

State-based switching multi-rate controller for improving
resource utilization on predictable and composable platforms
Citation for published version (APA):
Haghi, M., Yu, S., Goswami, D., Goossens, K., Koedam, M., & Nelson, A. (2022). State-based switching multi-
rate controller for improving resource utilization on predictable and composable platforms. Microprocessors and
Microsystems, 91, Article 104517. https://doi.org/10.1016/j.micpro.2022.104517

Document license:
CC BY

DOI:
10.1016/j.micpro.2022.104517

Document status and date:
Published: 01/06/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1016/j.micpro.2022.104517
https://doi.org/10.1016/j.micpro.2022.104517
https://research.tue.nl/en/publications/b2eb4642-04dd-49ef-b8d9-f927e6574bec

Microprocessors and Microsystems 91 (2022) 104517

A
0

S
u
M
E

A

K
E
E
P
R
M

1

v
i
r
t
p
f
o
u
f
f
s
t
2
r
w
t
c
m
r

m

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

tate-based switching multi-rate controller for improving resource
tilization on predictable and composable platforms
ojtaba Haghi ∗, Shengru Yu, Dip Goswami, Kees Goossens, Martijn Koedam, Andrew Nelson

indhoven University of Technology, The Netherlands

R T I C L E I N F O

eywords:
mbedded Control Systems
mbedded platforms
redictable and composable platforms
esource utilization
ulti-rate control

A B S T R A C T

Resource sharing is a crucial design consideration in design of embedded systems for cost and resource
utilization reasons. The system-level performance is negatively influenced by resource sharing due to inter-
application interference. For a control application, this further implies a trade-off between the resource
utilization and the control performance. For a control application, the sampling rate is an important knob to
perform trade-off between resource utilization and the control performance. In this paper, we present a state-
base switching multi-rate controller (SSMC) scheme targeting predictable and composable multi-core platforms.
In the proposed scheme, the controller switches between multiple sampling rates (or application periods) based
on the state of the system i.e., the transient and steady state. We propose two multi-rate control laws targeting
SSMC — one using single gain and one using multiple gains over different actuating points. We address the
impact of model uncertainty by using a parallel observer system. We validate the effectiveness of the proposed
scheme performing hardware-in-the-loop simulations targeting an industrial multi-core platform — Verintec,
synthesized on a PYNQ Z2 FPGA board. Finally, we demonstrated that the proposed scheme outperforms the
state-of-the-art techniques in terms of resource utilization and the control performance.
. Introduction

In recent years, the usage of embedded systems to implement
arious applications has rapidly increased. The application complex-
ty varies from simple internet-of-things (IoT) devices to complex
eal-time applications in vehicles. In modern cars, numerous applica-
ions/functions of different types run on processing units with limited
rocessing resource and memory. Currently, safety critical control
unctions like cruise control, braking system, automatic parking and so
n run on such dedicated low-capacity units called electronic control
nits (ECUs). Such federated architectures [1] with exclusive ECU per
unction ease the integration and validation process, particularly when
unctions are developed by different third party suppliers. However,
uch architectures lead to a high number of ECUs per car since the
ypical number of applications in a car has increased from 20 in
000s to more than 100 applications in recent years. With the cur-
ent federated approach the trend of increasing applications/functions
ould eventually result in a higher cost and possibly infeasible Elec-

ronic/Electrical architecture. To keep the embedded implementations
ost low, the recent trend is to consider integrated architectures where
ultiple functions run on a single ECU [2]. An integrated architecture

educes the per vehicle production cost between 60 to 100 USD [2].

∗ Corresponding author.
E-mail addresses: s.m.haghi@tue.nl (M. Haghi), s.yu@student.tue.nl (S. Yu), d.goswami@tue.ml (D. Goswami), k.g.w.goossens@tue.ml (K. Goossens),

.l.p.j.koedam@tue.nl (M. Koedam), a.t.nelson@tue.nl (A. Nelson).

In that spirit, in this paper, we study the implementation of feedback
controllers sharing an embedded platform with other applications. By
reducing effective resource utilization, we try to enable a scenario
where multiple (or higher number of) applications share the platform
leading to a lower cost.

The multi-application scenario, that is expected in an integrated
architecture, generally cause inter-application interference resulting
in execution jitter and execution drift which are particularly unde-
sirable in feedback controllers [3]. The control applications expect
strictly periodic and deterministic execution of control software which
is particularly challenging in multi-application scenarios. This imposes
several important requirements on the target implementation platform
— composability, predictable, and determinism are the three most
notable ones. We consider a composable and predicable platform —
CompSOC, which ensures deterministic and interference-free execu-
tion [4]. Due to these properties, the CompSOC platform is naturally
suitable for embedded control implementation [5,6]. It should be noted
that our proposed approach is general enough to target a wider class
of platforms (see Section 3).

The aim of a control application is generally to govern the inputs
of a dynamical system and to drive its output from an initial state to a
vailable online 9 April 2022
141-9331/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2022.104517
eceived 10 September 2021; Received in revised form 24 February 2022; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 28 March 2022

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:s.m.haghi@tue.nl
mailto:s.yu@student.tue.nl
mailto:d.goswami@tue.ml
mailto:k.g.w.goossens@tue.ml
mailto:m.l.p.j.koedam@tue.nl
mailto:a.t.nelson@tue.nl
https://doi.org/10.1016/j.micpro.2022.104517
https://doi.org/10.1016/j.micpro.2022.104517
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2022.104517&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

a
e
T

s

u

Table 1
List of important symbols and acronyms.

Symbol Meaning Acronyms Meaning

ℎ𝑠, ℎ𝑓 Sampling period SSMC State-based multi-rate switching scheme
𝑟(𝑡) Desired output signal SSR Slow single-rate
𝑡𝑠 Settling time FSR Fast single-rate
𝑇𝑟 Input signal period HIL Hardware-in-the-loop
𝑟𝑎 Actuating period SIL Software-in-the-loop
𝑟𝑠 Sensing period FPGA Field-programmable gate array
𝜔 Size of CoMik slot OS Operating system
𝜓𝑖 Size of 𝑖th partition slot CoMik Composable and predictable micro-kernel
𝐾 Feedback gain VEP Virtual execution platform
𝐹 Feedforward gain WCET Worst-case-execution-times
𝑅 Resource utilization TDM Time-division multiplexing

RM Reconfiguration manager
QoC Quality of control
LTI Linear-time-invariant
SSC State-based switching scheme
CQLF Common quadratic lyapunov function
POS Parallel observer system
SOS Slow observer system
FOS Fast observer system
SMR Single-gain multi-rate
MMR Multi-gain multi-rate
ETS Event-triggered scheme
t
s

desired and pre-specified output (reference), while ensuring the system
stability. At any time instant, the difference between the reference and
ctual output is called the error signal. Based on the range of the
rror signal, the state of the physical system is categorized as follows.
he transient state is from the start time when the system output is

at an initial condition until the output reaches and stays with 2%
error bound around of the reference. As long as the system output
is within this specified error bound, the system is in the steady state.
If the error exceeds the steady state bound, for example, when the
reference changes by a large margin, the system state switches back
to the transient state. Usually, a controller performance is higher if the
system reaches the steady state sooner while respecting the input signal
constraints, e.g., the maximum input voltage. Therefore, a shorter
transient state results in a higher control performance.

A control application sequentially and periodically executes three
operations within a specified interval called sampling interval – sensing,
computing, and actuating. The interval between two consecutive start of
ensing operations is called the sampling period. The sequential order

of the execution implies that a shorter sampling period results in a
shorter actuating period, which is the period between two consecutive
actuating operations. Generally, a shorter actuating period improves
the controller performance by shortening the transient state [7,8].
However, a shorter sampling period means a shorter period to execute
the control application (i.e., three operations). Let us consider two
controllers with sampling periods of ℎ𝑠 and ℎ𝑓 = ℎ𝑠∕4. Fig. 1.a
and Fig. 1c demonstrate the response of slow single-rate (SSR) and
fast single-rate (FSR) controllers with sampling periods of ℎ𝑠 and ℎ𝑓
respectively. While scheduling FSR with ℎ𝑓 can potentially result in
a better control performance (see the results described in Section 5),
it requires to execute the control application four times instead of
one in each period of ℎ𝑠, leading to an increased processing resource
tilization. Important symbols and acronyms are listed in Table 1.

Let us define resource utilization of an application as the amount
of processing resource required to execute it. We assume that there
is enough memory resource available on the platform for the appli-
cation. In a multi-application scenario, the straightforward approach
for reducing the resource utilization would be to increase the sampling
period. However, the downside of such approach is the degradation of
the control performance.

We consider the following two important observations to perform
the trade-off between resource utilization and control performance.

• A shorter sampling period significantly improves the performance
in the transient state. However, the improvement due to a shorter
2

sampling period is minimal in steady state. Therefore, it makes
sense to run a controller with a longer sampling period in the
steady state to reduce the overall resource utilization with little
performance degradation.

• The execution time of the combination of sensing and computing
operations is significantly higher than that of the actuating oper-
ation [6]. Therefore, offering a multi-rate scheme that executes
the sensing and computing operations less frequently than the
actuating operation may reduce the resource utilization in tran-
sient state. One way to exploit this observation is to increase the
period of the sensing and computing operations while decreasing
the period of actuating operation. Note that such a multi-rate
scheme should, in principle, reduce resource utilization in both
computing-heavy [6] and sensing-heavy [9] control systems.

Main idea: The aim of this paper is to propose a switching scheme to
achieve a performance close to the one with a short sampling period
(i.e., high performance) while keeping the resource utilization close to
the one with a longer sampling period (i.e., low resource utilization) as
depicted in Fig. 2. The observation is that the transient state requires a
shorter sampling period compared to the steady state to meet a given
performance requirement. The key idea is to use a shorter effective
sampling period in the transient state. That is, in the transient state,
we use a long sensing period and a shorter actuating period along with
a parallel observer resulting in a shorter effective sampling period. We
use a longer sampling period when the system reaches the steady state.
We refer to such a scheme as state-based switching multi-rate control
(SSMC) scheme.

Illustrative example: We illustrate the SSMC scheme with an example
shown in Fig. 1. In this example, a plant is controlled by the SSMC
scheme to reach the desired output signal 𝑟(𝑡) which is a periodic square
wave signal defined as:

𝑟(𝑡) = 𝑌0 +
𝑌𝑑 − 𝑌0

2
(1 + 𝑠𝑔𝑛(𝑠𝑖𝑛(2𝜋𝑡

𝑇𝑟
))), (1)

where 𝑠𝑔𝑛 is the signum function and 𝑇𝑟 is the signal period. The system
output goes from 𝑌0 at 𝑡 = 0 to 𝑌𝑑 at 𝑡 = 𝑡𝑠 which is the phase when
he system is in transient state. In the transient state, the controller
hould operate with a short actuating period of 𝑟𝑎 = ℎ𝑓 . This can

be done by using a FSR controller with a sensing period 𝑟𝑠 = ℎ𝑓 .
The timing behavior of the FSR controller is depicted in Fig. 1a. An
alternative is to use a multi-rate controller (depicted in Fig. 1b) in the
transient state which reduces the resource utilization. Under the multi-

rate scheme depicted in Fig. 1b, the sensing and computing operations

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Fig. 1. Different scheduling used in the proposed approach where ◦𝑎 and ◦𝑐 are the single-rate controllers with the sensing period of ℎ𝑓 and ℎ𝑠 = 4 × ℎ𝑓 , and ◦𝑏 is the multi-rate
controller.
Fig. 2. Resource utilization and control performance comparison between the proposed
SSMC and two single-rate controllers with short and long sampling periods.

are executed with a longer period ℎ𝑠 than the actuating period ℎ𝑓 .
In essence, the effective sampling period is ℎ𝑓 = ℎ𝑠∕𝑚, where 𝑚 = 4
in this example. Under this scheme, the controller calculates 𝑚 input
values (among which 𝑚 − 1 are for the future actuating operations) in
the computing operation using the model of the system, and actuate
the system with an actuating period of 𝑟𝑎 = ℎ𝑓 . The 𝑚 − 1 future
actuating operations depend on the accuracy of the model and can
be negatively influenced by the presence of model uncertainties. To
deal with model-uncertainties, we consider a parallel observer system
(POS) to estimate the system output [10], given a measured sensing
output value. The POS requires a short initialization phase until the
prediction error goes below an user-defined threshold. In this phase,
which is shown as 0 < 𝑡 ≤ 𝑇𝑜 in Fig. 1, the POS requires a shorter
sensing period and hence, we use the FSR controller with the sampling
period ℎ𝑓 . Note that the design of POS ensures that 𝑇𝑜 ≪ 𝑡𝑠. Therefore,
in the transient state, the SSMC scheme starts with a FSR controller
plus a POS. Next, at 𝑡 = 𝑇𝑜, it switches to multi-rate plus the POS in the
interval 𝑇𝑜 < 𝑡 ≤ 𝑡𝑠.

When the system reaches the steady state (indicated with green
hashed pattern in Fig. 1), SSMC switches to the SSR controller with
a sampling period of ℎ𝑠 (depicted in Fig. 1c), increasing the actuating
period compared to the multi-rate scheme. This further decreases the
resource utilization of the control application. As soon as the system
switches back to the transient state at 𝑡 = 𝑇𝑟

2 , the SSMC scheme switches
back to the multi-rate scheme. The system remains in the transient state
in the interval 𝑇𝑟

2 < 𝑡 < 𝑇𝑟
2 + 𝑡𝑠 under the multi-rate scheme.

In summary, in the first period 𝑇𝑟 of 𝑟(𝑡), during 0 < 𝑡 ≤ 𝑇𝑜, a FSR
plus a POS is active. In 𝑇 < 𝑡 ≤ 𝑡 the multi-rate scheme is active and in
3

𝑜 𝑠
𝑡 > 𝑡𝑠, the SSR controller is active as long as the system is in the steady
state. Whenever the system state switches back to the transient state,
at 𝑡 = 𝑘𝑇𝑟

2 and 𝑘 ∈ 𝑁 , the controller switches back to the multi-rate
scheme.

