

The irreducible vectors of a lattice

Citation for published version (APA):
Doulgerakis, E., Laarhoven, T. M. M., & de Weger, B. M. M. (2023). The irreducible vectors of a lattice: Some
theory and applications. Designs, Codes and Cryptography, 91(2), 609-643. https://doi.org/10.1007/s10623-022-
01119-y

DOI:
10.1007/s10623-022-01119-y

Document status and date:
Published: 01/02/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1007/s10623-022-01119-y
https://doi.org/10.1007/s10623-022-01119-y
https://doi.org/10.1007/s10623-022-01119-y
https://research.tue.nl/en/publications/0fa0b3a5-2424-4dbe-8102-4d3d18bb3663

Designs, Codes and Cryptography (2023) 91:609–643
https://doi.org/10.1007/s10623-022-01119-y

The irreducible vectors of a lattice:

Some theory and applications

Emmanouil Doulgerakis1 · Thijs Laarhoven2 · Benne de Weger1

Received: 13 September 2021 / Revised: 30 June 2022 / Accepted: 17 August 2022 /
Published online: 18 October 2022
© The Author(s) 2022

Abstract
The main idea behind lattice sieving algorithms is to reduce a sufficiently large number of
lattice vectors with each other so that a set of short enough vectors is obtained. It is therefore
natural to study vectors which cannot be reduced. In this work we give a concrete definition
of an irreducible vector and study the properties of the set of all such vectors. We show that
the set of irreducible vectors is a subset of the set of Voronoi relevant vectors and study its
properties. For extremal lattices this set may contain as many as 2n vectors, which leads us
to define the notion of a complete system of irreducible vectors, whose size can be upper-
bounded by the kissing number. One of our main results shows that modified heuristic sieving
algorithms heuristically approximate such a set (modulo sign). We provide experiments in
low dimensions which support this theory. Finally we give some applications of this set in
the study of lattice problems such as SVP, SIVP and CVPP. The introduced notions, as well
as various results derived along the way, may provide further insights into lattice algorithms
and motivate new research into understanding these algorithms better.

Keywords Lattices · Relevant vectors · Irreducible vectors · Sieving algorithms

Communicated by D. Stehle.

Emmanouil Doulgerakis is supported by the NWO under Grant 628.001.028 (FASOR). Thijs Laarhoven is
supported by a Veni Grant from NWO under Project Number 016.Veni.192.005.

B Emmanouil Doulgerakis
emmanouhld@gmail.com

Thijs Laarhoven
mail@thijs.com

Benne de Weger
b.m.m.d.weger@tue.nl

1 Eindhoven University of Technology, Eindhoven, The Netherlands

2 TNO, Cyber Security and Robustness, The Hague, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01119-y&domain=pdf
http://orcid.org/0000-0002-0437-1525

610 E. Doulgerakis et al.

1 Introduction

The need for quantum-resistant cryptography has led to rapid developments in the area of
lattice-based cryptography, mainly spurred by the NIST PQ-Crypto competition. Large scale
deployment of lattice-based cryptosystems in the near future becomes realistic. This continues
to make the deeper understanding of lattice problems an urgent research topic.

In 2010Micciancio andVoulgaris, based also onpreviouswork [1], describeddeterministic
Õ(22n)—time and Õ(2n)—space algorithms to solve some of the most important lattice
problems (such as SVP, SIVP and CVP) [23] in dimension n. This result mainly relies on an
algorithm to compute the set of relevant vectors of (the Voronoi cell of) a lattice. Even though
this is a very interesting result, the constants in the exponents of time and space complexities
of the Micciancio–Voulgaris algorithm make it impractical, even for moderate dimensions.

The set of relevant vectorswas first introduced in 1908 byVoronoi [35]. It provides a useful
representation of the Voronoi cell of a lattice. Even though the set of relevant vectors seems
to hold the key for solving many lattice problems, its expected size makes it impractical. This
becomes even more clear when that size is compared to the (time and) space complexity of
algorithms used in practice for solving lattice problems such as [2, 6, 14].

In this work, we introduce a different set of lattice vectors, which appears to serve as a
bridge between the provable results relying on the set of relevant vectors and heuristic sieving
algorithms [3, 24, 28].

Notions of irreducibility are considered to be fundamental in many areas. Often irre-
ducibility is defined with respect to multiplication. Since a lattice is an additive object, we
will however use an additive notion of irreducibility. Clearly the notion of lattice basis could
be seen as such a construct, but it has been observed to be a too weak notion to provide, on its
own, interesting results for lattice problems. Our new notion of irreducible vectors provides
us with a set of lattice vectors, larger than a basis but smaller than the set of relevant vectors,
and possessing interesting properties. To the best of our knowledge this definition is new in
the area of lattices.

1.1 Contributions

In this paper we define a notion of irreducibility for a lattice vector. As a first result we show
that every irreducible vector of a lattice belongs to the lattice’s set of relevant vectors. Hence,
the set of irreducible vectors which we denote by Irr(L) is finite. Additionally, it is shown
that the set of irreducible vectors generates the lattice and also contains vectors achieving all
the successive minima of the lattice. Finally, the sets of irreducible vectors of the root lattices
An , Dn and their duals A∗

n , D
∗
n are examined as they prove to be interesting extreme cases.

As it turns out, the set Irr(L) can be as big as the set of relevant vectors. In order to get a set
of cardinality provably smaller than 2n , a complete system of irreducible vectors is defined,
which is denoted by P(L). This set inherits the aforementioned properties of the set Irr(L)

and also it is proved that |P(L)| < 20.402n where n is the rank of the lattice. Heuristically it is
expected that P(L)will have a cardinality of 20.21n . From a computational point of view, it is
shown that slightly modified versions of already existing sieving algorithms asymptotically
output such a set (modulo sign). This statement is further supported by experimental results.
Finally, we discuss the applicability of P(L) in showing that sieving algorithms like the ones
described in [3, 24] can be used for tackling SVP, SIVP and computing the kissing number of
a lattice. Additionally we discuss the applicability of P(L) as preprocessing data in a CVPP

123

The irreducible vectors of a lattice 611

algorithm which we call “the tuple slicer". The tuple slicer can provide a time–memory
trade-off without the use of rerandomisations.

The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

1.2 Motivation–future work

We believe that the notion of irreducibility will motivate further research on the field of
lattices. In this work we focus only on pairwise irreducibility of vectors, even though a
definition of higher order irreducibility is also given. In particular, pairwise irreducibility
appears to have a close relation to lattice sieving algorithms. Thus, it could be that the set
P(L) can provide further insight on this area. An interesting question would be if the usage
of the set P(L) (under some heuristic assumptions on its size) enables the proof of an upper
bound on the time complexity of the GaussSieve [24]. Examining the properties and the
utility of higher order irreducibility is left for future research.

The implications of P(L) in cryptanalytic attacks could be an interesting topic to investi-
gate. The set P(L) is expected to be affected by an underlying structure in the latticeL . It can
thus be expected that structured lattices end up with a smaller set P(L) than “average-case"
lattices. Many of the modern lattice-based cryptosystems possess such underlying structures
and hence they could serve as interesting cases to examine from this point of view.

In Sect. 5.1 we argue that computing P(L) by “brute force" can take up to Õ(22n)
time. Therefore, this can serve as an upper bound. However, this bound may not be tight
as discussed in Sect. 5.2. In Sect. 5.2 modified sieving algorithms were utilised in order to
show how to compute P(L) asymptotically. But the question of how to compute it exactly or
approximately in practice remains open. Such a result would also imply the ability to compute
a subset of R(L) (of heuristically exponential size) without requiring the set R(L).

The set P(L) can be used as a tool in proving a behaviour of a lattice algorithm but could
also be used itself (e.g. as preprocessing data of a CVPP algorithm). In Sect. 6 we propose
the use of the “tuple slicer" in order to utilise the set P(L) in the CVPP framework. However
this algorithm introduces a new question, namely what size of tuples should be considered
during this algorithm. Figure 4 attempts to give some preliminary experimental evidence on
this problem. However, a theoretical analysis of this question is left for future work.

Appendix B provides some experimental evidence showing that the size of a set P(L)

could vary a lot in some cases. An “average-case" result implying that if the underlying lattice
is not “special" then the size of P(L) cannot vary a lot would be of interest. A potential tool
to reaching such a result could be lattice theta functions [12]. This is due to the fact that the
coefficients in a lattice’s theta function actually represent the number of lattice vectors of a
specific length. Therefore this property reveals the connection to the definition of P(L).
Outline. The rest of the paper is organised as follows. In Sect. 2 we introduce notation and
give some background about lattices. Section 3 includes some priorwork on the set of relevant
vectors. The definition of irreducible vectors is given in Sect. 4 along with the first results
regarding this new notion. In Sect. 5 we mention theoretical as well as experimental results
on computing a complete system of irreducible vectors. Section 6 provides some initial
arguments about the link between the new notions defined and the study of lattice algorithms
and problems.

123

612 E. Doulgerakis et al.

2 Preliminaries

To fix notation, let �B = {�b1, . . . , �bn} ⊂ R
n be a set of linearly independent vectors, which we

may also interpret as a matrix with columns �bi . The lattice generated by �B is defined asL =
L (�B):={�B�x : �x ∈ Z

n}. In this paperwedealwith full rank lattices unless indicated otherwise.
We assume that the reader is familiar with notions such as the volume Vol(L):=| det(�B)|,
the successive minima λi (L):=min{maxi ‖�xi‖ | �x1, . . . , �xi ∈ L are linearly independent},
in particular the first successive minimum λ1(L) = min�v∈L \{�0} ‖�v‖. We refer to [22] for
further details on these basic notions.

Definition 1 (First shell) Let L be a lattice. We define

S1(L):={�v ∈ L | ‖�v‖ = λ1(L)}. (1)

We call S1(L) the first shell of L .

The following two well known concepts will be of major importance for our work, so we
define them explicitly.

Definition 2 (Voronoi cell) The Voronoi cell V (L) of a full rank latticeL is the set of points
in R

n which are closer to the origin than to any other lattice point, i.e.

V (L):={�x ∈ R
n | ‖�x‖ ≤ ‖�x − �v‖ ∀�v ∈ L }. (2)

If it’s clear what L is, we may use V instead of V (L). Closely related to the Voronoi cell
of the lattice is the set of relevant vectors.

Definition 3 (Relevant vectors) LetL be a full rank lattice in R
n . The set of relevant vectors

R(L) is

R(L):={�r ∈ L \ {�0} | (�r + V) ∩ V = an (n − 1) − dimensional facet of V }. (3)

Let B(�x, r):={�y ∈ R
n | ‖�y − �x‖ ≤ r} denote the closed n-dimensional ball with center �x

and radius r . Finally we have the kissing number τn , defined as the maximum number of
equal n-dimensional spheres that can be made to touch another central sphere of the same
size without intersecting.

See [22] for an overview of the main hard lattice problems that we will consider in
this paper, namely the Shortest Vector Problem (SVP), determining the kissing number, the
Shortest Independent Vector Problem (SIVP), and the Closest Vector Problem (CVP) and its
Preprocessing variant (CVPP).

3 Previous work

In this section we give an overview of known results on the set of relevant vectors. This is
done for a matter of completeness but also in order to indicate what kind of results we would
like to obtain for the set of irreducible vectors which we will define later.

For �v ∈ L we define H(�v):={�x ∈ R
n | ‖�x‖ ≤ ‖�x − �v‖}, to relate the Voronoi cell of a

lattice to its relevant vectors.

Proposition 1 (Relevant vectors) LetL be a full rank lattice inR
n. The set of relevant vectors

R(L) is the minimal set L ⊂ L such that

V (L) =
⋂

�v∈L
H(�v). (4)

123

The irreducible vectors of a lattice 613

In order to get a more practical description of the relevant vectors the following theorem is
used.

Theorem 1 (Identifying relevant vectors [35]) Let L be a full rank lattice in R
n and �v ∈

L \ {�0}. Then �v ∈ R(L) if and only if �0 and �v are the only closest vectors of L to 1
2 �v.

This implies that

R(L) = {�v ∈ L \ {�0} | ‖1
2

�v − �x‖ > ‖1
2

�v‖ ∀�x ∈ L \ {�0, �v}} (5)

= {�v ∈ L \ {�0} | 〈�v, �x〉 < ‖�x‖2 ∀�x ∈ L \ {�0, �v}} (6)

Remark 1 It holds that �0 /∈ R(L). Also note that if �v ∈ R(L) then −�v ∈ R(L).

Remark 2 The condition 〈�v, �x〉 < ‖�x‖2 needs to be checked only for �x ∈ L \ {�0} such that
‖�x‖ < ‖�v‖, because otherwise it is trivially true.

For checking if a vector is relevant, the following lemma is useful.

Lemma 1 (Identifying non-relevant vectors [23]) Let L be a full rank lattice in R
n, and

�v ∈ L . If �v /∈ R(L) then there exists �r ∈ R(L) such that 〈�v, �r〉 ≥ ‖�r‖2.
Also a lower bound for the set R(L) can be obtained by the following trivial lemma.

Lemma 2 (All shortest vectors are relevant) Let L be a full rank lattice in R
n. It holds that

S1(L) ⊆ R(L).

Equality in the above lemma holds for a very special type of lattices called root lattices (see
[8, Chapter 4]).

Theorem 2 (Root lattices [29]) S1(L) = R(L) iff L is a root lattice.

The following theorem by Minkowski gives an upper bound on the size of R(L).

Theorem 3 (Upper bound on |R(L)| [25]) Let L be a full rank lattice in R
n. It holds that

|R(L)| ≤ 2(2n − 1).

Apart from an upper bound we can also obtain a lower bound on |R(L)|.
Remark 3 For the lattice Z

n it is true that |R(Zn)| = 2n (see [8]). As the set R(L) needs
to have n linearly independent vectors in order the volume of V (L) to be finite then 2n ≤
|R(L)| is a tight lower bound.
Proposition 2 (Volume of the Voronoi cell) Let L be a full rank lattice in R

n. It holds that
Vol(L) = Vol(V (L)).

Proposition 3 (Relevant vectors generate the lattice) LetL be a full rank lattice inR
n. There

exists a generating set �G of L such that �G ⊆ R(L).

Proof The Voronoi cell ofL implies a tiling of R
n . Thus, every vector in R

n can be reduced
to a vector in V (L) through reductions by elements of R(L). As �0 is the only lattice vector
in V (L) it follows that all lattice vectors are reduced to �0. Therefore, R(L) spans the entire
lattice. ��
So far we have mentioned a number of properties and definitions on the relevant vectors of
a lattice. Computing them is however a different matter. The following result is the current
state of the art on this.

