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Abstract: Indoor environmental quality (IEQ) affects occupants’ satisfaction, health, productivity,
comfort, and well-being. IoT developments enable better monitoring of IEQ parameters; however,
integrating the various types of heterogeneous data from both the IoT and BIM domains is cum-
bersome and capital intensive, and therefore, limits the potential of smart buildings. Semantic web
technologies can reduce heterogeneity issues, which is necessary to facilitate complex IEQ models. An
ontology integrating data related to a building’s topology and its static and dynamic properties is still
lacking. The outline of this research is twofold. First, a systematic literature review was conducted to
find state-of-the-art semantic web technologies related to building topology, static properties, and
dynamic properties from the IoT and BIM domains. By graphically reviewing various ontologies,
their valuable patterns, commonalities, and best practices were revealed. Secondly, those results
were used to develop a new ontology that integrates topological building information with static
and dynamic properties. This Building Performance Ontology (BOP) provides a generic upper-level
description of properties and two lower-level ontologies representing observations and actuation.
The ontology results in intuitive queries and is both horizontally and vertically extensible. Multiple
levels of detail are introduced to ensure practical applicability and efficient patterns based on the
data modeler’s needs. BOP opens up a new range of research opportunities in the IEQ domain.

Keywords: semantic web; linked data; ontology; indoor environmental quality; Building Performance
Ontology

1. Introduction

The indoor environment hugely affects our daily quality of life. Air quality and
thermal, visual, and acoustic comfort largely influence occupants’ satisfaction [1,2]. Poor
performing buildings could lead to symptoms of sick building syndrome [3], such as
asthma [4], the short absence of knowledge workers [3], and lower health conditions in
social housing [5]. Next to this, the indoor environment affects occupants’ productivity [6]
and students’ learning performance [7]. Improving the indoor environmental quality (IEQ)
improves the comfort and well-being of occupants [8] and should, therefore, be a priority
in real estate. Various technology-driven developments such as the digitization of the
built environment and thriving IoT developments could enable building performance
improvements. Integrating the Internet of Things (IoT) and building information models
(BIM) [9,10] could lead to the better monitoring and management of buildings, leading to
improved indoor environments [11,12].

This does not come without challenges. Monitoring IEQ is often cumbersome and
capital intensive [13], whereas building managers lack the time, skills, and manpower to
monitor, control, and optimize their buildings [14]. Current IEQ models do not necessarily
reflect the perceived environment [15] and high scores on building codes and certificates
do not undoubtedly lead to higher user satisfaction [16,17].
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Modeling perceived environments requires an interdisciplinary approach combining
multiple research disciplines, methodologies, and input variables [18], considering not
only physical but also personal and psychological input [19]. This results in a range of
highly heterogeneous data and methods, which are frequently divided into four indicators,
namely, thermal comfort, visual comfort, acoustic comfort, and air quality [20–22]. Al
Horr et al. [8] added the sick building syndrome (SBS) as a fifth indicator, whereas others
consider SBS to be a result of poor IEQ [20].

Thermal comfort refers to the satisfaction with the thermal parameters. The predicted
mean vote (PMV) and predicted percentage dissatisfied (PPD) methods are widely used
to model thermal comfort [8,21] and are used in major standards. The PMV model com-
bines environmental parameters, including air temperature, mean radiant temperature,
relative humidity, and air velocity, with personal parameters, namely, metabolic rate and
clothing insulation [8,23]. Factors of local discomfort influence the PMV results. Various
standards implement different levels of detail to model this influence, such as EN-16789
and ASHRAE-55. EN-16798 includes air pressure, radiant temperature asymmetry, draft,
vertical air temperature difference, and floor difference temperature, whereas ASHRAE-55
also includes solar gain, ankle draft, and the CBE vertical temperature gradient [23]. Tar-
tarini et al. developed both a browser-based tool [23] and a Python library [24] to calculate
whether a situation complies with both standards. The PPD method calculates the percent-
age of people likely to be dissatisfied with the thermal comfort based on PMV results. The
adaptive method [25] is an alternative to the PMV/PPD methods and is characterized by
the ability of occupants to adapt to changing thermal environments by changing activities,
clothing, expectations, and acclimatization. People’s adaptive abilities widen the range
of conditions that are deemed comfortable [21]. Both ASHRAE-55 and EN-16798 have
a calculation model for the adaptive approach [23]. Frontczak and Wargocki [21] stated
that preferences for IEQ are influenced by country, outdoor climate, building type, and
ventilation system. Those variations are not yet fully integrated into the IEQ models.

Visual comfort refers to the satisfaction with visual parameters. It covers multiple
physical parameters, such as illuminance, luminance distribution, glare, lighting color, color
rendering, and the amount of daylight and artificial light [8,21,26]. Next to these, visual
comfort is influenced by design parameters, such as views and the daylight factor [27].
Standards, therefore, combine both design indicators and performance tests to assess the
visual comfort of a building [27,28]. Kim and Dear [2] argue that visual privacy is a major
factor in workplace satisfaction. Although a wide range of measurement tools to measure
the physical parameters exist [20], a combination with static building information (such as
spatial design, geometry, finishing materials, textures, color) as well as the psychological
dimension is necessary to obtain a full understanding of visual comfort [8,21].

In the operational phase, providing good acoustic comfort is achieved by protecting
occupants from acoustic discomfort [8,21]. Acoustic discomfort could occur due to poor
physical noise parameters, as well as due to a lack of sound privacy. Loomans et al. [27]
define two physical performance indicators, the A-weighted background noise level and
the reverberation time. Frontczak and Wargocki [21] differentiate short-term and long-term
sound pressure levels and argue that sound frequency is an important factor. WELL v2 [28]
adds multiple material characteristics to their evaluation, such as the sound insulation of
building elements. Although Al Horr et al. state that acoustics are not prioritized in building
design, multiple guidelines include norms for acoustic comfort [8,28]. Sound privacy is
critical for workspace satisfaction [2] and refers to the ability to have private conversations.
Spatial design, partitioning elements, material characteristics, and separation of acoustic
zones could improve sound privacy [2,8,28,29]. Whether an adequate acoustic comfort
level is met is therefore dependent on both the static building information as well as
dynamic physical properties [21]. Evaluation methods include expert reviews, surveys,
and quantitative measurements [27].

Air quality has many dimensions and is important because it involves potential
discomfort and health risks [8,21]. It involves odors and air pollution due to internal
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or external sources which could be solved by proper mechanical or natural ventilation.
Ventilation strategies differ per building type and location. Most of the pollutants such
as CO, CO2, TVOCs, and particulate matter are measurable by sensors. Next to outdoor
polluting sources (such as nearby highways or smog), buildings have indoor polluting
sources. Building elements, furniture, and cooking applications, as well as the occupants
themselves, influence the air quality [8]. Loomans et al. [27] assess the air quality based
on the capacity to keep pollutants (CO, CO2, PM2.5, and PM10) within an acceptable range.
They also address the risk of mold growth due to a combination of long-term temperature
and relative humidity levels enabling mold to grow. Frontczak and Wargocki [21] argue
that the assessment of air quality should be based on occupant dissatisfaction rates. WELL
v2 [28] adds detailed requirements for TVOC concentrations and various managerial
requirements, such as prohibiting smoking and allowing individuals to open windows.

These state-of-the-art IEQ models require the integration of topological building
information (describing relationships between a building and its subelements) with static
properties (such as material characteristics and geometry) and dynamic properties (such as
temperature, CO2, and illuminance). An integrated approach to semantically describe the
heterogeneous IEQ-related information from both the IoT and BIM domains is necessary
to facilitate the complex algorithms to model the IEQ. Semantic web technologies have
proven to be able to integrate various heterogeneous data sources using ontologies [30].
For example, O’Donnell et al. [14,31] integrated sensor data and building data for energy
analysis, whereas Corry et al. [32] integrated building data, simulation data, and sensor
data to assess thermal comfort. Hu et al. [33] also integrated weather and calendar data
to analyze building energy performance using their previously developed performance
metrics ontology [34]. Reinisch et al. [35] integrated heterogeneous data for energy-related
simulations in smart homes. Despite these examples, there is no comprehensive, widely
accepted approach to integrate IoT and BIM modeling for IEQ management.

Therefore, this paper focuses on creating an ontology that integrates topological
building information with static and dynamic properties. The outline of this research
is twofold. First, a systematic literature review will show state-of-the-art semantic web
technologies related to building topology, static properties, and dynamic properties. Best
practices form the foundation for the second part of this paper, which presents the Building
Performance Ontology as an ontology to integrate both static and dynamic properties with
topological building information.

2. Materials and Methods

This section describes the methods used in this paper. First, a systematic literature re-
view was conducted. The review presents an in-depth review of semantic web technologies
related to a building’s topology, static properties, and dynamic properties. Best practices
and common nomenclature and patterns formed a knowledge base for developing the
Building Performance Ontology. The development of this ontology was based on various
ontology development methodologies and is described in the second part of this section.

