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a b s t r a c t 

Background: The clinical utility of late gadolinium enhancement (LGE) cardiac MRI is limited by the lack 

of standardization, and time-consuming postprocessing. In this work, we tested the hypothesis that a cas- 

caded deep learning pipeline trained with augmentation by synthetically generated data would improve 

model accuracy and robustness for automated scar quantification. 

Methods: A cascaded pipeline consisting of three consecutive neural networks is proposed, starting with 

a bounding box regression network to identify a region of interest around the left ventricular (LV) my- 

ocardium. Two further nnU-Net models are then used to segment the myocardium and, if present, scar. 

The models were trained on the data from the EMIDEC challenge, supplemented with an extensive syn- 

thetic dataset generated with a conditional GAN. 

Results: The cascaded pipeline significantly outperformed a single nnU-Net directly segmenting both the 

myocardium (mean Dice similarity coefficient (DSC) (standard deviation (SD)): 0.84 (0.09) vs 0.63 (0.20), 

p < 0.01) and scar (DSC: 0.72 (0.34) vs 0.46 (0.39), p < 0.01) on a per-slice level. The inclusion of the syn- 

thetic data as data augmentation during training improved the scar segmentation DSC by 0.06 ( p < 0.01). 

The mean DSC per-subject on the challenge test set, for the cascaded pipeline augmented by synthetic 

generated data, was 0.86 (0.03) and 0.67 (0.29) for myocardium and scar, respectively. 

Conclusion: A cascaded deep learning-based pipeline trained with augmentation by synthetically gen- 

erated data leads to myocardium and scar segmentations that are similar to the manual operator, and 

outperforms direct segmentation without the synthetic images. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Late gadolinium enhancement (LGE) cardiac MRI is the refer- 

nce standard for the non-invasive assessment of myocardial via- 

ility, and is widely used in clinical routine [1] . It has been shown

o accurately identify areas of myocardial infarction [2] , and the 

ize and transmurality of scar regions are important parameters 

o guide the management of patients [3] . Visual reporting of such 

arameters is user-dependent, and thus, the robust and accurate 

uantification of scar would be highly beneficial. If the quantifica- 

ion could be reliably performed automatically, it could also facil- 
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tate further adoption of LGE cardiac MRI in clinical practice, par- 

icularly in less specialized, low-volume centers. 

The standard approach to the quantification of LGE has been 

he use of a fixed intensity threshold value, usually relative to a 

eference region. The most common approaches segment scar as 

eing n (typically 5) standard deviations (nSD) above the mean in- 

ensity of a remote normal myocardium region or above half of 

he maximum value of a scar region (full width at half maximum 

FWHM)). To date, quantification has primarily been performed in 

esearch studies due to the time-consuming manual interaction 

nd lack of reproducibility between operators [4] . Advanced meth- 

ds for the thresholding of scar regions, that do not require manu- 

lly drawn reference regions, such as Otsu thresholding [5] , or fit- 

ing to expected distributions using expectation-maximization [ 6 , 7 ] 

ave also been proposed without achieving clinical adoption. In 

eneral, these intensity-based thresholding methods are subject to 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The proposed scar quantification pipeline. Firstly, a bounding box is detected around the heart, followed by myocardium segmentation. Subsequently, scar is seg- 

mented, if present, and used to compute the scar burden as a percentage of myocardial volume. 
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alse positives due to noise and imaging artifacts, and they do not 

ncorporate any spatial context in the thresholding. 

More recently, deep learning, using convolutional neural net- 

orks (CNNs), has become the state-of-the-art for cardiac MRI 

egmentation in a wide range of applications [8–17] , and it has 

lso been applied to LGE segmentation. Fahmy et al. demon- 

trated accurate scar volume quantification using a 3D U-Net in 

atients with hypertrophic cardiomyopathy [18] and Zabihollahy 

t al. proposed a cascaded pipeline which segments the left ven- 

ricle (LV) myocardium and scar in two steps using images from 

ultiple planes [19] . There has been further interest in the topic 

s a result of the open-source dataset made available as part of 

he automatic Evaluation of Myocardial Infarction from Delayed- 

nhancement Cardiac MRI (EMIDEC) challenge [20] , with several 

uthors investigating the use of cascaded pipelines [ 21 , 22 ] or the

ncorporation of prior information [23] to improve reliability. 

