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Abstract
In contemporarymagnetic confinement devices, the density distribution is sensedwith interferom-
eters and actuatedwith feedback controlled gas injection and open-loop pellet injection. This is at
variancewith the density control for ITER andDEMO, that will dependmainly on pellet injection as
an actuator in feed-back control. This paper presents recent developments in state estimation and
control of the electron density profile for ITERusing relevant sensors and actuators. As afirst step,
Thomson scattering is included in an existing dynamic state observer. Second,model predictive
control is developed as a strategy to regulate the density profile while avoiding limits associatedwith
the total density (Greenwald limit) or gradients in the density distribution (e.g. neoclassical impurity
transport). Simulations show that high quality density profile estimation can be achievedwith
Thomson Scattering and that the controller is capable of regulating the distribution as desired.

1. Introduction

Future reactors, such as ITER andDEMO, aim to have a net energy gain [1]. This requires these reactors to
operate close to physical limits and to optimize quantities such as temperature, density, and confinement. In
practice, shot-to-shot differences in reactor conditionswill always be present and the optimal control actionwill
vary subject to the plasma scenario and plasma state.Hence, active plasma feedback control is essential in
achieving these requirements [2].

In a tokamak, the produced fusion power directly correlates to the density in the hot core of the reactor [3],
particle transport and non-inductive current drive depend on the gradient of the spatial particle distribution
[4, 5], a.k.a the (particle) density profile. Furthermore, turbulence and impurity transport depend on the
logarithmic gradient of the density profile [6–8] and the density is subject to limits that can lead to detrimental
plasma instabilities when violated [9–11]. Consequently, for optimal and reliable high-performance operation
of fusion reactors, particle density profile estimation and control aremandatory [12–15].

To synthesize such controllers,model-based control design is required as experimental time for tuning and
validation on reactors such as ITERwill be scarce and expensive [16, 17].Model-based design has already
successfully been applied to synthesize controllers for plasma shape [18] and profiles in a tokamak [19–22].
Especially, in [23], a controller for the current density profile is presented that can handle plasma limits and
actuator constraints simultaneously. The design procedure requires a control-orientedmodel of the input-
output dynamics, i.e., amodel that captures themain dynamic relationships between inputs (actuators) and
outputs (plasma quantities) to be controlled.

Recently, the control-orientedmodel RAPDENSwas developed for the particle transport dynamics in a
tokamak [24]. Thismodel has been used to performdensity profile estimation in TCV andAUGwith
interferometry and spectroscopy [24, 25], to design a controller for the volume-averaged density during the
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ITER ramp-upwith pellets and gas [26], to estimate the core density in density control experiments with pellets
in AUG [27], and to derive a controller for the volume-average density in TCVusing gas injection [25].

However, a controller for the particle density distribution,: (a) that is capable of handling shot-to-shot
differences; (b) can handle state physical limits; (c) and usesmultiple actuators is one key research and
development aspect still to be solved for a fusion reactor.

In this work, a two-stepmodel-based approach is proposed to develop such a density profile controller for
ITER. Thefirst is the estimation (or reconstruction) of the particle density profile with an observer and relevant
sensors. The second is the design and validation of amodel-predictive controller for the density profile using two
pellet injectors.

For thefirst step, RAPDENS [24] is applied to ITER and extendedwith a Thomson scattering (TS) output
model. Subsequently, themodel and synthetic TSmeasurements are used together in an extended version of the
dynamic state observer (DSO) proposed in [24] to reconstruct the density profile. Simulations of the observer are
used to determine the quality of the achieved profile estimation for anH-mode, 15MA, 5.3 T, DT ITERbaseline
discharge.

For the second step,model-predictive control (MPC) is applied to synthesize a controller for the density
distribution in ITERusing pellet injection asmain actuator. For the first time, constraints on the density profile
due to impurity transport are taken into consideration in the control problem. Simulations using the lightweight
control-oriented plasma simulator RAPDENS are used to assess the effectiveness of the controller.

The remainder of this paper is structured as follows. Section 2 briefly summarizes the control-oriented
model used for design and simulation. The forward TSmodel and theDSO are presented in section 3. The
density reconstruction results are presented in section 4. The controller designmethodology is described in
section 5 and the results of control simulations are shown in section 6. This paper is concluded by a discussion of
thework in section 7.

2. Control-oriented plasma simulator

In this work, we have used and extended the RAPDENSmodel (originally proposed in [24]) for theDSO and the
synthesis of theMPC controller. A summary of themodel is given here.

The RAPDENSmodel is a lightweight, control-orientedmodel of the electron particle transport in a
tokamak [24]. It is amulti-inventorymodel inwhich the particles inside the vessel are attributed to one of three
inventories: the plasma, thewall, or the vacuum.Note that the vacuumdenotes the region surrounding the
plasma that isfilledwith neutrals. However, the name ‘vacuum’ is kept for continuity and conherence with
previous papers onRAPDENS. Themodel consists of a 1D-PDE for the evolution of the flux-surface averaged
electron density and twoOD-ODE’s for the evolution of thewall and neutral vacuum inventories. Radial particle
transport ismodeledwith a drift-diffusionmodel with ad-hoc chosen transport coefficients. The processes that
drive the particle exchange between these inventories aremodeled in a heuristic fashion. An overview is given in
figure 1. Additionally, it contains representations of the fuelingwith neutral beam, pellet and gas injection. A
summary of themodel equations is given is appendix A. The full details and derivations of themodel equations
are outside the scope of this paper and can be found in [24].

For the applications reported in this paper, RAPDENS is used to formulate a systemof nonlinear discrete-
timeODEs that describes the evolution of the plasma density due to relevant actuator inputs. The internal
variables of themodel (states), the external parameters, the considered actuators inputs, and the systemofODEs
are briefly discussed next.

2.1. States
In RAPDENS, the flux-surface averaged electron density distribution ne(ρ, t) is discretized in space usingfinite
elements (see e.g. [29]), i.e, the electron density is approximated by

( ) ( ) ( ) ( )år r= L
a

a a
=

n t b t, , 1e

m

1

where ρ is the normalized toroidal flux. The basis functionΛα: [0, ρe]→ [0, 1],α= 1, 2,K,m are defined as
cubic B-splines withfinite support [30] (ρe> 1 being the artificially prolonged flux label to encompass the
scrape-off layer. This is discussed inmore details in [24]). The variables ( ) Îa b t m are time dependent spline
coefficients. These coefficients together with the time dependent wall and vacuum inventories, respectively
denotedNw(t) andNv(t), comprise the state vector ( ) Î x t nx with nx=m+ 2, i.e., the state vector is given by

[ ]( ) ( ) ( ) ( ) ( )= x t b t N t N t . 2w v

2
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2.2. External parameters:
RAPDENS requires external parameters to be provided in an external parameter vector ( ) Î p t defined as

[ ] ( )k y y= ¢p c c T I V V G G , 3D H e b p axis LCFS, 1 0

where cD indicates limited (cD= 0) or diverted (cD= 1) plasma, cH implies low confinement (cH= 0) or high
confinement (cH= 1) regime,Te,b is the electron temperature at the last-closed flux surface (LCFS), Ip is the
plasma current,V is the plasma volume, ¢ =V dV dt , andκ is the plasma elongation,ψaxis andψLCFS are the
equilibriumψ(R,Z) evaluated at themagnetic axis and LCFS, ( ) )r= á  ñG1

2 andG0= 〈|∇ρ|〉with

( )∣ ∣ ∣ ∣r yá  ñ = á  ñ y
r

¶
¶

-1
(where 〈 · 〉 denote the flux-surface average).

