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2Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
3Joint Quantum Institute and The Institute for Research in Electronics and Applied Physics, University of Maryland,

College Park, Maryland 20742, USA
4TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerp, Belgium

5INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
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In an atomic Bose-Einstein condensate quenched to the unitary regime, we predict the sequential
formation of a significant fraction of condensed pairs and triples. At short distances, we demonstrate the
two-body and Efimovian character of the condensed pairs and triples, respectively. As the system evolves,
their size becomes comparable to the interparticle distance, such that many-body effects become
significant. The structure of the condensed triples depends on the size of Efimov states compared with
density scales. Unexpectedly, we find universal condensed triples in the limit where these scales are well
separated. Our findings provide a new framework for understanding dynamics in the unitary regime as the
Bose-Einstein condensation of few-body composites.
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Introduction.—Bose-Einstein condensation (BEC) gives
rise to such spectacular manifestations of quantum statistics
as superfluidity, superconductivity, and supersolidity [1–4].
The paradigmatic theories of Bogoliubov and Bardeen-
Cooper-Schriefer (BCS) describe BECs of weakly coupled
bosons and fermionic pairs, respectively, and have been
applied in many fields of physics [4–10]. Here, the qua-
ntum statistics of the medium alters one-body dynamics,
producing quasiparticles, and two-body dynamics, produc-
ing Cooper pairs, with the latter persisting even in the
absence of a two-body bound state. These guiding concepts
however must be reconsidered when describing strongly
interacting systems such as liquid helium [11], ultracold
gases [12], nuclear matter [13–16], and strongly coupled
polarons [17–22]. The occurrence of a richer few-body
physics including three-body bound Efimov states amongst
these strongly interacting bosons and multicomponent
fermions [23,24] necessitates the key shifting of many-
body paradigms from two- to three-body correlations.
Here, the fundamental question reemerges of whether
bound states in vacuum (polymers: dimers, trimers, etc.)
can be bound by the medium and converted into condensed
few-body composites (n-tuples: pairs, triples, etc.) posse-
ssing long-range order.
Recently, the versatility of ultracold atomic platforms

was utilized to shed new light on these open problems.
Despite strong three-body losses, quasiequilibrated states
were achieved in single-component Bose gases quenched
to the unitary regime njaj3 ≫ 1, with n the atomic density
and a the s-wave scattering length [25–28]. Specifically, a
macroscopic population of Efimov trimers was reported in

Ref. [26], following a second sweep of interactions to weak
interactions. Historically, this technique was used to mea-
sure the condensation of Cooper pairs in the BCS-BEC
crossover via their conversion into weakly bound dimers
[29,30]. It is thus natural to ask whether the molecules
measured in Ref. [26] reveal the existence of few-body
condensates of pairs and triples in the unitary Bose gas. It is
unknown whether the hypothesized universality of the
medium [31], parametrized by the density (Fermi) scales
kn ¼ ð6π2nÞ1=3, En ¼ ℏ2k2n=2m, and tn ¼ ℏ=En, produces
universal pairs and triples, or conversely whether a (non-
universal) sensitivity to the Efimov effect and finite-range
physics is preserved at the many-body level. Answering
this question in such a nonequilibrium and strongly
interacting quenched system requires a model both ergodic
[32] and nonperturbative [33–37], which recovers the
vacuum three-body spectrum [38–41]. Although widely
used in statistical physics [42–44], the cumulant model was
recently adapted to quantum gases and found to fulfill these
requirements [45,46].
In this Letter, we study a uniform BEC quenched to the

unitary regime and develop a general theory of simulta-
neous atomic, pair, and triple condensation in strongly
interacting systems possessing the Efimov effect. Within
the cumulant model, we construct generalized condensate
wave functions and predict significant pair and triple
condensation and associated off-diagonal long-range order-
ing (ODLRO) occurring between depleted atoms. We show
that the Efimovian character of the triples is guaranteed at
short distances; however at later times triples have a size
comparable to the interparticle spacing. Remarkably even
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when Fermi and Efimovian scales are well separated,
medium effects lead to the persistent production of triple
and pair BECs with universal populations and internal
structures.
Model.—We model the system of N spinless bosons in a

cubic volume V using a single-channel Hamiltonian with
pairwise s-wave interactions

