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ABSTRACT
Feature importance is an approach that helps to explain machine
learning model predictions. It works through assigning importance
scores to input features of a particular model. Different techniques
exist to derive these scores, with widely varying underlying as-
sumptions of what importance means. Little research has been
done to verify whether these assumptions match the expectations
of the target user, which is imperative to ensure that feature impor-
tance values are not misinterpreted. In this work, we explore data
scientists’ mental models of (local) feature importance and com-
pare these with the conceptual models of the techniques. We first
identify several properties of local feature importance techniques
that could potentially lead to misinterpretations. Subsequently, we
explore the expectations data scientists have about local feature
importance through an exploratory (qualitative and quantitative)
survey of 34 data scientists in industry. We compare the identified
expectations to the theory and assumptions behind the techniques
and find that the two are not (always) in agreement.
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1 INTRODUCTION
As machine learning is increasingly used for high-stakes decision
making, it is essential the models we built can be held up to scrutiny.
To this end, the field of eXplainable AI (XAI) has introduced various
techniques that aim to support understanding the decisions of com-
plex machine learning models. Many of these techniques fall under
the umbrella of ‘feature importance’: techniques that calculate a
scalar value for each feature to provide insight into the importance
of that feature towards either the overall behavior of the machine
learning model (i.e., global) or an individual prediction (i.e., local).
In this work, we focus specifically on local feature importance.

Local feature importance techniques have seen widespread adop-
tion, popularity, and success in solving real world problems [8, 26].
However, a systematic way to evaluate and compare these methods
remains elusive, as the qualities of an adequate explanation of a
machine learning model are inherently subjective. Different feature
importance techniques make different assumptions about the prop-
erties that a good explanation should have, which can cause them
to be inconsistent or even contradictory [10]. In addition, recent
work has critiqued many of the existing techniques on various
accounts: being misleading [12], lacking robustness [2], and not
enabling action [23].

In this work, we explore the extent towhich experts’ assumptions
about local feature importance match existing techniques. Specif-
ically, our main contributions are: 1) a comprehensive overview
of important properties affecting the interpretation of feature im-
portance; 2) a qualitative characterization of how data scientists
in industry define feature importance; 3) a quantitative survey ex-
ploring the expectations of experts of the identified properties; and
4) a set of recommendations for XAI researchers to better match
feature importance techniques with expectations of data scientists.
While we found most identified properties are expected, some ex-
pectations were conflicting, or varied a lot amongst participants.
This warrants careful consideration.

The remainder of this paper is structured as follows. We first
describe related work (Section 2 and 3). In Section 4, we lay out
several potentially misleading properties of local feature impor-
tance techniques. Section 5 details our survey design. Section 6 and
Section 7 cover the results, followed by a discussion (Section 8) and
concluding remarks (Section 9).
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2 LOCAL FEATURE IMPORTANCE
We define feature importance as any quantitative assignment of
importance or influence to the features used by a machine learning
model. There are two primary ways in which feature importance
is construed. Global feature importance techniques attribute im-
portance to a feature in relation to the model or its predictions as
a whole. Local feature importance techniques, on the other hand,
produce explanations that pertain to the prediction of a single data
point. The focus of this paper is primarily on local feature impor-
tance. We distinguish between two types of techniques to compute
these values: gradient-based and ablation-based feature importance.

Gradient-based. This type of feature importance techniques as-
sume that features are important when small changes in feature
value result in a (relatively) big change in model prediction. As
such, gradient-based feature importance values can be interpreted
in a similar fashion as the coefficients in linear regression models,
which are widely considered to be interpretable (global) explana-
tions [13, 35]. We discuss three examples of influential gradient-
based techniques.

Baehrens et al. [3] show that an exact derivative (i.e., gradient) of
a model can be used as feature importance. As an exact derivative
may not always exist, they use a Parzen window surrogate model to
mimic the reference model, and use the derivative of that surrogate
model to generate feature importance vectors.

Next, LIME [30] is a very popular technique that approximates
the gradient by training a local interpretable surrogate model on
generated samples, weighted by the inverse distance to the instance
to be explained. If a linear regression surrogate model is used, the
coefficients of that model approximate the derivative of the model.

Finally, saliency maps are a gradient-based explanation tech-
nique specifically targeted to neural networks trained on image
data. These techniques aim to show which pixels in the input image
were most relevant for the prediction, by computing the gradi-
ent of the neural network directly using back propagation (e.g.,
Grad-CAM [32]).

Ablation-based. These techniques assign feature importance by
comparing model predictions when a feature value is present to
when it is absent (i.e., ablation). It is generally not possible to simply
remove a feature value from an existing model without changing
the model’s parameters. As such, ablation-based feature importance
approaches require a method to simulate absence of a feature value.

Shapley-value based approaches [21, 25, 33] pose the distribution
of feature importance as a cooperative game, where each feature
value is a player. In order to capture the influence of interactions
between features, Shapley-value based approaches consider how
the model prediction changes for each subset, or ‘coalition’, in
the power set of features. Next, Shapley-value based approaches
compute the change in prediction, or ‘value’ of each subset by
averaging across all possible feature values of the features that are
not part of the subset under consideration.

Zeiler and Fergus [36] present another ablation-based impor-
tance technique specifically for image classification. Here, impor-
tance is computed based on the extent to which iteratively masking
input pixels with a gray value changes the prediction output.

Gradient-based and ablation-based approaches seem similar:
both ascribe importance of a feature value based on how themodel’s

prediction changeswhen the feature value changes. However, where
gradient-based approaches consider the rate of change in the output,
ablation-based techniques consider the magnitude of the change.
Consider the example shown in Figure 1, which shows the predicted
outcome f (x) given a value x for a feature. The base rate denotes
the average outcome over all values of x . For x = 3.5, we see a
large difference of f (x) with the base rate, but a small gradient (i.e.,
slope); for x = 6 this pattern is reversed. Here we see that a small
perturbation changes the prediction significantly, whereas removal
of the feature has almost no effect. As we describe in Section 4,
this difference results in a very different interpretation of feature
importance.

