error under control, in an attempt 
to still benefit from the increase in power.

Table 5. Power (%) to conclude non-inferiority with approaches USP2 and gMPN for multiple dilution designs using a non-inferiority 
margin of r0 ¼ 0:8 or r0 ¼ 0:7, detection proportions θA;θCð Þ ¼ 0:8; 0:8ð Þ and n~200 samples.

Design r0 ¼ 0:8 r0 ¼ 0:7 Failed MPNs (%) for USP2

n~200 λ USP2 gMPN USP2 gMPN Alternative Compendial

3 × 3 × 22 4,2,1 50.8 49.2 84.4 83.1 16,643 (7.6) 16,384 (7.4)
3 × 4 × 16 44.9 47.2 79.2 81.6 4,949 (3.1) 5,028 (3.1)
3 × 5 × 13 43.3 48.7 77.0 82.1 1,720 (1.3) 1,712 (1.3)
3 × 6 × 11 42.9 48.7 75.7 82.8 655 (0.6) 590 (0.5)
3 × 7 ×  9 41.2 47.2 73.7 80.9 229 (0.3) 225 (0.3)
3 × 8 ×  8 41.9 48.0 73.9 81.7 87 (0.1) 89 (0.1)
3 × 11 × 6 41.5 48.8 74.7 83.4 4 (0.0) 2 (0.0)
3 × 13 × 5 40.2 49.4 71.7 82.4 - -
3 × 16 × 4 37.2 47.4 68.0 81.8 - -
3 × 22 × 3 32.3 50.0 60.8 83.1 - -
3 × 33 × 2 17.9 49.1 33.5 82.4 - -

3 × 3 × 22 20,2,0.2 25.5 30.9 47.0 57.3 352 (0.2) 373 (0.2)
3 × 4 × 16 24.4 30.0 44.8 55.0 23 (0.0) 31 (0.0)
3 × 5 × 13 25.0 30.4 46.9 57.1 5 (0.0) 2 (0.0)
3 × 6 × 11 25.4 30.7 46.6 56.3 - 1 (0.0)
3 × 7 ×  9 24.2 29.6 46.0 56.1 - -
3 × 8 ×  8 25.0 30.0 45.9 55.7 - -
3 × 11 × 6 25.5 31.9 47.7 57.0 - -
3 × 13 × 5 25.3 31.7 46.3 57.4 - -
3 × 16 × 4 22.8 30.9 42.6 55.9 - -
3 × 22 × 3 20.4 31.8 37.7 57.5 - -
3 × 33 × 2 11.4 31.0 20.2 56.8 - -
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On the other hand, USP2 is a suitable approach to evaluate the sensitivity of the alternative 
method in comparison with the compendial method and is not driven by the spike level. 
However, the proposed set-up for MPN can be improved. Instead of using multiple dilutions, 
it would be better to use the optimal single spike level that maximizes the power of the test. 
Under realistic scenarios with detection proportions above 0.7, the optimal spike level would be 
approximately 2 CFU/sample (for more details, see IJzerman-Boon and Van den Heuvel 2015; 
Strijbosch et al. 1990). If multiple dilutions are used, for example, to mitigate the risk of spiking 
uncertainty, then a much smaller dilution factor should be used in order to stay as close as
possible to the optimal spike level. Moreover, it is recommended to use as many MPN replicates 
as possible, but 3 × 3 or 3 × 4 experiments are not recommended due to the high probability of 
failed MPN replicates, which could lead to a bias in the evaluation.

An even better alternative is to replace the t-test by the generalized MPN analysis, i.e. to use gMPN 
instead of USP2. The MPN approach ignores the variability of the individual MPN estimates, which is 
overcome in an analysis of all data simultaneously by the gMPN. Use of all data together generally 
increases the power and reduces the risk of failed MPN replicates in the MPN experiment. 
Furthermore, the sample size of 75–100 that USP <1223> suggests for 80–90% power should be 
increased to about 200, since lower sample sizes do not provide this power level, not even when the 
non-inferiority margin is 0.7. To mitigate this increase in sample size, one may consider analyzing the 
data of multiple organisms together, provided their ratios of detection proportions are homogeneous 
(Emampour et al. 2021).

In the simulations, we assumed that the true counts in the samples were independent Poisson. This 
is a theoretical assumption for the estimation of MPNs in USP2 as well as for the ratio of detection 
proportions θ̂A=θ̂C in gMPN. It is not a serious drawback, since in practice it may always be 
approximately achieved by making sure that the volumes taken for the dilutions are small compared 
to the stock solution, and that the test samples are small compared to the dilutions. However, if 
samples are not independent Poisson, then the different ways of executing MPN experiments 
(Figure 2) may play a role, and taking into account some pairing in the analysis, using the USP2 
paired MPN t-test, may become better than the gMPN approach, which currently ignores any 
dependence between the samples. This requires further investigation. For a single dilution design, 
the gMPN approach may still be used, but it may be best to completely divide the stock solution over 
the test samples, because in that case, the estimator based on Poisson is robust against under- or 
overdispersion (Manju et al. 2019).

One of the limitations of the gMPN approach, which also applies to the USP methods, is that we did 
not consider false positives in our model. If false positives are ignored, then they may compensate for 
false negatives, and non-inferiority may be concluded while in fact the alternate method has a lower 
sensitivity than the compendial in combination with false positives. This may be easily resolved, since 
IJzerman-Boon and Van den Heuvel (2015) presented a zero-deflated binomial detection model, which 
extends the binomial model (7) with a parameter for the false positive rate. Use of this extended model 
slightly changes formulas (8), (9), and (10), but would allow a clean comparison of the sensitivity of 
two methods without interference by false positives.