Our contributions: In this paper,

• We propose the state-based switching multi-rate control (SSMC)
scheme targeting composable and predictable multi-core plat-
forms. The proposed scheme switches between a multi-rate con-
troller in the transient state and a SSR controller in the steady
state to reduce the resource utilization of embedded controllers
while maintaining control performance.

• We demonstrate the effectiveness of the scheme in reducing the
resource utilization by designing two different multi-rate schemes
with single and multiple gains over the actuating operations.
Since the performance of such model-based multi-rate schemes
is heavily influenced by the accuracy of the models, we address
the model uncertainty by using a parallel-observer system within
the multi-rate scheme.

• We demonstrate the trade-off between the resource utilization
and the quality of control. We compare the two proposed multi-
rate control schemes with respect to the resource utilization, the
control performance and provide insight on the usability of the
controllers.

• We validate the effectiveness of SSMC and the designed con-
trollers by performing hardware-in-the-loop (HIL) simulations tar-
geting an industrial multi-core platform — Verintec, synthesized
on a PYNQ Z2 FPGA board.

• We compare our approach with the state-of-the-art methods pre-
sented in [11,12] to show that our method outperforms the
existing techniques in terms of resource utilization.

2. Related works

This work focuses on the resource-efficient implementation of con-
trol applications. In the following, we discuss related work that con-
tributed to improving resource-efficiency for the control applications
from different perspectives.

Event-triggered control: Event-triggered control uses an aperiodic
sampling scheme where the sensing and actuating operations are per-
formed based on the occurrence of a specific event. An event is defined
as the scenario when the error signal exceeds a pre-defined threshold
value. The sampling and actuating operations are performed by an
event-triggered scheme (ETS), instead of periodic execution [13]. An
ETS design mainly focuses on optimizing the network utilization in
the context of networked control systems (NCSs) where the network
is shared among a number of applications [14]. The ETS design tech-
niques can be categorized based on the nature of their triggering
schemes as continuous ETS (CETS) [15–17], Periodic ETS (PETS) [18,
19], or Self triggered scheme (STS) [20,21].

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

d
d
s
a
v
o
t
p
n
s
s
i
i
t
c

s
e
u
s
c
r
o
i

E
s
y
t
o
e
r
b
R
t
a
w
T
m
i
i
o
s
o
g
o
s
m
a

i
t
W

While the ETS approaches tackle resource utilization in general,
they mostly focus on reducing communication bandwidth usage, while
offering a desired control performance. First, in this paper, we focus on
the efficient utilization of the processing resource which is not inves-
tigated in the context of ETS. More importantly, ETS does not reduce
resource usage in the transient state, which is addressed in this study
by using our proposed multi-rate scheme. Second, the assumption of an
aperiodic computation and availability of sensing/actuating signals in
ETS is not applicable to many real-life platforms (including CompSOC)
due to restrictions imposed by scheduling policy used in the operating
system (OS).

Optimal sampling scheme: This direction of research focuses on
eriving a sequence of optimal sampling periods that minimizes a pre-
efined cost function. In these studies, in contrast to periodic sampling
chemes, the sampling time instances 𝑡0, 𝑡1,… , 𝑡𝑁 are not equidistant,
nd hence, the sampling periods 𝜏𝑘 = 𝑡𝑘 − 𝑡𝑘−1 might have different
alues over different samples. These studies mainly focus on finding an
ptimal sequence of 𝜏𝑘 aiming to minimize a cost function based on
he system input and states. In [22], a solution for optimal sampling
eriods is proposed for linear systems considering a scenario with
o disturbance. While the sampling intervals can be any arbitrary
olution in [22], the study [11,23] propose an optimal sequence of
ampling periods which are chosen from finite set of possible values
mposed by the operating system limitations. While works reported
n [11,22,23] find the optimal sequence of sampling period in design
ime, [24] investigates the online optimal sampling period for the
ontrol application.

In general, a similar approach can be considered to choose the
ampling periods for the transient and steady state in our study. How-
ver, the state-of-the-art approaches either do not consider the model
ncertainty (to facilitate the optimization problem) or does not con-
ider the platform limitation in realizing possible sampling periods. In
omparison to the approach in [23], our approach addresses a broader
ange of platforms and chooses the sampling periods based on the
utput states respecting the scheduling restrictions of the platform. This
s particularly relevant for real-world implementations.

fficient processor utilization: The researches on the processing re-
ource efficiency can be classified into single-core and multi-core anal-
sis. The analysis techniques targeting single-core systems focus on
he inter-application interference analysis. A body of work focuses
n proposing a scheduling technique which guarantees the worst-case
xecution time (WCET) of the control application [25]. Another line of
esearch tries to model the execution jitter of the application caused
y inter-application interference or cache memory utilization [26].
esearch in the direction of the weakly hard real-time model considers

he possibility of missing some occasional deadlines in the control
pplication [27,28]. Such studies are relevant for an implementation
here the platform cannot guarantee the controller’s predictability.
herefore, the delay from executing other applications on the platform
ight violate the periodic execution of the controller [29]. Accord-

ngly, [30] proposes a deadline-miss aware controller (DMAC). DMAC
s a stabilizing controller which is robust against deadline misses and is
ptimal concerning the chance of missing important information. In a
imilar study, [31] proposes a sporadic (instead of periodic) execution
f the controller. In [31], an adaptive controller is proposed that
uarantees system stability in the presence of sporadic overruns by
ther applications. Generally, the related work targeting multi-core
ystems focuses on the effect of shared components (such as shared
emory and network-on-chip) on the timing behavior of the control

pplication [32].
Our work contributes to an efficient single-core multi-application

mplementation by exploiting multiple control modes on a platform
hat allows for a fast and predictable switching between the modes.

e explicitly consider the composable and predicable platforms since
4

Table 2
Execution time of control operations in clock cycles.

Contributions [11,23] [34] [6] [12] This work

Multi-rate in transient state – ✓ – – ✓

Resource-efficient switching scheme ✓ – ✓ ✓ ✓

State-based scheduling – – – ✓ ✓

Model-uncertainty consideration – ✓ – – ✓

Evaluation framework HIL SIL HIL SIL HIL

such platforms ensure deterministic executions easing the worst-case
and schedulability analysis, which poses different set of challenges.

Multi-rate and switching control: There has been an extensive lit-
erature in control theory on multi-rate and switched controllers. The
literature in this direction mostly focus on the stability analysis of the
multi-rate [7,8,33–35] and/or switching systems [36,37]. In general,
these studies propose theoretical tools such as switched Lyapunov
functions (SLF) to guarantee the closed-loop stability of the switching
system with an arbitrary switching behavior. Building on the results of
such studies (specially [34] and the studies on SLFs), our study focuses
on the implementation aspects of such controllers on a predictable and
composable platform. We specifically study the effect of the implemen-
tation on the control performance and the switching behavior. Along
this line of research, a dual-mode strategy is proposed using a state-
based switching scheme in [12]. However, this work does not look into
aspects of resource utilization in the transient state. They use a FSR
controller which, as demonstrated in our results, utilizes more resource
compared to the multi-rate controller proposed in our paper.

Resource-aware designs: Another body of work focuses on consider-
ing the platform model and its temporal behavior in control design.
The effect of sensor-to-actuator delay [38], which is an artifact of the
platform implementation, is considered through the controller design.
In [39], a multi-core implementation is proposed for iterative learning
controllers (ILCs) where the multi-core nature of the targeted platform
is utilized to reduce the sensor-to-actuator delay, resulting a higher
control performance. However, while studying sensor-to-actuator de-
lay in a multi-core implementation is relevant for resource-efficiency
reasons, these approaches are orthogonal to the resource-utilization
aspects using multi-rate control scheme which is the focus of our work.

In [6], a non-uniform sampling technique is implemented on a com-
posable and predictable platform. In this study, an effective utilization
of the allocated platform in the form of a switching system is studied.
However, compared to our work, the proposed method in [6] is limited
to platform properties such as limited scheduling options. It also utilizes
a single-rate scheme for both the transient and steady state which
results in a higher resource utilization compared to SSMC proposed in
our paper.

Our method proposes a state-based switching scheme which can
be seen as a combination of multi-rate controllers in transient state,
and a ETS on its switching scheme. The main purpose of our study
is to propose an resource-efficient scheduling of control application
on embedded platforms while maintaining the control performance at
the same level with traditional periodic and single-rate controllers. As
explained, our work is closely related to the works reported in [6,12,
23,34]. Table 2 provides an overview of the major contributions of our
work compared to these specific related works.

3. Predictable and composable platform

In this section, we first outline the requirements of implementing
the proposed SSMC scheme on the platform. Then, we translate these
requirements to platform properties which are essential to implement
the SSMC. Finally, after comparing the possible platforms, we describe
the chosen platform CompSOC and demonstrate how the platform
meets all of the requirements.

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

c
I
i

3

e

C
t
u
b
e
t
t
r

m
o
m
i
s
a

P
p
c
r
c

O
r
t
S
s

3

i
p

T
t
W
t
W
c
m

T

3.1. SSMC implementation requirements

The SSMC scheme uses a set of controllers (i.e., FSR, multi-rate,
SSR) one of which is engaged based on the system state at any given
point in time. Therefore, the SSMC scheme requires platforms that
allow for periodic execution and event-triggered switching between the
pre-defined set of controllers.

• Strictly periodic start time of the sensing operations in each
mode: The interval between start time of two consecutive sensing
operations is called the sampling period. For implementing a
precisely periodic sampling period, it is required to implement
strictly periodic activation of the sensing operations.

• Predictable execution of the computing operations: The com-
puting operation should be executed in a predictable fashion,
allowing to perform precise and tight worst-case response time
analysis.

• Deterministic execution of the actuating operations: The in-
terval between the start of the sensing operation and the end
of the actuating operation is called the sensor-to-actuator de-
lay which should be constant. Therefore, the actuating opera-
tions should be finished strictly periodically. This further im-
plies the requirement of deterministic execution of the actuating
operations.

• Online switching between the controllers: The SSMC scheme
requires to switch the controllers online. This implies that the
targeted platform should be able to re-schedule the execution of
the applications at run-time in a predictable and bounded amount
of time. Therefore, a part of the processing resource may be
dynamically allocated or unallocated to an application.

These requirements hold for any model-based development of a
ontrol application; e.g., in state-of-the-art approaches listed in Table 2.
n these studies, the requirements are either assumed to hold implicitly
n SIL evaluations or taken into account in HIL evaluations.

.2. Platform properties

The aforementioned properties can be translated to platform prop-
rties as follows.

omposability: A composable platform can execute multiple applica-
ions on a single core (or possibly multiple cores) independently by
sing a specific scheduling mechanism to ensure temporal isolation
etween the applications. One way to achieve this is to use virtual
xecution platforms (VEPs) to allow an independent design, implemen-
ation, and execution of the applications [4]. For a control application,
his translates to an interference-free execution that further meets the
equirement on strictly periodic activation of the sensing operations.

Another direct implication of composability is the ability to tackle
ixed-critically applications [4]. This means that different applications

f non-real-time, soft and hard real-time requirements can be imple-
ented and be independently executed within the same platform. This

s important for SSMC implementation since a part of freed up re-
ource resulted from the SSMC scheme is used to execute non-real-time
pplications.

redictability: In general, predictability means that applications im-
lemented on the platform have performance bounds such as a worst-
ase response time. The knowledge of precise and tight worst-case
esponse time enables to meet the requirement on execution of the
ompute operations.

nline reconfiguration: The online switching of the SSMC scheme
equires the platform to reschedule the application execution at run-
ime (we will explain the switching scheme in detail in Section 5.2).
uch reconfiguration must have specific properties to realize the online
5

witching proposed in the SSMC scheme.
• The switching in SSMC is event-triggered. That is, the platform
should reconfigure the application schedule at the occurrence of
an event (e.g., state).

• The platform should not pause or interrupt the existing running
applications while performing the reconfiguration. Any pause/
interruption in execution may violate the periodic execution of
the SSMC scheme.

• The reconfiguration should have a short WCET which ideally is
shorter than the sampling period of the SSMC scheme. A long
WCET implies that the switching happens later than the expected
time, which might cause performance degradation of the SSMC
scheme.

.3. Possible embedded platforms

Among the embedded platforms available in the literature and the
ndustry, some platforms have similar properties as required for our
roposed SSMC scheme.

-CREST: T-CREST is a predictable multi-core platform that targets
he safety-critical application [40]. This platform aims to optimize the

CET of the application by proposing a predictable hardware archi-
ecture. They provide more efficient resource utilization and improved

CET by a multi-core implementation. However, since T-CREST is not
omposable, it does not guarantee an interference-free execution in
ulti-application scenarios.

ime-triggered architecture (TTA): Time-triggered architectures and
embedded platforms are popular for real-time applications [41]. Unlike
event-triggered architectures, TTAs execute the applications (or their
tasks) by following a predetermined schedule. The scheduler invokes
the execution of a single or a group of tasks sequentially and repeats
the execution order periodically. The only source of preemption in TTA
is assumed to be the scheduler.

While a TTA might be a necessary condition of a composable
platform, it is not sufficient. For example, in TTC (time-triggered co-
operative), the implemented applications are scheduled in groups. The
applications within a group run sequentially, and their WCETs are
interfere with each other. Therefore, the application isolation requires
further consideration [42]. Moreover, the scheduler is assumed to run a
periodic sequence of applications indefinitely. Therefore, the platform
does not support the time-triggered switching of SSMC, where the
sequence of execution changes based on the system state.