2.1. Systematic Literature Review

A systematic literature review gives a coherent view of the state-of-the-art semantic
web technology in the building performance domain. The paper selection procedure was
designed to reduce bias in the selection process. It uses an advanced Web of Science (WoS)
query to find ontologies from 15 SCI-indexed journals, which were selected based on other
literature reviews related to linked data in the AEC domain [12,30]. The query used to find
relevant ontologies combined a set of keywords related to IEQ with “semantic web” or
“ontology” to filter semantic web-related research (Listing 1). Next to these parameters,
filters were applied to filter SCI-indexed papers written in English. Since semantic web
technologies for the AEC domain started to seriously develop after 2009 [36], articles before
2009 were filtered out.
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Listing 1. Web of Science query.
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The query resulted in 86 papers. Papers were filtered out if they did not present
an ontology related to topological information, static properties, or dynamic properties,
resulting in 37 ontologies. A literature grid was built using an abstract search and the
presented ontologies were categorized per data category.

Next to this query, this paper consulted multiple literature reviews and conference
proceedings, adding another 33 ontologies that fit the data categories but were not yet
present in the WoS query results. We do acknowledge the work of others outside of
academia, as many ontologies are not necessarily published in academic papers. However,
an academic foundation of the ontologies is thought to be crucial for the development of a
new ontology for building performance.

The resulting ontologies were reviewed and compared to find commonalities, best
practices, and valuable patterns. The focus of this review is on the terminology of various
classes and their descriptions, the object properties, restrictions (adding domain knowledge
to the graph), and the resulting ontology patterns. The pattern discovery was strength-
ened by grouping common concepts (or equivalents) by color. Graphically reviewing the
structure of the ontologies revealed common patterns and best practices.

2.2. Building Performance Ontology Development

Table 1 compares various ontology development methodologies. Although some
approaches focus on the overall process of ontology development and others focus on the
technical design of the ontology itself, many similarities can be found in the approaches.
Based on this knowledge, the following steps were taken to develop the Building Perfor-
mance Ontology:

1. Specification: Determining the scope and purpose of the ontology, including its
position in the semantic web landscape. Competency questions are formulated in this
phase.

2. Knowledge acquisition: Defining the exact domain knowledge that the ontology
should cover, based on a literature review.

3. Requirement specification: Making a list of classes, instances, object properties, and
restrictions. Choices are based on the competency questions and the knowledge
acquisition phase.

4. Building: Building the ontology using Stanford Protégé 5.5.0 [37].
5. Evaluation: Testing the ontology in different use-cases. Various SPARQL queries

were designed to check the competency questions. Next to this, a set of evaluation
criteria was created to test the ontology using a case study. Finally, the OntOlogy
Pitfall Scanner! (OOPS!) [38] was used to detect common pitfalls in the ontology.

6. Integration: Integrating the ontology with existing standards and ontologies.
7. Documentation and publication: Creating HTML documentation using WIDOCO [39].

Multiple practical examples were elaborated on. An example dataset, instantiating
the ontology, was openly published [40] under the CC-BY 4.0 license.
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Table 1. Step-by-step ontology development approaches.

Step Fernández et al. Uschold and Gruninger Gomez-Perez et al. Harald Sack Donkers et al.

1 Specification Identify purpose and
scope Knowledge acquisition Determine scope Specification

2 Knowledge
Acquisition

Building: ontology
capture

Requirement
specification Consider reuse Knowledge

acquisition

3 Conceptualization Building: ontology coding Conceptualization Enumerate terms Requirement
specification

4 Integration Building: integration Implementation Define classes Building

5 Implementation Evaluation Evaluation Define properties Evaluation

6 Evaluation Creating guidelines Documentation Define property
constraints Integration

7 Documentation Define instances Documentation

The systematic literature review was used to gather knowledge for both the knowledge
acquisition and requirement specification phases. Based on this knowledge, we collected
relevant classes, instances, object properties, datatype properties, and the restrictions
and characteristics of those properties. Daniele et al. [41] used a similar approach when
developing a common ontology language for smart applications. Multiple researchers
evaluate their ontology mainly based on competency questions (e.g., [32,35,42]). To ensure
a fair evaluation, the Building Performance Ontology was evaluated against a predefined
set of criteria, namely:

1. Query efficiency: evaluating query execution time and the simplicity and intuitiveness
of creating queries.

2. Practical applicability: evaluating if the ontology fits practical use-cases and standards,
whether it makes use of current data structures, and whether data mapping could be
carried out efficiently.

3. Pattern efficiency: evaluating if the ontology remains efficient, concise, and flexible,
while not cutting back on semantic expressivity.

4. Extensibility: evaluating if the ontology can be extended for future cases both in
horizontal and vertical directions.

3. Semantic Web Technologies for Indoor Environmental Quality

Table 2 gathers a list of ontologies based on the WoS search. It divides all ontologies
among the three data categories and some subcategories, based on commonalities. The
following subsections review and compare the ontologies.

Table 2. Key data categories and the corresponding ontologies.

Category Subcategories Ontologies from WoS Other Ontologies

Topology

Building topology

BOT [43], TDO [44], SBIM [45],
BIMSO [46], muso [47],
ifcOWL [36,48], IFC ontology [49],
building object ontology [50]

ILONA [51], OntoNav [52],
SimpleBIM [53], OntoFM [54–56],
ThinkHome building ontology [35],
ogbxml [57]

Building taxonomy BFHO [58], building object
ontology [50]

Element topology

BPO [59], nameless ontology [60],
construction-oriented product
ontology [61], nameless ontology [62],
IFC IR ontology [63]
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Table 2. Cont.

Category Subcategories Ontologies from WoS Other Ontologies

Topology

Element taxonomy

NRM 1 ontology [64], building
ontology [65], IDM ontology [66],
CProduct [67], STG Product [68],
nameless ontology [60]

PRODUCT (https:
//github.com/w3c-lbd-cg/product,
accessed on 22-09-2022), BEO (http://
pi.pauwel.be/voc/buildingelement,
accessed on 22-09-2022), MEP
(https://pi.pauwel.be/voc/
distributionelement, accessed on
22-09-2022), freeClass OWL [69]

Geospatial topology Preconstruction operation
ontology [70]

Static properties

Geometry V4D [71] OMG [72], FOG [73]

Material characteristics GBMTO [74], Defect Ontology [75]

Environmental data INIESOnto [67], QuartzOnto [67],
SDO [76]

General properties

OPM [77], FP [78], multiple
ontologies [79], BIMDO [46],
mudo [47], ifcOWL [36,80],
BAUKOM ontology [81], IFC IR
ontology [63], nameless ontology [82]

PROPS (https://github.com/
maximelefrancois86/props, accessed
on 22-09-2022), ifcWoD [83]

Dynamic
properties

Sensor data
UDSA [84], TDO [44], HERO [85],
EEPSA [86], SBMS [45],
WISDOM [87]

SAREF4Health [88], SOSA [89], SSO
ODP [90], AAE ODP [91], SAN [91],
AffectedBy ODP [92], EEP [92],
BOnSAI, [42], PowerOnt [93],
SEAS [94], SmartEnv [95]

Database integration DB-RDF [96]

System ontologies with
patterns for dynamic
properties

Brick [97], SAREF [41], SSN [98],
IoT-O [91], FIESTA-IoT [99],
DogOnt [100], OntoFM [54–56]

3.1. Topology

Early initiatives by Beetz et al. [36] led to the development of an ontology for linked
building data. Their ontology, ifcOWL could be considered an OWL translation of the
IFC schema. The ontology (which was enhanced in [80]) could be considered a one-file
approach, integrating both topological, geometrical, and non-geometrical information.

Beetz et al. [101] argued that geometric descriptions add computational complexity
and proposed to separate geometry models from other metadata. They argued that topo-
logical representations are necessary for O&M use-cases [102]. Ye et al. [103] distinguished
the geometric representation, the symbolic representation (describing human-readable
topology information), and a hybrid representation by combining the two. Topological
information describes elements and spaces in buildings, including their relationships and
orientation.

