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1
General introduction

The aim of this chapter is to present a general overview of the topics discussed in this thesis.
First, the fields of femtomagnetism and ultrafast spintronics are introduced. Then, the most
relevant physical concepts are briefly reviewed, such as ultrafast demagnetization, laser-
induced spin transport, and all-optical switching. The corresponding sections include an
overview of the relevant theoretical descriptions, with a focus on the models that are the
basis of the work in this thesis. The final section includes an outline of the thesis and a brief
summary of the theoretical research presented in the main chapters.

1.1 Magnetism and spintronics

Magnetism is all around us, playing a visible role in modern society through appli-
cations such as electric cars, wind turbines, medical imaging, and data storage. In
the latter case, the recent developments in information technology drive the need
for nonvolatile and efficient ways to store binary data. Magnetic materials come
into play, since data can be imprinted within the orientation of tiny magnetic do-
mains. The most common example of a device that uses this technique is the hard
disk drive, where the data is written on a rotating magnetic disk, as schematically
depicted in Fig. 1.1(a). The inset shows the magnetoresistive read head and in-
ductive write head used for the sensing and control of the recorded magnetic data
[1, 2]. Due to the ever-growing amount of data, and the excessive energy usage of
the digital society, it is essential to search for innovative magnetic storage devices.
A key ingredient for this development is to better understand the control and de-
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2 General introduction

sign of magnetic materials. For that reason, magnetism remains a topic of ongoing
research, both from a fundamental and engineering perspective.

From a fundamental point of view, the dynamical connection between magnetism,
electricity, and light, was already well understood from 19th-century classical
physics. Nevertheless, the microscopic mechanism that creates the magnetic
property of materials remained unidentified until the development of Quantum
mechanics in the 20th century. It turned out that magnetism is closely connected
to the fundamental characteristics of the electron. Besides its negative electric
charge that is responsible for electricity, an electron carries an intrinsic angular
momentum known as ‘spin.’ The latter is associated with a tiny magnetic dipole.
In a ferromagnetic material,1 unpaired electron spins favor to be aligned and
collectively create magnetic domains. This is a result of the so-called exchange
interaction, as was explained by Werner Heisenberg in 1928 [3], and is of a purely
quantum mechanical nature.

As electrons play a fundamental role in ferromagnetism, it is clear that the knowl-
edge we have on electronics is a stepping stone for the development of innovative
magnetic technologies. Typically, electronics refers to the branch of physics and
technology that addresses the behavior and transport of electrons, specifically, as a
carrier of electric charge. In case the focus is on the spin degree of freedom of the
electron, the research field is referred to as spintronics. The latter addresses the
transport of spin, through so-called spin currents, and the connection to the local
magnetization dynamics. The most famous discovery in spintronics is Giant mag-
netoresistance (GMR), independently discovered by 2007 Nobel laureates Albert
Fert and Peter Grünberg in the eighties [5, 6]. GMR corresponds to the effect that
a spin valve structure consisting of two ferromagnetic metallic layers has a vary-
ing electrical resistance dependent on the relative magnetic orientation, as visually
represented in Fig. 1.1(b). Since the orientation can be sensitive to nearby magnetic
fields, GMR is implemented in the read heads of hard disk drives to translate the
magnetic domain structure to an electrical signal. Another essential discovery in
spintronics was the spin-transfer torque (STT) [7, 8], which corresponds to the ef-
fect that an injected spin current can manipulate the magnetization direction of the
absorption layer. The STT can be used as a writing mechanism in magnetic mem-
ory devices and is schematically depicted in Fig. 1.1(c). A current is sent through
a fixed magnetic layer and becomes spin polarized. Subsequently, the resulting net

1‘Ferro’ refers to iron, which is the most common example of this type of magnetic material.
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Figure 1.1: (a) Simplified schematic overview of the hard disk drive based on perpendicular
magnetic recording. The bottom part presents a side view showing the bits of data being
stored within the orientation of magnetic domains. (b) Giant magnetoresistance corresponds
to the effect where the parallel and antiparallel orientation of a magnetic spin valve structure
have a distinct electrical resistance. (c) Schematic overview of the spin-transfer torque. An
electric current is sent through a fixed magnetic layer (left) and becomes spin polarized.
Subsequently, the spin current exerts a torque on the perpendicular magnetic layer (right).
(d) Schematic representation of the racetrack memory. The magnetic domains carrying the
data are transported through the track by applying current pulses. (e) Femtosecond laser
pulses can be used to deterministically switch magnetic domains in multisublattice magnetic
materials such as GdFeCo. The figures are based on images in Refs. [1, 2, 4].

spin current exerts a torque on the secondary (perpendicular) magnetic layer and
effectively manipulates its magnetization direction.

A promising candidate for the next generation of spintronic devices is the so-called
magnetic racetrack memory [9]. A schematic representation is given in Fig. 1.1(d).
In this case, the data is stored on a magnetic track where the domains can be moved
by applying current pulses. The racetrack memory is expected to be beneficial in
terms of energy efficiency and data density, without the requirement of mechan-
ically moving parts. To pave the way towards a fully functional device with an
optimized efficiency, current research focuses on the various aspects of (chiral) mag-
netic domain structures, current-induced domain-wall motion, and methods for the
readout and control of the magnetization. In direct connection with the work pre-
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sented in this thesis, one proposed mechanism for future data-writing techniques
is the switching of the magnetic domains with ultrashort laser pulses [10–12], as
schematically depicted in Fig. 1.1(e). This so-called all-optical switching was first
demonstrated in GdFeCo alloys [10], a material that consists of multiple magnetic
subsystems. The switching mechanism is very fast compared to conventional meth-
ods and is one of the various discoveries that show the relevance of using ultrashort
laser pulses as a tool to control magnetic order.

The theoretical research discussed in this thesis focuses on the intriguing magnetic
phenomena that are observed when a magnetic system is excited with an ultrashort
laser pulse. The corresponding field of research is typically called femtomagnetism,
where its naming refers to the duration of the laser pulse. A defining moment in
the field was the experimental observation of the subpicosecond quenching of the
magnetization, a process now known as ultrafast demagnetization [13]. Another in-
teresting phenomenon is that the pulsed-laser excitation scheme results in the rapid
generation of spin currents [14–16], thus reaching the regime of ultrafast spintron-
ics. The idea is that understanding how to control magnetism on the timescale of a
picosecond, which corresponds to one trillionth of a second, paves the way towards
future magnetic technologies that are faster and more efficient than the conven-
tional devices. In the following sections, we sum up the experimental pinnacles
of femtomagnetism and discuss the state-of-the-art theoretical approaches. Special
attention is given to the theoretical models directly related to the work presented in
the research chapters of this thesis.

1.2 Ultrafast demagnetization

The field of femtomagnetism emerged in the late nineties, following the pioneer-
ing experiments by Beaurepaire et al. [13]. The study involved the excitation of a
Nickel thin film with an ultrashort laser pulse of 60 femtoseconds. The authors
were able to probe the response of the magnetization on a subpicosecond timescale.
The main result is presented in Fig. 1.2, showing that the remanent magnetization
is quenched in less than a picosecond. This was a very surprising result at the
time, as it was not known that the magnetization could be manipulated on such a
short timescale. Despite more than 25 years of fundamental research on this phe-
nomenon, the microscopic origin of the observed ultrafast demagnetization is not
completely understood and remains heavily debated.
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Figure 1.2: The famous measurements of ultrafast demagnetization as published by Beau-
repaire et al. [13]. The plot shows the remanent magnetization as a function of time for a Ni
thin film that is excited with a femtosecond laser pulse at ∆t = 0.

Although identifying the microscopic magnetic processes at a subpicosecond
timescale was an unprecedented challenge, Beaurepaire et al. managed to intro-
duce a phenomenological description that could adequately model the observations
[13]. The latter was inspired by the two-temperature model, which describes the
heating of a (nonmagnetic) metal by laser-pulse excitation [17]. The extension
to ferromagnetic metals is known as the phenomenological three-temperature
model (3TM). It describes three interacting subsystems, each in internal thermal
equilibrium, the electrons with temperature Te, the phonons (lattice vibrations)
with temperature Tp, and the spins with temperature Ts. The electron system
is assumed to absorb the laser-pulse energy. Subsequently, the excess energy
is redistributed between the subsystems. A schematic overview of the 3TM is
given in Fig. 1.3(a). Furthermore, an example calculation is presented in Fig.
1.3(c), showing the transient response of Te (blue), Tp (gray), and Ts (red), as a
function of time after laser-pulse excitation at t = 0. Intuitively, the laser-induced
heating leads to a partially quenching of the magnetization through an increase of
thermal fluctuations in the magnetic system, modeled by a transient increase of
the spin temperature. Despite that the 3TM can be well fitted to the experiments,
it contains numerous free parameters and does not provide a full explanation of
the microscopic processes that lead to the loss of spin angular momentum on a
subpicosecond timescale.

Over the course of the past decades, various microscopic theories have been pro-
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Figure 1.3: Two examples of models that describe ultrafast demagnetization. (a) The
three-temperature model (3TM) describes the energy exchange between three subsystems,
parametrized by the electron temperature, phonon temperature, and spin temperature. (b)
The microscopic three-temperature model (M3TM) describes the magnetization dynamics
driven by spin-flip electron-phonon scattering. (c) Example calculation using the 3TM. The
plot indicates the three temperatures as a function of time after laser-pulse excitation at t = 0.
The transient increase of the spin temperature Ts is associated with the decrease of the mag-
netization. (d) Example calculation using the M3tM. The plot indicates the solution to Eq.
(1.1), giving the magnetization as a function of time after laser-pulse excitation at t = 0, and
showing its subpicosecond quenching. The figures are based on images in Refs. [4, 13, 18].

posed to explain ultrafast demagnetization. Typically, the theories can be catego-
rized in three groups depending on the physical ingredients [4, 19, 20]: (i) the direct
coherent interaction between the laser pulse and the spin degree of freedom [21, 22],
(ii) local spin dynamics as triggered by laser heating or excitation [13, 18, 23–38],
and (iii) nonlocal transfer of angular momentum such as superdiffusive spin trans-
port [39]. Typically, the direct processes from category (i) are assumed to play a
minor role. One naive argument can be that the dominant magnetization dynamics
happens on a timescale larger than the duration of the laser pulse. An additional
argument is that it has been shown experimentally that the demagnetization is not
affected by the pump helicity [40], i.e., the direct transfer of angular momentum
from the photons to the ferromagnet is expected to be negligible and can not be the
main driving force for ultrafast demagnetization.

The second category focuses on the local spin dynamics indirectly triggered by exci-
tation of the electronic system [13, 18, 23–38]. The resulting magnetization dynamics
can be calculated within various theoretical models. Examples include the atomistic
Landau-Lifshitz-Gilbert (LLG) equation [24, 41], the Landau-Lifshitz-Bloch (LLB)
equation [27, 30, 35], Time-dependent density functional theory [37], and multi-
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ple other implementations. Microscopically, exciting the electron system yields an
increased rate of various scattering processes that may involve spin flips, such as
electron-phonon scattering [18, 30], electron-magnon scattering [25, 31, 36, 42], and
electron-electron scattering [26]. The general consensus is that multiple types of
those spin-flip scattering processes contribute to the observed large demagnetiza-
tion rates [19, 34, 43]. Moreover, it has been claimed that it is required to implement
a modified electronic band structure [44, 45], including a dynamical exchange split-
ting that responds to the changed magnetization [32, 33, 36, 44, 46]. The latter is
typically described by a thermodynamical approach where, besides an increased
electron temperature, the equilibration of the spin-dependent chemical potentials
plays a critical role [29, 33, 36].

In this thesis, we repeatedly make use of the microscopic three-temperature model
(M3TM) [18]. A schematic overview of this description is given in Fig. 1.3(b). In
the M3TM, it is assumed that the demagnetization process is driven by Elliott-
Yafet electron-phonon scattering [18, 23]. Generally, the Elliott-Yafet mechanism
refers to the fact that in the presence of spin-orbit coupling any scattering event
involving electrons has a nonvanishing probability to result in an effective spin flip
[26, 47–53]. In that scenario, Elliott-Yafet electron-phonon scattering enables the
demagnetization process, since it provides a channel for the loss of spin angular
momentum. The scattering rate is typically calculated using Fermi’s golden rule. In
the case of a spin one-half system, the dynamics of the normalized magnetization
m is described by the well-known formula [18]

dm
dt

= Rm
Tp

TC

[
1−m coth

(
mTC

Te

)]
, (1.1)

where TC corresponds to the Curie temperature, and R is a coefficient determined
by the electron-phonon scattering rate and spin-flip probability [18]. To model the
laser-induced magnetization dynamics, the response of the temperatures Te and Tp

is typically calculated using the original two-temperature model. Subsequently, Eq.
(1.1) is solved for m. An example calculation is presented in Fig. 1.3(d), showing
the normalized magnetization m as a function of time after laser-pulse excitation at
t = 0. The plot represents a typical demagnetization curve in accordance with the
experiments (e.g., Fig. 1.2). As it is assumed that this process is driven by the Elliott-
Yafet mechanism, which originates from spin-orbit coupling, the lost spin angular
momentum is eventually transferred to the lattice degrees of freedom [23, 26]. This
transfer has recently been observed experimentally [54, 55]
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Figure 1.4: (a) Schematic representation of spin waves, where the arrows indicate the spin
at a lattice site. Spin waves (magnons) correspond to collective spin excitations, and yield a
decrease of the net spin of the system compared to the ground state. (b) Schematic overview
of the model for ultrafast demagnetization based on electron-magnon scattering. The latter
transfers angular momentum between the itinerant spin system and the magnon system. In
gray, we note the s-d model terminology and an eventual coupling to the phonon system.
(c) Example calculation of ultrafast demagnetization driven by electron-magnon scattering.
The red curve indicates the magnetization as a function of time after laser-pulse excitation
at t = 0. (d) The spin accumulation generated within the itinerant spin system. The inset
indicates the distribution of the spin up and down electrons, where the spin accumulation
µs is defined as the difference in chemical potential [36].

An alternative theoretical approach that plays an important role in this thesis, is
based on the s-d interaction [31, 56–58]. It describes the coupling between local and
itinerant spin degrees of freedom.2 When the system is rapidly heated, the s-d inter-
action enables the spin transfer from the relatively localized d spins to the itinerant s
electrons and drives the (local) demagnetization process. Typically, this process re-
quires additional spin dissipation channels that efficiently remove the built-up spin
accumulation from the itinerant system [36, 56]. The framework of the s-d model
was originally applied to describe the laser-induced spin dynamics in semiconduc-
tors [56], and ferrimagnetic alloys [58]. For ferromagnetic transition metals, the
validity of the s-d model is less pronounced due to the absence of a clear separation
of ‘local’ 3d and ‘nonlocal’ 4s electrons. Hence, the s-d model should be interpreted
as a phenomenological treatment of the effective local and nonlocal spin degrees of
freedom. As discussed in this thesis, the s-d model is of particular interest, since it
provides a transparent and simple description to qualitatively address the relation
between ultrafast demagnetization and laser-induced spin transport.

A different view on the s-d interaction, that better suits the magnetic properties of

2Depending on the specific material, the naming should actually refer to coupling of s, p, d or f
electrons.
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transition metal ferromagnets, is based on taking into account magnon excitations.
To clarify, a magnon corresponds to the quantum of a collective ‘spin-wave’ exci-
tation. The creation of a magnon yields a decrease of the net spin of the magnetic
system, as schematically depicted in Fig. 1.4(a). Importantly, the abovementioned
s-d interaction leads to electron-magnon scattering processes. When the magnet is
heated, electron-magnon scattering results in an increase of the magnon density, i.e.,
a decrease of the magnetization [31, 36]. A schematic overview of the correspond-
ing model for ultrafast demagnetization is presented in Fig. 1.4(b), where the dark
arrow indicates the transfer of spin angular momentum through electron-magnon
scattering processes. A typical calculation of the laser-induced magnetization dy-
namics is depicted in Fig. 1.4(c). The latter shows the magnetization as a function
of time after laser-pulse excitation at t = 0. Simultaneously, a spin accumulation is
built up in the itinerant spin system, which corresponds to a spin-split chemical po-
tential µs = µ↑− µ↓ and is plotted in Fig. 1.4(d) as a function of time. This approach
was introduced by Tveten et al. [36], and its importance will be discussed in more
detail in the following section about spin transport. Finally, we note that in the case
that magnon-phonon coupling is taken into account, this approach can produce a
microscopic equivalent of the original three-temperature model [13], where the pre-
viously introduced spin temperature corresponds to the magnon temperature of an
instantaneously thermalized magnon system [31, 59].

Up to this point, we only discussed the models based on the local spin dynamics.
Another possible mechanism for ultrafast demagnetization in a magnetic thin film
is the loss of spin into adjacent metallic layers, driven by spin transport [39, 60].
Quantifying the relative significance of local and nonlocal spin processes is one of
the major challenges of femtomagnetism. Some experiments showed that it can not
be solely spin transport that drives the rapid quenching of the magnetization, e.g.,
by comparing the demagnetization rates for samples with respectively an insulating
or conducting substrate [61]. Nevertheless, it is widely accepted in literature that
both local spin dynamics and spin transport can significantly contribute to ultrafast
demagnetization [60, 62, 63], where the relative importance strongly depends on the
specific magnetic system and its environment. The physical origin of laser-induced
spin transport, and its role in femtomagnetism in general, are discussed in the next
section.
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1.3 Laser-induced spin transport

The first evidence of laser-induced spin transport was found in 2008 by Malinowski
et al. [14]. The authors probed the magnetization dynamics of a collinear magnetic
heterostructure, consisting of two out-of-plane magnetic layers with a conductive
spacer layer in between. A comparison of the demagnetization rate for the parallel
and antiparallel configuration was carried out. The results are shown in Fig. 1.5(a),
where the inset gives a schematic overview of the collinear system and the specific
configurations. The red and blue lines indicate the magnetization as a function of
time after laser-pulse excitation at t = 0, for the parallel (red) and antiparallel (blue)
configuration, respectively. The clear difference in the demagnetization rate was
attributed to the presence of interlayer spin transport, which provides an additional
channel for spin angular momentum transfer.

Optically-induced spin currents provide a potential tool to efficiently control the
magnetic orientation within multilayered spin structures. For instance, experiments
in noncollinear magnetic heterostructures showed that the laser-induced spin cur-
rents exert a spin-transfer torque onto the magnetization of a secondary magnetic
layer [64, 65]. Interestingly, the absorption layer is excited inhomogeneously due
to the short penetration depth of the injected spins, leading to the generation of
standing spin waves [66, 67]. The particular magnetic structure and the spin-wave
excitation scheme are visually represented by the insets in Fig. 1.5(b). This phe-
nomenon was demonstrated experimentally by multiple groups [66, 67], and one
of the measurements is presented in the main part of Fig. 1.5(b). The plot shows
the magneto-optical signal determined by the transverse magnetization in the top
region of the in-plane layer, given as a function of time after laser-pulse excita-
tion. The oscillatory characteristics indicate the presence of coherent standing spin
waves. Specifically, the homogeneous precession (10.23 GHz) and the first normal
mode (0.55 THz) are clearly observed.