In this work, we developed and evaluated a cascaded deep 

earning pipeline for automatic myocardium and scar segmenta- 

ion and quantification in subjects with suspected acute myocar- 

ial infarction. In particular, we proposed a cascaded deep learn- 

ng pipeline, consisting of bounding box detection and myocardium 

egmentation, followed by scar segmentation, and we investigated 

he impact of each individual step on the performance pipeline. 

e further assessed the benefit of including synthetic images, gen- 

rated by a conditional generative adversarial network (GAN), in 

he training data (in addition to conventional data augmentation). 

oth the GAN-based synthetic data and the step of splitting the 

ask into simpler sub-problems are designed to overcome the chal- 

enge of the limited amount of training data, and it is hypothe- 

ized that both will lead to improved performance with the small 

mount of training data. 

. Materials and methods 

.1. Dataset 

The dataset from the EMIDEC challenge was used [20] . This 

onsists of the LGE cardiac MRI scans of 150 patients, out of which 

05 are pathological and 45 are normal. The data are divided into 

raining ( n = 100) and testing ( n = 50) sets by the challenge orga-

izers. The data acquisition was performed at the University Hos- 
2 
ital of Dijon (France) on 1.5T and 3T systems (Siemens Medical 

olution, Erlangen, Germany) with a T1-weighted phase sensitive 

nversion recovery (PSIR) sequence (TR = 3.5 ms, TE = 1.42 ms, 

I = 400 ms, flip angle = 20), performed 10 min after the adminis- 

ration of a gadolinium-based contrast agent (Gd-DTPA; Magnevist, 

chering- AG, Berlin, Germany), at concentration between 0.1 and 

.2 mmol/kg, during a breath-hold. Further details can be found in 

20] . The images were manually segmented, in consensus, by two 

xpert operators (a cardiologist with 10 years’ experience in car- 

iac MRI and a physicist with 20 years’ experience). For the pur- 

ose of this work, the scar and microvascular obstruction (MVO) 

egmentations are combined in one class label representing the to- 

al infarction area. 

.2. Cascaded pipeline 

As shown in Fig. 1 , the proposed cascaded pipeline consists of 

hree main steps: (1) the detection of a bounding box that en- 

ompasses the LV cavity and LV myocardium, (2) the segmenta- 

ion of the myocardium, and (3) the segmentation of scar. In this 

ork, deep learning models are trained sequentially to achieve 

ach of these steps. An ablation study is performed by removing 

teps in the pipeline to analyze their impact of the performance, 

nd the model performance with the inclusion of the syntheti- 

ally generated images is compared with that of a model without 

his data augmentation. The segmentation and computed volumes 

rom the automated analysis are compared to the manual quan- 

ification on the EMIDEC challenge test set. The trained models for 

oth segmentation and synthetic data generator are made available 

t https://github.com/cianmscannell/lge- quant- emidec , along with 

he generated synthetic data. 

.3. Bounding box 

The bounding box algorithm used is as proposed in Scannell 

t al. [12] . This first assumes that there is a fixed bounding box 

n the center of the image. A CNN is trained to predict, from a LGE

mage, the transformation of this proposed bounding box so that it 

overs the LV myocardium and cavity of the image. This is framed 

s a regression problem to predict four continuous values, the 2D 

ranslation of the center of the box and the scaling of the two dif- 

erent sides of the rectangular box. The proposed bounding box is 

https://github.com/cianmscannell/lge-quant-emidec
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f size 134 × 134 pixels, which is the mean size present in the 

raining set. Due to the shape of the LV, it is sufficient to predict

he bounding box on a slice in a basal location. This work uses the 

econd 2D image from the top of the stack to avoid images where 

he LV cavity and myocardium are not present. 

