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Abstract—Evolutionary algorithms (EA) are efficient
population-based stochastic algorithms for solving optimization
problems. The performance of EAs largely depends on the
configuration of values of parameters that control their search.
Previous works studied how to configure EAs, though, there
is a lack of a general approach to effectively tune EAs. To fill
this gap, this paper presents a consistent, automated approach
for tuning and controlling parameterized search of an EA. For
this, we propose a deep reinforcement learning (DRL) based
approach called ‘DRL-APC-DE’ for online controlling search
parameter values for a multi-objective Differential Evolution
algorithm. The proposed method is trained and evaluated on
widely adopted multi-objective test problems. The experimental
results show that the proposed approach performs competitively
to a non-adaptive Differential Evolution algorithm, tuned by
grid search on the same range of possible parameter values.
Subsequently, the trained algorithms have been applied to
unseen multi-objective problems for the adaptive control of
parameters. Results show the successful ability of DRL-APC-DE
to control parameters for solving these problems, which has the
potential to significantly reduce the dependency on parameter
tuning for the successful application of EAs.

Index Terms—Evolutionary Algorithms, Deep Reinforcement
Learning, Multi-Objective Optimization Problems, Adaptive Pa-
rameter Control, Differential Evolution

I. INTRODUCTION

The aim for Combinatorial Optimization Problems (COP) is
to identify high-quality solutions in a large space of decision
variables. Given the computational complexity of the prob-
lems, practical solution approaches often rely on heuristics.
Such heuristics are typically fast, but lack the guarantee of
finding optimal solutions, and remain dependent on trial-
and-error approaches in their development. Resulting high
cost of development and owing to recent advancements, the
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machine learning methodologies are increasingly being used
for solving COP (e.g., [3]). With numerous developments in
the field, more and better machine learning approaches are
published to solve various optimization problems of increasing
complexity. Yet, it remains challenging to define end-to-end
learning approaches that generalize well to larger and more
constrained or difficult problem variants.

Evolutionary Algorithms (EAs) are efficient heuristic-based
search techniques that use randomness for solving problems
in a stochastic manner. These EA approaches are traditionally
applied to solve optimization problems that are hard to solve
in polynomial time [1], [13]. The successful EA application
requires the formulation of an effective search strategy and its
imposed parameters. Common ways for addressing this config-
uration problem are based on conventions, experience, ad hoc
choices, and by experimentation. The first three approaches are
typically sub-optimal (as they include little to no knowledge
of the specifics of a problem), while experimentation faces
limitations as parameters interact, requiring extensive trial-
and-error approaches such as grid- or random search, which
are often impractical or infeasible for solving real-world
problems with computationally expensive evaluation functions.

To address these issues, machine learning approaches have
been proposed that find the optimal parameters of EAs, learn-
ing the interaction among parameters to optimize objective
function (e.g., [4], [6]). With the successful application of
Deep Reinforcement Learning (DRL) in a wide range of do-
mains, it was successfully applied to learn to control parameter
values for Differential Evolution (DE), an EA proposed by
Storn and Price for optimizing real valued functions [25].
With the formulation of this tuning problem as a sequential
decision making problem, DRL has been successfully lever-
aged to control operators and parameters of DEs over various



generations (e.g., [24], [29] and [30]). With this, DRL does
not learn which operator is expected to perform best in the
next generation of search, but learns to control operators to
optimize the performance of the entire search procedure over
various generations of evolutionary search.

In line with the successful applications of the technique, we
focus in this work on the application of DRL to online control
the scaling factor (f ) and crossover probability parameters (cr)
that are imposed on the search operators of DE for solving
Multi-Objective Optimization Problems (MOOP). This type
of problem involves more than one objective functions that
simultaneously needs to be optimized. We train and evaluate
our method on problems from the DTLZ benchmark of multi-
objective problems [11], a problem-set that is widely used
for benchmarking multi-objective evolutionary algorithms. In
line with the experiments of [9], we focus on applications
with limited number of evaluations, as in practice the large
number of evaluations is the limiting factor for adoption
of evolutionary algorithms. Extensive testing shows that our
method outperforms a static DE parametrization approach,
where parameters are selected using a grid search. Next to
this, we observe competitive results when deploying a trained
DRL model to unseen problem instances, comparing to the
static DE approach tuned for each such instance.