Ĥ ¼
Z

d3rψ̂†ðrÞ
�
−
ℏ2

2m
Δr

�
ψ̂ðrÞ

þ 1

2

Z
d3rd3r0ψ̂†ðrÞψ̂†ðr0ÞVðjr − r0jÞψ̂ðr0Þψ̂ðrÞ; ð1Þ

where ψ̂ðrÞ ¼ ð1= ffiffiffiffi
V

p ÞPk âke
ik·r are field operators and

âk annihilates a boson of momentum ℏk. At unita-
rity (jaj → ∞), the actual potential can be replaced by
a simpler nonlocal separable potential V̂ ¼ gjζihζj with
s-wave form factors hkjζi ¼ θðΛ − jkjÞ, interaction
strength g¼−π3ℏ2ā=m, and cutoff Λ¼2=πā, where ā ¼
0.955rvdW is the mean scattering length and rvdW is the van
der Waals length for a particular atomic species [38,47–49].
This sets the three-body parameter κ�rvdW ≈ 0.211, which
is the wave number of the ground-state Efimov trimer at
unitarity (see [37,38,45,50]).
We model the postquench many-body dynamics of an

initially pure, noninteracting atomic condensate using
the method of cumulants whose hierarchical structure
reflects the sequential growth of intrinsically higher-order
correlations [43,45,46,67–70]. Within the U(1) symmetry-
breaking picture, we study the dynamics of the singlet
hâki ¼ δk0

ffiffiffiffi
V

p
ψ0, which describes the atomic BEC in the

k ¼ 0 mode. In the frame rotating with the condensate
phase θ0, we study also the doublets

nk ¼ hâ†kâki; ck ¼ e−2iθ0hâ−kâki; ð2Þ

describing the single-particle momentum distribution and
pairing, respectively, and the triplets

Mk;q ¼ eiθ0hâ†k−qâ†qâki; Rk;q ¼ e−3iθ0hâq−kâkâ−qi;
ð3Þ

introducing ergodic processes and the Efimov effect
[32,38,45,71]. Truncating the cumulant hierarchy can be
justified at early times due to the sequential nature of
correlation buildup [45,50]. However the increasing impor-
tance of quadruplets, in particular for energy conservation,
limits our study to times t≲ tn.
Off-diagonal long-range ordering.—The triplet model

contains anomalous averages at the one-body level (ψ0) in
the atomic condensate and at the two- (ck) and three-
body (Rk;q) levels within the quantum depletion. These
cumulants are intimately connected to the eigenfunctions
of the reduced density matrices, signaling ODLRO and

condensation [72–74]. We begin from the spectral decom-
position of the one-body density matrix

ρð1Þðr1;r2; tÞ ¼ hψ̂†ðr2Þψ̂ðr1Þi ¼
X
ν

NνðtÞφ�
νðr2; tÞφνðr1; tÞ;

ð4Þ

where φν are orthogonal one-body eigenstates. Only one
eigenvalue Nν¼0 is assumed to be macroscopic such that φ0

is responsible for ODLRO at the one-body level:

lim
jr1−r2j→∞

ρð1Þðr1; r2; tÞ ¼ N0ðtÞφ�
0ðr2; tÞφ0ðr1; tÞ: ð5Þ

Within the cumulant approach, the long-range part of ρð1Þ is
simply jψ0j2, such that N0 ¼ Vjψ0j2 coincides with the
condensate population hâ†0â0i and fraction n0 ¼ N0=V.
In the presence of one-body condensation, ODLRO

occurs trivially at all higher orders [69,74]. We isolate
therefore the atomic condensate from the fluctuations
ψ̂ðrÞ ¼ ψ0 þ δψ̂ðrÞ, satisfying hδψ̂ðrÞi ¼ 0. To study
intrinsically few-body ODRLO amongst fluctuations, we
adapt the treatment of Yang [74] and spectrally decompose
the corresponding p-body density matrices

hδψ̂†ðr01Þ…δψ̂†ðr0pÞδψ̂ðrpÞ…δψ̂ðr1Þi
¼

X
ν

NðpÞ
ν ðtÞφðpÞ�

ν ðr01;…; r0p; tÞφðpÞ
ν ðr1;…; rp; tÞ; ð6Þ

where φðpÞ
ν and NðpÞ

ν are the orthogonal p-body eigenstates
and eigenvalues, respectively. Analogous to Eq. (5), when
the p-body density matrix is nonzero in the long-range limit
j Pp

i¼1 ri − r0ij=p → ∞, there exists intrinsic p-body
ODLRO. In the triplet model, this limit is dominated by
the anomalous contraction hδψ̂†…δψ̂†ihδψ̂…δψ̂i, such
that nonzero c or R cumulants generate ODLRO. The
associated normalized pair and triple wave functions are