FlexPRET: FlexPRET is a precision-timed machine [43]. It is a multi-
threaded processor which targets mixed-critical implementations. The
applications running on the platform are either hard-real-time threads
(HRTT) or soft-real-time threads (SRTT). FlexPRET uses a thread sched-
uler that offers temporal and hardware isolation for HRTTs, and effi-
cient implementation for SRTTs. The scheduler interleaves the threads
so that all the HRTTs meet their strictly periodic execution. At the
same time, SRTTs utilize all the cycles that the processor is idle using
a round-robin schedule.

FlexPRET is a suitable implementation target for SSMC. The tem-
poral and hardware isolation offered by FlexPRET ensures the strictly
periodic execution of SSMC operations as HRTTs. However, whether
the reconfiguration process is predictable or composable is not specified
in this platform.

PTIDES: PTIDES is a programming model for cyber–physical sys-
tems [44]. PTIDES is a special implementation of a discrete-event
model of computation. In PTIDES, every hardware component (such
as sensors and actuators) and applications (such as control) are actors
which communicate through time-stamped events. PTIDES considers
all applications as hard-real-time events and schedules them on the

processor following earliest-deadline-first (EDF) scheduling method.

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Table 3
Platforms comparison.

Requirements T-CREST TTA FlexPRET CompSOC

Strictly periodic execution ✓ – ✓ ✓

Temporal isolation – ✓ ✓ ✓

Jitter-free execution ✓ – ✓ ✓

Online reconfiguration – – ✓ ✓

PTIDES alone is not a complete platform and depends on the avail-
ability of an operating system and a hardware implementation. Cur-
rently, PTIDES uses PtidyOS as a real-time OS to perform such schedul-
ing, which requires further hardware implementation. Therefore, com-
paring PTIDES with other platform is plausible only if the properties of
PtidyOS and hardware be considered in the comparison.

Table 3 summarizes the comparison between the studied platforms
and their ability to satisfy our requirements.

3.4. Compsoc

CompSOC is a tile-based embedded platform of processor tiles, local
and shared memories, and interconnections.

Hardware: The platform’s tile-based nature allows for an adaptation
of hardware architecture (e.g., number of tiles and size of shared
memory footprint). We focus on a commercial instance of CompSoC
called Verintec [verintec.com] for the hardware architecture, where the
platform has two MicroBlaze processor tiles connected through shared
memory. Verintec is an FPGA-based platform, which we synthesized on
a Xilinx PYNQ-Z2 FPGA board [www.tul.com.tw]. The PYNQ-Z2 is a
low-cost research hardware and offers a limited memory capacity (16-
64 KB) and processing resource (3 processing tiles with a maximum of
3 applications per tile). While this is sufficient for the application under
consideration in this paper, the Verintec platform has also been imple-
mented on industrial FPGA boards such as Zynq UltraScale+ ZCU106.
Such instances allow more processor tiles and/or larger memories,
operating at a higher frequency. SSMC can target any Verintec instance
that is mapped on an FPGA board that has sufficient capacity for the
use case at hand.

Operating system: In CompSOC, resources are space- and time-
partitioned to create Virtual Execution Platforms (VEPs) in which ap-
plications run independently. The platform can execute multiple VEPs
on each processor tile using a predictable micro-kernel (CoMik). CoMik
uses a strict time-division-multiplexing (TDM) policy on processor tiles,
resulting in cycle-accurate slots. These slots allow multiple applications
to execute in their independent VEPs, following the TDM schedule.
Since the platform is predictable and composable, it can schedule the
applications perfectly periodically. Each cycle of TDM is the execution
of a table of 𝑁 partition slots, which can have different lengths in clock
cycles, defined by 𝜓𝑖.

The scheduler separates partition slots by 𝑁 CoMik slots, which
have a constant length of 𝜔 = 4096 clock cycles. The CoMik slots
are responsible for a jitter-free context switching between the partition
slots. Towards this, a CoMik slot pauses the execution of the previous
VEP and stores a snapshot of all the VEP memory information and
register values. It then loads the previously-stored snapshot of the next
VEP and resumes its execution [4]. Each of the VEPs is allocated to
(possibly) multiple partition slots on (possibly multiple) processors. The
VEPs are swapped in and out periodically and transparently by CoMik.
Applications run in VEPs as if they run on a bare machine.

Each pair of processor tiles can communicate through a dedicated
shared memory. The communication with the shared memory guaran-
tees a specific atomic data size. The processors either use flag-based
communications or the implemented FIFOs to prevent data overwrite.
Fig. 3 represents a possible instance of the platform with two soft-core
MicroBlaze processor tiles. The TDM scheduling of Processor Tile 1
6

Fig. 3. Predictable embedded platform under consideration.

illustrates a possible TDM table with three partition slots (of possibly
different sizes) allocated to three different VEPs.

Online reconfiguration: CompSOC allows changing the TDM proper-
ties such as size and number of partition slots at run-time. Therefore,
the platforms can perform various types of online reconfiguration. The
reconfiguration of SSMC switches between different schedules repre-
sented by their TDM tables. Fig. 11 (which is discussed in detail in
Sections 5 and 6) depicts these schedules. The switching in SSMC is
event-triggered, and the computing operation (𝐶0 in Fig. 11) requests
the switching based on the system state.

A specific application reconfiguration manager (RM) handles the
reconfiguration requests. This application can be scheduled as a VEP
in the TDM table and possibly in a different processor than the one
that runs SSMC. Since CompSOC is composable, the execution of VEPs
in TDM does not experience pause or interference during the recon-
figuration. When a VEP requests a reconfiguration, RM prepares the
corresponding TDM table and sends it to CoMik. During the TDM
table preparation, the VEPs keep running on the platform following the
current TDM table. When CoMik receives the new TDM table from RM,
it waits until the current TDM table execution ends. It is also possible
to delay the switching for more than one TDM table execution. CoMik
then switches to the new TDM table without any pause in the execution.
The next cycle of the TDM follows the new TDM table, and the VEPs
continue executing in their dedicated partition slots, following the new
schedule.

The reconfiguration in CompSOC is predictable and thus has a
WCET. The WCET depends on whether the switching of TDM tables
happens at pre-defined time instants decided at design-time or time
instants decided at run-time. SSMC switches between three TDM ta-
bles defined in design-time alongside their corresponding controllers.
Therefore, these TDM tables are initially prepared and saved in RM.
When SSMC requests a switching, RM only sends the corresponding
TDM table to CoMik.

Reconfiguration overhead: Depending on the TDM table size, the
reconfiguration takes one or more TDM cycles. For a typical application
with the required SSMC properties, the WCET of the reconfiguration
process on CompSOC is 13 ms. Fig. 4 demonstrates two examples. RM
is implemented on a separate core in these examples. We assume that
the RM tile TDM has only one partition slot dedicated to RM, i.e., the
RM always runs on its dedicated processor.

In Fig. 4. I, the TDM table has 5 partition slots and partition slots
1, 3, 5 are allocated to VEP1. VEP1 request a reconfiguration in the
TDM in 𝑖th TDM iteration. The request is to remove the fifth partition
slot, allocate the third partition slot to VEP5, and re-size the partition
slots. The RM receives the request through the shared memory and
invokes the reconfiguration before the current TDM cycle finishes. In
this case, the reconfiguration takes one TDM cycle and the updated
TDM is executed in (𝑖 + 1)𝑡ℎ TDM iteration.

In Fig. 4. II, the TDM table has 4 partition slots and partition slots
1,3 are allocated to VEP1. VEP1 requests a reconfiguration in the TDM,
asking to allocate the third partition slot to VEP5. This time RM invokes
the reconfiguration when the current TDM has finished. In this case, the
reconfiguration takes two TDM cycles and the updated TDM is executed
in (𝑖 + 2)𝑡ℎ TDM iteration.

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Fig. 4. Two examples of online reconfiguration in CompSOC. In the first example (I on top), reconfiguration process is finished before the current TDM cycle finishes, without
any TDM cycle delay. In the second example (II on bottom), the reconfiguration process is finished after the current TDM cycle finished and the reconfiguration is performed with
a TDM cycle delay.
4. System architecture

4.1. Embedded control applications

We are interested in the implementation of control applications.
We consider a controllable linear time-invariant (LTI) system. The
state-space of the system is given by,

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈 (𝑡) +𝑊 (𝑡),

𝑌 (𝑡) = 𝐶𝑋(𝑡),
(2)

where 𝑋(𝑡) is the system state vector, 𝑈 (𝑡) is the input, 𝑌 (𝑡) is the
output of the system, and 𝑊 (𝑡) denotes any uncertainties in the system
such as input disturbance and model uncertainty. A control application
consists of three main operations executed sequentially and periodically
— sensing, computing, and actuating. In the sensing operation, system
sensors read the states of the system 𝑋(𝑡) at the time instances 𝑡𝑘 where,

𝑥[𝑘] ∶= 𝑋(𝑡𝑘), 𝑘 ∈ 𝑁≥1. (3)

In the computing operation, the controller calculates the control values
𝑢[𝑘] at 𝑡𝑘. In the actuating, system actuators update the control value
𝑢[𝑘] of the system. We define the time between two consecutive sens-
ing operations (which is equal to the time between two consecutive
actuating operations in a single-rate system) as sampling period ℎ.
The assumption of strictly periodic execution means that ℎ must be
kept constant in the implementation. One way to implement a con-
stant/uniform ℎ is to design a TDM table of the length ℎ and execute the
control operations sequentially once per execution of the TDM table.
Suppose a TDM table has 𝑁 partition slots. In this case, the length of
the TDM table in clock cycles is equal to the sum of the length of all
the partition slots and their corresponding CoMik slots. Therefore ℎ in
seconds is equal to,

ℎ = (𝑁 × 𝜔 +
𝑁
∑

𝑖=1
𝜓𝑖)∕𝐹𝑝, (4)

where 𝐹𝑝 = 100 MHz is the operating frequency of the platform.
Considering the sampling period ℎ, the model Eq. (2) is discretized as:

𝑥[𝑘 + 1] = 𝐴𝑑𝑥[𝑘] + 𝐵𝑑𝑢[𝑘] +𝑊 [𝑘],
(5)
7

𝑦[𝑘] = 𝐶𝑥[𝑘],
where,

𝐴𝑑 (ℎ) = 𝑒𝐴ℎ, 𝐵𝑑 (ℎ) = ∫

ℎ

0
𝑒𝐴𝑠𝐵𝑑𝑠.

The platform maps each of the control operations to one of the VEPs,
to implement the control application. The remaining resource can be
assigned to the applications other than the control application. The
platform allows for partition slots of any size [4]. Therefore, we define
the size of VEPs to be either equal or slightly bigger than the WCET
of their corresponding operation, defined as 𝑆, 𝐶, and 𝐴 for sensing,
computing and actuating, respectively.

Control performance: To quantify the performance of the control
application, we use settling time as the performance metric. The settling
time is the required time for the application to reach the steady state.
That is, we define settling time 𝑡𝑠 as the time that the system output
requires to start from an initial state 𝑦[0] to reach and stay within 2%
bound of the desired output 𝑌𝑑 . Since shorter settling time translates
to higher control performance, we define the performance metric the
quality of control (QoC) as 𝑄𝑜𝐶 = 𝑡𝑠−1.

State-feedback control: Without losing generality, we opt for a state-
feedback controller of the following form:

𝑢[𝑘] = 𝐾 × 𝑥[𝑘] + 𝐹 × 𝑟[𝑘], (6)

where 𝐾 is the state-feedback gain and 𝐹 is the feedforward gain. The
feedback gain 𝐾 is designed using a pole placement technique, placing
the poles of the closed-loop system at desired locations. The static
feedforward gain 𝐹 is designed to make the system output 𝑦[𝑘] follow
the desired reference 𝑟[𝑘]. If the system under control is stable, it means
that in the steady state 𝑥[𝑘 + 1] = 𝑥[𝑘]. Substituting Eq. (6) in Eq. (2)
and assuming the steady state has been reached (𝑥[𝑘 + 1] = 𝑥[𝑘]) we
have:

𝐹 = 1
𝐶𝑑 (𝐼 − 𝐴𝑑 − 𝐵𝑑𝐾)−1𝐵𝑑

. (7)

Any of the state-of-the-art design techniques can replace the chosen
controller. However, considering a more complex control objective or
a design technique is orthogonal to the control application’s implemen-
tation aspects. We illustrate our proposed implementation technique
considering a representative control application.

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Fig. 5. Schematics of the braking system [23].

4.2. Case-study: electro-mechanical braking

We study the electro-mechanical braking (EMB) system for auto-
mobiles [23]. Fig. 5 represents the schematics of this system. When
the driver presses the brake paddle in this system, the braking lever
position should reach a corresponding position 𝑌𝑑 within the desired
settling time 𝑡𝑠. The control objective is to reach the desired reference
output 𝑟(𝑡) within the shortest 𝑡𝑠 possible while keeping the control
input below a predefined bound |𝑢[𝑘]| ≤ 𝑢𝑚𝑎𝑥. In our case study, the
desired reference output is Eq. (1) with 𝑌𝑑 = 2 mm. The maximum
control input is 𝑢𝑚𝑎𝑥 = 12 V, equal to the maximum possible voltage to
apply to the electric motor. It is assumed that 𝑡𝑠 < 𝑇𝑟 which means the
controller reacts quicker than the reference changes. Eq. (8) presents
the system dynamics.

�̇�(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−520 −220 0 0 0
220 −500 −999994 0 2 × 108

0 1 0 0 0
0 0 66667 −0.1667 −1.3333 × 107

0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑋(𝑡)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1000
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑈 (𝑡),

𝑦(𝑡) =
[

0 0 0 1
]

𝑋(𝑡).

(8)

5. State-base switching controller

This section demonstrates the effect of the sampling period on
resource utilization and QoC by comparing two SSR and FSR con-
trollers. Next, from the comparison results, we propose the state-based
switching scheme.