In conclusion, the generalized MPN approach clearly outperforms the two USP approaches with 
a clear interpretation under the binomial-Poisson model that we presented. Non-inferiority on the 
positive rates is strongly discouraged. Furthermore, the robustness of the MPN and gMPN approach 
against other detection probability models must still be investigated.
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Appendix 1: Proof that all samples are independent

Theorem

Suppose the number of organisms in the stock solution follows a Poisson distribution: N~Poi λð Þ. Assume that this stock 
solution is split into n equal samples with numbers of organisms X1;X2; . . . ;Xn. Conditional on the total number of 
organisms N in the stock solution, the numbers in the samples follow a multinomial distribution, with probabilities 1=n 
for each organism to end up in one of the samples: X1;X2; . . . ;XnjN~Mult N; 1=n; . . . ; 1=nð Þ.

Let Z1;Z2; . . . ;Zn 2 0; 1f g denote the test outcome for each sample (0 ¼ negative, 1 ¼ positive). Assume that each 
sample is tested with a test method that detects organisms according to binomial detection model (7) with detection 
proportion θi, which may differ for each sample i ¼ 1; . . . ; n: P Zi ¼ 1jXið Þ ¼ 1 � 1 � θið Þ

Xi . 

Then:

(a) the true numbers of organisms X1;X2; . . . ;Xn in the test samples follow an independent Poisson distribution, with 
marginal distribution: X1;X2; . . . ;Xn ~Poi λ=nð Þ.

(b) the positive/negative test results Z1;Z2; . . . ;Zn are independent with Bernoulli probabilities: 
P Zi ¼ 1ð Þ ¼ 1 � exp � θiλ=nð Þ, or equivalently, P Zi ¼ 0ð Þ ¼ exp � θiλ=nð Þ.

Proof

(a) This follows from Theorem 1 and its Corollary 4 in Section 4 (about mixtures on the total number (N) of the 
multinomial distribution) of Patil and Bildikar (1966).
(b) In order to prove independence, i.e. that for all z1; . . . ; zn 2 0; 1f g

P Z1 ¼ z1; . . . ;Zn ¼ znð Þ ¼ P Z1 ¼ z1ð Þ � . . . � P Zn ¼ znð Þ;

it is sufficient to prove that: 

P Z1 ¼ 0; . . . ;Zn ¼ 0ð Þ ¼ P Z1 ¼ 0ð Þ � . . . � P Zn ¼ 0ð Þ; (A1) 

since the occurrence of 0 and 1 are complementary events, and for events A1; . . . ;An, independence of the events 
themselves also implies independence when one or more of the events is replaced by its complementary event, i.e. 

P A1; . . . ;Anð Þ ¼
Qn

i¼1
P Aið Þ implies P Ac

1;A2; . . . ;An
� �

¼ P Ac
1

� � Qn

i¼2
P Aið Þ,

since we can write 

P Ac
1;A2; . . . ;An

� �
¼ P Ac

1jA2; . . . ;An
� �

P A2; . . . ;Anð Þ ¼

¼ 1 � P A1jA2; . . . ;Anð Þ½ �P A2; . . . ;Anð Þ ¼

¼ 1 �
P A1;A2; . . . ;Anð Þ

P A2; . . . ;Anð Þ

� �

P A2; . . . ;Anð Þ ¼

¼ P A2; . . . ;Anð Þ � P A1;A2; . . . ;Anð Þ ¼

¼ 1 � P A1ð Þ½ �
Yn

i¼2
P Aið Þ ¼

¼ P Ac
1

� �Yn

i¼2
P Aið Þ:

On the left-hand side of (A1), we have 

P Z1 ¼ 0; . . . ;Zn ¼ 0ð Þ ¼
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¼
X1

N¼0

XN

x1¼0

x1þ...þxn¼N

. . .
XN

xn¼0
P Z1 ¼ 0; . . . ;Zn ¼ 0jX1 ¼ x1; . . . ;Xn ¼ xn;N ¼ Nð Þ �

� PðX1 ¼ x1; . . . ;Xn ¼ xnjN ¼ NÞ � P N ¼ Nð Þ ¼

( ZijX1; . . . ;Xn;Nð Þ are conditionally independent therefore this is just the product) 

¼
X1

N¼0

XN

x1¼0
. . .
XN

xn¼0

Yn

i¼1
P Zi ¼ 0jX1 ¼ x1; . . . ;Xn ¼ xn;N ¼ Nð Þ

" #

�

� PðX1 ¼ x1; . . . ;Xn ¼ xnjN ¼ NÞ � P N ¼ Nð Þ ¼

(if we know Xi, then the other X’s do not matter, whether they are independent or not) 

¼
X1

N¼0

XN

x1¼0
. . .
XN

xn¼0

Yn

i¼1
P Zi ¼ 0jXi ¼ xið Þ

" #

� P X1 ¼ x1; . . . ;Xn ¼ xnjN ¼ Nð Þ � P N ¼ Nð Þ ¼

¼
X1

N¼0

XN

x1¼0
. . .
XN

xn¼0

Yn

i¼1
1 � θið Þ

xi

" #

�
N!

x1! . . . xn!