Although the abovementioned experiments proved the existence of laser-induced
spin transport, they do not give direct information on the temporal profile of the
spin current. The latter can be probed by using THz spectroscopy [68–70]. Fig-
ure 1.6(a) shows an example, and corresponds to very recent measurements [70].
The experiments were performed using three types of magnetic heterostructures,
all containing a transition metal ferromagnet and a platinum layer. Figure 1.6(b)
gives a schematic representation of the magnetic system, including the injected
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Figure 1.5: (a) The measurements by Malinowski et al. [14]. The plotted magneto-optical
signals show the distinct demagnetization rates of a parallel (red) and antiparallel (blue) con-
figuration of a collinear magnetic heterostructure. Here, t indicates the time after laser-pulse
excitation. The observed different rates indicate the presence of interlayer spin transport.
The inset shows a schematic overview of the two configurations. (b) The experimental re-
sults of Lalieu et al. [67], indicating the excitation of THz standing spin waves. The left inset
shows the particular system, corresponding to a noncollinear magnetic heterostructure. The
presented magneto-optical signal gives the out-of-plane magnetization of the top layer and
is plotted as a function of time after laser-pulse excitation. The right inset indicates the spin-
wave excitation mechanism. The incoming spins are absorbed near the interface, resulting in
the excitation of both a homogeneous precession (10.23 GHz) and a first-order standing spin
wave (0.55 THz). The figures are adapted from Refs. [14, 67].

spin current js(t). In Fig. 1.6(a), the blue lines indicate the temporal behavior of
the injected spin current as a function of time after laser-pulse excitation at t = 0,
and clearly show the ultrashort transient behavior of the spin-current pulses. The
red curves indicate the derivative of the magnetization for the specific magnetic
layers. Importantly, the figure indicates that the temporal profile of spin current
and the derivative of magnetization are closely connected. The latter is an impor-
tant observation in relation to identifying the underlying microscopic mechanism
of optically-generated spin currents. However, it does not exclusively point to one
specific theory and can be interpreted with multiple models [36, 39, 65, 70–72].

Similar to ultrafast demagnetization, the physical origin of laser-induced spin trans-
port is not yet unanimously identified. A commonly used theoretical approach for
laser-induced spin currents is based on the model for superdiffusive spin trans-
port [39]. The laser pulse generates a population of highly energetic electrons that
through a spin-dependent excitation rate and mobility yield spin-polarized hot elec-
tron currents. Because of the generated cascades of secondary hot electrons, it is
an efficient scheme of spin-current generation [39, 73]. This characteristic transport
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Figure 1.6: (a) THz spectroscopy experiments indicating the relation between the spin cur-
rent and the demagnetization in three types of magnetic heterostructures (given in the figure),
as presented by Rouzegar et al. [70]. The blue lines indicate the spin current, and the red
lines correspond to the temporal derivative of the magnetization, both plotted as a function
of time t after laser-pulse excitation at t = 0. (b) A schematic overview of the corresponding
magnetic heterostructure, showing the demagnetization in the ferromagnetic layer (blue) and
a spin current js(t) flowing into the Pt layer (gray). Figure (a) is taken from Ref. [70].

type is dubbed ‘superdiffusive’, since the corresponding mean-free path qualifies
between the diffusive and ballistic regime.

Another recently supported view is related to the results shown in Fig. 1.6(a), the
close connection between the spin current and the change of the magnetization.
Choi et al. [65] proposed that the source of the laser-induced spin currents is directly
related to the temporal derivative of the magnetization. The authors performed
experiments where they simultaneously probed the magnetization in a Co thin film
and the built-up spin accumulation in an adjacent Cu layer. The measurements were
compared to a calculation using the spin diffusion equation, including a source term
proportional to the derivative of the (experimentally-retrieved) magnetization. The
calculated spin accumulation was in fair agreement with the experiments.

The choice of this spin source is motivated by the conservation of angular momen-
tum, assuming that the spin loss during the local demagnetization process is con-
verted to itinerant spins [65]. This coupling between local and nonlocal spin degrees
of freedom is clearly related to an s-d type of interaction, as discussed in the previ-
ous section. In that sense, the authors claimed that laser-induced spin transport is
governed by local electron-magnon scattering processes as a spin source [65]. The
source term was later confirmed by a microscopic calculation performed by Tveten
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et al. [36], who derived the rate equation describing the temporal derivative of the
spin accumulation as a result of bulk and interfacial electron-magnon scattering. A
typical calculation of the bulk contribution was presented in the previous section,
in Fig. 1.3(d), showing the bipolar transient behavior of the generated spin accumu-
lation. The qualitative similarities between the latter and the measurements in Fig.
1.6(a) support the view that the local accumulation of spin is possibly the dominant
driving force for ultrafast spin transport. However, it should be noted that these ob-
servations, including the direct relation between the spin current and the derivative
of the magnetization, could be demonstrated within other theoretical approaches
[39, 70].

The third type of models for laser-induced spin transport is related to the spin-
dependent Seebeck effect [74, 75]. It describes the mechanism in ferromagnetic sys-
tems that thermal gradients in the bulk, or across an interface, generate a net spin
current carried by conduction electrons. In case an instantaneously thermalized
electron system is assumed, the spin current is directly proportional to the temper-
ature gradient. Obviously, heating through laser-pulse excitation creates such an
imbalance in the thermal state of the system. It is shown that the contribution of
the spin-dependent Seebeck effect to laser-induced spin transport is relatively small
in the subpicosecond regime, however, it can be significant on the timescale of a
few picoseconds [74]. At short timescales, the nonthermal nature of the hot electron
distribution function is proposed to play an important role, and yields the so-called
nonthermal spin-dependent Seebeck effect [75]. Here, the spin current stems di-
rectly from a significant difference in the interfacial transmittance of majority and
minority hot electrons [75].

Some of the theoretical interpretations discussed in this chapter, especially the
mechanism related to electron-magnon scattering, provide a complete picture of
local and nonlocal spin dynamics in laser-excited magnetic heterostructures. Nev-
ertheless, a joint theoretical description of ultrafast demagnetization and laser-
induced spin transport has not been fully carried out and is one of the main topics
of this thesis. Here, an additional goal is to investigate systems that include a fer-
rimagnetic component. These materials are exceptionally interesting, as they allow
the magnetization direction to be controlled with femtosecond laser pulses. In the
following section, we focus on this process in detail and shortly discuss the inter-
play with laser-induced spin transport.
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Figure 1.7: (a) The element-specific time-resolved measurements of all-optical switching in
GdFeCo, as published by Radu et al. [11]. The plotted signals represent the magnetization
of Gd (red) and Fe (blue), as a function of time after the laser-pulse excitation. The gray area
indicates the temporal profile of the laser pulse. The inset gives a simplified representation
of the microscopic structure of the GdFeCo system, showing the antiparallel orientation of
the Gd (red) and FeCo (blue) magnetic sublattices. Taken from Ref. [11].

1.4 All-optical switching

The previous sections already showed the versatility of using femtosecond laser
pulses as a tool to manipulate magnetic order. The final example we discuss in
this introductory chapter is that ultrashort laser pulses can induce magnetization
reversal in ferrimagnetic materials. This so-called all-optical switching (AOS) was
first observed in ferrimagnetic GdFeCo alloys by Stanciu et al. [10]. Although it
was originally believed that circularly polarized laser pulses were required, it was
later demonstrated that the use of a linearly-polarized pulse is sufficient for deter-
ministically switching the magnetization [11, 12]. Surprisingly, the results indicate
that the magnetic order in GdFeCo can be toggled with ultrafast heating as the
only stimulus. It is obvious that such a simple and efficient mechanism for con-
trolling magnetization is interesting from a technological point of view. For that
reason, single-pulse AOS is one of the most popular themes of recent research in
femtomagnetism.

A breakthrough in the field was obtaining the element-specific time-resolved mea-
surements of AOS in GdFeCo alloys, as presented by Radu et al. [11]. The result
is depicted in Fig. 1.7, where the inset presents a schematic representation of the
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equilibrium state of ferrimagnetic GdFeCo. The material consists of two magnetic
sublattices that are antiferromagnetically coupled. The main figure indicates the
element-specific magnetization as a function of time after laser-pulse excitation.
Upon excitation, the two sublattices demagnetize at distinct rates. The Fe mag-
netization reverses rapidly and crosses zero within a picosecond, resulting in a
transient ferromagnetic state. Subsequently, the Gd magnetization changes sign
around 1.5 ps. Ultimately, the combined system remagnetizes and reaches the new
(reversed) equilibrium state.

The element-specific measurements elucidated the essential physical properties of
the switchable material, such as the antiferromagnetically coupled magnetic sub-
lattices and the distinct demagnetization rates. This insight helped to develop the
theoretical models for the underlying physical mechanism. A phenomenological
theoretical framework was proposed by Mentink et al. [76, 77]. The authors claimed
the essential role of the antiferromagnetic exchange and the resulting intersublattice
transfer of angular momentum. The latter has been implemented within a micro-
scopic approach by Schellekens et al. [78], by introducing exchange scattering pro-
cesses in a multisublattice extension of the microscopic three-temperature model
[78]. Other successful theoretical methods include the atomistic Landau-Lifshitz-
Gilbert equation [79–84], and the Landau-Lifshitz-Bloch equation [85, 86], applied
for the ferrimagnetic systems. A different approach was proposed by Gridnev et al.
[58, 87, 88], and involves the s-d exchange interaction. Here, the model describes
two independent local spin systems that can exchange angular momentum with a
single itinerant spin system. The combination of the s-d exchange and efficient spin
dissipation to the lattice yields an adequate pathway for switching a ferrimagnetic
alloy.

From an engineering point of view, it is essential to search for the optimal mate-
rial for the integration of AOS in future data storage devices. Single-pulse AOS
has been demonstrated in various material systems such as GdFeCo alloys [10, 11],
Co/Gd bilayers [89], Co/Tb multilayers [90], and Heusler alloys [91]. Note that we
only listed the materials in which helicity-independent single-pulse AOS is demon-
strated, meaning that we do not discuss the helicity-dependent variant [92]. Al-
though the latter is interesting in itself, it is beyond the scope of this thesis. Sim-
ilarly, single-pulse AOS in Heusler alloys is not discussed in detail. We should,
however, mention its relevance for spintronic applications [91].

Although the materials that allow single-pulse AOS are mostly based on transition-
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metal and rare-earth components, the precise composition and structure strongly
affect the applicability of the specific system. For instance, the ferrimagnetic alloys
are only switchable in a small concentration range near the magnetization compen-
sation point and thereby require a specific composition [93, 94]. On top of that,
Co/Gd and Co/Tb stacks are more practical in terms of the fabrication process and
tuning the precise magnetic properties of the systems. Other factors to take into
account are the minimal stable (all-optically written) domain size and the achiev-
able domain wall velocity. In the case of the size of the domains, the use a Tb
component is favorable [90, 95]. On the other hand, in the Gd-based systems, both
for alloys [96, 97], and recently multilayers [98], experiments on current-induced
domain-wall motion demonstrated relatively high velocities in the order of kilo-
meters per second. In that sense, multilayers including Co/Gd components are a
promising candidate for the integration of single-pulse AOS in a racetrack memory
device [99]. Hence, it is not a coincidence that these material systems are studied
theoretically in this thesis.

Finally, recent experiments show fascinating physics regarding laser-induced spin
transport in magnetic heterostructures that include a ferrimagnetic layer. For in-
stance, Iihama et al. [100, 101] showed that in [Co/Pt]/Cu/GdFeCo stacks the ferro-
magnetic layer ([Co/Pt]) can be indirectly switched by exciting the multilayer with
a single laser pulse. Here, the laser pulse toggles the GdFeCo layer magnetization
and simultaneously generates an interlayer spin current. The switching of the ferro-
magnetic Co/Pt layer arises from the combination of its ultrafast demagnetization
and the absorbed interlayer spin current [100, 102, 103]. Similar experiments were
performed in GdFeCo/Cu/GdFeCo stacks [104], showing that the interlayer spin
transport strongly affects the requirements for switching the individual ferrimag-
netic layers. Hence, tuning the composition of magnetic multilayers is an essential
advantage and can be used to functionalize the material for optimal AOS proper-
ties. This has been shown in [Gd/Co]/Cu/[Co/Ni]N multilayers [105], where the
ferromagnetic [Co/Ni] component is used as a reference layer. Interlayer spin trans-
port either enhances or hinders the AOS process, dependent on the orientation of
the reference layer. Because of this effect, the laser pulses can be tuned to write a
predetermined magnetization direction, regardless of the initial state of the system.
In that way, single-pulse AOS evolves from a toggle mechanism to a method for
deterministic magnetization writing [105].

All the listed experiments reveal the complex interplay between demagnetization,
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spin-current generation, and magnetization reversal. To determine the critical ma-
terial parameters for the optimization of the underlying mechanisms, an insightful
theoretical model would be helpful. Although such a complete description is still
lacking, the models discussed in this thesis could be a possible starting point.

1.5 Thesis outline

In this introductory chapter, we gave an overview of the main topics of femtomag-
netism and ultrafast spintronics. In the research of the thesis, we build on the
theoretical fundaments that have been developed over the past decades and present
new insights regarding the mechanisms underlying ultrafast magnetism. The main
goal of our work is to develop an intuitive theoretical framework that includes all
dominant physical concepts, without the loss of simplicity.

We start with providing a firm theoretical basis in Chapter 2. Here, we introduce
the physical concepts that are essential for the main chapters. This includes a de-
tailed derivation of the models like the M3TM, the s-d model, and other theoretical
descriptions. Importantly, the chapter gives an overview of the various models we
use and we specifically discuss their applicability and validity in the context of the
relevant physical regimes.

The following five chapters present the main results. In Chapter 3, we discuss a
joint description of ultrafast demagnetization and laser-induced spin transport. By
connecting the s-d model for the local spin dynamics, to the diffusive description of
spin transport, we show that the typical experiments can be simulated within a sin-
gle microscopic implementation. In Chapter 4, we extend this theory by including
thermal magnons. Here, spin-dependent electron transport and magnon transport
are treated on equal footing. The model is compared to recent experiments, and an
analysis is presented that formulates the relation between the ultrafast spin currents
and the derivative of the magnetization. Furthermore, it is shown that the role of
magnon transport can not be neglected.

In Chapter 5, we develop a toy model that includes both the spin current result-
ing from the laser-excited hot electrons and the spin current triggered by electron-
magnon scattering. Based on an analytical relation, we show that the latter contri-
bution is generally large.
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The two subsequent research chapters are focused on modeling AOS in Co/Gd
bilayers. In Chapter 6, we develop a model that simulates AOS in these synthetic-
ferrimagnetic systems. Here, we identify the switching mechanism as a front of
reversed Co magnetization that nucleates near the Co/Gd interface and propagates
through the bilayer to establish the full switch. The latter emphasizes the robustness
of the AOS mechanism in synthetic ferrimagnets. Chapter 7 includes a discussion
on the role of intermixing of the Co/Gd interface. We show calculations that pre-
dict that intermixing enhances the AOS process and helps to reduce the threshold
fluence.

Finally, Chapter 8 presents additional research that corresponds either to prelimi-
nary results, or extensions of the work in the main chapters. Furthermore, this final
chapter includes a general outlook on the research field.



2
Theoretical background

Since all models are wrong the scientist must be alert to what is importantly
wrong. It is inappropriate to be concerned about mice when there are tigers

abroad.

George E.P. Box [106]

In this chapter, we introduce the theoretical tools that are used in the remaining part of
the thesis. First, we discuss several models that describe the local spin dynamics driven by
laser-pulse excitation, including the microscopic three-temperature model and the s-d model.
Secondly, we review the implementation of spin transport, specifically, spin-dependent elec-
tron transport and diffusive magnon transport. Finally, we focus on the description of
ferrimagnetic systems and the modeling of all-optical switching. We stress that the majority
of the derivations presented here have been introduced before in literature. Therefore, ex-
perts in the field may skip this introductory chapter. Nevertheless, as some extensions and
interpretations deviate from the standard approaches, this chapter functions as an additional
reference for the work in the remainder of the thesis.

19
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2.1 Introduction

Over the course of the past decades, a wide variety of theoretical models have
been developed that address the spin dynamics in rapidly heated magnets. A brief
overview of the most common approaches was presented in Chapter 1. As the
long list of interpretations exemplifies, laser-induced spin dynamics is intrinsically
difficult to understand at a microscopic level. Although it might be possible to
implement all degrees of freedom and interactions within a single theory, such
an extensive description is (practically) too complex to describe numerically, and
overcomplicates the process of identifying the essential physics. The latter is the
reason we generally take a simplified approach and choose a theoretical treatment
that only captures specific, presumably dominant, physical concepts. Here, we
generally aim for a compact mathematical framework to investigate the physics
underlying ultrafast magnetism. Hopefully, this approach clarifies the inclusion of
the quote at the beginning of this chapter.

This background chapter presents a step-by-step derivation of several models for
laser-induced spin dynamics that are developed with the above mindset. We gently
introduce the basic underlying concepts, including references to the original works,
and motivate every subsequent extension or simplification. Furthermore, the chap-
ter includes multiple illustrative examples of modeling the standard experiments.
Below we give a detailed outline of the chapter.

In Sec. 2.2, the Weiss model is shortly reviewed, which will be useful as a simple
description for the magnetization in equilibrium. Then, Sections 2.3-2.5 focus on
the local magnetization dynamics driven by rapid heating. Here, the discussed
models are all analogously derived from a microscopic Hamiltonian, and require
the calculation of spin-flip scattering rates using Fermi’s golden rule. This standard
method is the basis of the microscopic three-temperature model, which is the main
subject of Sec. 2.3. Using the same mathematical tools, the magnetization dynamics
driven by the s-d interaction is described in Sec. 2.4. The resulting s-d model is an
essential step towards modeling nonlocal spin dynamics, as it includes an itinerant
spin system [56, 57]. In close connection to the s-d model, the role of thermal
magnons and electron-magnon scattering processes is discussed in Sec. 2.5. The
latter results in a more comprehensive description of spin dynamics in metallic
ferromagnets [31, 36], as both magnons and electrons may contribute to nonlocal
spin transfer.
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The second part of the chapter, Section 2.6, focuses on the standard description
of diffusive spin transport [107]. We subsequently discuss spin-dependent elec-
tron transport and thermal magnon transport. Both contributions are analogously
derived from the Boltzmann equation and equivalently expressed in terms of gra-
dients of a chemical potential and temperature. Importantly, the overview does not
include any other types of descriptions for nonlocal spin transfer, such as the su-
perdiffusive spin transport model [39]. A very brief comparison between the latter
and the diffusive approach is presented in Chapter 5.

