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ABSTRACT

This work proposes a new stochastic gas–solid scattering model for diatomic gas molecules constructed based on the collisional data
obtained from molecular dynamics (MD) simulations. The Gaussian mixture (GM) approach, which is an unsupervised machine learning
approach, is applied to H2 and N2 gases interacting with Ni surfaces in a two-parallel wall system under rarefied conditions. The main advan-
tage of this approach is that the entire translational and rotational velocity components of the gas molecules before and after colliding with
the surface can be utilized for training the GM model. This creates the possibility to study also highly nonequilibrium systems and accurately
capture the energy exchange between the different molecular modes that cannot be captured by the classical scattering kernels. Considering
the MD results as the reference solutions, the performance of the GM-driven scattering model is assessed in comparison with the
Cercignani–Lampis–Lord (CLL) scattering model in different benchmarking systems: the Fourier thermal problem, the Couette flow prob-
lem, and a combined Fourier–Couette flow problem. This assessment is performed in terms of the distribution of the velocity components
and energy modes, as well as accommodation coefficients. It is shown that the predicted results by the GM model are in better agreement
with the original MD data. Especially, for H2 gas the GM model outperforms the CLL model. The results for N2 molecules are relatively less
affected by changing the thermal and flow properties of the system, which is caused by the presence of a stronger adsorption layer.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0110117

I. INTRODUCTION

Rarefied gas dynamics or the methods of discrete molecular gas
dynamics are applied in various cutting-edge technologies, such as
aerodynamics of the hypersonic vehicles, semiconductor industry,
micro-electro-mechanical systems, and micro/nanoporous media.1 In
the aforementioned applications, usually the mean free path (k) of the
gas molecules and the characteristic dimension (d) of the system are in
the same order of magnitude. This implies that knowing the details of
discrete molecular behavior becomes of crucial importance in under-
standing flow physics. By increasing the degree of rarefaction, quanti-
fied by means of the Knudsen number (Kn ¼ k

d), interactions between
gas molecules and the adjacent solid surfaces become more dominant
than intermolecular gas–gas collisions in determining the macroscopic
gas flow characteristics.2,3 Accordingly, it is well established that for
Kn> 0.1 gas experiences significant nonequilibrium phenomena, such
as velocity slip and temperature jump at the vicinity of the surface in
the region known as the Knudsen layer. As a result, the continuum

Navier–Stokes equations are not applicable anymore to describe flow
properties.3,4 Particle-based numerical techniques, such as direct simu-
lation Monte Carlo (DSMC) method5 and lattice Boltzmann method
(LBM),6 are being extensively employed for simulating rarefied gas
flows. In addition to gas–gas molecular collision models, the successful
application of these numerical techniques depends upon the develop-
ment of accurate gas–surface interaction (GSI) models. However,
despite devoting considerable efforts over the last century toward
developing realistic GSI models,7–16 the physics of GSI phenomena are
still not well understood, and reliable and generalized GSI models to
describe complex surface interactions and highly nonequilibrium flow
in modern engineering applications are still lacking.

In accordance with the probabilistic essence of the particle-based
numerical approaches, all commonly used GSI models have also been
presented in probabilistic forms describing the relationship between
the state of gas molecules before and after colliding with the surface.2

Generally, according to these models, it can be assumed that the state
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of scattered molecules falls between two extreme situations: purely
specular and purely diffuse reflections. The proportion of diffuse scat-
tering is determined by the so-called accommodation coefficient (AC),
which is a parameter to quantify the amount of momentum or thermal
energy exchange between gas and solid. The Maxwell model7 is the
simplest empirical GSI model, in which only the tangential momen-
tum AC is used in the model. It assumes that a fixed amount of gas
molecules undergoes a fully diffuse reflection, while the remaining
part reflects specularly. However, Cercignani and Lampis9 observed
that the Maxwell model was not able to capture the lobular patterns
seen in the molecular beam experiment. To tackle this deficiency, they
used the normal energy AC alongside the tangential momentum AC
and established a more realistic and mathematically more robust GSI
model that better matched with experimental data. The so-called
Cercignani–Lampis (CL) model was extended by Lord,10 who pro-
posed the well-known Cercignani–Lampis–Lord (CLL) model and
applied it into the DSMC algorithm. Later, Lord extended the CL
model even further to describe the scattering of diatomic molecules
from a solid surface.11

Molecular dynamics (MD) simulations are considered as a pow-
erful computational tool to study gas–solid interactions at the atomis-
tic level. In fact, using MD simulations, it is possible to directly track
individual molecules under a wide range of conditions and gain a
detailed understanding of momentum and energy exchange mecha-
nism at a gas–solid interface.17–20 However, even with the help of fast
computers it becomes very difficult to use a full MD approach for
modeling gas–solid interactions in a physical system due to the huge
computational costs.

Instead, recent approaches use the insight gained by the MD sim-
ulations to construct more elaborated GSI models inspired by the
aforementioned empirical scattering models. Nevertheless, the perfor-
mance of these models relies significantly on the values of the ACs
used in these models, which act as calibration parameters. For
instance, Yamamoto et al.13 extended the Maxwell GSI model based
on the MD simulation results for N2–Pt system. Assuming no depen-
dency between translational velocity components, as well as the trans-
lational and rotational energy modes, they proposed using the
tangential and normal momentum, and the translational and rota-
tional energy ACs to reproduce corresponding velocity and energy
components. The main drawback of the CLL model11 is that the
energy exchange between internal energy modes (e.g., the rotational
energy mode) and the translational energy mode cannot be described
by the model. To overcome this deficiency, Gorji and Jenny15 extended
the CLL model and proposed a new scattering model that could
account for energy transfer between the internal and the translational
energy modes. Based on the data obtained from the molecular beam
experiment, they showed that energy exchange between different
energy modes can happen at highly nonequilibrium situations. Using
MD simulation data for calibration, they proposed a model with a rela-
tively complex mathematical form, which resulted from coupling a
fully diffuse and the CLL model, and depends on five different ACs.

In general, the accuracy of the empirical GSI models and their
derivatives highly depends on the values of ACs, and this issue has
been addressed as the main disadvantage of these models.21 In fact,
numerous parameters such as gas/solid materials, surface cleanness
and roughness, and gas/surface temperature can influence the
obtained results for the ACs. Therefore, to measure the ACs,

accurately, all these parameters need to be controlled properly at
atomistic level. This task is considered highly challenging either in an
experimental study or MD simulation.22–24

In the case of rarefied gas flow systems with complex flow condi-
tions that are far from thermal equilibrium, a vast range of physical
phenomena could happen at the gas–solid interface that cannot be
fully illustrated using a limited number of constant parameters. To
overcome such deficiency, a new family of scattering kernels known as
nonparametric scattering kernels has been introduced recently.25–27

Generally, in these works as the first step based on the molecular beam
setup, MD simulations have been carried out to study the interactions
between a specific gas–solid combination. Afterward, based on the col-
lisional data gathered from the MD simulations and without using any
ACs as an intermediate parameter, a specific probability density func-
tion (PDF) estimation approach was employed to drive the probabilis-
tic form of the scattering kernel.