Figure 1: Gradient-based compared to ablation-based fea-
ture importance. Two points highlight for which the feature
importance scores of both techniques vary widely.

3 RELATEDWORK
Our study is closely related to recent work on mental models in XAI.
Additionally, our exposition of potentially misleading properties is
in line with recent critiques of local feature importance approaches.

3.1 Mental Models of Explanations
In the context of human-computer interaction, a mental model is
a user’s belief about how the target system works [22]. Mental
models are typically contrasted with a system’s conceptual model:
a representation of the system as intended by the designer [29].
Erroneous mental models can lead to behavior with unintended
consequences [29]. In XAI, explanations are often viewed as tools
to increase the accuracy of a user’s mental model of the machine
learning model [14, 22]. In the present paper, we are concerned with
mental models of the explanation technique itself. If a user’s mental
model of an explanation technique is inaccurate, this can result in
misuse or misinterpretations. For example, in a recent evaluation
of explanation tools, Kaur et al. [20] find that practitioners who
have (partially) accurate models of an explanation tool make more
careful decisions compared to those who take the visualizations at
face value. We build upon these findings and set out to characterize
a more detailed mental model of local feature importance.
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3.2 Problems with Feature Importance
Techniques

Several scholars have critically examined the underlying assump-
tions and intended interpretation of local feature importance tech-
niques. A recurring topic of interest is the faithfulness of expla-
nations: the extent to which the explanation approximates the
prediction of the black-box model [31]. One of the main assump-
tions of LIME is that, even if a model is complex globally, it might
be possible to estimate the model’s gradients locally. However, even
locally, it may not be possible to accurately estimate the gradients.
Additionally, Lipton [24] remarks that for differentiable models
(e.g., neural networks) the added value of LIME over raw gradients
is unclear.

Another regularly discussed issue is the ambiguity of axiomatic
‘desirable’ properties of feature importance, which can lack proper
justification [24] and contextualization [15]. For example, Kumar
et al. [23] question the justification of the additivity constraint
imposed by SHAP. Regarding contextualization, XAI techniques
are typically developed without a specific use case in mind, even
though the effectiveness or usability of a technique likely varies
across scenarios [11, 13]. For example, several studies have shown
a limited utility of using local feature importance for improving
accuracy in decision-making by domain experts [19, 34], whereas
other studies show that systems that rely on feature importance
can lead to novel insights [16], faster decision-making [19], and
effective feature selection [1].

When feature importance scores are misinterpreted, this could
lead towrong conclusions. For example, a data scientist may (wrongly)
conclude that a high feature importance score retrieved from an
ablation-based technique indicates that increasing the feature value
will increase the model’s score. In this paper, we examine to what
extent several of such possibly misleading properties of local feature
importance scores match with data scientists’ expectations.

4 PROPERTIES OF LOCAL FEATURE
IMPORTANCE

Based on our survey of related work, we provide an overview of
several properties of local feature importance values that could
influence how they can be (mis)interpreted. These properties will
provide the basis for our survey.

As there are many ways in which feature importance can be
characterized, our overview is inevitably non-exhaustive. The dis-
cussed properties were selected based on the extent to which they
are properties of feature importance scores in absence of a spe-
cific application. For example, whereas faithfulness is an important
property of explanations, the concept is ill-defined and cannot be
assessed in absence of a specific machine learning model. Similarly,
the usability of feature importance scores can only be assessed in
relation to a specific task.

P1. Actionability. Feature importance computed through gradient-
based approaches can be regarded as an approximation of the de-
rivative of the model’s predicted score over the feature. If the ap-
proximation is sufficiently accurate (locally), gradient-based feature

importance can be interpreted as (locally) actionable1: if a feature
is important, an action (i.e., a small change in feature value) will
affect the model’s score [20]. The same does not hold for ablation-
based approaches. For example, a high SHAP value implies that, on
average, the model’s score would have been different if the instance
would have had another feature value. However, presented as an
average, it does not indicate how the feature value should have been
different - there could have been one specific alternative feature
value with a very different score or an entire range of feature values
with varying scores.

P2. Causality. “Correlation does not imply causation.” This expres-
sion is often used to warn data analysts of misinterpreting statistical
correlations as causal relationships. Most machine learning mod-
els are statistical models. While (local) feature importance values
may help to formulate new hypotheses, they should never be in-
terpreted directly as causal relationships between features and the
target variable. Clarification of the non-causal nature of feature
importance is especially important when the explanations are used
as decision-support for less experienced users.

P3. Stability. Several local feature importance techniques rely on
randomly sampled feature value perturbations. Additionally, expla-
nations may be sensitive to the choice of parameters. As such, the
resulting feature importance values may differ across subsequent
runs of the explanation algorithm [37]. We refer this as the stability
of the explanation. Instability may cause users to be reluctant to
use explanation methods [17].

Instability can be mitigated to some extent by increasing the
number of samples [12], but this depends on the dimensionality of
the data and affects running time. Regardless, for complex models,
feature importance values will always constitute an approximation
of the model’s underlying prediction-generating mechanism. Con-
sequently, there are usually various alternative (and equally valid)
explanations for the same prediction [9]. However, feature impor-
tance is typically presented as a single value per feature, which may
disguise the inherent uncertainties in how the values are derived
[15].