Following the critics on extensive construction ontologies, researchers proposed more
concise construction-related ontologies. Pauwels and Roxin [53] and Rasmussen et al. [104]
developed simplified AEC ontologies, describing the core concepts of a building. This
resulted in the development of the Building Topology Ontology (BOT) [43]. Bonduel
et al. [105] describe how a topological ontology could be used as a core model of linked
building data. In the next subsections, various topologies and taxonomies (hierarchical
classifications of topological building elements) on both the building and element scale are
compared.

https://github.com/w3c-lbd-cg/product
https://github.com/w3c-lbd-cg/product
http://pi.pauwel.be/voc/buildingelement
http://pi.pauwel.be/voc/buildingelement
https://pi.pauwel.be/voc/distributionelement
https://pi.pauwel.be/voc/distributionelement
https://github.com/maximelefrancois86/props
https://github.com/maximelefrancois86/props
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3.1.1. Building Topology

BOT [43] functions as a core topology and describes buildings as a set of zones and
elements. Elements are physical objects of which the building exists, such as walls and
floors. Zones are imaginary parts of the real world, often encapsulated by elements. BOT
describes different classes for sites, buildings, spaces, and stories, superclassed by the
bot:Zone-class. The BIM Shared Ontology (BIMSO) [46] also describes classes for buildings,
spaces, and levels; however, those classes do not share a common superclass. Dibley
et al. [54–56] developed a building ontology as part of their OntoFM project. OntoFM
focuses on describing contextual information of indoor sensors, because it mainly focuses
on describing zones and their characteristics. No general element class was invented,
although various building elements (walls, doors, openings) appear in the ontology as
physical boundaries of a zone. The scope of the zone class is limited to physically bounded
areas. The building industry typically uses these zones as the feature of interest of building
performance assessments. The definition of a zone should, therefore, be broader than
merely rooms and floors. Mitterhofer et al. [106] used such a broad definition to model
both rooms and thermal zones.

Next to zones, BOT describes elements using bot:Element. The SBIM ontology by
Kučera and Pitner [45] is designed for building automation use-cases and extends this
class with sbim:Device to describe devices in buildings. A device-type hierarchy is rooted
from the device class based on the IFC4 specification. Lee and Jeong [50] distinguished a
construction unit and a functional unit. Their ontology differentiates between structural
building elements (walls, slabs, columns) and functional elements (furniture, HVAC).

The reviewed ontologies differ in the way they describe relationships between zones
and elements, resulting in differences in semantic expressiveness. The Tunnel Diagnosis
Ontology by Hu et al. [44] uses tdo:NearBy, tdo:RelAggregate, and tdo:ComposeOf to
describe the relationships between elements. The object properties are based on the ifcOWL
version of Pauwels and Terkaj [48] and show similarities with spatial relationships in
BOT (such as bot:adjacentElement, bot:containsElement, and bot:intersectsElement). Lee
and Jeong [50] only defined two object properties (“kind of” and “part of”), limiting the
semantic expressiveness of their ontology.

BOT acknowledged a widespread IFC problem, being the fact that walls are often
interfacing multiple indoor zones, whereas various use-cases require (geometrical) informa-
tion of the interface rather than of the entire wall. BOT [43] introduces the interface class to
describe the surface between building elements and/or zones. Defining the interface and
its geometry requires defining the space boundary between the zone and the element. This
geometric information is required for various building performance assessments, including
thermal comfort [57] and building energy modeling [107]. Recent research initiatives focus
on the automatic specification of second-level space boundaries [108] and their geometric
and semantic information [107].

The gbXML schema implements the representation of space boundaries. It focuses on
information related to energy simulations and calculations. The ThinkHome [35] project
inherits its building information from the gbXML schema. XSLT documents were used to
translate the gbXML schema to the OWL format. Schneider aligned their ontology to the
IFC-based BOT ontology [109]. A similar gbXML-based topology was introduced by Van
Gool et al. [57].

3.1.2. Building Taxonomy

Those aforementioned ontologies describe building information on a conceptual level.
Multiple other ontologies follow a taxonomical structure and could be used to define more
specific information on a building level. Taxonomies are typically hierarchical constructions
consisting of classes and subclass relationships. Mohamed et al. [58] created the building
facilities’ hierarchical ontology to describe the functions of each room. Lee and Jeong [50]
created the even more extended building object ontology, describing, amongst others,
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different types of rooms, their functions, and how to access them. Both ontologies were
mainly designed for facility management use-cases.

3.1.3. Element Topology

Although the building-scale topology ontologies usually stop at the level of an element,
some use-cases require a further decomposition of these elements. It is for this purpose
that multiple smaller-scale topology ontologies have been developed. One of them is the
Building Product Ontology (BPO) [59]. BPO decomposes topological building elements. It
describes the relationship between building elements and their parts and has been applied
to describe building-integrated solar thermals and photovoltaics [110].

Xu et al. [60] defined a member-of relationship to describe whole/part-relationships of
building elements. Similar to other ontologies [59,61], elements are superclassed by a prod-
uct class. However, Liu et al. [61] introduced more object properties to define the relation-
ships between elements and their parts, such as proOnto:isPartOf, proOnto:hasSubComponent,
and proOnto:hasIntersection.

Another whole-part ontology was defined by Venugopal et al. [62] based on the IFC
model. They argued that the current IFC structure leaves space for inconsistencies and that
the distinctions between some IFC concepts were not well enough defined. Gao et al. [63]
created a more extensive ontology based on IFC and OntoSTEP to structure BIM-specific
knowledge. Their IFC IR ontology was used in a semantic search engine to enable querying
BIM objects.

3.1.4. Element Taxonomy

Similar to the taxonomies developed to extend building topology ontologies, element
taxonomies further specify elements. Lee et al. [66] developed the IDM ontology as part of
their ontology-based information delivery management tool. Using IFC as a starting point
allowed for easier interaction with other software tools. The ontology has four main classes:
entities, elements, attributes, and relations. The element class is subclassed by a taxonomy
of multiple types of elements. Gao et al. [63] implemented the freeClass OWL [69] ontology
as a taxonomy for building materials. Based on this ontology, the BauDataWeb dataset was
created using real building products, containing over 88 million triples.

The PRODUCT ontology was derived from the IFC standard and describes simple
aggregations of building elements, mechanical elements, and furniture. Multiple ontologies
are derived from the PRODUCT ontology. A domain-specific ontology for architectural
building elements (BEO) and another for mechanical, electrical, and plumbing elements
(MEP) are developments of PRODUCT. Another variation, named STG Product, has been
created by Werbrouck et al. [68]. Many of the taxonomical ontologies found in the literature
were hardly designed and published as formal ontologies, but mainly designed for a
specific use-case. Examples could be found in the works of Xu et al. [60] and Djuedja
et al. [67]. Djuedja et al. [67] developed CProduct as a taxonomy of terms and is used as a
reference for other environmental ontologies (INIESOnto [67]). The taxonomical structure
was based on INIES, a French database of environmental and health declarations. It
contains a rich number of terms but is—unfortunately—only available in French. Similarly,
the BAUKOM ontology [81] is a direct translation of the BAUKOM catalog, storing BIM-
compatible building component information. Zhang and El-Gohary [65] used a taxonomy
of building elements to perform automated building code checking. A natural language
processing algorithm linked words in building code documents to their corresponding
class in the ontology by matching the results of multiple NLP techniques to the names
of classes in the ontology. The NRM 1 ontology [64] is an RDF version of the UK’s NRM,
which is a set of guidelines for storing data about embodied energy. The ontology covers a
large decomposition of elements and their parts and has been mapped to Revit’s material
descriptions. Different from other ontologies, the NRM 1 ontology captures the material of
an element directly in its class, for example, by using the “Roof wood” class.
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Many of the topological ontologies which were reviewed also describe some use-
case-specific subclasses, blurring the dividing line between the domains of topology and
taxonomy [60,61]. Although adding taxonomical classes to the ontology might help a
researcher who uses the ontology for a specific use-case, those specific taxonomical classes
might complicate using the ontology outside the scope of the original use-case.

3.1.5. Topology in Other Ontologies

Zhang and Issa [49] argued that ifcOWL is not flexible enough since it strictly follows
the IFC specification. Their IFC ontology follows the same hierarchical structure as IFC
(and thus, ifcOWL) but extends in the taxonomical dimension by introducing elements that
were not part of IFC.

The ILONA ontology [51] is designed for indoor navigation and uses topological
elements to model the structure of a building. It distinguishes zone groups and gateways.
Zone groups represent information about physical and non-physical zones, with the build-
ing being the greatest zone unit. Gateways (doors, stairways, escalators, elevators, and
virtual crossings) represent the connection between two zones. A different approach was
introduced by Anagnostopoulos et al. [52], which focuses on describing the paths between
topological elements rather than describing the topological elements themselves. It de-
scribes passages (similar to gateways in [51]), exits, and corridor segments as subclasses of
the PathElement class.

The preconstruction operation ontology [70] describes a broader scale topology and
considers the building as an entity within a larger spatial network. It is designed to enable
transferring data from BIM to and from GIS environments and decouples BIM-related
classes (such as site and building) from GIS-related classes (e.g., topography, terrain, and
vegetation).

3.2. Static Properties

Various ontologies enrich information about topological entities with more detailed
information about the entity by describing the characteristics of those entities. Different defi-
nitions are used in the literature, such as property [46,77], quality [92], and attribute [59,111],
but in general, there is agreement on the definition that a property is a measurable char-
acteristic of a feature of interest (FOI). In the AEC domain, the FOI is often a topological
entity, such as an element or a space. Some ontologies focus on the more general definition
of properties [77,92], whereas others focus on a specific use-case, such as geometry [71,72],
material characteristics [74,112], or environmental information [67]. The following subsec-
tions compare the different approaches by visually reviewing design patterns. Classes will
appear as colored blocks in the visualizations of the ontologies, corresponding to commonly
found concepts. Equivalents of a feature of interest will appear in orange, properties in
apple green, executors in yellow, executions in pink, results in blue, procedures in navy,
units of measure in purple, and databases in dark green.