5.1. Resource utilization vs QoC in single-rate controllers

The resource utilization of an application means the amount of
processing used by the application. In CompSOC, since the platform
periodically executes the TDM table, the resource utilization of an
application is defined based on the partition slots plus the CoMik slots
allocated to it in the TDM. We recall 𝜔 and 𝜓𝑖 as the size of the CoMik
slot and the 𝑖th partition slot respectively. Therefore, the resource
utilization is defined as:

𝑅 =
𝑙 × 𝜔 +

∑𝑙
𝑖=1 𝜓𝑖

𝑁 × 𝜔 +
∑𝑁
𝑖=1 𝜓𝑖

(9)

where 𝑙 is the number of partition slots allocated to an application, and
𝑁 is the number of partition slots in the TDM table.

The resource utilization of a control application depends on the
chosen sampling period (or the TDM size). Let us consider two control
systems of the SSR controller with ℎ and the FSR controller ℎ =
8

𝑠 𝑓
Fig. 6. TDM schedule of (a) single-rate with ℎ = ℎ𝑠, and (b) single-rate with ℎ = ℎ𝑓 .
𝑆, 𝐶0, and 𝐴 are the sensing, computing, and actuating operations. The non-real-time
application executes on hashed pattern partition slots when the system is in the steady
state.

Fig. 7. The output response of the braking system considering four different controllers.

ℎ𝑠∕4. Fig. 6.a and Fig. 6.b demonstrate the TDM schedule of these two
systems, respectively. To make the controllers comparable, we keep the
size of the TDM as ℎ𝑠 for FSR and run the controller 4 times in the TDM
table instead. Referring to the TDM schedules, SSR and FSR utilize 3
out of 10 and 12 out of 16 sets of partition and CoMik slots in the
TDM, respectively. While partition slots have different sizes in the two
schedules, The size of the TDM table is the same and is equal to ℎ𝑠.
Using Eq. (9) the resource utilization of these systems are:

𝑅𝑠 =
3 × 𝜔 +

∑3
𝑖=1 𝜓𝑖

10 × 𝜔 +
∑10
𝑖=1 𝜓𝑖

, 𝑅𝑓 =
12 × 𝜔 + 4 ×

∑3
𝑗=1 𝜓𝑗

16 × 𝜔 +
∑16
𝑗=1 𝜓𝑗

= 4 × 𝑅𝑠 (10)

where 𝑅𝑠 and 𝑅𝑓 are resource utilization of SSR and FSR respectively.
𝜓𝑖 and 𝜓𝑗 denote the size of partition slots of SSR and FSR scheduling
respectively. Here 𝜓1, 𝜓2, 𝜓3 are allocated to 𝑆,𝐶0 and 𝐴 which are the
sensing, computing and actuating operations respectively. As expected,
there is an inverse relationship between 𝑅 and ℎ, where a smaller ℎ
results in higher resource utilization.

To compare the QoC for these two control systems, we perform
model-in-the-loop (MIL) simulations on the representative braking sys-
tem described in Section 4.2. Since we focus on resource utilization
here, we can assume that the system model does not have uncertainties
and 𝑊 [𝑘] = 0 for all 𝑘 values. Note that we will consider the model
uncertainty in multi-rate design.

Fig. 7 shows the response of the controllers with ℎ𝑠 = 10 ms and
ℎ𝑓 = 2 ms. In both simulations, the feedback gain 𝐾 in (6) is designed
to place the closed-loop poles at [0, 0, 0, 0.9, 0.9] (Similar design as [11]).
Considering the defined QoC in Section 4.1, we obtain Table 4, which
indicates that the FSR controller achieves a shorter settling time 𝑡𝑠 and
thus a higher QoC.

5.2. The switching scheme

Comparing the resource utilization and QoC of FSR and SSR, we
observe:

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

H
s
p
F
d
u
a

S
t
b
i

𝑥

ℎ

T
I
i
[

t
ℎ

𝐾

m
s

R
f
F
o
a
s
t
t
r
r
o
t
p

c
i

𝑅

u
S

P
C
W
s
c
t
a
e
s
t
t
F
t

t
t

Table 4
Resource utilization and QoC of single-rate controllers.

Sampling period Resource utilization (%) QoC ([s]−1)

ℎ𝑠 𝑅𝑠 = 1.3% 1.77
ℎ𝑓 𝑅𝑓 = 4 × 𝑅𝑠 = 5.2% 8.23

• Resource utilization: As shown in Table 4, FSR has a higher
resource utilization than SSR. The higher resource utilization
results from the higher frequency of execution of the control
application (4 times higher in the case-study example) requiring
higher computing resources.

• Steady state response: The FSR controller offers a shorter tran-
sient state and thus higher QoC than SSR (as can be seen in
Fig. 7). However, both controllers give similar responses in terms
of keeping the output within a 2% range of 𝑟(𝑡) in the steady state.
Therefore, using either of the controllers in the steady state would
result in a similar response.

ence, we propose a scheme that uses the FSR controller in the tran-
ient state and switches to the SSR controller in the steady state. Our
roposed scheme would result in a similar QoC to that using only the
SR controller in both states. At the same time, the scheme would
emand a lower resource utilization in the steady state. The freed-
p resource in the steady state can be allocated to other platform
pplications. We define this as the state-based switching scheme (SSC).

SC design: The SSC scheme consists of an FSR controller in the
ransient and an SSR controller in the steady state. By assuming that
oth FSR and SSR controllers are state-feedback controllers defined
n Eq. (6), the SSC can be modeled as:

[𝑘 + 1] =

⎧

⎪

⎨

⎪

⎩

(

𝐴𝑑 (ℎ𝑓) + 𝐵𝑑 (ℎ𝑓)𝐾𝑓
)

𝑥[𝑘] + 𝐹𝑓 𝑟[𝑘], if FSR is active

(

𝐴𝑑 (ℎ𝑠) + 𝐵𝑑 (ℎ𝑠)𝐾𝑠
)

𝑥[𝑘] + 𝐹𝑠𝑟[𝑘], if SSR is active
(11)

where {𝐴(ℎ𝑓), 𝐵(ℎ𝑓)} and {𝐴(ℎ𝑓), 𝐵(ℎ𝑓)} are defined in Eq. (5) with ℎ =
ℎ𝑓 and ℎ = ℎ𝑠 respectively. Since the SSC scheme includes switching
between FSR and SSR, 𝐾𝑓 and 𝐾𝑠 cannot be designed independently.
Even with a stable design of 𝐾𝑓 , 𝐾𝑠 (for example, by a proper pole
placement technique), the stability of the overall switching system
requires a separate analysis. Therefore, a stable design must guarantee
the stability of the transient and the steady state and the state switching
simultaneously. The stability analysis and designing of 𝐾𝑓 , 𝐾𝑠 are
described in the following.

Switching Stability and control design: SSC can be modeled as a
switching system, where the system dynamics switches between two
subsystems modeled by Eq. (5) with ℎ = ℎ𝑓 and ℎ = ℎ𝑠 for FSR and
SSR, respectively. We model the two switching subsystems as:

𝑥[𝑘 + 1] = 𝐴𝑘𝑥[𝑘] + 𝐹𝑟[𝑘], (12)

where 𝐴𝑘 = 𝐴(ℎ𝑘) + 𝐵(ℎ𝑘)𝐾𝑘, ∀ℎ𝑘 ∈ {ℎ𝑓 , ℎ𝑠}.

Theorem 5.1 ([45,46]). Consider 𝐴𝑘 are LTI discrete-time switching
subsystems defined in Eq. (12). 𝑉 (𝑥) = 𝑥𝑇 𝑃𝑥 is the common quadratic
Lyapunov function (CQLF) of the subsystems 𝐴𝑘 if there exist 𝑃 = 𝑃 𝑇 > 0
and 𝑄 = 𝑄𝑇 > 0 that satisfy the following matrix equations,

𝐴𝑘
𝑇 𝑃𝐴𝑘,−𝑃 = −𝑄 < 0. (13)

If such 𝑉 (𝑥) exists, then the switching system described in Eq. (12) is stable.

The designed controllers for the subsystems should guarantee the
existence of the CQLF function to ensure the stability of the overall
switching system in Eq. (12). Towards this, we first design the con-
troller 𝐾 for ℎ = ℎ . We define the closed-loop system for ℎ = ℎ as
9

𝑓 𝑘 𝑓 𝑘 𝑓 s
(the feedforward input is omitted since that does not influence system
stability):

𝑥[𝑘 + 1] = 𝐴𝑐𝑙,𝑓𝑥[𝑘], (14)

where 𝐴𝑐𝑙,𝑓 = (𝐴(ℎ𝑓) +𝐵(ℎ𝑓)𝐾𝑓). To design the SSR controller 𝐾𝑠 with
𝑘 = ℎ𝑠, we use the following theorem.

heorem 5.2 ([47]). Consider the switching subsystems defined in Eq. (12).
f there exist a 𝑌 = 𝑌 𝑇 > 0 and a 𝑍 such that the following linear matrix
nequality (LMIs) hold,

𝑌 𝑌 𝐴(ℎ𝑠)𝑇 +𝑍𝑇𝐵(ℎ𝑠)𝑇

𝐴(ℎ𝑠)𝑌 + 𝐵(ℎ𝑠)𝑍 𝑌

]

> 0,

𝐴−1
𝑐𝑙,𝑓𝑌 − 𝑌 𝐴𝑇𝑐𝑙,𝑓 > 0,

(15)

hen the switching system has a CQLF with the following feedback gain for
= ℎ𝑠:

𝑠 = 𝑍𝑌 −1. (16)

Therefore, by designing the FSR feedback gain using the pole place-
ent technique and the SSR feedback gain using Eq. (16) the switching

tability of the SSC is ensured.

esource Utilization: To analyze the SSC resource utilization, let us
irst summarize the sequence of the execution for two controllers. The
SR controller is active from 𝑡 = 0 until 𝑡 = 𝑡𝑠 when the system
utput reaches the steady state. At 𝑡𝑠, the controller switches to SSR
nd continues executing SSR as long as the system stays at the steady
tate. Suppose we assume a periodic reference as defined in Eq. (1). In
hat case, the same sequence of execution repeats for every 𝑇𝑟∕2 where
he reference value switches between 𝑌0 and 𝑌𝑑 . Therefore, we define
esource utilization over a cycle of the reference considering a periodic
eference as a plausible assumption. In many dynamic systems, the
utput switches between two or more pre-defined modes. For example,
he periodic reference translates to pushing and releasing the brake
edal and changing the output between 𝑌0 and 𝑌𝑑 in our case study.

The resource utilization depends on the active duration of different
ontrollers. The FSR is active in 0 ≤ 𝑡 < 𝑡𝑠 and 𝑇𝑟

2 ≤ 𝑡 < 𝑇𝑟
2 + 𝑡𝑠, and SSR

s active in 𝑡𝑠 ≤ 𝑡 < 𝑇𝑟
2 and 𝑇𝑟

2 + 𝑡𝑠 ≤ 𝑡 < 𝑇𝑟. Therefore, we derive SSC
resource utilization 𝑅𝑆𝑆𝐶 as:

𝑅𝑆𝑆𝐶 =
2𝑡𝑠
𝑇𝑟
𝑅𝑓 +

𝑇𝑟 − 2𝑡𝑠
𝑇𝑟

𝑅𝑠. (17)

If we define 𝑅𝑓 = 𝛾𝑅𝑠, 𝛾 > 1, then,

𝑆𝑆𝐶 = [1 −
2(𝛾 − 1)𝑡𝑠

𝑇𝑟
]𝑅𝑓 < 𝑅𝑓 , (18)

which indicates that 𝑅𝑆𝑆𝐶 < 𝑅𝑓 , as long as 𝛾 > 1. Therefore, the SSC
tilizes less resource while providing similar QoC as FSR, by utilizing
SR in the steady state.

latform Implementation: The SSC switching implementation on
ompSOC is an online reconfiguration process described in Section 3.4.
hen the system state changes from the transient state to the steady

tate, the SSC scheme requests a switching from the FSR to the SSR
ontroller. The request happens in the computing operation. After
he switch, the non-real-time application uses freed-up partition slots
llocated to SSC. Fig. 8.a depicts this switching behavior. In this
xample, in the 𝑖th TDM cycle, the running FSR controller requests a
witch. Since the size of the TDM cycle is ℎ𝑠 = 10 ms, and it is shorter
han the WCET of RM (i.e. 13 ms), the switching from FSR to SSR takes
wo TDM cycles. Therefore, while RM performs the reconfiguration, the
SR keeps being the active controller in the (𝑖 + 1)𝑡ℎ TDM cycle. It is
hen switched to SSR in (𝑖 + 2)𝑡ℎ TDM cycle.

Similarly, when the system state changes from the steady state to
he transient state, the SSC scheme requests a switching from the SSR
o the FSR controller. After the switch, the non-real-time application
tops executing, and its resource is reallocated to SSC. Fig. 8.b depicts

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Fig. 8. SSC switching modes where (a) is a switching from the transient to steady state and (b) is a switching from the steady state to transient. The non-real-time application
executes on hashed pattern partition slots when the SSC scheme is in the steady state.
this switching behavior where the switching from SSR to FSR takes two
TDM cycles. Therefore, while SSR request switching in 𝑖th TDM cycle,
the switching to FSR occurs in (𝑖 + 2)𝑡ℎ TDM cycle.

While SSC provides lower resource utilization in the steady state, it
still uses the same amount of resources as FSR in the transient state.
In the next section, we propose a multi-rate controller as a substitute
to FSR in the transient state, which has resource utilization similar
to SSR and achieves a QoC similar to FSR. The proposed state-based
switching multi-rate scheme (SSMC) applies a multi-rate controller in
the transient state and an SSR controller in the steady state.