The contributions of this work are summarized as follows:
• To the best of our knowledge, we are the first to propose

a DRL adaptive parameter control approach for solving
Multi-Objective Optimization Problems.

• Our experiment results show that the proposed approach
is problem-independent, implying its potential to be ap-
plied to other Multi-Objective Optimization Problems
without additional training or tuning.

II. BACKGROUND AND RELATED WORK

The formulation of an EA requires setting values for its
parameters, which determine whether the performed search
will be efficient or not. Common ways for addressing this
tuning problem are based on conventions, experience, ad
hoc choices, and experimentation. The main drawback of the
first three approaches is that they typically result in a sub-
optimal configuration, while experimentation is typically com-
putationally expensive for complex optimization problems.
Additionally, as the execution of an EA is an intrinsically
dynamic, adaptive process, different parameters might be the
most effective at different stages of an evolutionary process.

A. Adaptive Parameter Control of Evolutionary Algorithms

To address the issues of setting fixed values of parameters of
EAs that remain static for the entire search process, the work
of [12] defines three classes of adaptive parameter control in
EAs, in which the setting of values is performed during a
run: Deterministic Parameter Control, Self-Adaptive Parameter
Control, and Adaptive Parameter Control. In Deterministic
Parameter Control, the values of parameter are altered by a
deterministic rule. Usually, a time varying schedule is used to
update the parameters at specified intervals of the evolutionary

search (e.g., [28]). In Self-Adaptive Parameter Control, the
control of parameters is implemented in the evolutionary
search. Here, the parameters that are online adapted are
coded into the chromosomes that undergo recombination and
mutation (e.g., [18]). Adaptive Parameter Control takes place
when there is some form of feedback from the search used
to determine the directions and/or magnitude of changes to
the parameters. Approaches in this category typically involve
a credit assignment scheme for rewarding parameters based
on the impact of their recent applications on the search
process, and an operator selection mechanism for deciding
which parameters to apply, based on the credits assigned (e.g.,
[15], [21], [34]).

B. Parameter Configuration and Control of Differential Evo-
lution

Differential Evolution (DE) is an EA proposed by Storn
and Price for optimizing real valued functions [27]. The
distinguishing feature of DE is its differential mutation. Given
a population of candidate solutions in Rn, a solution x̄′

is produced by adding a permutation vector to an existing
solution: x̄′ = x̄+ p̄. This perturbation vector p̄ is the scaled
vector difference of two other randomly chosen solutions
from the solution: p̄ = f · (ȳ − z̄), where the scaling factor
f controls the rate at which the population evolves. After
mutation, a crossover operator is applied to combine the new
candidate solution created by mutation with another solution
from the current population. This reproduction operator is
typically a uniform crossover, and is subject to the crossover
probability parameter cr, which defines the probability of
copying the value of the gene from the candidate solution
to the corresponding gene of the selected solution from the
current population.

As in other EAs, the performance of DE depends on its
algorithm control parameter values and its mutation strategy.
The effect of the control parameters of DE is widely studied,
and various ranges of values are suggested for setting the
population size (NP), scaling factor (f) and crossover prob-
ability rate (cr). Storn and Price [26] propose NP = 10D, f
∈ [0.5, 1] and cr ∈ [0.8, 1], Gämperle et al. [14] suggest
a population size between NP = 3D and NP = 8D, with a
scaling factor f = 0.6 and crossover rate is cr ∈ [0.3, 0.9] and
Ronkkonen et al. [20] recommend NP = 2D and NP = 40D,
f ∈ (0.4, 0.95] and cr ∈ (0, 0.2) when the objective function
is separable. Further, Zielinski et al. [36] report best obtained
results with a scaling factor f ≥ 0.6 and cr ≥ 0.6. As it can
be observed, the suggested parameter combinations to use for
DE are different from each other. Therefore, and according to
the no free lunch theorem [33], there is no fixed parameter
configuration that is generally used by practitioners, or that
consistently outperforms others on wide range of problems.
Therefore, trial-and-error or experimentation approaches are
commonly used for the tuning of parameters, which is either
non-comprehensive or costly. Setting fixed parameters for
the whole evolutionary process duration has also intrinsic
limitations, as different parameter settings may be required



in order to achieve optimal performance at different stages of
evolution [12].