φð2Þ
0 ðr; tÞ ¼ cðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð2Þ
0 ðtÞ

q ; φð3Þ
0 ðr; ρ; tÞ ¼ Rðr; ρ; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð3Þ
0 ðtÞ

q ; ð7Þ

with Nð2Þ
0 ¼ P

k jckj2, Nð3Þ
0 ¼ P

k;q jRk;qj2, and Jacobi
vectors r≡ r1 − r2, ρ ¼ r3 − ðr1 þ r2Þ=2. We note that
pair or triple condensation may generate trivial ODLRO in
density matrices with p ≥ 4. If one were to study, e.g.,
quadruple condensation, such contributions should be
removed.
Condensate fractions.—Unlike one-body condensation,

the macroscopic eigenvaluesNðpÞ
0 cannot be directly related

to condensed fractions. To understand this, we construct
composite operators annihilating condensed pairs and
triples
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b̂ðpÞ0 ¼ 1ffiffiffiffiffi
p!

p
�Yp
i¼1

Z
d3riδψ̂ðriÞ

�
φðpÞ�
0 ðr1;…; rpÞ: ð8Þ

Evaluating the quantum average of the commutators in the
triplet model gives

h½b̂ð2Þ0 ; b̂ð2Þ†0 �i ¼ 1þ 2

Nð2Þ
0

X
k

jckj2nk; ð9Þ

h½b̂ð3Þ0 ; b̂ð3Þ†0 �i ¼ 1þ 3

Nð3Þ
0

X
k;q

jRk;qj2nkð1þ nqÞ; ð10Þ

which approximate the canonical relations only for weak
excitations (nk ≪ 1) or localized pairs and triples relative
to the medium. In the opposite limit, composite bosons are
created on top of densely populated Fourier modes, leading
to Bose enhancement of atoms within the created
composite and an overestimation of the condensed fraction
[75]. Consequently, the rapid quantum depletion of the

atomic condensate in the unitary regime yields b̂ðpÞ0 that are
approximately bosonic only at t≲ tn (see the Supplemental
Material [50]). The renormalization procedure,

B̂ðpÞ
0 ¼ b̂ðpÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½b̂ðpÞ0 ; b̂ðpÞ†0 �i
q ; ð11Þ

effectively ensures that the bosonic canonical relations are
preserved on average at all times, which we use to compute

the pair and triple condensate fractions as nðpÞ0 =n ¼
hB̂ðpÞ†

0 B̂ðpÞ
0 i=ðN=pÞ.

The postquench dynamics of the condensate fractions are
shown in Fig. 1. Compared with the doublet model, three-
body processes in the triplet model lead to an accelerated
depletion of the atomic condensate, reaching n0=n ≈ 0.4 by
t ¼ tn. At early times, the formation of condensed triples
follows the universal pair condensate growth sequentially,
reflecting the hierarchical structure of the cumulant equa-
tions of motion (see Refs. [38,50]). At later times the
dynamics depend strongly on the density regime, repeating
log periodically with the density typical of the Efimov
effect [39–41]. In the trimer regime [Fig. 1(a)], the ground-
state Efimov trimer resonantly overlaps with the scale set
by the density (kn=κ� ∼ 1), and triple condensation domi-
nates clearly at later times, becoming comparable to the
atomic condensate fraction. Condensed atoms can be
converted to pairs and triples via low energy two- and three-
body scattering, respectively [71,76,77]. As this overlap
becomes less resonant (kn=κ� ≲ 1), the system enters the
crossover regime where particle-number oscillations
between pair and triple BECs visible in Fig. 1(b) are
analogous to the atom-dimer coherences of Ref. [78]. In the
universal regime [Fig. 1(c)], Efimovian and Fermi scales
are well separated (kn=κ� ≪ 1), and the oscillation

becomes increasingly faster relative to tn. This is the
characteristic dynamical signature of the Efimov effect
[38,40,41,79]. At later times, pair condensation remains
dominant while the nonuniversal oscillations fade and the
condensate fractions converge universally, approaching

nð2Þ0 =n ≈ 0.2 and nð3Þ0 =n ≈ 0.1 by t ¼ tn.
Short-range expansions.—We study now how the short-

range behavior of the condensate wave functions cðr; tÞ and
Rðr; ρ; tÞ are dictated by few-body physics. This can be
understood from the corresponding cumulant equations of
motion which are identical to few-body Schrödinger
equations at large momenta compared with the many-body
scales [1,38,45,50]. For distances larger than the short
range of the potential ðrvdW < r < k−1n ; aÞ, the pair and
triple condensate wave functions can be expanded in terms
of the zero-energy few-body scattering wave functions

cðr; tÞ ¼
r→0

1

4π
Ψð2Þ

0 ðtÞϕðrÞ; ð12Þ

Rðr; ρ; tÞ ¼
R→0

23=2

31=4s0
Ψð3Þ

0 ðtÞΦðR;ΩÞ; ð13Þ

which define the macroscopic order parameters ΨðpÞ
0 (see

the Supplemental Material [50]). Here ϕðrÞ ¼ 1=r − 1=a is
the zero-energy two-body scattering state, and