Artificial intelligence and machine learning are other promising
tools than can be employed to directly construct a probabilistic GSI
model from the MD simulation data.28–30 As an example, the
Gaussian mixture (GM) approach, which is an unsupervised machine
learning method, was used by Liao et al.28 to construct a scattering ker-
nel for monatomic gases based on the MD data obtained from the
molecular beam simulation. In our previous work,29 due to the crucial
importance of the gas absorbed layer in the early transition regime
(0.1<Kn < 1) on the energy and momentum transfer at gas/solid
interface, instead of the molecular beam approach, we used a two-
parallel wall MD setup as a reference system. We employed the GM
model to construct a GSI model for monatomic gases. Comparison of
the obtained results from the GM model against the CLL scattering
model in different physical conditions proved the superiority of the
GMmodel. Wu et al.30 introduced a GMmodel for N2–Pt interactions
using a molecular beam approach. Neglecting gas–gas interactions,
they studied the effect of wall roughness on ACs and reflected velocity
distributions. To the best of our knowledge, there is no GM-based
scattering kernel for diatomic gases that, including gas–gas interac-
tions, can deal with adsorption-related problems.

In this study, the GM model is used to construct a GSI model for
diatomic gas molecule interactions with a given surface. Here, H2 and
N2 gases are considered as the case studies, due to their numerous engi-
neering applications, and very different molecular masses. At the first
step, MD simulations have been carried out for H2 and N2 gases con-
fined between Ni walls. Afterward, the pre- and postcollisional transla-
tional and rotational velocities of the gas molecules are utilized for the
training the GM model. In doing so, the interplay between different
velocity components, and the energy exchange between the translational
and rotational energy modes that are likely to occur in nonequilibrium
situations are implicitly taken into account in the model. The perfor-
mance of the GM-based scattering model is examined against the CLL
model in some important benchmark thermal problems such as the
Fourier thermal problem, the Couette flow problem, and the combined
Fourier–Couette flow problem. The examination is carried out in terms
of various statistical and physical parameters.

II. METHODOLOGIES
A. MD simulation model

The MD simulation setup used in this work consisting of Ni walls
in contact with H2 or N2 gas is presented in Fig. 1. Each Ni wall is
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formed by five layers of FCC planes of solid Ni with a cross-sectional
area of 10.8� 10.8nm2. The distance between the bottom and the top
walls, d, is 30 nm. The outermost layer in each wall is kept fixed in
order to prevent the translational movement of the walls in the y-
direction. Diatomic gas molecules are considered as rigid rotors with a
fixed bond length of 0.7414 and 1.097 Å for H2 and N2, respectively.

31

The total number of gas molecules confined between the two Ni walls
is decided in such a way that the mean free path, k, of gas molecules
remains around 10.5 nm, which results in the Knudsen number of
Kn ¼ 0.35 for both systems.

Periodic boundary conditions are applied along x and z directions.
The embedded atommodel (EAM) potential32 is employed to model the
interactions between Ni atoms. The non-bonded interactions between
gas–gas and gas–wall atoms are modeled using COMPASS force field,33

in which a Lennard–Jones (L–J) 9–6 function is employed to describe
the interactions. For two atoms of the same kind, the potential parame-
ters (eii;rii) can be found in the COMPASS database.34 However, for a
mixture of two different atoms, the potential parameters are calculated
using the sixth-powerWaldman–Hagler combining rules35

eij ¼ 2
ffiffiffiffiffiffiffiffi
eiiejj
p r3

ii:r
3
jj

r6
ii þ r6

jj

" #
; (1)

rij ¼
r6
ii þ r6

jj

2

� �1
6

: (2)

All the gas–gas and gas–wall interatomic potential parameters used in
this study are listed in Table I. The cutoff distance for gas–gas and
gas–wall interactions is set at 2:5rii and 10 Å, respectively.

In the first step, for each MD simulation setup, the energy mini-
mization is performed by iteratively adjusting atom positions. In the

next step, each wall is equilibrated at the desired temperature level
using Nose–Hoover thermostat36 (NVT), while gas molecules are
modeled in the microcanonical ensemble (NVE), and their tempera-
ture can only change by exchanging kinetic energy with other mole-
cules in the simulation box via collisions. However, in order to
accelerate the equilibration process, the velocity components of gas
molecules are initially sampled from a Gaussian distribution with a

mean value of 0.0 and a standard deviation of
ffiffiffiffiffiffiffi
kBTa
2mg

q
, where Ta is the

average value of the bottom and top wall temperatures, and mg is the
mass of gas molecule.

To model the Couette flow condition, as it is depicted in Fig. 1,
the top wall moves with the velocity uw, whereas the bottom wall has
the velocity�uw. Herein, the speed ratio Sv is assigned as

Sv ¼
uwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTb=mg
p ; (3)

where Tb is the temperature of the bottom wall. In order to attain the
desired k and Kn in the systems, all simulation setups are equilibrated
for 3 ns to reach the required temperature and pressure with a time
step of 0.5 and 1.0 fs for H2–Ni and N2–Ni systems, respectively.
Afterward, the production run is followed, which is carried on for
25 ns for H2–Ni system and 60ns for N2–Ni system. All MD simula-
tions are conducted using LAMMPS37 package.

B. Scattering kernel

In the transitional flow regime (0.1<Kn< 10), the Boltzmann
equation must be employed as the governing equation to solve the
problems of gas flows. Having a precise and detailed understating of
boundary conditions is crucial in order to guarantee the reliability of
the simulation results, while considering flows of gas around bodies or
adjacent to a solid surface. The boundary condition defines the rela-
tion between the incoming and outgoing gas molecular velocity distri-
butions, f ðv0Þ and f ðvÞ, at the boundary surface. It can be represented
generally through the scattering kernel Rðvjv0Þ as

vnf ðvÞ ¼
ð
v0n<0
jv0njRðvjv0Þf ðv0Þdv0; vn > 0: (4)

Here, v0 and are the translational velocities of the center of mass
(COM) for the incoming and outgoing molecules, respectively. The
velocities vn and v0n are the corresponding normal components of
the molecular velocities directed into the gas domain and normal to
the surface. The scattering kernel Rðvjv0Þ denotes the probability that
a stream of incoming gas molecules with velocity in ½v0; v0 þ dv0� will
be bounced off with a new velocity in the interval of ½v; vþ dv�.

FIG. 1. Schematic representation of the simulation model; d: distance between the
two walls; Tb: Temperature of the bottom wall; Tt: temperature of the bottom wall;
uw: prescribed velocity on the walls.

TABLE I. Lennard–Jones potential parameters.