The CNN takes the original images, center-cropped or zero- 

added to a size of 256 × 256 pixels, as input. These input images 

re min-max normalized, using the 5th and 95th percentile of in- 

ensity values as the pseudo-minimum and maximum, respectively. 

he architecture consists of four convolutional layers, each layer 

ith two convolutions using 3 × 3 kernels followed by 2 × 2 max- 

ooling. These layers are followed by fully connected layers. Each 

ayer uses batch normalization and rectified linear unit (ReLU) ac- 

ivations, except the output layer which uses a linear activation. A 

atch size of 32 and L2 regularization on the convolutional kernel 

arameters was used with a weight of 0.0 0 01. The loss function, 

he mean squared error between the four predicted and ground- 

ruth translation and scaling values, was optimized with the use 

f an Adam optimizer and convergence was determined by early 

topping. Data augmentation was used, consisting of random com- 

inations of rotation, translation, blurring, scaling and noise added 

o the images. The parameters of the data augmentation are pro- 

ided in Supplementary Table 1. 

.4. Myocardium segmentation 

The segmentation of the myocardium is based on a nnU-Net 

odel, as described by Isensee et al. [24] . The model architecture 

nd training process are used as automatically configured by the 

nU-Net software. Briefly, the algorithm automatically optimizes 

he architecture and hyperparameters of a U-Net model based on a 

ngerprint of the training dataset. A 2D network is used with leaky 

eLU activations and instance normalization. The initial number of 

eature maps was 32 and doubled each layer until it reached a 

ize of 512. Stochastic gradient descent with Nesterov momentum 

 μ= 0.99) is used as the optimizer with an initial learning rate of 

.01. The loss function is the sum between the cross-entropy and 

ice loss, as is the default choice for the nnU-Net [24] . After a fixed

mount of 10 0 0 epochs, the network with the best validation set 

erformance is chosen. The algorithm also includes on-the-fly data 

ugmentation. The input is the cropped LGE image which is re- 

haped to 128 × 128 pixels, and normalized in the same way as 

escribed for the bounding box. 

Quality control, of the myocardium segmentations is performed 

n which connected component analysis was used to identify failed 

not closed) myocardium segmentations, which were then re- 

egmented with ten different augmented (by translation) bound- 

ng boxes. The 10 predictions are summed and the pixels that are 

redicted in the myocardium greater than k times are included in 

he final prediction, where k is the smallest number that yields 

 closed myocardium segmentation. If no closed myocardium is 

chieved in this manner, the original prediction is used. 

.5. Scar segmentation 

A second nnU-Net model is trained for the scar segmentation. 

he network input is a 64 × 64 pixel image, cropped according to 

he contour gravity center of the myocardium segmentation. The 

mage is also masked with the myocardium segmentation to set 

ntensity values outside the myocardium or LV cavity to 0. The 

yocardium values are normalized to a signal intensity range be- 

ween 0 and 1, using the 5th and 95th percentiles, as before. The 

V cavity is set to a fixed signal intensity value of 2.5. A further 

uality control step is used that removes small regions of pre- 

icted scar by removing regions that lead to a predicted scar-to- 
3 
yocardium volume ratio less than 3%, as scar sizes smaller than 

his are not feasible in this population. 