Finally, in Sec. 2.7, the focus is redirected towards ferrimagnetic systems and the
modeling of all-optical switching. Two models for the local spin dynamics in ferri-
magnetic alloys are discussed. The first one represents an extension of the micro-
scopic three-temperature model [4, 78], and requires calculating the intersublattice
spin-transfer rate as a result of exchange scattering processes. The second one is a
straightforward extension of the s-d model to ferrimagnetic alloys [58]. Similar to
multiple other models in this chapter, the equilibrium conditions are determined
by a simple Weiss model. The latter is the subject of the following paragraph.

2.2 The Weiss model

In the first part of this chapter, several theoretical approaches for describing laser-
induced spin dynamics are introduced. Before analyzing the behavior of the excited
spin systems, we first address the thermodynamic properties of the magnetization
in equilibrium. Specifically, the Weiss model is introduced, which is a statistical de-
scription that gives the magnetization as a function of temperature. The presented
framework will provide the initial (and final) conditions for multiple dynamical
models discussed later in this chapter.

The starting point to introduce the Weiss mean-field approach is the standard
Heisenberg model for a lattice of spins. The corresponding Hamiltonian is given by
[1, 3, 108]

Ĥ = −J ∑
i,j

Ŝi · Ŝj. (2.1)

where Ŝj corresponds to the spin operator at lattice site j (in units of h̄). The summa-
tion is carried over the nearest neighbors and J is the exchange coupling constant.
We employ a mean-field approach. Here, we define that the ensemble average of the
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spin in our system is pointing along the z direction, i.e., the mean field is given by
〈Ŝ〉 = 〈Ŝz〉ẑ. We omitted the lattice index j, as we assume a homogeneous system.
The Hamiltonian now reads

Ĥ = ∆ ∑
j

Ŝz
j , (2.2)

where ∆ = −Jz〈Ŝz〉 is the exchange splitting, with z the number of nearest neigh-
bors. Focusing on a single spin Ŝz

j with spin quantum number S, the Hamiltonian
in Eq. (2.2) describes a system of 2S + 1 spin levels separated by the exchange split-
ting ∆. The possible states are labeled by the azimuthal spin quantum number
ms ∈ {−S,−S + 1, .., S− 1, S}. The statistical state of the spin system is described
by the occupation probability fms of the state ms. In equilibrium, fms is determined
by Boltzmann statistics [1, 4, 109]

fms =
e−∆ms/(kBT)

∑ms e−∆ms/(kBT)
, (2.3)

where T is the temperature. The ensemble average of the z component of the spin
is given by

〈Ŝz〉 =
S

∑
ms=−S

ms fms . (2.4)

We define the order parameter m = −〈Ŝz〉/S, which is equivalent to the normalized
magnetization. Combining the equations above gives a self-consistent equation for
the normalized magnetization

m = BS

(
S∆
kBT

)
, (2.5)

where BS(x) is the Brillouin function [1, 35]. An analysis of Eq. (2.5) near the criti-
cal point, which is by definition given by the Curie temperature TC, yields that the
exchange splitting is given by ∆ = 3kBTCm/(S + 1) [4]. For a S = 1/2 system, the
magnetization is then described by the standard formula m = tanh(mTC/T). To
further clarify the meaning of Eq. (2.5), Figure 2.1 gives its solution for multiple
values of S. The plot presents the normalized magnetization as a function of tem-
perature, and clearly shows the magnetization abruptly vanishes above the critical
point TC.

The Weiss model provides an intuitive description of the equilibrium magnetization
and describes the temperature dependence relatively well. Although the approach
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Figure 2.1: The Weiss model for varying spin quantum number S. The normalized magne-
tization m is plotted as a function of the temperature T, for S = 1/2 (red), S = 3/2 (blue),
and S = 9/2 (green). The Curie temperature is set to TC = 1000 K.

has certain loopholes, its simpleness makes it a practical starting point for the devel-
opment of microscopic models that describe the out-of-equilibrium spin dynamics.
In that case, the occupation probability fms(t) becomes time dependent and devi-
ates from the probability given by Boltzmann statistics. In the following sections,
we discuss what processes are involved and how the temporal behavior of spin
system can be calculated.

2.3 The microscopic three-temperature model

In this section, we discuss the physical concepts related to the microscopic three-
temperature model (M3TM). First, we review the Elliott-Yafet mechanism for spin
relaxation. Second, we present the calculation of the spin-flip scattering rate. For
the latter, we first focus on spin-flip impurity scattering and later discuss the role of
the electron-phonon interaction. At that point, we shortly discuss the connection to
the two-temperature model for laser heating.

2.3.1 The Elliott-Yafet mechanism

In the M3TM, a central role is played by Elliott-Yafet spin-flip scattering. In this
paragraph, we introduce the underlying mechanism in a general context [47]. In
the presence of spin-orbit coupling, the spin up and spin down electron states are
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not eigenstates of the Hamiltonian. Instead, the eigenstates are given by spin-mixed
states of the form [47, 51, 53]

|k,⇑〉 = a+k |k, ↑〉+ b+k |k, ↓〉 , (2.6)

|k,⇓〉 = a−k |k, ↓〉+ b−k |k, ↑〉 . (2.7)

The labels ⇑ and ⇓ refer to predominantly spin up or spin down states [53], as it is
typically imposed that |a±k | � |b

±
k |.

Now we assume that the electron is subject to an additional interaction with the
environment, by definition described by an operator V̂. To arrive at the Elliott-Yafet
mechanism, we write the operator V̂ in second quantization. It is expressed in terms
of creation and annihilation operators c†

kα and ck,α with α ∈ {⇑,⇓} and momentum
k. In second quantization, the interaction Hamiltonian is given by

Ĥint = ∑
kk′αα′

〈k, α| V̂
∣∣k′, α′

〉
c†

kαck′α′ = ∑
kk′αα′

Vkk′αα′c
†
kαck′α′ . (2.8)

Even if the operator V̂ is completely spin independent, the Hamiltonian might in-
clude terms for α 6= α′ due to the nonvanishing 〈k,⇑| V̂ |k′,⇓〉 6= 0 as a result of the
spin mixing [53]. These terms describe transitions between majority and minority
spin states. In other words, these processes correspond to spin-flip scattering and
yield a net change of the spin component along the z axis. We stress that the Elliott-
Yafet mechanism is present regardless of the origin of V̂ and thereby might involve
various scattering events, such as impurity scattering, electron-phonon scattering,
or other contributions. As the scattering rate is proportional to the square of the
corresponding matrix element, the spin-flip probability is determined by |b±k |

2 [51].

In the remainder of this chapter, the spin-flip scattering resulting from the Elliott-
Yafet mechanism is either treated phenomenologically or by hand introduced in a
microscopic Hamiltonian.

2.3.2 Spin dynamics and the M3TM approximation

In this section, we calculate the spin dynamics driven by Elliott-Yafet spin-flip scat-
tering within the framework of the microscopic three-temperature model (M3TM).
With the latter we mean imposing three critical approximations: (i) spin dynamics
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is exclusively driven by Elliott-Yafet spin-flip scattering, (ii) the spin degree of free-
dom is treated as a localized system of spins and in equilibrium described by the
Weiss model, (iii) the additional electronic degrees of freedom are described by a
separate system of free and spinless electrons. In the remainder of the thesis, we
refer to this list of assumptions as the “M3TM approximation”. Typically, a fourth
assumption is made that only considers a spin one-half system. We discuss this
specific case at the end of the section. First, we present the results for a system with
an arbitrary spin quantum number, since the derivation is used later in the thesis.

For illustrative purposes, we focus on spin-flip impurity scattering [23]. In essence,
the discussed method is applicable for other Elliott-Yafet spin-flip scattering pro-
cesses, such as electron-phonon scattering. Within the M3TM approximation, where
the electrons are treated as spinless, the Hamiltonian for spin-flip impurity scatter-
ing would be of the form [23]

Ĥ =
λ

N ∑
j

∑
kk′

[
Ŝ+

j c†
k′ck + Ŝ−j c†

kck′
]
, (2.9)

where N is defined as the number of lattice sites, λ is a phenomenological constant
that determines the scattering rate, and Ŝ±j represent the spin ladder operators for
the spin located at site j. Obviously, the first term in the Hamiltonian describes the
scattering process in which the spin quantum number ms is increased, whereas the
second term corresponds to an opposite transition.

We are mainly interested in the spin dynamics as a result of the scattering events
described by Eq. (2.9). The physical model requires calculating the corresponding
scattering rates using Fermi’s golden rule. Although the latter is a standard formal-
ism, its application to multiple coupled subsystems requires some extra comments.
Therefore, Appendix A includes an introduction to Fermi’s golden rule and its re-
lation to the Boltzmann equation. The discussion includes the derivation within a
density matrix formalism and is only meant for readers interested in the underlying
theoretical assumptions.

Applying Fermi’s golden rule to the interaction Hamiltonian in Eq. (2.9) yields the
transition rate for spin state |ms〉 to |ms ± 1〉. It is defined as W±ms±1,ms

and given by

W±ms±1,ms
=

2π

h̄
λ2S±ms

1
N2 ∑

kk′
δ(εk ∓ ∆− εk′) fk(1− fk′). (2.10)
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The prefactor includes S±ms = S(S + 1) − ms(ms ± 1), which comes from the spin
ladder operators. The terms in the summation have a simple physical meaning in
relation to the scattering process. The Dirac delta function imposes energy conser-
vation. Moreover, the electron distribution function fk determines the occupation of
the initial electron state with momentum k. Finally, the factor (1− fk′) depends on
the occupation of the final state and is a manifestation of Pauli’s exclusion principle.
The remainder of this section describes a number of mathematical simplifications
of the transition rate.

First, we take the continuum limit and replace the summations over the k vectors
by integrals

∑
k
→ V

(2π)3

∫
dk, (2.11)

where V is the volume of the system. Secondly, the expression is written in terms
of integrals over the energy. We substitute

V
(2π)3

∫
dk→ V

∫
dε

[ ∫ dk
(2π)3 δ(ε− εk)

]
= V

∫
dεD(ε). (2.12)

Here, we used the definition of the density of states D(ε) in units per energy per
volume. The resulting expression for the transition rate is

W±ms±1,ms
=

2π

h̄
λ2S±ms V

2
at

∫
dε
∫

dε′D(ε)D(ε′)δ(ε∓ ∆− ε′) f (ε)(1− f (ε′)). (2.13)

For convenience, we defined the atomic volume Vat = V/N. Since the Dirac delta
function eliminates one integral, it automatically follows that

W±ms±1,ms
=

2π

h̄
λ2S±ms V

2
at

∫
dεD(ε)D(ε∓ ∆) f (ε)(1− f (ε∓ ∆)). (2.14)

As a standard assumption in the two or three-temperature model, we impose that
the distribution function f (ε) describes an (instantaneously) thermalized electron
system. Specifically, the distribution function f (ε) is equal to the Fermi-Dirac dis-
tribution

f (ε) =
1

e(ε−εF)/(kBTe) + 1
, (2.15)

where εF is the Fermi energy and Te is the electron temperature. By substituting the
Fermi-Dirac distribution in Eq. (2.14), the transition rate can be further simplified.
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In order to do this, we have to calculate an integral of the form

∫
dε F(ε) f (ε− a)(1− f (ε− b)) =

1
e(b−a)/(kBT) − 1

∫
dεF(ε)( f (ε− b)− f (ε− a)),

(2.16)
where a and b (in units of energy) correspond to an arbitrary shift of the Fermi-
Dirac distribution. The form on the right-hand side can be proven algebraically
using the definition of the Fermi-Dirac distribution. The integral is evaluated and
is given by

∫
dε F(ε) f (ε− a)(1− f (ε− b)) =

(b− a)
e(b−a)/(kBT) − 1

F(εF). (2.17)

For this expression to be valid it is required that the energy dependence of the func-
tion F(ε) is relatively weak in the vicinity of the Fermi energy. In our context that
would mean that we impose that D(εF ± ∆) ≈ D(εF). This approximation heavily
relies on the assumption that the electrons are represented by a free electron system.
Here, we note that a realistic density of states for a (ferromagnetic) transition metal
would strongly deviate from this free electron character, due to the presence of rel-
atively flat d bands. The interpretation we use here will become more sophisticated
in the following sections, where we discuss the separation of the d and s character
of the electrons.

In the context of this section, the integral in Eq. (2.14) can be expressed in terms of
Eq. (2.17), under the condition that all energy scales remain much smaller than the
Fermi energy ∆, kBT � εF. The transition rate is now written in the compact form
[56–58]

W±ms±1,ms
=

2π

h̄
∆λ2S±ms D2

F
e∓∆/(2kBTe)

2 sinh(∆/(2kBTe))
. (2.18)

For convenience, we defined the density of states at the Fermi energy in the units
per energy per atom DF = VatD(εF). Now that we have a compact expression for
the transition rate, the spin dynamics can be calculated by determining the deriva-
tive of the occupation number fms . Taking into account all the allowed transitions,
this yields [56]

d fms

dt
= −(W+

ms+1,ms
+ W−ms−1,ms

) fms + W+
ms ,ms−1 fms−1 + W−ms ,ms+1 fms+1. (2.19)

Importantly, in case the occupation probability is given by Boltzmann statistics
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Figure 2.2: Laser-induced magnetization dynamics as calculated with the model based on
spin-flip impurity scattering. The latter is implemented by using the M3TM approximation.
The plot shows the normalized magnetization as a function of time after laser-pulse exci-
tation at t = 0. As given in the figure, the calculation is performed for various values of
the spin quantum number S. The other magnetic parameters are given in the main text.
The dashed gray line in the background schematically depicts the transient increase in the
electron temperature that drives the demagnetization process (details given in Sec. 2.3.3).

fms ∝ e−∆ms/(kBTe), the right-hand side of Eq. (2.19) vanishes and the system is
in equilibrium. Finally, the temporal derivative of the normalized magnetization
results from calculating the ensemble average

dm
dt

= − 1
S

S

∑
ms=−S

ms
d fms

dt
. (2.20)

Figure 2.2 shows an example calculation for various values of the spin quantum
number S. The plot indicates the magnetization as a function of time after laser-
pulse excitation at t = 0. It visualizes the response of Eq. (2.20) to a transient
increase of the electron temperature. The latter is schematically depicted by the
gray line.1 For simplicity, we defined the rate constant τ−1 = 4πλ2D2

F(kBTC)/h̄
to replace the prefactor in the transition rate Eq. (2.18). In the example calculation
it is set to τ−1 = 5 ps−1. Furthermore, we used a Curie temperature of 1000 K,
such that the calculations in Fig. 2.2 correspond to the same spin system as the one
represented in Fig. 2.1.

Finally, to find a closed expression for the magnetization, it is convenient to fo-
cus on a S = 1/2 system. Moreover, this is the simplification that is used in
the microscopic three-temperature model [18, 23]. For spin half we can use that

1The electron temperature is calculated with the two-temperature model, which is discussed in the
next section.
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〈Sz〉 = ( f1/2 − f−1/2)/2 and f1/2 + f−1/2 = 1. We retrieve the well-known formula
for the magnetization dynamics of a spin one-half system [23, 35]

dm
dt

=
m
τ

(
1−m coth

(
mTC

Te

))
. (2.21)

Obviously, the equilibrium condition corresponds to the m = tanh(mTc/Te), as
follows from the Weiss model.

In this section, we have purely focused on spin-flip impurity scattering. Later in
this thesis, we will show that the scattering rates of other (Elliott-Yafet) spin-flip
processes can be calculated analogously. Moreover, it turns out that the extension
to an s-d model is relatively straightforward to derive and requires the same math-
ematical steps as presented in this section. Before diving into other contributions
to the spin dynamics, we shortly address the energy transfer driven by electron-
phonon scattering. It is the microscopic process underlying the two-temperature
model, which was already used to model the temperature dynamics underlying
Fig. 2.2.

2.3.3 The two-temperature model

In this intermezzo, we discuss the microscopic mechanism that is the basis of the
two-temperature model for describing laser heating in (nonmagnetic) metals. The
underlying driving force is the interaction between electrons and the lattice [17].
Here, phonons come into play as the quasiparticles associated with the vibrational
modes of the lattice. The interaction with electrons corresponds to electron-phonon
scattering processes, where phonons are effectively created or absorbed. The Hamil-
tonian is of the form [4, 18, 23]

Ĥep =
λep

N ∑
kk′q

c†
kck′(a†

q + aq). (2.22)

where a†
q and aq are the creation and annihilation operator of a phonon with mo-

mentum q. Hence, the two processes described by the Hamiltonian correspond
to the generation and absorption of a phonon, resulting in the energy exchange
between the electrons and the lattice. The goal of the following paragraph is to
calculate the resulting energy transfer rate. We use here a very general approach,
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independent of the exact implementation of the phonon dynamics. For a detailed
discussion on modeling the phonon system we refer to Refs. [4, 18].

Using Fermi’s golden rule, it can easily be shown that the temporal derivative of
the energy density Ee in the electronic system can be written as

dEe

dt
= −

∫
dεp

∫
dε
∫

dε′ εp δ(ε− ε′ − εp)Γep(εp, ε, ε′) (2.23)

×
[
(1 + n(εp)) f (ε)(1− f (ε′))− n(εp)(1− f (ε)) f (ε′)

]
.

For notational purposes, we defined the function Γep(εp, ε, ε′) which contains all
the information regarding the (phonon and electron) density of states and the pref-
actors. Analogous to the previous section, f (ε) corresponds to a Fermi-Dirac distri-
bution with electron temperature Te. Hence, it is again imposed that the electronic
system is thermalized instantaneously. Similarly, the phonon distribution function
is given by a Bose-Einstein distribution

n(εp) =
1

e εp/(kBTp) − 1
, (2.24)

with phonon temperature Tp. We simplify the term between square brackets in
Eq. (2.23) by substituting the thermal distribution functions. Using the algebraic
identity as given in Eq. (2.16), and evaluating the integral over ε′, yields

dEe

dt
=

∫
dε
∫

dεp εpΓep(εp, ε, ε− εp)( f (ε− εp)− f (ε)) (2.25)

×1
2

[
coth

(
εp

2kBTp

)
− coth

(
εp

2kBTe

)]
.