Atom pair e (eV) r (Å)

Ni–Ni38 6:6� 10�1 2.239
H–H 9:29� 10�4 1.421
H–Ni 1:19� 10�2 2.016
N–N 2:57� 10�3 3.8
N–Ni 1:61� 10�2 3.408
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However, in the case of a diatomic gas molecule, in addition to the
translational velocity components, the rotational velocity vectors
(x0;x) need to be taken into account, as well. Therefore, the scattering
kernel must be substituted by Rðv;xjv0;x0Þ and the probability den-
sity must be substituted by f ðv;xÞ. The CLL model is the most accu-
rate empirical scattering kernel that commonly used in diatomic
rarefied gas flow simulations, and it is given in the following form:11

RCLLðv;xjv0;x0Þ ¼ 2vn
p2atð2� atÞanarot

exp �
vt �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� at
p

v0t
� �2

atð2� atÞ

" #

� exp � v2n þ ð1� anÞv02n
an

� �
I0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� an
p� �

vnv0n
an

" #

� exp �ðx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� arot
p

x0Þ2

arot

" #
; (5)

where at, an, and arot are the accommodation coefficients correspond-
ing to the tangential momentum, normal translational kinetic energy,
and rotational energy, respectively. vt represents the tangential veloc-
ity vector, and I0 is the modified Bessel function of the first kind and
zeroth order. The translational (v0; v) and rotational (x0; x) velocity

vectors are normalized by
ffiffiffiffiffiffiffiffiffi
2kBTw
mg

q
and

ffiffiffiffiffiffiffiffiffi
2kBTw

I

q
, respectively. Here, Tw

describes the wall temperature and I is the mass moment of inertia of
the diatomic gas molecule. The algorithm and formulas used in this
work to generate post-collisional velocities according to the CLL scat-
tering kernel are given in Ref. 15. The required accommodation coeffi-
cients in Eq. (5) are calculated using the proposed method in Ref. 17,
which is based on the least squares approximation on the collisional
data containing impinging UI and reflected UR quantities

a/ ¼ 1�

X
i

ðUi
I � hUIiÞðUi

R � hURiÞX
i

ðUi
I � hUIiÞ2

; (6)

where / can be related to the different kinetic properties of the gas
molecules such as its center of mass velocity in a certain direction, as
well as its translational Etr ¼ 1

2mgv
2, rotational Erot ¼ 1

2 Ix
2, or total

Etot ¼ Etr þ Erot kinetic energy. Collisions are tracked by defining a
virtual plane at a distance of one gas–wall interaction cutoff radius
away from the walls (rplane ¼ rcutoff ¼ 10 Å). Collisional data are
recorded when the geometric center of mass of the molecule crosses
the virtual plane. The final datasets gathered from MD simulations
of different systems include between 100 000 and 150 000 data
points.

C. Gaussian mixture model

Gaussian mixture (GM) model is a probabilistic clustering
approach for illustrating normally distributed subset within an overall
dataset. The GM model typically does not require knowing from
which subset a data point comes, and the model learns the subsets
automatically. Having this feature, the GM model is identified as an
unsupervised machine learning technique. Due to its robustness and
flexibility, the GM model has been utilized in a wide variety of impor-
tant practical situations such as language identification, anomaly

detection, pattern recognition, signal processing, and object tracking of
multiple objects.39–42

In the GM model, a superposition of M-dimensional Gaussian
functions is employed to estimate the probability density function of
data X as

p Xð Þ ¼
XK
i¼1

qiN Xj~li ;Rið Þ; (7)

where K is the number of Gaussians. qi; i ¼ 1; 2;…;K are the mixture
component weights with the constraint that

PK
i¼1 qi ¼ 1; ~li is the

mean vector, and Ri is the covariance matrix. NðXj~li ;RiÞ are the
components density functions, which are indeed M-dimensional nor-
mal distributions given by

N Xj~li ;Rið Þ ¼ 1

ð2pÞM=2jRij1=2
exp � 1

2
ðX � ~liÞ0R�1i ðX � ~liÞ

� �
:

(8)

The model parameters (w ¼ fqi; ~li ;Rig8i in f1 � � �Kg) are deter-
mined using the expectation–maximization (EM) optimization algo-
rithm.43 However, before implementing the EM algorithm to estimate
the GM model parameters, it is essential to define the model attributes
such as the type of covariance matrix28 (e.g., spherical, diagonal, tied,
or full) and the number of Gaussians. In this work, the full covariance
matrix has been applied that has the best performance, and it is taken
as the default covariance matrix in the SCIKIT-LEARN44 package
used to implement the GM model. The number of Gaussians is a cru-
cial parameter that is required to be specified adequately by the user to
avoid underfitting or overfitting in the model, and it directly affects
the accuracy and the computational cost of the model. To determine
the optimal K, a sensitivity analysis has been carried out. It is discussed
in detail in Appendix A. From this analysis, in this work, K¼ 500 and
K¼ 450 are used as the number of Gaussians for H2–Ni and N2–Ni
systems, respectively.

The collisional data used to train the GM model are a ten-
dimensional dataset including impinging and outgoing translational
velocities of the COM of the molecules (v0x; v

0
y; v
0
z; vx; vy; vz), as well as

impinging and outgoing rotational velocities of the molecules
(x01;x

0
2;x1;x2). Including both translational and rotational degrees

of freedom for training purpose indicates that the possible energy
transfer between translational and rotational modes in the case of non-
equilibrium condition is taken into account in this model. From each
dataset obtained from a specific MD simulation, 75% of the trajecto-
ries (consisting of translational and rotational velocities), along with a
desired number of Gaussians, are fed into the GM model for training.
The remaining data are used for validation purpose.

Here, except the normal velocity components (v0y; vy) that follow
a Rayleigh distribution, the other velocity components follow a
Gaussian distribution. As it has been comprehensively discussed in
our previous work,29 the GMmodel performs better when all the com-
ponents of the original MD data have Gaussian distributions.
Therefore, exploiting the preprocessing scheme proposed by Liao
et al.,28 the normal velocity components have been transferred from
Rayleigh to Gaussian distributions. First, for each normal velocity pair
(v0y; vy), its equivalent inverse (�v0y;�vy) is added to the dataset.
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Second, using the following scheme [Eq. (9)] the distributions of the
normal velocity components are transferred from Rayleigh to
Gaussian:

TðhÞ ¼
ffiffiffiffiffi
2b

p
erf �1 1� 2 exp � h2

2b

 !" #
; b ¼ kBTg

mg
; (9)

where Tg refers to the gas temperature and can be computed using the
average translational kinetic energy of the gas. The first step of prepro-
cessing scheme doubles the size of velocity data in the normal direc-
tion. Therefore, half of the final obtained data is chosen and used for
training alongside with the other components in the dataset. In accor-
dance with the distribution of the final data used for training the GM
model, the obtained velocities from the model also have Gaussian dis-
tribution. Hence, to compare the model predictions with the initial
MD results, the predicted velocity components in the normal direction
are transformed back into the Rayleigh distribution as follows:

ZðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2b ln

1
2
� 1
2
erf

hffiffiffiffiffi
2b
p
	 
� �s

: (10)

III. RESULTS AND DISCUSSION

This section is divided into three main parts. The first part is
devoted to validate the MD simulation approach used in this work to
study the diatomic gas–solid surface interactions. In the second part,
the performance of the GM and CLL scattering models in three ther-
mal problems, commonly encountered in rarefied gas flow systems, is
investigated. Finally, in the last part based on the density profiles
extracted from the MD simulations, the reasons for different behaviors
of H2 and N2 gases in terms of thermal behaviors and flow properties
are discussed.

A. MD scheme validation

Using experimental results, our aim is to validate first the force
fields used in the simulations and second to prove the suitable meth-
ods to extract ACs from MD data. Here, the tangential momentum
accommodation coefficient (ax) and the total thermal energy accom-
modation coefficient (atot) for H2–Ni and N2–Ni systems obtained
from the MD simulations are compared with the corresponding exper-
imental values in the literature. For this, we replicated the experimen-
tal conditions using a two-parallel plate setup45 (Tb¼ 288K, Tt ¼ 308
K, Sv¼ 0) in the MD simulations.