2.3. Inputs
The particle fueling rate by pellet injection ( )G " = ¼t i n1, ,pellet

i
u, where nu is the number of used pellet

injectors, comprise the inputs ( ) Î u t nu to themodel3. The input vector is defined as

⎡⎣ ⎤⎦( ) ( ) ( ) ( )= G ¼ G


u t t t, , . 4pellet pellet
n1 u

2.4. Nonlinear systemofODEs
The spatial discretization of the density profile (1) is inserted in (A.1)–(A.5) and discretized in time using an
equidistant temporal discretization tk= t0+ kTs to form the nonlinear set ofODEs

( ) ( ( ) ( ) ( )) ( )=+x t f p t x t u t, , , 5k k k k1

where ´ ´    f : n n nx u x is a nonlinear function4 of the state that represents the state evolution due to
physical phenomena and the influence of the actuators.

This formulation is the foundation of thework presented in the coming sections. In sections 3 and 4, it is
used to perform state estimation and in sections 5 and 6, it is used to derive and test a density profile controller.

3.Dynamic state observer for the density profile

A requirement to performprofile control is the estimation of the profile from availablemeasurements. For this
purpose, a dynamic state observer (DSO)was proposed in [24, 25]. In this section, we summarize theDSOand

Figure 1.Overview of themodeled processes in the RAPDENSmodel. The particles inside the tokamak are attributed either to the
plasma, thewall or the vacuum.Green arrows represent themodeled particlefluxes between the inventories. Orange arrows represent
particle fluxes crossing the systemboundaries. Reproduced from [28]CCBY4.0.

3
Note that RAPDENS also containsmodels for gas fueling andNBI but these are not considered in this work.

4
Note that for themodeling is this paper, the function f is linear with respect to u. Hence, (5) can be rewritten as x(tk+1) = f (p(tk),

x(tk)) + Bd(p(tk))u(tk), whereBd is a parameter varyingmatrix.

3
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wepresent a forward diagnosticmodel for TS that will allow us to performprofile estimations using TS
measurements.

Notation 1: Let a generic variable e(t) be a physical quantity of a real system. The estimate of this quantitymade by aDSO at time =t tk1 with

diagnostic signals from time =t tk2 is denoted as ˆ ∣ek k1 2.

3.1. Forward Thomson scatteringmodel
TheDSO is comprised of a predictionmodel, a diagnosticmodel, and an observer gain (seefigure 4). The
original observer, developed in [24, 25], included diagnosticmodels for interferometry and bremmstrahlung but
not for TS.Here, we discuss the inclusion of a TSmodel that will allowus to performdensity estimationwith TS
measurements.

TS systems are used in tokamaks tomeasure the radially resolved distributions of electron temperature and
density [31]. In combinationwith knowledge of the 2D equilibrium, the spatialmeasurements ne(R,Z, t) can be
transformed into equilibriummeasurements of the density ne(ρ, t) at known equilibrium locations r̄i with
i= 1,K,nTS. nTS denotes the total number of radialmeasurement locations. The spatial resolution of the ITER
core TS system is 67mm [32], which, in a typical ITERplasmawith a radius of rp≈ 2m, provides≈29
measurement locations distributed over the high and low field side. In this work, to be conservative,
ny= nTS= 11 is chosen.

TheTS output vector Î y nTS should contain the plasmadensity evaluated at the correspondingflux labels r̄i,
i.e.,

⎡⎣ ⎤⎦( ) ( )∣ ( )∣ ( )¯ ¯r r= r r


y t n t n t, , . 6e e nTS1

The relation between (2) and (6) is obtained by evaluating the basis functions used for spatial discretization in (1)
at ¯r r= " = ¼i n1, ,i TS. Inserting the spatial discretization (1) in (6) results in the numerical expression of the
output vector as function of the b-spline coefficients:

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

( )
( )∣ ( )

( )∣ ( )
( )

¯

¯


r

r
=

å L

å L

a a r a

a a r a

=

=

y t

b t

b t
, 7

m

m

1

1 nTS

1

where ( )∣¯rL ri are the basis function evaluated at the corresponding radial locations. By definingL Î ´TS
n mTS

thematrix containing the basis function evaluated at all the nTS radial locations, we can formulate an output
mapping ⎡⎣ ⎤⎦( ( )) L= ´C p t 0TS

n 2TS such that the forward outputs are given by

( ) ( ( )) ( ) ( )=y t C p t x t . 8

The outputmappingC changes as function of the equilibrium, hence, it depends on the parameter vector p(t)
introduced in a previous paragraph. For the simulations presented in this work however, it is assumed for
simplicity that themeasured locations are constant.

3.2.Working principles of the observer
Adynamic state observer (DSO) is an algorithm that usesmeasurements to constrain predictionmade by a
dynamicmodel to iteratively estimate the internal state of a system. A brief overview of theworking principles of
the observer is given here,more details can be found in appendix B.

In the case of the density distribution, we are dealingwith a nonlinear system.Hence, we are using the
extendedKalmanfilter (EKF) framework [33] (see appendix B.2) to estimate the density. The algorithmworks as
follows. At each time step, the latestmeasurements ỹk are comparedwith the predictedmeasurements ˆ ∣ -yk k 1 to
form the residual zk (B.2). The residual ismultiplied by theKalman gain (B.4) and used to updated the predicted
state ˆ ∣ -xk k 1 to obtain the state estimate ˆ ∣xk k. Finally, the predicted state ˆ ∣+xk k1 andmeasurement ˆ ∣+yk k1 at the
next time step are computed using RAPDENS (5) and the forward diagnosticmodel (8).

The performance, stability, and robustness of the observer depends on the choice of themeasurement
covarianceRk, the process covarianceQ

x
k, and the disturbance covariance

zQk . This is detailed in section 4.2.
In this section, we included a forwardTSmodel in aDSO.With this addition, TSmeasurements can be used

to perform estimations of the density profile. In the next section, the performances of the observer are assessed
for ITER.

4
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4.Density profile estimation in ITERbaseline simulations using Thomson scattering
measurements

In this section, density estimation simulations are discussedwherewe demonstrate the effectiveness of using TS
measurements to update the state predictions in theDSO. First, we introduce the simulated plasma scenario and
argue the choice of the covariancematrices, i.e. the tuning knobs of an EKF. Subsequently, we discuss the
simulation set-up and present the observer’s performance in a simulationwith plant-observermodelmismatch
and realistic noise levels.

4.1. Plasma scenario
The observer is used to estimate the density profile with TSmeasurements for an ITERH-mode, 15MA, -5.3 T,
baseline discharge. ITER shot 134 173 is chosen as reference scenario as it is up to date themost complete
prediction of an ITERbaseline discharge available.