The term on the second line is further simplified by introducing a cutoff energy for
the phonon system, such that εp remains relatively small compared to the temper-
atures εp � kBTe, kBTp.2 In this regime, the term between the square brackets will
be dominated by a factor linear in the temperatures

1
2

[
coth

(
εp

2kBTp

)
− coth

(
εp

2kBTe

)]
≈ kB

εp
(Tp − Te). (2.26)

It is used that coth(x) ≈ 1/x for x � 1. The energy transfer rate is written in the

2In the context of Refs. [4, 18, 109], the cutoff energy is the Debye energy. Although the inequality
εp � kBTe,p is not necessarily satisfied, the relation leads to reasonable approximations for ferromagnetic
transition metals [4].
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simple form
dEe

dt
= gep(Tp − Te), (2.27)

where the rate constant gep is determined by the evaluation of the integrals in Eq.
(2.25). Note that an expression of the form Eq. (2.27) could similarly be deduced
from a linearization procedure, assuming the temperatures remain close to the ini-
tial (ambient) temperature. To arrive at the two-temperature model, a few more
steps are required. First, the change in the electron energy density is expressed in
terms of heat capacity and the change in the temperature. Second, an equivalent
equation for the energy in the phonon system is deduced. The resulting coupled
set of differential equations is known as the two-temperature model [17]

γTe
dTe

dt
= gep(Tp − Te) + P(t), (2.28)

Cp
dTp

dt
= −gep(Tp − Te)− Cp

Tp − Tamb

τD
. (2.29)

where Cp is the phonon heat capacity and γTe = Ce(Te) is the electron heat capac-
ity. Within the free electron model the prefactor is given by γ = π2k2

BD(εF)/3 [108].
Furthermore, two additional phenomenological terms are introduced. First, the
function P(t) is an energy source that represents the absorbed laser pulse energy.
Second, the additional term on the right-hand side of Eq. (2.29) is included to cover
heat dissipation out of the combined system, where a typical timescale τD is intro-
duced. Here, the term is included in the expression for the phonon temperature,
assuming the neighboring material is an insulator.

To model laser heating the coupled set of differential equations for Te and Tp is
solved using a given function P(t) for the laser pulse. Typically, the temporal profile
of the laser pulse is described by a Gaussian function

P(t) =
P0

σ
√

π
e−(t−t0)

2/σ2
, (2.30)

where P0 is the absorbed laser pulse energy density, σ is the pulse duration, and t0

is the time of incidence. Fig. 2.3 shows the resulting dynamics of the temperatures,
where we used the thermal system parameters for a typical ferromagnetic transition
metal that are listed in Table 6.1. The plot indicates the electron temperature Te and
Tp as a function of time after laser-pulse excitation at t = 0. It shows the abrupt
increase of the electron temperature upon absorption of the laser pulse energy.
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Figure 2.3: The response of the temperatures to laser heating, calculated with the two-
temperature model. The electron temperature Te and phonon temperature Tp, plotted as a
function of time after laser-pulse excitation at t = 0. The used parameters are given in Table
6.1, with P0 = 10 · 108 Jm−3.

Subsequently, the electron temperature equilibrates with the phonon temperature
due to electron-phonon scattering.

Here ends the intermezzo on the energy transfer between the electrons and the
lattice. The discussed two-temperature model will be frequently used later in the
thesis, as a relevant and simple approach to model the typical behavior of the elec-
tron temperature, and therefore as an input to the models for laser-induced spin
dynamics. As noted before, the underlying electron-phonon scattering processes
contribute to spin relaxation due to the Elliott-Yafet mechanism. In the following
paragraph, we specify the corresponding formula for the magnetization dynamics.

2.3.4 Spin-flip electron-phonon scattering and the M3TM for-
mula

The M3TM in its most common form is based on the assumption that the mag-
netization dynamics is dominated by Elliott-Yafet electron-phonon scattering. We
shortly recall that in the M3TM approximation, as discussed in Section 2.3.2, the as-
sociated spin flips are described separately from the electronic degrees of freedom.
In this context, the Hamiltonian for Elliott-Yafet electron-phonon scattering is given
by [4, 18, 109]

Ĥ =
√

asf
λ′ep

N ∑
kk′q

c†
kck′(a†

q + aq)(Ŝ+
j + Ŝ−j ), (2.31)
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Figure 2.4: M3TM calculation for multiple values of the absorbed laser pulse energy density.
The lines indicate the normalized magnetization m as a function of time after laser-pulse
excitation at t = 0. The calculations correspond to the absorbed laser-pulse energy densities
P1 = 10 · 108 Jm−3 (green), P2 = 20 · 108 Jm−3 (blue), and P3 = 30 · 108 Jm−3 (red). The other
used parameters are given in the main text.

where asf is the spin-flip probability and λ′ep is the coupling constant associated
with the represented processes. Note that λ′ep is directly proportional to the pre-
viously introduced constant λep, however, additional scaling factors are typically
introduced to phenomenologically address the fact that the spin per atom in a mag-
netic metal is not a half-integer [18]. For convenience, we keep using the constant
λ′ep.

The calculation of the transition rate resulting from the spin-flip electron-phonon
scattering processes is a straightforward extension of the analogous derivation for
impurity scattering. Hence, we closely follow the mathematical steps that led to the
expression in Eq. (2.18) for W±ms±1,ms

. The extension involves the fact that now every
spin-flip process is accompanied by either the absorption or creation of a phonon.
First, this means that the scattering process is now associated with an energy trans-
fer of ∆± εp, with εp the energy of the phonon. Second, the phonon distribution
function n(εp) will appear in the expressions, specifically, a factor (1 + n(εp)) for
phonon creation and a factor n(εp) for absorption. The third step would be to im-
pose the condition that εp � kBTe,p (see Sec. 2.3.3), and only take into account the
terms to lowest order in εp/(kBTe,p). For the details on all these intermediate steps
we refer to Refs. [4, 109]. In fact, it is straightforward to show that the transition
rate is now given by

W±ms±1,ms
= R

Tp

TC

∆
2kBTC

S±ms

e∓∆/(2kBTe)

2 sinh(∆/(2kBTe))
, (2.32)
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where R depends on the various parameters that characterize the specific imple-
mentation of the spin, phonon, and electron subsystems [18]. R is typically treated
as an effective parameter and can be determined by fitting the model to experi-
mental data. Its typical order of magnitude for transition metal ferromagnets is
R ∼ 10 ps−1 [18], yielding demagnetization times around hundreds of femtosec-
onds.

In analogy with the section on impurity scattering, the standard M3TM formula
can be found by assuming a S = 1/2 system. Then, the temporal derivative of the
normalized magnetization reduces to

dm
dt

= Rm
Tp

TC

(
1−m coth

(
mTC

Te

))
. (2.33)

The main difference with the equation for impurity scattering, as was presented in
Eq. (2.21), is that the prefactor is now explicitly dependent on the phonon temper-
ature Tp.

For illustrative purposes, we use the M3TM to calculate the demagnetization traces
for varying laser fluences. The latter is implemented by using the two-temperature
model to derive the relevant traces of the electron temperature for different values
of P0. The magnetization is calculated by numerically solving the M3TM formula
in Eq. (2.33). The result is depicted in Fig. 2.4, showing the magnetization as a
function of time after laser-pulse excitation at t = 0. The corresponding values for
P0 are given in the figure. The used values for the other thermal parameters are
identical to the ones used for Figs. 2.2 and 2.3, and are given in Table 6.1. The
magnetic parameters are given by the typical values R = 10 ps−1 and TC = 1000 K.

The example illustrates, as shown by the experimental study in Ref. [110], that the
M3TM nicely describes the magnetization dynamics over a large range of fluences.
Other interesting experimental studies that presented a comparison with the M3TM
include the demagnetization for a varying ambient temperature [110], and investi-
gations of demagnetization in rare-earth ferromagnets [18]. Although the M3TM
is widely used in the field of femtomagnetism, it has certain limitations. One im-
portant example is that the itinerant property of spins in ferromagnetic metals is
completely lost by treating the free electrons as spinless. Hence, spin transport can
not be included in the standard way. This is one of the motivations to go beyond the
M3TM approximation and move to an approach that includes the itinerant character
of the spin degree of freedom. Such an approach is discussed in the next section.
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Figure 2.5: (a) Schematic overview of the spin-polarized density of states of a typical
transition-metal ferromagnet. (b)-(c) The simplifications underlying the s-d model. (b) The d
electron system is described by a local spin system characterized by exchange splitting ∆. (c)
The occupation of the s electron states. The out-of-equilibrium spin density is determined by
a spin-dependent shift of the chemical potentials, defined as the spin accumulation µs, and
an additional shift originating from the s-d exchange splitting [36].

2.4 The s-d model

In this section, we present the s-d model for laser-induced spin dynamics [36, 56, 57].
Before diving into detail, we want to emphasize the motivation for the discussed
approach. Specifically, we are interested in a compact model that describes: (i) ultra-
fast demagnetization in rapidly-heated magnetic thin films, and (ii) laser-induced
spin transport in magnetic heterostructures. In the previous section, we noted that
case (i) can be described by a simple S = 1/2 Weiss model and, additionally, an
efficient spin-flip scattering mechanism. To describe case (ii), we choose the model
that is one of the pillars of theoretical spintronics, the model for spin-dependent
diffusive electron transport [107]. To implement the latter, it is required to intro-
duce an itinerant spin system. In order to cover both cases (i) and (ii), the local
spin description of the previous sections is now extended and accompanied by an
itinerant spin system. In this section, we specifically discuss how the combined spin
system responds to rapid heating, as is described by the s-d model. The presented
derivation closely resembles the work in Refs. [36, 56, 57, 111, 112]. Later in this
chapter, we discuss how spin transport can be introduced.

To substantiate the description with a separate local and itinerant spin system, we
shortly discuss the band structure of a typical transition metal ferromagnet. Figure
2.5(a) shows a schematic representation of the spin-dependent density of states
[1]. In red, one can identify the relatively narrow (local) d bands, and observe an
effective exchange splitting between the spin up and spin down bands. In blue, the
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relatively wide bands are of an s character. These two properties are the basis of
the s-d model, in which the system is described as a combination of perfectly flat
(d) bands, and parabolic (s) bands. A schematic representation of this approach is
presented in Figs. 2.5(b) and 2.5(c). The additional parameters in the itinerant spin
system, as indicated in Fig. 2.5(b), are discussed below.

We note here that the nomenclature of the s-d model, implying a perfect separation
between the d and s subsystems, should be used carefully. For instance, s-d mixing
disallows the exact separation. Hence, the naming of the s-d model should be purely
interpreted as the separation of local and itinerant spin degrees of freedom within
an effective treatment.

In addition to defining two separate spin subsystems, the s-d model is based on the
presence of a nonnegligible s-d interaction. Specifically, the s and d electrons will
be subject to a mutual exchange coupling. The corresponding Hamiltonian is given
by [36, 56]

Ĥsd = JsdVat ∑
j

Ŝd
j · ŝ(rj), (2.34)

where Jsd determines the s-d coupling strength. Furthermore, Ŝd
j corresponds to the

spin operator for the localized (d) spin at lattice site j. The operator ŝ(rj) is the spin
density of the itinerant electrons at the position rj of lattice site j. To have all the
terms in the convenient units, a factor of the atomic volume Vat is included.

In analogy with the previous sections, the s-d interaction Hamiltonian will be
rewritten to identify the underlying scattering mechanism. In order to do so, we
use the definition of the spin ladder operators

Ŝ±j = Ŝx
j ± iŜy

j , (2.35)

expressed in terms of the transverse components of the spin operator. For conve-
nience, we omitted the superscript d. Furthermore, the spin density operator needs
to be specified and is expressed in terms of field operators [113]

ŝ(r) =
1
2 ∑

σσ′
ψ̂†

σ(r)τσσ′ ψ̂σ′(r), (2.36)

where the indices σ ∈ {↑, ↓} indicate the spin polarization. Furthermore, ψ̂σ(r)
corresponds to the field operator for the electrons at spatial position r. Importantly,
τσσ′ is a vector containing the three Pauli matrices as its components. We switch to



2.4 The s-d model 37

momentum space and map the field operators to creation and annihilation opera-
tors by using

ψ̂†
σ(r) =

1√
V

∑
k

c†
kσe−ik·r. (2.37)

Implementing this in the Hsd, and substituting the Pauli matrices, gives the expres-
sion

Ĥsd = ∑
jkk′

[
V∗jkk′c

†
k′↓ck↑Ŝ+

j + Vjkk′c
†
k↑ck′↓Ŝ

−
j

]
(2.38)

+ ∑
jkk′

Vjkk′

[
Ŝz

j (c
†
k↑ck′↑ − c†

k↓ck′↓)

]
,

where the first part of the Hamiltonian corresponds to spin-flip scattering processes
and is clearly similar to the Hamiltonians we discussed in the previous sections. In
this case, the associated matrix element Vjkk′ is given by

Vjkk′ =
Jsd
2N

e−i(k−k′)·rj . (2.39)

In the expression for Ĥsd in Eq. (2.38), the last term does not contribute to spin-
flip scattering. As schematically depicted in Fig. 2.6(c), the contribution is typically
treated as a mean-field shift by substituting Ŝz

j → 〈Ŝz〉, and is included in the
Hamiltonian for the s electrons [36]. Note that the similar energy shift for the d
electrons is neglected, since it is expected to play a minor role compared to the
exchange splitting ∆.

To clarify, we repeat that a Weiss mean-field approach is used to describe the d
electron system. In combination with the free electron description for the itinerant
s spins, the complete model is specified by the three Hamiltonians

Ĥd = ∆ ∑
j

Ŝz
j , (2.40)

Ĥs = ∑
kσ

εkσc†
kσckσ, (2.41)

Ĥsd = ∑
jkk′

(V∗jkk′c
†
k′↓ck↑Ŝ+

j + h.c.), (2.42)

where Ĥd is the Hamiltonian for the d electrons with exchange splitting ∆, and
is equivalent to the description for the local spin system in the previous sections.
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Furthermore, Ĥs describes the s electron system, where the single-particle energy
is given by εkσ = εk ± Jsd〈Ŝz〉/2, including the abovementioned mean-field shift.
Lastly, Hsd describes the exchange scattering processes that stem from the s-d in-
teraction and is our main interest. The remaining part of this section shows the
calculation for the transition rate of the d electron spin states driven by the scat-
tering processes associated with the s-d interaction. In analogy with the previous
sections, the transition rate is calculated using Fermi’s golden rule. However, a
crucial difference is that the spin degree of freedom of the itinerant (s) electrons is
taken into account. The transition rates are given by

W+
ms+1,ms

=
π

2h̄

(
Jsd
N

)2

S+
ms ∑

kk′
δ(εk↑ − ∆− εk′↓) fk↑(1− fk′↓), (2.43)

W−ms−1,ms
=

π

2h̄

(
Jsd
N

)2

S−ms ∑
kk′

δ(εk↑ − ∆− εk′↓) fk′↓(1− fk↑). (2.44)

Here, fkσ corresponds to the spin-dependent distribution function of the itinerant
electrons with momentum k and spin σ. Typically, the expression for the transi-
tion rate is simplified by replacing the summation over the momenta for integrals
over the energies and substituting an exact form of the distribution function fσ(ε).
Again, the crucial step is the assumption that the electron system is rapidly thermal-
ized. In this case, the spin-specific distribution functions are given by Fermi-Dirac
distributions with a spin-dependent chemical potential

f↑(ε) =
1

e(ε−µ↑)/(kBTe) + 1
, (2.45)

f↓(ε) =
1

e(ε−µ↓)/(kBTe) + 1
, (2.46)

where µ↑ and µ↓ correspond to the chemical potential for the spin up and spin
down electrons, respectively. In equilibrium, we have µ↑ = µ↓ and both are ef-
fectively equal to the Fermi energy εF. It is obvious that in the case µ↑ 6= µ↓,
an out-of-equilibrium spin density is built up in the s electron system, mathemat-
ically determined by the spin-specific shift of the distribution function (and spin-
dependent density of states). For that reason, the difference in chemical potential
is defined as the spin accumulation µs = µ↑ − µ↓. Implementing the spin-specific
distribution functions, and using the definition for the spin accumulation µs, the
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final expression for the spin transition rate in the d system is [56–58]

W±ms±1,ms
=

π

2h̄
J2
sdS±ms D↑D↓(∆− µs)

exp
(
∓ ∆− µs

2kBTe

)
2 sinh

(
∆− µs

2kBTe

) , (2.47)

where D↑↓ is the spin-dependent density of states evaluated at the Fermi energy
in units per energy per atom.3 Note that the transition rate W±ms±1,ms

has a similar
mathematical form as the expressions in M3TM approximation, with the essential
difference that the spin accumulation µs is subtracted from the exchange splitting
∆.

The spin dynamics is found by substituting the transition rate in the formula for
the derivative of fms(t), as given in Eq. (2.19), and calculating the change of the en-
semble average 〈Ŝz〉(t). Here, we define the normalized magnetization of d electron
spin system as md = −〈Ŝz〉/S. For illustrative purposes, we focus on a S = 1/2
system, where the exchange splitting is given by ∆ = 2kBTCmd, and the formula
that determines the magnetization dynamics reads

dmd
dt

=
1

τsd

(
md −

µs

2kBTC

)[
1−md coth

(2mdkBTC − µs

2kBTe

)]
. (2.48)

The timescale associated with the s-d interaction is defined as τ−1
sd = (π/h̄)J2

sdD↑D↓kBTC.
The equation has the same form as the original M3TM, with the additional variable
µs. Hence, to finalize the formulation of the s-d model, we should determine the
dynamics of the spin accumulation itself. Before focusing on the latter, we write
down the expression for the number density of the s electrons with spin σ [112]

nσ =
∫

dεDσ(ε∓ ∆sd) fσ(ε). (2.49)

As noted before, the spin up and spin down band are shifted due to the presence
of the s-d interaction, here indicated as ∆sd = Jsd〈Ŝz〉/2. In the expression for the
electron density nσ, this is implemented as a shift in the density of states [112]. The
integral in Eq. (2.49) can be approximated using the Sommerfeld expansion [108].

3To avoid confusion, we use various conventions for the units of the density of states throughout this
chapter. In the case we specifically note the energy dependence, as in Dσ(ε), it is in units per energy per
volume. However, in case we use the notation Dσ , the density of states is defined in units per energy per
atom, and by definition evaluated at εF .
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Here, we are mostly interested in how the itinerant spin density responds to small
changes in the spin-dependent chemical potential µσ and s-d splitting ∆sd. As long
as all energy scales remain much smaller than the Fermi energy, and the density of
states is only weakly energy dependent in the vicinity of the Fermi level, the change
in the spin-dependent electron density is given by

dnσ

dt
= Dσ(εF)

[
dµσ

dt
∓ d∆sd

dt

]
. (2.50)

Since the s-d spin-flip scattering processes conserve the total spin angular momen-
tum, the temporal derivative of n↑− n↓ can straightforwardly be expressed in terms
of the local magnetization md. Moreover, using that the total number of electrons
n↑ + n↓ remains constant, and substituting the definition of ∆sd, results in a simple
expression for the temporal derivative of the spin accumulation [36, 112]

dµs

dt
= ρsd

dmd
dt
− µs

τs
, (2.51)

where we used the definition ρsd = D−1− Jsd/2 for S = 1/2, with the spin-averaged
density of states D = 2D↑D↓/(D↑ + D↓) [36]. Importantly, an extra spin relaxation
term is included that depends on the phenomenological timescale τs [36, 56]. The
latter includes all additional spin-flip scattering processes, such as the ones resulting
from the Elliott-Yafet mechanism.