Theorem 4 (Finding all relevant vectors [23]) There exists a deterministic Õ(22n)–time and
Õ(2n)–space algorithm which, given an n-rank lattice L with basis �B, outputs the set of
relevant vectors.

123

614 E. Doulgerakis et al.

4 Irreducibility of lattice vectors

4.1 The set of irreducible vectors

Inspired by number theoretic notions of (multiplicative) irreducibility, we introduce a similar
concept for lattices (additively structured).

Definition 4 (Irreducibility) Let L be a full rank lattice in R
n and �v ∈ L \ {�0}. The vector

�v is called k-irreducible iff � �v1, . . . , �vk ∈ L such that ‖�vi‖ < ‖�v‖ and �v1 + · · · + �vk = �v.
For the special case k = 2, �v will be just called irreducible.

Remark 4 The definition of k-irreducible vectors implies that if a vector is k-irreducible then
it is also (k − 1)-irreducible. This observation allows the construction of a chain of subsets
based on the notion of irreducibility.

In this work we are going to focus on the properties of 2-irreducibility. Further research on
the notion of k-irreducibility for k > 2 is left for future research.

Definition 5 (Set of irreducible vectors) Let L be a full rank lattice in R
n . We define

Irr(L):={�v ∈ L | �v is irreducible}. (7)

Remark 5 It holds that �0 /∈ Irr(L). Also, if �v ∈ Irr(L) then −�v ∈ Irr(L).

The above properties hold for the set of relevant vectors as well and this is not a coincidence
as we will see. First we show that this set is not empty, and indeed that it also contains vectors
achieving the first successive minimum.

Lemma 3 (Shortest vectors are irreducible) Let L be a full rank lattice in R
n. It holds that:

S1(L) ⊆ Irr(L). (8)

Proof Let �v ∈ S1(L). Then clearly �v �= �0.Assume that �v /∈ Irr(L), so there exist �v1, �v2 ∈ L
such that ‖�vi‖ < ‖�v‖ and �v1 + �v2 = �v. As �v ∈ S1(L) this implies that ‖�vi‖ < λ1(L) and
thus ‖�vi‖ = 0. Hence, we get �v1 = �v2 = �0, which contradicts �v �= �0. ��
Remark 6 It can be easily checked that Lemma 3 would still hold under the notion of k-
irreducibility for k > 2. Therefore we can conclude that k-irreducibility is not leading to a
trivially empty set of vectors for k > 2. One may expect that it will also include a lattice
basis.

We show that something similar occurs for the rest of the successive minima as well.

Definition 6 (Sublattice spanned by short vectors) Let L be a full rank lattice in R
n and

1 ≤ i ≤ n. We define Lλ to be the sublattice spanned by all the vectors in L with norm
strictly less than λ.

Proposition 4 (Identifying irreducible vectors) LetL be a full rank lattice inR
n, and �v ∈ L

satisfying ‖�v‖ = λi :=λi (L) for some 1 ≤ i ≤ n. If �v /∈ Lλi then �v is irreducible.

Proof It has been already proven in Lemma 3 that this is true for i = 1 so we can consider
i ≥ 2. Assume �v ∈ L such that ‖�v‖ = λi (L) for some 2 ≤ i ≤ n, �v /∈ Lλi and �v is not
irreducible. Then there exist �v1, �v2 ∈ L such that �v = �v1 + �v2 and ‖�v j‖ < ‖�v‖ for j = 1, 2.
Clearly �v j �= 0. As ‖�v j‖ < ‖�v‖ = λi (L) this implies that �v j ∈ Lλi for j = 1, 2. This
further implies that �v = �v1 + �v2 ∈ Lλi , contradiction. ��

123

The irreducible vectors of a lattice 615

Remark 7 Proposition 4 points out that a lattice vector achieving a successive minimum is
not necessarily irreducible. An enlightening example of such an occasion is the following.
Consider the lattice L = L (�B) generated by the matrix

�B =
⎛

⎝
3 0 0
0 4 0
0 0 10

⎞

⎠ . (9)

Then λ1(L) = 3, λ2(L) = 4 and λ3(L) = 10. The vector �v = (6, 8, 0) is such that
‖�v‖ = λ3(L) but �v is not irreducible as it can be written as a sum of shorter lattice vectors
i.e. �v = (6, 0, 0) + (0, 8, 0). The reason why �v fails to be irreducible is that it belongs to the
sublattice Lλ3 .

Corollary 1 (Irreducible vectors and successive minima) Let L be a full rank lattice in R
n.

For every i = 1, . . . , n there exists a vector �v ∈ Irr(L) such that ‖�v‖ = λi (L).

Proof By Proposition 4 it suffices to show that for every i = 1, . . . , n there exists a vector
�v ∈ L such that ‖�v‖ = λi (L) and �v /∈ Lλi . Assume that for every vector �v ∈ L such
that ‖�v‖ = λi (L) for some fixed 2 ≤ i ≤ n it holds that �v ∈ Lλi . For convenience we
define λ0(L) = 0. Let k bemin1≤ j≤i j such that λ j (L) = λi (L) and therefore λk−1(L) <

λk(L) = λi (L). Then Lλi has rank k − 1 as λk−1(L) < λk(L). If k − 1 = 0 then we are
done as this would imply �v = �0. If k − 1 ≥ 1 then �v belongs to the sublattice containing all
the shorter vectors than it,Lλi and this sublattice is of rank k − 1. Thus any choice of k − 1
vectors such that max{‖�v1‖, . . . , ‖�vk−1‖, ‖�v‖} = ‖�v‖ will result in a linearly dependent set.
Hence it cannot be that λk(L) = ‖�v‖, contradiction. ��
Apart from vectors reaching the successive minima, it can be shown that the set Irr(L)

contains a generating set of the lattice as well.

Proposition 5 (Irreducible vectors generate the lattice) Let L be a full rank lattice in R
n.

There exists a generating set �G of L such that �G ⊆ Irr(L).

Proof Wewill prove that the set Irr(L) spans the lattice and therefore it includes a generating
set. Let �v ∈ L . If � �v1, �v2 ∈ L with ‖�vi‖ < ‖�v‖ such that �v1 + �v2 = �v then �v ∈ Irr(L). If
there exist such �vi then write �v = �v1 + �v2. If the �vi ∈ Irr(L) then we are done. If not then
further reduce the vectors �vi such that they are written as a sum of two strictly shorter vectors.
As in each step the length of the vectors strictly reduces and there is a finite number of lattice
points inB(�0, ‖�v‖), after a finite number of steps we will reach a state where �v = ∑ �pi and
�pi ∈ Irr(L). This concludes the proof. ��
Given the result of Proposition 5 the following conjecture can be formulated.

Conjecture 1 Let L be a full rank lattice in R
n . The set Irr(L) contains a basis of L .1

Our next goal is to derive some more explicit descriptions of the set Irr(L).

Lemma 4 (Characterizing the set of irreducible vectors) Let L be a full rank lattice in R
n.

It holds that

Irr(L) = {�v ∈ L \ {�0} | ∀�x ∈ L with ‖�x‖ < ‖�v‖ it holds that ‖�v − �x‖ ≥ ‖�v‖} (10)

= {�v ∈ L \ {�0} | ∀�x ∈ L with ‖�x‖ < ‖�v‖ it holds that 2〈�v, �x〉 ≤ ‖�x‖2}. (11)

1 Conjecture 1 is not used in order to derive any conclusions in this work.

123

616 E. Doulgerakis et al.

Proof Let A = {�v ∈ L \ {�0} | ∀�x ∈ L with ‖�x‖ < ‖�v‖ it holds that ‖�v − �x‖ ≥ ‖�v‖}. Let
�p ∈ Irr(L) and �v ∈ L with ‖�v‖ < ‖ �p‖. Then as �p ∈ Irr(L)we get ‖ �p−�v‖ ≥ ‖ �p‖ because
otherwise �p would have a decomposition into two shorter vectors, thus �p ∈ A. This gives
Irr(L) ⊆ A. Next, let �v ∈ A, and write �v = �v1+�v2 for some �v1, �v2 ∈ L . If ‖�v1‖ < ‖�v‖ then
as �v ∈ A we get ‖�v− �v1‖ ≥ ‖�v‖ and hence we do not get a decomposition of �v in two shorter
vectors. If ‖�v1‖ ≥ ‖�v‖ this is trivially true. Thus �v ∈ Irr(L). This implies equality (10) and
equality (11) is an immediate consequence. This concludes the proof. ��
Even though this lemma is rather straightforward it implies an interesting result for the set
Irr(L).

Proposition 6 (Irreducible vectors are relevant) Let L be a full rank lattice in R
n. Every

irreducible vector of L is also a relevant vector of L , hence:

Irr(L) ⊆ R(L). (12)

Proof As we already saw by Theorem 1, we can write the set R(L) as R(L) = {�v ∈
L \ {�0} | 〈�v, �x〉 < ‖�x‖2 ∀�x ∈ L \ {�0, �v}} and we can further improve that description to

R(L) = {�v ∈ L \ {�0} | ∀�x ∈ L \ {�0}with ‖�x‖ < ‖�v‖ it holds that 〈�v, �x〉 < ‖�x‖2}.
For the set of irreducible vectors we got from Lemma 4 that

Irr(L) = {�v ∈ L \ {�0} | ∀�x ∈ L with ‖�x‖ < ‖�v‖ it holds that 2〈�v, �x〉 ≤ ‖�x‖2}.
Thus by carefully checking these two descriptions for the sets R(L) and Irr(L) it suffices to
prove that if �v ∈ L \ {�0} and �x ∈ L \ {�0} with ‖�x‖ < ‖�v‖ then 2〈�v, �x〉 ≤ ‖�x‖2 ⇒ 〈�v, �x〉 <

‖�x‖2.
If 〈�v, �x〉 ≤ 0 this is trivially true as �x �= �0. Also if 〈�v, �x〉 > 0 then 〈�v, �x〉 < 2〈�v, �x〉 and the
result follows. ��
Remark 8 Combining the result of Lemma 3 and Proposition 6 we get that S1(L) ⊆
Irr(L) ⊆ R(L). Therefore Irr(L) is finite.

We already saw that for the case of root lattices it holds that S1(L) = R(L). This implies
that for the root lattices it also holds that S1(L) = Irr(L) = R(L). Thus, the sets S1(L)

and R(L) are tight inclusions of Irr(L).
We expect that in general though it will hold S1(L) � Irr(L) � R(L). A question that

might be of interest is when and if S1(L) = Irr(L) � R(L) or S1(L) � Irr(L) = R(L)

are possible.
We believe that lattices satisfying either of these properties will be very special and

highly symmetric. The reason why we believe this, is that some already well known very
special families of lattices satisfy these properties. Namely, in Appendix A we will prove the
following two theorems.

Theorem 5 (The root lattices D∗
n) Let n ∈ N with n ≥ 5. Then for the lattice D∗

n it holds
that S1(D∗

n) � Irr(D∗
n) = R(D∗

n). Furthermore | Irr(D∗
n)| = 2n + 2n.

Theorem 6 (The root lattices A∗
n) Let n ∈ N with n ≥ 3. Then for the lattice A∗

n it holds that
S1(A∗

n) = Irr(A∗
n) � R(A∗

n). Furthermore | Irr(A∗
n)| = 2(n + 1).

Additionally the famous Leech lattice Λ24 [8, p. 131] satisfies the property S1(Λ24) =
Irr(Λ24) � R(Λ24). We will actually be able to prove in the next subsection that for every
lattice that reaches the kissing number τn it holds that S1(L) = Irr(L).

123

The irreducible vectors of a lattice 617

4.2 A complete system of irreducible vectors

The special family of lattices D∗
n indicates that the set Irr(L) can become as big as R(L)

and actually grow as much in size as 2n . However, our goal is to obtain a subset of Irr(L)

which is closely related to it but also provably smaller than 2n .

Definition 7 (Equivalence relation on Irr(L)) Let L be a full rank lattice in R
n . We define

an equivalence relation on Irr(L) in the following way.

Let �v1, �v2 ∈ Irr(L) then �v1 ∼ �v2 iff ‖�v1‖ = ‖�v2‖. (13)

From each equivalence class we will consider at least two representatives. We choose them
in the following way and we will explain afterwards why.

Definition 8 (Representative set of equivalence classes) For each equivalence class S =
{�v1, . . . , �vm} of Irr(L) according to (13) we choose a subset S̃ ⊆ S such that the following
two conditions hold:

(i) If �v ∈ S̃ then also −�v ∈ S̃.
(ii) S̃ is a maximal subset of S such that for every pair of vectors �v1, �v2 ∈ S̃ with �v2 �= −�v1

it holds that ‖�v1 + �v2‖ ≥ ‖�v1‖.
The main motivation is that the new set of vectors which will be built under these rules will
include irreducible vectors whose pairwise angle is “big” as we will prove later. However,
there are several details of this definition which should be clarified. First of all, from the
definition it follows that for an equivalence class we consider at least two representatives,
which is not usually done. The reasons for this are the following.

Initially, for the subset of Irr(L) which we are trying to define, we would like it to inherit
the property of Irr(L) that if �v belongs to it then also −�v belongs to it. A second, more
important reason is that choosing only one representative per equivalence class could lead to
a set that does not even span the lattice (for example in the case of root lattices, or whenever
S1(L) = Irr(L)).

The second condition of the definition implies that for every element �v of a class S which
is not included in S̃ there exists a vector �̃v ∈ L such that ‖�v − �̃v‖ < ‖�v‖. From this point
of view the remaining elements of a class S which are not included in S̃ can be generated by
the elements of S̃ plus some strictly shorter vector. In order to ensure that this holds we take
S̃ to be maximal. Also by taking S̃ to be maximal we make sure that the set S̃ contains as
much information about the class as possible.

Remark 9 Choosing a representative set S̃ of a class S can be translated into a graph problem.
We define a graph where the set of vertices is the equivalence class, and there exists an edge
between two vertices iff the difference of the corresponding vectors is strictly shorter than
both of them. Then choosing a set of representatives translates to finding a maximal subset of
vertices that are not adjacent, while keeping the symmetry about �0. In terms of graph theory
this can be phrased as finding a special independent set of the graph. This idea is further
analysed in Appendix B.