1
n

� �N

�
λNe� λ

N!
¼

(multinomial theorem a1 þ . . .þ anð Þ
N
¼

P

x1þ...þxn¼N

N
x1; . . . ; xn

� �

ax1
1 . . . axn

n ) 

¼
X1

N¼0
n � θ1 � . . . � θnð Þ

N 1
n

� �N

�
λNe� λ

N!
¼

(Poisson distribution Poi 1 �
Pn

i¼1
θi=n

� �

λ
� �

adds up to 1 over all N) 

¼
X1

N¼0

1 �
Pn

i¼1 θi=n
� �

λ
� �Ne� λ 1�

Pn

i¼1
θi=nð Þþλ 1�

Pn

i¼1
θi=nð Þ� λ

N!
¼

¼ 1 � e
λ 1�

Pn

i¼1
θi=n

� �

� λ
¼ e

� λ
Pn

i¼1
θi=n

:

On the right-hand side of (A1), we have for Z1 and similarly for Z2; . . . ;Zn 

P Z1 ¼ 0ð Þ ¼
X1

N¼0

XN

x1¼0

x1þ...þxn¼N

. . .
XN

xn¼0
P Z1 ¼ 0jX1 ¼ x1; . . . ;Xn ¼ xn;N ¼ Nð Þ �

� P X1 ¼ x1; . . . ;Xn ¼ xnjN ¼ Nð Þ � P N ¼ Nð Þ ¼

(Z1 only depends on X1) 

¼
X1

N¼0

XN

x1¼0
. . .
XN

xn¼0
P Z1 ¼ 0jX1 ¼ x1ð Þ � P X1 ¼ x1; . . . ;Xn ¼ xnjN ¼ Nð Þ � P N ¼ Nð Þ ¼

¼
X1

N¼0

XN

x1¼0
. . .
XN

xn¼0
1 � θ1ð Þ

x1 �
N!

x1! . . . xn!

1
n

� �N

�
λNe� λ

N!
¼

¼
X1

N¼0

XN

x1¼0
. . .
XN

xn¼0
1 � θ1ð Þ

x1 �
N!

x1! N � x1ð Þ!

N � x1ð Þ!

x2! . . . xn!

1
n

� �N

�
λNe� λ

N!
¼
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¼
X1

N¼0

XN

x1¼0
1 � θ1ð Þ

x1 �
N!

x1! N � x1ð Þ!

XN� x1

x2¼0
. . .
XN� x1

xn¼0

N � x1ð Þ!

x2! . . . xn!

1
n � 1

� �N� x1 n � 1
n

� �N� x1 1
n

� �x1

�
λNe� λ

N!
¼

(multinomial distribution Multin N � x1; 1
n� 1 ; . . . ; 1

n� 1

� �
adds up to 1) 

¼
X1

N¼0

XN

x1¼0

N!

x1! N � x1ð Þ!
� 1 �

n � 1
n

� �N� x1 1 � θ1

n

� �x1

�
λNe� λ

N!
¼

(Newton’s binomium aþ bð Þ
N
¼
PN

x¼0

N
x

� �

axbN� x) 

¼
X1

N¼0

1 � θ1

n
þ

n � 1
n

� �N

�
λNe� λ

N!
¼

(Poisson distribution Poi 1 � θ1=nð Þλð Þ adds up to 1 over all N) 

¼
X1

N¼0

1 � θ1=nð Þλð Þ
Ne� λ 1� θ1=nð Þþλ 1� θ1=nð Þ� λ

N!
¼ e� λθ1=n:

Hence, the left-hand side P Z1 ¼ 0; . . . ;Zn ¼ 0ð Þ ¼ e
� λ
Pn

i¼1
θi=n

equals the right-hand side 

P Z1 ¼ 0ð Þ � . . . � P Zn ¼ 0ð Þ ¼
Qn

i¼1
e� λθi=n, thereby completing the proof.
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Appendix 2 Program codes for analysis

SAS code:

/*********************************************************************
Program: Noninf_Qual_Tests.sas
Purpose: Analyze microbiological data to determine non-inferiority

for qualitative microbiological tests according to two 
USP <1223> approaches and the generalized MPN approach

Remark:  Supplementary material to paper:
IJzerman-Boon, P.C., Manju, M.A., Van den Heuvel, E.R.,
Non-inferiority testing for qualitative microbiological 
methods: Assessing and improving the approach in USP <1223>,
Journal of Biopharmaceutical Statistics, Accepted 2022.

*********************************************************************/

*********************************************************************
* Data structure for single or multiple dilutions
*********************************************************************
* Raw data format (rep, dil not needed for single dilution):
* method: Description of method (e.g. Alternate, Compendial)
* rep:    MPN replicate (sequence number within method)
* dil:    Dilution of the bacterial density per sample volume
*         expressed as a fraction compared to the solution of which
*         the bacterial density needs to be estimated (0 < dil <=1)
* z:      Response (0=neg, 1=pos)
*********************************************************************
* Summary data format:
* method, rep, dil: See above
* n:  Number tested
* pos:    Number positive
*********************************************************************
* Summary wide data format (only for single dilution):
* nA and nC:     Number tested for Alternate and Compendial method
* posA and posC: Number positive for Alternate and Compendial method
*********************************************************************
* Multiple dilutions (raw):         Multiple dilutions (summary):
* method     rep dil    z           method     rep dil    n pos
* Alternate 1  0.1    1           Alternate   1  0.1    3   2
* Alternate   1  0.1    1           Alternate   1  0.01   3   2
* Alternate   1  0.1    0           Alternate   1  0.001  3   1
* Alternate   1  0.01   1           Alternate   2  0.1    3   2
* Alternate   1  0.01   0           Alternate   2  0.01   3   2
* Alternate   1  0.01   1           Alternate   2  0.001  3   2
* Alternate   1  0.001  0           Compendial  1  0.1    3   3
* Alternate   1  0.001  0           Compendial  1  0.01   3   1
* Alternate   1  0.001  1           Compendial  1  0.001  3   0
* Alternate   2  0.1    1           Compendial  2  0.1    3   2
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* Alternate   2  0.1    1           Compendial  2  0.01   3   1
* Alternate   2  0.1    0 etc.      Compendial  2  0.001  3 0
*********************************************************************
* Single dilution (summary):        Single dilution (summary wide):
* method       n pos                nA posA nC posC
* Alternate   30  17                30  17  30  21
* Compendial  30  21
*********************************************************************;