From MD simulations for H2–Ni system, the values of ax and atot
computed on the bottom wall were 0.953 and 0.316, respectively. With
regard to ax, no measurement on Ni surface was found in the literature.
Knowing that surface material has minor impact on the value of ax,

46

the results on the other metal surfaces have been used for the compari-
son purpose. Herein, the reported experimental value of ax for H2 on
Bronze surface is 0.94,23 which is consistent with the value computed in
this work. In addition to that, for H2–Ni, an empirical study showed that
atot ¼ 0.293,47 which is in good agreement with the MD obtained value.

In the case of N2–Ni, the results obtained from MD simulations
are ax ¼ 0.87 and atot ¼ 0.869. The reported values for ax on different
surfaces are in the range of 0:84 < ax < 1.46 Referring to atot, the value
reported by Amdur et al.47 for N2–Ni is 0.823, which is consistent with
the value computed in this work. Based on the presented results, it can
be deduced that the choice of the intermolecular potentials and the

atomic schemes to study GSIs in this work are quite reliable for study-
ing further the three thermal problems we want to investigate.

B. GM model Assessment

Using the MD simulation results for H2–Ni and N2–Ni as the ref-
erence solutions, we aim to assess the performance of the GM and
CLL scattering models in predicting the gas velocities after the collision
with the solid walls.

Three different benchmark problems, namely, the Fourier thermal
problem, the Couette flow problem, and the combined Fourier–Couette
flow problem, are examined. In the case of the Fourier thermal problem,
the bottom wall has the temperature Tb ¼ 300K, while the temperature
of the top wall is Tt ¼ 300K (named the isothermal walls system) or
500K (named non-isothermal walls system). For the Couette flow
problem, the considered velocity ratios are Sv ¼ 0.2 or 0.4, and both
walls have the same temperatures Tb ¼ Tt ¼ 300K. For the com-
bined Fourier–Couette flow problem, using the non-isothermal wall
system as the initial system, different velocity ratios (Sv ¼ 0.2 or 0.4)
are imposed on the walls. The training of the GMmodel in each case
study is carried out separately. For each case study, the most signifi-
cant results are addressed in the main text, while the remaining ones
for H2–Ni and N2–Ni can be found in Appendixes B and C,
respectively.

To generate the outgoing velocities based on the CLL model, first
of all, the required ACs including TMAC in x and z directions (ax,az),
an, and arot are computed using the collected MD collisional data from
each specific case study. Afterward, the post-collisional velocities are
generated by using the computed ACs according to the method
described in Ref. 15. In the case of the systems with moving walls, the
value of the imposed velocity at the wall (uw) is added to the all veloc-
ity components generated by the CLL model in the direction of wall
movement (Vx;final ¼ Vx;CLL þ uW).

The evaluation of the aforementioned stochastic GSI models has
been carried out in terms of the correlation between the incoming and
outgoing translational velocity components of COM (Vx;Vy;Vz), dif-
ferent energy modes of the gas molecules (Etr ;Erot ; Etot), as well as the
PDF of the outgoing velocity components or the energy modes. To
compare the resulted PDFs in a quantitative manner, the
Kullback–Leibler divergence (KLD)48 also known as information
divergence or relative entropy is employed. KLD, as the most com-
monly used information criterion for evaluating the model discrep-
ancy, is being used frequently in machine learning studies to measure
the difference between the actual and observed or predicted probability
distributions. Suppose p(x) and q(x) are two PDFs on the same proba-
bility space v, the KLD is defined as

KLDðpðxÞjjqðxÞÞ ¼
X
xev

pðxÞln pðxÞ
qðxÞ dx; (11)

where x can be referred to the velocity or energy data obtained from
either MD simulations or GSI models. To calculate p(x) and q(x), the
related data space is evenly segmented into n bins. The density in each
bin is computed by counting the number of samples in the bin. In
addition to the correlations and PDFs, the corresponding ACs for the
aforementioned kinetic features of the gas molecules have been used
for the assessment purpose.
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All the aforementioned properties are tested because, as it will be
shown in Sec. III B 1, in some case studies even if PDFs or ACs are in
agreement, velocity correlations can be different affecting the heat
transfer predictions.

1. H2–Ni system

The velocity and energy distributions determined by the atomis-
tic simulations and different GSI models for the isothermal Fourier
thermal problem are plotted in Fig. 2. It is seen that in this case study,
which resembles the fully equilibrium situation in the system, there is
a perfect match between the correlation plots and PDFs of the partial
translational velocity components, and the rotational energy mode.
However, Etr clouds of the MD simulation and the GM model are
slightly narrower than the CLL model. Since Etot ¼ Etr þ Erot , this
mismatch is propagated into the Etot cloud, as well. This issue can
be also deduced from the values of the ACs in Table II, in which

FIG. 2. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the isothermal
Fourier thermal problem for H2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid
red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of translational velocity components and
energy modes for the reflecting particles are presented.

TABLE II. Tangential momentum (ax,az), normal momentum (ay), translational (atr),
rotational (arot), and total (atot) energy accommodation coefficients of the Fourier
thermal problem for H2–Ni system (Tb ¼ 300 K), computed using different scattering
kernels: GM and CLL models, and MD simulations. B: bottom wall; T: top wall.

Tt Model Wall ax ay az atr arot atot

300 MD B 0.958 0.797 0.955 0.526 0.666 0.326
GM B 0.958 0.798 0.954 0.558 0.700 0.379
CLL B 0.959 0.783 0.955 0.880 0.666 0.810

500 MD B 0.928 0.748 0.820 0.452 0.600 0.234
T 0.923 0.777 0.924 0.473 0.600 0.274

GM B 0.927 0.747 0.933 0.481 0.634 0.296
T 0.921 0.776 0.922 0.507 0.636 0.340

CLL B 0.929 0.713 0.930 0.859 0.601 0.776
T 0.922 0.774 0.926 0.864 0.595 0.775

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 117122 (2022); doi: 10.1063/5.0110117 34, 117122-6

VC Author(s) 2022

https://scitation.org/journal/phf


FIG. 3. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the non-isothermal
Fourier thermal problem for H2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid
red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity components
and energy modes for the reflecting particles are presented.

FIG. 4. The Kullback Leibler divergence of the translational velocity components and different energy modes of H2–Ni system determined by GM and CLL scattering models;
(a) non-isothermal Fourier thermal problem at the bottom wall; (b) Couette flow problem (Sv ¼ 0:4) at the bottom wall; (c) combined Fourier–Couette flow problem (Sv ¼ 0:4)
at the top wall.
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various ACs of the Fourier thermal problem for the H2–Ni system are
presented. It is observed that there is a perfect match between the val-
ues of ax, ay, az, and arot obtained from the GM and CLL scattering
models with the MD simulations, while the values of atr and atot
obtained from the wall scattering models are larger than the values
obtained directly from the MD simulations. However, in comparison
with CLL results, the values obtained from the GM scattering model
are much closer to the MD results.