P4. Robustness. The robustness of an explanation technique con-
siders the similarity of explanations for similar instances [2]. This
means that if feature values are perturbed slightly, the explanation
is not changed unless the perturbations also strongly change the
prediction. The property is closely related to stability. The main dif-
ference is that stability considers sensitivity to parameters, whereas
robustness considers sensitivity to the input. Given their reliance on
input perturbations for computing feature importance, it is perhaps
unsurprising that if we rely on a relatively small number of pertur-
bations, both SHAP and LIME can yield varying and inconsistent
explanations for more complex models [2].

More generally, as the complexity of the model increases, it be-
comes more challenging to determine whether variations in feature
importance should be attributed to the erratic behavior of the expla-
nation method or the underlying machine learning model. Should

1Note we use the definition of actionable as introduced by Kaur et al. [20]. In different
contexts actionability may refer to other things, such as practical usefulness, or (in
counterfactual explanations) the practical feasibility of changing a feature value for
an individual.
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we expect explanations to be robust at all? If the purpose of an
explanation is to understand the underlying data, robustness may
be desirable, as we are more interested in consistent patterns. How-
ever, if the purpose is model validation, ‘robust’ explanations may
disguise unexpected model behavior.

P5. Selectivity. Research from social sciences shows that people
do not expect explanations to provide a complete account of all
causes for an event. Instead, people select a subset of causes for the
explanation they believe to be the most important [28]. A feature
importance method can be selective by limiting the explanation to
themost important features (where the exactmeaning of ‘important’
depends on the method). For example, common implementations
of LIME use L1 regularization by default, to reduce the number of
features in the explanation [30]. In contrast, SHAP explanations will
include all features in the final explanation. Importantly, selectivity
can be in tension with the faithfulness of an explanation: a very
simple explanation is not able to fully capture the complexity of
the model’s decision logic.

P6. Additivity. Lundberg and Lee [25] introduce the concept of
additive feature attribution methods as a set of feature importance
techniques that can be interpreted as a decomposition of themodel’s
predicted score over all features, resulting in one value per feature.
Additivity can potentially lead to misleading interpretations. If
features have a strong statistical relationship in the data set, it is
unclear how feature importance of individual features should be
interpreted. Similarly, features may strongly interact with each
other in the machine learning model. For example, how should
we distribute importance in an additive fashion if the model pre-
sumes an ‘XOR’ relationship between two features? As remarked
by Hancox-Li and Kumar [15], users may interpret feature impor-
tance to represent solely univariate effects, which is fundamentally
misleading when a non-additive model is explained. Again, we see
that summarizing complex model behavior in a few numbers may
be an oversimplification.

P7. Proportionality. We consider a feature importance technique
to be proportional if the sum of feature importance values is pro-
portional to the output of the original model. To illustrate, consider
the relation between feature importance vectors from LIME and
SHAP and the predicted score of the model:

Gradient-based (e.g., LIME): ŷ = α +
∑
i

βiXi (a)

Ablation-based (e.g., SHAP): ŷ = ϵ +
∑
i
ϕi (b)

(1)

Because the base rate ϵ of Shapley values is constant, the sum of
Shapley feature importance values ϕ is directly proportional to the
original model prediction score ŷ (with offset ϵ). However, for LIME,
the feature importance values first need to be multiplied by the
feature values, and then added to the intercept α that is different
for each instance. As an (arguably counter-intuitive) consequence,
features tend to have low importance when the model is very cer-
tain, and features tend to be more important when the model is
very uncertain (notable in Figure 1).

P8. SamplingDistribution. Various feature importance techniques
rely on perturbing feature values, which requires a predefined dis-
tribution of possible feature values. We can distinguish two types
of sampling distributions [23] with a different underlying intuition
that affects how the resulting feature importance scores can be
interpreted.

Interventional distributions allow for sampling across all pos-
sible feature values for each feature independently, irrespective
of whether the resulting combination of feature values is likely
to occur in the data. Chen et al. [7] consider an interventional
approach appropriate when the goal is to understand the model
independently of the data, as a mathematical function that maps
input to output. That is, if we view the model as a mathematical
function that maps an input to output, computing importance based
on out-of-distribution samples seems acceptable. However, when
importance is used to identify relationships that hold true in the
data, interventional distributions can be misleading [18]. In partic-
ular, this can result in out-of-distribution samples. In these cases,
Hooker et al. [18] propose to sample feature values from distribu-
tions that are conditional on the remaining features. As a result, any
perturbed instance is consistent with the original data distribution.

These different approaches towards sampling reveal fundamen-
tally different views of what it is that feature importance explains.
Conditional distributions consider the informativeness of the fea-
ture, given the structure of the training data, whereas interventional
distributions quantify the sensitivity of the model to a feature, re-
gardless of the underlying data.

5 METHODOLOGY
Our goal is to explore data scientists’ mental models of (local)
feature importance values and their implications for existing tech-
niques. To this end, we pose the following research questions:

RQ1 How do data scientists define feature importance?
RQ2 What are the expectations of data scientists with respect

to properties of local feature importance?

To answer our research questions, we conducted an online survey
amongst data science professionals, using an exploratory mixed-
methods survey approach.

5.1 Participants
We recruited participants using snowball and convenience sam-
pling strategies. This means we invited industry acquaintances to
participate in our survey and asked them to suggest and forward the
survey to colleagues. The study was approved by our institution’s
Ethical Review Board (ERB). Participants were not compensated
for their contribution.

Each participant was presented with a consent form detailing the
purpose and process of the study. After giving consent, participants
were asked to supply basic demographic information (age, country
of residence, gender identity) as well as their current job title and
years of experience in the field of data science. 34 participants filled
out the survey. Details about participant sample (demographics,
role, experience in data science, and prior familiarity with feature
importance techniques) are shown in Table 1.
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Table 1: Summary of the participant demographics.