3.2.1. Generic Properties

The OWL translation of IFC (ifcOWL) [36,80] contains a structure to describe properties
of IfcObjects (Figure 1). Following the IFC schema, IfcProperties are part of an IfcProperty-
Set. The schema predefined various standard sets, e.g., to describe typical properties of a
door. These sets and their related properties are described using IfcPropertySetDefinition
and IfcPropertyDefinition, respectively.

Mendes de Farias et al. [83] argue that many properties in ifcOWL are not defined in the
ontology’s Tbox, but as string values of the property ifc:Name, increasing the complexity of
retrieving information. Defining those properties in the ontology would solve this problem.
Their ifcWoD ontology translated over 400 IFC property sets to OWL object properties.
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Zhang et al. [79] developed multiple ontologies to enhance the query possibilities of
ifcOWL. Vocabularies were developed for schema semantics (schm), instance semantics
(pset and qto), product geometry (pdt), and spatial reasoning (spt). Those vocabularies are
designed to create simpler SPARQL queries mainly by introducing new object properties
and datatype properties between instances, serving as shortcuts. Figure 1 shows how
pset:loadBearing creates such a shortcut.

Sadeghineko and Kumar [82] state that ifcOWL cannot describe all kinds of nongeo-
metrical data and argue that additional domain ontologies are necessary to cover a variety
of asset/facility management practices. They directly translated CSV files into triples
using a custom-built converter. The CSV documents are based on an asset information
requirements model. The simple RDF representations are linked to a core linked building
data file based on ifcOWL.

Ren et al. [78] developed the FP ontology based on IFC4. It describes properties of
building elements to support the information exchange between various stakeholders.
Various sets of object properties and related classes were defined to link additional infor-
mation to building elements, such as fp:hasGlobalId fp:GlobalId and fp:hasLocalPlacement
fp:LocalPlacement. The PROPS ontology, which is also defined based on IFC, includes
similar properties. However, it does mainly use datatype properties instead of object
properties. The IFC IR ontology [63] uses datatype properties to represent EXPRESS simple
attributes and object properties for named attributes. A similar design pattern is applied by
the BIM Design Ontology (BIMDO) [46]. It extends BIMSO and aims to describe design
properties of building elements, which are limited to element identities, sizes, and material
properties (Figure 2). It replaces the mudo ontology [47]. Identity-related properties are
modeled using datatype properties. The generic BIMDO:hasIdentity has multiple sub-
properties, such as BIMDO:hasDescription and BIMDO:hasManufacturer. Geometry and
material characteristic properties are defined as classes and linked to an element using
object properties. Different classes are defined for qualitative (e.g., material strength) and
quantitative (e.g., material type) properties. Next to mudo, Niknam and Karshenas [47]
also presented a cost estimating ontology (mueo), designed to help make cost estimations
for assembling building elements. Properties in mueo also follow the pattern presented in
Figure 2.
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Multiple characteristics of buildings and building elements are evolving, although
with such a low frequency that storing those changes in an RDF format is not considered
redundant. Typical examples are system defects and damage. Hamdan et al. [112] created
the Damage Topology Ontology to describe different types of damage and presented
extensions for natural stone (NSD), concrete (Concrete Damage Ontology) and mechanical
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parameters (Damage Mechanics Ontology). The versioning of damages is an important
aspect of damage and is yet to be developed.

The ontology for property management (OPM) [77] presented a method for such
versioning (Figure 3). It introduces an opm:PropertyState class (subclassed by opm:Current-
PropertyState) to represent the state of a property at a given time. Opm:hasPropertyState is
a subproperty of seas:evaluation.
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3.2.2. Geometry

Wagner et al. [113] performed an extensive literature review on the different de-
scriptions of geometrical information using semantic web technologies. They identi-
fied four approaches: RDF-based geometry descriptions, JSON-LD for web geometry,
non-RDF geometry as RDF literals, and linking to non-RDF geometry files. Following
those approaches, Wagner et al. [72] developed the ontology for geometry management
(OMG) to describe the relationship between building objects and their geometry. Simi-
lar to PROPS and OPM, it uses multiple levels to link geometry descriptions to objects
(Figure 4). Level 1 directly links an object to a geometry description, level 2 uses an
intermediate omg:Geometry class, and level 3 introduces the omg:GeometryState. The
omg:hasGeometry and omg:hasGeometryState are both inverse functional properties, stat-
ing that an omg:Geometry can only be linked to one object and an omg:hasGeometryState
can only be linked to one geometry.
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OMG is extended by the ontology for geometry file formats (FOG) [73]. FOG covers
the description of geometry formats by introducing specific datatype properties for a
wide range of geometry formats. These properties are designed as subproperties of OMG
properties and allow users to query specific geometry formats without increasing the
graph’s verbosity. V4D [71] semantically enriches 2D imagery and 3D geometric models
to make them useful for the architecture and game design domains. It describes mesh
geometry, which is derived from omg:Geometry and is semantically enriched by reusing
concepts from BOT and FOG. The mesh components are described using GOM [114]
terminology.

3.2.3. Material Characteristics

GBMTO [74] defines material properties based on green building material information
data. The ontology helps to infer a standardized material name based on the properties of
a building element. Like BIMDO’s property structure, GBMTO uses both object properties
and datatype properties to connect a building element with its properties. There is no
clear argumentation of why some objects are literals and why others are strings. A similar
structure was used by Lee et al. [75] when designing their Defect Ontology.
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3.2.4. Environmental Data

Based on the PRODUCT ontology, Djuedja et al. [67] developed IENIESOnto (based
on a French national reference database in RDF) and QuartzOnto (based on the Quartz
Common Products Database) to store environmental data. Both ontologies mainly use
datatype properties to directly link a product to a string. Zhang et al. [76] developed a
structural design ontology to facilitate better decision-making during the design phase of a
building. They applied a similar strategy as Djuadja et al. Typical static properties from the
structural design domain, such as weight, volume, span, and density, are linked to building
elements using datatype properties. Materials are linked using object properties and have
their own classes. This enables linking environmental specifications to specific materials.

3.3. Dynamic Properties

Different from the static properties, many properties are variables that constantly
change over time. Dynamic properties are typically measured by sensors and have a
complex spatiotemporal resolution. Hu et al. [44] consider dynamic properties to be the
result of events, including a broader range than just monitoring. Inspections, repairs, and
maintenance also produce dynamic properties. This subsection presents dynamic property
patterns found in the dynamic properties and system ontologies in Table 2.

Arguably one of the most popular ontologies related to sensor measurements is
SSN [98]. The ontology, which is recommended by W3C, describes sensors and their
observations. It is built upon two conceptual models by the Open Geospatial Consortium,
observations and measurements (O&M) [115] and SensorML [116], which created syntactic
interoperability [98] for sensors to be machine-understandable, automated, and easily
shared [116]. SSN, being an OWL2 ontology, adds the semantic richness that is necessary to
use the model in the semantic web. SSN made use of a core ontology, SSO [90], that describes
sensors, their stimulus to observe, and the observation. However, from the beginning of
the SSN development, discussions took place about fundamental concepts [98], leading
to a replacement of SSO by SOSA [89], which describes sensors, observations, samples,
and actuators (Figure 5). SOSA is a lightweight ontology that is easily extendable and
supports a wide range of use-cases and domains. Mainly, the observations, features of
interest, and property modules of SSN/SOSA have been reused by many ontologies (https:
//w3c.github.io/sdw/ssn-usage/, accessed on 22-09-2022). When combined with SSN,
SOSA has some owl:minCardinality restrictions involved. Although SOSA used the less
restrictive schema:rangeIncludes and schema:domainIncludes (which only expects a certain
class), SSN added owl:allValuesFrom restrictions on most object properties (requiring
properties to point to a certain class).
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Kuster et al. [84] extended SSN to the urban scale in their UDSA ontology. They added
a spatial component to both the sensor and the observation to describe the location of the
sensor and the region for which the observation is valid. Unfortunately, UDSA integrates
an outdated version of SSN.

Meng et al. [85] created another SSN extension to describe human health risks. Next
to the ssn:Property, their HERO ontology provides a separate hero:Phenomena class. It
represents similar information as ssn:Property and is, therefore, redundant.
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The SSO ODP inspired Seydoux et al. [91] to create a similar pattern for actuators:
the Actuation-Actuator-Effect (AAE) ODP (Figure 6). AAE complements the pattern of
SSO; where sensors observe the state of real-world (dynamic) properties through stimuli,
actuators influence the state of these properties. AAE led to the development of the SAN
(semantic actuator network) ontology [91], which is a complementary counterpart of SSN.
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Esnaola-Gonzalez et al. [92] designed the AffectedBy ODP as a building block to
model variables that may affect indoor conditions. They found an inadequacy in SSN.
The ssn:isPropertyOf object property is not a functional property, resulting in the fact
that a property could be the property of multiple features of interests. This conflicts with
the intrinsicness of ssn:Property. Therefore, aff:belongsTo—which is an equivalent of
ssn:isPropertyOf—is a functional property.