*********************************************************************
* USP1: Non-inferiority on positive rates based on a single dilution
*       (independent test samples)
*********************************************************************;

%MACRO USP1(dsin=sum_wide, r0=0.7);

TITLE1 "USP1: Analyze summary data according to Farrington & Manning (1990)";
TITLE2 "Data=&dsin, Non-inf margin r0=&r0";

DATA USP1(DROP = k a b c discr);
SET &dsin;
r0 = &r0;
pA = posA/nA;
pC = posC/nC;
k = nC/nA;
a = 1+k;
b = -(r0*(1+k*pC)+k+pA);
c = r0*(pA+k*pC);
discr=b*b-4*a*c;
pAtilde=(-b-SQRT(discr))/(2*a);
pCtilde=pAtilde/r0;

IF pCtilde>1 THEN DO;   * Prevent underestimation of variance;
put "WAR" "NING: pCtilde>1 set to 1 " pCtilde= pAtilde= r0=;
pCtilde=1;

END;

* Variance for test statistic (MLE according to Appendix Farrington & 
Manning);
w0 = pAtilde*(1-pAtilde)/nA + r0*r0*pCtilde*(1-pCtilde)/nC;

* Test statistic;
za = PROBIT(1-0.05);
rejectNI_FM = (pA-r0*pC > za*SQRT(w0)); * Avoid dividing by 0;

Z = (pA-r0*pC)/SQRT(w0);
pvalue = 1-PROBNORM(Z);

RUN;

PROC PRINT DATA=USP1; RUN;

%MEND USP1;

**********************************************************************
* USP2: Non-inferiority on MPNs based on single or multiple dilutions
*       (independent test samples)
*********************************************************************;
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%MACRO USP2(dsin=MPN_raw, r0=0.7);

TITLE1 "USP2: Analysis MPN per replicate";
TITLE2 "Data=&dsin, Non-inf margin r0=&r0";

PROC SORT DATA=&dsin; BY rep; RUN;

ODS OUTPUT PARAMETERESTIMATES=pe;
PROC NLMIXED DATA=&dsin QPOINTS=20 DF=100000; * DF=1E5 to get normal CI;

PARMS lndens1=-2 0 1 2, lndens2=-2 0 1 2;   * log-density A and C method;
mu1 = EXP(lndens1)*dil;                     * density=EXP(lndens);
mu2 = EXP(lndens2)*dil;
Pr = (1-EXP(-mu1))*(method="Alternate")+(1-EXP(-mu2))*(method="Compendial");
MODEL z~BINARY(Pr);                         * raw data format;
*MODEL pos~BINOMIAL(n,Pr); * summary data format;
BY rep;

RUN;
ODS OUTPUT CLOSE;

DATA pe(KEEP=rep loglambda1 loglambda2);
MERGE pe(WHERE = (Parameter = 'lndens1')

DROP  = StandardError DF tValue Probt Alpha Lower Upper Gradient
RENAME=(Estimate = loglambda1))

pe(WHERE = (Parameter = 'lndens2')
DROP  = StandardError DF tValue Probt Alpha Lower Upper Gradient
RENAME=(Estimate = loglambda2));

BY rep;
RUN;

TITLE1 "USP2: Independent two-sample T-test on ln(MPN)s";
TITLE2 "Data=&dsin, Non-inf margin r0=&r0";

PROC MEANS DATA=pe NOPRINT;
VAR loglambda1 loglambda2;
OUTPUT OUT=ttest(DROP=_TYPE_ _FREQ_) N=nA nC MEAN=yAbar yCbar VAR=varA varC;

RUN;

DATA ttest;
SET ttest;
df = (varA/nA + varC/nC)**2 / ( (varA/nA)**2/(nA-1) + (varC/nC)**2/(nC-1) );
ta = TINV(1-0.05,df);                       * critical t-value;
tLCL = yAbar-yCbar-ta*SQRT(varA/nA + varC/nC);
log_r0 = LOG(&r0);
rejectNI_t = (tLCL > LOG(&r0));

T = (yAbar-yCbar-LOG(&r0))/SQRT(varA/nA + varC/nC);
pvalue = 1-PROBT(T,df);

RUN;

PROC PRINT DATA=ttest; RUN;

%MEND USP2;

**********************************************************************
* gMPN: Non-inferiority using proposed generalized MPN approach
*       based on single or multiple dilutions (independent samples)
*********************************************************************;

%MACRO gMPN(dsin=MPN_raw, r0=0.7);

TITLE1 "gMPN: Proposed method on data combined over replicates";
TITLE2 "Data=&dsin, Non-inf margin r0=&r0";
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ODS OUTPUT PARAMETERESTIMATES=pecomb ADDITIONALESTIMATES=aecomb;
PROC NLMIXED DATA=&dsin QPOINTS=20 DF=100000;
PARMS lndens1=-2 0 1 2, lndens2=-2 0 1 2;
mu1 = EXP(lndens1)*dil;
mu2 = EXP(lndens2)*dil;
Pr = (1-EXP(-mu1))*(method="Alternate")+(1-EXP(-mu2))*(method="Compendial");
MODEL z~BINARY(Pr);                       * raw data format;
*MODEL pos~BINOMIAL(n,Pr); * summary data format;
ESTIMATE 'lnMPN_A-lnMPN_C' lndens1-lndens2 ALPHA=0.1; %* 90% CI;