Definition 9 (Complete system of irreducible vectors) LetL be a full rank lattice in R
n . We

define a set P ⊆ Irr(L) to be a complete system of irreducible vectors of L if it is of the
form:

P =
⋃

S∈Irr(L)/∼
S̃. (14)

123

618 E. Doulgerakis et al.

Remark 10 Belowwe denote by P(L) any one of the complete systems of irreducible vectors
of L . It is clear that there always exists such a set P(L) and it is not necessarily unique. In
fact, even the size of P(L) can vary.

Remark 11 By the fact that for each class S of Irr(L)/∼ we have S̃ ⊆ S we get that
P(L) ⊆ Irr(L). Also the class of Irr(L)/∼ containing all the shortest vectors i.e. S1(L)

will be entirely included in P(L) as any pairwise sum of vectors (for non-trivial pairs) in
this class will be longer or equally long by definition. Thus we can conclude that

S1(L) ⊆ P(L) ⊆ Irr(L) ⊆ R(L).

We will also give an example in order to illustrate this definition.

Example 1 Let L = L (�B) be the lattice generated by the columns of the matrix

�B =

⎛

⎜⎜⎜⎜⎝

0 0 0 −1 3
−1 −1 0 1 0
0 0 −2 1 0
1 −1 0 0 1
0 1 0 2 1

⎞

⎟⎟⎟⎟⎠
.

We find the sets S1(L),P(L), Irr(L),R(L).
In fact �B is an LLL-reduced basis [20] of the lattice. By means of enumeration one could
verify that S1(L) = {±(0,−1, 0, 1, 0)}. By running an algorithm that computes the set of
relevant vectors like [34] in SAGE [9] we get

R(L) = { ± (0,−1, 0, 1, 0),

± (0,−1, 0,−1, 1),

± (0, 0, 2, 0, 0),

± (−1, 0,−1, 1, 2),±(−1, 0, 1, 1, 2),±(−1, 1,−1, 0, 2),±(−1, 1, 1, 0, 2),

± (−1, 1,−1, 2, 1),±(−1, 1, 1, 2, 1),±(−1, 2,−1, 1, 1),±(−1, 2, 1, 1, 1),

± (3, 1, 0, 0, 1),±(3, 0, 0, 1, 1),

± (2, 1,−1, 1, 3),±(2, 1, 1, 1, 3),

± (2, 2,−1, 2, 2),±(2, 2, 1, 2, 2)}.
(each line has vectors of equal norm). The next step is to find the set of irreducible vectors
Irr(L). We consider the subset of R(L) containing relevant vectors which cannot be written
as a sum of two strictly shorter vectors (by cross-checking with the set of relevant vectors).
It turns out that this set just contains all the vectors achieving the successive minima thus it
must be that this is Irr(L).

Irr(L) = { ± (0,−1, 0, 1, 0),

± (0,−1, 0,−1, 1),

± (0, 0, 2, 0, 0),

± (−1, 0,−1, 1, 2),±(−1, 0, 1, 1, 2),±(−1, 1,−1, 0, 2),±(−1, 1, 1, 0, 2),

± (3, 1, 0, 0, 1),±(3, 0, 0, 1, 1)}
The set Irr(L) contains 5 equivalence classes according to the equivalence relation (13). We
denote them by Ci for i = 1, . . . , 5. As we can see for the first three of them, computing
a set of representatives C̃1, C̃2, C̃3 is trivial as in these cases it will be C̃1 = C1, C̃2 = C2

123

The irreducible vectors of a lattice 619

Fig. 1 The graph of the class C5

Fig. 2 The graph of the class C4

and C̃3 = C3. The cases of C4 and C5 are more interesting. We start by examining C5 as
it contains less vectors. We set �v1 = (3, 1, 0, 0, 1) and �v2 = (3, 0, 0, 1, 1). Next we draw
the corresponding graph with vertices the ±�v1,±�v2 and edges if the pairwise differences are
strictly shorter than ‖�v1‖.

The graph in Fig. 1 shows that we can take either C̃5 = {±�v1} or C̃5 = {±�v2}. We are
now going to do the same for the class C4. We set �v1 = (−1, 0,−1, 1, 2),
�v2 = (−1, 0, 1, 1, 2), �v3 = (−1, 1,−1, 0, 2), �v4 = (−1, 1, 1, 0, 2).

The graph in Fig. 2 shows that we can take C̃4 = {±�vi } for any i = 1, 2, 3, 4. Therefore
one choice for the set P(L) is the following.

P(L) = { ± (0,−1, 0, 1, 0),

± (0,−1, 0,−1, 1),

± (0, 0, 2, 0, 0),

± (−1, 0,−1, 1, 2),

± (3, 1, 0, 0, 1)}
Remark 12 The above example should not mislead the reader to the assumption that the
corresponding graph of each equivalence class will always have at least two connected com-
ponents. It can happen that the graph of a class is connected. One such example can be derived
from the family of lattices examined in Theorem 10.

One property of the set Irr(L) was that it includes a generating set of L . We can show that
P(L) inherits that property.

Proposition 7 (Complete system generates the lattice) Let L be a full rank lattice in R
n.

Then for every P(L) ⊆ Irr(L) there exists a generating set �G of L such that �G ⊆ P(L).

Proof As in the proof of Proposition 5 for the set Irr(L) we will prove that the set P(L)

spans the lattice and therefore it includes a generating set. However, in this case the proof
is more technical. Let P(L) be a complete system of irreducible vectors of L as defined
in (14). We have already shown that Irr(L) is finite as Irr(L) ⊆ R(L) and thus we can
define t :=| Irr(L)/∼|. We further set Ci for i = 1, . . . , t to be the equivalence classes in
Irr(L)/∼. Hence, the set P(L) can be written as P(L) = ∪t

i=1C̃i . Each equivalence class

123

620 E. Doulgerakis et al.

Ci contains all irreducible vectors of a specific length μi , and we can assume that we have
ordered the Ci according to increasing μi . We define the following sequence of subsets of
Irr(L):

Ai :=
⎛

⎝
i−1⋃

j=1

Ci

⎞

⎠ ∪
⎛

⎝
t⋃

j=i

C̃i

⎞

⎠ for i = 1, . . . , t + 1.

As for every i it holds that C̃i ⊆ Ci then it follows that Ai (L) ⊆ Ai+1(L) and thus

P(L) = A1 ⊆ A2 ⊆ · · · ⊆ At ⊆ At+1 = Irr(L).

We will prove by induction that each term of this sequence of sets spans the lattice L .
Base case i = t + 1 The set Irr(L) = At+1 spans the lattice as it was already shown in
Proposition 5.
Induction hypothesis Assume that it holds for some i = k, i.e. Ak spans the lattice for some
k ∈ {2, . . . , t + 1}.
Induction step Prove that Ak−1 spans the lattice. By the definition of the sets Ai we can
conclude that Ak−1 = Ak \ (Ck−1 \ C̃k−1). By the induction hypothesis it suffices to show
that the vectors inCk−1 \C̃k−1 can be generated by the vectors in Ak−1. Let �v ∈ Ck−1 \C̃k−1.
As �v ∈ Ck−1 but �v /∈ C̃k−1 this implies that there exists a �̃v ∈ C̃k−1 such that ‖�v+ �̃v‖ < ‖�v‖.
This holds because C̃k−1 is maximal by definition. We set �w = �v + �̃v. Furthermore as
‖ �w‖ < ‖�v‖ then �w is either irreducible or can be written as a sum of irreducible vectors
shorter than ‖�v‖. We use the ordering of the Ci . Thus by its definition the set Ak−1 contains
all the vectors in Irr(L) which are shorter than ‖�v‖. Hence as, ‖ �w‖ < ‖�v‖ this implies that
�w can be generated by the vectors in Ak−1. So, concluding we wrote �v as �v = �w − �̃v where
both �w and �̃v belong to Ak−1. This concludes the proof. ��

For �v1, �v2 ∈ L we denote by ϑ(�v1, �v2) the angle formed by �v1, �v2.

Proposition 8 (Properties of complete system)LetL be a full rank lattice inR
n, and �p1, �p2 ∈

P(L) such that �p1 �= ± �p2. Then it holds that
(i) min{‖ �p1 ± �p2‖} ≥ max{‖ �p1‖, ‖ �p2‖} and
(ii) | cosϑ(�p1, �p2)| ≤ 1

2 .

Proof (Part i) By Lemma 4 we have that

Irr(L) = {�v ∈ L \ {�0} | ∀�x ∈ L with ‖�x‖ < ‖�v‖ it holds that ‖�v − �x‖ ≥ ‖�v‖}.
Let �p1, �p2 ∈ P(L) such that �p1 �= ± �p2. Without loss of generality we assume that ‖ �p2‖ ≤
‖ �p1‖. Initially we will prove that ‖ �p1 + �p2‖ ≥ max{‖ �p1‖, ‖ �p2‖}.
Case 1 If ‖ �p2‖ < ‖ �p1‖. Then �p1, �p2 ∈ Irr(L) and they are not in the same class. Using the
description of Lemma 4 with �v = �p1 ∈ Irr(L) and �x = − �p2 we get ‖ �p1 + �p2‖ ≥ ‖ �p1‖.
But as ‖ �p2‖ < ‖ �p1‖ we can conclude that ‖ �p1 + �p2‖ ≥ max{‖ �p1‖, ‖ �p2‖}.
Case 2 If ‖ �p2‖ = ‖ �p1‖. Then �p1, �p2 ∈ Irr(L) and they are in the same class. Let S ∈
Irr(L)/∼ such that �p1, �p2 ∈ S. Then as �p1, �p2 ∈ P(L)we get that �p1, �p2 belong to the same
S̃. Thus, by the definition of S̃ we can again conclude that ‖ �p1 + �p2‖ ≥ max{‖ �p1‖, ‖ �p2‖}.
The result follows from the fact that for every �v ∈ P(L) also −�v ∈ P(L).
(Part ii) Let �p1, �p2 ∈ P(L) such that �p1 �= ± �p2. Without loss of generality we assume
that ‖ �p2‖ ≤ ‖ �p1‖. By part (i) we get that ‖ �p1 ± �p2‖ ≥ ‖ �p1‖. This in turn implies that
2|〈 �p1, �p2〉| ≤ ‖ �p2‖2. Hence,

123

The irreducible vectors of a lattice 621

| cosϑ(�p1, �p2)| = |〈 �p1, �p2〉|
‖ �p1‖‖ �p2‖ ≤ |〈 �p1, �p2〉|

‖ �p2‖2
≤ 1

2
.

��
We will use the following theorem in order to bound |P(L)|.
Theorem 7 (Upper bound on kissing constant [18]) Let A(n, φ0) be the maximal size of any
set C of points inR

n such that the angle between any two distinct vectors �vi , �v j ∈ C (denoted
φ�vi ,�v j) is at least φ0. If 0 < φ0 < 63◦, then for all sufficiently large n, A(n, φ0) = 2cn for
some

c ≤ −1

2
log2(1 − cos(φ0)) − 0.099. (15)

Proposition 9 (Upper bound on |P(L)|) Let L be a full rank lattice in R
n. It holds that

|P(L)| < 20.402n.

Proof By using Theorem 7 with φ0 = π
3 (which can be deduced from Proposition 8) we get

that |P(L)| = 2cn with c ≤ − 1
2 log2(1 − cos(π

3)) − 0.099. Evaluating the right hand side
of this inequality implies the result. ��
Proposition 8 states the same condition that is also satisfied by the output of the GaussSieve
algorithm described in [24]. As in the paper describing theGaussSieve algorithm [24] the size
of P(L) can actually be bounded by the kissing number τn . Following the same arguments
as in [24] we can argue that in practice we expect P(L) ≈ 20.21n which is a factor 2 smaller
in the exponent than the provable bound |P(L)| < 20.402n .

A result that might be of interest in the search for lattices reaching the kissing number is
the following.

Theorem 8 (Lattices achieving the kissing number) LetL be a full rank lattice in R
n. If the

lattice L is such that it reaches the kissing number τn then S1(L) = Irr(L).

Proof As the lattice L reaches the kissing number τn , that implies |S1(L)| = τn . By
Proposition 8 we can conclude that the angle between any two vectors in P(L) is at least
π/3. This is also the minimal possible angle between the centers of two equal n-dimensional
spheres which touch another central sphere of the same size without intersecting. Hence
|P(L)| ≤ τn . Combining this with S1(L) ⊆ P(L) and |S1(L)| = τn implies that P(L) =
S1(L). As the set P(L) was build from classes of Irr(L) and we showed that it actually
contains only vectors of norm λ1(L) that means that there is only one class in Irr(L)/∼,
namely the class of S1(L). But in this class there is no pair of vectors that adds to a shorter
one, thus the whole class is included in P(L). That implies that Irr(L) = P(L) = S1(L).

��
Remark 13 A similar result for the set R(L) is not possible. For example for the root lattice
E8 reaching the kissing number in dimension 8 it holds that S1(E8) = R(E8) but for the
Leech lattice Λ24 it holds that S1(Λ24) � R(Λ24) (see [8]).

5 Computation of the set P(L)

In the previous sections we investigated some properties of the set P(L) and its relation to
the set R(L). Ultimately we aim for using it in the study of lattice problems instead of R(L)

123

622 E. Doulgerakis et al.

due to its provably smaller cardinality (see Sect. 6). However, in order to actually benefit from
this replacement an algorithm that computes P(L) without using the set R(L) is needed.
The goal of this section is to examine ways of computing the set P(L).

5.1 The“brute force” approach

If the set Irr(L) is given then the set P(L) can be computed by means of a graph-based
technique already described inRemark 9 and further analysed inAppendixB. Thus, it suffices
to describe an algorithm which computes the set Irr(L). The naive approach is to use the
fact that Irr(L) ⊆ R(L). Hence, as a first step one can run the algorithm described in [23]
in order to get the set R(L). Then having a superset of Irr(L) it suffices to remove all the
reducible vectors from it. This can be done by iterating through R(L) and checking for
each �r ∈ R(L) if there exists a �v ∈ R(L) such that ‖�v‖ < ‖�r‖ and ‖�r − �v‖ < ‖�r‖. If
�r ∈ Irr(L) then by definition there will not exist a vector �v ∈ L such that ‖�v‖ < ‖�r‖ and
‖�r − �v‖ < ‖�r‖ and thus the algorithm will not discard any of the irreducible vectors. If the
vector �r is reducible then we need the following heuristic assumption.