Using the AffectedBy ODP, Esnaola-Gonzalez et al. [92] created the EEP ontology
as a building block to describe the systems that measure the variables affecting indoor
conditions (Figure 7). EEP generalizes the observation-sensor-procedure pattern from
SOSA by introducing their respective superclasses; eep:Execution, eep:Executor, and
eep:Procedure. The eep:Execution class has an owl:someValuesFrom relationship to
eep:Executor, eep:Quality, and eep:Procedure. The EEPSA ontology [86] extends the EEP
ontology and is a combination of multiple ODPs related to the energy domain. These
mainly contain taxonomical structures to enhance query possibilities.
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Hu et al. [44] created the TDO ontology for tunnel diagnosis (Figure 8). The concepts
show similarities with indoor diagnosis concepts. TDO extends the idea of execution
(tdo:Event) by creating multiple subclasses of tdo:Event. These subclasses, including
monitoring, inspections, repairs, daily maintenance, and state assessments, can happen
on an element and produce a tdo:Property as output. The broader definition of tdo:Event,
compared to earlier ontologies, also implies that the property class does not purely represent
dynamic properties. Inspections, for example, do not necessarily take place as frequently
as sensor measurements.
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Figure 8. The TDO pattern extends eep:Execution with tdo:Event.

The ThinkHome [35] ontology introduces various property classes. “Parameter” de-
scribes outdoor environmental properties, “BuildingParameter” describes properties of the
building, and EquipmentParameter describes properties related to technical equipment,
such as HVAC. None of these classes are linked with the BuildingElement class, narrowing
the scope for describing building control-related parameters and risking possible irregulari-
ties between the various parameter classes. The sensor ontology of OntoFM [54–56] used
a different approach. The ontology, which is based on OntoSensor, does not introduce a
property class. Instead, a taxonomy of subclasses of the sensor class is introduced, indicat-
ing the property which is measured by the sensor (Figure 9). The sensor itself is directly
linked to a building entity it measures. For example, a motion sensor could be linked to an
opening in a wall. Although this reduces the size of the graph, it introduces unintuitive
SPARQL constructs for basic competency questions.
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Figure 9. The absence of properties in OntoFM.

SEAS [94] also introduces a dynamic property pattern (Figure 10). It narrowed down
DUL’s definition of dul:Quality by stating that a property should be an observable or
operable quality of an event or object. This specification is common in the context of
dynamic properties since the ontologies often describe typical time-series information
which is observable by sensors. The term “observable” is, however, rather loosely defined,
as one could argue that static properties (such as color and length) are also observable.
SEAS distinguishes seas:value (linking static property values) and seas:evaluation (linking
dynamic property values) and includes various options to describe a property value as
an IRI, blank node, or literal. However, since seas:value and seas:evaluation both link a
seas:Property to an IRI, one of the options seems redundant.
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A property in SEAS can be a feature of interest itself so that properties of properties
can be described. SEAS inherits the Procedure Execution (PEP) [94] ontology as a high-
level device ontology. It has a similar class structure as the EEP pattern but uses different
object property restrictions (Figure 11). SEAS makes use of a temporal and spatial context,
referring to the time (using time:TemporalEntity) and location (using geo:SpatialThing) of
an evaluation. This strategy is different from other ontologies, which are more likely to link
the spatial context to the feature of interest [41,117].
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Next to this, SEAS directly links the result class (seas:Evaluation) to the property
class. This pattern resembles opm:PropertyState and PowerOnt. PowerOnt [93] is a
very lightweight ontology that uses a specific syntax to model the energy consumption
of electrical devices (Figure 12). The ontology serves as an extension of multiple other
ontologies in the smart building domain, such as DogOnt [100] and IoT-O [91].
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Figure 12. Linking the property (PowerConsumption) and result (PowerConsumptionValue) class
using PowerOnt.

Alirezaie et al. [95] combined eight ODPs to develop their SmartEnv Ontology. The
ontology’s goal is to represent smart, sensorized environments. It contains building blocks
for objects, events, situations, sensing, networks, place, geometry, and time. Multiple
ontologies, such as SSN, SOSA, and DUL, were integrated. By integrating ODPs, Alirezaie
et al. tried to avoid the design issues that appear when integrating complex ontologies.
Although succeeding in this goal, the object properties between the ODPs contain too
few object restrictions to answer complex competency questions [92]. A SmartObject is
introduced, representing instances that are both physical objects and features of interest.
Actuation is not included in SmartEnv.

Another attempt to integrate multiple ODPs is IoT-O [91]. It combines a sensing
ontology (SSN), an actuation ontology (SAN), a lifecycle ontology (Lifecycle (https://vocab.
org/lifecycle/schema, accessed on 22-09-2022)), a service ontology (MSM [118]), and an
energy ontology (PowerOnt [93]). It uses SSN to represent properties. Properties could be
observed (using ssn:observes) as well as acted on (using san:actsOn).

A risk of combining too many ontologies is that they might not be designed for
the same purpose. Definitions might conflict, leading to inconsistencies in the dynamic
property patterns. The FIESTA-IoT [99] project aimed to integrate multiple IoT-related
ontologies. The ontology integrates a sensor and device ontology (SSN), an ontology
to represent resources, entities, and services (IoT-lite [119]), a taxonomy of devices (M3-
lite [120,121]), and other ontologies to represent context (DUL, Time, qu, and WGS84). The
dynamic property pattern (Figure 13) is, therefore, composed out of three ontologies and
shows some redundant classes.
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The Smart Applications Reference ontology (SAREF) [41,122] was created to enable
interoperability between smart applications in the built environment, mainly to reduce
energy consumption. The ontology was developed in close interaction with the industry
using various workshops. Different from other patterns [89,91], SAREF does not distinguish
a measurement and a result class (Figure 14). The saref:Measurement class covers both
the measurement as well as the measured value. A measurement has exactly one value.
The saref:hasTimestamp object property, linking a measurement with a timestamp, does
not have this cardinality restriction. Although, based on their descriptions, the feature of
interest and property are intrinsic to each other, the object properties connecting them are
not functional object properties. The saref:Property class is subclassed by multiple com-
monly used properties in the HVAC domain, such as saref:Humidity and saref:Temperature.
SAREF’s pattern for actuation is different from the measurement pattern. The pattern in-
cludes multiple classes, including saref:Task, saref:Service, saref:Function, saref:Command,
and saref:State. Those classes are not directly linked to the feature of interest and the
property.
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Figure 14. SAREF combines the result and execution class into saref:Measurement.

SAREF was extended by many ontologies. SAREF4BLDG [123] extended SAREF with
subsets from the Industry Foundation Classes (IFC) [124] to fill the gap between building
information models and the SAREF ontology. It is a rather small ontology, creating a link
between the saref:Device and a physical object from the building model. The ontology
implements the WGS84 system for describing location, using the GEO ontology. The
ontology describes geometric location using altitude, longitude, and latitude.

In SAREF, each measurement is stored as a package of information, containing a
unit and a value. Moreira et al. [88] argue that such representations are not suitable for
exchanging real-time sensor data, as the payload per message is too high. They concluded
that no IoT ontologies could provide an adequate balance between semantic richness and
efficient exchange of real-time time-series data. Their solution (the SAREF4health extension)
introduces an s4ehaw:TimeSeriesMeasurement class which links to an array of xsd:float
values using an s4ehaw:hasValues datatype property (Figure 15). The measurement class
in SAREF can only link to a single float number.
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Stavropoulos et al. [42] designed an early smart building ontology. Their BOnSAI
ontology includes concepts related to devices and their functionality, quality of service,
users, and their context. Similar to SAREF, BOnSAI also differentiates the sensor structure
from the actuator structure (Figure 16). Although sensors are linked to bonsai:Parameter,
actuators are linked to bonsai:Action, which is a part of a larger cluster of classes related
to actuators. BOnSAI also includes a class for multisensors (such as sensor arrays) and a
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bonsai:ActuatorSensor class for dual-purpose devices. BOnSAI separated (service-enabled)
devices, such as sensors and actuators, from (non-service-enabled) appliances. Some
inconsistencies could be found here, as devices that have actuation functionalities (air
conditioning, radiator, lighting) are modeled as subclasses of bonsai:Appliance.
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The Brick schema [97] is an attempt to capture metadata that is used by building
management systems and facility managers into a common data representation. It covers
classes related to building information, systems (such as HVAC and lighting), sensors
and their measurements, and BMS-related constructs. It has been specifically designed
to be implemented by the industry. Brick is built upon Project Haystack (https://project-
haystack.org/, accessed on 22-09-2022) and SAREF [41]. Since Brick is not developed from
an IFC perspective, it has some fundamental differences from the previously discussed
ontologies. Therefore, the colors in Figure 17 might show some inadequacies. Brick models
three different entities. Physical entities have a physical presence, such as HVAC equipment
and spatial elements. Virtual entities have a digital presence and mostly relate to sensing,
actuation, and status points. Logical entities are concepts based on rules and are used in
the HVAC domain, such as thermal zones and metadata.
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This leads to five top-level classes: brick:Equipment, brick:Location, brick:Measurable,
brick:Point, and brick:System. A taxonomical structure, based on Haystack, has been
designed using subclasses. Object properties, defining the relationships between the
classes, are mainly designed between those top-level classes and are thus also applicable to
the subclasses.