.6. GAN-based image synthesis 

The image synthesis module, as shown in Fig. 2 , is based 

n a ResNet-encoder coupled with a segmentation-conditioned 

AN that uses SPatially-Adaptive (DE)normalization layers (SPADE) 

25] throughout the generator architecture. The use of SPADE- 

ased conditional GANs for preserving the anatomy of the segmen- 

ations for cine cardiac MR image synthesis was investigated previ- 

usly by Abbasi-Sureshjani et al. [26] and Amirrajab et al. [27] and 

t was shown that providing multi-class labels to guide the SPADE 

enerator allows the synthesis of realistic images. The generator 

onsists of a series of the residual blocks with SPADE normaliza- 

ion, followed by nearest neighbor upsampling layers, as in [26] . 

he SPADE layers normalize the activations with a spatially-varying 

earned scale and bias that comes from the input segmentation 

ask. This is done to encode information about the input seg- 

entation in the generated image. In contrast to previous works, 

 LGE image was input to the ResNet-encoder to extract the style 

nd background anatomical information in the synthesis process. 

hese two steps allow the control of both the underlying anatomy 

nd the image appearance (style) of the synthetic image. The train- 

ng process used pairs of LGE style images with the corresponding 

round-truth segmentations, and is described in more details in 

27] . The architecture of the discriminator, the losses and training 

ettings are kept unchanged from the original work of Park et al. 

25] . 

After training, to generate new pairs of synthetic LGE images 

ith the trained generator, two strategies are used: (1) augmented 

abels, and (2) swapped labels. For the augmented labels, the seg- 

entation labels from the training set are augmented, by rotation 

nd morphological operations (parameters defined in Supplemen- 

ary Table 2), to create previously unseen shapes and positioning 

f scar, and input to the generator (shown in the purple box of 

ig. 2 ), and for the swapped labels, existing segmentation labels 

rom pathological patients are combined with style images from 

ormal patients, and vice versa, to create new patients (shown in 

he green box of Fig. 2 ). The augmentation of the scar segmenta- 

ions included rotation by a multiple of 60 °, elastic deformation, 

ilation and opening. The augmented and swapped labels are used 

o generate synthetic data for the myocardium segmentation train- 

ng, and only the augmented labels are used for the scar segmenta- 

ion as, due to the masking of the myocardium, changing the back- 

round (via the swapped style image) will have no effect. 

.7. Evaluation 

An ablation study was first performed, trained only with the 

eal patient data, to analyze the impact of the individual steps of 

he cascaded pipeline, by comparing the myocardium and scar seg- 

entation of: 

a) The full cascaded pipeline. 

b) Myocardium and scar segmentation in two steps, without the 

bounding box. 

c) Directly segmenting the myocardium and scar with one nnU- 

Net, with the bounding box. 

d) Directly segmenting the myocardium and scar with one nnU- 

Net, without the bounding box. 

e) The full cascaded pipeline trained with the GAN-based syn- 

thetic image data augmentation. 

Supplementary Fig. 1 shows a representation of the four meth- 

ds (a)–(d). As the cascaded nature of the pipeline can lead to the 
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Fig. 2. A flowchart of the synthetic image generation process. For inference, augmented segmentation labels are input to a trained conditional GAN, accompanied by a style 

image (red). The label maps are generated by swapping existing labels between pathological and normal subjects (green) and by performing morphological operations on 

scar labels (elastic deformation, rotation and dilation or opening) (purple). The generated synthetic data are then used as augmentation data for the cascaded pipeline. 

Fig. 3. The distributions of the DSC values for myocardium (purple) and scar (yellow) segmentations on the internal test set, for the five trained versions of the cascaded 

pipeline. These are (option (a)) the proposed full cascaded pipeline, (b) myocardium and scar segmentation in two steps, without the bounding box, (c) directly segmenting 

the myocardium and scar with one nnU-Net, with the bounding box, (d) directly segmenting the myocardium and scar with one nnU-Net, without the bounding box, and 

(e) the full cascaded pipeline trained with the synthetic data augmentation. The X mark indicates the mean value. 

4 
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Fig. 4. The GAN-based synthetic LGE images generated with a set of rotated and deformed input labels from a single patient (original LGE images and labels shown in the 

top row) for all slices apex (left) to base (right). 
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Table 1 

The mean and standard deviation (SD) DSC for the myocardium 

and scar segmentation with each of the model and training 

configurations. 