The correlation plots and the PDFs at the bottom wall of the
non-isothermal Fourier thermal system are shown in Fig. 3. While the
correlation plots acquired from the GSI models for the translational
velocity components are in good agreement with the MD simulations
results, a deviation is observed around the peak values in the PDFs
obtained from the CLL model (e.g., see the PDF of Etr in Fig. 3). Since
the peak value in such distributions provides a measure of tempera-
ture, predicting higher peaks by the CLL model implies that gas mole-
cules accommodate more to the surface, and this leads to a lower

temperature for the reflected gas molecules. The predicted outgoing
translational velocities by the statistical GSI models and the original
MD results were employed to compute the temperature of the gas after
colliding with the surface. The postcollisional gas temperature accord-
ing to the MD results and the GM model was 377.51 and 374.23K,
respectively. However, the CLL model gave the outgoing temperature
of 315.1K. This underprediction of the temperature confirms the
aforementioned statement. With regard to the various energy modes
of the gas molecules, the results from the GM model are always in a
reasonable agreement with the MD simulation results. However, the
correlation plots and the PDFs obtained based on the CLL model for
Etr and Etot deviate from the MD results, which predict the reflection in
a more diffuse manner according to the CLL model. On the contrary,
the predicted Erot by the CLL model matches well with the MD data,
although looking to the correlation plots, the MD data are more dis-
persed than the CLL scattering model results. Based on the predicted
translational velocity components and the energy modes by the GM

FIG. 5. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of Couette flow prob-
lem (Sv ¼ 0.4) for H2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid red lines
demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity components and energy
modes for the reflecting particles are presented.
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and CLL GSI models, the KLD coefficient between these models and
the original MD results were computed [see Fig. 4(a)]. It is seen that the
deviation between the CLL model and the MD results is 2 orders of

magnitudes larger than the deviation between the GM model and MD
results. By looking at the reported ACs of this case study (see Table II),
it is inferred that similar to the previous case study, the results from the
GM model in comparison with the CLL model are overall in a better
agreement with the MD simulation results. Comparing the values of
the ACs in this case study with the isothermal Fourier problem, it is
noted that all the computed ACs are slightly lower. This is inline with
the previously observed trend of decreasing AC by increased kinetic
energy of the gas molecules49,50 that in this case study is caused by hav-
ing higher temperature at the top wall.

Figure 5 shows the scattering results based on the MD simula-
tions and the employed stochastic GSI model for the Couette flow
problem with Sv ¼ 0.4. It is seen that the GM model results are in
good agreement with the MD simulation results. However, in the case
of the CLL model, except for the rotational energy, the other energy
modes (Etr, Etot), as well as the partial velocity components (Vx, Vy,
Vz), significantly deviate from the MD results. For the tangential

FIG. 6. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the combined
Fourier–Couette flow problem for H2–Ni system at the top wall (Sv ¼ 0:4). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respec-
tively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity
components and energy modes for the reflecting particles are presented.

TABLE III. Tangential momentum (ax,az), normal momentum (ay), translational (atr),
rotational (arot), and total (atot) energy accommodation coefficients of the Couette
flow problem for H2–Ni system at different speed ratios (Sv), computed using different
scattering kernels: GM and CLL models, and MD simulations.

Sv Model ax ay az atr arot atot

0.2 MD 0.942 0.743 0.933 0.432 0.610 0.220
GM 0.940 0.742 0.931 0.466 0.651 0.284
CLL 0.941 0.713 0.932 0.855 0.615 0.777

0.4 MD 0.854 0.655 0.846 0.307 0.477 0.105
GM 0.853 0.660 0.844 0.351 0.526 0.183
CLL 0.854 0.570 0.845 0.809 0.477 0.700
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velocity components, the obtained ACs are similar. This can be
understood by comparing the slope of the red lines in the correlation
graphs obtained from the MD simulations and the scattering models
in the tangential directions, as well as the values of ax and az reported
in Table III. However, the shape of the resulted velocity clouds
obtained from the CLL model is different from the ones resulted from
the original MD data and the GM model. In both tangential direc-
tions, the CLL results have ellipsoidal shapes and look symmetrical
around the horizontal dashed line. However, MD simulation correla-
tion graphs in the tangential directions are more concentrated around
the diagonal lines. In fact, MD results show that in case the magnitude
of the incoming velocity is large, there is a strong correlation between
incoming and outgoing velocities. This causes that the velocity clouds
become narrower in their ending points around the diagonal line at
high velocities (see Fig. 5). Comparison of the tangential velocity
clouds from the employed GSI models with the MD results indicates
that the aforementioned behavior can be captured by the GM model,
and not by the CLL model.

KLDs based on the obtained scattering results in this case study
are shown in Fig. 4(b). Comparing the GM results with the non-
isothermal Fourier system [see Fig. 4(a)], the most noticeable differ-
ence is a higher KLD value for Vx component in the current case study
(2.5 times higher), indicating relatively poor performance of the GM
model here. However, the deviation of the CLL model and the MD
results are much more noticeable in this case study. The ACs obtained
from MD simulations, and different GSI models for the Couette flow
problem are reported in Table III. It is seen that ax, ay, and az obtained
from both scattering models agree well with the MD simulation
results. With regard to the energy ACs, arot obtained from the CLL
model has a slightly better match with MD results than the value
obtained from the GM. However, while the values of atr and atot
obtained from CLL are significantly larger than the MD results, the
results based on the GMmodel are in a reasonable agreement with the
MD ones. Comparing the ACs presented in Table III with the ones for
the fully equilibrium system in Table II, it can be deduced that

imposing a velocity at walls resulted in decreasing the value of all the
ACs. In addition, increasing the velocity ratio from Sv ¼ 0.2 to 0.4, the
value of atot decreased by half. This inverse correlation was also observed
by Uene et al.51

The scattering plots obtained from the GSI models together with
the reference MD solutions for the combined Fourier–Couette flow
problem (Sv ¼ 0.4) at the top wall of the system are depicted in Fig. 6.
Again, it is seen that the results from the GM model are in a good
agreement with the MD results. On the other hand, the CLL model
except for the rotational energy mode does not show a good perfor-
mance in predicting the other energy modes, as well as the transla-
tional velocity components. Similar to the previous case study, for the
tangential velocity components, the sharper tips of the velocity clouds
along the diagonal lines observed in MD data are captured just by the
GMmodel and cannot be seen in the CLL model results.

The computed KLDs for this case are presented in Fig. 4(c).
Significant difference between the performance of the employed GSI
models has been observed also here. For example, KLDs for Etr, and
Etot obtained from CLL are 3 orders of magnitudes larger than the cor-
responding values obtained from the GM model. With regard to Vx,
Vy, Vz, and Erot, the computed values based on the CLL model are 2
orders of magnitudes larger than GM results.

The ACs associated with different velocity components and energy
modes for the combined Fourier–Couette flow system are listed in
Table IV. It is shown that, similar to the previous case studies, both GSI
models have an acceptable accuracy in predicting ax, ay, az, and arot.
However, while the GM model results for atr and atot are just slightly
higher than the MD results, there is a significant discrepancy between
the results obtained from the CLL model and MD simulations.
Comparing the results shown in Tables IV with those in III and II, the
first observation is that in general the ACs in the combined
Fourier–Couette flow case studies are lower. In fact, having the top wall
at higher temperature together with imposing a wall velocity transfers
considerable amount of kinetic energy to the gas domain, which leads
to less accommodation of the gas molecules at the walls surface. The
second observation is related to the performance of the GM model
across these three case studies. Comparing the values of atr and atot
obtained from the MD simulation and the GM model, it is seen that as
the system goes toward higher non-equilibrium state, the deviation
between the GMmodel and the original MD results increases.