The scenario is obtainedwith an integratedmodel (IM) simulation [34]. The simulationwas performed as an
open-loop couplingwithin IMAS [35] of the free boundary equilibrium codeDINA [36–38]with the JINTRAC
[39] suite of codes. The baseline scenario was assessed from the formation of the X-point to the transition from
X-point to limiter. The time evolution of relevant plasma parameters are given infigures 2(a)–(c).

In the reference scenario, the ramp-up ismodeled to last for 75 s with the L-H transition being triggered by
the increase in auxiliary power. Theflat-top ismodeled to last from t= 75 s to t= 730 s. During that time the
particle source is pellet injectionwith a pellet composition of 50%deuterium and 50% tritium atoms. It is
represented as a continuous source of 2.3× 1022 atoms/s deposited at ρ= 0.85withGaussian deposition profile
with normalized depositionwidth of 0.15.

Figure 2.Reference scenario ITER#134173. Evolution of the heating power (a); plasma current and toroidalmagnetic field (b);
central plasma density and temperature (c); and distributions of density and temperature for t = 436 s (d)–(e). The vertical dashed line
indicates the time for which the distributions are shown.

5
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4.2.Design of covariancematrices
The accuracy, convergence speed, and robustness of the state estimation depends on the choice of the covariance
matricesRk, Q

x
k, and

zQk [33]. The choice of thesematrices is discussed here.
Themeasurement covariancematrixRk is chosen as a diagonalmatrix with the square root of themodeled

noise covariance on the diagonal (themodeled noise is discussed in section 4.3). Note that this assumes that each
TSmeasurement location is an uncorrelated individual output.

The process covariancematrixQk
x is constructed as a symmetric Toeplitzmatrix5 with descending first row.

The values on thefirst row of the Toeplitzmatrices determine the spatial correlation between the estimates and is
chosen as exponentially decaying. The disturbance covariancematrix zQk is constructed as a diagonalmatrix.

Themagnitude of the entries ofQk
x and zQk reflect the amount of trust in themodel predictions and influence

theKalman gain (B.4) [33]. A low observer gain reflects small trust inmeasurements and high trust in themodel
predictions. Hence, the EKFwill react slowly to the differences betweenmeasurements andmodel predictions. A
low gain avoids fitting the noise but reliesmore heavily on themodel predictions,making the reconstruction
more sensitive tomodeling errors. On the contrary, a highKalman gain reflects high trust in themeasurements
and largemodel uncertainty. TheDSOwill react fast to discrepancies betweenmodel andmeasurements. The
reconstructionwill bemore robust tomodeling error but sensitive to diagnostic noise and errors.

Themagnitude of the covariancematrices’ entries are chosen based on a preliminary analysis of RAPDENS
for ITER. The heuristic parameters of RAPDENS are tuned to approximate theflat-top plasma behavior of the
reference discharge scenario described in section 4.1. From the analysis, it is concluded that themodel had good
predictive capabilities inflat-top but thatmodeling of the L-mode and L-H transition is not fully accurate.
Hence, a highKalman gain is chosen in the ramp-up and ramp-down phases and a lowKalman gain is chosen
duringflat-top. Furthermore, it was observed that the density predictionmismatched at the edge of the plasma.
Hence, the diagonal entries ofQx

k corresponding to the edge of the plasmawere increased (see figure 3).

4.3. Simulation set-up
Before proceeding to the estimation results, we briefly describe the set-up of the simulation used to evaluate the
observer’s performances. A visual depiction of the simulation set-up is given infigure 4. The EKF is simulated for
the entire discharge presented in section 4.1. The external parameters required to runRAPDENS (see section 2),
the particle inputs, the initial conditions, and the ’real’ (to be estimated)density profile are taken from the
database of the IM simulation.

The heuristic parameters of RAPDENS that were tuned to approximate the flat-top plasma behavior in the
preliminary analysis are used in the estimation simulation.However, to represent inaccurate knowledge of the
transport and investigate the performance of the observer withmodel uncertainty, systematic plant-observer
modelmismatch ismanually introduced by changing the tuned transport coefficients and the pellet spatial
deposition function.

Furthermore,measurement inaccuracies and noise are included in the simulationwith synthetic TS
measurements ỹk. They created by adding artificial noise to the density profile computed by the IM.While the

Figure 3.Graphical representation of thematrixQx
k for the lowKalman gain.

5
AToeplitz matrix is amatrix of which the values on the diagonals are constant.

6

J. Phys. Commun. 5 (2021) 115015 TOS J Bosman et al



signal-to-noise ratio (SNR) for TS depends on Poisson statistics [40] and thus scales with n1 e , we choose to

model the noise as aGaussianwith expected value [ ]D = 0TS and covariance ( )s = * n0.05 maxk e
2 . This way,

we approximate the required accuracy of the TS system [32] and account for sources of noise such as shot noise,
thermal noise in the detection circuit, noise due to plasma light, and noise due to neutron damage on optics
installation [41, 42]. It is important to note that Thomson scattering can also be affected by systematic errors,
such asmisalignment or due to inaccuracies in the equilibrium reconstruction. These are not accounted for in
this work.When using ‘real’Thomson scatteringmeasurements, detection and correction for these errors can be
performed by integrating the Thomson scattering data with other diagnostics in the observer. This is elaborated
further in section 7.

4.4.Density profile estimation results
The simulation results are shown infigure 5. The estimation error, depicted infigure 5(b), is expressed as the
normalized 2-normof the error vector: ∣∣ ˆ ∣∣ ∣∣ ∣∣∣ -y n nk k e e2 2, where ˆ ( ) ˆ∣ ∣=y C p xk k k k k withC(pk) defined in (8)
and ne the density profile of the IM simulation. Only the part of the profilemeasured by the core TS system [32],
i.e., 0� ρ� 0.9, are used in the error computation.

Overall, good density reconstruction performances can be seen for the entire profile, i.e., the estimated
densities are shown to correctly track the true densities (see figure 5(a)). The normalized estimation error
averages around≈10%during the ramp-up and≈2% for theflat-top (seefigure 5(b).

During the ramp-up and the L-H transition, from t= 0 s to t= 75 s the effect of the highKalman gain can
clearly be distinguished. During that time, the artificialmeasurement noise is visible in the estimation, as can be
seen infigure 5(b). Decreasing theKalman gain during this phase would reduce the influence of noise but
increase the overall estimation error as themodel is not accurate for the early stages of the discharge.

An increase in the estimation error can be seen between t= 75 s and t= 90 s. At t= 75 s, the plasma enters
H-mode. Aswas discussed in section 4.2, the observer gain is changed from a high to a lowKalman gain at that
time. Thismeans that the observer reliesmore on themodel predictions. Themodeled density increase in early
H-mode is steeper in RAPDENS, hence, the density profile is overestimated (see figure 5(d)). This could be
solved by slowly transitioning froma high to a low observer gain once the plasma entersH-mode. After t= 90 s,

Figure 4.Block diagramof theDSO and the set-up used for the density estimation simulations for ITER. The external parameters, the
particle fueling rates, and the initial conditions are taken from the ITERdatabase and used to simulate RAPDENS. The ‘real’ density
distribution is used to synthesize synthetic TSmeasurements.