RUN;
ODS OUTPUT CLOSE;

DATA aecomb;
SET aecomb(DROP=DF tValue Probt Alpha Upper);
log_r0=LOG(&r0);
rejectNI_MPN=(Lower>=LOG(&r0));

Z=(Estimate-log_r0)/StandardError;
pvalue=1-PROBNORM(Z);

RUN;

PROC PRINT DATA=aecomb; RUN;

%MEND gMPN;

#####################################################################
# Program: Noninf_Qual_Tests.r
# Purpose: Analyze microbiological data to determine non-inferiority
#          for qualitative microbiological tests according to two 
#          USP <1223> approaches and the generalized MPN approach
# Remark:  Supplementary material to paper:
#          IJzerman-Boon, P.C., Manju, M.A., Van den Heuvel, E.R.,
#          Non-inferiority testing for qualitative microbiological
#          methods: Assessing and improving the approach in USP <1223>,
#          Journal of Biopharmaceutical Statistics, Accepted 2022.
#####################################################################

#####################################################################
# USP1: Non-inferiority on positive rates based on a single dilution
#       (independent test samples)
#####################################################################

# Raw data structure: x_A and x_C responses for Alt and Comp method, e.g.
X_A=c(0,1,1,1,0,0,0,1,0,0,1,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,0,1,0)
X_C=c(1,1,1,1,0,1,0,1,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1,0,1,1,1,0,1,0)

r_0=0.7 # non-inferiority margin
ALPHA=0.05 # level of significance

# n_A and n_C samples tested with alternate and compendial method
n_A=length(X_A)
n_C=length(X_C)

# p_A and p_C estimated probabilities to detect positive test samples
p_A=(sum(X_A))/n_A
p_C=(sum(X_C))/n_C

# p.A and p.C estimated MLE probabilities to detect positive samples under H0
k=n_C/n_A
a=1+k
b=-(r_0*(1+k*p_C)+k+p_A)
c=r_0*(p_A+k*p_C)
p.A=(-b-sqrt(b^2-4*a*c))/(2*a) # pAtilde
p.C=p.A/r_0                    # pCtilde

R code:
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# w_0 estimated variance of p_A-r_0 p_C under H0
w_0=p.A*(1-p.A)/n_A + (r_0^2)*p.C*(1-p.C)/n_C

# test statistic
Z=(p_A-r_0*p_C)/(sqrt(w_0))
pvalue=1-pnorm(Z)

RES1.ind=cbind(n_A,n_C,p_A,p_C,p.A,p.C,w_0,Z,pvalue)
RES1.ind

######################################################################
# USP2: Non-inferiority on MPNs based on single or multiple dilutions
#       (independent test samples)
######################################################################

# Raw data structure with variables: Method Replicate Dilution Response
# Read Excel file with MPN data from local drive
library(readxl)
MPN_Data <- read_excel("MPN_raw.xlsx")
MPN.Data=as.data.frame(MPN_Data)

r_0=0.7 # non-inferiority margin
ALPHA=0.05 # level of significance

# number of microbiological methods in the data, e.g. n.Me=2 for Alt and Comp
n.Me=length(unique(MPN.Data$Method))
Final.OutP=list()

# for each microbiological test method:
for (Q in 1:n.Me){

MeT=unique(MPN.Data$Method)[Q] # name of method, e.g. "Comp"
DF=MPN.Data[which(MPN.Data$Method==MeT), ] # data frame for this method
ReP=DF$Replicate
Replicate=paste0("Replicate ",1:length(unique(ReP))) # number of replicates

# vectors to store for different replicates:
# log density estimates, standard error, lower and upper confidence limit
lg.density=rep(NA,length(unique(ReP)))
se.lg.density=rep(NA,length(unique(ReP)))
lg.density.LCL=rep(NA,length(unique(ReP)))
lg.density.UCL=rep(NA,length(unique(ReP)))

# for each replicate:
for (R in 1:length(unique(ReP))){
df=DF[which(DF$Replicate==R), ] # data frame for this replicate

#####################################################################
# Maximum likelihood estimation for log density
#####################################################################
ll.fn=function(parm,df){
ll=rep(NA,length(unique(df$Dilution)))
for (D in 1:length(unique(df$Dilution))){
# number of positives in each dilution (within replicate, method)
nPos=sum(df$Response[which(df$Dilution==unique(df$Dilution)[D])])
# number of test samples in each dilution
K=length(df$Response[which(df$Dilution==unique(df$Dilution)[D])])
# dilution (factor or fraction of main solution)
d=unique(df$Dilution)[D]
# probability of positive result
P=1-exp(-exp(parm)*d)
# log-likelihood for dilution
ll[D]=nPos*(log(P))+(K-nPos)*(log(1-P))
}

sum(ll)}
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#####################################################################
# Calculate MME for log density (as initial value in optim function)
#####################################################################
MeanRes=aggregate(df$Response, by=list(df$Dilution), FUN=mean)
MeanRes$x=ifelse(MeanRes$x==1,0.99999,MeanRes$x)
MeanRes$x=ifelse(MeanRes$x==0,0.00001,MeanRes$x)
parm.i=rep(NA,dim(MeanRes)[1])
for (i in 1:dim(MeanRes)[1]){
parm.i[i]=log(-(1/MeanRes$Group.1[i])*(log(1-MeanRes$x[i])))
}

parm=mean(parm.i)

#####################################################################
mle.optim <- optim(parm, ll.fn, df=df, lower =-Inf, upper = Inf, 

method = "L-BFGS-B", hessian = TRUE,
control = list(maxit = 200000, fnscale = -1) )