ΦðR;ΩÞ ¼ 1

R2
sin

�
s0 log

R
Rt

�
ϕis0ðΩÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihϕis0 jϕis0i

p ð14Þ

(a) (b) (c)

FIG. 1. Atomic (blue), pair (orange), and triple (green) con-
densate fraction dynamics in the (a) trimer, (b) crossover, and
(c) universal density regimes. The gray dot-dashed lines indicate
universal results in the doublet (Hartree-Fock Bogoliubov [80])
model. The comparison of Efimovian (κ�) and Fermi (kn) scales
strongly determines the relative populations of the condensed
few-body composites.
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is the zero-energy three-body scattering state for hyper-
raddius R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=2þ 2ρ2=3

p
and hyperangles Ω ¼

fρ̂; r̂; α ¼ arctanðr=ρÞg [81]. Here, s0 ≈ 1.00624, Rt ¼ffiffiffi
2

p
expfIm ln½Γð1þ is0Þ�=s0g=κ�, andΓ is the gamma func-

tion. The hyperangular function describing s-wave pair-
wise scatterings is ϕsðΩÞ ¼ ð1þ P̂13 þ P̂23Þ sin½sðπ=2 −
αÞ�= sinð2αÞ ffiffiffiffiffiffi

4π
p

where P̂ij swaps particles i and j [82].
From Eqs. (12) and (13) we see then at unitarity that the pairs
have a universal behavior ∼1=r at short distances, whereas
the triples have an Efimovian character, diverging as
1=R2 and oscillating log periodically with the three-body
parameter.
At short distances, the total probability to measure

clustered pairs and triples is encoded in the two- and
three-body contact densities C2 and C3, respectively, central
to a set of universal relations between system properties
[81,83]. In the presence of pair and triple condensation,
these clusters can be divided into contributions from the
order parameters and higher-order cumulants

C2 ¼
m2g2

ℏ4
hðψ̂†Þ2ψ̂2i ¼ jΨð2Þ

0 j2 þ δC2; ð15Þ

C3¼−
m2g2

2ℏ4Λ2

�
H0 þ J0

aΛ

�
hðψ̂†Þ3ψ̂3i¼ jΨð3Þ

0 j2þδC3; ð16Þ

where H0 and J0 are log-periodic functions of Λ, ψ̂ ¼ ψ̂ð0Þ
are local field operators, and δCp’s are contributions absent
in the triplet model (see the Supplemental Material [50]).

This establishes the square modulus ofΨðpÞ
0 as a probability

density, analogous to ψ0 at the one-body level. The
dynamics shown in Fig. 2 can be understood from

Refs. [33,40,41,45], namely, early-time growths jΨðpÞ
0 ðtÞj ∝

tðp−1Þ=2 with primary (p ¼ 3) and secondary (p ¼ 2)
visibility of nonuniversal trimer oscillations in the cross-
over regime (kn=κ� ¼ 0.82 and 0.61).
Internal structure.—We study now the longer-range

internal structure of the pair and triple condensate wave
functions, focusing on the interplay between Efimovian and
Fermi scales. Figure 3 shows the triplet model results for
the normalized pair and triple condensate wave functions at
t=tn ¼ 0.15, 0.5, 1. To visualize the triple condensate wave
function, we average Rk;q over internal configurations at a
fixed hypermomentum K2 ¼ k2 þ q2 þ kq cos θ where

cos θ ¼ k̂ · q̂. The corresponding φð3Þ
0 ðKÞ captures varia-

tions of the coherent tripling physics with changes in the
overall three-body momentum scale [50].
At early stages of evolution ðt ¼ 0.15tnÞ, the pair and

triple wave functions are relatively constant over the range
of momenta considered consistent with the buildup of local
correlations between nearby particles [33]. Accordingly,
the small amount of clustered pairs and triples are domi-
nated by few-body physics. This explains why their

(a)

(b)

FIG. 2. Macroscopic (a) pair and (b) triple order parameter
dynamics over a range of densities within the triplet model. Black
solid line: universal results within the doublet model. Inset:
residual exponents ΨðpÞ

0 ∝ Λγp evaluated at fixed t ¼ 0.05tn
converge as expected to 0 as the system becomes increasingly
dilute with respect to the range of the interaction (Λ=kn → ∞).