Type Answers (count)

Gender Male (20), Female (12), Prefer not to disclose (2), Prefer
to self-describe (0)

Age

25 30 35 40 45 50 55
0

5

Location Netherlands (24), United States (2), Prefer not to dis-
close (2), Colombia (1), India (1), Singapore (1), Spain
(1), Switzerland (1), United Kingdom (1)

Role Data scientist (18), (Data science) researcher (6), Soft-
ware/data/AI engineer (3), PhD candidate (3), (Data sci-
ence) consultancy (2), AVP (Assistant Vice President)
(1), Prefer not to disclose (1)

Data science
experience
(years) 0 5 10 15 20

0

5

Familiarity Linear regression coefficients (30), Random Forest
feature importance (29), SHAP/Shapley values (23),
LIME (23), Permutation importance (18), Saliencymaps
(e.g., GradCAM) (11), treeinterpreter (9), Anchors (2),
DeepLift (1)

5.2 Survey
We set up an online survey that took between 20 and 30 minutes
to complete. The survey started with the demographics questions
as mentioned earlier. The remainder consisted of three parts (more
detail in the supplemental material):

Feature Importance. To answer RQ1, participants were asked open
questions to explain their interpretation of feature importance, (Q1)
in the context of machine learning, (Q2) for a (trained) machine
learning model, and (Q3) for an individual prediction. Additionally,
participants were asked to express their opinion on the value of
feature importance (Q4) and to describe a specific use case in which
feature importance may support a process or workflow (Q5).

Expectations of Properties. To answerRQ2, participants were asked
to indicate their expectations of local feature importance.We showed
them five sets of statements (18 in total), each corresponding to
the properties identified in Section 4. These statements were made
more concrete through a running example about a medical model
predicting risk of complications, based on (unspecified) medicine
levels. Next, we asked participants to what extent they agreed with
these statements, in the form of a 5-point Likert scale, ranging
from ‘strongly disagree’ to ‘strongly agree’. Additionally, partici-
pants could provide optional textual comments to motivate and
explain their answer.

The survey items were derived by applying each of the properties
to a specific example. Face validity of the items was established by
piloting the survey with two data scientists. To avoid primacy bias,
we repeated each binary statement (e.g., either changes a little, or
changed a lot) with reverse wording in the survey, and randomized
the order of these two options. Repetition also enables us to verify
the internal validity of the items, as we expect them to be opposing.

Familiarity. In the final part of the survey, participants were first
asked to list all feature importance techniques they have used in
their work. Once they had filled this in, they were provided with
a list of specific techniques and asked to indicate which of these
techniques they were familiar with.

5.3 Data Analysis
Qualitative Data Analysis. We performed a thematic analysis [4, 6]
of the participants’ textual comments to identify which topics and
aspects were reoccurring. The analysis consisted of an iterative
qualitative coding process, characterized by alternate phases of
coding, discussing and identifying (sub)-themes. Initially, the first
three authors read and re-read the comments in order to identify
potential themes. We used both inductive and deductive reasoning,
the latter based on the identified properties of local feature impor-
tance methods. The second level of analysis involved reviewing the
initial codes and identifying overarching elements. This process
was repeated another two times, refining codes and themes.

Quantitative Data Analysis. We globally explored patterns by vi-
sualizing the results using divergent stacked bar charts, as shown
throughout Section 7. Charts are annotated with p-values computed
using the Mann–Whitney U test, chosen for its suitability to low
frequency independent ordinal samples (e.g., Likert). We compare
the distribution of answers against only-neutral answers, and re-
port if the answers are skewed towards agreement or disagreement.
We use significance level p < 0.05 (indicated with *) and correct for
multiple comparisons using the Bonferroni method withm = 18,
rejecting the null hypothesis at p < 0.05

18 (indicated with **).

6 QUALITATIVE RESULTS
The thematic analysis of five questions yielded 10 themes, summa-
rized in Table 2. Below, we discuss the definition of each theme, and
the codes that belong to it. The first three themes concern the types
of perspectives that our participants have about feature importance,
giving us insights into their mental models. The latter themes (T4-
T10) reflect the pros and cons of feature importance identified by
our participants. One of our participants did not answer the open
questions, leaving 33 responses for the qualitative analysis.

T1. Locality. The theme of locality focuses around the questions
of whether our participants describe feature importance largely as
a local technique, a global technique, or whether it concerns models
in general. Most of the participants ascribed to a single perspective,
five participants mentioned aspects of two different perspectives.

Participants who interpreted feature importance as mainly local
(9 of 33), described feature importance from the perspective of a sin-
gle prediction. For example, participant 17 mentioned “[It measures]
how much a feature contributes to a prediction.” and participant 23
wrote: “[It] measures how much of the output prediction is explained
by a given feature.”

Participants who think of feature importance as mostly global
(20 of 33) discussed the technique as applied to ‘a model’. Examples
of participant answers include “It’s a scoring model that scores the
importance/impact of each feature on the outcomes of a ML model.”
and “How much influence and to what degree every feature has in
the decision process of the machine learning model.”
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Table 2: Summary of identified themes, which questions the themes applied to, the prevalence of the themes, and a description.

Theme Q1 Q2 Q3 Q4 Q5 Prev. Description

T1. Locality × 100% FI explains a prediction, a model, or any model.
T2. Explanandum × × × 87.9% FI explains quality, informativeness, or predictions.
T3. Underlying mechanism × × × 48.5% FI is a gradient or ablation-based method.
T4. Understanding × × 72.7% FI helps to understand a model or data.
T5. Feature selection × × 33.3% FI enables feature selection.
T6. Debugging × × 42.4% FI enables debugging.
T7. Trust and fairness × × 27.3% FI enables identifying bias.
T8. Decision-making × × 24.2% FI supports decision-making.
T9. Improve performance × × 12.2% FI enables improving performance.
T10. Downsides × × 21.2% Downsides of feature importance (w.r.t. properties in Section 4).