Assumption 1 (Witness of reducibility) Let L be a full rank lattice in R
n with Irr(L) �=

R(L). If �r ∈ R(L) \ Irr(L) then ∃�v ∈ R(L) such that ‖�v‖ < ‖�r‖ and ‖�r − �v‖ < ‖�r‖.
Heuristic assumption 1 can be considered as the analogue of Lemma 1 for the set Irr(L).
Lemma 1 guaranteed that for every non-relevant vector there would exist a relevant vector
acting as a “witness” of “non-relevancy”. Heuristic assumption 1 speculates that for every
reducible relevant vector there exists a relevant vector acting as a “witness” of reducibil-
ity. This claim can be further supported by the heuristic expectation for the set R(L) to
include most of the “short” lattice vectors. Some experimental support can be derived for
low dimensional lattices from Table 1 and Fig. 3(a).

Remark 14 Under Heuristic assumption 1 and the result of [23] on computing the set R(L)

we can conclude that computing the set Irr(L) by “brute-force" can take up to Õ(22n)–time
and Õ(2n)–space. This complexity can serve as an upper bound on the computation of the
set Irr(L). Combining this observation with the discussion in Appendix B can give an upper
bound in the complexity of computing P(L). Namely, for lattices which are not extremely
structured (i.e. maxS∈Irr(L)/∼ |S| = poly(n)) we can conclude that computing P(L) from
Irr(L) can take O(poly(n)| Irr(L)|) time. Therefore the computation of Irr(L) dominates
the time complexity, leading to an overall upper bound for P(L) of Õ(22n)–time.

However the approach in the next section could offer a better performance.

5.2 Using the GaussSieve/MinkowskiSieve algorithms

As it was already mentioned in Sect. 4.2, it is expected that the output of the GaussSieve
algorithm [24]will be closely related to a set P(L). This expectationwasmotivated by the fact
that both sets, P(L) and the output of the GaussSieve, possess the propertymin{‖�v1±�v2‖} ≥
max{‖�v1‖, ‖�v2‖} for any pair of �v1 �= ±�v2 in the set. At this point it should be clarified that
for our purposes we will consider a slightly modified version of the GaussSieve algorithm
which will be described here.2

For our purposes we will use the GaussSieve algorithm 5.2 but with the modified version
of the GaussReduce function 2. In this way the following conditions are met.

2 This version is the one used in [33] as well.

123

The irreducible vectors of a lattice 623

Algorithm 1 The GaussSieve algorithm as described in [24]

Require: A basis �B of a lattice L (�B) and a c > 0.
Ensure: A list L ⊂ L s.t. min{‖�v1 ± �v2‖} ≥ max{‖�v1‖, ‖�v2‖} for all �v1, �v2 ∈ L .

function GaussSieve(�B, c)
L ← {�0}, S ← {}, K ← 0
while K < c do

if S is not empty then
�vnew ← S.pop()

else
�vnew ← SampleGaussian(�B)

end if
�vnew ← GaussReduce(�vnew, L, S)
if �vnew = �0 then

K ← K + 1
else

L ← L ∪ {�vnew}
end if

end while
end function

function GaussReduce(�p, L, S)
while ∃�vi ∈ L : ‖�vi‖ ≤ ‖ �p‖

∧ ‖ �p − �vi‖ ≤ ‖ �p‖ do
�p ← �p − �vi

end while
while ∃�vi ∈ L : ‖�vi‖ > ‖ �p‖

∧ ‖�vi − �p‖ ≤ ‖�vi‖ do
L ← L \ {�vi }
S.push(�vi − �p)

end while
return �p

end function

Algorithm 2 The modified GaussReduce function
1: function PrimeGaussReduce(�p, L, S)
2: while ∃�vi ∈ L : ‖�vi‖ ≤ ‖ �p‖ ∧ ‖ �p ± �vi‖ < ‖ �p‖ do
3: �p ← �p ± �vi
4: end while
5: while ∃�vi ∈ L : ‖�vi‖ > ‖ �p‖ ∧ ‖�vi ± �p‖ < ‖�vi‖ do
6: L ← L \ {�vi }
7: S.push(�vi ± �p)
8: end while
9: return �p
10: end function

(i) Any irreducible vector which has been added to the GaussSieve list L will never be
removed from it.

(ii) Any irreducible vector encountered by the algorithm will be added to L provided that it
can extend its class representative set already in L .

Lemma 5 (Modified GaussSieve algorithm) The GaussSieve algorithm 5.2 equipped with
the function PrimeGaussReduce (Algorithm 2) satisfies both properties (i) and (ii).

Proof (Property i) The only way for a vector �vi ∈ L to be removed from the list L is by
entering the while loop in line 5 of the PrimeGaussReduce function. Let �vi ∈ L and also
�vi ∈ Irr(L). In order for the algorithm to remove �vi from L it should encounter another
vector �p such that ‖�vi‖ > ‖ �p‖ and ‖�vi − �p‖ < ‖�vi‖ or ‖�vi‖ > ‖− �p‖ and ‖�vi + �p‖ < ‖�vi‖
which contradicts the irreducibility of �v.
(Property ii) Assume that the function PrimeGaussReduce is called and in some iteration
of the while loop in line 2, �p becomes such that �p ∈ Irr(L). In order for �p to not be
added in L this would mean that �p could be further modified by the while loop in line 2.
Thus the algorithm should encounter another vector �vi ∈ L such that ‖�vi‖ ≤ ‖ �p‖ and
‖ �p± �vi‖ < ‖ �p‖. The case where ‖�vi‖ < ‖ �p‖ and ‖ �p± �vi‖ < ‖ �p‖ violates the irreducibility
of �p and thus can be disregarded. This leaves only one possible case, namely ‖�vi‖ = ‖ �p‖
and ‖ �p ± �vi‖ < ‖ �p‖. This condition implies that �vi and �p belong to the same equivalence

123

624 E. Doulgerakis et al.

class and they are adjacent. Therefore this pair of vectors cannot belong to any set P(L) of
L . Hence �p should not be included in L anyway and the algorithm correctly further reduces
it. ��
Remark 15 If the PrimeGaussReduce function in line 5 was the same as in the original
GaussReduce, then the algorithm could encounter an instance where it would enter the loop
with ‖�vi‖ > ‖ �p‖ , ‖�vi − �p‖ = ‖�vi‖ and �vi , �vi − �p ∈ Irr(L). This could be possible if an
equivalence class in Irr(L)was not trivial. In this case the algorithmwould remove the vector
�vi from the list and add its equivalent �vi − �p to S. As a result for these non-trivial classes the
algorithm could behave in a bad way by repetitively removing and adding representatives of
the same class.

Remark 16 If the PrimeGaussReduce function in line 2 was the same as in the original
GaussReduce, then the algorithm could encounter an instance where it would enter the loop
with ‖�vi‖ ≤ ‖ �p‖ , ‖ �p−�vi‖ = ‖ �p‖ and �p, �p−�vi ∈ Irr(L). Thus, �p and �p−�vi are equivalent.
In case ‖�vi‖ < ‖ �p‖ then �p and �p − �vi are also adjacent in the class graph and therefore in
this case the algorithm would cycle through the adjacent vectors of �p. Therefore there is no
need to perform a reduction in this case. In case ‖�vi‖ = ‖ �p‖ then all three �p, �vi , �p − �vi are
equivalent but not adjacent. Hence in this case the algorithm does not make any progress by
replacing �p by �p − �vi . Thus, there is no need to perform a reduction in this case as well. 3

We consider the GaussSieve algorithm 5.2 equipped with the PrimeGaussReduce function
(Algorithm 2). As stated in the description of GaussSieve algorithm 5.2, it terminates after
reaching a number of c “collisions” (i.e. reductions to the zero vector). If for one run of the
algorithm we let c tend to infinity then its list L will converge to a specific list of vectors
as output. We denote by GaussSieve(L) such a list of vectors created by GaussSieve and
possessing the property that it cannot be further modified by the algorithm. In the sequel,
whenwewill refer to the convergence of the output of a sieving algorithm, it will be according
to this notion of convergence.

In order to relate the sets GaussSieve(L) and P(L) we give the following definition.

Definition 10 (Partitioning P(L) by sign) LetL be a full rank lattice inR
n . Given a P(L) ⊆

Irr(L) we define P+(L) and P−(L) to be a partition of P(L) according to sign.

In other words, we take for P+(L) some subset of P(L) such that of each pair ±�v ∈
P+(L) exactly one is in P+(L). Of course, there are many choices for P+(L) and P−(L),
any one will do.

Even though the output of GaussSieve converges to a set which is maximal in L under
the property min{‖�v1 ± �v2‖} ≥ max{‖�v1‖, ‖�v2‖}, the same is not true in general for the
set P+(L) as shown by experiments (Table 1). In particular, we can conclude by Lemma 5
that if we allow this modified version of the GaussSieve to run long enough i.e. it samples
“enough" vectors, then the output will converge to a set GaussSieve(L), which will contain
a P+(L).

Hence we cannot claim that the output of GaussSieve converges to a set P+(L) but
only to a superset of it. The fact that a P+(L) is not maximal in L under the property
min{‖�v1±�v2‖} ≥ max{‖�v1‖, ‖�v2‖} implies the existence of vectors which are not irreducible
but they also cannot be reduced by any of the vectors in P(L).

3 However, as �p − �vi is not adjacent to both �p and �vi an option could be to move �p − �vi to the stack S for
further consideration.

123

The irreducible vectors of a lattice 625

The definition belowof the set P2(L)will help us in bounding the output of theGaussSieve
algorithm. Also, the definition of the sets Pk(L) for k > 2 will help us in bounding the
output of modified versions of “higher" sieving algorithms like the Triple and Quadruple
MinkowskiSieve, described in [3].

Definition 11 (Pairwise irreducible system) Let L be a full rank lattice in R
n . Given a

P(L) ⊆ Irr(L) we define

P2(L):={�v ∈ L | � �p ∈ P(L)with ‖ �p‖ < ‖�v‖ and ‖�v − �p‖ < ‖�v‖}.
A first remark on this definition is that as P(L) ⊆ L also P(L) ⊆ P2(L). The output of the
(modified) GaussSieve converges to a set GaussSieve(L) including a set P+(L). Therefore,
every �v ∈ GaussSieve(L) cannot be reduced by any �p ∈ P+(L) and as GaussSieve(L) ⊆
L we can conclude that GaussSieve(L) can be bounded as follows:

P+(L) ⊆ GaussSieve(L) ⊆ P2(L) (16)

Under this set inequality GaussSieve(L) can be viewed in the following way. A set
GaussSieve(L) can be considered as the closure of a P+(L) in P2(L) under the property
of Gauss-reduction. In more detail GaussSieve(L) can be viewed as the minimal (according
to included vector norms) subset of a P2(L) including P+(L) and being a maximal subset
of P2(L) with the property of Gauss-reduction (i.e. min{‖�v1 ± �v2‖} ≥ max{‖�v1‖, ‖�v2‖}).
Remark 17 It is unclear if the set P2(L) is a finite or an infinite set.

Definition 12 (k-wise irreducible system) LetL be a full rank lattice in R
n and k ∈ N with

k ≥ 2. Given a P(L) ⊆ Irr(L) we define

Pk+1(L):={�v ∈ Pk(L) | � �p ∈ P(k)(L)with ‖ �p‖ < ‖�v‖ and ‖�v − �p‖ < ‖�v‖}
where P(k)(L) is defined as

�k/2�⋃

i=1

{�v1 + �v2 | �v1 ∈ P(i)(L), �v2 ∈ P(k−i)(L) and ‖�v j‖ < ‖�v1 + �v2‖,

‖�vl‖ ≤ ‖�v1 + �v2‖where j, l ∈ {1, 2}}

and P(1)(L):=P(L).

Lemma 6 (Relating k-wise irreducible systems) LetL be a full rank lattice in R
n and P(L)

be a subset of Irr(L). Then for the sequence Pk(L) given in Definition 12 it holds that

(i) Pk+1(L) ⊆ Pk(L) for every k ≥ 2.
(ii) limk→∞ Pk(L) = Irr(L).

So, in one line:

P2(L) ⊇ . . . ⊇ Pk(L) ⊇ Pk+1(L) ⊇ . . . ⊇ Irr(L).

Proof First of all, as we chose a random but fixed P(L) ⊆ Irr(L) the sets Pk(L) are
well-defined. Part (i) of the lemma is an immediate consequence of the definition of Pk(L).
Initiallywe show that Irr(L) ⊆ Pk(L) for every k ≥ 2. This follows directly by the definition
of Pk(L) and the fact that P(k)(L) ⊆ L . By the (recursive) definition of Pk(L) it follows
that it includes all vectors �v ∈ L such that they can not be reduced by any shorter vector in
∪k−1
i=1 P

(i)(L). Thus for part (ii) of the lemma it suffices to show that limk→∞ ∪k
i=1 P

(i)(L) =

123

626 E. Doulgerakis et al.

L . As P(i)(L) ⊆ L for every i ≥ 1 it follows that limk→∞ ∪k
i=1 P

(i)(L) ⊆ L . It is only
left proving the converse inequality. Let �v ∈ L , it suffices to show that ∃k ≥ 1 such that
�v ∈ P(k)(L).

A vector �v ∈ L can be repeatedly reduced as in the proof of Proposition 5 until it is written
as a sum �v = ∑l

i=1 �pi of shorter vectors �pi ∈ Irr(L) for some l ≥ 1. This decomposition
satisfies the recursive condition implied by the definition of the P(k)(L). If all the vectors
�pi ∈ Irr(L) actually belong to P(L) then �v ∈ P(l)(L) and we are done. If there exists some
�pi ∈ Irr(L) \ P(L) then �pi = �̃pi + �p′

i where �̃pi ∈ P(L) and ‖ �p′
i‖ < ‖ �pi‖, ‖ �pi‖ = ‖ �̃pi‖

by the definition of P(L). Thus, �p′
i can be further get decomposed into shorter vectors (like

�v) and as ‖ �p′
i‖ < ‖ �pi‖ progress was made which implies that this decomposition will finish

after finitely many steps as there is a finite number of lattice points in B(�0, ‖�v‖). Therefore
�v can be repeatedly reduced until it is written as a sum of vectors in P(L), concluding the
proof. ��
We are now going to describe the “higher” sieving algorithms which we will consider. We
have already mentioned the Triple and the Quadruple MinkowskiSieve described in [3]. The
difference between the GaussSieve algorithm and these higher ones lies in the reduction func-
tion. Hence, if we equipAlgorithm 5.2with function PrimeMinkowskiReduce (Algorithm 3),
we get the modified MinkowskiSieve which we are interested in.