To illustrate the use of the s-d model, we present a standard calculation in Fig.
2.6, which shows response of the combined s-d spin system to a transient increase
of the electron temperature. The figure corresponds to a calculation presented in
Chapter 3, where all parameters are specified. Importantly, the spin systems are
characterized by τsd = 0.2 ps, τs = 0.1 ps, and TC = 1000K. Figure 2.6(a) shows
the normalized magnetization md (the solid red curve) of the d electron system as
a function of time after laser-pulse excitation at t = 0. Analogous to the model-
ing in the previous sections, the ultrafast demagnetization process is clearly visible.
However, one should be careful with directly comparing the theoretical magneti-
zation md with the magnetic signal from the experiments, since in the s-d model
the additional s subsystem contributes to the spin dynamics. Generally, it is safe to
say that the experimentally-probed magnetic signal is a linear combination of the
contributions by the theoretical s and d spin subsystems, and the precise relation
with the magnetization md is dependent on the specific probing method.
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Figure 2.6: Illustrative calculation of laser-induced spin dynamics in the s-d model. (a) The
normalized magnetization md of the d electron system as a function of time after laser-pulse
excitation at t = 0. The dashed line indicates the normalized magnetization of the combined
s-d spin system. (b) The generated spin accumulation µs in the s electron system plotted as a
function of time.

To elucidate the spin dynamics of the combined spin system, and shortly address
the relation with the M3TM, we plotted the normalized magnetization mtot of the
total spin system, indicated by the dashed red line in Fig. 2.6(a). For mtot the de-
magnetization rate is critically determined by the additional processes that transfer
spin out of the combined s-d system and strongly depends on the timescale τs.
Here, the correspondence with the M3TM is evident, as the spin-flip scattering time
τs includes the Elliott-Yafet processes. Importantly, in this interpretation the s-d
interaction mediates the indirect spin transfer from the local magnetization to the
lattice. One could argue that the presence of a strong s-d interaction is a (partial)
justification of the model-specific implementation of Elliott-Yafet processes in the
M3TM. The relation between the two approaches, the s-d model and the M3TM,
will be further discussed in Chapter 3.

As mentioned at the beginning of this section, the primary goal of using the s-
d model is to understand how an additional itinerant spin system responds to a
rapidly changing temperature and local magnetization. The resulting dynamics of
the spin accumulation is depicted in Fig. 2.6(b). The plot shows the characteris-
tic bipolar behavior of µs, resembling the spin-current pulses measured in rapidly
heated magnetic heterostructures (Introduction Fig. 1.6). Obviously, the latter is
not a surprise, since the spin accumulation is the essential variable in the standard
models for spin transport [107].
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Before we move on to the implementation of spin transport, we discuss one more
extension of the description for the local spin dynamics. The principal limitation of
the s-d model in the presented form is that it only considers single-spin excitations.
Specifically, the model neglects excitations that are distributed over the spin sys-
tem. These collective spin excitations, and their relevance for the thermodynamic
description of ferromagnets, are the main subject of the next section.

2.5 Thermal magnons and electron-magnon scattering

In this section, we introduce magnons, which are the quasiparticles associated with
collective spin-wave excitations. To introduce magnons properly, we discuss the
mathematical framework that leads to a simple derivation of the magnon dispersion
relation. The starting point is the Hamiltonian [114]

Ĥ = −J ∑
i,j=i+δ

Ŝi · Ŝj + h̄ω0 ∑
i

Ŝz
j . (2.52)

The first term describes the Heisenberg exchange, where i labels the lattice site and
δ the nearest neighbors. The second term corresponds to a Zeeman contribution
resulting from an external field along the z direction. For convenience, the field is
expressed in terms of an angular frequency ω0. The first step in the derivation is
to map the spin operators to bosonic creation and annihilation operators, using the
Holstein-Primakoff transformation [115]

Ŝ+
j = a†

j

√
2S− a†

j aj, (2.53)

Ŝ−j =
√

2S− a†
j ajaj, (2.54)

Ŝz
j = a†

j aj − S, (2.55)

where a†
j creates and aj annihilates a local spin deviation at lattice site j. The

terms involving the square root are typically expanded using the condition that
〈a†

j aj〉 � S. The latter essentially means that the magnetization remains close to the
saturation value. Applying the Holstein-Primakoff transformation to the Hamilto-
nian in Eq. (2.52), and collecting the terms up to first order in the bosonic operators,
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results in the expression

Ĥ = −JS ∑
i

∑
δ

[
a†

i ai+δ + aia†
i+δ − a†

i ai − a†
i+δai+δ

]
+ h̄ω0 ∑

i
a†

i ai. (2.56)

Here, we omitted the constant terms. To arrive at a Hamiltonian for magnons
the expression is rewritten in terms of the Fourier transform of the local bosonic
operators, using

a†
j =

1√
N

∑
q

a†
qe−iq·rj , (2.57)

where a†
q is the bosonic creation operator of a magnon with momentum q. Its

hermitian conjugate aq corresponds to the magnon annihilation operator. After
simplification, the Hamiltonian reads [114]

Ĥ = −2JS ∑
δ

∑
q

a†
qaq

[
cos(q · δ)− 1

]
+ h̄ω0 ∑

i
a†

qaq. (2.58)

In the argument of the cosine function, δ corresponds to the vector pointing from
a lattice site to its nearest neighbor (labeled by index δ in the summation). We
consider the limit q · δ � 1, i.e., the magnon wavelength is much larger than the
lattice spacing. The cosine is Taylor expanded using cos(x) ≈ 1− x2/2 for small
x. The result is a quadratic magnon dispersion relation, which is further simplified
by assuming a simple cubic lattice with lattice constant a. We arrive at the final
diagonal Hamiltonian

Ĥ = ∑
q
(ε0 + Aq2)a†

qaq ≡∑
q

εqa†
qaq. (2.59)

Here, the dispersion relation is determined by εq = ε0 + Aq2, with the spin-wave
stiffness A = 2JSa2 and the magnon gap ε0 = h̄ω0. The final diagonal form of the
Hamiltonian in Eq. (2.59) can generally be reached for a magnon system, even if
the initial Hamiltonian involves additional contributions. For instance, including
dipolar interactions, or any additional anisotropic terms, is a relatively straightfor-
ward extension. The Hamiltonian can typically be diagonalized using the so-called
Bogoliubov transformation [114]. In the context of our work, where the excited
magnons are mainly characterized by energies of the order of kBT, the dispersion is
dominated by the exchange contribution. Hence, we use the simple quadratic dis-
persion as defined in Eq. (2.59). In the following section, we discuss the properties
of the magnon system in thermal equilibrium.
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Thermal magnons in (quasi) equilibrium

Before we characterize the dynamical properties of the magnon system, we first
focus on the equilibrium state. The main interest is to find the magnetization as a
function of temperature. The latter is determined by the magnon density

nd =
∫

dεD(ε)n(ε), (2.60)

where n(ε) is the magnon distribution function and D(ε) is the density of states.
The energy dependence of the density of states is deduced from the dispersion
relation εq = ε0 + Aq2, resulting in [36, 116]

D(ε) =

√
ε− ε0

4π2 A3/2 . (2.61)

In thermal equilibrium, the distribution function is given by the Bose-Einstein dis-
tribution

nBE(ε) =
1

e(ε−µm)/(kBTm) − 1
, (2.62)

where µm is the magnon chemical potential and Tm is the magnon temperature. The
magnon number density now follows from the integral

nd =
1

4π2 A3/2

∫ ∞

ε0

dε

√
ε− ε0

e(ε−µm)/(kBTm) − 1
, (2.63)

where the upper bound of the integral is set to infinity using the condition that
the temperature remains far below the Curie temperature. The integral can be
expressed in terms of the polylogarithm function [117]

Lis(ex) =
1

Γ(s)

∫ ∞

0
dt

ts−1

et/ex − 1
, (2.64)

where Γ(s) is the Gamma function. A change of the integration variable in Eq. (2.63)
leads to the following expression for the magnon density

nd =
(kBTm)3/2

4π2 A3/2 Γ(3/2)Li3/2

(
e(µm−ε0)/(kBTm)

)
. (2.65)

For reasons discussed below, we set the chemical potential to zero µm = 0. Further-
more, we impose that the magnon gap satisfies ε0 � kBTm, which is a reasonable
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assumption for a ε0 that corresponds to a typical FMR frequency of ∼ 10 GHz and
a temperature Tm close to room temperature. Then, the argument of the polyloga-
rithm is approximately equal to one, such that the polylogarithm becomes equiva-
lent to the zeta function Li3/2(1) = ζ(3/2). The magnon density reduces to

nd =
(kBTm)3/2

4π2 A3/2 Γ(3/2)ζ(3/2). (2.66)

The reduction of the normalized magnetization is given by ∆m = −nd/s, with s
the saturation spin density (in units of h̄), and scales as T3/2

m . This is the famous
Bloch law and results in an observable reduction of the magnetization even at low
temperatures. The latter is a consequence of the relatively small energy cost of
exciting collective spin excitations. As a final remark regarding the Bloch law, we
stress that it is only valid far below the Curie point and fails as the ratio Tm/TC

becomes significant. In that regime, the single-magnon energy relation is reduced
due to a significant magnon density present in its environment. Although this can
straightforwardly be implemented in the description [31, 114], it is not of critical
importance in the regime we will apply the model.

As an important final note, we want to discuss the relevance of introducing a
nonzero magnon chemical potential. As the magnon number is not conserved due
to interactions with the environment, the chemical potential vanishes in equilib-
rium. Nevertheless, a quasi-equilibrium state with a nonzero chemical potential
can be reached in a dynamical system. For instance, it can be accomplished in a
transport scenario by the injection of an externally-generated spin current. In re-
lation to that, it was shown that the magnon chemical was a relevant ingredient
for the description of spin transport in magnetic insulators [114, 118]. Moreover,
the magnon chemical potential plays an essential role in the context of magnon
Bose-Einstein condensates [119, 120]. Although the examples typically require an
efficient thermalization process of the magnon system, the mathematical role of
the chemical potential can be defined for the general case. We briefly discuss this
approach below.

The magnon system has two degrees of freedom, the number of magnons and the
total energy. Hence, two parameters are required to fully describe the system. The
two parameters are conveniently denoted as a generalized chemical potential µm

and temperature Tm. In the case that we consider a dynamical scenario, the change
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in magnon density δnd and magnon energy density δUd can be parametrized as(
δnd

δUd

)
=

(
Cn,µ Cn,T

CU,µ CU,T

)(
δµm

δTm

)
. (2.67)

where the coefficients typically involve integrals over the density of states and the
distribution function.

In the case that the thermalization process is faster than all other timescales, the
parameters µm and Tm are equal to the thermodynamic chemical potential and tem-
perature. As an example, now the coefficient Cn,T = ∂nd/∂T is given by the partial
derivative of Eq. (2.66). The other coefficients can be calculated analogously [121],
as will be done in Chapter 4. In the opposite case, where the magnon system is
temporarily characterized by a nonthermal distribution, the parameters correspond
to a generalized chemical potential and temperature. Then, µm and Tm are simply
mathematical tools for bookkeeping the variation in the number of magnons and
the total energy. This approach is similar to how one can define the generalized
spin accumulation and electron temperature for a nonthermal electron distribution.

In the following section, we discuss the dynamics of the magnon system driven by
the interaction with itinerant electrons. The result will be expressed in terms of the
parametrization presented above.

The electron-magnon scattering rate

In a ferromagnetic metal, magnons interact with the surrounding itinerant electrons.
The coupling is closely connected to the s-d interaction discussed previously. Using
the Holstein-Primakoff transformation, the s-d interaction Hamiltonian is rewritten

Ĥsd = ∑
qkk′

[
V∗qkk′c

†
k′↓ck↑a†

q + Vqkk′c
†
k↑ck′↓aq

]
. (2.68)

The Hamiltonian describes electron-magnon scattering processes, where the spin-
flip of an itinerant electron yields either the creation or annihilation of a magnon.
The process transfers spin and energy between the two populations, where the rate
of transfer is determined by the electron-magnon scattering rate. In analogy with
the previous sections, the transfer rate is calculated using Fermi’s golden rule. It
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results in an expression for the time derivative of the magnon density [36, 116, 117]

dnd
dt

=
2π

h̄V ∑
qkk′
|Vkk′q|2δ(εk↑ − εk′↓ − εq) fk↑(1− fk′↓)(1 + nq) (2.69)

− 2π

h̄V ∑
qkk′
|Vkk′q|2δ(εk↑ − εk′↓ − εq) fk′↓(1− fk↑)nq ,

where nq is the (nonequilibrium) magnon distribution function. Furthermore, fk↑
and fk′↓ correspond to the spin-dependent distribution functions for the electrons.
Simplifying the expression in Eq. (2.69) requires the same mathematical steps as
previously used for the s-d model. First, the summations are rewritten in terms of
integrals over the energy. Second, the electron distribution functions are assumed
to be given by Fermi-Dirac distributions with a spin-dependent chemical potential.
Following the standard algebraic steps, the spin-transfer rate is expressed as [36,
117]

dnd
dt
≡ Isd =

∫
dεqΓ(εq)D(εq)(εq − µs)

[
nBE(εq − µs)− n(εq)

]
. (2.70)

By definition, Isd describes the spin-transfer rate between the itinerant (s) electrons
and magnons (d electrons) per unit volume. Note that n(εq) corresponds to the
magnon distribution function, for which no specific form has been assumed yet. In
contrast, the Bose-Einstein function nBE(εq − µs), is a result of evaluating the inte-
grals involving Fermi-Dirac distributions (as seen previously in Eq. (2.17)). Using
the same definition as Ref. [117], all the remaining parameters that determine the
electron-magnon scattering rate are defined within the energy-dependent function
Γ(εq) [117]

Γ(εq) =
2πV2

h̄D(εq)

∫ dk
(2π)2

∫ dk′

(2π)3

∫ dq
(2π)3 δ(εk − εF)δ(εk′ − εF)δ(εq − εq)|Vkk′q|2.

(2.71)

In the remainder of this thesis, the function Γ(εq) is treated phenomenologically. In
analogy with the spin-transfer rate, the rate of energy transfer per unit volume is
given by [116]

Usd =
∫

dεqΓ(εq)εqD(εq)(εq − µs)
[
nBE(εq − µs)− n(εq)

]
, (2.72)

which includes an additional factor of energy in the integral.
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Figure 2.7: Schematic overview of the model based on electron-magnon scattering. The
latter mediates the spin transfer between thermal magnons and spin-polarized electrons.
Itinerant spins and thermal magnons are treated on equal footing, by parametrizing both
systems in terms of a chemical potential and a temperature. Additionally, the electronic
system exchanges energy and spin with the lattice.

Using the expressions for the spin transfer Isd and energy transfer Usd, a complete
model for the dynamics in the magnon system can be formulated. Before intro-
ducing our specific approach, we discuss two examples from the literature of how
electron-magnon scattering is implemented in models for ultrafast demagnetiza-
tion. First, Manchon et al. [31] assumed an instantaneously thermalized magnon
system parametrized by the magnon temperature Tm (and a vanishing chemical
potential). By calculating the energy transfer rate Usd, the authors formulated a
microscopic equivalent of the three-temperature model. A contrasting approach
was introduced by Tveten et al. [36], who assumed a nonthermal magnon distri-
bution. The authors carried out the explicit evaluation of the spin-transfer rate Isd,
and included the spin accumulation as an additional parameter that describes the
generation of an out-of-equilibrium spin density in the itinerant system.

The formulation we use combines the two approaches of Refs. [31, 36], such that
we are able to model both energy transfer and spin transfer in an effective way.
A schematic overview of the model is given in Fig. 2.7. The method relies on the
parametrization discussed in the previous section, i.e., we express the dynamical
equation for the magnon system in terms of the generalized chemical potential and
temperature. In matrix notation(

Cn,µ Cn,T

CU,µ CU,T

)(
∂tµm

∂tTm

)
=

1
h̄

(
gn,µ gn,T

gU,µ gU,T

)(
µs − µm

Te − Tm

)
, (2.73)

where the coefficients on the right-hand side are directly determined by the spin
and energy transfer rates. All the coefficients are estimated by substituting a ther-
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Figure 2.8: Spin dynamics as a result of electron-magnon scattering in a rapidly heated
ferromagnet expressed as a function of time t after laser-pulse excitation at t = 0. (a) The
increase of the magnon density δnd, normalized compared to the initial value nd,0. (b) The
generated spin accumulation µs. (c) The normalized magnetization of the combined spin
system.

malized magnon distribution in the corresponding integrals. Since the model will
only be applied for situations close to equilibrium, all terms are expanded up to
first order in perturbations of the chemical potential and temperatures. As some
subtleties arise within this method, we refer to Chapter 5 for more details on the
final expressions for the coefficients.

The essence of the discussed implementation of electron-magnon scattering is that
magnons and itinerant spins are treated on equal footing. Expressed in terms of the
spin accumulation µs and electron temperature Te, the itinerant system is described
by (

1 0
0 Ce

)(
∂tµs

∂tTe

)
= −

(
2ρsd Isd

Usd

)
−
(

1/τs 0
0 gep

)(
µs

Te − Tp

)
, (2.74)

where the term corresponding to electron-phonon scattering is introduced by hand
and follows from the standard two-temperature model. We note that the coefficient
ρsd = 1/ν̃− Jsda3/2 is defined in different units compared to last Sec. 2.4, where we
used the notation ν̃ = 2D↑D↓/(D↑ + D↓) for the spin-averaged density of states in
units per energy per volume [36].
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To illustrate the use of the discussed implementation of electron-magnon scattering,
Fig. 2.8 visualizes the dynamics of the magnons and electrons upon rapid heating.
The calculation uses the assumptions and coefficients as presented in Chapter 4.
Figure 2.8(a) indicates the change of the magnon density δnd, and clearly shows the
rapid generation of thermal magnons. Figure 2.8(b) indicates the spin accumulation
µs as a function of time. Finally, Fig. 2.8(c) depicts the normalized magnetization of
the combined spin system. The latter is defined as m = (s− nd − ns/2)/s, with nd

the magnon density and ns = n↑ − n↓ the spin density of the itinerant electrons.

In comparison to the s-d model, the implementation of electron-magnon scattering
has two major advantages. First, it includes the magnons as elemental spin exci-
tations and thereby provides a better microscopic representation of a ferromagnet.
Secondly, it allows for a straightforward extension to a more complete description
of spin transport, one that includes both itinerant electrons and thermal magnons as
a spin-current carrier. This brings us to the end of the first part of this background
chapter, as we have now introduced all the essential tools for the description of the
local spin dynamics. In the second part, the focus redirects towards the theoretical
model for diffusive spin transport. We start with a general review of the underlying
transport description.