(a)

(b)

FIG. 3. Internal structures of the normalized (a) pair and
(b) triple condensate wave functions as the system evolves for
densities within the crossover (orange) and universal (light blue)
regimes. The filled circles in (a) indicate the three-body parameter.
Insets: normalized pair and triple condensatewave functions in the
universal regime at t ¼ tn compared with the vacuum ground-state

Efimov trimer jΨð0Þ
3b ðKÞj (black-dotted) for density kn=κ� ¼ 0.35.
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condensation dynamics shown in Fig. 1 follow the corre-
sponding contact growth laws. We note that the local,
structural origin of these laws was not recognized in
Ref. [39].
At later times, both pair and triple wave functions

become increasingly nonlocal. From the insets of Fig. 3
we see that as the system approaches the universal regime
more deeply, both condensate wave functions acquire a
universal form by t ¼ tn. Together with the universal
behavior of the triple condensed fractions in Fig. 1(c), this
remarkable finding suggests the existence of a condensate
composed of universal Efimovian triples at later times
despite strongly nonuniversal short-distance behavior [see
Fig. 2(b)]. In the crossover regime results in Fig. 3(a), we
find the development of a peak at momenta kn ∼ κ�
reminiscent of the Cooper pair in the BEC-BCS crossover
[84]. The absence of this peak in simulations of the doublet
model and universal regime of the triplet model [Fig. 3(a)]
ties it to the Efimov effect.
To study the presence and role of the ground-state

Efimov trimer jΨð0Þ
3b i in the triple condensate jφð3Þ

0 i, we
evaluate the overlap

Pð0Þ
3b ðtÞ ¼ jhφð3Þ

0 jΨð0Þ
3b ij2; ð17Þ

as shown in Fig. 4 (see the Supplemental Material [50]).
In the universal regime, the ground-state Efimov trimer is
localized relative to the Fermi scales. At all times in this

regime, Pð0Þ
3b reflects therefore the short-range behavior of

the triple condensate wave function encapsulated by Ψð3Þ
0 ,

contributing the characteristic trimer oscillations visible in
Fig. 4. After a small initial increase, the rapid decrease of

Pð0Þ
3b in this regime reflects the local to nonlocal transition of

the triple condensate wave function, which bears little rese-
mblance to the trimer as shown in the inset of Fig. 3(b). This
is responsible also for the decreased visibility of the trimer
oscillations in Fig. 1(c). Consequently, this local to nonlocal
structural transition, generated by the medium effect of the
strong quantum depletion, is the underlying mechanism by
which macroscopic observables, such as the condensate
fractions in Fig. 1(c), display a universal scale invariance.
This occurs despite continued local sensitivity to the three-
body parameter [Eq. (13)] which becomes less relevant as
the coherent physics begins to occur predominantly on the
Fermi scale. In the trimer regime, we find no decrease of
Pð0Þ
3b for t≲ tn, and the early-time increase is more gradual.

From Fig. 3(b) it is clear that although the coherent physics
occurs predominantly on the Fermi scale at later times as
before, when one has kn ∼ κ� the condensed triples are
increasingly dominated by the ground-state Efimov trimer.
In short, the nonuniversal, trimer character of the triple
condensate increases at later times in the trimer regime,
whereas it decreases in the universal regimewhere one finds
triples without a vacuum equivalent.
Conclusion.—Using the cumulant model that includes

three-body correlations, we have shown that novel types of
few-body condensates are generated within the quantum
depletion of a quenched unitary Bose gas. Crucially, the
regime of universal pair and triple condensation demon-
strates a strongly interacting many-body system behaving
universally even in the presence of nonuniversal few-body
physics such as the Efimov effect. We expect the molecular
fractions produced following an interaction sweep back to
weak interactions [26,29] to reflect the few-body compo-
sites present in the unitary regime. However the highlighted
difficulties of counting composite bosons extended in the
medium requires a precise modeling of the projection and
remains the subject of future work [37,86]. Additionally,
the tripling fluctuations discussed in this Letter raise
interesting prospects for measuring non-Gaussian many-
body states [87,88].
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