7
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the estimation error decreases rapidly. A good agreement can be seen between the estimated and real density
profile for theflat-top (see figure 5(e)).

This section shows that using TSmeasurements to update the predictionsmade by the RAPDENSmodel in
an EKF results in accurate density profile estimations. Furthermore, the quality of the estimation is deemed
sufficient to be used for profile control, especially during theflat-top.

5.Design of anMPCcontroller

In this section, the design of anMPC controller for the density distribution is presented.Wefirst introduce the
concepts ofMPC andmotivate the use of this strategy for the control of the density distribution. Subsequently,
we discuss in detail each component of the controller.

5.1.Model predictive control
Model-predictive control (MPC) is widely adopted as an effective control strategy to deal withmultivariate
constrained control problems [43, 44]. A block diagramof anMPC controller is given infigure 6(a).

In such a controller, an explicitmodel of the to be controlled system is used to predict future states/outputs
over a prediction horizon (denoted Î N ). These predictions are used to formulate an optimal control
problemwhere the future tracking error, i.e. the difference between the desired and predicted future outputs is
minimized. Limits on the output, states, and inputs can be taken into account as constraints in the optimal
control problem. This is illustrated for a discrete-time, single-state single-input system infigure 6(b).

The design of anMPC controller consists in: choosing a predictionmodel, formulating a cost function that
encompasses the control objectives, formulating constraint functions that translate physical limits of the plasma

Figure 5.Results of density estimation simulations for ITER#134173 using synthetic TS data to update the state predictions. Plant-
observermismatch is present. Frame (a)The estimated density (faded) is comparedwith the IMdensity (solid) for fourflux labels.
Dashed vertical lines show the time at which the profiles are shown. Frame (c)–(e)The estimated density profile (red) is comparedwith
the real density profile (black). The TSmeasurement points are shown (orange). The observer is capable of accurately estimating the
density profile. The estimation is of best quality during theflat-top part of the discharge.
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and actuators as state and input constraints, and implementing and solving the optimal control problem in a
numerical optimization solver. These steps are discussed in the coming sub-sections.

5.2. Control objectives andmotivation forMPC
Weaim to synthesize a controller that satisfies the following control objectives:

(i) Track a high-performance reference density profile in a region of interest (ROI).

(ii) Guaranteeing that theGreenwald density limit is not being violated.

(iii) Optimizing impurity transport in the ROI.

Note that these objectives are generic, in section 6.1 the objectives are refined for the specific control simulations.
To control the density profile, the controller will have access tomultiple actuators, e.g.,multiple pellet

injectors [45], and it will have access to the reconstructed density profile. The control of the density profile is thus
amultivariate control problem. Additionally, theGreenwald density and the optimization of impurity transport
can be formulated as state and inputs constraints. Hence, the control problem at hand can be classified as
multivariate and subject to state and actutator constraints, which is exactly the type of problem forwhichMPC is
suited.

5.3. Predictionmodel
Thefirst component of aMPC controller is an explicitmodel of the systems dynamics. In this work, we use a
linear disturbance-augmentedmodel derived fromRAPDENS for this purpose.

The predictionmodel is derived as follows. First, the nonlinear state-space (5) is linearized around the
desiredflat-top conditions {xft, pft} to obtain a linear approximation of the flat-top transport dynamics. Next, as
theMPC controller runs in discrete-time, the continuous timemodel is discretized temporally by exact
discretization using an equidistant temporal discretization tk= t0+ kTs, withTs= 3ms. This results in a
discrete-time linear state-space given by

Figure 6. (a)Block diagramof themain components of aMPC controller. (B) Illustration ofMPC for a discrete-time single-input
single-output systemwith constant state and input constraints.
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Next, to incorporate integral action and enable the controller to compensate for steady-state offsets induced by
modelmismatch and slow changing disturbances, a disturbancemodel as proposed in [46, 47] is used. To do so,
(9) is augmented to
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such that it includes the disturbance ( ) Î =d t n nd y with disturbancemodelmatricesBd andCd. Thesematrices
are chosen to guarantee the observability of the augmented system (10) [47].

Thefirst condition for the augmented system to be observable is that the non-augmented system is
observable. The local linearmodel (9) (with state vector (2)) contains twounobservable states. These are the
particle inventories of thewallNw and vacuumNv. Hence, for the controller we use theminimal realization of
input-output dynamics. Next, we choose =B Id

n n,x d and =C Id
n n,d d, such that

⎡
⎣

⎤
⎦

( )-
= +

A I B
C C

n nrank . 11d

d
x d

guaranteeing that the augmented predictionmodel is observable [47].

Notation 2: For a systemwith state variable x and input variable u, we distinguish between the system’s state at time t = tk denoted x(tk) and
the predicted state at time t = tk + i denoted xi,k. Analogously, u(tk) denotes the input to the system at time t = tk andui,k denotes the

input that would be applied at time t = tk + i.

Using notation 2, the discrete-time linear disturbance augmented state-space predictionmodel is then given
by
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where xi,k, di,k, yi,k, and ui,k denoted the predicted state, disturbance, output and control input at Î i time steps
ahead of the starting time t= tk.

By introducing, for a given prediction horizonN, the stacked notations
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the compact formulation of the entire prediction sequence is given by

( ) ( ) ( )= + +  X Ux t d t , 14k x k u k d k

the stacked predictionmatrices x , u, and d are derived inC.1.
The predictionmodel allows us to relate an unknown input sequenceUk to the current state x(tk) and current

disturbance d(tk). In the coming sections, an optimal control problem is formulated using thismodel that can be
used to compute an optimal input sequence.

5.4.Disturbance estimation
The disturbance d(tk) introduced in (10) is estimated at each time instance using a Kalmanfilter (KF). TheKF
equations can be found in appendix B. The performance and stability of the observer (and partially that of the
controller) are determined by the choice of themeasurements covariance and the disturbance covarianced.
They have been tunedmanually and chosen as diagonalmatrices with = ´ - I5 10 n

3
y
and = ´ - I1 10d n

6
d

With this design, the estimate of the disturbances converges in≈ 2 s. After convergence, the predictionmodel is
capable of dealingwith systematic and slow-varying plant-modelmismatches.
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5.5. State and actuator constraints
Next, the construction of the constraints functions is explained. The constraint functions are used to constraint
the future states and inputs in the optimization problem.

Three different type of constraints are imposed on the system in this work: linear input constraints to
represent theminimal andmaximal fueling rates of the pellet injectors, linear state constraints to represent the
Greenwald density limit, and nonlinear state and input constraints to optimize impurity transport.