2.6 Diffusive spin transport

In this section, we discuss the basic theoretical description of diffusive spin trans-
port. We closely follow the standard derivation based on Boltzmann transport the-
ory, as presented in Refs. [107, 108, 122, 123]. The formalism will be introduced for a
general system of particles, and later specifically applied to spin-polarized electrons
and thermal magnons. Additionally, this overview also includes the description of
heat transport, which will be used in Chapter 4.

Without the loss of generality, the system is characterized by the distribution func-
tion fk = fk(r), which is now explicitly dependent on the position r. The distribu-
tion function satisfies the Boltzmann equation [108]

∂ fk
∂t

+ v · ∇ fk = I{ fk}, (2.75)

where v = ∂ωk/∂k is the group velocity corresponding to the dispersion relation
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ωk. The term on the right-hand side I{ fk} is a functional describing the full Boltz-
mann collision integral and includes all possible scattering processes. In principle,
the typical form of the collision integral can be deduced from the microscopic calcu-
lations presented in the previous sections. For now, our main interest is calculating
the modified distribution function in the presence of (small) gradients of the chem-
ical potential and the temperature. In order to do this, it is convenient to write

fk(r) = f 0
k + δ fk, (2.76)

where f 0
k describes the distribution function in the local equilibrium and δ fk de-

scribes a small deviation. The latter determines the particle current density j and
heat current density jQ, as given by

j =
∫ dk

(2π)3 vδ fk, (2.77)

jQ =
∫ dk

(2π)3 (εk − µ)vδ fk. (2.78)

The next step is to determine an expression for δ fk using the Boltzmann equation,
where the collision term is rewritten using the relaxation time approximation. To
linear order in the gradients of the driving fields, δ fk satisfies

∂δ fk
∂t

+ v · ∇ f 0
k = − δ fk

τ
. (2.79)

where τ is the relaxation time, which is assumed to be independent of k, and is
determined by all scattering processes that contribute to the decay of δ fk. Further-
more, it is assumed that τ is much shorter than the timescale at which (gradients
of) the driving field vary. In that case, the temporal derivative can be omitted and
δ fk is given by

δ fk(r) = −τv · ∇ f 0
k(r). (2.80)

Substituting this relation in the particle current density gives

j = −τ
∫ dk

(2π)3 v(v · ∇ f 0
k), (2.81)

and a similar expression is found for the heat current density. Generally, the local
equilibrium distribution function is parametrized by the chemical potential and
temperature f 0

k = f (εk, µ(r, t), T(r, t)), and is given by either a Bose-Einstein or
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Fermi-Dirac distribution. For simplicity, we consider the situation that the gradients
are only nonzero along the x-axis. The current is written in terms of the driving
fields and an integral over the energy

j = −τ
∫

dεD(ε)
|v|2

3
∂ f 0

∂ε

[
− ∂µ

∂x
− (ε− µ)

T
∂T
∂x

]
, (2.82)

where D(ε) is the density of states. Here, a quadratic dispersion relation is assumed
and |v|2 is linear in the energy. A similar expression can be determined for the heat
current density. Therefore, we generally define the coefficient Lij that fully specifies
the current densities

Lij = τ
∫

dεD(ε)(|v|2/3)(ε− µ)i+j−2 ∂ f 0

∂ε
. (2.83)

In summary, the particle current density and heat current density are given by(
j

jQ

)
=

(
L11 L12

L21 L22

)(
∂xµ

∂xT/T

)
. (2.84)

Evaluating the coefficients is a relatively straightforward exercise. However, the cal-
culation method depends on whether f 0

k is given by a Bose-Einstein or Fermi-Dirac
distribution. Therefore, spin-dependent electron transport and diffusive magnon
transport are separately discussed in the following sections.

2.6.1 Spin-dependent electron transport

Since electrons correspond to spin one-half particles, the first step to introduce spin-
polarized electron transport is to define two separate electron systems, one for each
spin polarization. Furthermore, one should take into account that the electrons
carry electric charge and the Boltzmann equation includes an additional term in the
presence of an electric field. The latter can easily be implemented by introducing
the electrochemical potential µ̃σ = µσ − eV for σ ∈ {↑, ↓} [71, 107], where V is the
electric potential. Applying the framework of Eq. (2.84) to both spin populations
and substituting the definition of the electrochemical potential yields a complete
description of spin-dependent electron transport in linear response.

The main interests are the spin-specific current densities j↑ and j↓, and the total heat
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current density jQ,↑ + jQ,↓. They are given by [124, 125]

 j↑
j↓

jQ,↑ + jQ,↓

 = −

 σ↑/e2 0 σ↑S↑/e2

0 σ↓/e2 σ↓S↓/e2

σ↑Π↑/e2 σ↓Π↓/e2 κ↑ + κ↓


∂xµ̃↑

∂xµ̃↓
∂xTe

 , (2.85)

where the spin-dependent coefficients are expressed in terms of the conductivity
σσ, Seebeck coefficient Sσ, Peltier coefficient Πσ, and heat conductivity κσ. The
corresponding Lij can straightforwardly be evaluated by employing the Sommerfeld
expansion and collecting the dominant terms for kBTe � εF.

Our main interest is thermal spin transport, specifically, in the absence of a charge
current. In the context of a time-dependent excitation mechanism, it is assumed that
any transfer of charge that may arise upon excitation, is effectively screened within
an extremely short timescale [71]. In that way, one can impose that the charge
current vanishes instantaneously. Then, the spin current density js,e = j↑ − j↓ and
(total) heat current density jQ,e = jQ,↑ + jQ,↓ can be simplified. Specifically, by using
Eq. (2.85) under the condition that j↑ + j↓ = 0 and eliminating the electric field
(included in µ̃σ) yields(

js,e

jQ,e

)
= −

(
σ̃/e2 σ̃Ss/e2

σ̃Πs/(2e2) κe

)(
∂xµs

∂xTe

)
, (2.86)

which is now expressed in terms of the spin accumulation µs = µ↑ − µ↓, the spin-
dependent Seebeck coefficient Ss = S↑ − S↓, and the spin-dependent Peltier coeffi-
cient Πs = TSs.

The goal is to calculate the transport in the itinerant spin system in response to
laser heating. The full dynamics of the itinerant spin system follows from the con-
servation laws for spin and energy. The corresponding continuity equations can
equivalently be deduced from integrating the Boltzmann equation over the mo-
mentum. The interactions with a magnon and phonon bath are included in the
collision integral and reduce to the local spin and energy transfer rates as derived
in the previous section. The resulting continuity equations are given by

ν̃
∂µs

∂t
+

∂js,e

∂x
, = − ν̃µs

τs
− 2Isd, (2.87)

Ce
∂Te

∂t
+

∂jQ,e

∂x
= gep(Tp − Te)−Usd + P(t, x), (2.88)
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Figure 2.9: (a) The interfacial spin current (blue) as a function of time after laser-pulse
excitation at t = 0. (b) Schematic overview of the Ni/Pt magnetic heterostructure and the
excited interfacial spin current jint

s .

which is equivalent to Eq. (2.74) with an additional divergence term for the spin
and heat current densities.4

To illustrate the presented approach for laser-induced spin transport, we explicitly
calculate the interfacial spin current in a Ni/Pt heterostructure. Here, the magnon
system is treated as a local system, described by the parametrization introduced
in Section 2.5. In other words, all the generated spin transport is carried by the
itinerant electrons. Figure 2.9(a) shows the result, where the blue line indicates the
interfacial spin current as a function of time after laser-pulse excitation at t = 0.
The plot shows the typical transient spin-current pulse as expected from the experi-
ments [65, 70]. A detailed discussion on the presented model for laser-induced spin
transport in magnetic heterostructures, including all the used system parameters, is
presented in Chapter 4. Furthermore, in that chapter, we discuss the close similarity
between the spin current and the time derivative of the magnetization.

In contrast to the research presented in Chapter 4, the calculation visualized in Fig.
2.9(a) does not include the transport of magnons. Interestingly, introducing the dif-
fusive transport of magnons is a straightforward extension, and can be formulated
in analogy with the implementation of electron transport.

4For simplicity, we assumed that ρsd = ν̃−1, meaning that the mean-field shift induced by the s-d
interaction is neglected.
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2.6.2 Diffusive magnon transport

In this final section on spin transport, we discuss an intuitive implementation of
diffusive magnon transport following the results of Ref. [118]. Equivalent to the
previous section, the magnon current density and magnon heat current density are
calculated by employing the Boltzmann transport theory to linear order in gradients
of the chemical potential and temperature. The corresponding transport coefficients
are given by Eq. (2.83). The calculation involves evaluating Bose-Einstein integrals
and may be expressed in terms of polylogarithms. To further simplify, it is as-
sumed that the magnon temperature Tm remains close to the ambient temperature,
and the magnon gap and chemical potential satisfy ε0, µm � kBT0. The resulting
transport coefficients are given in Ref. [118, 121], and are summarized in Chapter
4. Finally, the magnon current density jm and magnon heat current density jm,Q are
formulated as [118](

jm
jQ,m

)
= −

(
σm/e2 L/T0

L κm

)(
∂xµm

∂xTm

)
, (2.89)

where the transport coefficients are defined in terms of the magnon conductivity
σm, the spin Seebeck coefficient L, and the magnon heat conductivity κm. Further-
more, T0 is the ambient temperature. For illustrative purposes, we state the final
expression for the magnon conductivity

σm =
e2τtr,m(kBT0)

3/2Γ(3/2)ζ(3/2)
2π2h̄2 A1/2

. (2.90)

Using the expression for the magnon density nd in Eq. (2.66), it is straightfor-
ward to show that the magnon conductivity is given by the Drude-like formula
σm = e2ndτ/mm [121]. Here, the effective magnon mass is mm = h̄2(∂2εq/∂q2)−1 =

h̄2/(2A). Although it was shown in magnetic insulators that σm is an order of
magnitude smaller than the typical values for the electrical conductivity [118], the
magnonic system responds differently to thermal gradients. To compare it to ther-
moelectric effects, we note that the resulting expression for L gives the relation
L/(σmT) ∼ kB [118]. In contrast, in the free electron model the Seebeck coeffi-
cient scales as (T/TF)kB, and thermoelectric effects are generally weak. The com-
parison suggests that in ferromagnetic metals, where both electrons and magnons
contribute to spin transport, the spin current as a result of a temperature bias may
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be dominated by the transport of magnons. In the case of a metallic magnetic
heterostructure with a constant temperature gradient, the magnonic and electronic
contribution to thermal spin injection were calculated explicitly in Ref. [126]. It was
shown that the ratio of the distinct contributions to the injected spin current jint

s

scales as
jint
s
∣∣
magnons

jint
s
∣∣
electrons

∝
(

TF
TC

)√
T
TC

, (2.91)

which is strongly in favor of the magnonic contribution due to the fact that generally
TF � TC. Although this is a different context than the time-dependent scenarios
discussed in this thesis, the observation hints that thermal magnons may play a
significant role in the spin transport driven by laser heating. The role of magnon
transport is extensively discussed in Chapter 4.

As we have now introduced the two types of spin transport that will be investigated
in the main chapters, we arrived at the end of the second part of this introductory
chapter. In the remaining part, we switch back to describing local spin dynamics,
specifically, the dynamics in ferrimagnetic materials.

2.7 Spin dynamics in multisublattice magnets

In the final sections of this chapter, two models for the local spin dynamics in mul-
tisublattice magnets are discussed. Specifically, the focus is on rare-earth transition-
metal alloys, which are an exceptionally interesting material since they allow single-
pulse all-optical switching [10]. The models will be presented in the same order as
the equivalent descriptions for ferromagnets. First, the Weiss model is extended to
multiple spin sublattices to cover the equilibrium properties of the magnetization.
Then, we will discuss two descriptions of the spin dynamics. The first one is based
on the M3TM [78], whereas the second is an extension of the s-d model [58, 87, 88].
Both implementations use the Weiss model for ferrimagnets as the equilibrium con-
ditions.

To shortly address the equilibrium magnetization in ferrimagnets, the Weiss model
is formulated for the two spin sublattices of a two-component AxB1−x alloy. The
first step is to determine the exchange splitting for the distinct spin systems A and
B. Within a mean-field approach, the exchange splitting ∆A and ∆B are expressed
as
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∆A = xγAAmA + (1− x)γABmB, (2.92)

∆B = xγBAmA + (1− x)γBBmB. (2.93)

We defined the coefficient γij = jijzDs,jSj in terms of exchange coupling constant jij
and the number of nearest neighbors z. Furthermore, the number of spins per atom
is defined as Ds,j = µat,j/(2Sj), with µat the atomic magnetic moment in units of
the Bohr magneton. The latter is introduced phenomenologically to address the fact
that the spin per atom is generally not a half-integer, and is an essential parameter
in the case of ferrimagnetic systems.

Obviously, the exchange splitting for a pure material (x = 0 or 1) should retrieve
the single-component Curie temperature. It automatically follows that the intrasub-
lattice coupling constant is given by γii = 3kBTC,i/(Si + 1). Additionally, the inter-
sublattice constants are determined by the exchange coupling constant jij, which is
treated as a free parameter. To illustrate the description for ferrimagnetic alloys, we
determine the magnetization as a function of temperature for a typical rare-earth
transition-metal alloy. For the transition metal, notated as component A, we use
TC = 1000 K, S = 1/2 and µat = 2.0. For the rare-earth metal B, we use the typical
values TC = 292 K, S = 7/2 and µat = 7.0, which roughly represent Gadolinium.
Finally, we set the intersublattice exchange constant to jAB = −2.0 meV. Figure 2.10
shows the result, indicating the element-specific magnetic moment as a function of
temperature. The red line indicates the magnetic moment of the transition metal,
whereas the blue line corresponds to the rare-earth component. The calculation was
performed using a concentration of x = 0.73. In this example, the total magnetic
moment (in green) is compensated around room temperature.

Now that the equilibrium description of the element-specific magnetization is in-
troduced, we can move on to the dynamical model. The first description we discuss
is the extension of the M3TM to multisublattices magnets.

2.7.1 The M3TM for ferrimagnetic alloys

In this section,5 we shortly discuss the model for laser-induced spin dynamics in
ferrimagnetic materials based on the M3TM. This description was introduced by
Schellekens et al. [78] and is a relatively straightforward extension of the original

5This section was presented in the Supplemental Material of Ref. [127]. The main text of Ref. [127]
corresponds to Chapter 6 of this thesis.
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Figure 2.10: The element-specific magnetic moment as a function of the temperature of a
ferrimagnetic alloy consisting of a typical transition-metal (red) and rare-earth (blue) compo-
nent. The magnetic moment is calculated using the Weiss model for multisublattice magnets.
Additionally, the green line indicates the total magnetic moment and shows that the com-
pensation temperature is close to room temperature.

ferromagnetic model. The extension relies on two assumptions: (i) the demagneti-
zation of the distinct spin sublattices is well described by the original M3TM, and
(ii) an additional channel for intersublattice spin transfer is present that originates
from exchange scattering processes.

As the name suggests, exchange scattering corresponds to the (spin-flip) electron-
electron scattering processes that originate from the exchange interaction. The pro-
cesses enable the mutual transfer of spin angular momentum between the sublat-
tices. In the M3TM approximation, where electrons are treated as spinless, the
Hamiltonian that describes intersublattice exchange scattering is given by [78]

Ĥex,ij = ∑
{k}

NDs,i

∑
v

NDs,j

∑
w

( jex,ij

N2

)
c†

k′′′c
†
k′′ck′ck(Ŝ+

i,vŜ−j,w + Ŝ−i,vŜ+
j,w), (2.94)

where i and j 6= i label the spin sublattices. The notation {k} indicates a summation
over all appearing k vectors. Moreover, the indices v and w label the individual
spins. Although jex,ij is directly connected to the intersubalattice exchange coupling
constant jij, we treat the former as a phenomenological parameter to compensate for
the imperfection of the M3TM approximation. To further clarify the implementation
of multisublattice magnets in the M3TM, a schematic overview is given in Fig.
2.12(b), indicating that the exchange scattering processes (in the gray box) mediate
the intersublattice transfer of spin.
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Figure 2.11: The scattering integral SI(x) plotted as a function of x.

In analogy with the previous calculations, Fermi’s golden rule is used to determine
the spin-transfer rate. In this case, one should take into account that the exchange
scattering processes correspond to simultaneous (and opposite) transitions in the
two spin subsystems. Hence, we define Γ±∓ij,ss′ , which corresponds to the rate at
which in subsystem i transition s → s± 1 occurs, accompanied by transition s′ →
s′ ∓ 1 in subsystem j.6 Fermi’s golden rule yields [78]

Γ±∓ij,ss′ =
2π

h̄
CjDs,jS±∓ij,ss′

( j 2
ex,ij

N4

)
∑
{k}

δ(εk + εk′ ∓ ∆ij − εk′′ − εk′′′) (2.95)

×
[

fk fk′(1− fk′′)(1− fk′′′)

]
,

where we defined the coordination number Cj = x · z, with z the number of nearest
neighbors, and the relative exchange splitting ∆ij = ∆i − ∆j. Furthermore, S±∓ij,ss′

results from the multiple spin ladder operators and is given by

S±∓ij,ss′ = (Si(Si + 1)− s(s± 1))(Sj(Sj + 1)− s′(s′ ∓ 1)). (2.96)

The expression in Eq. (2.95) is simplified by rewriting the summation over the mo-
menta in terms of integrals over the energies. The transition rate Γ±∓ij,ss′ is reformu-
lated as

Γ±∓ij,ss′ =
ηijCjT3

e

Ds,i
SI(∓∆ij/kBTe)S±∓ij,ss′ , (2.97)

6s is here a shorthand notation for the previously used ms.
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Figure 2.12: The element-specific magnetization dynamics of a rare-earth transition-metal
alloy, which is calculated with the M3TM for multisublattice magnets. The red line indicates
the normalized magnetization of the transition-metal component as a function of time after
laser-pulse excitation at t = 0. The blue line corresponds to the normalized magnetization of
the rare-earth metal. The presented figure is identical to Fig. 6.2(c). (b) Schematic overview
of the M3TM for multisublattice magnets. Exchange scattering, as indicated in the gray box,
mediates the transfer of spin angular momentum between the two distinct spin sublattices.
Additionally, the individual sublattices transfer angular momentum to the lattice through
Elliott-Yafet electron-phonon scattering processes.

where we defined the prefactor

ηij =
2π

h̄
j2ex,ijD

4
FDs,iDs,jk3

B ≡ λij
2π

h̄
j2ijD

4
FDs,iDs,jk3

B. (2.98)

Here, DF is the density of states evaluated at the Fermi energy in units per energy
per atom. In the second step, we introduced the dimensionless parameter λij , that
is determined by the ratio of jex,ij and the intersublattice exchange coupling constant
jij.