6. State-based multi-rate switching scheme

In this section, we first describe the multi-rate controller, which is
active in the transient state of the SSMC scheme. Next, we describe the
switching scheme and the resource utilization in the SSMC scheme.

In this paper, a multi-rate controller translates to a control loop with
a shorter actuating period than the sensing period. Such controllers use
the information obtained from sensing to compute and actuate more
than one control inputs. The motivation to use such a controller is to
actuate the system with a shorter period than the sensing, which results
in a lower resource utilization.

6.1. The multi-rate model

Let us define the actuating period as 𝑟𝑎. One sensing operation is
performed every 𝑚 actuating operations. We define the sensing period
𝑟𝑠 = 𝑚× 𝑟𝑎. In our embedded implementation, 𝑚 represents the number
of actuating per TDM period. We now define the following discrete-
time model of Eq. (5) discretized at actuating period 𝑟𝑎 between two
consecutive measurements 𝑥[𝑘] and 𝑥[𝑘 + 1].
[

𝑥(𝑘, 𝑛 + 1)
𝑤(𝑘, 𝑛 + 1)

]

=
[

𝐴𝑓 𝐵𝑓
0 1

] [

𝑥(𝑘, 𝑛)
𝑤(𝑘, 𝑛)

]

+
[

𝐵𝑓
0

]

𝑢(𝑘, 𝑛). (19)

Here, 𝐴𝑓 and 𝐵𝑓 are discrete model parameters with the period of
𝑟𝑎 obtained from Eq. (5), 𝑘 is the index of sensing operation (output
measurement), 𝑛 is the index of the actuating operations (control
inputs) and 𝑛 = 0, 1,… , 𝑚 − 1 with 𝑥[𝑘] = 𝑥(𝑘, 0) and 𝑥[𝑘 + 1] =
𝑥(𝑘, 𝑚). Also, 𝑤(𝑘, 𝑛) is a scalar quantity and represents the uncertain-
ties resulted from any parametric uncertainties in the system model
as well as input disturbance. Accordingly, 𝐵𝑓𝑤(𝑘, 𝑛) = 𝛥𝐴𝑓𝑥(𝑘, 𝑛) +
𝛥𝐵𝑓 𝑢(𝑘, 𝑛)+𝐵𝑓𝛥𝑢(𝑘, 𝑛)+𝛥𝐵𝑓𝛥𝑢(𝑘, 𝑛), where 𝛥𝐴𝑓 and 𝛥𝐵𝑓 are parametric
uncertainties and 𝛥𝑢(𝑘, 𝑛) is added input disturbance.

6.2. The parallel observer system

The sensing information is only available once every 𝑚 actuating
operations. Also, the system might have model uncertainties, distur-
bances, or both. To address these two problems, we use a parallel
observer system (POS) as a state estimation technique [10]. Fig. 9
provides an overview of the parallel system. The POS consists of two
observers that run in parallel but with different sampling periods. The
10
Fig. 9. The schematics of a system with a parallel observer.

slow observer system (SOS) runs at sensing period 𝑟𝑠 and the fast
observer system (FOS) runs at actuating period 𝑟𝑎.

The benefit of using the parallel observer instead of a single fast
rate observer is dealing with the model uncertainty present in System
Eq. (19). In the parallel observer system, the SOS functions as a filter
to the FOS and provides stable full state order estimate to FOS. In this
paper, we choose both SOS and FOS to be as Luenberger observers [10].
The dynamic model of the SOS is shown in Eq. (20):

�̂�𝑠[𝑘 + 1] = 𝐴𝑠�̂�𝑠[𝑘] + 𝐵𝑠𝑢[𝑘] + 𝐵𝑠�̂�𝑠[𝑘] + 𝐿𝑠𝐶𝑒𝑠[𝑘],

�̂�𝑠[𝑘 + 1] = �̂�𝑠[𝑘] + 𝑙𝑠𝑤𝑒𝑠[𝑘],

�̂�𝑠[𝑘] = 𝐶�̂�𝑠[𝑘],

(20)

where 𝐴𝑠 and 𝐵𝑠 are the discretized state space matrices in Eq. (5)
with the sampling period of ℎ = 𝑟𝑠. �̂�𝑠[𝑘] is the SOS estimate of the
scalar model disturbance, 𝑒𝑠[𝑘] = 𝑥[𝑘] − �̂�𝑠[𝑘], and 𝐿𝑠 and 𝑙𝑠𝑤 are the
Luenberger gains for state and uncertainty respectively.

SOS estimates the system states of Eq. (19) during the samples when
the sensing operation is performed (i.e., 𝑛 = 0). The output of SOS are
the estimated states �̂�𝑠(𝑘) = �̂�(𝑘, 0). These estimated states are fed to the
fast observer to estimate the system states �̂�𝑓 (𝑘, 𝑛) at the points where
the sensing information is not available (𝑛 ≠ 0). These estimates are
defined as �̂�𝑓 (𝑘, 𝑛) = �̂�(𝑘, 𝑛). The dynamic model of the FOS is:

�̂�𝑓 (𝑘, 𝑛 + 1) = 𝐴𝑓 �̂�𝑓 (𝑘, 𝑛) + 𝐵𝑓 𝑢(𝑘, 𝑛) + 𝐵𝑓 �̂�𝑓 (𝑘, 𝑛) + 𝐿𝑓 𝑒𝑠𝑓 (𝑘, 𝑛)

+ 𝐿𝑓𝑤𝑒𝑤𝑠𝑓 (𝑘, 𝑛), (21a)

�̂�𝑓 (𝑘, 𝑛 + 1) = �̂�𝑓 (𝑘, 𝑛) + 𝑙𝑓 𝑒𝑠𝑓 (𝑘, 𝑛) + 𝑙𝑤𝑒𝑤𝑠𝑓 (𝑘, 𝑛), (21b)

𝑒𝑠𝑓 (𝑘, 𝑛) =

{

�̂�𝑠[𝑘] − �̂�𝑓 [𝑘], if 𝑛 = 0
0, if 𝑛 ≠ 0

(21c)

𝑒𝑤𝑠𝑓 (𝑘, 𝑛) =

{

�̂�𝑠[𝑘] − �̂�𝑓 [𝑘], if 𝑛 = 0
0, if 𝑛 ≠ 0

(21d)

where 𝐴𝑓 and 𝐵𝑓 are the discretized state space matrices in Eq. (5)
with the sampling period of ℎ = 𝑟𝑓 . �̂�𝑓 (𝑘, 𝑛) is the FOS estimate of the
scalar model disturbance, and 𝐿𝑓 , 𝐿𝑓𝑤, 𝑙𝑓 , and 𝑙𝑤 are the Luenberger
gains. Eq. ((21)a) and ((21)b) represent the dynamics of the state
estimates �̂�𝑓 (𝑘, 𝑛) and the disturbance estimates �̂�𝑓 (𝑘, 𝑛) respectively.
By including 𝑒 (𝑘, 𝑛) and 𝑒 (𝑘, 𝑛) in FOS dynamics, the SOS estimated
𝑠𝑓 𝑤𝑠𝑓

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

𝑥

𝑥

Fig. 10. Overall timing of (a) SMR controller, and (b) MMR controller for 𝑚 = 4.
states �̂�𝑠(𝑘) are fed to FOS. Accordingly, 𝑒𝑠𝑓 (𝑘, 𝑛) and 𝑒𝑤𝑠𝑓 (𝑘, 𝑛) are
the error between SOS and FOS estimates of system states and model
disturbance. These errors are only calculated at the points where SOS
estimates are available (𝑛 = 0) and are assumed zero otherwise (𝑛 ≠ 0).

6.3. Single-gain multi-rate scheme

The single-gain multi-rate (SMR) controller uses observer output in
the computing operation. The computing operation is divided into two
parts. The first part is denoted by 𝐶0, where the controller calculates
the first input value as 𝑢(𝑘, 0) = 𝐾0�̂�𝑠(𝑘) + 𝐹𝑟(𝑘) using the output of
SOS �̂�𝑠(𝑘) (𝐾0 is designed using control law in Eq. (6) realizing the
desired closed-loop poles). The second part is denoted by 𝐶𝑠, where the
controller calculates the set of input values 𝑢(𝑘, 𝑛) for 𝑛 = 1,… , 𝑚−1 for
future actuating points. The control inputs are calculated as follows:

𝑢(𝑘, 𝑛) = 𝐾0�̂�𝑓 (𝑘, 𝑛) + 𝐹𝑟(𝑘, 𝑛), (22)

using the output of FOS �̂�𝑓 (𝑘, 𝑛). Fig. 10.a illustrates the overall timing
of the SMR for 𝑚 = 4.

From the implementation perspective, the computing of the SMR
controller sequentially performs state estimation and control input
calculation.

6.4. Multi-gain multi-rate scheme

In multi-gain multi-rate (MMR) controller, instead of using �̂�𝑓 (𝑘, 𝑛),
the controller calculates the input using �̂�𝑠(𝑘) and a time-lifted model as
explained in the following. Similar to SMR, the MMR controller consists
of two operations. 𝐶0 calculates 𝑢(𝑘, 0) = 𝐾0�̂�𝑠(𝑘) + 𝐹𝑟(𝑘) using the
output of SOS �̂�𝑠(𝑘) (𝐾0 is designed using control law in Eq. (6)). Using
the derived 𝑢(𝑘, 0) and system Eq. (5), one can define �̂�(𝑘, 𝑛) as:

̂(𝑘, 1) = 𝐴𝑓 �̂�𝑠(𝑘) + 𝐵𝑓 𝑢(𝑘, 0) = 𝐴𝑓 �̂�𝑠(𝑘) + 𝐵𝑓𝐾0�̂�𝑠(𝑘),

̂(𝑘, 2) = 𝐴𝑓 �̂�(𝑘, 1) + 𝐵𝑓 𝑢(𝑘, 1)

= (𝐴𝑓𝐴𝑓 + 𝐴𝑓𝐵𝑓𝐾0)�̂�𝑠(𝑘) + 𝐵𝑓 𝑢(𝑘, 1).

(23)

by defining 𝐴1 = (𝐴𝑓𝐴𝑓 +𝐴𝑓𝐵𝑓𝐾0), and by substituting this in Eq. (23)
we have:

�̂�(𝑘, 2) = 𝐴1�̂�𝑠(𝑘) + 𝐵𝑓 𝑢(𝑘, 1). (24)

Now, we can design the controller 𝑢(𝑘, 1) for the new state-space model
of Eq. (24) as follows:

𝑢(𝑘, 1) = 𝐾1�̂�𝑠(𝑘) + 𝐹𝑟(𝑘, 1), 𝐾1 = 𝐿𝑄𝑅(𝐴1, 𝐵𝑓), (25)

where 𝐾1 = 𝐿𝑄𝑅(𝐴1, 𝐵𝑓) is the feedback gain in control law in Eq. (6)
for the state space of (𝐴1, 𝐵𝑓). This approach is repeated to calculate
𝑢(𝑘, 𝑛) for 𝑛 = 1,… , 𝑚 − 1 as follows:

𝑢(𝑘, 𝑛) = 𝐾𝑛�̂�𝑠(𝑘) + 𝐹𝑟(𝑘, 𝑛),

𝐾𝑛 = 𝐿𝑄𝑅(𝐴𝑛, 𝐵𝑓), (26)
11

𝐴𝑛 = (𝐴𝑓𝐴𝑛−1 + 𝐴𝑓𝐵𝑓𝐾𝑛−1).
The controller does not require FOS predictions �̂�𝑓 . The calculation
of 𝑢(𝑘, 𝑛) (defined as 𝐶𝑚 for 𝑛 ≠ 0) is limited to the calculation of the
𝐾𝑛�̂�𝑠(𝑘) where 𝐾𝑛 values are calculated offline and are provided to the
controller before executing the control application. Fig. 10.b depicts the
overall timing of MMR for 𝑚 = 4.

From the implementation perspective, the MMR controller requires
less computing effort than the SMR controller. In MMR, calculating 𝐾𝑛
is done in design time, reducing the computation effort at run-time.
Moreover, the MMR controller does not use FOS estimates and only
uses SOS to estimate �̂�𝑠(𝑘).

6.5. POS initialization state

As mentioned in the introduction, the observer system requires a
certain time interval to reach within a user-defined error threshold for
estimation. To ensure this, the scheduling of the transient state would
include an initial phase in time duration 0 ≤ 𝑡 < 𝑇0 (indicated with the
red color in Fig. 1) where the FSR is active alongside the POS until the
observer error goes below the threshold. The time instance 𝑇𝑜 is when
the controller switches from FSR to multi-rate. For the stability analysis
of the switching, as long as the LTI system under consideration and the
POS system are separately stable, the separation principle ensures the
overall system stability [48].

6.6. Performance analysis

We perform MIL simulations to compare the performance of the
multi-rate and single-rate controllers. In MIL simulations, we mod-
eled all the controllers (FSR,SSR, SMR, and MMR) in Simulink [49]
model-based environment, and by giving a same input we compare the
resulting output. Fig. 7 illustrates the results of a simulation without
considering the model uncertainty, comparing both multi-rate con-
trollers with two single-rate controllers. The sampling period for the
single-rate controllers are ℎ𝑠 = 10 ms and ℎ𝑓 = ℎ𝑠∕5 = 2 ms. For both
multi-rate controllers, the sensing period is 𝑟𝑠 = ℎ𝑠 and the actuating
period is 𝑟𝑎 = ℎ𝑓 . Both the SMR and the MMR perform better than the
SSR with ℎ = ℎ𝑠. The SMR response is similar to the FSR with ℎ = ℎ𝑓
since both controllers follow the same control law.

6.7. SSMC scheduling and stability analysis

As described in Section 5, in the SSMC scheme, we substitute the
FSR controller in the transient state with the multi-rate controller. The
benefit of using SSMC over SSC is a lower resource utilization in the
transient state. We would further analyze the resource utilization of
SSMC in Section 7.