First, linear constraints are defined to represent actuator limits and plasma density limit. As shown in
appendix C.2, these constraints can be formulated as linear inequality constraints on the input sequenceUk as

( )UA b . 15kineq ineq

Second, a nonlinear constraint is imposed to the states and inputs that translate the desire to optimize
impurity transport. A condition for outward neo-classical impurity transport can be derived as a favorable ratio
between the logarithmic ion temperature gradient LTi

and the logarithmic density gradient Lne
, i.e.,

⪆ h »L L 1T n ici e [6]. Assuming typical peaked temperature and density profiles in ITERflat-top, the ratio can
be used to formulate an inequality constraint on the logarithmic gradient of the density profile:
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Note that a soft constraint formulation is used to avoid infeasibility of the optimization problem [48]. In such a
formulation, violation of the constraint is allowed but penalized via the parameter ò and the costmatrixWò in the
cost function (see (18)). In appendix C.3, the constraint is formulated as a nonlinear function of the state, control
input, disturbance estimate, and soft constraint parameter. The nonlinear constraint function g1(xk, uk, dk, ò) is
defined as (time dependence denoted by subscript k for readability):
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The linear and nonlinear constraints are used to constrain the optimization problem.With their inclusion the
controller accounts for physical limits of the system (actuator and plasma) and the density profile—inward
impurity transport interaction.

5.6. Cost function
The objective of the controller is to track the high-performance reference rkwhile avoiding aggressive control
and violating the constraints. This is expressed in the cost function Jk as:

¯ ( ¯ ¯ ) ( )     = - + å - + - +=
- J x x x x u u W , 18k N k N P j

N
j k j W j k j W,

2
0
1
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2
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where for a givenmatrixT and vector x of appropriate dimensions, we define   x x TxT
2 . x̄i and ūi are the

desired steady-state states and control inputs, i.e., the states and inputs that are to be reached for the reference to
be tracked. They are computed using
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where (A,B,Bd,C,Cd) are thematrices of (10) and { }ÎH 0, 1 n n,z x is the controlled variablematrix.
In (18), the stage state costmatrixWx is used to penalize deviations between the desired steady-state state and

the future predicted states, up to but excluding the terminal state (xN,k). The stage input costmatrixWu is used to
weigh the inputs and avoid aggressive control actions. The terminal state costmatrix P is used to penalize the
deviation of the terminal state. Finally, soft constraint violation costmatrixWò is used to penalize the violation of
the nonlinear state constraint (see section 5.5).

An iterative procedure is used to choose theweights. ThematrixWx is chosen as a block-diagonalmatrix of
twomatrices: one being aweighted unity, the other being a zeromatrix. The dimensions of thesematrices ensure
that only the states that parametrize the ROI are penalized. ThematrixWu is chosen as aweighted unitymatrix,
i.e.,Wu= 5 · 10−3I, andmatrixWò is chosen as positive definite diagonalmatrix withWòfQ. Finally, P is
chosen as the solution of the discrete algebraic Riccati equation

( )( ) ( ) ( )= - + +-   P A PA A PB B PB W B PA W . 20u x
1

By defining theseweights, the cost function J is convex and quadratic inUk [49].
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5.7.Optimization problem
The future inputsUk are computed byminimizing the cost function (18) subject to the constraints (15) and (17).
Using the predictionmodel, the nonlinear online optimization is defined as:

( ˆ ˆ )
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∣+ + + + 
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Thematricesu u, ,u x, ,u d, , andu r, are defined inC.4. The optimization problem is nonlinear due to the
presence of the impurity transport constraint (17). Therefore, sequential quadratic programming [50] is used to
solve the problem.Due to the nonlinear constraint, no guarantee on convexity (and global optimality) can be
given.

Once an ‘optimal’ solutionUk* of (21) is obtained, thefirst nu entries of the optimal sequence are applied as
control inputs to the system. In the next section, the results of control simulations are shown to test the
performance of the controller.

6. Simulation results of closed-loop density distribution control

In this section, we present control simulations that were used to test theMPC controller. Note that it is not the
objective of these simulations to provide quantitative estimates of the ITERperformance or controllability of a
particular scenario, but to illustrate the potential ofMPC control for the density profile and help identify
challenges that remain to be solved.

First, we discuss the simulation set-up and refine the control requirements. Next, we demonstrate tracking
of a high-performance density profile whileminimizing inward impurity transport. This is done in simulations
with plant-controllermodelmismatch and a continuous pellet representation.

6.1. Simulation set-up and control requirements
The considered actuators to perform control are the pellet injection systems that have their injection location
situated at the highfield side (HFS). During ITERbaseline operation, twoHFS PIS are plannedwith the
possibility to expand to four [45]. The control inputs (signals changed by the controller) u(tk) are chosen as the
fueling rates of the PIS and defined as

⎡⎣ ⎤⎦( ) ( ) ( ) ( )= G G 
u t t t . 22k p k p k,1 ,2

The deposition function aremodeled as parabolic functionswith normalized radius ρp,1= 0.7 and ρp,2= 0.85
and normalizedwidths ofwp,1= 0.3 andwp,2= 0.15. These represent obtainable fueling profiles for 3 and 5 mm
pellets in ITER [51].

The controlled variables z(t) are the density profile evaluated on an equidistant equilibrium grid for
0� ρ� 0.9. Similarly, the control reference r(t) is the desired density profile evaluated on the same equilibrium
grid. The controller is synthesized using this nominal configuration.

To assess the performance of the controller in simulation, the control objectives discussed in section 5.2 are
named and specified as follows:

(i) Error (Err) requirement: The controller can maintain the average tracking error below 5%. The tracking
error is expressed in the normalized 2-normof the error vector: ||z(tk)− r(tk)||2/||r(tk)||2.

(ii) Greenwald (Gw) requirement: The controller can guarantee that the line-average density will not exceed
theGreenwald density nGW [9] for any time t� t0.

(iii) Transport (Trsp) requirement: The controller can optimize neoclassical impurity transport by maintain-
ing a favourable ratio between the logarithmic gradients of the ion temperature and density profiles for the
domain {( ) ∣ }r rW = Î    t t t, , 0 0.9c 0 .

6.2. Tracking of a reference inflat-topwith plant-controllermodelmismatch
The goal of the controller is to compensate formismatches between the real system and themodel in the
controller. Therefore,mismatch is introduced in the plant with respect to the controllermodel. The results of
two simulations are presented here. In the first (figure 7), transportmismatch is introduced by decreasing the
diffusion coefficient and increasing the drift coefficient. Furthermore, amismatch is introduced by changing the
width of the pellet deposition profile. These changes increase inward transport significantly resulting in higher
densities at nominal particle inputs. In the second (figure 8), transportmismatch is introduced by increasing the
diffusion coefficient and decreasing the drift coefficient in the plant. Furthermore, amismatch is introduced by

12

J. Phys. Commun. 5 (2021) 115015 TOS J Bosman et al



changing the deposition radii of the pellet deposition profile, respectively to [0.8,0.9]. These changes decrease
inward transport significantly resulting in lower densities at nominal particle inputs.

The open-loop control inputs are computed based on the nominal configuration of the system. For both
simulations, the uncertainty in transport results in a large tracking error (figures 7(c) and 8(c)). In the first
simulation, the uncertainty causes a violation of theGreenwald density limit (figure 7(d)) and of the logarithmic
gradient constraint (figures 7(e)–(f). It is shown infigures 7(g)–(i) and 8(g)–(i) that the open-loop density
profiles (blue) do notmatch the reference profile (black).