Various extensions have been proposed to the DE algorithm
that make use of an adaptive approach to control parameters
during the search [8]. These approaches differ in terms of
what they control and employed approach. Popular approaches
are jDE [5] using a self-adaptive scheme, SaDE [19] assigns
evolutionary strategies and control parameters based on prob-
abilities that have been learned from the experience from
previous generations, JADE [35] utilizes a Cauchy and normal
distribution to automatically update control parameters, and
in SHADE and LSHADE [31] parameters are updated based
on the historical memory of successful solutions. A complete
overview of these approaches can be found in [8].

C. Machine Learning Approaches for Differential Evolution
Parameter Configurations and Control

Differential Evolution with adaptive control achieved good
performance, yet make the programming fairly complex and
run the risk of increasing the number of function evaluations
[17]. Given this, and the notable successes in machine learning
led practitioners to develop learning-based approaches for
learning to tune the parameters of the Differential Evolution
algorithm. Examples of recent machine learning applications
are based on Bayesian hyper parameter optimization [4] and
an Artificial Neural Network for predicting optimal parameter
values [6].

Besides these promising approaches for tuning parameters
based on popular machine learning methods, various research
has recently been devoted on applying Deep Reinforcement
Learning for both the tuning and the control of mutation
operators and/or control parameters that are imposed in each
generation of search of Differential Evolution. Examples are
the work of [24] and [30] that use a Double Deep Q-
Network (DDQN) agent for selecting different mutation op-
erators within DE, and [29] that proposes a Policy Gradient
method as DRL algorithm. All above-mentioned approaches
are focused on single-objective optimization. The authors of
[2] develop a DRL approach to solve a multi-objective online
order batching Problem. However, in their approach, the DRL
agent learns a policy that decides directly the decisions for the
underlying optimization problem. Accordingly, the multiple
objectives are modelled as reward functions.

III. DEEP REINFORCEMENT LEARNING FOR ADAPTIVE
PARAMETER CONTROL FOR MULTI-OBJECTIVE

OPTIMIZATION

Our proposed approach distinguishes itself from the prior
discussed DRL-based approaches in two main aspects. First,
we apply Deep Reinforcement Learning for the adaptive
control of parameter values imposed on the mutation operators
of the Differential Evolution algorithm. With this, we control
the scaling factor f and crossover probability parameter cr
imposed on the perturbation vector and the reproduction
operators for the generation of solutions to optimize how new
solutions are generated throughout the evolutionary search

process. Second, we apply our approach to solve Multi-
Objective Optimization Problems (MOOP), a branch of prob-
lems involving two or more objective functions. These types
of problems are mathematically expressed as follows:

Minimize F (x) = {f1(x), f2(x), . . . , fm(x)}
Subject to g(x) ≤ 0

(1)

where x is the vector of decision variables, fi(x) is the
ith objective function, and g(x) is the constraint function.
The solution of MOOP is generally expressed as a set of
Pareto-optimal solutions, which are the best trade-offs between
objectives. A solution x∗ is Pareto optimal if it is feasible and
there exists no other solution x such that fi(x) ≤ fi (x

⋆)
and fj(x) < fj (x

⋆), for at least one objective i, j ∈
{1, 2, . . . .,m} with i ̸= j.

A. Solution Framework

We propose a Deep Reinforcement Learning based solution
for adaptive parameter control in Differential Evolution called
‘DRL-APC-DE’. In this approach, a decision-making policy is
trained for tuning the parameters that control the evolutionary
operators during the search process. This policy can be defined
as the agent’s way of behaving at a given time, mapping
the states of the environment to actions to be taken. This
enables the dynamic selection of parameters that are used in
the different stages of the evolutionary search process.

The Differential Evolution algorithm is formulated with a
‘DE/Rand/1’ mutation strategy, as originally described in [25]
and explained in II-B, and with a random uniform crossover
strategy. To effectively deal with MOOP, we use an NSGA2
selection procedure, as described in [10]. A action-making pol-
icy πθ is trained with Deep Reinforcement Learning algorithm
to decide what scaling factor f is used in the mutation strategy
and what crossover rate cr is applied in the cross-over operator.
The values are repeatedly selected in every generation of the
search, based on the state of the search. The pseudo-code of
the described approach can be found in Algorithm 1 and the
training of the DRL policy is described in section IV-A.