The modification compared to the description in [3] appears in lines 10 and 21 of Algo-
rithm 3, where the extra conditions ‖ �w‖ ≤ ‖ �p‖ and ‖ �w‖ < ‖�vk−1‖ respectively are added.
By adding these conditions it is guaranteed to get an output list which will satisfy properties
(i) and (ii) like in Lemma 5 for the GaussSieve. Hence, based on these properties it can be
concluded that the output list of vectors will again contain a set P+(L). In order to ease our
exposition we set the following notation.

Let k ∈ N with k ≥ 2. We consider the k-MinkowskiSieve algorithm equipped with
the function PrimeMinkowskiReduce (Algorithm 3). We denote by MinkowskiSievek(L)

a list of vectors L created by this algorithm and possessing the property that L cannot be
further modified by the algorithm. Note that for k = 2 one has MinkowskiSieve2(L) =
GaussSieve(L).

Remark 18 The output of the modified k-MinkowskiSieve algorithm will not be a list of
vectors which will be k-Minkowski-reduced if k > 2 (for the Minkowski-reduced definition
see [27]). If this was desired, then the lines 10 and 21 of Algorithm 3 should be modified
in order to allow reductions by longer vectors as well. For a k-Minkowski-reduced list with
k > 4 lines 9,10 and 20,21 of Algorithm 3 should also allow for the coefficients of the vectors
�vi , �p and �vk−1 to take more values than ±1 (see for example [27, Theorem 2.2.2]).

The “higher” sieving algorithms which we considered by making the generalisation from
the GaussSieve towards the MinkowskiSieve will contribute towards an asymptotic compu-
tational argument. But first we state a heuristic assumption which we will use.

Assumption 2 (Convergence of the MinkowskiSieve) Consider the k-MinkowskiSieve algo-
rithm equipped with the function PrimeMinkowskiReduce (Algorithm 3). Then the output
of this algorithm will converge to a set MinkowskiSievek(L).

Remark 19 Heuristic assumption 2 actually claims that the k-MinkowskiSieve does not
diverge or enter an infinite loop. The experimental results in Sect. 5.3 (see Fig. 3) indicate
that for k ∈ {2, 3, 4} this seems to be a valid assumption. However, this is the only argument
we have in favour of this assumption. We leave the investigation for concrete arguments
supporting this heuristic assumption as an open problem for future research.

123

The irreducible vectors of a lattice 627

Algorithm 3 The modified MinkowskiReduce function
1: function PrimeMinkowskiReduce(�p, L, S, k)
2: loop = true
3: while loop do
4: loop = false
5: if k > 2 then
6: PrimeMinkowskiReduce(�p, L, S, k − 1)
7: end if
8: for all {�v1, . . . , �vk−1} ⊂ L s.t. ‖�vi‖ ≤ ‖ �p‖ do

9: for all �w ∈
{∑k−1

i=1 (−1)ai �vi | ai ∈ {0, 1}
}
do

10: if ‖ �w‖ ≤ ‖ �p‖ and ‖ �p − �w‖ < ‖ �p‖ then
11: �p ← �p − �w
12: loop = true
13: goto next
14: end if
15: end for
16: end for
17: next:
18: end while
19: for all {�v1, . . . , �vk−1} ⊂ L with ‖�vi‖ ≤ ‖�vi+1‖ and s.t. ‖�vk−1‖ > ‖ �p‖ do

20: for all �w ∈
{
(−1)a0 �p + ∑k−2

i=1 (−1)ai �vi | ai ∈ {0, 1}
}
do

21: if ‖ �w‖ < ‖�vk−1‖ and ‖�vk−1 − �w‖ < ‖�vk−1‖ then
22: L ← L \ {�vk−1}
23: S.push(�vk−1 − �w)
24: end if
25: end for
26: end for
27: return �p
28: end function

Theorem 9 (Shape ofMinkowskiSievek(L)) LetL be a full rank lattice in R
n. We consider

the k-MinkowskiSieve algorithm equipped with the function PrimeMinkowskiReduce. Under
Heuristic Assumption 2, as k increases the set MinkowskiSievek(L) converges to a set
P+(L).

Proof In order to simplify the proof and avoid ambiguitieswemake the following convention.
Both sets P+(L) and MinkowskiSievek(L) are defined/constructed in such a way that for a
vector �v only one of ±�v belongs to the set. This allows many possible choices for these sets.
In order to avoid this kind of ambiguities we make the convention that a vector �v is included
in the aforementioned sets only if its first non-zero coordinate is positive.

Initially we will prove that for every k ≥ 2 there exists a set P+(L) and a set Pk(L) such
that

P+(L) ⊆ MinkowskiSievek(L) ⊆ Pk(L). (17)

Let k ≥ 2 and MinkowskiSievek(L) be the converging set of an execution of the
k-MinkowskiSieve. As mentioned before, we can transfer Lemma 5 from the case of
GaussSieve to the k-MinkowskiSieve algorithm described in this section. This implies
that for every MinkowskiSievek(L) there will exist a set P+(L) such that P+(L) ⊆
MinkowskiSievek(L). We fix this set P+(L).

Let �v ∈ MinkowskiSievek(L) and �p1, . . . , �pk−1 ∈ P+(L) with ‖ �pi‖ < ‖�v‖. As the set
MinkowskiSievek(L) is k-reduced according to the notion implied by Algorithm 3 we can
conclude that �v cannot be reduced by any vector of the form∑l

i=1 (−1)ai �pi for 1 ≤ l ≤ k−1.
As the vectors �p1, . . . , �pk−1 belong to the set MinkowskiSievek(L) as well, they are k − 1-

123

628 E. Doulgerakis et al.

reduced. This in turn implies that the vectors of the form
∑l

i=1 (−1)ai �pi belong to the set
P(l)(L) for 1 ≤ l ≤ k − 1. This holds for any tuple of l vectors in P+(L). Hence, the set
of vectors emerging from the union of all {∑l

i=1 (−1)ai �pi } will be exactly P(l)(L). This
implies that �v cannot be reduced by any vector in ∪k−1

i=1 P
(i)(L). This is equivalent to the

condition a vector �v has to satisfy according to definition 12 in order to belong to Pk(L).
Thus we can conclude that MinkowskiSievek(L) is included in the Pk(L) implied by the
set P(L) = P+(L) ∪ (−P+(L)). This concludes the first part of the proof.

For the second part of the proof we distinguish between the cases of Irr(L) = P(L) and
Irr(L) �= P(L).
If it holds that Irr(L) = P(L) then apart from P(L) being uniquely determined the same
holds for the sets Pk(L). Hence, for every k ≥ 2 the boundary sets in (17) are uniquely deter-
mined. This enables a direct use of Lemma 6. As k increases the set MinkowskiSievek(L)

will be contained to even smaller and smaller sets Pk(L)which converge to Irr(L) according
to (i) and (ii) of Lemma 6. Therefore for the limit case it could be stated that

P+(L) ⊆ lim
k→∞MinkowskiSievek(L) ⊆ Irr(L). (18)

But we assumed Irr(L) = P(L) and thus we can conclude that

lim
k→∞MinkowskiSievek(L) = P+(L).

In order to finish the proof we have to deal with the case Irr(L) �= P(L). In this case, the
sets P+(L) and Pk(L) used in inequality (17) are not uniquely determined and therefore
Lemma 6 cannot be used directly. In Lemma 6 it was shown that given the sequence of
Pk(L) implied by any P(L) then limk→∞ Pk(L) = Irr(L). Hence any Pk(L) belongs
to a sequence converging to the same limit, Irr(L). Interchanging terms (Pk(L)) among
these sequences does not affect their limit. Therefore, we can again use inequality (17) and
“take limits" leading to a result like (18). We have to be careful though. The right hand-side
limit (i.e. Irr(L)) is well-defined but the left one can cycle over all choices of P+(L). This
is expected as the limit of the sequence MinkowskiSievek(L) as k → ∞ is not unique
but depends on the choice of representatives made for each non-trivial class of vectors. For
convenience we assume that ∀k > k0 for some k0 this choice stabilises to some random but
fixed choice. Thus, we have again reached inequality (18).

We examine the sets in inequality (18) according to theGauss-reduced property. Let k ≥ 2,
the set MinkowskiSievek(L) is a set in which the output of the algorithm converges to and
also possesses the Gauss-reduced property by construction. This holds for every k ≥ 2 and
thus transfers to the limit as well, as k → ∞. The set P+(L) is not a maximal subset of
L satisfying the Gauss-reduced property but due to its construction it is maximal in the set
Irr(L). Hence, inequality (18) and maximality of P+(L) in Irr(L) imply the result. ��
The conclusion in Theorem 9 is supported by the experimental results given in Table 1.

Remark 20 Theorem9describes asymptotic behaviour of themodifiedMinkowskiSieve algo-
rithm with the goal of providing a faster way of computing sets P+(L). Even though,
asymptotically, the algorithm possesses the desired behaviour, this does not make it imme-
diately a computational tool for P+(L). There are two obstacles towards that goal. The first
one is, given a lattice L in dimension n, to find for which k ≥ 2 to run k-MinkowskiSieve.
This k should not be too high in order to be computationally efficient to run the algorithm.
The second problem is finding for how long this k-MinkowskiSieve should run in order to
approximate well enough a set MinkowskiSievek(L).

123

The irreducible vectors of a lattice 629

5.3 Experimental results

In this section we provide some experimental results which support our claims in the previous
subsections. In particular, as a first step we computed the sets R(L), Irr(L),P(L) for 10
lattices in dimension 20 and afterwards we computed the output of the GaussSieve, the Triple
and the Quadruple MinkowskiSieve. In order to generate 10 lattices in dimension 20 we used
the Sage computer algebra system [9]. In particular we used Sage’s “Hard lattice generator”
with the following choice of parameters,

sage.crypto.gen_lattice(type=’random’, n=1, m=20, q=10ˆ42, seed=seed)
and 10 different values of seed. Initially, using the OpenMP parallel implementation build
for the projects [5, 13] we computed the set of relevant vectors R(L) for each lattice.
On top of this code (which the authors were so kind to provide us) we implemented the
method described in Sect. 5.1 and computed the set Irr(L). As for our experiments the
lattices used were generated randomly, they did not possess any specific structure and hence
P(L) = Irr(L) for all of them. This part of the experiments was performed on a node of
the Lisa cluster [32] with a 16-core CPU (2.10GHz) and 96 GB of RAM. The computation
of the sets R(L) and Irr(L) using the aforementioned implementation and hardware took
about 5.5 seconds per lattice.

Finally, by modifying the already existing sieve implementations in FPLLL [33] we com-
puted the output of the GaussSieve, Triple and Quadruple MinkowskiSieve as described in
Sect. 5.2 for the same 10 lattices. The modifications which we made to the already existing
FPLLL implementations were:

– A vector is allowed to be reduced only by a shorter vector.
– The termination condition is changed to a fixed number of collisions: 5 · 105 for the

GaussSieve and 105 for the Triple and Quadruple MinkowskiSieve. These numbers were
chosen to ensure the created list by the algorithm remains unchanged for “many” iterations
before the algorithm terminates. These choices seem to not be optimal according to our
experimental data and could possibly be further reduced.

This part of the experiments was performed on a Lenovo X250 laptop with 4 Intel Core
i3-5010UCPU (2.10GHz) and 8GB of RAM. The output of these experiments is summarised
in Table 1.

Table 1 motivates a number of remarks about the involved sets. Initially, the number of
relevant vectors observed was indeed close to the expected number 2 · (220 − 1). Also, the
sets Irr(L) and P(L) were equal in all 10 cases, as we had assumed for random lattices
without any underlying structure. The size of P(L) (and Irr(L) in this case) was observed
to be some orders of magnitude smaller than the size of R(L) making it more appealing to
use in practice.

The right part of Table 1 justifies our idea to try and correlate the output of sieving
algorithms with the set of irreducible vectors. Even though we cannot display here the lists of
vectors which we computed but rather only their sizes, we observed the following behaviour.
The list of vectors outputted by the GaussSieve contained the set P(L) in 8 out of the 10
cases and in the other two of them there was only 1 vector missing. This supports our claim
that the output of GaussSieve converges to a superset of P(L). Also, as wemoved to “higher"
sieving algorithms like our modified version of the Triple and Quadruple MinkowskiSieve
the output of the sieving algorithms approximated even closer the set P(L). Actually, it is
not a coincidence that the numbers in the columns “4-red" and “| Irr(L)|, |P(L)|" in Table 1
differ only by a factor of 2, since the output of the Quadruple MinkowskiSieve in all 10 cases
gave exactly a set P+(L) as for every vector �v it stores only one of ±�v.

123

630 E. Doulgerakis et al.

Table 1 The following tables
describe the sizes of the lists
involved in our experiments with
10 random lattices in dimension
20

Seed |R(L)| | Irr(L)|, |P(L)|
314 2 · 1048361 2 · 66
417 2 · 1048388 2 · 70
849 2 · 1048389 2 · 68
422 2 · 1048349 2 · 67
168 2 · 1048371 2 · 60
84 2 · 1048363 2 · 64
105 2 · 1048375 2 · 62
273 2 · 1048360 2 · 60
390 2 · 1048376 2 · 66
656 2 · 1048372 2 · 71
Seed 2-red 3-red 4-red

314 86 77 66

417 95 80 70

849 98 85 68

422 93 74 67

168 88 69 60

84 92 75 64

105 88 74 62

273 83 68 60

390 89 76 66

656 95 79 71

The first columns indicate the seed used for the generation of the lat-
tice. The table on the top gives the sizes of the corresponding sets
R(L), Irr(L) and P(L) for each lattice. The factor 2 is due to the sign
symmetry. The table on the bottom shows the sizes of the lists generated
by the modified GaussSieve, Triple and Quadruple MinkowskiSieve

(a) (b)

Fig. 3 Experimental results on the scaling of size of P(L) according to the dimension of L . Each point in
the graphs corresponds to the average value taken amongst 10 lattices. The labels k-red are used to indicate
the output of the modified sieve algorithms described in this work and not the ones in the literature [3, 24]
(Color figure online)

123

The irreducible vectors of a lattice 631

Another question which could be investigated experimentally is how the expected size of
P(L) behaves as the dimension of L increases. In order to develop an intuition about this
behaviour we performed a number of experiments in dimensions 20–65, the results of which
are shown in Fig. 3. Likewise in our experiments in dimension 20 we used the modified
OpenMP parallel implementation from [5, 13] and the modified sieve implementations in
FPLLL [33]. For each dimension we depict the average value amongst 10 lattices. However,
as in this case we dealt with higher dimensions we reduced the number of collisions in the
termination condition of the sieve algorithms to

- GaussSieve: 10,000 collisions
- Triple MinkowskiSieve: 2500 collisions
- Quadruple MinkowskiSieve: 2000 collisions.