The stability of SSMC can be ensured by following a design and anal-
ysis similar to SSC. SSMC can be modeled as a switching system, where
the system dynamics switches between two modes, which are modeled
by Eq. (19) with 𝑚 = 𝑛 and 𝑚 = 1. The system with 𝑚 = 𝑛 represents
the multi-rate controller, and the system with 𝑚 = 1 represents the SSR
controller. Like SSC, we consider a system with the sampling period

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

𝑅

s
l

7

e
i
w

o

e

v
b

𝑇

A
H
t
p
b
l
c
o

ℎ

t
a

𝑖

U
m
a
n
i
t

switching between the elements of the set 𝐻 = {ℎ𝑓 , ℎ𝑠}. The switching
subsystems can be modeled as shown in Eq. (12). By designing the
multi-rate using the proposed method in this section and by designing
the SSR controller using Theorem 5.2, the stability of SSMC is ensured.

Like SSC, the switching behavior of SSMC is an online reconfigura-
tion process described in Section 3.4. The switching of SSMC is invoked
by the change in state (i.e., the steady state and the transient) and is
implemented in the same way as described in Section 5.2.

6.8. SSMC resource utilization

To analyze the resource utilization of the SSMC, let us first sum-
marize the sequence of the execution for controllers. Referring back
to Fig. 1, the first scheduled controller is the FSR controller to help
the observer reach below the predefined error threshold (as described
in Section 6.5). Next, the controller switches to multi-rate in 𝑇𝑜 until
the system output reaches the steady state 𝑡𝑠. At 𝑡𝑠, the controller
switches to SSR as long the system stays steady. If we assume a periodic
reference as defined in Eq. (1), the described execution sequence only
happens in the first period. From the second iteration onward, the
execution sequence would only include the multi-rate controller in the
transient state and the SSR controller in the steady state.

The resource utilization for the first period of the reference 𝑅𝑆𝑆𝑀𝐶1
is the combined resource utilization of all active controllers based on
their duration. Referring back to Fig. 1, FSR is active in the interval
0 ≤ 𝑡 < 𝑇𝑜, the multi-rate is active in the interval 𝑇𝑜 ≤ 𝑡 < 𝑡𝑠 and
𝑇𝑟
2 ≤ 𝑡 < 𝑇𝑟

2 + 𝑡𝑠, and SSR is active in the interval 𝑡𝑠 ≤ 𝑡 < 𝑇𝑟
2 and

𝑇𝑟
2 + 𝑡𝑠 ≤ 𝑡 < 𝑇𝑟. Therefore,

𝑆𝑆𝑀𝐶1
=
𝑇𝑜
𝑇𝑟
𝑅𝑓 +

2𝑡𝑠 − 𝑇𝑜
𝑇𝑟

𝑅𝑚 +
𝑇𝑟 − 2𝑡𝑠
𝑇𝑟

𝑅𝑠, (27)

where 𝑅𝑓 and 𝑅𝑠 are defined in Eq. (10), and 𝑅𝑚 is resource utilization
of multi-rate controller. Similarly, the resource utilization for the 𝑖𝑡ℎ
period of the reference for 𝑖 = 2, 3,… is defined as:

𝑅𝑆𝑆𝑀𝐶 𝑖 =
2𝑡𝑠
𝑇𝑟
𝑅𝑚 +

𝑇𝑟 − 2𝑡𝑠
𝑇𝑟

𝑅𝑠. (28)

To further analyze the resource utilization of SSMC, we should cal-
culate 𝑅𝑚. We continue with an embedded implementation technique
of the multi-rate controllers and analyzing the resource utilization of
SMR, MMR, and SSMC. We consider 5% modeling inaccuracy (𝛥𝐴𝑓 =
0.05𝐴𝑓 , 𝛥𝐵𝑓 = 0.05𝐵𝑓) compared to its nominal values in the state-
pace model shown in Eq. (5). We also consider no input noise which
eads to 𝛥𝑢[𝑘, 𝑛] = 0.

. Embedded implementation and resource utilization

The proposed implementation for the multi-rate controllers is the
xecution of Algorithm ?? in every execution of the TDM table, follow-
ng the scheduling demonstrated in Fig. 11.c. The figure is an example
here the sensing period is 𝑟𝑠 = ℎ𝑠 and the actuating period is 𝑟𝑎 =

ℎ𝑓 = ℎ𝑠∕4.
The implementation must ensure a periodic execution for both

sensing and actuating since the controller has different sensing and
actuating periods. We ensure the periodic execution of the sensing
by choosing the TDM table size equal to 𝑟𝑠. We ensure the periodic
execution of the actuating by choosing the proper values for two
parameters 𝑖1 and 𝑖2, which we define in the following.

We recall 𝑚 as the number of actuations per sensing. The execution
f the multi-rate controller depends on 𝑚. We describe this dependency

per operation:

Sensing: The execution of sensing operation is independent of 𝑚 since
the number of sensing operations is always one per 𝑚 actuating opera-
tion.

Computing: The computing operation calculates 𝑚 control values in
12

ach execution. Referring to Section 6, the procedure of computing e
Algorithm 1 Multi-rate control application
Sensing (S):

Read the state values 𝑥(𝑘, 0)
Wait until the end of the partition slot

Computing (C):
𝑛← 0

while 𝑛 < 𝑚 do
if 𝑛 = 0 then

Calculate 𝑢(𝑘, 0) by executing 𝐶0
else {𝑛 ≠ 0}

Calculate 𝑢(𝑘, 𝑛) by executing 𝐶𝑠 (or 𝐶𝑚)
end if
Update 𝑢(𝑘, 𝑛) in the shared memory
𝑛← 𝑛 + 1

end while
if Reach the steady state == True then

Issue switching request
end if

Wait until the end of the partition slot
Actuating (A):
Initialize 𝑛← 0

Update control input by 𝑢(𝑘, 𝑛)
𝑛← 𝑛 + 1

if 𝑛 = 𝑚 then
𝑛← 0

end if
Wait until the end of the partition slot

the control inputs is divided into two parts. We define 𝑇𝑐0 as the
execution time of 𝐶0 and 𝑇𝑐𝑠 and 𝑇𝑐𝑚 as the execution time of 𝐶𝑠
and 𝐶𝑚 respectively. Since the targeted platform offers jitter-free and
constant execution times, 𝑇𝑐𝑠 and 𝑇𝑐𝑚 are constant for all the input
alues. Therefore the execution time of the whole computing 𝑇𝑐 is given
y:

𝑐 = 𝑇𝑐0 + (𝑚 − 1) × 𝑇𝑐𝑠 (𝑜𝑟 𝑇𝑐𝑚). (29)

ctuating: The execution time of actuating operation is constant.
owever, the operation is periodically executed 𝑚 times over the TDM

able. We realize this periodic execution by specifying the size of the
artition slots in TDM. Let us define 𝑖1 as the length of the partition slots
etween two consecutive actuating operation and 𝑖2 as the length of the
ast partition slot in TDM (see Fig. 11.c). By assuming that for every
ontrol operation 𝜓𝑖 is equal to the execution time of the corresponding
perations, and by replacing 𝑇𝑐 as in Eq. (29), we rewrite Eq. (4) as:

𝑠 = 𝑇𝑠 + 𝑇𝑐0 + (𝑚 − 1)𝑇𝑐𝑚 + 𝑚𝑇𝑎
+ (𝑚 − 1)𝑖1 + (2 + 2 𝑚)𝑤 + 𝑖2.

(30)

o ensure a periodic execution, the distance between two consecutive
ctuating must be the same. Therefore:

1 = 𝑇𝑠 + 𝑇𝑐0 + (𝑚 − 1)𝑇𝑐𝑚 + 2𝑤 + 𝑖2. (31)

sing the realized Eqs. (30) and (31), the controller can be imple-
ented with any desirable number of actuating per sensing as long

s the resulted 𝑖1 and 𝑖2 from the scheduling are positive values. The
umber of actuating per sensing is mostly studied in respect of QoC
n the presence of model uncertainty. The proposed method suggests
hat the available resource should also be considered alongside QoC to
nsure a feasible implementation.

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Fig. 11. TDM schedule of (a) single-rate with ℎ = ℎ𝑠, (b) single-rate with ℎ = ℎ𝑓 , and (c) multi-rate with 𝑚 = 4 and 𝑟𝑠 = ℎ𝑠. 𝑆, 𝐶0, and 𝐴 are the sensing, computing, and actuating
operations. The non-real-time application executes on hashed pattern partition slots.
𝑥

7.1. Multi-rate controller resource utilization

The resource utilization of the multi-rate controller 𝑅𝑚 depends on
𝑚. By using Eqs. (9), and (30) we obtain:

𝑅𝑚 =
𝑇𝑠 + 𝑇𝑐0 + (𝑚 − 1)𝑇𝑐𝑚 (or 𝑇𝑐𝑠) + 𝑚𝑇𝑎 + (2 + 𝑚)𝜔

ℎ𝑠
(32)

To compare multi-rate controllers with the single-rate controllers, we
redefine 𝑅𝑠 and 𝑅𝑓 by referring to Eq. (10). We assume the parti-
tion slots size are equal to the WCET of their allocated operations.
Therefore:

𝑅𝑠 =
𝑇𝑠 + 𝑇𝑐0 + 𝑇𝑎 + 3𝜔

ℎ𝑠
, 𝑅𝑓 = 𝑚 × 𝑅𝑠 (33)

Comparing Eq. (32) and Eq. (33) we observe that, as discussed in
Fig. 11, 𝑅𝑠 < 𝑅𝑚. Therefore, both multi-rate controllers uses more
resource that the SSR with ℎ = 𝑟𝑠. Comparing to the FSR with ℎ = 𝑟𝑓
we expect that:

𝑅𝑚 < 𝑅𝑓 (= 𝑚 × 𝑅𝑠), (34)

By substituting Eqs. (32), (33) in Eq. (34) we obtain:

𝑇𝑠 + 𝑇𝑐0 + (𝑚 − 1)𝑇𝑐𝑚 (or 𝑇𝑐𝑠) + 𝑚𝑇𝑎 + (2 + 𝑚)𝜔
ℎ𝑠

<
𝑚(𝑇𝑠 + 𝑇𝑐0 + 𝑇𝑎 + 3𝜔)

ℎ𝑠
⟹ (𝑚 − 1)𝑇𝑐𝑚 (or 𝑇𝑐𝑠) + 𝑚𝑇𝑎 < (𝑚 − 1)(𝑇𝑠 + 𝑇𝑐0)

+ 𝑚𝑇𝑎 + 2(𝑚 − 1)𝜔

⟹ 𝑇𝑐𝑚 (or 𝑇𝑐𝑠) < 𝑇𝑠 + 𝑇𝑐0 + 2𝜔

(35)

For MMR, based on Eqs. (25), (26), 𝑇𝑐𝑚 is equal to 𝑇𝑐0 for all input
values of 𝑢(𝑘, 𝑛) for 𝑛 = 1,… , 𝑚−1. Therefore, the inequality in Eq. (34)
always holds. For the SMR controller, based on Eq. (22), 𝑇𝑐𝑠 depends
on the execution time of FOS. Whether Eq. (35) holds depends on the
FOS execution time. An important observation following from Eq. (35)
is that as long as the inequality holds, multi-rate controllers (including
the SSMC) have a lower resource utilization than FSR. Note that this
also holds when sensing takes longer than computing 𝑇𝑠 > 𝑇𝑐0 , as can
be the case in data-intensive control approaches [9].

We further validate this for the case-study by measuring the execu-
tion times and performing HIL simulations in Section 8.

8. Performance analysis with HIL simulations

To validate the performance of the multi-rate controllers and ana-
lyze the resource utilization, we performed HIL simulations on the Ver-
intec instance of CompSOC platform [verintec.com]. The platform de-
picted in Fig. 3 is synthesized on a PYNQ Z2 FPGA board
13
Table 5
Execution time of control operations in clock cycles.
𝑇𝑠 𝑇𝑎 𝑇𝑐0 𝑇𝑐𝑠 (SMR) 𝑇𝑐𝑚 (MMR)

78 211 1123 1821 1123

[http://www.tul.com.tw]. The architecture consists of two MicroBlaze
tiles. We use one tile to implement the control application. The other
one is used to implement the system model in Eq. (5) with a sampling
period of 100𝜇𝑠 to mimic the continuous behavior of the system. The
tiles can communicate through shared memory. The plant reads the
input values from the shared memory and writes the state values.
Similarly, the controller reads the state values and updates the input
values.

Table 5 provides the execution times of the different tasks of the
control application executed separately on the platform. In this table,
𝑇𝑐0 represents the computing of 𝐶𝑜 in multi-rate controllers and the exe-
cution time of the computing in the single-rate controller. As expected,
𝑇𝑐𝑠 is larger than 𝑇𝑐𝑚 since it only uses the FOS and not the SOS.

Parallel observer convergence time: As described in Section 6.2, we
chose both SOS and FOS in POS as Luenberger observers. The observer
gains are chosen by following the Theorem 1 in [10] to ensure the
stability of the observer. We have designed the observer with faster
dynamics than the case-study system so that the observer quickly
reaches a user-defined error threshold for estimation. We defined this
estimation error threshold as 𝑒𝑠[𝑘] < 0.1×𝑌𝑑 = 0.0002. The convergence
time of the observer 𝑇𝑜 depends on design considerations:

• The initial condition: The mismatch between the system initial
conditions 𝑥(0) and the observer initial conditions �̂�(0) affects 𝑇𝑜,
where higher mismatch results in longer 𝑇𝑜.

• Model uncertainty: The amount of model uncertainty affects the
observation accuracy and can increase 𝑇𝑜.