B. Markov Decision Process formulation

A Markov Decision Process (MDP) is formulated to create
an environment where agents can learn a strategy for making
these sequential decisions. An MDP framework to the problem
is defined as a tuple < S,A,R, P >, where S represents the
set of states, A the set of actions, R the reward function and
P the state transition probability function. The state transition
occurs after the execution of an action by the agent, such that
the state St of environment at time step t transforms to St+1

at time step t+1, and the agent receives a reward according
to the reward function R. Based on this framework, we define
the decision-making problem for adaptive parameter control
in Differential Evolution as follows:

State space S - The state space is formulated as a one-
dimensional vector in which the DRL agent is provided with
information regarding the current status of the evolutionary



Algorithm 1 Deep Reinforcement Learning based Adaptive
Parameter Control for Differential Evolution (DRL-APC-DE)
Initialize trained action-making policy πθ

Generate initial population of size NP
while termination condition is not satisfied do

Select cr and f with policy πθ based on state s
for For each individual j in the Population do

Generate random integers, r1, r2, r3 ∈ (1, NP ), with
r1 ̸= r2 ̸= r3 ̸= j
for For each parameter i in individual j do

if if rand (0,1) < cr then
child x′i,j =xi,r3 + f × (xi,r1 − xi,r2)

else
child x′

i,j = xi,j

Evaluate fitness of each child j in the Population
Select individuals to population with NSGA2 selection

return best found solutions

search toward the best set of solutions. The state space consists
of 5 metrics: 1) Hole Relative Size, 2) spacing, 3) the number
of cardinality points, 4) stagcount, and 5) the remaining
budget. Hole Relative Size is used to identify the largest hole
in a set of solution [7], and is given by:

(1/d̄) max
i=1,2,...,|S|

di, (2)

where di = min(si,sj)∈S,si ̸=sj ∥F (si)− F (sj)∥1 is the l1
distance between point si ∈ S and its closest neighbor, and
d̄ the mean of the di. Spacing measures the distribution of
individuals in the Pareto front [22] with:√√√√ 1

|S| − 1

|S|∑
i=1

(
d̄− di

)2
. (3)

The number of cardinality points provides the total num-
ber of individual solutions present in the solution set, the
remaining budget indicates how many generations of search
are left in the search budget, and stagcount tracks the number
of generations without improving the hypervolume (HV). The
hypervolume metric is the volume of the objective space
dominated by the Pareto front approximation [37]. All features
have been normalized given the bounds of the initialized
solution objectives, allowing for the deployment to different
problems of different objective dimensions.

Action space A - The action space contains actions that
set parameters of the DE algorithm. Each action is associated
with possible parameter combinations that an agent can select
for the DE to generate a new generation of solutions and are
composed of different combinations of the scaling factor (f )
and crossover rate (cr) parameters. The used parameters values
that shape these actions are defined based on the recommended
values from state of the art on the DE tuning [14], [20], [26],
[36]. Table I provides an overview of the formulated action
space.

TABLE I
DEEP REINFORCEMENT LEARNING ACTION SPACE

Scaling Factor F Crossover Rate CR
Action 1 0.6 0.5
Action 2 0.6 0.7
Action 3 0.6 0.9
Action 4 0.6 1.0
Action 5 0.8 0.5
Action 6 0.8 0.7
Action 7 0.8 0.9
Action 8 0.8 1.0
Action 9 0.95 0.5

Action 10 0.95 0.7
Action 11 0.95 0.9
Action 12 0.95 1.0

State Transition Function P - A selected action is used to
parameterize the creation of a new generation of solutions by
the DE algorithm. This action is imposed on the DE algorithm
for one generation, which corresponds to one time step t of
the DRL agent, transforming state St to St+1. This transition
is assumed to satisfy the Markov property, as such that the
transition probability only depends on state St and action At

taken. In this work, the agent has no prior knowledge of
this transition function and learns it by interacting with the
environment.