Therefore the results in Fig. 3 related to sieving algorithms should only be interpreted as
approximations of the algorithm’s converging set size. As we will discuss later, estimating
the accuracy of this approximation is left for future research. Figure 3a illustrates the result
of our experiments in dimensions 20–26. We believe that for these “smaller” dimensions
the approximations are “more” accurate and that is why we show them separately. Another
reason is that running the OpenMP Voronoi implementation beyond these dimensions has a
substantial memory requirement (tens of GB).

Computing a least squares fit for the points in the blue curve (which indicates the correct
expected values for |P(L)| under Assumption 1) gives the formula 20.237n+1.286 which
reasonablymatches the heuristic expectation for the size of P(L), namely 20.21n . Furthermore
Fig. 3a reveals that the GaussSieve gives only a superset of P(L) even for small dimensions.
The Triple and Quadruple MinkowskiSieve are much closer to the blue curve. The difference
between the Triple and Quadruple MinkowskiSieve is that the one lies above the blue curve
and the other below it. As we already observed in Table 1 the Triple MinkowskiSieve will
probably remain above it. However the Quadruple MinkowskiSieve possess the potential to
reach the “correct” curve asymptotically. Of course this could also be far from the truth for
higher dimensions.

In order to put these curves more into perspective we created Fig. 3b which shows the
average output sizes of the GaussSieve and Triple MinkowskiSieve for dimensions 20–65.
We did not draw the curve of the Quadruple MinkowskiSieve as it also turns out to be quite
time costly for dimensions higher than 30. At this point we must emphasize that the used
modified sieving algorithms take more time in order to terminate due to the modifications
which aim not in solving SVP but computing close approximations of P(L). For instance
the modified Triple MinkowskiSieve in dimension 65 took on average 3 days in order to
terminate for each lattice. However this is only the average observed time. Actually one of
the ten lattices used proved to be an “easier case”, terminating in under 2 h.

Even though these results provide some intuition on what kind of relation it could be
expected between the set of irreducible vectors and sieving algorithms, they also raise some
questions.

A first question which would be interesting is examining the termination condition for the
sieving algorithm. In our experiments we made a specific choice on the number of collisions
but this was done by trial and error and could be possibly improved. In other words, we ask
for a termination condition, which if it is satisfied by a sieving algorithm (as used in this
section) it guarantees that the algorithm has reached a list of vectors which cannot be further
modified by the algorithm.

A second question that arises is up to what level of sieving we should get in order to
either get exactly a set P(L) or a “very good" approximation of it. In this case the Quadruple

123

632 E. Doulgerakis et al.

MinkowskiSieve was enough, but this might not be the case for higher dimensional lattices.
Thus it would be interesting to know how does this index increase according to the dimension.
So, given some termination condition, how close can a sieving algorithm approximate a set
P(L)?

If these questions receive an answer it will help in making sieving algorithms a way to
either compute exactly or approximately a set P(L) of a lattice L . This would be very
interesting as it will provide a way to compute a set P(L) (exactly or approximately) without
having to compute the set R(L) which is a very costly computation.

6 Applications of P(L)

Even though the sets Irr(L) and P(L) might be of interest in their own, examining their
relation to already existing lattice problems and algorithms is a natural question that arises.
We choose to focus on the set P(L) as it seems to be the easier to compute/approximate with
existing lattice algorithms.

6.1 P(L) in the study of shortest vector(s) problems

The results in Sect. 4 provide some interesting conclusions about the relation of the set P(L)

to well known lattice problems. A first observation in Sect. 4.2 was that S1(L) is included
in P(L). This leads to the following result.

Proposition 10 (Finding P(L) implies solving SVP) Let L be a full rank lattice in R
n.

Computing a set P(L) provides a solution to the SVP and the kissing number problem.

The relation S1(L) ⊆ P(L), implies that two classic lattice problems can be solved given
a P(L). Of course this holds for any superset of P(L) as well. We combine this observa-
tion with the inclusion P+(L) ⊆ MinkowskiSievek(L) for k ≥ 2 shown in the proof of
Theorem 9. This provides some extra (heuristic) evidence that some sieving algorithms will
indeed output a solution to SVP or the kissing number problem if they run long enough. This
is no surprise as sieving algorithms were devised for solving SVP.

Examining the relation of SIVP to the set P(L) is probably a more interesting question.
By Corollary 1 we know that for every i = 1, . . . , n there exists a vector �v ∈ Irr(L) such
that ‖�v‖ = λi (L). The following proposition completes this result.

Proposition 11 (Finding P(L) implies solving SIVP) Let L be a full rank lattice in R
n.

Computing a set P(L) provides a solution to the SIVP.

Proof Let �v1, . . . , �vn be a set of linearly independent vectors in L such that ‖�vi‖ = λi (L)

for i = 1, . . . , n. We distinguish two cases.
Case 1 �i ≥ 2 such that λ1(L) ≤ λi−1(L) < λi (L) = λi+1(L). This implies that there
exists a k ≥ 1 such that

λ1(L) = · · · = λk(L) < λk+1(L) < · · · < λn(L).

Then by S1(L) ⊆ P(L) it follows that �v1, . . . , �vk belong to P(L). In addition, byCorollary 1
and the definition of P(L) it follows that all the �vk+1, . . . , �vn will be included in P(L).
Case 2 ∃i ≥ 2 such that λ1(L) ≤ λi−1(L) < λi (L) = λi+1(L). Let i ≥ 2 such that the
condition holds. We set k = max{ j > i |λi (L) = λ j (L)}. Hence,

λ1(L) ≤ λi−1(L) < λi (L) = λi+1(L) = · · · = λk(L).

123

The irreducible vectors of a lattice 633

We will show that �vi , . . . , �vk ∈ P(L). Let j ∈ {i, . . . , k} we set Lλ j to be the sublattice of
L spanned by all the vectors in L strictly shorter than λ j . As λi (L) = λ j (L) it follows
thatLλ j = Lλi which has rank i −1. Assume that �v j ∈ Lλ j . Then we would get that the set
{�v1, . . . , �vi−1, �v j } is a set of linearly dependent vectors. Contradiction. Thus �v j /∈ Lλ j and by
Proposition 4 we get that �v j ∈ Irr(L). This holds for any i ≤ j ≤ k and therefore we get that
all �v j with i ≤ j ≤ k belong to Irr(L). In order to show that they also do belong to a P(L) it
suffices to show that for everyμ, ν such that i ≤ μ < ν ≤ k it holds that ‖�vν −�vμ‖ ≥ λi (L).
Assume that there existμ, ν such that i ≤ μ < ν ≤ k and‖�vν−�vμ‖ < λi (L). Then it follows
that �vν − �vμ ∈ Lλi . The set of vectors {�v1, . . . , �vi−1, �vμ, �vν} is a linearly independent set and
thus the same holds for {�v1, . . . , �vi−1, �vν − �vμ}. This implies a set of i linearly independent
vectors in the lattice Lλi which is of rank i − 1, contradiction.
Concluding, let �vl belong to the considered linearly independent set of vectors achieving the
successive minima. If ‖�vl‖ = ‖�vl+1‖ or ‖�vl‖ = ‖�vl−1‖ then �vl ∈ P(L) by the proof in “case
2”. If ‖�vl−1‖ < ‖�vl‖ < ‖�vl+1‖ then �vl ∈ P(L) by the same argument used in “case 1". ��
Remark 21 Obtaining a set of the shortest vector(s), given a set P(L), amounts to scanning
the entire set P(L) a number of times. Thus, sorting P(L) can be avoided.

6.2 Using P(L) in CVPP algorithms

One main problem in lattice theory is the closest vector problem. A straightforward way of
using the set R(L) in order to solve CVPP was described in [31]. In that work, an algorithm
called the iterative slicer is given which takes as input the set R(L) and a target vector �t and
outputs a closest lattice vector to �t (Algorithm 4). The main idea behind this algorithm is
to iteratively reduce the target vector �t by the relevant vectors until the resulting vector �t ′ is
contained in the Voronoi cell V (L) of the lattice. Once this condition is satisfied it is known
that �t − �t ′ is a closest lattice point to �t . This algorithm is shown to terminate after a finite
number of iterations.

Algorithm 4 The iterative slicer [31]
Require: The set R(L) and a target vector �t .
Ensure: A vector �s ∈ L closest to �t .
1: �t ′ ← �t
2: for every �r ∈ R(L) do
3: if ‖�t ′ ± �r‖ < ‖�t ′‖ then
4: �t ′ ← �t ′ ± �r
5: restart the for loop
6: end if
7: end for
8: �s = �t − �t ′
9: return �s

Inspired by the iterative slicer, in [23] an algorithm is described to provably solve the
CVPP in Õ(22n)-time by using the set R(L) as the preprocessing data. The difference
between Algorithm 4 and the algorithm in [23] is that the latter selects the relevant vectors
in a specific order for reduction. This results in a Õ(22n)-time and Õ(2n)-space algorithm.
This work was further improved in [4] by optimising the use of the preprocessing data.

However, using the set R(L) in practice is not convenient due to its expected size of about
2n+1−2 vectors. One way to reduce the memory requirements could be the use of a compact

123

634 E. Doulgerakis et al.

Algorithm 5 The tuple slicer
Require: A set P(L), a C ∈ N and a target vector �t .
Ensure: A vector �s ∈ L closest to �t .
1: �t ′ ← �t
2: for l = 1 to C do
3: for all {�v1, . . . , �vl } ⊂ P(L) do
4: �w ← ∑l

i=1 �vi
5: if ‖�t ′ − �w‖ < ‖�t ′‖ then
6: �t ′ ← �t ′ − �w
7: restart the outer for loop
8: end if
9: end for
10: end for
11: �s = �t − �t ′
12: return �s

representation of R(L) like the one described in [17]. In such a scenario a superset of R(L)

would be generated on the fly by a CVPP algorithm which would only use a smaller set of
vectors in order to generate R(L).

Another way would be to use a subset of R(L) instead of the entire set. Such an approach
was introduced in [19]. In that work an approximate Voronoi cell is defined as the cell implied
by a list of short lattice vectors which is potentially a subset of the set R(L). That lead to
a heuristic algorithm for CVPP using the approach of Micciancio–Voulgaris but with more
practical time and space complexities.

We describe a CVPP algorithm (the tuple slicer, Algorithm 5) using the set P(L), and we
discuss its advantages and disadvantages against already existing approaches.We distinguish
two cases.

If C = 1 in Algorithm 5 then it just uses a subset of R(L). In this case the analysis of
the algorithm just follows under the “approximate Voronoi cell” approach where a specific
choice has been made on the used subset. The advantage in this case is that it is guaranteed
that the used list of vectors is a subset of R(L).

If C > 1 Algorithm 5 behaves similar to the tuple sieving approach in [3]. A vector is
reduced not only by a single vector but also by the sums of small tuples of vectors in the
used list. Hence, a target vector �t is reduced by a superset of P(L). If this superset includes
the set R(L) then [31, Lemma 5] guarantees the correctness of the algorithm. This depends
on the value of C . We can prove that there always exists a value of C which guarantees the
inclusion of R(L) in the generated superset.

Remark 22 In line 3ofAlgorithm5 it considers sets of vectors {�v1, . . . , �vl} such that �vi �= −�v j

but it could be that �vi = �v j .

Definition 13 (k-wise sum of P(L)) Let L be a full rank lattice in R
n and k a positive

integer. We define

k P(L) =
{ j∑

i=1

�pi | �pi ∈ P(L) and j = 1, . . . , k

}
.

Proposition 12 (Finding R(L) via k P(L)) Let L be a full rank lattice in R
n and P(L) a

complete system of irreducible vectors of it. Then there exists a positive integer n0 ∈ N such
that R(L) ⊆ n0 P(L).

123

The irreducible vectors of a lattice 635

Fig. 4 Preliminary experimental
results on the success probability
of Algorithm 5. The algorithm
was tested on lattices of
dimensions 20, 21, 22, 23, 24.
For each dimension the algorithm
was tested with input C = 1, 2, 3
against 10,000 CVP instances.
Each of the 10,000 CVP blocks
was formed by 10 smaller blocks
of 1000 CVPs corresponding to
10 lattices. Each point in the
graph corresponds to the ratio of
correct answers out of the 10,000
CVP instances

Proof By Proposition 7 there exists a generating set �G ⊆ P(L) with | �G| = l ≥ n. Let
�r ∈ R(L), then there exists an �x ∈ Z

l such that �G�x = �r . With �x = (x1, . . . , xl) set
m�r = ‖�x‖1 = ∑l

i=1 |xi |. Then �r ∈ m�r P(L). Set m = max�r∈R(L){m�r }. As R(L) is finite
then m is finite and ∀�r ∈ R(L) it holds that �r ∈ m P(L). ��

The used superset is computed on the fly. This allows for a time–memory trade-off. The
algorithm loses on time complexity as it examines a larger list of vectors but it gains on
the memory requirement as it stores a provably smaller subset of R(L). In more detail
the space complexity of the algorithm is proportional to |P(L)| which can be bounded by
O(τn). The time complexity will depend on the size of P(L) but also on the parameter C .
Following the analysis of [23] we can argue that the time complexity of Algorithm 5 will be
O(|P(L)|C · 2n poly(n)).

Remark 23 From Theorem 12 it follows that if Algorithm 5 was to be applied to the lattice
family A∗

n , it should consider a value of C as high as (n + 1)/2 in order for R(A∗
n) to be

included in the used superset. Therefore, a provable upper bound on C alone will not lead to
any good bound for the time complexity of Algorithm 5 in a provable setting.

Considering Algorithm 5 in a heuristic setting seems to be a more appealing choice. In such a
scenario the requirements of the algorithm can be relaxed in mainly two directions. The first
one is using an approximation (a superset) of P(L) instead of the set itself. Hence, the output
of the MinkowskiSieve as described in Sect. 5.2 could serve as such a choice. Furthermore,
choosing a specific approximation of P(L) can allow fixing the value of the parameter C in
the following way.