Brick:Equipment describes physical devices, whereas brick:Location describes physical
locations. In Brick, sensors are not modeled as physical devices, but as datapoints, being a
subclass of brick:Point. They, therefore, do not have a physical location, but rather serve
as the output point of a physical measurement instrument. These physical measurement
instruments are, however, not part of the Brick ontology. A brick:TimeSeriesReference class
is introduced to add metadata describing where and how data is stored. The brick:Database
class describes the location, whereas a literal describes a reference identifier.

WISDOM [87], which mainly extends an older version of SSN, also integrates a
wis:Database class to represent time-series information in smart water use-cases. It is a
central concept in the ontology (Figure 18). Object properties link the database with the
result (wis:SensorOutput), the feature of interest (wis:Asset), the property, the sensor, and a
unit. Different from Brick, wis:Unit is linked to the database class.

https://project-haystack.org/
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Hu et al. [96] argued that more information about database schemas is necessary
to connect various databases and obtain time-series data from them. They designed the
DB-RDF ontology, a structure describing database schemas. It extends a database class by
introducing classes to represent tables, columns, parameters, data formats, and translations.

SBMS extends the SSN ontology for the BMS domain (Figure 19). By introducing the
sbms:Address class, the ontology aims to describe entities in BMS systems. Similar to Brick,
sbms:Datapoint is introduced which represents sensor readings, actuator in- or output, or
other scalar values representing the state of a property. The class is not intended to store
the sensor readings but is merely an identifier to the original data in a BMS system. Next
to datapoints, SBMS requires all topological building elements and devices to be tagged
with an ID using sbms:hasBMSId so that they can be linked to their representations in other
databases. Similar to the IfcPropertySet, SBMS defines the sbms:PropertyDomain, which
enables grouping various properties of a certain type, such as properties related to water or
electricity.
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3.4. Design Patterns and Best Practices

The goal of this literature review is to find commonalities in design patterns and best
practices in ontologies related to topological building information and static and dynamic
properties. This subsection describes the findings and functions as foundational knowledge
for designing an ontology that integrates a building’s topology with static and dynamic
properties.

We conclude that many ontologies describe topological building information and that
there is no scientific consensus on the semantics of a core building topology ontology yet.
Schneider [109] showed the complexity of aligning topological and taxonomical ontologies.
Based on this literature review, fixating on a single ontology would be irrational. Ontology
design patterns for static and dynamic properties should, therefore, be flexible enough to
extend multiple topology schemes.

We did find commonalities in the ontologies that describe static and dynamic proper-
ties. Based on this review, we found design patterns that ontologies that describe properties
would benefit from. An ontology should not limit the data modeler too much. This can
be reached by introducing multiple semantic levels of detail to describe a :Property and
its value(s), including the possibility to describe the value of a :Property using datatype
properties and literals, as well as using object properties. The OPM ontology introduced the
versioning of properties by using a :CurrentState-property. An ontology would benefit from
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a high-level generic :Property-class that could be extended by data modelers for specific
use-cases. Creating the ability to group properties into a :PropertySet would enhance
querying capabilities. A SPARQL query could, for example, use this :PropertySet-class to
find all properties related to thermal comfort.

There is a central pattern consisting of four classes (:Executor, :Execution, :FeatureOfIn-
terest, and :Property) that is commonly used in the reviewed ontologies. Although many
ontologies implement use-case-specific classes such as :Sensor or :Actuator, we believe that
an ontology that describes a wide range of static and dynamic properties should have an
extendable top-level pattern of generic classes. A :Property and :FeatureOfInterest should
be intrinsic to each other, which could be reached by using a functional object property
to link them to classes. To model a wider range of properties, some ontologies imple-
mented an object property equivalent to :hasSubProperty that allows splitting up a complex
:Property-class in simpler subproperties. Furthermore, the :Property-class would benefit
from a geographical reference point, as is implemented by sosa:Platform. Some properties
relate to time-series measurements, whereas others relate to static values. A pattern that
can describe both and results in similar SPARQL queries is desirable for use-cases that use
both types of properties. Various ontologies changed the :Result-class for a time-series
reference point, including an identifier and information related to the time-series database.

In general, four levels of detail could be distinguished to describe properties and
their values (Figure 20). Level 1 uses a datatype property to directly link a property
value to a feature of interest. The datatype property typically covers the name of the
property and could be mapped as an rdfs:subproperty of an equivalent of :hasProperty.
Level 2 uses an intermediate :Property-class that covers the name of the property that
is being described. Level 2 descriptions are used in various ontologies that describe
static properties (BIMDO [46], OMG level 2 [72,73], and BPO [59]), but cannot easily store
temporal properties and their provenance data. OPM [77] uses a third level of detail and
introduces the opm:PropertyState-class. Instances of this class can store provenance data,
such as the time of generation and the agent that generated the value. Multiple ontologies
that describe dynamic properties implement a fourth class that describes the process of
creating a property state. The class often represents an observation or actuation and is
generalized to :Execution in the EEP ontology [92]. An ontology that describes both static
and dynamic properties should integrate all four levels of detail so that data modelers have
the freedom to choose the complexity that is necessary for a specific use-case.
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4. Building Performance Ontology

Considering the growing interest in optimizing building performance, there is a need
for an ontology that can integrate static and dynamic property values with topological
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building information in a uniform way to support the great variety of building performance
assessments. Based on this need, we set up five competency questions:

CQ1 What is the current state of all properties related to an indoor environmental
quality parameter?

CQ2 Where is the time-series data related to some of the indoor environmental quality
properties stored?

CQ3 What devices observe or act on properties related to an indoor environmental
quality parameter?

CQ4 What is the datapoint of these properties in building management systems?
CQ5 What is the spatiotemporal resolution of the properties related to indoor environ-

mental quality?
The aim of the Building Performance Ontology (BOP) is to enable the integration of

topological building information with static and dynamic properties to create a homoge-
neous data environment used by complex building performance assessments. It can help
building managers and their software to deal with the large heterogeneity of information.
To remain stable over time, BOP is documented at https://w3id.org/bop and uses the
namespace https://w3id.org/bop#. Its prefix, bop:, is registered at prefix.cc. The OntOlogy
Pitfall Scanner! (OOPS!) [38] was used to detect common pitfalls in the ontology. It returned
no pitfalls.

BOP is based on commonalities in design patterns and best practices found in the liter-
ature study in Section 3. It consists of a lightweight upper ontology that describes a generic
structure of static and dynamic properties, and lower-level ontologies designed for specific
use-cases (Figure 21). BOP’s core consists of four classes, bop:Executor, bop:Execution,
bop:Property, and bop:FeatureOfInterest. The four levels of detail (as described in Figure 20)
are implemented so that data modelers can choose the level of complexity that fits their
project. Figure 22 shows how bop:Execution, bop:FeatureOfInterest, and bop:Property are
all linked to the resulting value by both a datatype property and an object property. Since
all those separate routes are rdfs:subPropertyOf, bop:hasSimpleResult, bop:hasResult, and
bop:isResultOf, one could simply query the results from those separate routes using one of
these super-properties. The bop:DataPoint-class could be used to create a reference to a
datapoint in a time-series database and is a subclass of bop:Result.
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Table 3 presents the class definitions of the upper ontology of BOP. The definitions
are composed by decomposing equivalent class definitions of the reviewed ontologies in
Section 3. These were gathered by using the rdfs:comment or dcterms:description of the
class.

Table 3. Class definitions of BOP.

Class Definition

bop:Property A measurable and intrinsic characteristic of a feature of interest.

bop:FeatureOfInterest An abstraction of a real-world phenomenon which could be
described in terms of its properties.

bop:Executor An agent that can implement a procedure to perform an
execution.

bop:Execution An act of carrying out a procedure by an executor on a property.

bop:Procedure A workflow, protocol, plan, algorithm, or computational method
specifying how to perform an execution.

bop:Result The outcome of an execution.

bop:Unit A particular quantity value that has been chosen as a scale for
measuring other quantities of the same kind.

bop:Database A collection of data.

The green class represents bop:Property, which is a measurable and intrinsic character-
istic of a feature of interest. It represents both static and dynamic properties. Properties
can be part of a bop:PropertySet. Properties can also be decomposed using the (transitive)
bop:hasSubProperty object property.