Finally, there is the even broader perspective of the importance of
a feature towards any possible model for the data. In these answers
(9 of 33), the words ‘prediction’ and ‘model’ are typically not present
at all. For example, participant 13 writes: “Feature importance is the
contribution of each feature to modeling decisions across an adequate
sample of data.”

T2. Explanandum. This theme describes what our participants be-
lieve that a feature importance score captures. It contains two main
categories. The first group of participants supposes that feature
importance explains the quality of the model (12 out of 33 partici-
pants). The second group is of the opinion that feature importance
explains the predictions of the model (27 out of 33 participants).
These two groups are not mutually exclusive, some participants’
remarks contained elements of both categories (6 out of 33).

For the participants discussing feature importance as a measure
of quality, terms we categorize to indicate model quality include
informativeness, accuracy and predictive power. For example, an-
swering Q2 on what global feature importance means to them,
participant 10 mentions: “That this feature in general is quite infor-
mative for the machine learning model.” Regarding the influence
and predictive power of a feature, participant 18 describes feature
importance as “[...] how influential a feature is within the context
of a machine learning problem. In other words, if the feature were to
not be used, how big is the impact on the predictive performance for
machine learning models within the problem context?”

The group that views feature importance as a reflection of a
prediction uses words such as outcome, decision boundary, model
input and output on top of the term prediction. For example, partic-
ipant 25 writes that “It means that the feature is important in terms
of the data structure [...] that influences the outcome, or it is highly
correlated with the outcome.” and participant 27 writes “Feature im-
portance expresses the importance of a feature in the relation between
input and output.”

T3. Underlying mechanism. This theme describes which of the
two identifiedmechanisms in Section 2 the users’ descriptionmatches.
Only a part of participants’ answers (16 of 33) clearly indicated
properties related to this theme.

A gradient-based perspective was indicated by mentioning per-
mutations or small changes to the input data. This perspective was
held by 8 of our 33 participants. Participant 30 describes feature
importance as “Perturbing the value of this feature just a little bit,

heavily influences the outcome.” and participant 34 writes “Feature
importance says something about the impact of a (changing) feature
on the outcome of a prediction model in machine learning.”

An ablation-based perspective was indicated by mentioning
model performance when leaving out a feature. 9 of our 33 par-
ticipants used words that indicated this perspective. For example,
participant 4 mentions that “Without the feature, the training metric
is worse.” and participant 14 writes that feature importance is a “[...]
indicate how much impact input variables have at the prediction of
the target variable. I.e. if we remove the input, how will the prediction
error increase?”

T4-9. Purpose. We bundled the six themes that cover the purpose
of feature importance: Understanding, Feature selection, Debugging,
Trust and fairness, Decision-making and Improve model performance.
These themes are in line with motivations for XAI described in
the literature, such as social acceptance, managing social interac-
tions, detecting faulty model behavior (debugging, auditing), and
acquiring new knowledge [5]. The majority of our participants
was enthusiastic about feature importance, describing its perceived
value and various use cases for questions 4 and 5.

The first use case is to apply feature importance for Understand-
ing a model or data (T4). This theme was mentioned by 24 partici-
pants (73%). Categories under Understanding include explainability,
justifying predictions, and discover relationships. For example, par-
ticipant 21 writes “It can provide valuable insights into the working
of your model.”

The second sub-theme regarding purpose is Feature selection (T5).
This theme was brought up by 11 of our participants (33%). Some
keywords used by our participants include removing unwanted
features, removing redundant features, and the term feature se-
lection itself. Participant 12 writes that “If features are considered
discriminatory they can be excluded from the model input. If features
seem logical they may be used to better understand the dataset.”

The third purpose is for Debugging (T6), which includes specific
investigations upon the model based on the Understanding from
T4. For example, it includes the identification of undesirable or
unexpected behavior, the validation of the model, and understand-
ing or preventing failure. This theme was introduced by 14 of our
participants (42%). Participant 11 described: “I have used feature
importance (gradcam) in an image classification task, to see if the
model was activating on the "right" parts of the image (so debugging).”
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The fourth sub-theme for purpose is to use feature importance for
Trust and fairness (T7). This is a broader theme, and includes using
feature importance to increase trust in the model and to identify
unfairness. 9 participants introduced purposes in this category
(27%). Participant 16 predicts: “[...] feature importance will become
part of the normal process to make sure the models are fair and does
not have biases affecting customers”

The fifth use case identified by our participants is to support
Decision-making (T8). This theme was mentioned by 8 of our par-
ticipants (24%). Participant 22 writes: “As an end user, it can help to
decide how much trust to place in the outcome of a machine learning
model and how to act based on that outcome.” and adds how it can
speed up the decision-making process: “[...] feature importance can
be used to guide an investigation towards the factors that the model
found important. This may save time, because the investigation can
be targeted from the start.”

The final identified purpose of feature importance is to Improve
model performance (T9). This theme includes performance in the
sense of accuracy, energy efficiency and speed. Improving perfor-
mance was brought up by 4 of our participants (12%). For example,
participant 23 writes: “It can also help identify which features can
be removed without affecting performance making the model more
time/energy efficient.”

T10. Downsides. The final theme contains the downsides of fea-
ture importance as identified by our participants. Our participants
were positive about feature importance techniques, but seven partic-
ipants also reported some doubts. In general, the downsides regard
the incompleteness of (the definition of) feature importance: it is
unclear what score is ‘good’, it does not explain the why of a score,
and it requires domain knowledge to interpret. Furthermore, one
participant noted that they did not understand how to interpret
local feature importance scores. Finally, one participant mentioned
that feature importance scores can be misleading. Participant 4 was
rather critical: “I have yet to hear about a magic number that properly
captures what the actual effect of a feature is. In my mind, reality is
much more nuanced. Assigning a single number to ‘importance’ is
bound to lead to a misinterpretation somewhere down the line.”