Myocardium Scar 

Mean SD Mean SD 

Option a 0.84 0.09 0.72 0.34 

Option b 0.79 0.15 0.68 0.37 

Option c 0.80 0.12 0.68 0.35 

Option d 0.63 0.20 0.46 0.39 

Option e 0.85 0.09 0.78 0.28 
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ropagation of errors, when an incorrect myocardium segmenta- 

ion is used to mask the input to the scar segmentation model, 

his effect was also studied. In particular, the increase in perfor- 

ance found when replacing the predicted myocardium segmenta- 

ion with the ground-truth in the cascaded pipeline was analyzed. 

econdly, the performance was tested by comparing the cascaded 

ipeline trained only with the real data (a) and a version with 

raining augmented by synthetic images (e), to assess the impact 

f adding synthetic data to the real dataset. In order to avoid the 

ossibly confounding effect of the cascaded pipeline, a direct one- 

tep segmentation model was also trained with and without the 

ynthetic data augmentation. 

These comparisons were performed on a randomly selected in- 

ernal testing set ( N = 20) split from the training set. This analy-

is was performed using the Dice similarity coefficient (DSC) met- 

ic on a per-slice level and the performance of models are com- 

ared with the Wilcoxon signed-rank test. The ability to classify 

lices as either having no scar or have significant ( > 15% of the 

yocardium) was also assessed, with and without the GAN-based 

ynthetic images. 

The final evaluation was performed with the full cascaded 

ipeline, augmented with the GAN-based synthetic data, the model 

ith the best performance on the internal test set, on the 50 

est subjects from the EMIDEC challenge, where the mean DSC, 

ausdorff distance (HD) and volume difference per-subject was re- 

orted. The automated scar quantification was further evaluated 

ith respect to the manual quantification using Pearson correlation 

nd Bland-Altman analyzes. We also test the accuracy of classify- 

ng patients as scarred or not. The segmentation labels for the test 

et are not available publicly but the evaluation of these metrics 

as performed by the challenge organizers. 

. Results 

.1. Cascaded pipeline 

The DSC values for both myocardium and scar between the 

anual and automatic segmentations, for the four versions of the 

ipeline on the internal test set, are shown in Fig. 3 (a)–(d). The 

roposed full cascaded pipeline (option (a)) had the highest DSC 

or both the myocardium (mean DSC (standard deviation (SD)): 
5 
.84 (0.09)) and scar (0.72 (0.34)) segmentations. This was signif- 

cantly higher than all other approaches including a single nnU- 

et directly segmenting both the myocardium and scar (option 

d): myocardium DSC: 0.63 (0.20), p < 0.01 and scar DSC: 0.46 

0.39), p < 0.01), the direct myocardium segmentation followed 

y scar segmentation (option (b): myocardium DSC: 0.79 (0.15), 

 < 0.01 and scar DSC: 0.68 (0.37), p = 0.02), and the two-step 

ipelines of bounding box followed by direct myocardium and scar 

egmentation (option (c): myocardium DSC: 0.80 (0.12), p < 0.01 

nd scar DSC: 0.68 (0.35), p < 0.01). These results are summarized 

n Table 1 . 

.2. GAN-based synthetic image data augmentation 

Fig. 4 shows GAN-based synthetic images generated from one 

eal patient by rotating, elastically deforming, and morphologically 

pening the original segmentation mask. The DSC values for the 

ull cascaded pipeline trained with the synthetic data are shown in 

ig. 3 (e). The mean (SD) DSC between the manual and automatic 

yocardium segmentation increased by 0.01 (from 0.84 (0.09) to 

.85 (0.09)) with the addition of the synthetic training data on 

he internal test set. The inclusion of the synthetic data for train- 

ng resulted in a 0.06 increase in the scar DSC (from 0.72 (0.34) 

o 0.78 (0.28)), as shown in Table 2 , a statistically significant dif- 

erence ( p < 0.01), as well as a decrease in the SD. Moreover, on

he internal test set, the inclusion of the GAN-based synthetic im- 

ges improved the classification of slices as scarred or not from 

7% (122/141) correct to 94% (132/141). The identification of slices 
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Table 2 

The mean (SD) DSC for the scar segmentation for both the cascaded pipeline and a single nnU-Net model with and without the 

GAN-based data augmentation. 