Properties are intrinsic to a bop:FeatureOfInterest, represented by the orange block.
The feature of interest (FOI) could be any real-world phenomenon. In practice, it will often
be used to represent elements, zones, or buildings. The generic definition allows for a wide
range of integration possibilities with other ontologies. FOIs are intrinsic to properties and
can never exist without them. Multiple properties can be linked to a single FOI.

Properties are acted on by a bop:Executor, represented by the yellow block. Executors
are agents that can implement a procedure to perform an execution. The executor class is
subclassed by a bop:Sensor and a bop:Actuator, which, respectively, observe or act on a
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property. The introduction of multifunctional devices (such as multisensors) requires the
introduction of a (transitive) bot:hasSubExecutor object property. It allows the description
of multiple executive functions of devices. Executors are typically hosted by something;
sensors could be hosted by a ceiling and radiators could be hosted by a wall. Bop:Platform
describes this host and should host at least one executor.

The execution performed by an executor is represented by bop:Execution, the pink
block. The execution is subclassed by bop:Observation (performed by a sensor) and
bop:Actuation (performed by an actuator). The execution class should be carefully used.
It is advised to limit its use for time-series measurements since they are best stored in
external time-series databases. However, for less-frequent executions, such as site surveys
observing the state of a construction or painting work to change the color of a wall, the class
comes in handy. Specific procedures implemented by the executor to make the execution
are described using bop:Procedure.

Results of a bop:Execution could be described as an IRI or a literal (Figure 22).
Level 1 describes the value of a bop:Property by using bop:hasSimpleProperty to link
bop:FeatureOfInterest to the result literal. Future extensions of BOP could create a mul-
titude of subproperties of bop:hasSimpleProperty to increase querying possibilities. Ex-
amples could be bop-ext:hasLength, bop-ext:hasThermalInsulance, or bop-ext:hasColor.
Level 2 uses the intermediate bop:Property and the bop:hasSimplePropertyState datatype
property, which increases querying possibilities. Level 3 adds an instance of bop:Result
that can be used to link provenance data related to the state of the property value. The
highly complex level 4 description integrates the bop:Execution to describe the process of
generating a property state.

As it is desirable to store high-frequency time-series data (earlier referred to as dynamic
properties) in external databases, the result class has been subclassed by bop:DataPoint.
It describes the point in a BMS system or other external database which represents the
time-series data. Three subclasses of bop:DataPoint were introduced, being bop:Input,
bop:Output, and bop:UserDefined. They represent common BMS vocabulary [45] and
allow for more complex queries related to monitoring and controlling the IEQ in buildings.
Each bop:DataPoint can be tagged with an ID using bop:hasID. This object property is an
rdfs:subPropertyOf bop:hasValue so that the IDs of externally stored dynamic properties
can be queried simultaneously with the values of static properties. The database could
be described using bop:Database and can contain multiple bop:DataPoints. The database
could be linked to an executor using bop:hasExternalDatabase.

Units of measure could be described as IRIs or literals, by using bop:hasUnit or
bop:hasSimpleUnit, respectively. It is recommended to use an IRI and also refer to classes
of specialist units of measure ontologies, such as QUDT or OM [125]. When results are
stored as literals, custom datatypes could be used [126]. Since the results of time-series
measurements stored in external databases are referred to as bop:DataPoint, which is a
subclass of bop:Result, bop:Unit could be linked to the datapoint. The unit only needs to
be stored once, reducing the latency of the time-series measurements. Similar to SOSA [89],
bop:Unit is linked to the result rather than the property. The argument of not linking the
unit to bop:Property is that multiple executions by multiple executors could be performed
on a single property, with possible variations in the unit of measure. The other option—
linking the unit to bop:Execution—would imply that an execution IRI is needed for every
time-series measurement.

4.1. Using BOP in Practice

Figure 23 shows how BOP could be instantiated to represent static and dynamic
properties in a real built-environment scenario. Using the sensor pattern and the static
properties pattern (documented at [127]), multiple properties with a different nature could
be represented. Other domain ontologies could be easily integrated; Figure 23 shows how
BOT was used to specify topological relationships. Those BOT relationships could be
created using the IFC-to-LBD converter [128] that converts IFC files to the RDF format.
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Figure 23. Instantiation of BOP.

4.1.1. Querying Static and Dynamic Properties

The shared structure of describing static and dynamic properties in BOP results in
concise queries with high practical applicability, as was required in CQ1. Listing 2 shows
how those queries could be used in practice. The query would result in an array of rooms,
the static and dynamic properties associated with those rooms, and their results.

Listing 2. Querying static and dynamic properties.
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4.1.2. Spatiotemporal Resolution

CQ5 requires the possibility of describing the spatiotemporal resolution of a property.
Listing 3 shows how the host of a sensor, its viewpoint, and their relationship could be
queried based on the data in Figure 23. Geometric information related to the host and the
viewpoint could further specify the spatial resolution of the measurement.

Listing 3. Querying the spatiotemporal resolution of a temperature measurement.
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External databases could be aligned with the linked building data using 

bop:Database and bop:DataPoint (Figure 25). The datapoint is a subclass of bop:Result, 
resulting in similar queries for static and dynamic properties, and increasing the flexibility 
of using those properties in complex algorithms. By aligning the database and datapoint 
with the linked data graph, applications using the data could query the database for each 
sensor and automatically create a corresponding API request to access the latest sensor 
measurement from the external database. The alignment could be created within the 
linked building data RDF file or in a separate alignment graph. 

4.1.3. System Control

Aligning different systems in buildings is essential for smart building control. The
generic definition of bop:Executor allows for the integration of a multitude of systems using
this class. Figure 24 presents the integration of a sensor and a radiator by linking them to
the same bop:Property node. The object property linking the executor and the property
describes how the executor influences the property. Tools can now query properties of an
FOI and directly find the related executors to stimulate actions (Listing 4), as was required
in CQ3. By describing the host of an executor, spatial context is added to the graph; not only
does the graph specify the feature of interest of a property, but it also specifies a viewpoint
from which an executor acts on this property.
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4.1.4. Database Alignment

External databases could be aligned with the linked building data using bop:Database
and bop:DataPoint (Figure 25). The datapoint is a subclass of bop:Result, resulting in
similar queries for static and dynamic properties, and increasing the flexibility of using
those properties in complex algorithms. By aligning the database and datapoint with the
linked data graph, applications using the data could query the database for each sensor and
automatically create a corresponding API request to access the latest sensor measurement
from the external database. The alignment could be created within the linked building data
RDF file or in a separate alignment graph.
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Listing 5 shows how a simple SPARQL query results in a property and its external
storage location. Rooms and properties could easily be filtered by reusing other ontologies
(e.g., quantitykind; see Listing 5). Listing 6 then uses this information to automatically
query the corresponding time-series data from InfluxDB. WHERE clauses and other filters
could also be created by using the SPARQL results. It fulfills the requirements of CQ2 and
CQ4.

Listing 5. Querying a property and its external storage location.

Buildings 2022, 12, x FOR PEER REVIEW 26 of 34 
 

 
Figure 25. Aligning dynamic properties with external databases. 

Listing 5 shows how a simple SPARQL query results in a property and its external 
storage location. Rooms and properties could easily be filtered by reusing other ontologies 
(e.g., quantitykind; see Listing 5). Listing 6 then uses this information to automatically 
query the corresponding time-series data from InfluxDB. WHERE clauses and other filters 
could also be created by using the SPARQL results. It fulfills the requirements of CQ2 and 
CQ4. 

Listing 5. Querying a property and its external storage location. 

PREFIX bop: <https://w3id.org/bop#> 
PREFIX bot: <https://w3id.org/bot#> 
PREFIX quantitykind: <http://qudt.org/2.1/vocab/quantitykind> 
SELECT ?property ?datapoint ?database 
WHERE { 
?room a bop:FeatureOfInterest, bot:Space . 
?room bop:hasProperty ?property . 
?property bop:hasPropertyState ?datapoint . 
?property a quantitykind:Temperature . 
?datapoint bop:isDataPointOf ?database . 
} 

Listing 6. Querying time-series data based on the SPARQL results. 

USE ?database 
SELECT ?property FROM ?datapoint WHERE ?property < 18 

4.2. Evaluation 
BOP is evaluated based on four evaluation criteria, namely, query efficiency, 

practical applicability, pattern efficiency, and extensibility. Figure 23 shows how a 
practical use-case could be modeled using BOP vocabulary. The various listings in Section 
4 show how simple, short SPARQL queries could be built based for this ontology, without 
the need for complex SPARQL constructs. The simplicity allows starting data modelers to 
create SPARQL queries themselves. All queries listed in this paper were tested in a local 
GraphDB environment using the OpenSmartHome dataset [40] (also presented in [129]). 
All queries were executed within 0.1 s (the smallest measurable query execution time in 
GraphDB). 