2. N2–Ni system

The resulting scattering plots of the non-isothermal Fourier
thermal problem for the N2–Ni system at the top wall are depicted
in Fig. 7. It is seen that the correlation graphs and the PDFs of the
reflected translational velocity components, as well as the energy
modes obtained from both GSI models, match with the atomistic
simulation results. The computed KLDs based on the employed
scattering models are presented in Fig. 8(a). It is seen that unlike
H2–Ni system, KLDs obtained from both GSI models are in the
same order of magnitude. However, the results of the GM model
still show less deviation in comparison with the CLL model (e.g.,
for Etot: KLDCLL ¼ 2.2 KLDGM). Different ACs obtained for this
case study are listed in Table V. It is observed that the ACs based
on the GM and CLL scattering models are in good agreement with
the reference MD results. However, the value of atot predicted by

TABLE IV. Tangential momentum (ax,az), normal momentum (ay), translational (atr),
rotational (arot), and total (atot) energy accommodation coefficients of the combined
Fourier–Couette flow problem for H2–Ni system at different speed ratios (Sv), com-
puted using different scattering kernels: GM and CLL models, and MD simulations.
B: bottom wall; T: top wall.

Sv Model Wall ax ay az atr arot atot

0.2 MD B 0.913 0.705 0.904 0.379 0.544 0.155
T 0.913 0.726 0.896 0.397 0.556 0.190

GM B 0.912 0.709 0.908 0.421 0.593 0.232
T 0.916 0.726 0.892 0.435 0.590 0.259

CLL B 0.913 0.647 0.904 0.831 0.544 0.738
T 0.908 0.718 0.893 0.838 0.559 0.745

0.4 MD B 0.812 0.633 0.801 0.274 0.418 0.075
T 0.808 0.646 0.805 0.286 0.420 0.092

GM B 0.807 0.633 0.802 0.314 0.479 0.155
T 0.813 0.649 0.807 0.328 0.480 0.167

CLL B 0.812 0.527 0.800 0.791 0.419 0.667
T 0.808 0.591 0.804 0.796 0.420 0.670
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FIG. 7. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the non-isothermal
Fourier thermal problem for N2–Ni system at the top wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid red
lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity components and
energy modes for the reflecting particles are presented.

FIG. 8. The Kullback Leibler divergence of the translational velocity components and different energy modes of N2–Ni system determined by GM and CLL scattering models;
(a) non-isothermal Fourier thermal problem at the top wall; (b) Couette flow problem (Sv ¼ 0:4) at the bottom wall; (c) combined Fourier–Couette flow problem (Sv ¼ 0:4) at
the bottom wall.
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TABLE V. Tangential momentum (ax,az), normal momentum (ay), translational (atr),
rotational (arot), and total (atot) energy accommodation coefficients of the Fourier
thermal problem for N2–Ni system (Tb ¼ 300 K), computed using different scattering
kernels: GM and CLL models, and MD simulations. B: bottom wall; T: top wall.

Tt Model Wall ax ay az atr arot atot

300 MD B 0.873 0.965 0.873 0.912 0.863 0.878
GM B 0.869 0.968 0.868 0.920 0.881 0.891
CLL B 0.871 0.976 0.871 0.976 0.867 0.941

500 MD B 0.856 0.960 0.857 0.906 0.804 0.855
T 0.907 0.959 0.916 0.931 0.892 0.903

GM B 0.856 0.959 0.855 0.910 0.821 0.886
T 0.907 0.957 0.912 0.930 0.907 0.912

CLL B 0.856 0.966 0.856 0.975 0.802 0.917
T 0.911 0.968 0.921 0.978 0.888 0.948

FIG. 9. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the Couette flow
problem (Sv ¼ 0.4) for N2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid red
lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity components and
energy modes for the reflecting particles are presented.

TABLE VI. Tangential momentum (ax,az), normal momentum (ay), translational (atr),
rotational (arot), and total (atot) energy accommodation coefficients of the Couette
flow problem for N2–Ni system at different speed ratios (Sv), computed using different
scattering kernels: GM and CLL models, and MD simulations.

Sv Model ax ay az atr arot atot

0.2 MD 0.873 0.968 0.873 0.911 0.857 0.873
GM 0.874 0.967 0.881 0.910 0.873 0.881
CLL 0.876 0.975 0.873 0.978 0.864 0.940

0.4 MD 0.865 0.968 0.872 0.917 0.862 0.879
GM 0.860 0.967 0.867 0.907 0.873 0.874
CLL 0.864 0.973 0.873 0.974 0.859 0.937
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the GM model is closer to the MD results in comparison with the
CLL model. Furthermore, changing the top wall temperature from
Tt ¼ 300 to 500 K, so going from the isothermal to the non-
isothermal system, did not have any noticeable impact on the val-
ues of the ACs. This means that different from H2–Ni system, here
ACs are not dependent on the temperature in the system.

Figure 9 represents the scattering plots for the Couette flow prob-
lem (Sv ¼ 0.4) at the bottom wall. It is shown that all velocity compo-
nents, as well as the energy modes predicted by the scattering models,
agree well with the MD results. However, in the x direction, the original
MD and GM results are more skewed, while the correlation graph
obtained from the CLL model seems very symmetric around the hori-
zontal dashed line. The computed KLDs for this case study [see Fig.
8(b)] also confirm the observed discrepancies in the scattering plots. It is
shown that the measured KLD for Vx based on the CLL model is the
highest one. The impact of such deviation can be seen also in relatively
larger values of Etr and Etot obtained from the CLL scattering model.

Different ACs for the Couette flow system are listed in Table VI. Similar
to the previous case study, quite acceptable performance in terms of pre-
dicting ACs was observed from the GSI models. Furthermore, based the
reported values in Tables V and VI, it can be deduced that neither
imposing velocity at walls nor increasing the velocity ratio from Sv ¼ 0.2
to 0.4 have any noticeable impact on the values of the ACs.

The correlations and PDF graphs for the Fourier–Couette flow
problem at the bottom wall (Sv ¼ 0.4) are depicted in Fig. 10. From this
figure, the most notable difference between the performance of the
employed GSI models is seen just in the shape of the clouds in the tan-
gential directions. It is shown that the tips of the Vx and Vz components
obtained fromMD simulations and the GMmodel at high velocities are
sharper than the CLL results. In addition, the overall shape of the clouds
for Vx from MD simulations and GM are not symmetric, while the Vx

component obtained from the CLL model is symmetric around the hor-
izontal dashed line. The KLDs for this case study are presented in Fig.
8(c). Similar to the previous case studies, superior performance of the

FIG. 10. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of combined
Fourier–Couette flow problem for N2–Ni system at the bottom wall (Sw ¼ 0:4). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection,
respectively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational
velocity components and energy modes for the reflecting particles are presented.
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GMmodel can be also noticed here. Comparing the KLDs from CLL in
this case study with the ones for the Couette flow problem [see Fig.
8(b)], it can be inferred that imposing a wall velocity together with hav-
ing walls with different temperatures induced larger deviation of the
CLL predictions from the reference MD results. The calculated ACs for
this case are listed in Table VII. Again, it is seen that both GSI models
can predict ACs with good accuracy. However, the value of atot obtained
from the GMmodel has a slightly better agreement with the MD results
as compared with the value obtained from the CLL model. Comparing
the results at different velocity ratios, it can be argued that similar to the
Couette flow problem, here also increasing the velocity ratio merely
affects the values of the ACs, which was different in the case of H2–Ni
system. Looking to the original MD data, the possible reasons for

different thermal behaviors of the reflected H2 and N2 molecules are dis-
cussed in Sec. IIIC.