Without GAN-based synthetic images With GAN-based synthetic Images Difference p - value 

Cascaded pipeline 0.72 (0.34) 0.78 (0.28) 0.06 < 0.01 

Single nnU-Net 0.68 (0.35) 0.71 (0.33) 0.03 < 0.01 

Fig. 5. The segmentations of three representative patients selected from the test set, showing the LGE image and the predicted scar (red) and myocardium (blue) segmen- 

tations. It can be seen that in subject 1 (left), in the mid-slice of subject 2 (middle), and apex slice of subject 3 (right) scar is accurately identified by the models. However, 

for subject 2, the myocardium segmentation in the apical slice is inaccurate, and in the basal slice of subject 3 the LV outflow tract is incorrectly identified as scar. Note that 

the manual ground-truth for the test set is not publicly available. 
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ith significant levels of scar ( > 15% of the myocardium) increased 

rom 86% (49/57) to 97% (55/57). 

For the direct one-step segmentation the DSC is also increased 

rom 0.80 (0.12) to 0.84 (0.11) for the myocardium and 0.68 (0.35) 

o 0.71 (0.33) for scar (both p < 0.01). Replacing all the predicted 

yocardium segmentations with the manual ground-truth label 

nly gives a modest improvement in DSC for the scar segmenta- 

ion from 0.78 to 0.80, also on the internal test set. 

.3. Challenge test set 

The proposed cascaded pipeline trained with synthetic data 

ugmentation was evaluated on the EMIDEC challenge test set 

 N = 50 subjects). Fig. 5 shows segmentations for three representa- 

ive patients from the test set showing both good and bad perfor- 

ance (note that the ground-truth segmentations for the test set 

re not available for comparison). The mean (SD) DSC, HD and vol- 

me difference per-subject was 0.86 (0.03), 15.7 (11.9) mm and 11.5 

8.4) cm 

3 respectively for myocardium segmentation. 5 out of 358 

yocardium segmentations failed to generate a closed shape and 

ere identified by the quality control procedure, and a correction 

as attempted. Secondly, the model showed a mean (SD) DSC and 

olume difference between the manual and automatic scar regions 

f 0.67 (0.29) and 41.0 (5.8) cm 

3 per-subject, and the difference in 

car volume relative to the volume of the myocardium was 3.41% 

4.8%). Furthermore, the model classified patients as scarred or not 

ith an accuracy of 94% (47 out of 50 subjects). 

Fig. 6 compares the computed volumes for the automated and 

anual segmentations in a scatterplot, the Pearson correlation co- 

fficient is 0.96 and 0.94 for myocardium and scar, (a) and (b), re- 

pectively. Per-subject, Bland-Altman analysis on the LV myocardial 
6

olume (c) showed an agreement between the manual and auto- 

atic quantified volumes of the proposed cascaded pipeline with 

ias of 10.24 cm 

3 and limit of agreement 19.67 cm 

3 . Additionally, a 

ood agreement between the manual and the proposed automatic 

uantified scar volume with a bias of 2.74 cm 

3 and limit of agree- 

ent of 13.06 cm 

3 was shown (d). 