The scattering integral SI(∓∆ij/kBTe), which appears in Eq. (2.97), parametrizes the
probability of an electron-electron scattering event to occur and is given by

SI(±x) ≡
∫

dx1dx2dx3(1− f (x1 + x2 ± x− x3))(1− f (x3)) f (x2) f (x1), (2.99)

where f (x) is the Fermi-Dirac distribution. The function SI(x) is plotted in Fig.
2.11. Importantly, the scattering integral satisfies SI(x)/SI(−x) = exp(x). It yields
that the exchange scattering rate vanishes in case the occupation probability of the
spin levels is described by Boltzmann statistics.

Our main interest is calculating the element-specific magnetization dynamics driven



2.7 Spin dynamics in multisublattice magnets 61

by exchange scattering. In order to do so, we need to calculate the temporal deriva-
tive of the occupation probability fi,s of spin level s. To arrive at a compact expres-
sion, we first define

W±∓ij,ss′(∆ij) = SI(∓∆ij/kBTe)S±∓ij,ss′ , (2.100)

which corresponds to the dimensionless part of Γ±∓ij,ss′ . The time derivative of the
occupation probability fi,s follows from collecting the rates of all the allowed spin
transitions.7 Subsequently, the normalized magnetization of sublattice i is deter-
mined by the ensemble average mi = (−1/Si)∑Si

s=−Si
s fi,s. Finally, the change of

the magnetization mi driven by exchange scattering is described by

dmi
dt

∣∣∣∣
ex

=
2ηijCj

µat,i
T3

e

[ Si

∑
s=−Si+1

Sj−1

∑
s=−Sj

W−+ij,ss′(∆ij) fi,s f j,s′ (2.101)

−
Si−1

∑
s=−Si

Sj

∑
s=−Sj+1

W+−
ij,ss′(∆ij) fi,s f j,s′

]
,

where the definition Ds,i = µat,i/2Si is used. To illustrate the physical meaning of
Eq. (2.101), it is convenient to present the formula for two spin one-half subsystems
Si = Sj = 1/2. In that case, the exchange scattering results in

dmi
dt

∣∣∣∣
ex

=
ηijCj

2µat,i
T3

e

[
SI
( ∆ij

kBTe

)
(1−mi)(1 + mj)− SI

(
−

∆ij

kBTe

)
(1 + mi)(1−mj)

]
.

(2.102)
The two terms between the square brackets correspond to the opposite spin tran-
sitions, and the factors (1∓mi)(1±mj) determine the availability of the new spin
states. The formula for an arbitrary spin quantum number, as given in Eq. (2.101),
has a similar structure and includes the transition probabilities for all possible com-
binations of transitions. The full dynamics of the normalized magnetization is given
by adding the contribution by exchange scattering to the original M3TM

dmi
dt

=
dmi
dt

∣∣∣
M3TM

+
dmi
dt

∣∣∣
ex

. (2.103)

As an intuitive example, we modeled all-optical switching in a typical rare-earth
transition-metal alloy. The result is shown in Fig. 2.12(a). Here, the red line indicates

7The full expression is given in the Supplemental Material of Ref. [127].
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the transition-metal magnetization as a function of time after laser-pulse excitation
at t = 0. The blue line describes the magnetization of the rare-earth component.
The plot corresponds to a calculation that is presented in Chapter 6. There, the used
system parameters are fully specified. Although the model simulates a successful
all-optical switching process, the visible plateau near the ferromagnetic (FM) region
deviates from the characteristic time-resolved measurements [11] (Introduction Fig.
1.7). We note here that the dynamics near the zero-crossing strongly depends on the
parameters used in the calculation. Nevertheless, as shown later in the thesis, the
model qualitatively agrees with the experiments in terms of the magnetic system
requirements for successfully switching the magnetization with a single laser pulse.

Although this section focused on ferrimagnetic alloys, the introduced model can
equivalently be applied to synthetic-ferrimagnetic multilayers. The latter material
systems are addressed in Chapters 6 and 7. In these chapters, we will show that
the switching mechanism in synthetic ferrimagnets has a nonlocal character. Nev-
ertheless, the discussed framework does not allow to include spin currents within
an itinerant spin system. In the following section, we shortly discuss the extension
of the s-d model to ferrimagnetic systems. The latter allows to include the standard
diffusive spin currents.

2.7.2 The s-d model for ferrimagnetic alloys

In this section, we present the extension of the s-d model to ferrimagnetic systems,
as was introduced by Gridnev et al. [58]. Since all required mathematical steps are
equivalent to the calculations for the ferromagnetic case, extending the model to fer-
rimagnets is a relatively straightforward task. In principle, it directly follows from
a number of phenomenological arguments. A schematic overview of this approach
is given in Fig. 2.13(b). It is assumed that the two magnetic sublattices indirectly
exchange angular momentum through the interaction with a bath of itinerant spins.
The spin sublattices are individually described by the s-d model. Additionally, the
dynamics of the itinerant system is determined by the weighted sum of the spin-
transfer rates of the local sublattices. From the angular momentum conservation
of the s-d scattering processes, it automatically follows that the spin accumulation
satisfies

D
dµs

dt
= x(2SADs,A)

dmA

dt

∣∣∣∣
sd
+ (1− x)(2SBDs,B)

dmB

dt

∣∣∣∣
sd
− Dµs

τs
, (2.104)
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Figure 2.13: The element-specific magnetization dynamics of a rare-earth transition-metal
alloy, which is calculated with the s-d model for ferrimagnetic alloys. The red line indicates
the magnetization of the transition-metal component as a function of time after laser-pulse
excitation at t = 0. The blue line corresponds to the magnetization of the rare-earth metal.
(b) Schematic overview of the s-d model for ferrimagnets. The spin sublattices can indirectly
exchange spin angular momentum through an s-d coupling to the electron bath.

where the first two terms on the right-hand side indicate the s-d model for the sep-
arate magnetic sublattices and are determined by the transition rates in Eq. (2.47).

Mediated by the itinerant spin system, the two magnetic sublattices indirectly ex-
change spin angular momentum. This channel of intersublattice spin transfer effec-
tively allows the ferrimagnetic system to be switched by rapid heating [58]. To illus-
trate this, Fig. 2.13(a) presents a calculation of the element-specific magnetization
dynamics in a rapidly heated rare-earth transition-metal alloy. The red line indi-
cates the normalized magnetization of the transition-metal subsystem as a function
of time. The blue line corresponds to the magnetization of the rare-earth compo-
nent. In this calculation, the parameters for the ferrimagnetic system were chosen to
be equal to the values used for Fig. 2.10. Additionally, the timescales that determine
the efficiency of the spin-transfer rates were set to τsd,Co = 0.1 ps and τsd,Gd = 1 ps.
The latter is very short compared to the experimental values for the demagneti-
zation time of pure Gd [18]. It turns out that this enhanced Gd demagnetization
rate is required to observe all-optical switching within this model. The choice of
this parameter is highly nontrivial due to the orbital-specific demagnetization rates
of 5d6s and 4 f electrons [128], and because of the element-specific demagnetiza-
tion time in a Gd-based alloy differs from the pure case [129]. It is needless to
say that the specific time-resolved behavior is strongly affected by the choice of
the system parameters. Nevertheless, the s-d model for ferrimagnets allows us
to qualitatively investigate the interplay between the all-optical switching process
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and generated spin currents. This is particularly interesting for modeling magnetic
multilayers that contain a ferrimagnetic component, where interlayer spin transport
significantly influences the all-optical switching process [100, 101, 105, 130]. Some
relevant preliminary calculations are presented in Chapter 8.

This brings us to the end of this theoretical background chapter, since all the models
that are used in the remainder of the thesis are introduced. As will be shown, the
presented descriptions of laser-induced spin dynamics qualitatively agree with the
majority of the typical experiments. However, it is needless to say that there are
some clear limitations. The latter will be pointed out in the main chapters and
discussed in the outlook in Chapter 8.



3
s-d model for local and nonlocal spin

dynamics in laser-excited magnetic

heterostructures

We discuss a joint microscopic theory for the laser-induced magnetization dynamics and spin
transport in magnetic heterostructures based on the s-d interaction. Angular momentum
transfer is mediated by scattering of itinerant s electrons with the localized (d electron) spins.
We use the corresponding rate equations and focus on a spin one-half d electron system,
leading to a simplified analytical expression for the dynamics of the local magnetization
that is coupled to an equation for the non-equilibrium spin accumulation of the s electrons.
We show that this description converges to the microscopic three-temperature model in the
limit of a strong s-d coupling. The equation for the spin accumulation is used to introduce
diffusive spin transport. The presented numerical solutions show that during the laser-
induced demagnetization in a ferromagnetic metal a short-lived spin accumulation is created
that counteracts the demagnetization process. Moreover, the spin accumulation leads to the
generation of a spin current at the interface of a ferromagnetic and nonmagnetic metal.
Depending on the specific magnetic system, both local spin dissipation and interfacial spin
transport are able to enhance the demagnetization rate by providing relaxation channels
for the spin accumulation that is built up during demagnetization in the ferromagnetic
material.1

1This chapter has been published in Physical Review B [131].
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3.1 Introduction

Exciting magnetic systems with ultrashort laser pulses gives rise to fascinating
physics. First, it was shown that a femtosecond laser pulse can quench the mag-
netization of a ferromagnetic thin film on a subpicosecond timescale [13]. Later,
all-optical magnetization switching was discovered in GdFeCo alloys [10], which
proved the high potential of using ultrashort laser pulses for future data-writing
technologies. Moreover, it was demonstrated that the laser pulse generates a spin
current [14, 15]. In noncollinear magnetic heterostructures the ultrafast generated
spin current exerts a spin-transfer torque [64, 65], leading to the excitation of Ter-
ahertz standing spin waves [66, 67]. Understanding all these ultrafast phenomena
paves the way towards faster magnetic data technologies, and bridges the bound-
aries between photonics, spintronics, and magnonics.

Despite the vast experimental developments within the field, the microscopic ori-
gin of the observed demagnetization rates is still heavily debated. Various micro-
scopic processes have been proposed as being the dominant mechanism, such as
(i) the coherent interaction between the photons and the spins [21, 22], (ii) spin-
dependent transport of hot electrons [39], and (iii) local spin dynamics as triggered
by laser heating or excitation [13, 18, 23, 24, 26, 31, 33, 35–38]. In the latter case,
the models often rely on the assumption that heating of the electrons increases the
amount of spin-flip scattering events, resulting in the transfer of angular momen-
tum. An example of this type of models is the microscopic three-temperature model
(M3TM) [18], where it is assumed that the magnetization dynamics is dominated by
Elliott-Yafet electron-phonon scattering. Arguably, other types of scattering mecha-
nisms can also account for the observed demagnetization rates, such as Elliott-Yafet
electron-electron scattering [26] and electron-magnon scattering [31, 36]. The latter
stems from the s-d interaction in ferromagnetic transition metals, that couples the
local magnetic moments (d electrons) and free carriers (s electrons). Similar models
were derived to describe the ultrafast magnetization dynamics in semiconductors
[56] and ferrimagnetic alloys [58].

Another important question is what mechanism drives the optically induced spin
currents in magnetic heterostructures. First, it could be directly related to the pro-
posed superdiffusive spin currents created in the magnetic material [39, 73]. Sec-
ondly, the laser-induced thermal gradients can generate a spin current resulting
from the spin-dependent Seebeck effect [74, 75]. Recently, it was proposed that the
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spin-polarized electrons are generated at a rate given by the temporal derivative
of the magnetization [65]. Interestingly, this implies that the demagnetization and
the generated spin current are driven by the same physical mechanism. The s-d in-
teraction, which mediates angular momentum transfer between the local magnetic
moments and itinerant electrons, is a principal candidate [36, 65, 72].

In this chapter, we discuss an extended s-d model for laser-induced magnetization
dynamics that includes spin transport. The model describes that during demagne-
tization an out-of-equilibrium spin accumulation is created in the s electron system
[36, 56], which leads to the generation of a spin current in magnetic heterostruc-
tures [65, 72]. We apply the s-d model to investigate the interplay between the local
magnetization dynamics and spin transport in laser-excited magnetic heterostruc-
tures. The numerical solutions of the rate equations show a qualitative agreement
with the experiments and support the view that the s-d interaction could be the
main driving force of the observed ultrafast phenomena [36, 65, 72]. Furthermore,
the crucial role of the spin accumulation is emphasized, namely (i) the generated
spin accumulation has a negative feedback on the demagnetization process [36, 56]
and (ii) this bottleneck can be removed by either local spin-flip processes or by elec-
tron spin transport. Hence, both local and nonlocal processes play a crucial role in
the magnetization dynamics. Finally, we discuss the limit in which the s-d model
becomes equivalent to the M3TM, and we conclude with an outlook.

We start with an overview of the derivation of the s-d model in Section 3.2 and we
highlight the simplifications we use compared to the derivations reported in Ref.
[36] and Ref. [56]. Importantly, we show that the s-d model can be written in a
mathematical form analog to the M3TM, as was discussed in Sec. 2.4. In Section
3.3, we model the demagnetization experiments and discuss the role of the spin
accumulation. We describe the laser-induced dynamics in a collinear magnetic het-
erostructure in Section 3.4. We explain how the different demagnetization rates of
the parallel and antiparallel configurations can be understood from the s-d model.
In Section 3.5, we describe a bilayer consisting of a ferromagnetic and nonmagnetic
metallic layer. Here, we introduce diffusive spin transport, similar to the modeling
as presented in [65, 71, 72]. We specifically address the interplay between the local
magnetization dynamics and spin transport. We investigate the role of the layer
thickness on the magnetization dynamics and we analyze the temporal profile of
the injected spin current in the nonmagnetic layer.



68 s-d model for local and nonlocal spin dynamics in. . .

3.2 Model for local spin dynamics

The content of this section is equivalent to Section 2.4 of the theoretical background
chapter, where we introduced the s-d model for ultrafast magnetization dynamics
in transition metal ferromagnets. Hence, readers familiar with this model may skip
this section and move to Section 3.3.

Here, we give a brief overview of the derivation of the s-d model. Although our
approach is closely related to the derivation as presented in Ref. [36], it mathemati-
cally resembles the results for magnetic semiconductors [56]. We keep our notation
consistent with these references and we highlight the modifications that are needed
to reach the simplified s-d model that is used in the remainder of this chapter.

Analogous to Ref. [36], we define the ferromagnetic transition metal in terms of two
separate electronic systems, corresponding to the 3d and 4s electrons. A schematic
overview of the model is presented in Fig. 3.1(a). The d electrons are the main
contributor to the magnetic properties of the system and are relatively localized.
Therefore, we approximate the d electron system as a lattice of localized spins. At
each lattice site there is only one spin and the atomic magnetic moment is given by
µat = 2SµB, where µB is the Bohr magneton and S is the spin quantum number. We
neglect the orbital angular momentum.

In this chapter, we describe the localized spin system within a Weiss mean-field
approach, similar to the description used in the M3TM [18]. The Hamiltonian of
the d electrons is expressed as

Ĥd = ∆ ∑
j

Ŝd,z
j , (3.1)

where Ŝd,z
j is the z component of the spin at lattice site j and ∆ is the exchange

splitting. Hence, each spin corresponds to a system of 2S + 1 energy levels split
by energy ∆. Note that this description of the d electron system does not consider
spin-wave excitations, which makes it different from the approach in Ref. [36].

The s electrons are described as a free electron gas. They are coupled to the localized
spins through the on-site s-d interaction, given by [36]

Ĥsd = JsdVat ∑
j

Ŝd
j · ŝ(rj). (3.2)
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Figure 3.1: Schematic overview of the s-d model for ultrafast demagnetization [36, 56]. (a)
The system is divided into a subsystem of localized 3d electrons and itinerant 4s electrons.
The laser pulse heats up the s electrons. Angular momentum is transferred between the s and
d subsystems by the s-d interaction. Secondly, angular momentum can dissipate out of the
combined system by additional spin-flip processes in the s system, e.g., Elliott-Yafet electron-
phonon scattering. Figures (b)-(d) schematically show the occupation of the energy levels
in the d and s subsystems during the laser heating (for S = 1/2). Figure (b) indicates the
ground state (Te = 0 K). Figure (c) shows that the broadening of the Fermi-Dirac distribution
allows spin-flip transitions around the Fermi level. This process is accompanied by a spin
flip of a local d spin. The s electrons thermalize rapidly and a nonzero spin accumulation µs
is created, as is indicated in Fig. (d).

Here, Jsd is the s-d exchange coupling constant, Vat is the atomic volume, Ŝd
j is the

spin operator of the spin at lattice site j, and ŝ(rj) is the spin density operator of the
s electrons at position rj of lattice site j. We express ŝ(rj) in terms of the electron
creation and annihilation operators in momentum space. This yields [56]

Ĥsd = ∑
j

∑
kk′

[
J∗jkk′c

†
k′↓ck↑Ŝd+

j + h.c.
]
, (3.3)

where the coupling strength is parametrized by the matrix element Jjkk′ . Ŝd±
j cor-

responds to the spin ladder operator for the spin at lattice site j. The operator c†
kσ

(ckσ) creates (annihilates) an s electron with momentum k and spin σ. In the tran-
sition from Eq. (3.2) to Eq. (3.3) the terms proportional to the z components are
omitted and rewritten in terms of a mean-field energy shift in the Hamiltonian for
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the s electrons [36]. The similar energy shift in the d electron system (a shift of ∆)
plays a minor role and is neglected.

Equation (3.3) describes the spin-flip scattering of s electrons with the localized
spins, which mediates angular momentum transfer between the s and d electron
systems, but conserves the total angular momentum. Hence, these scattering events
change the total spin in the z direction of the d electron system. To calculate the
resulting magnetization dynamics, we apply perturbation theory using the density
matrix formalism. We only show the most important steps, for more details we
refer to Ref. [56], where an equivalent calculation is presented for semiconductors.
In contrast to Ref. [56], our system does include a direct (d-d) exchange interaction
between the localized spins, as represented by Eq. (3.1).

First, we assume that the density matrix of the complete system can be factorized
in terms of a density matrix ρ̂C for the carriers (s electrons) and ρ̂S for the localized
spins (d electrons). Secondly, we assume that after excitation there is no coherence
between the spins. In other words, the timescale at which the spins dephase is the
shortest timescale within the system, such that the density matrix ρ̂S is diagonal.
The diagonal elements of ρ̂S are given by the occupation numbers ρS,msms = fms for
each energy level ms of a single spin, where ms corresponds to the z component
of the spin. In this Boltzmann approach, the ensemble average of the spin in the z
direction is given by 〈Ŝd,z〉 = ∑S

ms=−S ms fms .