Reward function R - A reward function is formulated to
train DRL to select the best actions based on the state S of the
evolutionary search. For this, we formulated a reward function
for learning to take actions that close the gap between the
initialized population and the true Pareto front, using a Gen-
erational Distance (GD) Performance metric [38]. This metric
measures the distance from solutions A =

{
a1, a2, . . . , a|A|

}
to the Pareto front Z =

{
z1, z2, . . . , z|Z|

}
, computed as:

1

|A|

 |A|∑
i=1

dpi

1/p

(4)

where di represents the Euclidean distance (p = 2) from
ai to its nearest reference point in Z. With this, our reward
function is formulated as follows:

GD =
GDinit −GDfinal

GDinit
∗ 100%, (5)

where GDinit is the GD of initialized population and
GDfinal the GD of the finally found solution set. The reward
is provided to the Deep Reinforcement Learning agent after the
last generation of evolutionary search as an episodic reward to
train the agent. This reward guides the agent in learning how
to select actions that control the evolutionary search process
to improve its final results.

C. Proximal Policy Optimization

We select the Proximal Policy Optimization (PPO) algo-
rithm [23] for learning the action-making policies. PPO is
a policy gradient DRL method that uses a probability ratio
between two policies to maximize improvement without the
risk of performance collapse. For this, it utilizes clipping



to define how far away a new policy is allowed to deviate
from the old one, preventing severe performance drops from
occurring. Given its computational inexpensiveness, ease of
implementation, and effectiveness for learning a wide range
of sequential decision-making tasks, it is regarded as one of
the most successful DRL algorithms and is widely used by
practitioners.

IV. EXPERIMENTATION

We test the performances of our proposed ‘DRL-APC-DE’
approach by evaluating its ability to solve both problems
explored during the DRL agent’s training and problems not
included in this training. The performances of our proposed
approach are compared with a grid-search tuned DE algorithm,
tuned for solving individual problems. With this, we aim
to evaluate to what extent our proposed approach can be
used as an alternative to a classical grid-search approach and
how DRL can learn a generalizable policy that can online
control parameters of different problems. In this section, we
first describe the training details of the DRL models and the
configurations of the problems used for training and testing.
Correspondingly, we describe the results of the experiments.

A. Training

We train four adaptive parameter control policies, one for
each of the first four problems of the scalable DTLZ multi-
objective problem set presented in [11]. This DTLZ is a test
suite for multi-objective problems that are scalable to any
number of objectives and decision variables. The objectives of
the selected problems are non-separable, making it impossible
to optimize them one at a time to find global optima. The
number of decision variables of the different DTLZ problems
is M + k − 1, where M is the number of objectives and k a
parameter. For DTLZ1 we use k = 5 and for DTLZ2-4 we
set k = 10. With three objectives, the number of variables is
set to 7 for DTLZ1 and 12 for DTLZ2-4.

The training was performed for 250.000 steps, similar to the
computational budget provided for a grid search procedure for
optimizing the setup of the Differential Evolution algorithm
with fixed control parameters. With this grid search, we
attempt to compute the optimum values of control parameters
by an exhaustive search with the same parameter options as
the DRL approach. In each training episode, 100 generations
of evolutionary search are performed with a population of 20
individuals. The training was performed on a Processor In-
tel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz with 8.0GB of
RAM with ten parallel environments, which took 45 minutes.
The model parameters selected for training are described in
[23]. The training traces are displayed in Figure 1, showing
the mean episodic reward obtained during the training of the
different models.

Figure 1 presents the average reward of different action-
making agents trained on the four DTLZ problems. The agents
learn a policy that learns to interact with the environment to
obtain higher rewards from the rewards function, suggesting
better convergence of solutions towards the true Pareto front.

Fig. 1. Rolling mean and std. deviation of training episode reward over time
for DTLZ1-4 training problems

In each case, the final policy obtained is better than its initial
state, which corresponds to the random action policy. From
the learning curves can also be observed that a random action-
making policy for the DTLZ1 is most effective. Further, the
policy trained for DTLZ2 managed to gain the most improve-
ment compared to the random strategy they were initialized
with. There is also a visible difference in the difficulty of the
problems, e.g., the mean reward of the initialized policy for
DTLZ1 is larger than trained policies for other algorithms.

B. Methodology of Performance Evaluation on DTLZ

We compare the DRL-based adaptive parameter control
approach for Differential Evolution (DRL-APC-DE) with the
non-adaptive, tuned Differential Evolution configuration. Both
approaches are provided with the same parameter ranges, and
an equal computational budget is used for training the DRL-
APC-DE policies and tuning the static DE algorithm with a
grid search. Due to the stochastic nature of the algorithms,
each of them is run 100 times to solve each problem multiple
times. To ensure a fair comparison, we use the same seeds,
ensuring the initial populations to be the same.