Summary
To answer RQ1, our qualitative analysis showed that the way data
scientists define feature importance varies widely. Without context,

the majority of our participants (20 of 33) see feature importance
as a global technique (T1). Participants also mentioned various
explanandums (T2): they argued feature importance explains the
quality, informativeness and predictions of the model (each have
different semantics). Furthermore, in T3 we found that, for those
participants that indicated assumptions of an underlying mecha-
nisms, these perspectives were held equally, with 8 participants for
gradient-based, and 9 for ablation-based. Finally, our participants
indicated aspects that made feature importance valuable (T4-9),
as well as downsides of the techniques (T10), especially that it is
incomplete. A main problem is that there are no guidelines on what
feature importance scores are ‘good’ or ‘bad’.

7 QUANTITATIVE RESULTS
We now turn to the quantitative results. For each of the properties
identified in Section 4, participants were presented with a set of
statements and asked to indicate their level of agreement. In order
to elicit expectations in absence of specific implementation details,
the presented examples were relatively abstract. As a result, several
participants reported it was challenging to indicate their agree-
ment. Some remarked the interpretation depends on which model
is explained, or that the questions were not sufficiently specific.

P1. Actionability. The six statements related to actionability evoked
the most neutral answers out of all questions (Figure 2). Specifically,
65% of all participants answered question 3 and 4 with neutral, and
for the last two questions that goes up to 74%.

The first and second questions are opposites. Although the re-
sults of the first question are not significantly different from neutral,
for the second question we see a slight tendency towards agreement
(p = 0.019∗). This indicates that some experts expect feature impor-
tance to be actionable: it should indicate how instance perturbations
will affect the model’s score. This corresponds to a gradient-based
rather than ablation-based interpretation of feature importance.

For the other four statements, there was no statistically signif-
icant (dis)agreement. Participant 19 clarified: “3/4/5/6 are obvious,
you just do not know.” and participant 34 said “5/6: same reasoning
as 3/4, we don’t know if the effect is positive or negative.” This is
interesting, as existing gradient-based techniques such as LIME
actually do indicate the direction of change based on whether the
feature importance value is positive or negative.

1.

p=0.146

p=0.365

p=0.106

p=0.268

p=0.019*

p=0.402

2.

3.

4.

5.

6.

Figure 2: Is feature importance actionable?
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1.

2. p=0.503

p=7.27e-07**

3. p=0.683

Figure 3: Is feature importance not causal?

P2. Causality. This set of questions (Figure 3) includes statements
on whether feature importance explains a specific model, the infor-
mativeness of a feature in general, or the real world phenomenon.
Unintentionally, this corresponds quite well with the explanandum
theme (T3) from the qualitative analysis.

Overall, most participants (76%) expect that feature importance
reflects the usage of a model to make predictions, as expected this
corresponds well with currently available techniques. Alarmingly,
there were also quite a few participants (44%) that expected feature
importance to reflect how relevant the feature is to the real world
phenomenon (a causal statement) which is unexpected. This does
not correspond with current feature importance techniques, which
all explain what caused the model to make certain predictions
(correlation), as opposed to what caused the phenomenon in the
real world (causation). In fact, as machine learning models are
only able to identify correlation, not causation, it would require a
totally different approach to computing feature importance (e.g.,
causal inference). As participant 34 puts it: “Predicting how many
ice creams a supermarket will sell based on how many hours I slept
doesn’t make sense ... even though feature importance might be high’.
Two of the participants expecting feature importance to explain
causation, did mention in the optional comment field they did not
quite understand the question.

P8. Sampling Distribution. The statements in Figure 3 also re-
lates to the sampling distribution property (P8). If feature impor-
tance strictly explains predictions (question 1), an interventional
distribution is sufficient to match data scientists’ expectations. If fea-
ture importance explains the informativeness to a model or the real
world phenomenon (question 2 and 3 respectively), a conditional
distribution seems more appropriate. Our results only show signifi-
cant evidence for the first interpretation, meaning interventional
sampling for instance perturbations has most support.

P3. Stability. Most participants (68%) expected that feature im-
portance is stable (Figure 4.1): slight changes in parameters will
not impact the explanation significantly. Participant 26 justifies: “I
don’t want to spend a lot of time tuning the explanation technique.”

Some participants remarked that, even though ideal, it may not be
possible to satisfy this property for all models (especially in the
case of correlated features).

P4. Robustness. Even more participants expected feature impor-
tance to be similar (Figure 4.2) for two similar data points (82%;
the most agreement out of all statements). This is surprising, since
this property constrains feature importance in its ability to closely
match the reference model. In particular, if the reference model’s
score does change rapidly, this property prevents the feature im-
portance technique to convey the true behavior of the model. Par-
ticipant 27 notes there is a difference between “what I would expect
if I were a layman [and] knowing that there can be abrupt boundaries
in the input/output space.” Overall, it seems experts favor the ro-
bustness of the explanation in spite of possible problems regarding
faithfulness with respect to the reference model.

P5. Selectivity. The results show a slight tendency towards selec-
tive explanations: 56% of participants expected feature importance
to not include all features (Figure 4.3), versus 35% favoring all fea-
tures to be included. However, expectations varied a lot, and only
three participants answered neutral. As preferences for selectivity
seem subjective, we should strive for a more flexible approach.

P6. Additivity. Next, we analyzed participant expectations of the
potential side-effects of additivity (Figure 5). As described in Sec-
tion 4, additivity can potentially lead to misleading interpretations:
as the feature importance values need to add up to the prediction,
we need to make a decision on how to divide the importance over
strongly correlated features. From the first two statements, we see
participants expect the importance of a feature to include all of
its interactions with other correlated features (74% and 65% re-
spectively). Participant 11 remarked: “I want this to be the case for
a perfect explainer, [but it is] not necessarily how I think [existing
methods] work.”