As indicated in Section 6, we assume a 5% model mismatch in our
design. To focus on the effect of model uncertainty, we consider 𝑥(0) =
̂(0) which is reasonable to assume in the most real systems. With these
considerations, the observer quickly converges to the system output,
which results in a 𝑇𝑜 ≃ 0.

Multi-rate controllers: By having the execution times measured, we
perform HIL simulations considering the schedules depicted in Fig. 11
for different values of 𝑚. For multi-rate controllers the sampling period
is assumed as 𝑟𝑠 = 10 ms, which results into the actuating period of
𝑟𝑓 = 𝑟𝑠∕𝑚. For the single-rate controllers, the simulations is done using
different sampling periods as ℎ = 𝑟𝑠∕𝑚. Fig. 12 illustrates the resource
utilization and QoC of the single-rate and two multi-rate controllers for
different values of 𝑚.

http://www.tul.com.tw

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

S
u
w
E
a
r
d
s
s
u

a
s
t
c
o
a

I
k
F

Fig. 12. QoC vs resource utilization comparison between single-rate controller, two
multi-rate controllers, and SSMC.

These results validates that:

• The SMR controller results in a QoC similar to one achieved
by a single-rate controller with the same actuating period while
utilizing a significantly lower resource. Also, while having a
better QoC, it uses more resources than the MMR controller. For
example, for 𝑚 = 4, both controllers achieve a 𝑡𝑠 = 0.13 s where
𝑅𝑚 = 3.2% and 𝑅𝑓 = 5.2%.

• The MMR controller always consumes the lowest amount of re-
sources with the same actuating period. For the same 𝑚 as the
previous example, 𝑅𝑚 = 2.9%, which is lower than SMR and
FSR. However, this controller does not offer a QoC similar to
one achieved by a single-rate controller with the same actuating
period. For example for 𝑚 = 4, 𝑡𝑠 = 0.4 s for MMR while 𝑡𝑠 = 0.13
for FSR.

• In both multi-rate controllers the QoC degrades for 𝑚 > 4. This
degradation is due to the presence of the model uncertainty. With
a higher value of 𝑚, the observer system has a shorter time for the
convergence, and its transient state affects the resulted QoC.

witching scheme: To validate the benefits of the proposed SSMC, we
sed the SMR controller for the transient state and the SSR controller
ith ℎ = 𝑟𝑠 for the steady state. The reference is a periodic signal as
q. (1) with 𝑇𝑟 = 0.4 s. As demonstrated in Fig. 12, SSMC provides
similar QoC as the SMR controller while using fewer processing

esources. We recall the configuration overhead of 13 ms for SSMC (as
iscussed in Section 3.4). This indicates a delay of 2 − 6 samples in the
witching scheme depending on the value of 𝑚. Fig. 12 indicates that
uch delay has a negligible effect on the overall QoC and the resource
tilization of SSMC.

In summary, the results validate that multi-rate controllers offer
comparable control performance to single-rate controllers (with the

ame actuating period) while using fewer resources. The MMR con-
roller is ideal for cases where resource utilization is the most critical
onstraint. In contrast, the SMR controller is the best when only QoC is
f interest. Using SSMC further reduces resource utilization by offering
lower resource utilization in the steady state.

nput signal: As explained in Section 4.2 the input signal should be
ept below the predefined bound, e.g. 𝑢𝑚𝑎𝑥 = 12 V in our constraints.
ig. 13 depicts the input signals of the simulation for 𝑚 = 1, 2,… , 5.

While larger values of 𝑚 result in larger 𝑢𝑚𝑎𝑥, the figure validate that
𝑢𝑚𝑎𝑥 < 12 V for all values of 𝑚.

Input noise: While we did not consider input noise in our designs, it
is essential to study its effect on the performance of the SSMC scheme.
Fig. 14 depicts the system’s output (with 𝑚 = 4), considering different
levels of input noise (𝛥𝑢[𝑘, 𝑛]) ranging between 0−15% (a common input
14

noise level is 5% [50]). As the figure indicates, increasing the input
Fig. 13. The input signal 𝑢[𝑘] for different values of 𝑚. The maximum input value 𝑢𝑚𝑎𝑥
is lower than 12 V for all values of 𝑚.

Fig. 14. System output for 𝑚 = 4 with different values of input noise (𝛥𝑢).

noise increases the steady state fluctuations. It also can cause SSMC to
switch back to transient since the output exceeds the steady state error
threshold. These fluctuations can be addressed by designing a proper
SSR controller to cancel the effect of the input noise in the steady state.

Model uncertainty: As described earlier, the model uncertainty in-
fluences the performance of both the controller and the observer.
Fig. 15 depicts the output of the system and the observer considering
different model inaccuracy levels. An SSMC controller with an SMR
controller with 𝑚 = 4 in the transient state is implemented in these
simulations. As the figure indicates, the designed observer performs
well for 𝛥𝐴𝑓 , 𝛥𝐵𝑓 = 5%. However, using the same observer for higher
values of model uncertainty results in an increased observer error in
the steady state. Compensating this error is possible by fine-tuning the
observer.

Steady state error threshold: We opted for 2% of 𝑟(𝑡) as the steady
state error threshold since it is accepted as a suitable threshold in
control applications [51]. Increasing this threshold increases the steady
state error, which is usually not ideal in control applications. However,
suppose the steady-state error is less critical than the resource utiliza-
tion. In that case, it is possible to increase such threshold, and accept
a higher steady-state error to utilize less resource. Therefore, as long
as the steady state error value is acceptable, the designer can increase
the threshold, causing the SSMC to switch to the steady state quicker
and use less resource. Table 6 presents the resource utilization value for
different error threshold values ranging between 2 − 25%. As the table
suggests, increasing the threshold level decreases resource utilization.

System Dynamic: We further study the impact of the system dynamics

on the potential benefits from the SSMC scheme. In addition to the

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.

f

D
t
S
c
a
w
c

8

p
t

N
c
r
t
s
a
u
o
t
o
s

Fig. 15. The output of the system and the observer for different levels of Model
Uncertainty(MO). Increasing model uncertainty increases the observer error.

Table 6
Different steady state error threshold vs resource utilization.

Error threshold 2% 5% 10% 25%

𝑅 1.77 1.70 1.64 1.53

Table 7
Execution time of control operations for the dual rotary system in clock
cycles.
𝑇𝑠 𝑇𝑎 𝑇𝑐0 𝑇𝑐𝑠 (SMR) 𝑇𝑐𝑚 (MMR)

78 211 425 1125 425

EMB system studied so far, we consider the dual-rotary (DR) dynamic
system. The state-space representation of Eq. (2) for the DR system can
be found in [39]. To design the SSMC controller for the DR system, we
first designed a state-feedback controller (as described in Section 4.1)
to place the closed-loop poles at [0.96, 0.96, 0.5, 0.5]. We then chose
𝑟𝑠 = 10 ms and designed the SSMC controller with SMR in transient-
state (as described in Section 6.3). We measured the execution time
of control operations for the dual rotary system which are reported
in Table 7. To validate the control performance, we performed MIL
simulations. The resulted 𝑡𝑠 and resource utilization for the DR system
or 𝑚 = 1 are 1.17 s and 1.3% respectively.

Fig. 16 depicts a QoC vs resource utilization for both EMB and the
R system. We normalized the QoC and resource utilization by dividing

hem by the values for 𝑚 = 1. As the figure indicates, the designed
SMC controller for the DR system results in a similar behavior as the
ontroller designed for the EMB system. The designed SSMC results in
lower resource utilization compare to single-rate controller for 𝑚 > 1
hile offering a similar control performance (model uncertainty is not

onsidered in the DR system).

.1. Comparison with state-of-the-art

We compare the resource efficiency and control performance of the
roposed SSMC with two of the state-of-the-art techniques proposed in
he literature, non-uniform sampling and dual-mode scheduling.

on-uniform sampling: The study in [11] proposed a method to
hoose an optimal sequence of sampling periods that minimize the
esource utilization in an OSEK/VDX OS-based platform while meeting
he control requirements. Similar to our method, [11] offers a switching
cheme between a finite set of sampling periods imposed by the oper-
ting system. The proposed approach in [11] uses less resource than
niform sampling, which is a scheme similar to the single-rate case in
ur study. The essential differences between our study and [11] are
wo aspects. First, in [11], the switching scheme of the system depends
n the scheduling of the platform and is statically defined, while the
15

witching is state-based in our study. Second, the proposed multi-rate
Fig. 16. Normalized QoC vs resource utilization comparison by applying the controllers
on two different system dynamics. The solid lines represent the EMB system and the
dashed lines represent the DR system.

controller for the transient state in our study is missing in [11] and only
the switching behavior between a set of sampling periods is studied.

To compare the non-uniform approach with SSMC, two controllers
are designed for the braking system defined in Section 4.2 using two
different approaches. The control law for both approaches is state-
feedback defined in Eq. (6) with similar 𝐾 and 𝐹 values. Table 8
provides the results of comparison between different approaches. In
Case III of [11], an FSR controller with 𝑟𝑠 = 𝑟𝑎 = 2 ms is designed.
In Case V of [11], both 𝑟𝑠 and 𝑟𝑎 switches between 2 ms and 5 ms
following a sequence defined at design time. In the SMR approach,
only an SMR controller is used for both transient and the steady state
with 𝑟𝑠 = 5 ms, 𝑟𝑎 = 2.5 ms. Finally SSMC uses the controller proposed
in our study with 𝑟𝑠 = 5 ms, 𝑟𝑎 = 2.5 ms for the transient state and
𝑟𝑠 = 𝑟𝑎 = 5 ms for the steady state. As the results indicate, the
proposed SSMC outperforms the non-uniform scheduling in resource
utilization. Comparing with the FSR controller proposed in [11] (Case
III), SSMC offers a fairly similar settling time while utilizing about 60%
less resource. At the same time, the maximum input value |𝑢[𝑘]|𝑚𝑎𝑥 in
SSMC is 2.22 V smaller than Case III, and 2.72 V smaller than Case V
of [11].

Dual-mode scheduling: The study in [12] proposes dual-mode schedul-
ing for the control application to minimize resource utilization. Similar
to the switching scheme proposed in our study, the dual-mode schedul-
ing proposes a state-based switching scheme based on the output state
of the system. Here, the controller switches between two single-rate
controllers based on the error level between output and the reference.
It is validated in [12] that the proposed approach allows more non-
control tasks to be allocated alongside the controller. At the same time,
the required control performance is guaranteed. However, in [12], the
system only switches between FSR and SSR controllers and reduces re-
source utilization only when the error is lower than the error threshold
of 2% (which can be translated to the steady state in our study). In
essence, the worst-case of resource utilization occurs in the transient
state. While providing a similar improvement to [12] in the steady
state, our approach further reduces the resource utilization in the
transient state by offering a multi-rate controller. Such improvement
over [12] is reflected in Table 8 and is confirmed by the reported
values of resource utilization. Generally, a longer transient state (or
a shorter steady-state) results in an overall lower resource utilization
in our approach, compared to dual-mode scheduling.

Similar to the comparison with non-uniform scheduling, two con-
trollers designed for the braking system using dual-mode and SSMC
approaches with a similar control law. In the dual-mode controller,
the sampling period switches between 2.5 ms and 5 ms based on the

output state. The designed SSMC is similar to the previous comparison.

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
Table 8
Results comparison between non-uniform, multi-rate, dual-mode, and SSMC scheduling. TR and SS indicates the transient and
steady state respectively.
𝐷𝑒𝑠𝑖𝑔𝑛 𝑟𝑠 (ms) 𝑟𝑎 (ms) 𝑡𝑠 (ms) 𝑅 |𝑢[𝑘]|𝑚𝑎𝑥 (V)

Case III in [11] 2 2 150 10 10.7
Case V in [11] {2, 5} {2, 5} 200 5.7 11.2
SMR 5 2.5 190 3.82 8.48
Dual-mode [12] 𝑇𝑅 ∶ 2.5 𝑆𝑆 ∶ 5 𝑇𝑅 ∶ 2.5 𝑆𝑆 ∶ 5 180 3.81 8.48
SSMC 5 𝑇𝑅 ∶ 2.5 𝑆𝑆 ∶ 5 190 𝟑.𝟐𝟎 8.48
The results in Table 8 indicate that the proposed SSMC outperforms
the dual-mode scheduling in terms of resource utilization. To further
compare the Dual-mode scheduling with SSMC, the QoC and resource
utilization comparison are also elevated for the Dual-mode. As depicted
in Fig. 12, SSMC uses lesser resource than the Dual-mode for all 𝑚
values. At the same time, SSMC provides a comparable QoC (model
uncertainty is not considered in Dual-mode scheduling).

9. Conclusions

In this paper, we presented the implementation of the SSMC scheme
on predictable and composable embedded platforms. We demonstrated
that the multi-rate controllers offer a similar QoC compared to single-
rate controllers while utilizing a lower amount of resources. We val-
idated the implementation benefits by designing two multi-rate con-
trollers and performing HIL simulations. We further improved the
resource utilization by proposing a switching scheme that uses a multi-
rate controller in the transient state and a single-rate controller in
the steady state. The implementation of SSMC requires the targeted
platform to reschedule the applications online. There are some possi-
ble extensions to this study. One direction is to realize an analytical
method over the relationship between QoC and the model uncertainty.
Moreover, it is interesting to optimally choose the values of 𝑚 (number
of actuating per sensing) and 𝑟𝑠 (sensing period) used in SSMC, which
result in optimal performance and resource utilization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the project IMOCO4.E (GA
no.101007311), and the H2020 project I-MECH (GA no.737453).

References

[1] R. Obermaisser, C. El Salloum, B. Huber, H. Kopetz, From a federated to
an integrated automotive architecture, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 28 (7) (2009) 956–965.

[2] Automotive Electronic Control Unit (ECU) consolidation, Tech. Rep, Inted
corporation, 2019.