C. Impact of the adsorption layer on behavior
of reflected gas molecules

In this part, the MD simulation results for H2–Ni and N2–Ni sys-
tems are studied more elaborately, in order to gain further insight on
the behavior of H2 and N2 under different thermal and flow conditions.
Here, the variation of the local number density of the gases across the
channel height (y direction) is examined for each benchmark problem.
The results for H2–Ni are shown in Fig. 11. It is seen that for the sys-
tems, in which both walls have the same temperature [see Fig. 11(a)], in
general, the density near the walls is higher than the bulk density. The
density peak at the gas–solid interface indicates the physical adsorption
of the gas molecules at the solid surface. This has been also observed
previously.52,53 It is seen in this figure that by imposing velocity at the
walls the density peaks near the walls are diminishing, and at Sv ¼ 0.4,
the density peaks are lowest. In fact, increasing Sv causes a lower resi-
dence time of gas molecules at the surface. For instance, for the isother-
mal Fourier thermal problem the residence time (tRES) is 1270 ps, while
for the Couette flow problem with Sv ¼ 0.4, the obtained value is tRES
¼ 957 ps. The gas adsorption layer inducing a longer gas–solid interac-
tion time leads to an increased heat transfer at the boundary layer.
Higher ACs obtained for the Fourier thermal problem in comparison
with the Couette flow problem (see Tables II and III) also confirm this
effect. The number density profiles for H2–Ni benchmark systems with
the walls at different temperatures are presented in Fig. 11(b). It is
shown that at the bottom wall (Tb ¼ 300K), the density peak is higher
than the density peak at the top wall (Tt ¼ 500K). However, similar to
the isothermal walls systems, the reducing effect of the imposed wall
velocity on the magnitude of the density peaks adjacent to the walls is
also observed here. For the combined Fourier–Couette flow problem
(Sv ¼ 0.4) at the top wall, the value of the number density is even lower
than the bulk value. Such behavior has not been observed previously.
However, it is noteworthy to mention that, due to high surface

TABLE VII. Tangential momentum (ax,az), normal momentum (ay), translational (atr),
rotational (arot), and total (atot) energy accommodation coefficients of the combined
Fourier–Couette flow problem for N2–Ni system at different speed ratios (Sv), computed
using different scattering kernels: GM and CLL models, and MD simulations. B: bottom
wall; T: top wall.

Sv Model Wall ax ay az atr arot atot

0.2 MD B 0.856 0.959 0.855 0.907 0.812 0.856
T 0.902 0.960 0.908 0.931 0.894 0.903

GM B 0.856 0.960 0.856 0.907 0.829 0.863
T 0.906 0.958 0.916 0.934 0.904 0.904

CLL B 0.856 0.961 0.858 0.971 0.814 0.921
T 0.906 0.954 0.909 0.972 0.899 0.946

0.4 MD B 0.850 0.962 0.856 0.904 0.812 0.855
T 0.910 0.967 0.908 0.934 0.897 0.906

GM B 0.849 0.962 0.852 0.908 0.831 0.867
T 0.909 0.965 0.906 0.932 0.905 0.906

CLL B 0.853 0.966 0.856 0.975 0.809 0.923
T 0.917 0.973 0.909 0.980 0.894 0.947

FIG. 11. Number density profiles for H2–Ni system with (a) isothermal walls (Tb ¼ Tt ¼ 300 K); (b) non-isothermal walls (Tb ¼ 300, Tt ¼ 500 K).
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temperature in combination with a high wall velocity (uW ¼ 629m=s),
an enormous amount of the kinetic energy is added to the gas mole-
cules. Such an extreme situation cannot be studied experimentally, and
the main objective of choosing it in this work was the trend study of the
scattering models. The obtained ACs for this case are the lowest among
the all studied cases for H2–Ni system.

Figure 12 represents the local number density variations of different
case studies for N2–Ni system. The molecular mass of N2 is considerably
higher than H2 (mN2 ¼ 14mH2 ). This fact together with a stronger gas–
wall interaction potential between N2 and Ni leads to more predominant
adsorption for N2 molecules. This can be also deduced from the consid-
erable deviation of the number density in the vicinity of the walls from
the bulk number density, as shown in Fig. 12. Furthermore, the formed
layer is strongly attached to Ni surface. Unlike H2–Ni system, imposing
a velocity at the walls does not have any noticeable impact on the density
profiles. However, in the case of the system with non-isothermal walls
[see Fig. 12(b)] the number density at the top hot wall is lower than the
bottom cold wall, and this trend is in accordance with the one already
observed for H2–Ni system.

As already mentioned, higher adsorption of gas molecules at the
surface causes an enhancement in thermal energy exchange at the gas–-
solid interface. However, it was observed by Sun et al.53 that there is a
limit for such enhancement. Basically, when the solid surface is fully cov-
ered by gas molecules and there is no more space for further adsorption,
the energy transport properties do not increase anymore. In fact, under
such circumstances, gas phase molecules actually collide mainly with the
other gas molecules present in the gas layer at the solid surface.
Consequently, there is no further energy exchange caused by gas–wall
interactions. Our results show that for N2–Ni system, the solid surface is
fully saturated with gas molecules, and the interfacial heat transfer is
highly dominated by the presence of the gas adsorbed layer. Therefore,
changing the characteristics of the system such as imposing a velocity at
the wall or increasing the wall temperature does not have any significant
impact on the thermal properties of N2 molecules after colliding with the
Ni surface. This is also reflected in the values of various ACs in different
case studies for N2–Ni system reported in Sec. III B2 that are very close

to each other. On the other hand, in the case of H2–Ni system, the adhe-
sion force between H2 molecules and Ni surface is very weak, which is
mainly due to the relatively low weight of H2 molecules. Hence, the ther-
mal characteristics of the H2–Ni interface are very likely to change by
imposing some perturbations in the system. This can be also realized by
different shapes of the correlation graphs, as well as different values of
computed ACs for the various studied benchmark systems in Sec. IIIB1.

IV. CONCLUSIONS

In this work, an unsupervised machine learning technique, known
as the GMmodel, is applied to construct a scattering model for diatomic
gas molecules (H2, N2) interacting with the solid Ni surface. The main
reason behind using this specific technique is that GM is considered as
one of the most efficient probabilistic machine learning techniques that
can be used to cluster a general dataset, in which the subsets follow
Gaussian distributions. The GM scattering model is constructed from
the superposition of Kmultidimensional Gaussian functions, each deter-
mined by a mean vector and covariance matrix. Therefore, the GM scat-
tering model is categorized as a parametric model. However, since the
number of employed parameters is not limited as the classical paramet-
ric scattering kernels, the GM model is much more flexible. Here, the
entire incoming and outgoing translational and rotational velocity com-
ponents obtained from the MD simulations are used for training of the
model. This guarantees that the model is able to describe all possible
phenomena caused by inelastic gas–surface collisions when the system
is in a highly non-equilibrium condition.