TheMPC controller is used to control the density profile in closed-loop. The control inputs differ from the
open-loop (figures 7(a)–(b) and 8(a)–(b). It can be seen that in the presented simulations, the controller achieves
the control objectives: the tracking error is below 5% (figures 7(c) and 8(c)); theGreenwald density limit is
respected (figure 7(d)); and the favorable ratio between ion-temperature and density logarithmic gradients is
maintained (figures 7(e)–(f). Furthermore, a good agreement between the controlled (red) and reference (black)
profiles can be seen (figures 7(g)–(i) and 8(g)–(i).

These results show that with continuous actuators, theMPC controller is capable of tracking a high-
performance reference density profile in the presence of plant-controllermodelmismatchwhile simultaneously
accounting for inward impurity transport.

Note that the relation between the density and the logarithmic gradient profile depend on a lot of factors, e.g.
ratio between transport coefficients, pellet deposition location and deposition profiles, and the fueling rates
(control inputs). For the controller to account for inward impurity transport, the control inputsmust give
enough freedom tofind a feasible input sequence thatminimizes the control error while respecting the
constraint. It is however possible that the control reference and logarithmic gradient constraint become
unfeasible (e.g. if the transport coefficients profiles changes drastically), i.e., there does not exist an input
sequence forwhich the logarithmic gradient constraint is respected (this depends greatly on the degrees of
freedomof the controller). In this case, the controller cannot optimize the impurity transport. However, it can

Figure 7.Tracking of a high-performance control reference in flat-top phase. The casewith feedforward only (blue) is comparedwith
the casewith feedback (red). Frame (a)–(b)Required particle flowper pellet injector; Frame (c)Relative tracking error for the
controlled part of the profile; Frame (d)The approximated line average density is comparedwith theGreenwald density limit (dotted
black); Frame (e)–(f)The logarithmic gradient profiles of the ion temperature (dotted black) are shown together with the logarithmic
gradients of the density profiles; Frame (g)–(i)Reference density profile (dotted black) is shown together with the controlled profiles
for different time instances. The time instances are shownwith the dotted vertical lines in (c). TheMPC controller reduces the tracking
error significantly while keeping a favorable ratio between the logarithmic gradient profiles henceminimizing the inward impurity
transport.
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give awarning to the overarching supervisory controller that the constraint is violated. Subsequently, fast update
methods of the transport coefficients [52] can be used to update the transportmodel in the controller and
determine a better suited control reference.

7.Discussion and outlook

In this work, we extend a dynamic state observer to estimate the density distribution in ITERusing Thomson
scattering (TS)measurements. For this, we combine the control-oriented particle transportmodel RAPDENS
with a forward TSmodel and synthetic TSmeasurements in an extendedKalmanfilter (EKF) framework.We
have shown that reliable, high-quality density profile estimates can be obtained in simulationwith realistic
measurement noise levels. However, we use a simplemodel for the synthetic TSmeasurements (Gaussian
distribution) and thus do not account for systematic errors (e.g., due to equilibrium reconstruction errors or
misalignment) or density dependent errors. These error can be present when using real TSmeasurements. Their
presencewill reduce the performance of the observer andmight require a specific error handling procedure to
ensure reliable reconstruction of the density profile. As a next step, we propose to test the extended observer on
an experimental reactor with real diagnostic data, preferably AUGor TCVas it was already implemented there
[24]. On these reactors, the TSmeasurements will be used together with other diagnostics (interferometers on
TCV; interferometers and radiationmeasurements onAUG) to reconstruct the density profile. It can then be
investigated if the expected density estimation performances are achieved and the increase in reconstruction
performance by including TS can be quantified. Testing the observer with experimental data will help identify if
additional handling is required to deal with systematic errors and design it if need be.

Furthermore in this work, we have synthesized amodel-predictive controller for the density distribution in a
tokamak. The controller uses the pellet fueling rate as control input to track a high-performance reference

Figure 8.Tracking of a high-performance control reference in flat-top phasewith uncertain pellet deposition location. The case with
feedforward only (blue) is comparedwith the casewith feedback (red). Frame (a)–(b)Required particle flowper pellet injector; Frame
(c)Relative tracking error for the controlled part of the profile; Frame (d)The approximated line average density is comparedwith the
Greenwald density limit (dotted black); Frame (e)–(f)The logarithmic gradient profiles of the ion temperature (dotted black) are
shown together with the logarithmic gradients of the density profiles; Frame (g)–(i)Reference density profile (dotted black) is shown
together with the controlled profiles for different time instances. The time instances are shownwith the dotted vertical lines in (c). The
MPC controller reduces the tracking error significantly while keeping a favorable ratio between the logarithmic gradient profiles
henceminimizing the inward impurity transport.
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profile, avoid density limits, and optimize for impurity transport.We show that for continuous actuators, the
controller is capable of achieving these control requirements in simulationswith plant-controllermodel
mismatch.

Even so, we use the heuristic control-orientedmodel RAPDENS to synthesize and validate the controller.
For further validation, it will be relevant as a next step to couple the controller tomore complex first-principles
transport codes, e.g., to JETTOas part of JINTRAC [39] to perform closed-loop control simulations, and
investigate the achieved control performances. Additionally, pellets are inherently discrete events. However
since this works presents a for the first time a controller for the density profile, this discrete nature is not
included. Knowing that in a real reactor, the pellet size cannot be changed for each control action and is subject
to constraints linked to for example plasma penetration, it will be relevant to investigate the performance of the
controller when the discrete pellet nature is introduced in the control loop andwhen only pellets of afixed size
can be used.

Furthermore, wewould like to address the possible extensions of the choice of control inputs. In this work
and in literature, e.g. [26, 27], the pellet fueling rate is considered as control input. This is a straightforward
choice as it enables the use of linear controllers. In practice, however, the actuationwith pellet injection is a
complex function of pellet size, pellet velocity, injection frequency, and plasma temperature.We think it is
relevant to study the possibility of using amore complete input space, e.g., by also taking into account pellet
velocity, and analyze the effect on controllability and control performances.
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AppendixA. Summary of RAPDENS equations

In this appendix, a summary of the RAPDENS equations is given.Mass conservation and radial transport [53]
are used tomodel the evolution of the radial plasma density ne(ρ, t) as
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where ρ is the normalized toroidalmagnetic flux,V is the plasma volume,Γe(ρ, t) is the radial transport flux
modeled as
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withχ(ρ, cHL) the diffusivity and ν(ρ, cLH, Ip) the pinch (or drift) velocity where cLH indicates the regime of the
plasma (L orH-mode). In A.2, Se(ρ, t) is the net electron sourcemodeled as
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with 〈σv〉iz(Te) and 〈σv〉rec the temperature dependent cross-sections for ionization and recombination [3], τSOL
the time constant for particle loss in the scrape-off layer, Spellet the net particle source due to pellet injection, and
SNBI the net particle source due to neutral beam injection.

The evolution of the particle inventoriesNw(t) in thewall and neutral vacuumdensity nn(t) aremodeled by
the 0DODE’s
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with τrelease the particle release rate,Nsat thewall saturation inventory, τpump the pumping time scale, cw a
dimensionless constant that determines the steady-state balance between thewall and vacuum inventory, and
Vv,0 the nominal vacuumvolume.