#####################################################################

lg.density[R]=mle.optim$par
se.lg.density[R]=sqrt(as.numeric(solve(-mle.optim$hessian)))
lg.density.LCL[R]=lg.density[R] +

qt(ALPHA/2,length(unique(df$Dilution)))*(se.lg.density[R])
lg.density.UCL[R]=lg.density[R] +

qt(1-ALPHA/2,length(unique(df$Dilution)))*(se.lg.density[R])
}
Final.OutP[[Q]]=cbind(Replicate,lg.density,se.lg.density,

lg.density.LCL,lg.density.UCL)
}
names(Final.OutP)=as.vector(unique(MPN.Data$Method))
Final.OutP   # Summary results for log MPN estimates per replicate per method

#########################################################
# Non-inferiority on log MPNs (independent test samples)
#########################################################
lg.density.C=as.numeric(Final.OutP$Compendial[ ,2])
lg.density.A=as.numeric(Final.OutP$Alternate[ ,2])
N_A=length(lg.density.A)
N_C=length(lg.density.C)
Ybar.A=mean(lg.density.A)
Ybar.C=mean(lg.density.C)
S2.A=var(lg.density.A)
S2.C=var(lg.density.C)
d.f=((S2.A/N_A+S2.C/N_C)^2)/(((S2.A/N_A)^2)/(N_A-1)+((S2.C/N_C)^2)/(N_C-1))
lcl=Ybar.A-Ybar.C-qt(1-ALPHA,df=d.f,ncp=0)*(sqrt(S2.A/N_A+S2.C/N_C))
T.NI=(Ybar.A-Ybar.C-log(r_0))/(sqrt(S2.A/N_A+S2.C/N_C))
pvalue.NI=1-pt(abs(T.NI),df=d.f,ncp=0)

RES2.ind=cbind(Ybar.C,S2.C,Ybar.A,S2.A,lcl,T.NI,pvalue.NI)
RES2.ind

#####################################################################
# gMPN: Non-inferiority on generalized MPNs based on single or
#       multiple dilutions (independent test samples)
#####################################################################

# Raw data structure with variables: 
# Method (Alternate, Compendial) Replicate Dilution Response
# Read Excel file with MPN data from local drive
library(readxl)
MPN_Data <- read_excel("MPN_raw.xlsx")
MPN.Data=as.data.frame(MPN_Data)

r_0=0.7 # non-inferiority margin
ALPHA=0.05 # level of significance
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# number of microbiological methods in the data, e.g. n.Me=2 for Alt and Comp
n.Me=length(unique(MPN.Data$Method))
Final.OutP=list()

# for each microbiological test method:
for (Q in 1:n.Me){
MeT=unique(MPN.Data$Method)[Q] # name of method, e.g.  "Comp"
DF=MPN.Data[which(MPN.Data$Method==MeT), ] # data frame for this method

#####################################################################
# Maximum likelihood estimation for log density
#####################################################################
ll.fn=function(parm,DF){

LL=rep(NA,length(unique(DF$Replicate)))

for (R in 1:length(unique(DF$Replicate))){
df=DF[which(DF$Replicate==R), ]

ll=rep(NA,length(unique(df$Dilution)))
for (D in 1:length(unique(df$Dilution))){
nPos=sum(df$Response[which(df$Dilution==unique(df$Dilution)[D])])
K=length(df$Response[which(df$Dilution==unique(df$Dilution)[D])])
d=unique(df$Dilution)[D]
P=1-exp(-exp(parm)*d)
ll[D]=nPos*(log(P))+(K-nPos)*(log(1-P))
}

LL[R]=sum(ll)} # combined over dilutions
sum(LL)} # combined over replicates

#####################################################################
# Calculate MME for log density (as initial value in optim function)
#####################################################################
parm1=rep(NA,length(unique(DF$Replicate)))
for (R in 1:length(unique(DF$Replicate))){

df=DF[which(DF$Replicate==R), ]
MeanRes=aggregate(df$Response,  by=list(df$Dilution), FUN=mean)
MeanRes$x=ifelse(MeanRes$x==1,0.99999,MeanRes$x)
MeanRes$x=ifelse(MeanRes$x==0,0.00001,MeanRes$x)
parm.i=rep(NA,dim(MeanRes)[1])
for (i in 1:dim(MeanRes)[1]){
parm.i[i]=log(-(1/MeanRes$Group.1[i])*(log(1-MeanRes$x[i])))

}
parm1[R]=mean(parm.i)

}
parm=mean(parm1)

#####################################################################
mle.optim <- optim(parm, ll.fn, DF=DF, lower =-Inf, upper = Inf, 

method = "L-BFGS-B", hessian = TRUE,
control = list(maxit = 200000, fnscale = -1) )

#####################################################################

lg.density=mle.optim$par
se.lg.density=sqrt(as.numeric(solve(-mle.optim$hessian)))
lg.density.LCL=lg.density+qnorm(ALPHA/2,lower.tail = TRUE)*(se.lg.density)
lg.density.UCL=lg.density+qnorm(1-ALPHA/2,lower.tail = TRUE)*(se.lg.density)