Using the original MD simulation results for H2–Ni and N2–Ni
as reference solutions, the performance of the GM scattering model is
compared with the CLL scattering model in different thermal prob-
lems that are commonly faced in rarefied gas flow systems. It is
observed that for H2–Ni changing the wall temperature or imposing
an external velocity at the walls considerably affects the behavior of
postcollisional gas molecules. While the GM scattering model can pre-
dict such behavior with good accuracy, the results of the CLL model in
non-equilibrium conditions highly deviate from the MD results.
Nevertheless, by going toward extremely non-equilibrium situations,

FIG. 12. Number density profiles for N2–Ni system with (a) isothermal walls (Tb ¼ Tt ¼ 300 K); (b) non-isothermal walls (Tb ¼ 300, Tt ¼ 500 K).
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the performance of the GMmodel slightly degrades, but it still outper-
forms the CLL model.

On the other hand, for N2–Ni case, changing the system charac-
teristics does not have a noticeable impact on the kinetic features of N2

molecules after reflecting from the surface. Here, the shape of the cor-
relation graphs, the PDF of the outgoing translational velocity compo-
nents and energy modes, and the computed ACs in different
benchmark systems remain more or less the same. In this case, in gen-
eral, the predictions from both the employed stochastic scattering
models are in a good agreement with the MD results. However, also
here the GM results are slightly in better agreement with the MD data.

To shed some lights on the possible reasons behind very different
behaviors of H2 and N2 gases in the studied systems, the variation of
the local number density of the gas molecules in each system obtained
from the conducted MD simulations has been investigated. It is
observed that in the case of N2–Ni, the solid surface is saturated with
gas molecules and applying different perturbations at the walls, such
as increasing the temperature or imposing an external velocity, does
not have a considerable impact on the amount of adsorbed gas mole-
cules. Consequently, the incoming gas molecules from the bulk of the
gas toward the surface mainly encounter other gas molecules that are
stuck at the surface, and they do not really exchange energy with Ni
molecules. However, for the H2–Ni the adsorption layer is less domi-
nant. As a result, changing wall features (temperature or velocity) has
relatively more impacts on the behavior of reflected gas molecules in
the case of H2 than for N2.

The observed high precision of the GM predictions indicates
that it can be considered a promising candidate to compute impor-
tant discontinuity phenomena such as temperature jump and veloc-
ity slip in rarefied gas flow systems. In addition, the accuracy of the
GM model results indicates the high potential of this approach to
construct a generalized scattering kernel for diatomic gas–solid sur-
face interactions. Nevertheless, a more extended dataset, including a
wider range of wall temperatures and gas densities, is required to
construct such a model. Further studies will be devoted to these
problems.
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APPENDIX A: SENSITIVITY ANALYSIS IN ORDER TO
DECIDE THE NUMBER OF GAUSSIAN FUNCTIONS (K)
USED IN THE GM MODEL

In the case of the GM model, a sensitivity analysis is needed to
select the optimal number of the Gaussian functions. Here, for both
gas–solid pairs, the isothermal Fourier thermal problem without
any heat flux (Tb ¼ Tt ¼ 300K) is chosen as the benchmark sys-
tem. Afterward, the number of Gaussians K is varied in the range of

FIG. 13. Accommodation coefficients related to the translational energy (atr), rotational energy (arot), and total energy (atot) computed using atomistic simulations and the GM
scattering model using different number of Gaussian functions K.
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K¼ 1–1000, and the ACs for different gas molecule’s energy modes
consist of the translational energy AC (atr), the rotational energy
AC (arot), and the total energy AC (atot) driven from the GM model
are compared with the corresponding values obtained from the
original MD data. From Fig. 13, it can be understood that for
H2–Ni system, there is no considerable change in the values of the
ACs for K P 500. Therefore, K¼ 500 is used as the number of
Gaussian functions in the GM model in the case of H2–Ni system.
The results for N2–Ni system are illustrated in Fig. 13. In this case
study for K P 100, already the difference between all the computed
ACs based on the GM model and the MD results is less than 5%.
However, considering more importance for the total energy AC, the

smallest K at which the difference between the GM model and MD
results is the lowest (K¼ 450) is used as the number of Gaussians
for training the GM model based on the results from N2–Ni system.

APPENDIX B: CORRELATION GRAPHS AND PDFS
OF THE H2-NI CASE STUDIES

In this appendix, the correlations between incoming and outgoing
velocities, energy modes, and the corresponding probability density
functions for the H2-Ni system are shown for the non-isothermal
Fourier problem (Fig. 14), Couette flow problem (Sv ¼ 0.2) (Fig. 15)
and combined Fourier-Couette flow problems (Fig. 16–18).

FIG. 14. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the non-
isothermal Fourier thermal problem for H2–Ni system at the top wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively.
Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity compo-
nents and energy modes for the reflecting particles are presented.
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FIG. 15. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the Couette flow
problem (Sv ¼ 0.2) for H2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid red
lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity components and
energy modes for the reflecting particles are presented.
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FIG. 16. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of combined
Fourier–Couette flow problem for H2–Ni system at the bottom wall (Sv ¼ 0:2). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection,
respectively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational
velocity components and energy modes for the reflecting particles are presented.
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FIG. 17. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of combined
Fourier–Couette flow problem for H2–Ni system at the top wall (Sv ¼ 0:2). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respec-
tively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity
components and energy modes for the reflecting particles are presented.
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FIG. 18. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of combined
Fourier–Couette flow problem for H2–Ni system at the bottom wall (Sv ¼ 0:4). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection,
respectively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational
velocity components and energy modes for the reflecting particles are presented.
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APPENDIX C: CORRELATION GRAPHS AND PDFS
OF THE N2-NI CASE STUDIES

In this appendix, the correlations between incoming and
outgoing velocities, energy modes, and the corresponding

probability density functions for the N2-Ni system are shown for
the isothermal Fourier problem (Fig. 19), the non-isothermal
Fourier thermal problem (Fig. 20), Couette flow problem
(Sv ¼ 0.2) (Fig. 21) and combined Fourier-Couette flow problem
(Figs. 22–24).

FIG. 19. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the isothermal
Fourier thermal problem for N2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid
red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of translational velocity components and
energy modes for the reflecting particles are presented.
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FIG. 20. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the non-
isothermal Fourier thermal problem for N2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respec-
tively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity
components and energy modes for the reflecting particles are presented.
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FIG. 21. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of the Couette flow
problem (Sv ¼ 0.2) for N2–Ni system at the bottom wall. The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respectively. Solid red
lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity components and
energy modes for the reflecting particles are presented.
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FIG. 22. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of combined
Fourier–Couette flow problem for N2–Ni system at the bottom wall (Sv ¼ 0:2). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection,
respectively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational
velocity components and energy modes for the reflecting particles are presented.
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FIG. 23. Correlations between incoming (horizontal-axis) and outgoing (vertical-axis) translational velocity components in (Å/ps) and energy modes in (eV) of combined
Fourier–Couette flow problem for N2–Ni system at the top wall (Sv ¼ 0:2). The dashed horizontal and diagonal lines demonstrate fully diffusive and specular reflection, respec-
tively. Solid red lines demonstrate the least-square linear fit of the kinetic data. In the last column, the corresponding probability density functions of the translational velocity
components and energy modes for the reflecting particles are presented.
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