Appendix B.Dynamic state observer: theory and application to density profile estimation

B.1. Kalmanfilter equations
Given a systemGwith state vector x, output vector y, and input vector u, the Kalmanfilter (KF) assumes that the
dynamics ofG evolve in discrete-time following a linear state-space as

⎧
⎨⎩

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

= + +
= + +

+x t F t x t B t u t w t

y t H t x t D t u t v t ,
B.1

k k k k k k

k k k k k k

1

where the state transition dynamics are captured inmatrix F and the input dynamics inB. The outputmodel and
influence of the inputs on the outputs are captured inmatricesH andD. The stochastic behavior ofmeasurement
and process noises aremodeled in v andw as zero-meanGaussianwhite noises with respective covariance
matricesR andQ such that ( ) ( ( ))~ v t R t0,k k and ( ) ( ( ))~ w t Q t0,k k . The tuning knobs of theKF are the
covariancematricesR andQ.

The algorithm is initializedwith an initial state estimate ˆ ∣x1 0 (with corresponding output estimate ˆ ∣y1 0) and
an initial a priori estimate covarianceΣ1|0. For each discrete time instance t= tk, the estimate of the states are
obtained as follows (for readability the time dependence is denoted by the subscript k).

Update step:
Using the latest availablemeasurements ỹk, the residual zk and innovation covarianceΩk are computed by

ˆ ˜ ( )∣= --z y y B.2k k k k1

( )∣W = S +-
H H R , B.3k k k k k k1

whereH(tk) is the outputmatrix andΣk|k−1 the a priori process covariance. Next, the optimalKalman gain Lk is
computedwith
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1

and is used to obtain the updated state estimate ˆ ∣xk k and the a posteriori state estimate covarianceΣk|k as
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Prediction step:
Based on themost likely state ˆ ∣xk k, the actuator inputs at the present time uk, and the process covarianceQ,

the one step ahead predicted state ˆ ∣+xk k1 and outputs ˆ ∣+yk k1 and the a priori covariance at time step t= tk+1 are
given by

ˆ ˆ ( )∣ ∣= ++x F x B u B.7k k k k k k k1

ˆ ˆ ( )∣ ∣= ++y H x D u B.8k k k k k k k1

( )∣ ∣S = S ++
F F Q . B.9k k k k k k k1

B.2. ExtendedKalmanfilter equations
In case a system cannot be represented accurately by a linearmodel, the EKF equations are used. The observer
assumes that the system’s dynamics evolve following

⎧
⎨⎩

( ) ( ( ) ( )) ( )
( ) ( ( ) ( )) ( )

( )
= +
= +

+x t f x t u t w t

y t h x t u t v t

,

, ,
B.10

k k k k

k k k k

1

where ´   f : n n nx u x and ´   h: n n nx u y are non-linear functions of the state and input. The
stochastic variables v andw are similar as defined in appendix B.1.
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There are twomain differences between theKF and EKF equations:

(i) The matrices F andH (used in the computation the measurement covariance (B.3), the Kalman gain (B.4),
and the state covariances (B.9) and (B.6)) are the jacobians of f and h , i.e.,

( ) ( ) ( )∣

∣

=
¶
¶

=
¶
¶- -

- -

F t
f

x
H t

h

x
. B.11k x k

x
k k

k k

1 1

1 1

(ii) The prediction step is performed using the nonlinearmodel (B.10), i.e., (B.7) and (B.8) become

ˆ ( ˆ ) ( )∣ ∣=+x f x u, B.12k k k k k1

ˆ ( ˆ ) ( )∣ ∣=+y h x u, B.13k k k k k1

It is important to note that the EKF is a linearized version of theKalmanfilter for nonlinear dynamical
systems, hence, no guarantee about stability or estimation accuracy can be given [33]. These properties are to be
checked experimentally for the specific implementations.

B.3. Application of the in theDSO for the density profile estimation
For the density reconstruction, the RAPDENS plasma simulator is used as the one step ahead predictionmodel.
The physical state vector x(tk) (2) is augmentedwith additive unknown disturbances ( )z Î tk

nx . These
disturbances are co-estimated by the observer and give ameasure of themodeling errors, unmodeled processes,
unaccounted particles sources, and errors in the diagnosticsmodels. The stochastic behavior of the state and
disturbances ismodeled by additive zero-meanwhite noises wx

k and
zwk with respective covariancematricesQk

x

and zQk . The augmented nonlinear state-spacemodel is given by

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥

( ) ( ) ( )z
z

z
= + +z

z
+

+

x f x p B B p
u

w

w

,

0 0
B.14

k

k

d k k k

k

d k
k

k
x

k

1

1

where [ ]=z ´ ´B I 0m m m 2 .
An augmented state is defined as

⎡⎣ ⎤⎦ ( )x z= x . B.15k k k

The stochasticmeasurement noise is represented by an additive zero-meanwhite noise vkwith associated
covariancematrixRk. The outputs are assumed to evolve as:

( ) ( )= +y C p x v . B.16k k k k

Thefinal step consists in defining thematrices

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡
⎣

⎤
⎦

⎡⎣ ⎤⎦( ) ( )

ˆ ∣
=

¶
¶ =

=

z

´

F

f

x
B

I

B
B

H C p

0
0

0 . B.17

k k x p

m m

k
d

k k

,k k k

The augmented state ξ(tk) is then estimated by using (B.14) and (B.17) in (B.2)–(B.9).

AppendixC. Controller: definitions and derivations

In this appendixwe provide the definitions and derivations of the controllermatrices described in section 5.

C.1. Predicitonmodelmatrices
For a systemdescribed by a linear time-invariant disturbance augmentedmodel such as (10), the predicted
future states xi,k fori= 0:N can be related to the current state xk, current disturbance estimate d̂k, and input
sequence uk,K,uk+N−1 by:

ˆ ( )å å= + +
=

-

- -
=

-

x A x A Bu A B d . C.1i k
i

k
j

i
j

i j k
j

i
j

d k, 0,
0

1

1 ,
0

1
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Wedefinematrices x , u, and d as

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )=
-



A
A

A
A

, C.2x
N

N

2

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )




   


=

- -


B

AB B

A B A B B

0 0
0

, C.3u

N N1 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )




   





=

- -


B

AB B

A B A B B

I

I

0 0
0

. C.4d

d

d d

N
d

N
d d

1 2

Using (C.2), (C.3), and (C.4), we rewrite (C.1) for the stacked predicted states and input sequence introduced in
notation 2:

ˆ ˆ ( )= + +  X Ux d . C.5k x k u k d k

C.2. Linear state and actuator constraints
Here the linear and nonlinear constraints are derived. The pellet particle input is constrained as

G G 0 pellet pellet
max . The pellet injectors are designed to provide amassflow rate  = + = -m 0.23 30% 0.33gs 1

of solidDT to the plasma [51]. Themaximumelectron fueling rate is than given by

( ) ( ) G = * + *m f M f M N , C.6pellet D D T T avg
max

where fD and fT are the fractions of deuterium and tritium atoms in the pellet,MD andMT themolecularmasses
of the two isotopes andNavg representing theAvogadro constant. Assuming a pellet composed at 50%of
deuteriumand 50%of tritium, themaximal fueling rate is equal to [ ]G = #e s4.115 22pellet

max
. Hence, the number

of injected particles is constraint by [ ]G = #e2.57 21pellet
max .