Final.OutP[[Q]]=cbind(lg.density,se.lg.density,lg.density.LCL,lg.density.UCL)
}
names(Final.OutP)=as.vector(unique(MPN.Data$Method))
Final.OutP   # Summary results for log MPN estimates per method
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#################################################################
# Non-inferiority on generalized MPNs (independent test samples)
#################################################################
lg.density.C=as.numeric(Final.OutP$Compendial[ ,1]) # Compendial
se.lg.density.C=as.numeric(Final.OutP$Compendial[ ,2])
lg.density.A=as.numeric(Final.OutP$Alternate[ ,1]) # Alternate
se.lg.density.A=as.numeric(Final.OutP$Alternate[ ,2])
lg.density.dif=lg.density.A-lg.density.C                    # Difference
se.lg.density.dif=sqrt(se.lg.density.A^2 + se.lg.density.C^2)
lcl=lg.density.dif+qnorm(ALPHA,lower.tail = TRUE)*(se.lg.density.dif) # 90CI
lg.margin=log(r_0) # log-transformed NI margin

# test statistic
Z.NI=(lg.density.dif-log(r_0))/(se.lg.density.dif)
pvalue=1-pnorm(Z.NI)

RES3=cbind(lg.density.dif,se.lg.density.dif,lcl,lg.margin,Z.NI,pvalue)
RES3

Appendix 3 Additional simulation results

Simulations supplementing those in Table 2 (Type I error USP1 vs gMPN) 

Simulations supplementing those in Table 3 (Power USP1 vs gMPN)

Table C2. Power (%) to conclude non-inferiority with approaches USP1 and gMPN for a single dilution design using a non-inferiority 
margin of r0 ¼ 0:8 or r0 ¼ 0:7, θA=θC ¼ 0:9 with detection proportions θA;θCð Þ ¼ 0:72; 0:8ð Þ and n ¼ 200 samples.

Density λ 0.5 1.0 1.5 2.0 2.5 3.0
Expected positive rates (%) pA 30.23 51.32 66.04 76.31 83.47 88.47

pC 32.97 55.07 69.88 79.81 86.47 90.93
pA=pC 0.917 0.932 0.945 0.956 0.965 0.973

Non-inferiority margin r0 ¼ 0:8 USP1 24.2 49.5 76.9 94.5 99.4 100.0
gMPN 16.6 21.6 23.4 25.1 23.0 22.9

r0 ¼ 0:7 USP1 56.7 90.7 99.5 100.0 100.0 100.0
gMPN 39.6 56.2 61.7 64.5 64.1 60.6

Table C3. Power (%) to conclude non-inferiority with approaches USP1 and gMPN for a single dilution design using a non-inferiority 
margin of r0 ¼ 0:8 or r0 ¼ 0:7, θA=θC ¼ 1:1 with detection proportions θA;θCð Þ ¼ 0:88; 0:8ð Þ and n ¼ 200 samples.

Density λ 0.5 1.0 1.5 2.0 2.5 3.0
Expected positive rates (%) pA 35.60 58.52 73.29 82.80 88.92 92.86

pC 32.97 55.07 69.88 79.81 86.47 90.93
pA=pC 1.080 1.063 1.049 1.037 1.028 1.021

Non-inferiority margin r0 ¼ 0:8 USP1 68.9 94.3 99.6 100.0 100.0 100.0
gMPN 57.5 75.2 81.5 82.7 79.9 77.2

r0 ¼ 0:7 USP1 92.6 99.9 100.0 100.0 100.0 100.0
gMPN 83.2 95.0 97.2 97.7 97.1 95.5

Table C1. Type I error rate (%) to conclude non-inferiority with approaches USP1 and gMPN for a single dilution design using a non- 
inferiority margin of r0 ¼ 0:8, detection proportion θC ¼ 0:8, θA chosen such that θA=θC ¼ 0:7< r0, and n ¼ 200 samples.

Density λ 0.5 1.0 1.5 2.0 2.5 3.0
Detection proportion θA 0.56

θA=θC 0.70
Expected positive rates (%) pA 24.42 42.88 56.83 67.37 75.34 81.36

pC 32.97 55.07 69.88 79.81 86.47 90.93
pA=pC 0.741 0.779 0.813 0.844 0.871 0.895

USP1 1.8 3.0 7.7 21.4 51.5 83.0

gMPN 0.8 0.6 0.4 0.4 0.3 0.4
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Simulations supplementing those in Table 4 (Type I error USP2 vs gMPN)

Simulations supplementing those in Table 5 (Power USP2 vs gMPN)

Table C5. Power (%) to conclude non-inferiority with approaches USP2 and gMPN for multiple dilution designs using a non- 
inferiority margin of r0 ¼ 0:8 or 0 ¼ 0:7, θA=θC ¼ 0:9 with detection proportions θA;θCð Þ ¼ 0:72; 0:8ð Þ and n,200 samples.

Design r0 ¼ 0:8 r0 ¼ 0:7 Failed MPNs (%) for USP2

n~200 λ USP2 gMPN USP2 gMPN Alternative Compendial

3 × 3 × 22 4,2,1 25.3 22.1 62.6 57.5 11,219 (5.1) 16,384 (7.4)
3 × 4 × 16 20.8 21.1 53.1 55.8 2,937 (1.8) 5,028 (3.1)
3 × 5 × 13 19.0 21.6 50.3 57.0 901 (0.7) 1,712 (1.3)
3 × 6 × 11 18.2 21.3 49.0 57.1 333 (0.3) 590 (0.5)
3 × 7 ×  9 17.6 20.5 47.3 55.1 91 (0.1) 225 (0.3)
3 × 8 ×  8 17.9 21.1 48.4 56.7 25 (0.0) 89 (0.1)
3 × 11 × 6 18.4 21.7 48.1 57.7 1 (0.0) 2 (0.0)
3 × 13 × 5 18.0 22.0 46.6 57.6 - -
3 × 16 × 4 16.2 21.2 43.6 55.9 - -
3 × 22 × 3 14.5 22.1 38.6 58.0 - -
3 × 33 × 2 8.8 21.2 20.8 56.7 - -