[3] P. Marti, et al., Jitter compensation for real-time control systems, in: Real-Time
Systems Symposium (RTSS), 2001, 2001, pp. 39–48.

[4] K. Goossens, et al., NOC-based multiprocessor architecture for mixed-time-
criticality applications, in: Springer, Handbook of Hardware/Software Codesign,
Springer, 2017, pp. 491–530.

[5] M. Haghi, F. Wenguang, D. Goswami, K. Goossens, Delay-based design of
feedforward tracking control for predictable embedded platforms, in: ACC, 2019.

[6] J. Valencia, et al., Resource utilization and quality-of-control trade-off for a
composable platform, in: DATE, 2016, pp. 654–659.

[7] M. Tomizuka, Multi-rate control for motion control applications, in: AMC, IEEE,
2004, pp. 21–29.

[8] J. Ding, F. Marcassa, S.-C. Wu, M. Tomizuka, Multirate control for computation
saving, IEEE TCST (2005).
16
[9] S. Mohamed, D. Goswami, V. Nathan, R. Rajappa, T. Basten, A scenario-
and platform-aware design flow for image-based control systems, Microprocess.
Microsyst. (ISSN: 0141-9331) 75 (2020) 103037.

[10] M.-W. Thein, E.A. Misawa, A parallel observer system for multirate state
estimation, in: ACC, 1999.

[11] D. Goswami, et al., Multirate controller design for resource-and schedule-
constrained automotive ECUs, in: DATE, 2013.

[12] X. Dai, W. Chang, S. Zhao, A. Burns, A dual-mode strategy for performance-
maximisation and resource-efficient CPS design, ACM Trans. Embed. Comput.
Syst. (TECS) 18 (5s) (2019) 1–20.

[13] C. Peng, F. Li, A survey on recent advances in event-triggered communication
and control, Inform. Sci. 457 (2018) 113–125.

[14] W. Wang, R. Postoyan, D. Nešić, W. Heemels, Periodic event-triggered control
for nonlinear networked control systems, IEEE Trans. Automat. Control 65 (2)
(2019) 620–635.

[15] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE
Trans. Automat. Control 52 (9) (2007) 1680–1685.

[16] J. Lunze, D. Lehmann, A state-feedback approach to event-based control,
Automatica 46 (1) (2010) 211–215.

[17] X. Wang, M.D. Lemmon, Event-triggering in distributed networked control
systems, IEEE Trans. Automat. Control 56 (3) (2010) 586–601.

[18] R. Postoyan, P. Tabuada, D. Nešić, A. Anta, A framework for the event-triggered
stabilization of nonlinear systems, IEEE Trans. Automat. Control 60 (4) (2014)
982–996.

[19] M.G. Villarreal-Cervantes, J.P. Sánchez-Santana, J.F. Guerrero-Castellanos, Pe-
riodic event-triggered control strategy for a (3, 0) mobile robot network, ISA
Trans. 96 (2020) 490–500.

[20] M. Mazo Jr., A. Anta, P. Tabuada, An ISS self-triggered implementation of linear
controllers, Automatica 46 (8) (2010) 1310–1314.

[21] X. Wang, M.D. Lemmon, Self-triggering under state-independent disturbances,
IEEE Trans. Automat. Control 55 (6) (2010) 1494–1500.

[22] E. Bini, G.M. Buttazzo, The optimal sampling pattern for linear control systems,
IEEE Trans. Automat. Control 59 (1) (2013) 78–90.

[23] W. Chang, et al., OS-aware automotive controller design using non-uniform
sampling, ACM Trans. CPS (2018).

[24] A. Cervin, M. Velasco, P. Martí, A. Camacho, Optimal online sampling period
assignment: Theory and experiments, IEEE Trans. Control Syst. Technol. 19 (4)
(2010) 902–910.

[25] A. Aminifar, S. Samii, P. Eles, Z. Peng, A. Cervin, Designing high-quality em-
bedded control systems with guaranteed stability, in: 2012 IEEE 33rd Real-Time
Systems Symposium, IEEE, 2012, pp. 283–292.

[26] A. Aminifar, P. Eles, Z. Peng, Jfair: A scheduling algorithm to stabilize control
applications, in: 21st RTAS Symposium, IEEE, 2015, pp. 63–72.

[27] Y. Sun, M.D. Natale, Weakly hard schedulability analysis for fixed priority
scheduling of periodic real-time tasks, ACM Trans. Embed. Comput. Syst. (TECS)
16 (5s) (2017) 1–19.

[28] A. Behrouzian, H.A. Ara, M. Geilen, D. Goswami, T. Basten, Firmness analysis of
real-time tasks, ACM Trans. Embed. Comput. Syst. (TECS) 19 (4) (2020) 1–24.

[29] Y. Xu, K.-E. Årzén, A. Cervin, E. Bini, B. Tanasa, Exploiting job response-time
information in the co-design of real-time control systems, in: 2015 IEEE 21st
International Conference on Embedded and Real-Time Computing Systems and
Applications, IEEE, 2015, pp. 247–256.

[30] P. Pazzaglia, C. Mandrioli, M. Maggio, A. Cervin, DMAC: Deadline-miss-aware
control, in: 31st Euromicro Conference on Real-Time Systems, ECRTS 2019,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[31] P. Pazzaglia, A. Hamann, D. Ziegenbein, M. Maggio, Adaptive design of real-time
control systems subject to sporadic overruns, in: Design, Automation & Test in
Europe Conference Exhibition, Vol. 2021, DATE, 2021.

[32] Z. Li, C. Huang, X. Dong, C. Ren, Resource-efficient cyber-physical systems
design: A survey, Microprocess. Microsyst. 77 (2020) 103183.

[33] S.-C. Wu, M. Tomizuka, Multi-rate digital control with interlacing and its
application to hard disk drive servo, in: ACC, 2003.

[34] H. Fujimoto, Y. Hori, High-performance servo systems based on multirate
sampling control, Control Eng. Pract. (2002).

[35] L. Yang, M. Tomizuka, Multi-rate short-seeking control of dual-actuator hard disk
drives for computation saving, in: ACC, 2005.

http://refhub.elsevier.com/S0141-9331(22)00074-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb1
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb2
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb2
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb2
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb3
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb3
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb3
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb4
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb5
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb5
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb5
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb6
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb6
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb6
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb7
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb8
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb9
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb9
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb9
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb9
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb9
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb10
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb10
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb10
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb11
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb11
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb11
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb12
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb12
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb12
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb12
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb12
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb13
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb13
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb13
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb14
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb14
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb14
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb14
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb14
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb15
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb16
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb16
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb16
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb17
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb17
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb17
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb18
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb19
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb19
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb19
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb19
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb19
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb20
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb21
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb21
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb21
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb22
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb23
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb24
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb25
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb25
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb25
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb25
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb25
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb26
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb26
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb26
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb27
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb28
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb29
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb30
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb30
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb30
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb30
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb30
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb31
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb32
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb33
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb33
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb33
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb34
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb34
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb34
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb35
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb35
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb35

Microprocessors and Microsystems 91 (2022) 104517M. Haghi et al.
[36] H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a
survey of recent results, IEEE Trans. Automat. Control 54 (2) (2009) 308–322.

[37] J. Jasani, F. Presswala, N. Bhatt, Comparative study on switching techniques: A
survey, Int. J. Innovat. Emerg. Res. Eng. 2 (2015).

[38] L. Maldonado, W. Chang, D. Roy, A. Annaswamy, D. Goswami, S. Chakraborty,
Exploiting system dynamics for resource-efficient automotive CPS design, in:
(DATE), IEEE, 2019, pp. 234–239.

[39] M. Haghi, Y. Yao, D. Goswami, K. Goossens, Parallel implementation of iter-
ative learning controllers on multi-core platforms, in: DATE, IEEE, 2020, pp.
1704–1709.

[40] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside,
K. Goossens, S. Goossens, S. Hansen, R. Heckmann, et al., T-CREST: Time-
predictable multi-core architecture for embedded systems, J. Syst. Archit. 61
(9) (2015) 449–471.

[41] N. Thaker, S.K. Babu, Analysis of event-triggered and time-triggered architecture
for a reliable embedded system, in: 8th ICCCNT, IEEE, 2017, pp. 1–5.

[42] M.J. Pont, The Engineering of Reliable Embedded Systems, LPC1769, Lulu. com,
2015.

[43] M. Zimmer, D. Broman, C. Shaver, E.A. Lee, FlexPRET: A processor platform for
mixed-criticality systems, in: IEEE 19th RTAS, IEEE, 2014, pp. 101–110.

[44] P. Derler, T.H. Feng, E.A. Lee, S. Matic, H.D. Patel, Y. Zheo, J. Zou, PTIDES:
A programming model for distributed real-time embedded systems, Tech. Rep.,
University of Berkley, Dept. of Electrical Engineering and Computer Science,
2008.

[45] Z. Sun, S.S. Ge, Stability Theory of Switched Dynamical Systems, Springer Science
& Business Media, 2011.

[46] O. Mason, R. Shorten, On common quadratic Lyapunov functions for stable
discrete-time LTI systems, IMA J. Appl. Math. 69 (3) (2004) 271–283.

[47] J. Valencia, et al., Composable platform-aware embedded control systems on a
multi-core architecture, in: DSD, 2015, pp. 502–509.

[48] S.K. Mitter, Filtering and stochastic control: A historical perspective, IEEE Control
Syst. Mag. 16 (3) (1996) 67–76.

[49] Simulink. In: MATLAB & Simulink. https://www.mathworks.com/products/
simulink.html.

[50] K.J. Åström, R.M. Murray, Feedback Systems, Princeton University Press, 2010.
[51] R.C. Dorf, R.H. Bishop, Modern Control Systems Solution Manual, Addison-

Wesley, 1998.

Mojtaba Haghi is a Ph.D. student in the Electronic Sys-
tems group of the Department of Electrical Engineering at
Eindhoven University of Technology (TU Eindhoven) since
2017. His research focuses on co-design and implementing
control applications on resource-constrained embedded plat-
forms. His research interests are platform-aware analysis,
co-design, and implementation of feedback control systems
on embedded platforms.

Shengru Yu received her master degree in Electrical Engi-
neering at Eindhoven university of technology. During the
thesis project, Shengru worked on finding a solution to the
tradeoff problem between the quality of control(QoC) and
resource usage for embedded control systems. Since 2021
she works as a design engineer at ASML, Veldhoven, the
Netherlands. Her research interests are embedded control
applications, embedded systems and platform scheduling.
17
Dip Goswami is an Assistant Professor in the Electronic
Systems group of the Department of Electrical Engineer-
ing at Eindhoven University of Technology (TU/e). His
research focuses on various design aspects of embedded
control systems in resource-constrained domains such as
automotive and robotics. Dip obtained his Ph.D. in Electrical
and Computer Engineering from the National University of
Singapore (NUS) in 2009. From 2010 to 2012, he was an
Alexander von Humboldt Postdoctoral Fellow at TU Munich,
Germany.

Kees Goossens is Full Professor of Real-time Embedded
Systems in the Electronic Systems group of the Depart-
ment of Electrical Engineering at Eindhoven University of
Technology (TU/e). He focuses on composable (virtualized),
predictable (real-time), low-power embedded systems, sup-
porting multiple models of computation. At Topic Embedded
Products, Goossens works on real-time dependable dynamic
partial reconfiguration in FPGAs. Kees Goossens completed
his Ph.D. at the University of Edinburgh in 1993. He become
a senior principal research scientist at Philips and then NXP
Semiconductors in 1995, a position he held for 14 years. In
2007, he was appointed Full Professor at Delft University of
Technology (TU/Delft). In 2010, Goossens became Full Pro-
fessor at Eindhoven University of Technology (TU/e). Since
2016, Goossens has been working as a System Architect for
Topic Embedded Products.

Martijn Koedam received his master degree in Electrical
Engineering at Technical University of Eindhoven. His work
experience includes software development in the audio
industry, design and implementation of a regression test
framework for POS systems and evaluating wireless ticketing
systems. Since 2011 he works as a researcher at the same
university. His research interests include design, modeling,
and simulation of embedded Systems-on-Chip, composable,
predictable, real-time and mixed-criticality systems and
execution models.

Andrew Nelson received his M.Sc. degree in Embedded Sys-
tems at Eindhoven University of Technology, Netherlands
in 2009. After this, he moved to Delft University of Technol-
ogy, Netherlands and received his Ph.D. there in 2014. He
is currently employed as an assistant professor at Eindhoven
University of Technology. His research interests include real-
time(including mixed time-criticality) low-power multi-core
embedded-systems and the timing analyses thereof.

http://refhub.elsevier.com/S0141-9331(22)00074-6/sb36
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb36
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb36
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb37
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb37
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb37
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb38
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb38
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb38
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb38
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb38
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb39
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb40
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb41
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb41
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb41
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb42
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb42
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb42
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb43
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb44
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb45
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb45
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb45
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb46
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb47
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb48
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb48
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb48
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb50
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb51
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb51
http://refhub.elsevier.com/S0141-9331(22)00074-6/sb51

	State-based switching multi-rate controller for improving resource utilization on predictable and composable platforms
	Introduction
	Related works
	Predictable and composable platform
	SSMC implementation requirements
	Platform properties
	Possible embedded platforms
	Compsoc

	System architecture
	Embedded control applications
	Case-study: electro-mechanical braking

	State-base switching controller
	Resource utilization vs QoC in single-rate controllers
	The switching scheme

	State-based multi-rate switching scheme
	The multi-rate model
	The parallel observer system
	Single-gain multi-rate scheme
	Multi-gain multi-rate scheme
	POS initialization state
	Performance analysis
	SSMC scheduling and stability analysis
	SSMC resource utilization

	Embedded implementation and resource utilization
	Multi-rate controller resource utilization

	Performance analysis with HIL simulations
	Comparison with state-of-the-art

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