Results are compared using three performance metrics:
Hypervolume (HV), Generational Distance (GD) and Inverted
Generational Distance (IGD) [16]. The IGD metric inverts the
GD by measuring the distance of the Pareto front to the closest
point in the solution population. Given the different dimen-
sions of the optimization problems, HV is computed using
the true ideal point [0,0,0] as the reference, and the GD and
IGD are computed with the true Pareto fronts of the problems.
Lower values are better for each of the performance metrics.
Correspondingly, the differences of means (i.e., arithmetical
averages) of the performance metrics of the two algorithms
are tested for statistical significance with the Wilcoxon signed-
rank test (p < .05) [32]. The cells in the results tables are
shaded gray when the difference in mean results is statistically
significant.



C. Results of DRL-APC-DE Tuned and Applied on a Single
Problem

As a first experiment, we evaluate the results of the grid-
search tuned Differential Evolution with the DRL-APC-DE
algorithm trained on the same problem. The results of the
experiment are presented in Table II.

It can be observed that the DRL-based approach reaches
competitive performance for most of the objectives, and for
some problems and performance metrics, it outperforms the
tuned DE approach. Comparing the performance of GD, the
metric used for the training and tuning of the algorithms, we
find that the proposed DRL-APC-DE approach is on average
better in converging to the true Pareto front of the nonseparable
objective functions of DTLZ1 and 3, while it reaches similar
distances towards the true Pareto front for DTLZ2 and 4.
This also holds for the IGD metric for DTLZ1, 2, and 4,
finding similar distances between the true Pareto front and the
found solutions. For DTLZ3 we observe lower HV and IGD
values for the tuned DE, but lower GD for the DRL-APC-DE
approach.

It demonstrates the successful application of our approach
to optimize its objective to decrease the distance towards the
true Pareto front (GD), which is inadvertently reached by
sacrificing the performance metrics that were not rewarded
in training. It is a common challenge of applying RL, which
could be mitigated by future work on multi-objective reward
function that would result in more balanced search behavior.

TABLE II
PERFORMANCE OF DE AND DRL-APC-DE, TUNED AND TRAINED ON

THE SAME PROBLEM

Tuned DE (DTLZ1) DRL-APC-DE (DTLZ1)
DTLZ1 HV GD IGD HV GD IGD
mean 9.75E+01 5.27 4.00 9.55E+01 5.21 3.75
min 6.45E-01 1.14 0.92 5.50E-01 1.18 0.92
max 2.12E+03 21.16 16.18 3.06E+03 29.38 19.97
std 2.71E+02 3.85 2.91 2.75E+02 4.31 2.87

Tuned DE (DTLZ2) DRL-APC-DE (DTLZ2)
DTLZ2 HV GD IGD HV GD IGD
mean 0.41 0.06 0.17 0.42 0.06 0.17
min 0.34 0.04 0.14 0.32 0.05 0.14
max 0.48 0.09 0.20 0.50 0.09 0.21
std 0.03 0.01 0.01 0.03 0.01 0.01

Tuned DE (DTLZ3) DRL-APC-DE (DTLZ3)
DTLZ3 HV GD IGD HV GD IGD
mean 2.22E+05 168.41 54.26 3.18E+05 109.30 73.50
min 2.18E-27 43.99 9.58 2.05E-12 18.41 0.11
max 3.89E+06 240.42 206.22 1.84E+06 182.65 147.47
std 6.21E+05 33.52 48.92 3.17E+05 32.94 25.03

Tuned DE (DTLZ4) DRL-APC-DE (DTLZ4)
DTLZ4 HV GD IGD HV GD IGD
mean 0.33 0.04 0.18 0.32 0.05 0.19
min 0.00 0.02 0.14 0.00 0.02 0.14
max 0.46 0.08 0.54 0.47 0.09 0.35
std 0.12 0.01 0.07 0.14 0.02 0.05

D. Results of DRL-APC-DE Applied to Other Problems

In the second experiment, we aim to test how well a trained
DRL policy can be used for adaptive control of parameter
values to solve other MOOP problems (i.e., problems that are
not presented to it during the training). During the training of
DRL models, we found that the model trained on the DTLZ2

problem achieves the largest improvements when compared
to the random decision-making strategy the learning was
initialized with. Therefore, to evaluate the ability to solve
unseen problems, we evaluate the performance of this model
(the one trained on DTLZ2) to solve DTLZ1, 3, and 4. The
methodology for comparison is the same as for the previous
experiment. The results of this experiment are shown in Table
III.