. Discussion 

In this work, two approaches are studied to learn from small 

atasets for the segmentation of scar from LGE cardiac MRI: the 

plitting of the task into smaller sub-problems and the use of syn- 

hetic data to increase the amount of available data. It is thought 

hat the simpler sub-problems can be solved more effectively 

ith the limited amount of available data and then applied in 

 cascaded pipeline to improve performance. In particular, a cas- 

aded model was proposed that used three consecutive neural net- 

orks to identify the left ventricle, delineate the left ventricu- 

ar myocardium and segment regions of myocardial infarction. The 

ipeline was trained based on manual segmentations of publicly 

vailable LGE cardiac MR images from the automatic Evaluation 

f Myocardial Infarction from Delayed-Enhancement Cardiac MRI 

EMIDEC) challenge. Additionally, a segmentation-conditional GAN 

as proposed that uses SPADE layers coupled by a ResNet encoder 

o synthesize realistic LGE images on given augmented labels, for 

he purpose of data augmentation. 

The proposed cascaded pipeline outperformed direct segmen- 

ation consistently in both the left ventricular myocardium and 

car segmentation by a mean DSC increase of 0.21 per-slice on the 

nternal test set. The three-step pipeline also improved over the 

ombinations of two-step pipelines. Furthermore, the performance 
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Fig. 6. The top row shows a scatterplot of the manual versus automatic per-subject segmentation volumes for the myocardium and scar segmentation ((a) and (b)) with the 

Pearson correlation coefficient (r) and line of best fit, with the slope reported. (c) and (d) shows the Bland-Altman analysis for the myocardium volume (c) and scar volume 

(d). 

w

D

r

m

i

t

w

c

m

a

c

w

m

r

i

i

o

p

p

i

s

o

s

fi

s

c

b

T

t

p

p

i

t

d

t

p

i

t

t

l

m

s

m

s

s

d

p

F

t

t

h

g

a

f

s

t

t

b

s

u

t

m

e

5

c

a

g

m

"

d

m

as improved by the synthetic image augmentation, with a mean 

SC increase of 0.06 for the scar segmentation. These reported DSC 

esults were comparable to the inter- and intra-observer agree- 

ent found by Lalande et al. [20] , intra-observer 0.84 and 0.76, 

nter-observer 0.83 and 0.69 for myocardium and scar segmenta- 

ion, respectively. The impact of the synthetic data augmentation 

as also studied without the potentially confounding effects of the 

ascaded pipeline. That is, for the direct segmentation of scar and 

yocardium using a single 2D nnU-Net, models were trained with 

nd without the synthetic data augmentation. As also found for the 

ascaded pipeline, for the direct segmentation the model trained 

ith synthetic data augmentation significantly outperformed the 

odel trained without the synthetic data. 

A potential disadvantage of the cascaded approach is that er- 

ors can be propagated through the steps of the pipeline so that 

f, for example, an error is made in segmenting the myocardium, 

t will impact the subsequent scar segmentation. To test the effect 

f this error propagation, the model for scar segmentation was ap- 

lied using the ground-truth myocardial segmentations and com- 

ared to using the predicted myocardium segmentations, on the 

nternal test set. There is a small increase in mean DSC for the scar 

egmentation from 0.78 to 0.80 indicating that the negative impact 

f the cascaded pipeline is minimal and the cascaded approach still 

ignificantly outperforms the alternatives. This result confirms the 

ndings of the original challenge, where cascaded pipelines were 

een to perform well [28] . 

Our mean myocardium (0.86) and infarction (0.67) DSC scores 

ompare favorably with the challenge results [28] , with the com- 

ined DSC scores only being outperformed by a single participant. 

his winning solution of Zhang reported a mean DSC of 0.88 for 

he myocardium and 0.71 for the infarction regions [22] . Zhang 

roposed a two-step system in which the coarse segmentation out- 

ut of an initial 2D model was then input to a further postprocess- 

ng 3D model to improve the 3D spatial consistency of the segmen- 

ations. Our proposed cascaded pipeline with GAN-based synthetic 

ata augmentation performs better than all other challenge par- 

icipants. For the purely 2D segmentation methods, our proposed 

ipeline represents a new state-of-the-art. Although it is not stud- 

ed in this work, an extra postprocessing step, similar to Zhang has 
7 
he potential to improve on this [22] . One of the typical disadvan- 

ages of using a 3D model in this application is that there are much 

ess 3D images for training than 2D slices, and our initial experi- 

ents with a 2.5D model did not improve results. However, as was 

hown in this work, it is possible to use synthetic images to aug- 

ent the training dataset, and this is a possible future line of re- 

earch to exploit the 3D nature of the data. 