By a heuristic result of [19] we know that if a list L containing 2n/2+o(n) lattice vectors of
norm less than

√
2λ1(L) is used as input to the iterative slicer then the success probability

of the algorithm is close to 1. Following this guideline, a value for the parameter C can be
chosen in a way that guarantees that the set of all vectors used for reduction in Algorithm 5
contains a list of 2n/2+o(n) shortest lattice vectors.

Further options can be examined if it is allowed for the used slicing algorithm to succeed
with probability much smaller than 1. In such a case the results in [10, 11] provide a way of
relating the success probability to size of the used preprocessed list and hence in our case C .

We briefly experimented on the relation of the success probability of Algorithm 5 and the
parameter C . The results can be found in Fig. 4. From these results we get a first indication
that the success probability of Algorithm 5 increases as the value of C increases. Unfor-
tunately, extending these experiments to moderate dimensions was infeasible, as the exact

123

636 E. Doulgerakis et al.

computation of P(L) would require hundreds or thousands of GB of RAM (using a “brute
force” approach). Therefore, obtaining a specific guideline on how to choose a value for C
remains an open question.

Acknowledgements We thank Filipe Cabeleira, Artur Mariano and Gabriel Falcao for providing their parallel
implementation computing R(L) as described in [5], which we used for our experimental results in Sect. 5.3.
The authors thank Daniel Dadush for helpful discussions regarding how efficiently can the set R(L) be
generated by P(L). We also thank Noah Stephens-Davidowitz for spotting a mistake in an earlier version of
the paper. Finally, we thank the anonymous reviewers for their suggestions that led to improvements in the
paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Corner cases among S1(L), Irr(L), and R(L)

In Sect. 4.1 we posed two questions regarding the set Irr(L): if and when the corner cases
S1(L) � Irr(L) = R(L) and S1(L) = Irr(L) � R(L) are possible. In this section we
will give a partial answer to these questions by examining some already known families of
special lattices, the duals of the root lattices Dn and An (see [8, Chapter 4]). For n ∈ N with
n ≥ 5 we write 4:

Ln = 2D∗
n . (19)

Then a basis of Ln is the following (see [8, p. 120]):

�Bn = {2ei | 1 ≤ i ≤ n − 1} ∪ {1n}, (20)

where 1n represents the all-1 vector.

Theorem 10 (Properties of Ln) For every n ∈ N with n ≥ 5

S1(Ln) = {±2ei | 1 ≤ i ≤ n} and

Irr(Ln) = R(Ln) = {±2ei | 1 ≤ i ≤ n} ∪ {±1}n .

Proof By the definition of the lattice Ln it is clear that {±2ei | 1 ≤ i ≤ n} ∪ {±1}n ⊂ Ln .
We will prove this theorem in three steps.
The first step is to show that S1(Ln) = {±2ei | 1 ≤ i ≤ n}.
The second step will be to show that R(Ln) ⊆ {±2ei | 1 ≤ i ≤ n} ∪ {±1}n .
Finally in the third step we will prove that {±2ei | 1 ≤ i ≤ n} ∪ {±1}n ⊆ Irr(Ln). These
three steps imply the result as Irr(Ln) ⊆ R(Ln).

4 We choose to work with a scaling of D∗
n as in this way we get a lattice in Z

n , which is easier to work with.

123

http://creativecommons.org/licenses/by/4.0/

The irreducible vectors of a lattice 637

The “defining property” of the lattice Ln , that if �v = (v1, . . . , vn) ∈ Ln then vi ≡ v j

(mod 2) for all 1 ≤ i, j ≤ n, will be used throughout the proof.

Step 1 Obtaining that S1(Ln) = {±2ei | 1 ≤ i ≤ n} is trivial and is left as an exercise to the
reader.

Step 2 Let �v /∈ R(Ln) and �v �= �0. Then by Theorem 1 we know that there exists a vector �x ∈
Ln \{�0, �v} such that 〈�v, �x〉 ≥ ‖x‖2.Wewill prove that for every vector �v ∈ Ln \({±2ei | 1 ≤
i ≤ n} ∪ {±1}n ∪ {�0}) there exists a vector �x ∈ Ln \ {�0, �v} such that 〈�v, �x〉 ≥ ‖x‖2. This
implies the desired property R(Ln) ⊆ {±2ei | 1 ≤ i ≤ n} ∪ {±1}n .
Let �v ∈ Ln \ ({±2ei | 1 ≤ i ≤ n} ∪ {±1}n ∪ {�0}), we distinguish two cases.
Case 1: Let �v be such that �v = (v1, . . . , vn) with vi ≡ 1 (mod 2) for all vi . We already
showed in step 1 of the proof that the shortest vectors with odd coordinates are the {±1}n .
As �v does not belong to this set, |vi | ≥ 1 for all vi , and there exists at least one v j such that
|v j | ≥ 3. Consider the vector �x = (sign(v1), . . . , sign(vn)). This is a valid lattice vector as
�x ∈ {±1}n ⊂ Ln and �x �= �v as �v ∈ Ln \ ({±2ei | 1 ≤ i ≤ n} ∪ {±1}n). We check the inner
product of �v and �x .

〈�v, �x〉 =
n∑

i=1

sign(vi)vi =
n∑

i=1

|vi | ≥ n + 2 > n = ‖�x‖2

This proves that �v /∈ R(Ln).
Case 2: Let �v be such that �v = (v1, . . . , vn)with vi ≡ 0 (mod 2) for all vi . As �v is a non-zero
vector then it has at least one non-zero coordinate, let it be v j . Also as v j is even we can
conclude that |v j | ≥ 2.We consider the vector �x = 2 sign(v j)e j . This is a valid lattice vector
as �x ∈ {±2ei | 1 ≤ i ≤ n} ⊂ Ln and �x �= �v as �v ∈ Ln \ ({±2ei | 1 ≤ i ≤ n} ∪ {±1}n). We
check the inner product of �v and �x .

〈�v, �x〉 =
n∑

i=1

xivi = 2 sign(v j)v j = 2|v j | ≥ 4 = ‖�x‖2

This proves that again �v /∈ R(Ln) concluding the proof of the second step.

Step 3 In this step we want to prove that {±2ei | 1 ≤ i ≤ n} ∪ {±1}n ⊆ Irr(Ln). In step 1
we already showed that S1(Ln) = {±2ei | 1 ≤ i ≤ n} and we know that S1(Ln) ⊆ Irr(Ln)

hence, we only have to show that {±1}n ⊆ Irr(Ln). Assume that �v ∈ {±1}n and �v /∈ Irr(Ln).
Thus there are two strictly shorter vectors �v1 and �v2 such that �v = �v1 + �v2. In step 1 of the
proof we showed that the vectors in {±1}n are the shortest ones among those with odd
coordinates. Therefore as �v1 and �v2 are strictly shorter than �v then it must be that they have
even coordinates. This implies that �v can bewritten as a sum of vectors with even coordinates.
This is a contradiction, as a sum of even numbers is never odd. ��

As a scaling of a latticeL has the same properties asL we get Theorem 5 alreadymentioned
in Sect. 4.1.

Theorem 11 (Properties of D∗
n) Let n ∈ N with n ≥ 5. Then for the lattice D∗

n it holds that
S1(D∗

n) � Irr(D∗
n) = R(D∗

n). Furthermore | Irr(D∗
n)| = 2n + 2n.

This proves that S1(L) � Irr(L) = R(L) is possible for every dimension n ≥ 5. In order
to complete this result from this point of view we give another three lattices, one for each of
the dimensions n = 2, 3, 4 that possess the same property.

123

638 E. Doulgerakis et al.

For n = 2, 3, 4 we write L2 = L (�B2),L3 = L (�B3),L4 = L (�B4) with �B2, �B3, �B4

being

�B2 =
(
3 1
0 1

)
�B3 =

⎛

⎝
3 0 1
0 3 1
0 0 1

⎞

⎠ �B4 =

⎛

⎜⎜⎝

1 0 0 1
0 3 0 1
0 0 3 1
0 0 0 1

⎞

⎟⎟⎠ (21)

We leave it to the reader to verify our claim for these three lattices.
Our next goal is to derive a similar result for the case S1(L) = Irr(L) � R(L). In order to
do so we will use a scaling of the lattices A∗

n .
For n ∈ N with n ≥ 3, we write

Mn = (n + 1)A∗
n . (22)

Then a basis of Mn is formed by the columns of �Bn (see [8, p. 115]), where

�Bn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−n 1 1 · 1
1 −n 1 · 1
1 1 −n · 1
...

...
...

...
...

1 1 1 · −n
1 1 1 · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(23)

is an (n + 1) × n matrix.

Remark 24 By the given basis �Bn for Mn we can immediately observe that if �v =
(v1, v2, . . . , vn+1) ∈ Mn then vi ≡ v j (mod n + 1). Additionally

∑n+1
i=1 vi = 0.

Theorem 12 (Properties of Mn) For every n ∈ N with n ≥ 3,

S1(Mn) = Irr(Mn) = {±(−n1, 1n)} and

R(Mn) =
{
±(αβ, (−β)α) | β = n + 1 − α , 1 ≤ α ≤ n + 1

2

}
.

Proof We set A = {±(αβ, (−β)α) | β = n+1−α , 1 ≤ α ≤ (n + 1)/2}. We will prove this
theorem in four steps. The first step is to show that S1(Mn) = {±(−n1, 1n)}. The second step
will be to show that R(Mn) ⊆ A. The third stepwill be to show that Irr(Mn) ⊆ {±(−n1, 1n)}
and finally in the fourth step we will show that A ⊆ R(Mn).

Step 1 The vectors {±(−n1, 1n)} have squared length n2 + n and hence we get λ21(L) ≤
n2 + n. This implies that a vector achieving λ1(L) cannot have a coordinate v j such that
|v j | ≥ n + 1. Therefore a vector achieving λ1(L) belongs to A. The squared length of a
vector in A is βα2 + αβ2 = (n + 1)αβ which minimizes for α = 1.

Step 2 Let �v ∈ Mn \ (A ∪ {�0}) and write it as �v = (v1, . . . , vn+1). Then there will exist
at least one coordinate of �v, let it be v j , such that |v j | ≥ n + 1. This can be proved by a
contradiction argument. Assume that there was no coordinate in �v such that |v j | ≥ n+1 then
it would hold that |vi | ≤ n for all 1 ≤ i ≤ n and by the fact that vi ≡ v j (mod n + 1) we
can conclude that there would be at most two possible values for |vi |. But the set A contains
all such vectors of the lattice, hence that would imply �v ∈ A, contradiction. We set �x to be
the vector having sign(v j)n in the j-th position and − sign(v j) in all other places. This is a

123

The irreducible vectors of a lattice 639

valid lattice vector and �x �= �v as �v ∈ Mn \ A. We check the inner product of �v and �x :

〈�v, �x〉 =
n+1∑

i=1

vi xi = |v j |n − sign(v j)

n+1∑

i=1
i �= j

vi = |v j |n + |v j | ≥ (n + 1)2 > ‖�x‖2.

This proves that �v /∈ R(Mn) concluding the proof of the second step.

Step 3 Let �v ∈ Mn \ ({±(−n1, 1n)} ∪ {�0}) and write it as �v = (v1, . . . , vn+1). Then we
will show that �v is reducible. By step 2 of the proof we know that R(Mn) ⊆ A and as we
know that Irr(Mn) ⊆ R(Mn) we can restrict our choice to �v ∈ A \ {±(−n1, 1n)}. As �v ∈ A
we can write �v = ±(αβ, (−β)α) with β = n + 1 − α for some 1 < α ≤ (n + 1)/2. By
Lemma 4 it suffices to find a lattice vector �x with ‖�x‖ < ‖�v‖ and such that 2〈�v, �x〉 > ‖�x‖2.
Let γ = max{|α|, |β|} and the j-th coordinate of �v be such that |v j | = γ . Consider �x to be
the vector with sign(v j)n in the j-th position and − sign(v j) in all other places. This is a
valid lattice vector and ‖�x‖ < ‖�v‖ as �x ∈ S1(Mn) but �v /∈ S1(Mn). Then

2〈�v, �x〉 = 2
n+1∑

i=1

vi xi = 2

(
|v j |n − sign(v j)

n+1∑

i=1
i �= j

vi

)
= 2(γ n + γ)

= 2(n + 1)γ ≥ (n + 1)2 > ‖�x‖2

as γ ≥ (n + 1)/2. This proves that �v /∈ Irr(Mn) and therefore Irr(Mn) ⊆ {±(−n1, 1n)}.
Step 4 By [7, Theorem 3] and the fact that the vectors (−n1, 1n) form a strictly obtuse
superbasis of Mn (see [7]) it follows that A ⊆ R(Mn) and finally R(Mn) = A. ��

This implies Theorem 6 already mentioned in Sect. 4.1.

Theorem 13 (Properties of A∗
n) Let n ∈ N with n ≥ 3. Then for the lattice A∗

n it holds that
S1(A∗

n) = Irr(A∗
n) � R(A∗

n). Furthermore | Irr(A∗
n)| = 2(n + 1).

This proves that S1(L) = Irr(L) � R(L) is possible for every dimension n ≥ 3. In order
to complete the result from this point of view we give another lattice in dimension n = 2 that
possess the same property: M2 = L (�B2), where

�B2 =
(
4 1
1 4

)
. (24)

We leave it to the reader to verify this.

Appendix B Some graph-theoretical aspects

In Sect. 4.2 we introduced the notion of a complete system of irreducible vectors and we
gave an example of how the set P(L) can be computed. In that example the use of graph
theoretical tools was demonstrated in order to compute the set P(L) given the set Irr(L). A
natural question that arises is how costly this step can be.

In order to answer this question a few graph theory definitions are necessary. Graphs will
de denoted by Γ = (V , E), where V is the set of vertices and E is the set of edges. If
e = {u, v} ∈ E then we say that u and v are adjacent.

123

640 E. Doulgerakis et al.

Definition 14 (Independent set) Given a simple graph Γ = (V , E) an independent set is a
subset of vertices U ⊆ V , such that no two vertices in U are adjacent. An independent set
is maximal if no vertex can be added without violating independence. An independent set of
maximum cardinality is called maximum and its cardinality is denoted by α(Γ).