TABLE III
COMPARISON OF DE TUNED BY GRID-SEARCH ON THE PROBLEM VS.

DRL-APC-DE TRAINED ON THE DIFFERENT DTLZ2 PROBLEM

Tuned DE (DTLZ1) DRL-APC-DE (DTLZ2)
DTLZ1 HV GD IGD HV GD IGD
mean 9.75E+01 5.27 4.00 6.32E+01 4.42 3.38
min 6.45E-01 1.14 0.92 5.50E-01 1.18 0.92
max 2.12E+03 21.16 16.18 6.24E+02 15.82 13.12
std 2.71E+02 3.85 2.91 1.35E+02 3.61 2.75

Tuned DE (DTLZ3) DRL-APC-DE (DTLZ2)
DTLZ3 HV GD IGD HV GD IGD
mean 2.22E+05 168.41 54.26 2.42E+05 101.62 64.53
min 2.18E-27 43.99 9.58 1.78E-11 18.41 10.24
max 3.89E+06 240.42 206.22 1.84E+06 172.56 118.42
std 6.21E+05 33.52 48.92 2.71E+05 32.46 22.61

Tuned DE (DTLZ4) DRL-APC-DE (DTLZ2)
DTLZ4 HV GD IGD HV GD IGD
mean 0.33 0.04 0.18 0.33 0.05 0.18
min 0.00 0.02 0.14 0.00 0.02 0.14
max 0.46 0.08 0.54 0.45 0.08 0.34
std 0.12 0.01 0.07 0.12 0.01 0.04

The proposed DRL-APC-DE approach, trained with only
the DTLZ2 problem, can adaptively control parameter values
used in the search operators to solve problems not presented
to it during training. Comparing with a DE algorithm tuned
with grid search, we observe that DRL-APC-DE is better for
DTLZ1 and 3 and reaches similar performances for DTLZ4.
Interestingly, the scores achieved by DRL-APC-DE trained on
DTLZ2 and applied to DTLZ1 and 3 are better than those
achieved by DRL-APC-DE trained on the same problem or
those generated by the grid-search tuned DE. This demon-
strates that it is possible to learn a meaningful search control
system that is not problem-specific. From this, we identify
the potential of Deep Reinforcement Learning for training an
adaptive parameter control policy to control the parameter
values of evolutionary algorithms for solving MOOP. This
potentially reduces the need for expensive experimentation for
the successful deployment of evolutionary search.

V. CONCLUSION AND FUTURE WORK

In this work we propose DRL-APC-DE, a Deep Reinforce-
ment Learning based approach for online parameter control of
Differential Evolution for solving multi-objective optimization
problems. With this, we aim to learn to select parameters used
in each generation of evolutionary search to generate new
solutions for improving the overall search performance and
efficiency. The approach can be considered an alternative to
classical approaches (e.g., grid search) that tune evolutionary
algorithms before deployment or can be used as an alternative
for (self-) adaptive parameter control methods for controlling
parameters during the evolutionary search.



The proposed method has been compared with a Differential
Evolution that was tuned with a grid search. The Deep
Reinforcement Learning and the tuned Differential Evolution
approach were provided with an equal computational budget
for the training and tuning. Results indicate that the proposed
method compares competitively with the tuned Differential
Evolution algorithm.

Subsequently, we applied the adaptive parameter control
policy to control the parameters of problems not presented
during its training. Results show that DRL-APC-DE can out-
perform the tuned approach of the static Differential Evolution
algorithm, indicating that the proposed approach can learn
shared characteristics of a class of problems and strategies
to control the search process efficiently. In turn, this may
significantly impact the reduction or elimination of the need to
perform testing and tuning procedures per problem or instance.

Given that our approach is formulated problem- and
algorithm-independent, we want future work to explore if our
approach can be used to adaptively control parameters of other
Evolutionary Algorithms to solve more complex problems.
Further, we are interested in controlling more parameters.
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