In the last two statements, we gave a concrete example of two
correlated features (length and weight), and two uncorrelated fea-
tures (medicine X and Y dose). Here participants were a bit more

2. p=2.91e-09**

1. p=1.07e-05**

3. p=0.055

Figure 4: Is feature importance 1) stable, 2) robust and 3) selective?
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p=0.080

p=1.75e-06**

p=0.318

p=2.20e-03**

Figure 5: How is importance distributed across correlated features (consequence of additivity)?

1.

2.

p=1.91e-05**

p=0.008*

Figure 6: Is feature importance proportional?

divided: only a small majority expected feature importance to cover
all correlated features (50% agreed, 32% disagreed, p = 0.080).

It is noteworthy that, although the importance of a feature never
includes the importance of a completely unrelated feature, 35% of
participants nonetheless agreed with question 4.

P7. Proportionality. Most participants clearly expected (Figure 6)
feature importance to be proportional, which means that the sum of
feature importance values is proportional to the model’s predicted
score. This matches an ablation-based feature importance perspec-
tive, and is not compatible with a gradient-based perspective.

This expectation is problematic, as the proportionality property
is directly at odds with actionability: it is impossible to satisfy
both properties at once (apparent in Figure 1). Yet, quite a few
participants (24%) agreed with both the second statement and with
the actionability statements in the previous set of questions. This
reveals an incompatibility in data scientists’ expectations.

Summary
To answer RQ2, our quantitative results indicate that data scien-
tists mainly expected feature importance to be robust (P4, 82%),
not causal (P2, 76%), additive (P6, 74%) and stable (P3, 68%). The
expectation of participants varied quite a bit for the properties:
selective (P5, 56%), proportional (P7, 53%) and actionable (P1, 41%).
This highlights the importance of understanding the properties of
different feature importance techniques, since there is no obvious
choice of property that aligns with data scientists’ expectations.

None of the expected properties seem to fully match existing
gradient-based or ablation-based feature importance definitions.
While current techniques are not causal, and mostly additive, they
are generally not stable. Furthermore, robustness differs per tech-
nique: the model-agnostic techniques participants were most fa-
miliar with do not have this property [2]. Finally, gradient-based
techniques are inherently actionable, but not proportional, while
ablation-based techniques are not actionable, but are proportional
to the model output.

8 DISCUSSION
Related work has identified and critiqued various properties of
feature importance techniques. However, to the best of our knowl-
edge, we are the first to verify the relevance and alignment of these
properties with data science practitioners: one of the stakeholders
that explanation techniques are ultimately meant to support.

8.1 Properties Expected by Data Scientists
In our qualitative study, our participants mention purposes that
are in line with the ones described in literature: social acceptance,
managing social interactions, detecting faulty model behavior (de-
bugging, auditing), and acquiring new knowledge [5]. Interestingly,
feature selection was mentioned often (33.3%), even though this
goal is not often explicitly mentioned in recent literature on XAI.

The results of our quantitative study indicate that several proper-
ties of local feature importance techniques were largely expected by
our participants: robustness, (non-)causality, additivity, and stability.
Although several of these properties align with existing techniques,
others are currently not supported.

8.1.1 Robustness & Stability. The majority of participants expected
feature importance to be robust (P4, 82%). Similarly, we saw strong
evidence experts expect techniques to be stable (P3, 68%). Impor-
tantly, perturbation-based feature importance approaches exhibit
neither robustness nor stability if the number of samples is too
small [2, 12], revealing a potential mismatch of expectations and
practice. An interesting direction of future research would be to
improve sampling techniques to satisfy these two properties. In
particular, future work could focus on satisfying robustness with-
out reducing the faithfulness of an explanation. Additionally, in
order to manage user expectations, future work could focus on the
effective communication of these inherent uncertainties.
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8.1.2 Causality & Sampling Distribution. The large majority of
participants expect feature importance to explain predictions (P2,
P8, T2), supporting a non-causal interpretation of feature impor-
tance. However, some participants also expect feature importance
to reflect the extent to which inclusion of the feature improves
the quality of the model or reflects relevance to the real-world
phenomenon varied (P8, T2). This suggests that data scientists do
not expect explanations to be causal, but also do not always con-
sider the model in isolation. The latter does not correspond with
how current feature importance techniques work and could lead to
incorrect conclusions about the data.

As shown in Section 4, different sampling approaches reveal
fundamentally different views of what it is that feature importance
explains. Our findings suggest that interventional sampling, as used
by most existing techniques, may be suitable to match most data
scientists’ expectations - but the results are not conclusive. In par-
ticular, we believe that future work should explicitly consider the ef-
fects of the out-of-distribution problems on the (mis)interpretation
of feature importance scores.

8.1.3 Additivity. Hancox-Li and Kumar [15] suggest that users
may interpret feature importance to represent solely univariate
effects, which would not match existing techniques. We have seen
no evidence for this in our study: the large majority of participants
(P6, 74%) expected a feature importance value to include all interac-
tions with other features. This is consistent with existing additive
techniques, such as LIME and SHAP.

8.2 Properties with Varying Expectations
For selectivity, proportionality, and actionability, expectations were
much more varied, highlighting the importance of clearly commu-
nicating the underlying properties of a particular technique.

8.2.1 Selectivity. In our study, participants widely varied in their
preference for selectivity (P5), reflecting the possible tension be-
tween the faithfulness and selectivity of an explanation. These
results suggest that a more flexible approach towards selectivity is
desirable over selectivity inherent to the explanation algorithm (e.g,
L1 regularization in LIME). In particular, we recommend including
an option to filter out features with low importance when feature
importance is presented to the user.