The current work uses rotations with dilation and opening of 

car to augment the segmentation labels to input to the synthetic 

ata generator. This work could be extended to use more com- 

lex patterns of scar and increase the robustness of the model. 

or example, patients with hypertrophic cardiomyopathy (HCM) of- 

en have complex patchy scar patterns and this could be simulated 

o allow training with a synthetic cohort of HCM patients without 

aving to manually generate the training labels. Since the trained 

enerator synthesizes the images based on a given LGE style im- 

ge, different style images, from a difference acquisition sequence 

or example, could also be used to generate a more diverse training 

et. 

The thorough evaluation of the impact of the synthetic data in 

his work using a challenging dataset with varying levels of con- 

rast, noise, and artifacts indicates that the benefit is also likely to 

e more generally applicable to different applications and is also 

imilar to that found in previous studies [29–31] . In addition to the 

se of GAN-based synthetic data, an advantage can also be seen 

o a cascaded pipeline, where the overall task is split into more 

anageable sub-problems, and together these approaches can be 

xploited to lower the manual annotation burden of deep learning. 

. Limitations 

The major limitation of this work is that it used a homogenous 

ohort of selected patients, from the EMIDEC challenge. These im- 

ges were acquired at a single center, using scanners from a sin- 

le vendor and uniform imaging protocols. Therefore, the trained 

odel may not generalize to different clinical cohorts due to the 

domain-shift" (the varying levels of signal, noise and contrast, 

iffering scan planning, and diverse disease patterns). Although 

ethods are being developed to account with this [32] , in future 
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ork, the model would need to be tested on images from different 

atient cohorts, scanners, and centers prior to clinical deployment. 

Our approach of using a 2D model treats each imaging slice in- 

ependently and does not take advantage of the 3D relations be- 

ween the slices. Indeed, we observe suboptimal performance in 

he apical (e.g, Fig. 5 ) and basal slices, as is commonly found for

ardiac MRI segmentation (Campello et al., 2021), due to the more 

omplex anatomy, thinner myocardium in the apical slices or LV 

utflow tract in the basal slices. In future work, 3D or long axis 

nformation could be incorporated to constrain the segmentations 

o be more spatially consistent. Potential extensions of the GAN- 

ased image synthesis could also focus on generating more com- 

lex cases for training a more robust segmentation model.”

This work segmented the scar and MVO regions as only one 

egion of infarction and did not separate the MVO regions. The 

ipeline could be adapted, in future work, to consider the MVO 

egions separately. It also only focused on the identification of in- 

arctions and the pipeline could also be extended beyond the seg- 

entation to also classify patients’ disease [33] . This could poten- 

ially incorporate spatial information of the scar, as well as other 

elevant clinical biomarkers to improve the classification [28] . 

. Conclusion 

In a population of patients with suspected acute myocar- 

ial infarction, our results demonstrate that a cascaded deep 

earning-based pipeline trained with augmentation by syntheti- 

ally generated data leads to myocardium and scar segmentations 

nd quantitative volume values that are similar to the manual 

perator. The three-step cascaded pipeline was shown to signifi- 

antly outperform direct segmentation with a mean DSC increase 

f 0.26 per slice. Additionally, the inclusion of GAN-based synthetic 

mages as data augmentation further improved the performance 

nd yielded a further mean DSC increase of 0.06 per-subject for 

car segmentation. 
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