No lower constraint exist for the states hence = -¥xmin . TheGreenwald density limit [9] sets an upper
bound on the line-average electron density in a specific device configuration. This upper limit is given by

( )
p

=n
I

a
C.7gw

p

2

where Ip is the plasma current and a theminor radius of the tokamak. By constructing amatrix Î ´Z n1 x such
that ¯»Zx n where n̄ is the line-average density, this limit can be formulated as a linear state constraint.

The linear constraints are given by:

( )





" = -
" =
" =

 



u u u i N

x x i N

Zx n i N

, 0, 1, , 1,

0, 1, , ,

1, 2, , , C.8

i k

i k

i k gw

min , max

min ,

,

By defining
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⎞

⎠

⎟
⎟⎟

⎛

⎝
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⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛
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⎞
⎠ ( ) ( )

=
-
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M
I
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I
b
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x
n
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I

Z
b

x
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0
,
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,

, and , C.9

i

n n

n n

n
i

n

n

n n

n

i

gw

N
n

N gw

1

min

max

min

min

u x

u x

x

u

u

x u

u

x

we rewrite (C.8) as

( )
+ " = ¼ -


M x E u b i N

M x b

0, 1, , 1

. C.10
i i k i i k i

N N k N

, ,

,
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Using the stacked notation (13) and defining0,i, i and b as

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )


=

M
0

0

, C.110

0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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=
M

M

0 0
0
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, C.12i
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1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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=
-



E

E

0

0
0 0

, C.13i
N

0

1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

( )


=

b
b

b

b , C.14

n

0

1

the constraints in (C.10) are grouped as

( ) ( )+ +   X Ux k b. C.15i k i k0

Finally, thematrices of (15) are obtained by inserting (C.5) in (C.15) and are defined as:

( )= G + A , C.16ineq i u i

( ) ( ) ( ) ( )= - + G - G  b x k d kb . C.17ineq i x i d0

C.3.Nonlinear state constraints
Herewe formulate the nonlinear constraint function g1 introduced in section 5.5. Recalling that

( ) ( ¯ )r=+ +y t n t,k e k1 1 , with r̄ defined in section 3.1, the augmentedmodel (10) can be used to relate the density
profile at time t= tk+1 can be related to the state and inputs at time t= tk. The relation is given by:

( ¯ ) ( )
( ) ( )

( ( ) ( ) ( ))
( ) ( )

r =
= +
= + + +

+ +

+ +

+

n t y t

Cx t C d t

C Ax t Bu t B d t

C d t

,

. C.18

e k k

k d k

k k d k

d k

1 1

1 1

1

Under the assumption of slow varying disturbances, such that d(tk+1)≈ d(tk), we canwrite

( ¯ ) ( ( ) ( ) ( )) ( ) ( )r = + + ++n t C Ax t Bu t B d t C d t, . C.19e k k k d k d k1

Finally, we define ¢C as

( )( ¯ )
( )

r

r
¢ =

¶ å L

¶
a a=C , C.20
m

1

such that ( ) ( )¢ = r
r

¶
¶

C x tk
n t,e k andwe construct an outputweightmatrixWy toweight the importance of the

outputs in the nonlinear constraint. In this workwe chose thismatrix such that theweight of the outputs for
which ρ< 0.9 are unity and the outputs for which ρ> 0.9 areweighted 0.

Inserting (C.19), (C.20), andWy in (16) and rewriting the equation in negative null form,we can formulate
the nonlinear constraint function g1 as (time dependence denoted by subscript k for readability):

( ) ∣ ( )∣
∣ ( ( ) )( )∣ ( )

º ¢ + + -
+ + + +


 
g x u d W C Ax Bu B d

W C Ax Bu B d C d W L

, , ,

0.95 0. C.21

k k k y k k d k

y k k d k d k y T

1

i

C.4. Cost functionmatrices
Herewe derive thematrices of the numerical implementation of the cost function (18) as presented in (21).

First, similar as (13), we define the stacked steady-state states and inputs as
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2
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1

Subsequently, the costmatricesWx,Wu, andWNfirst introduced in (18) are used to define the block-diagonal
matricesx andu as
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u

Using (13), (C.22), (C.23), and (C.24) the cost function (18) can be rewritten as

( ) ( ) ¯
¯ ¯ ¯
¯ ¯ ( )

= + -

+ + -

+

  

  



 
  


X X X X

X X U U U U

U U

J x k Qx k 2

2

. C.25

k k x k k x k

k x k k u k k u k

k u k

Figure 9.Validation of the LDAMandKF in theMPC set-up at different times of the open-loop simulation, i.e., different values of the

disturbance estimate d̂k . In red the value of the disturbance after t = 0.25 s is used. In blue, the disturbance estimate after t = 1.25 s is
used and in pink the disturbance estimate at t = 2.5 s. Frame (a)–(d): The ‘real’ density profile computed by the nonlinear RAPDENS
model (black) is comparedwith the predicted density profile by the LDAM for different values of the prediction horizonN. Frame(e):
The prediction error is given as a function of the prediction horizon for different initialization times.
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Inserting (C.5) in (C.25)we obtain:

( ) ( ) ( ) ( )
( )
( ) ( )

( ) ( ) ( ) ¯
¯ ( ) ¯

¯ ¯ ¯
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= + G G

+ G G + G G

+ G G + G G

+ G G - G

- G - G

+ + -

+

  

   

   

   

   

  




 
 
 
 

  


U U U

U

X

U X X

X X U U U U

U U

J x k Qx k x k x k

x k

x d k d k

d k d k x k

d k
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2 2

2

2 2

2

. C.26

k x x x

k x x k u x u k

k x x d k u x d

d x d x x k

k u x k d x k

k x k k u k k u k

k u k

Finally, by regrouping the quadratic terms inUk, the terms that depend on {Uk, x(k)}, {Uk, d(k)}, and
{ ¯ ¯ }U X U, ,k k k we can define thematricesu u, ,u x, ,u d, , andu r, from (21) as

¯ ¯
= + G G = G G

= G G = - G -

 



    
    X U

, 2 ,

2 , 2 2 ,

u u u u x u u x u x x

u d u x d u r u x k u k

, ,

, ,

C.5. Choice of prediction horizon
The predictive capacities of the LDAMdepend greatly on the estimated disturbance d̂k. The choice of the
prediction horizonN ismade to trade off control performances and prediction accuracy. Infigures 9(a)–(d) the
predicted density profile is shown for different prediction horizons and initialization times. The red lines are
obtainedwith the disturbance estimate d̂k at time k= 0.25 s. The blue lines are obtainedwith the disturbance
estimate d̂k at time k= 1.25 s. Finally, the pink lines are obtainedwith the disturbance estimate d̂k at time
k= 2.5 s. In (e), the two-normof the prediction error is shown as a function of the prediction horizon for the
three initialization times.

It can be seen infigure 9(e) that the prediction error increases with the prediction horizon but that is increase
is very small when the disturbance estimate has reached the steady-state values (see pink line in 9(e)) and in that
case large prediction horizons can be used accurately. In this work, we have chosen toworkwithN= 20.
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