Definition 15 (Class graph) LetL be a full rank lattice in R
n and S ∈ Irr(L)/∼. We define

ΓL (S) to be the graph where the set of vertices V = S and there exists an edge between
�v1, �v2 ∈ V iff ‖�v1 − �v2‖ < ‖�v1‖.
Computing P(L) out of Irr(L) amounts to solving a maximal independence set instance in
ΓL (S) for every class S ∈ Irr(L)/∼. Therefore the complexity of this task highly depends
on the size of the equivalence classes S ∈ Irr(L)/∼ and | Irr(L)/∼|. For average-case
lattices the computational step from Irr(L) to P(L) should almost always be trivial, i.e.
P(L) = Irr(L), as for all S ∈ Irr(L)/∼ it is expected that |S| = 2. In these cases the set
P(L) is uniquely determined.

However, in case the underlying lattice L possesses any kind of structure or symmetries
it is expected that there will be equivalence classes S ∈ Irr(L)/∼ with |S| > 2. In these
cases the computational task of finding a maximal independent set in the corresponding class
graph is not trivial anymore. In such cases the first step is to construct the corresponding graph
ΓL (S), which will take time O(|S|2). Then, naively computing a maximal independent set
(which should always include both ±�v) will take time O(|S|m) where m is the number of
edges in ΓL (S) but, there are better performing algorithms for this task [21]. If we denote
by h the maximum size of a class in Irr(L)/∼ then the time complexity of computing P(L)

out of Irr(L) will be bounded by O(h2| Irr(L)|).
Thus if there does not exist a class Swith |S| exponential to the dimensionn then computing

P(L) out of Irr(L) will take time Õ(| Irr(L)|). In practice, stumbling upon a lattice L
possessing a class S ∈ Irr(L)/∼ where |S| is exponential to the dimension n is highly
unlikely as such a latticewouldbe extremely structured. For the sakeofmathematical curiosity
(and nice graph pictures) we briefly investigate such a case of lattices, namely the Ln for
n ≥ 5 defined in Appendix A. For our exposition we will need the following definition.

Definition 16 (Cayley graph) LetG be a group and T ⊆ G a generating set ofG. The Cayley
graph of G generated by T , denoted Cay(G, T) is the directed graph Γ = (V , E) where
V = G and E = {(g, gs) | g ∈ G, s ∈ T }.
If T = T−1 (T is closed under inverse) then Cay(G, T) is an undirected graph.

In Appendix A we saw that Irr(Ln) = {±2�ei | 1 ≤ i ≤ n} ∪ {±1}n . Hence Irr(Ln)

contains two equivalence classes of sizes 2n and 2n respectively. The class S2:={±1}n which
we will study can be viewed as the group G = Z

n
2. Two elements of S2 are connected if

their difference is shorter than
√
n, thus it is a sum of less than n/4 elements from the set

{±2�ei | 1 ≤ i ≤ n}. In turn this implies that two elements of S2 are connected in ΓLn (S2) if
they differ by a sign in less than n/4 of their coordinates. Thus we can now use the following
observation.

ΓLn (S2) ∼= Cay(G, T#n/4$(G)) (25)

Where G = Z
n
2 and T#n/4$(G):={�x ∈ G | 1 ≤ | supp(�x)| < #n/4$} and supp(�x) denotes the

support of �x . In our case T#n/4$(G) = T−1
#n/4$(G) and thus Cay(G, T#n/4$(G)) is an undirected

graph.5 We are interested in the maximal independent sets of the graph ΓLn (S2), but not in

5 Such type of Cayley graphs are of an interest in coding theory as independent sets of Cay(Zn
q , Td (Zn

q))with
Td (Zn

q) = {x ∈ Z
n
q | 1 ≤ | supp(�x)| < d} correspond to q-ary (n, d) codes.

123

The irreducible vectors of a lattice 641

Fig. 5 The uncoloured Cayley graph Cay(Z4
2, ϕ(T1(Z

5
2))) with generating set ϕ(T1(Z

5
2)) =

{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1)}. For convenience, instead of labelling the ver-
tices of the graph by the elements of Z

4
2, we consider the elements of Z

4
2 as binary representations and assign

the corresponding integer (e.g. (1, 0, 0, 0) maps to 8). This graph can be used in order to compute a represen-
tative set S̃2 for the class S2 = {±1}5 in the L5 = 2D∗

5 lattice. One such set is implied by the black vertices
of the graph. The graph possesses 40 maximal independent sets of cardinality 4 and 16 maximal independent
sets of cardinality 5 (maximum)

all of them. It is additionally required that for every vector �v ∈ S̃2 also −�v ∈ S̃2. This
could be phrased as we work “modulo sign". This property can be translated algebraically
by working in the quotient group H = Zn

2/〈(1, . . . , 1)〉 instead of G = Z
n
2. Using the group

isomorphism

ϕ : Z
n
2/〈(1, . . . , 1)〉 → Z

n−1
2

(xi)
n
i=1 + 〈(1, . . . , 1)〉 %→ (xn + xi)

n−1
i=1

we can transfer the problem to the graph Γsign = Cay(Zn−1
2 , ϕ(T#n/4$(G))). Each indepen-

dent set in Γsign implies an independent set in ΓLn (S2)which possesses the extra property of
the “sign symmetry”. A first remark regarding the set of maximal independent sets of Γsign

is that it is invariant under the group action of Z
n−1
2 . For example, if we consider the graph

in Fig. 5, all 16 maximal independent sets of cardinality 5 can be generated by acting with
Z
4
2 to the given independent set formed by the black vertices.
We briefly experimented with Γsign for the first few values n = 5, 6, 7 in order to get

a first indication of how many maximal independent sets such a graph may have and how
much their size can vary (Table 2).

As the number of maximal independent sets seems to grow super-exponentially in the
dimension n we stopped at n = 7. Even though experimental results are useful in order to
get intuition, theoretical results are those which give the final answer to a question. In our
case there are some theoretical results, originating both from graph theory and coding theory
which bound the sizes we experimented with.

– Let Γ = (V , E) be a graph with |V | = N . In [26] it is proven that Γ can have up to
3N/3 maximal cliques in the worst case, a bound which is tight. Complementary this also
proves that a graph Γ with N vertices can possess up to 3N/3 maximal independent sets
in the worst case.
The results in the same work also imply that the number of different sizes of maximal

123

642 E. Doulgerakis et al.

Table 2 Using SAGE [9] we computed all possible sizes of a maximal independent set of
Cay(Zn−1

2 , ϕ(T#n/4$(Zn
2))) for n = 5, 6, 7 and the corresponding frequency of these sizes

n = 5

Cardinality 4 5

Frequency 40 16

n = 6

Cardinality 6 8 11 16

Frequency 320 300 32 2

n = 7

Cardinality 8 14 16 17 18 19 20 22

Frequency 240 1920 625548 203840 67200 13440 2800 64

independent sets is upper bounded by N − log2 N which is shown to be tight in the worst
case.

– Let Γ be an m-regular graph with N vertices. In [30] it is shown that α(Γ) can be upper
bounded by min{�N/2�, N − m}. This bound is obtainable. In the same work, a lower
bound for α(Γ) is given, depending on m and N . However this bound is not uniform
but depends on number theoretic properties of N ,m. In our case the appropriate lower
bound for α(Γ) would be #N/(m + 1)$.

– As the graph family in question, ΓLn (S2) (and Γsign) is specific, better upper bounds
can be obtained than the general ones given in [30]. This is achieved with the use of
coding theory [16]. In more detail, α(ΓLn (S2)) = A2(n, #n/4$). This equality enables
the use of already known upper bounds on A2(n, #n/4$) from coding theory such as the
Hamming bound [15]. The lower bound implied by [30] for α(ΓLn (S2)) is equivalent to
the Gilbert-Varshamov bound for A2(n, #n/4$).

References

1. Agrell E., Eriksson T., Vardy A., Zeger K.: Closest point search in lattices. Trans. Inform. Theory 48(8),
2201–2214 (2002).

2. Albrecht M., Ducas L., Herold G., Kirshanova E., Postlethwaite E., Stevens M.: The general sieve kernel
and new records in lattice reduction. In: Proceedings of the 38th EUROCRYPT, pp. 717–746. Springer,
New York (2019).

3. Bai S., Laarhoven T., Stehlé D.: Tuple lattice sieving. LMS J. Comput. Math. 19(A), 146–162 (2016).
4. Bonifas N., Dadush D.: Short paths on the Voronoi graph and the closest vector problem with preprocess-

ing. In: Proceedings of the 26th SODA, pp. 295–314. ACM-SIAM, New York (2015).
5. Cabeleira F., Mariano A., Falcao G.: Memory-optimized Voronoi cell-based parallel kernels for the

shortest vector problem on lattices. In: Proceedings of the 27th EUSIPCO, pp. 1–5. IEEE (2019).
6. ChenY.,Nguyen P.Q.: BKZ2.0: better lattice security estimates. In: Proceedings of the 17thASIACRYPT,

pp. 1–20. Springer, New York (2011).
7. Conway J.H., Sloane N.J.: Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices.

In: Proceedings of the Mathematical and Physical Sciences, vol. 436, pp. 55–68. The Royal Society
(1992).

8. Conway J.H., Sloane N.J.: Sphere packings, lattices and groups. Springer, New York (1998).
9. The Sage Developers: Sagemath, the Sage Mathematics Software System. https://www.sagemath.org

(2019).
10. Doulgerakis E., Laarhoven T., de Weger B.: Finding closest lattice vectors using approximate Voronoi

cells. In: Proceedings of the 10th PQCRYPTO, pp. 3–22. Springer, New York (2019).

123

https://www.sagemath.org

The irreducible vectors of a lattice 643

11. Ducas L., Laarhoven T., van Woerden W.: The randomized slicer for CVPP: sharper, faster, smaller,
batchier. In: Proceedings of the 23rd PKC, pp. 3–36. Springer, New York (2020).

12. Elkies N.: Theta functions and weighted theta functions of euclidean lattices, with some applications.
http://people.math.harvard.edu/~elkies/aws09.pdf (2009).

13. Falcao G., Cabeleira F., Mariano A., Paulo Santos L.: Heterogeneous implementation of a Voronoi cell-
based SVP solver. IEEE Access 7, 127012–127023 (2019).

14. Gama N., Nguyen P.Q., Regev O.: Lattice enumeration using extreme pruning. In: Proceedings of the
29th EUROCRYPT, pp. 257–278. Springer, New York (2010).

15. Hamming R.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950).
16. Hopkins M.: Representation-theoretic techniques for independence bounds of Cayley graphs. Bachelor

thesis (2018).
17. Hunkenschröder C., Reuland G., Schymura M.: On compact representations of Voronoi cells of lattices.

In: Proceedings of the 20th IPCO, Lecture Notes in Computer Science, vol. 11480, pp. 261–274. Springer,
Berlin (2019).

18. Kabatiansky G., Levenshtein V.: Bounds for packings on a sphere and in space. Problemy Peredachi
Informatsii 14, 3–25 (1978).

19. Laarhoven T.: Sieving for closest lattice vectors (with preprocessing). In: Proceedings of the 23rd SAC,
pp. 523–542. Springer, Berlin (2016).

20. Lenstra A.K., Lenstra H.W. Jr., Lovász L.: Factoring polynomials with rational coefficients. Math. Ann.
261(4), 515–534 (1982).

21. Luby M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4),
1036–1053 (1986).

22. Micciancio D., Goldwasser S.: Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer
Academic Publishers, Boston (2002).

23. Micciancio D., Voulgaris P.: A deterministic single exponential time algorithm for most lattice problems
based on Voronoi cell computations. In: Proceedings of the 42nd STOC, pp. 351–358. ACM Press, New
York (2010).

24. Micciancio D., Voulgaris P.: Faster exponential time algorithms for the shortest vector problem. In:
Proceedings of the 21st SODA, pp. 1468–1480. ACM-SIAM, New York (2010).

25. Minkowski H.: In: Gesammelte Abhandlungen von Hermann Minkowski, vol. 2, pp. 103–121 (1911).
26. Moon J.W., Moser L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965).
27. Nguyen P.Q., Stehlé D.: Low-dimensional lattice basis reduction revisited. ACM Trans. Algorith. 5(4),

46:1-46:48 (2009).
28. Nguyen P.Q., Vidick T.: Sieve algorithms for the shortest vector problem are practical. J. Math. Cryptol.

2(2), 181–207 (2008).
29. Rajan D.S., Shende A.M.: A characterization of root lattices. Discret. Math. 161, 309–314 (1996).
30. Rosenfeld M.: Independent sets in regular graphs. Israel J. Math. 2, 262–272 (1964).
31. Sommer N., Feder M., Shalvi O.: Finding the closest lattice point by iterative slicing. SIAM J. Discret.

Math. 23(2), 715–731 (2009).
32. SURFsara: The Lisa cluster. https://userinfo.surfsara.nl/systems/lisa (2019).
33. The FPLLL development team: fplll, a lattice reduction library. https://github.com/fplll/fplll (2019).
34. Viterbo E., Biglieri E.: Computing the Voronoi cell of a lattice: the diamond-cutting algorithm. IEEE

Trans. Inform. Theory 42, 161–171 (1996).
35. Voronoi G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deux-

ième mémoire. recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198–287 (1908).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://people.math.harvard.edu/~elkies/aws09.pdf
https://userinfo.surfsara.nl/systems/lisa
https://github.com/fplll/fplll

	The irreducible vectors of a lattice:
	Some theory and applications
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Motivation–future work

	2 Preliminaries
	3 Previous work
	4 Irreducibility of lattice vectors
	4.1 The set of irreducible vectors
	4.2 A complete system of irreducible vectors

	5 Computation of the set `3́9`42`"̇613A``45`47`"603AP(mathcalL)
	5.1 The ``brute force'' approach
	5.2 Using the `3́9`42`"̇613A``45`47`"603AGaussSieve/`3́9`42`"̇613A``45`47`"603AMinkowskiSieve algorithms
	5.3 Experimental results

	6 Applications of `3́9`42`"̇613A``45`47`"603AP(mathcalL)
	6.1 `3́9`42`"̇613A``45`47`"603AP(mathcalL) in the study of shortest vector(s) problems
	6.2 Using `3́9`42`"̇613A``45`47`"603AP(mathcalL) in CVPP algorithms

	Acknowledgements
	Appendix A Corner cases among S1(mathcalL), `3́9`42`"̇613A``45`47`"603AIrr(mathcalL), and R(mathcalL)
	Appendix B Some graph-theoretical aspects
	References