8.2.2 Actionability & Proportionality. As explained in Sections 2
and 4, gradient-based feature importance is inherently actionable,
but not proportional. In contrast, ablation-based feature importance
scores are not actionable, but proportional to the model output. For
actionability we observed a slight tendency towards agreement,
most participants did not expect feature importance scores to be
actionable (P1). Contrarily, most participants did expect feature
importance to be proportional (P7). Importantly, certain partici-
pants (24%) had expectations that fundamentally contradict each
other: they expected feature importance to be both actionable and
proportional. In our qualitative analysis we see similar results (T3).

We speculate that this contradiction arises from overloading ter-
minology of the term ‘feature importance’, which is insufficient for
explaining what existing techniques do. To address this, we propose
different terms to refer to local gradient-based and ablation-based

techniques. For gradient-based feature importance we suggest ‘fea-
ture sensitivity’, as these values describe the sensitivity of the
model towards changes in this features value. Next, we suggest
‘feature attribution’ for ablation-based feature importance, be-
cause ‘attribution’ implies the additive nature of these techniques.
This term has already been used by some authors, such as Lundberg
and Lee [25], but not consistently. We hope that using different
terms helps data scientists to recognize the differences and update
their expectations of how feature importance scores should (not)
be interpreted.

8.3 Limitations
In this paper, we explore the mental models of data scientists
through an online survey. This method is convenient for gath-
ering larger samples of data, but is also prone to some biases. First
of all, there is the risk of selection bias, as data scientists with an
above average interest in XAI (and therefore a better understanding
of existing feature importance techniques) may be more likely to
respond to the survey. However, we argue that targeting this audi-
ence enables us to uncover misconceptions that are held despite a
good understanding of existing techniques, which tend to be more
problematic due to their persistence.

Furthermore, there is a risk of response biases associated with
the Likert-scale questions, such as extreme responding and primacy
bias. To reduce the effects of these biases, we have carefully con-
sidered the wording of the questions between the authors, and ask
each Likert-scale question in both directions (both negatively and
positively framed).

This approach of checking each question both ways also makes
it more likely that our questions accurately capture the participants’
perspectives (interpretive validity). The two-way questioning un-
covered contradictions that would be much more difficult to surface
from more unstructured data such as interviews, as “[...] partici-
pants may be unaware of their own feelings or views, may recall
these inaccurately, and may consciously or unconsciously distort
or conceal their views.” [27, p. 290].

Our sample of participants was not large enough to ensure all
results fully generalize to other communities (external generaliz-
ability). However, even in a small sample, we have found significant
contradictions in our data scientists’ mental models of explanation
techniques that are unlikely to be just outliers.

With regard to internal generalizability (generalizing within the
same group to unseen examples and questions) the aim was to have
generalizable questions, contextualized with an example. The in-
troduction of this running example served to make the statements
more concrete and easier to read. However, it caused some partic-
ipants to (mis)interpret these statements as questions specific to
the running example. For example, some participants reported they
considered length to be relevant for medical prediction, as opposed
to whether they expected any feature with similar characteristics
to be important. This is inherent to the nature of our exploratory
study. In future work, we may compensate for this lack of inter-
nal generalizability by conducting a more elaborate validation of
the questionnaire (e.g., through pilot testing) or introducing more
running examples. However, the latter would limit the number of
properties that can reasonably be covered in a single study.
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Finally, although these exploratory findings are a good first step
towards uncovering mental models, conducting interviews could
have been valuable. Although Likert-scale questions are good for
quantifying opinions and uncovering contradictions, they are also
a very closed-off method. In future work, it would be interesting
to examine mental models of local feature importance through
interviews, as those may give more specific insight into the mis-
conceptions that the data scientists have.

8.4 Future Work
In addition to the avenues for future work discussed so far, we envi-
sion several extensions of our work. First, future work may consider
data scientists’ expectations of other additional properties such as
faithfulness [28], contrastiveness [28], and representativeness [31].

Additionally, data scientists may have a different understanding
of feature importance from domain experts or the general public.
Since these groups have a lesser understanding of machine learning
models and how explanations are derived, this may increase the risk
of misinterpretations. For example, as opposed to the data science
practitioners surveyed in this study, other groups may interpret
feature importance scores univariately. Futurework should consider
the mental models of other stakeholders for feature importance.

This work presented the first steps in exploring the mental mod-
els of feature importance. The results of our study warrant more
targeted HCI work to study individual properties in more detail.

9 CONCLUSION
In this paper, we investigated local feature importance scores that
quantify the importance of the feature values to a prediction of a
particular instance. While these techniques are popular and many
techniques exist, they have widely varying underlying assumptions
of what ‘importance’ means.

To address this, we surveyed relatedwork and present an overview
of several key properties of local feature importance approaches
that may lead to misleading interpretations. We conducted a mixed-
methods survey to explore the expectations of data scientists in
industry. We found that data scientists have widely varying defi-
nitions of feature importance and its values (RQ1), especially re-
garding the themes Locality, Explanandum and Underlying mecha-
nism (T1-T3). Regarding the properties of local feature importance
(RQ2), while we found evidence that the identified properties are
indeed largely expected by practitioners, data scientists also held
intuitions that do not necessarily fit with existing techniques. For
example, while existing techniques are not causal, and mostly ad-
ditive, they are generally not stable and can lack robustness. Next,
we uncovered contradicting expectations of both actionability and
proportionality, which cannot be satisfied simultaneously.

We argue that this contradiction is the result of fundamental
differences in how feature importance is derived (gradient and
ablation-based) and should be more clearly reflected in communica-
tion about the techniques. We believe that our work can provide a
fruitful starting point for future research in this direction. The un-
covered expectations provide a basis for XAI researchers to further
improve and explain feature importance techniques. Moreover, our
exploratory study identified plenty future work for HCI researchers
in unraveling users’ mental models of XAI.
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