BOP is designed to integrate data for complex building performance algorithms and 
is based on state-of-the-art IEQ models and standards. Those methods were tested in a 
real-life use-case in earlier research [129]. The subclasses of bop:Result fit state-of-the-art 
BMS system architecture, allowing the integration of BIM and BMS. BOP is annotated 
using the dcterms and vann vocabularies. All classes and object properties are annotated 
using rdfs:label and rdfs:comment in both English and Dutch, consistently making use of 

Listing 6. Querying time-series data based on the SPARQL results.

Buildings 2022, 12, x FOR PEER REVIEW 26 of 34 
 

 
Figure 25. Aligning dynamic properties with external databases. 

Listing 5 shows how a simple SPARQL query results in a property and its external 
storage location. Rooms and properties could easily be filtered by reusing other ontologies 
(e.g., quantitykind; see Listing 5). Listing 6 then uses this information to automatically 
query the corresponding time-series data from InfluxDB. WHERE clauses and other filters 
could also be created by using the SPARQL results. It fulfills the requirements of CQ2 and 
CQ4. 

Listing 5. Querying a property and its external storage location. 

PREFIX bop: <https://w3id.org/bop#> 
PREFIX bot: <https://w3id.org/bot#> 
PREFIX quantitykind: <http://qudt.org/2.1/vocab/quantitykind> 
SELECT ?property ?datapoint ?database 
WHERE { 
?room a bop:FeatureOfInterest, bot:Space . 
?room bop:hasProperty ?property . 
?property bop:hasPropertyState ?datapoint . 
?property a quantitykind:Temperature . 
?datapoint bop:isDataPointOf ?database . 
} 

Listing 6. Querying time-series data based on the SPARQL results. 

USE ?database 
SELECT ?property FROM ?datapoint WHERE ?property < 18 

4.2. Evaluation 
BOP is evaluated based on four evaluation criteria, namely, query efficiency, 

practical applicability, pattern efficiency, and extensibility. Figure 23 shows how a 
practical use-case could be modeled using BOP vocabulary. The various listings in Section 
4 show how simple, short SPARQL queries could be built based for this ontology, without 
the need for complex SPARQL constructs. The simplicity allows starting data modelers to 
create SPARQL queries themselves. All queries listed in this paper were tested in a local 
GraphDB environment using the OpenSmartHome dataset [40] (also presented in [129]). 
All queries were executed within 0.1 s (the smallest measurable query execution time in 
GraphDB). 

BOP is designed to integrate data for complex building performance algorithms and 
is based on state-of-the-art IEQ models and standards. Those methods were tested in a 
real-life use-case in earlier research [129]. The subclasses of bop:Result fit state-of-the-art 
BMS system architecture, allowing the integration of BIM and BMS. BOP is annotated 
using the dcterms and vann vocabularies. All classes and object properties are annotated 
using rdfs:label and rdfs:comment in both English and Dutch, consistently making use of 

4.2. Evaluation

BOP is evaluated based on four evaluation criteria, namely, query efficiency, practical
applicability, pattern efficiency, and extensibility. Figure 23 shows how a practical use-case
could be modeled using BOP vocabulary. The various listings in Section 4 show how
simple, short SPARQL queries could be built based for this ontology, without the need
for complex SPARQL constructs. The simplicity allows starting data modelers to create
SPARQL queries themselves. All queries listed in this paper were tested in a local GraphDB
environment using the OpenSmartHome dataset [40] (also presented in [129]). All queries
were executed within 0.1 s (the smallest measurable query execution time in GraphDB).

BOP is designed to integrate data for complex building performance algorithms and is
based on state-of-the-art IEQ models and standards. Those methods were tested in a real-life
use-case in earlier research [129]. The subclasses of bop:Result fit state-of-the-art BMS sys-
tem architecture, allowing the integration of BIM and BMS. BOP is annotated using the dc-
terms and vann vocabularies. All classes and object properties are annotated using rdfs:label
and rdfs:comment in both English and Dutch, consistently making use of language tags.
Source documentation is openly available at https://github.com/alexdonkers/bop (ac-

https://github.com/alexdonkers/bop
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cessed on 13 July 2022), where anyone could contribute or reuse the ontology. By storing
data in their original format, BOP argues for less data mapping.

By integrating various levels of detail, the data modeler can choose how the result
of a property should be modeled. The conciseness of the graph is, therefore, variable and
fully based on the requirements of the data modeler. Based on the literature review, we
believe the best payoff between semantic expressivity and efficiency is achieved when
sensor data is stored in its native format, whereas a linked building data graph represents
the context of the sensor data. BOP was designed in such a way that a data modeler needs
to define this context only once, after which it could be used for every sensor measurement
individually, resulting in concise but semantically rich graphs. A feature of BOP is the rich
spatiotemporal resolution of data, which is obtained by separating the physical location of
the executors’ host and the feature of interest, adding a viewpoint to the data.

The lightweight upper ontology describes a generic data structure and is, therefore,
easily extensible in depth. This version of BOP presents two lower-level patterns, which are
a sensor and actuator ontology. Since the ontology is rather concise, it can also be extended
by other ontologies for specific use-cases. Various extensions were made, including an
extension to semantically describe database schemas (BOPDB [130]) and one for describing
IEQ standards and their parameters (BAO [131]). Since the ontology is designed based on
common design principles found in the literature review, many ontologies in Table 2 could
also extend BOP. We encourage extending the ontology with taxonomical vocabularies,
such as the buildingSMART Data Dictionary. Figure 23 shows how BOP could be extended
in practice, by integrating it with BOT and QUDT’s unit ontology. Alignment modules to
other ontologies have not been made. Janowicz et al. [89] warn that alignment modules
could introduce ontological commitments that are too strong, reducing the usability of the
ontology.

5. Conclusions

There is a clear need for better monitoring of our indoor environments. State-of-the-
art IEQ models require the integration of a wide range of heterogeneous data sources.
Currently, this process is cumbersome and requires too much knowledge and manpower.
Semantic web technologies can solve the heterogeneity issues. This requires an ontology
that integrates topological building information with static and dynamic properties to create
a homogeneous data environment that can be used for complex building performance
assessments.

A literature review was conducted to find the commonalities in semantic data models
related to IEQ from the IoT and BIM domains. Our pattern discovery approach visually
revealed common design patterns and best practices in state-of-the-art ontologies. We
concluded that the optimal ontology should uniformly integrate static and dynamic prop-
erties. By creating multiple levels of detail, the data modeler has the freedom to choose
the semantic complexity that fits the project best. The pattern discovery reveals a central
pattern of four classes (:Executor, :Execution, :FeatureOfInterest, and :Property) that are
commonly used. Ontologies stay flexible for future extensions by using generic class names
and definitions, and extending some of these generic classes (for example :Sensor and
:Actuator) increases practical applicability. Based on this literature review, we concluded
that an integrated model that semantically integrates static and dynamic properties with
topological building information is currently lacking.

Therefore, we designed the Building Performance Ontology (BOP) by combining the
common design patterns and best practices that were found in the literature review. It
contains a generic upper ontology and multiple lower-level ontologies designed for specific
use-cases. BOP excels in intuitiveness in both the resulting linked data structure and the
resulting SPARQL queries. Simple SPARQL constructs can be used to query semantically
rich information with an acceptable query execution time. The ontology has multiple levels
of detail, ensuring applicability for multiple use-cases by data modelers with different
preferences and levels of experience. A payoff between semantic expressivity and message
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payload was made by storing time-series data in external databases while describing the
context of these measurements in the graph. The lightweight upper ontology of BOP is
easily extensible in both horizontal and vertical directions, which was shown by integrating
it with BOT and QUDT and extending it with the BOPDB and BAO ontologies. Based on
some practical use-cases, we conclude that BOP fulfills the requirements of the competency
questions.

BOP enables a uniform integration of static and dynamic properties and could be
used to support a great variety of algorithms to model the indoor environmental quality
of a building. The data model could be used to integrate the heterogeneous IEQ-related
information from both the IoT and BIM domains. The resulting web of data could be used
for various use-cases in the IEQ-domain, including the assessment of thermal comfort,
visual comfort, acoustic comfort, and air quality [129]. By integrating IoT and BIM data,
BOP supports the transition towards semantic digital twins and strives to be the next step
toward automation of building management systems.

However, this research is ongoing. Near future developments will investigate the
following aspects. First, a better integration with BMS systems should be realized. BOP
has the potential to structure both input and output data in BMS systems and integrate
this data with building information models. However, BOP was designed from a BIM
perspective, and more knowledge from the BMS perspective is necessary to efficiently
integrate input and output points. Second, a better integration with the occupant should be
realized. A gap exists in the modeling of perceived IEQ and the integration of occupants,
their actions, opinions, and preferences could lead to closing this gap. Finally, practical
tools helping building managers and occupants to realize a higher IEQ should be created.
Instantiating BOP is still a manual practice, and converters that automate this process
would significantly improve the practical applicability of the ontology. Simultaneously,
generalized IEQ calculation tools should be developed which calculate the state of various
IEQ parameters based on linked data.
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