3 × 3 × 22 20,2,0.2 11.7 15.0 27.4 35.9 224 (0.1) 373 (0.2)
3 × 4 × 16 11.5 14.7 25.9 34.5 15 (0.0) 31 (0.0)
3 × 5 × 13 11.7 14.7 27.1 35.5 2 (0.0) 2 (0.0)
3 × 6 × 11 11.9 14.8 27.8 35.3 - 1 (0.0)
3 × 7 ×  9 11.8 14.1 26.8 34.5 - -
3 × 8 ×  8 12.2 14.6 27.2 34.5 - -
3 × 11 × 6 11.9 15.0 28.8 36.2 - -
3 × 13 × 5 12.4 15.0 28.4 36.4 - -
3 × 16 × 4 11.7 14.8 26.0 35.1 - -
3 × 22 × 3 10.1 14.9 23.0 36.1 - -
3 × 33 × 2 6.5 14.5 13.0 35.5 - -

Table C4. Type I error rate (%) to conclude non-inferiority with approaches USP2 and gMPN for multiple dilution designs using a non- 
inferiority margin of r0 ¼ 0:8, detection proportions θA;θCð Þ ¼ 0:56; 0:8ð Þ and n,200 samples.

Design r0 ¼ 0:8 Failed MPNs (%) for USP2

n~200 n λ USP2 gMPN Alternative Compendial

3 × 3 × 22 198 4,2,1 0.7 0.5 3,825 (1.7) 16,384 (7.4)
3 × 4 × 16 192 0.6 0.5 674 (0.4) 5,028 (3.1)
3 × 5 × 13 195 0.5 0.5 162 (0.1) 1,712 (1.3)
3 × 6 × 11 198 0.2 0.3 39 (0.0) 590 (0.5)
3 × 7 ×  9 189 0.5 0.5 7 (0.0) 225 (0.3)
3 × 8 ×  8 192 0.5 0.5 1 (0.0) 89 (0.1)
3 × 11 × 6 198 0.4 0.4 - 2 (0.0)
3 × 13 × 5 195 0.5 0.5 - -
3 × 16 × 4 192 0.5 0.5 - -
3 × 22 × 3 198 0.6 0.5 - -
3 × 33 × 2 198 0.4 0.4 - -

3 × 3 × 22 198 20,2,0.2 0.8 1.1 71 (0.0) 373 (0.2)
3 × 4 × 16 192 0.9 1.2 2 (0.0) 31 (0.0)
3 × 5 × 13 195 0.7 1.0 - 2 (0.0)
3 × 6 × 11 198 0.9 1.1 - 1 (0.0)
3 × 7 ×  9 189 1.0 1.2 - -
3 × 8 ×  8 192 0.8 1.0 - -
3 × 11 × 6 198 1.0 1.0 - -
3 × 13 × 5 195 1.2 1.1 - -
3 × 16 × 4 192 1.3 1.2 - -
3 × 22 × 3 198 1.2 1.1 - -
3 × 33 × 2 198 0.8 1.1 - -
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Table C6. Power (%) to conclude non-inferiority with approaches USP2 and gMPN for multiple dilution designs using a non- 
inferiority margin of r0 ¼ 0:8 or 0 ¼ 0:7, θA=θC ¼ 1:1 with detection proportions θA;θCð Þ ¼ 0:88; 0:8ð Þ and n,200 samples.

Design r0 ¼ 0:8 r0 ¼ 0:7 Failed MPNs (%) for USP2

n~200 λ USP2 gMPN USP2 gMPN Alternative Compendial

3 × 3 × 22 4,2,1 73.4 74.6 94.8 94.8 23,113 (10.5) 16,384 (7.4)
3 × 4 × 16 68.9 73.0 92.1 93.9 7,623 (4.8) 5,028 (3.1)
3 × 5 × 13 68.1 73.8 91.6 94.5 2,952 (2.3) 1,712 (1.3)
3 × 6 × 11 67.8 74.5 91.2 94.7 1,213 (1.1) 590 (0.5)
3 × 7 ×  9 65.4 72.3 89.1 94.1 453 (0.5) 225 (0.3)
3 × 8 ×  8 66.3 73.6 88.9 94.2 197 (0.2) 89 (0.1)
3 × 11 × 6 66.2 75.1 89.8 94.9 11 (0.0) 2 (0.0)
3 × 13 × 5 63.6 74.3 87.8 94.4 - -
3 × 16 × 4 59.4 72.1 85.3 94.3 - -
3 × 22 × 3 52.9 75.1 78.1 94.9 - -
3 × 33 × 2 28.2 74.3 44.6 94.7 - -

3 × 3 × 22 20,2,0.2 43.4 50.7 66.2 74.9 530 (0.2) 373 (0.2)
3 × 4 × 16 41.2 48.5 63.3 73.2 49 (0.0) 31 (0.0)
3 × 5 × 13 42.4 49.6 65.1 74.6 6 (0.0) 2 (0.0)
3 × 6 × 11 42.3 49.8 65.2 74.7 1 (0.0) 1 (0.0)
3 × 7 ×  9 40.7 48.7 63.6 73.3 - -
3 × 8 ×  8 40.9 48.8 63.7 74.8 - -
3 × 11 × 6 42.3 50.3 65.1 74.8 - -
3 × 13 × 5 40.2 50.6 63.7 73.5 - -
3 × 16 × 4 36.8 49.2 59.8 75.5 - -
3 × 22 × 3 33.0 50.5 52.8 75.5 - -
3 × 33 × 2 17.3 50.1 27.7 74.7 - -
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