In order to find the magnetization dynamics, we calculate the time derivative of all
occupation numbers fms . The mathematical description follows from the Liouville-
von Neumann equation, and a coarse-grained description of the time evolution of
the density operator [132]. The coarse-graining step size, interval δt, determines
the time resolution of the model and should be sufficiently small compared to the
observed demagnetization time τM. Moreover, we assume that the time interval δt
satisfies the conditions for the Markov approximation, i.e., δt should be much larger
than the correlation time of the electrons and the density matrix changes relatively
slowly [35, 56]. Secondly, it is assumed that the time interval is much larger than
the timescale associated with the energy transfer, in this case that yields δt � h̄/∆
[35]. This is the standard limit underlying Fermi’s golden rule, i.e., the condition
leads to the transitions having a well-defined energy conservation represented by
the Dirac delta function. Hence, we should have that h̄/∆ � δt � τM. Since
h̄/∆ ∼ 10 fs (having ∆ ∼ kBTC and Curie temperature TC ∼ 1000 K) and τM is of
the order of ∼ 100 fs, the validity of this limit is not trivial. However, it is expected
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that the role of all the approximations is relatively weak and only affects the results
quantitatively.

Finally, using the diagonality of the density matrix ρ̂S and the explicit form of the
interaction Hamiltonian Ĥsd, the rate equation can be written as [56]

d fms

dt
= −(Wms−1,ms + Wms+1,ms) fms (3.4)

+Wms ,ms−1 fms−1 + Wms ,ms+1 fms+1,

where Wms±1,ms are the transition rates from level ms to ms ± 1. The transition rates
are calculated using Fermi’s golden rule, analogous to the derivation of the M3TM
[18]. We assume that the s electrons thermalize rapidly due to Coulomb scattering
and can be described by Fermi-Dirac statistics. Here, the distributions for the spin
up and spin down s electrons have a common temperature Te, but are allowed to
have a distinct chemical potential for which the difference is defined as the spin
accumulation µs = µ↑ − µ↓ [36, 56]. In the limit that the Fermi energy is much
larger than all other energy scales, the transition rate is given by [56, 58]

Wms±1,ms =
π

2h̄
J2
sdS±ms D↑D↓(∆− µs)

exp
(
∓ ∆− µs

2kBTe

)
2 sinh

(
∆− µs

2kBTe

) . (3.5)

Here, S±ms = S(S + 1)− ms(ms ± 1) and D↑,↓ (in units eV−1atom−1) is the density
of states at the Fermi level for the spin up and spin down s electrons, respectively.
Equation (3.5) mathematically quantifies the amount of available phase space for
transitions induced by the s-d interaction. Figures 3.1(b)-3.1(d) schematically show
the changes to the occupation of the d and s electron states as a result of laser heat-
ing the system. Figure 3.1(c) shows that the thermal broadening of the Fermi-Dirac
functions allows for transitions between the two spin directions of the s electrons,
which is accompanied by a flip of a localized d electron spin. The s electrons ther-
malize rapidly and the new distributions have a shifted chemical potential, i.e., a
nonzero spin accumulation is created, as is depicted in Fig. 3.1(d).

The dynamics of the spin accumulation µs can be derived analogously and directly
follows from spin angular momentum conservation. Now we define the normal-
ized magnetization md = −〈Ŝd,z〉/S of the localized magnetic moments. In equilib-
rium, the experimentally detectable magnetization is dominated by md. This is not
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straightforward after excitation because of the induced exchange of angular mo-
mentum between the s and d electrons. In general, the magneto-optical signal in
typical pump-probe experiments is a linear superposition of the contribution of the
s and d electrons. For a S = 1/2 system we have ∆ = 2kBTCmd, and the dynamics
is described by the two equations

dµs

dt
= ρsd

dmd
dt
− µs

τs
, (3.6)

dmd
dt

=
1

τsd

(
md −

µs

2kBTC

)[
1−md coth

(2mdkBTC − µs

2kBTe

)]
, (3.7)

where we used the definition ρsd = D−1 − Jsd/2, with D = 2D↑D↓/(D↑ + D↓)
from Ref. [36]. Note that the term proportional to Jsd results from the energy
gap between the spin up and spin down s electrons arising from the s-d interac-
tion (as was introduced in the transition from Eq. (3.2) to Eq. (3.3)), which can be
both positive and negative depending on the sign of Jsd. Moreover, we defined
τ−1

sd = (π/h̄)J2
sdD↑D↓kBTC, which is closely related to the demagnetization rate.

We introduced the phenomenological term proportional to τ−1
s , which describes

all spin-flip scattering processes that dissipate angular momentum out of the com-
bined electronic system [36], e.g., this term includes Elliott-Yafet electron-phonon
scattering.

Equation (3.7) clearly shows the similarities with the standard form of the equation
for the longitudinal magnetization relaxation of a spin S = 1/2 system within
a mean-field approach. For instance, in the limit τs → 0 the spin accumulation
directly vanishes and the equilibrium condition is given by md = tanh(mdTC/Te).
In this limit, there is no net spin polarization, i.e., the s electrons can be considered
as spinless, which is exactly the assumption underlying the M3TM [18]. We note
that although this expression closely resembles the expression presented in Ref.
[18], the prefactor corresponds to a completely different physical mechanism. More
details about the relation with the M3TM will be discussed in Section 3.4.

Although we have a simple definition of the parameters ρsd and τsd, the estima-
tion of these parameters is far from straightforward. We approximated the d and
s electrons as two distinct systems, localized and itinerant electrons. In the real
system there is no such clear separation because of s-d hybridization. Effectively,
we separated the ‘band-like’ and ‘local magnetic’ properties of the combined elec-
tronic system (d and s), which makes it complex to estimate the relevant value of D.
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Hence, it is convenient to treat both τsd and ρsd as effective parameters. In the up-
coming sections, we interpret τsd as the experimentally retrieved demagnetization
time and we choose the constant ρsd = 1 eV. The exact values should be retrieved
from carefully fitting the model to the experiments, which is beyond the scope of
this theoretical paper.

Finally, D−1 (D−1
↑,↓) scales with the width of the conduction band and is typically

much larger than Jsd/2, i.e., we have ρsd = D−1− Jsd/2 ≈ D−1 . Then, we can define
the magnetization of the total spin system (s and d electrons) as mtot = md − ρ−1

sd µs,
which is conserved by the s-d interaction and will be used in the following analyses.

In the next section, we discuss the important role of the spin accumulation by de-
scribing the laser-induced demagnetization experiments using the numerical solu-
tions of Eqs. (3.6)-(3.7).

3.3 Ultrafast demagnetization

In order to investigate the typical laser-induced dynamics of the local magnetization
and spin accumulation specifically, we consider a system with magnetic parameters
τsd = 0.2 ps and TC = 1000 K. To model the laser heating we define the temporal
profile of the laser pulse as P(t) = (P0/(σ

√
π)) exp

[
−(t− t0)

2/σ2], where P0 is the
absorbed laser pulse energy density and σ determines the pulse duration, which is
set to 50 fs. We use the standard two-temperature model to find the dynamics of the
s electron temperature Te and phonon temperature Tp [17]. The two-temperature
model describes the equilibration of Te and Tp by electron-phonon scattering. We
include a heat dissipation term that transfers heat out of the phonon system on a
timescale τD = 20 ps. For the heat capacities and the electron-phonon coupling
constant we use the values for Cobalt given in Ref. [18]. We calculate the dynamics
of the magnetization and spin accumulation by solving Eqs. (3.6)-(3.7) numerically.
We do this for multiple values of τs. The results are presented in Figs. 3.2(a)-(d).

Figure 3.2(a) shows the laser heating of the s electrons and the equilibration of
the electron temperature with the phonon temperature. Figures 3.2(b)-(d) display
the laser-induced dynamics of the spin systems for different values of the spin-flip
scattering time τs, as indicated by the different line types. Figure 3.2(b) shows the
magnetization of the d electrons md as a function of time. The temporal profile of
the spin accumulation µs is presented in Fig. 3.2(c). Finally, Fig. 3.2(d) displays the
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Figure 3.2: Ultrafast demagnetization described by the s-d model. Figure (a) shows the
temporal profile of the s electron temperature Te and phonon temperature Tp, after laser-
pulse excitation at t = 0 with P0 = 12 · 108 Jm−3. Figures (b)-(d) present the laser-induced
dynamics of the spin systems, using TC = 1000 K and τsd = 0.2 ps. Here, the line types
indicate the calculations for different values of τs, which are given in the figure. Figure (b)
shows the resulting magnetization dynamics in the d electron system. Figure (c) shows the
temporal profile of the spin accumulation µs, and Fig. (d) shows the dynamics of the total
magnetization mtot.

total magnetization mtot as a function of time (mtot is defined on page 74). Figures
3.2(b) and 3.2(d) clearly show that the demagnetization of md and mtot is maximized
for the smallest τs.

The calculations show that the creation of a spin accumulation has a negative feed-
back effect on the demagnetization (of both md and mtot), i.e., the short-lived spin
accumulation acts as a bottleneck [36, 56]. The bottleneck can be removed by the
additional spin-flip relaxation processes in the s electron system, which happen at
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Figure 3.3: The s-d model in the limit of a strong s-d coupling (τsd → 0), compared to the
microscopic three-temperature model (M3TM) [18]. The plot shows the magnetizations md
(red) and mtot (green) as a function of time after laser-pulse excitation at t = 0 with P0 =
0.1 · 108 Jm−3 and σ = 50 fs. The remaining magnetic parameters are given by TC = 1000 K
and τs = 0.2 ps. The dotted black line indicates the magnetization calculated with the basic
M3TM (using demagnetization timescale τM = τs = 0.2 ps).

a rate given by τ−1
s . This means that in the limit τsd � τs the demagnetization

rate strongly depends on τs. In the extreme case τsd → 0, which corresponds to
an infinitely strong s-d interaction, md and µs are equilibrated instantaneously and
their relation can be found by setting Eq. (3.7) equal to zero. Now the d and s elec-
trons can be treated as a single spin system with magnetization mtot of which the
subsequent dynamics is governed by Te and the additional spin-flip scattering pro-
cesses of the s electrons. These additional scatterings include Elliott-Yafet electron-
phonon scattering. Hence, in analogy with the M3TM [18], the system behaves as
a single spin system with a characteristic demagnetization rate that is associated
with Elliott-Yafet electron-phonon scattering. More specifically, in the low-fluence
limit and having temperatures well below the Curie temperature, mtot(t) converges
to the magnetization dynamics from the M3TM, which is visualized in Fig. 3.3.
Here, md(t) and mtot(t) follow from the s-d model using P0 = 0.1 · 108 Jm−3 and
τs = 0.2 ps in the limit of a strong s-d coupling (τsd → 0). All other system pa-
rameters are kept equal to the calculations of Fig. 3.2. The dotted black line is the
magnetization described by the M3TM for the same system, using the demagneti-
zation timescale τM = τs = 0.2 ps , 2 which shows a clear overlap with the total
magnetization mtot.

2The timescale τM corresponds to the prefactor τ−1
M = RTp/TC from the standard M3TM [18], and it

taken as a constant.
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On the other hand, in the limit τsd � τs the spin accumulation relaxes efficiently
and the bottleneck effect is negligible. In this limit, the magnetizations md and mtot

converge and their dynamics can be well described by Eq. (3.7) without the terms
involving µs (similar to the limit τs → 0). Up to a prefactor, the magnetizations md

and mtot are now described by the same mathematical expression as in the M3TM.
However, the physical origin of the ultrafast demagnetization is different.

In conclusion, in both regimes there is a clear relation with the M3TM. Neverthe-
less, in a real system it is expected that τsd and τs can be of the same order and a
short-lived spin accumulation influences the magnetization dynamics. Finally, Fig.
3.2(c) shows that for a decreasing τs the spin accumulation becomes directly propor-
tional to the temporal derivative of the magnetization md, as can be mathematically
derived from Eq. (3.6) in the limit τs → 0. These typical curves for µs resemble the
measurements in the experimental investigations of the optically generated spin
currents at the interface of a ferromagnetic and nonmagnetic metal [65].

In the following sections, we investigate the role of spin transport on the demagne-
tization process.

3.4 F/N/F structures: parallel versus antiparallel

In the previous section, we showed that during laser-pulse excitation a spin accumu-
lation is generated that counteracts the demagnetization process. In this section, we
show that spin transport can act as an additional mechanism for removing this bot-
tleneck effect. We model the experiments with collinear magnetic heterostructures
[14, 16]. More specifically, we address the results presented in Ref. [14], in which
a magnetic heterostructure is investigated that consists of two identical Co/Pt mul-
tilayers separated by a Ru spacer layer. The authors present a comparison of the
demagnetization of the parallel and antiparallel aligned states of the heterostruc-
ture. The measurements showed that the antiparallel configuration has a larger
demagnetization rate and amplitude, which can be explained by the generation of
a spin current that enhances the demagnetization process. In the following, we will
show that these results can be understood and reproduced by the presented s-d
model.

Hence, we consider a system containing two identical ferromagnetic (F) layers with
a nonmagnetic (N) layer in between. We further refer to this system as the F/N/F
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Figure 3.4: The laser-induced magnetization dynamics of the F/N/F structure in the an-
tiparallel and parallel configurations, described by the s-d model. We used a low-energetic
laser pulse with P0 = 1 · 108 Jm−3 and σ = 70 fs. The diagram shows the magnetization md
of F layer 1 as a function of time. The color scheme indicates the specific configuration, as is
indicated in the inset. The F layers have magnetic parameters TC = 600 K, τsd = 0.1 ps and
τs = 0.02 ps.

structure. We investigate the different laser-induced demagnetization rates for the
parallel and antiparallel configurations of the F/N/F structure. The systems are
schematically depicted in the inset of Fig. 3.4. By definition, F layer 1 is pointing up
in both configurations, whereas F layer 2 is pointing in the up and down direction
for the parallel and antiparallel configurations, respectively.

We assume all the layers to be very thin, such that we can take the temperature,
magnetization, and spin accumulation homogeneous within each layer. We define
a magnetization md,i and µs,i for each F layer i. Because of the very small thickness
of the N layer, we assume that the electron transport is in the ballistic regime. In
that case, we can approximate that the spin transport in the nonmagnetic layer is
purely driven by the difference in the spin accumulation of both F layers. Within
these limits, the spin accumulations satisfy

dµs,i

dt
= ρsd

dmd,i

dt
− µs,i

τs,i
−

µs,i − µs,j

τB
, (3.8)

where i 6= j and i, j ∈ {1, 2}. The last term, which is introduced phenomenologi-
cally, represents the spin transfer between the F layers driven by ballistic electron
transport and enforces the spin accumulations to equilibrate. The prefactor is de-
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fined in terms of the timescale τB. We use that τB ∼ 1 fs based on the assump-
tions that the Fermi velocity is vF ∼ 106 ms−1 and the thickness of the N layer is
dN ∼ 1 nm. Note that the transport term depends on the spin accumulation at the
same time coordinate, i.e., the distinct F layers feel changes in the opposing layer
instantaneously. In the real experiment there might be a small delay. However, we
expect that this effect can be neglected in our calculations. Finally, we stress that
this particular form of the transport term can only be used for two strictly identical
F layers, as was the case in Ref. [14].

For the F layers we use the magnetic parameters τsd = 0.1 ps, τs = 0.02 ps and
TC = 600 K, which are approximated values corresponding to the Co/Pt multilayers
used in the experiments [14]. Furthermore, we apply a low-energetic laser pulse
with P0 = 1 · 108 Jm−3 and assume that the system is heated homogeneously. In
this specific case, we set the pulse duration to σ = 70 fs [14]. For convenience, we
still use the heat capacities and electron-phonon coupling constant of pure Cobalt
[18].

The results are displayed in Fig. 3.4. The red and blue curves show the magnetiza-
tion md of F layer 1 for the parallel and antiparallel configurations, respectively. It
is verified that mtot (not shown) behaves very similar. In agreement with the experi-
ments, we observe a larger demagnetization rate and amplitude for the antiparallel
configuration. This can be easily understood from the transport term in Eq. (3.8).
In the parallel configuration we have µs,1 = µs,2 at any time and the transport term
vanishes. In contrast, for the antiparallel configuration we have µs,1 = −µs,2, the
transport does not vanish and behaves as an extra channel for angular momentum
transfer. This extra channel assists the reduction of the spin accumulation, thereby
leading to a larger demagnetization. Equivalently, in the antiparallel configuration
the spin current in the nonmagnetic layer is nonzero and has exactly the correct
polarization to enhance the demagnetization rates in both F layers. Finally, Fig. 3.4
also shows that the demagnetization curves of the two configurations converge at
t ∼ 400 fs, which is in agreement with the experiments [14].

In the next section, we analyze the temporal profile of the spin current generated
in an F/N structure in the diffusive regime. Furthermore, we investigate the role of
the thickness of the layers.
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Figure 3.5: The laser-induced magnetization dynamics in an F/N structure. The magnetic
parameters of the ferromagnetic layer are given by τsd = 0.3 ps, τs = 0.2 ps and TC = 1388 K.
(a) The maximum demagnetization ∆md (averaged over the F layer) as a function of the
ferromagnetic layer thickness dF. The nonmagnetic layer thickness is set to dN = 200 nm and
we used P0 = 30 · 108 Jm−3. The inset shows the system schematically. (b) The maximum
demagnetization ∆md as a function of P0 for dF = 5 nm (blue) and dF = 20 nm (red). For
both systems we have dN = 200 nm. The black dashed line indicates the demagnetization of
the bulk ferromagnet in the absence of an F/N interface (dF = ∞ and dN = 0).

3.5 F/N structures: diffusive spin transport

Finally, we introduce diffusive spin transport in the simplified s-d model and we
show that in magnetic heterostructures spin diffusion within the s electron system
can significantly enhance the demagnetization rate. Here, we model a system con-
sisting of a ferromagnetic (F) layer and a nonmagnetic (N) layer. In contrast to the
similar approach reported in Refs. [65, 71, 72], we calculate the local magnetiza-
tion dynamics dmd/dt directly from the s-d model using Eq. (3.7), that serves as a
source for spin-polarized s electrons via Eq. 3.6. Thereby, we can specifically ad-
dress the mutual influence of the dynamics of the local magnetization md and spin
accumulation µs, both as a function of position and time.

As indicated in the inset of Fig. 3.5(a), we define the thickness of the F layer and
N layer as dF and dN , respectively. Spin transport is described in the diffusive
regime, where both layers are treated on an equal footing [124]. For convenience,
we assume that the system is heated homogeneously, i.e., there are no thermal
gradients present. Hence, the demagnetization of the F layer is the only source
of the spin current and there is no spin-dependent Seebeck effect included in this
calculation.
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It is assumed that the interface is transparent for spins, such that the spin accu-
mulation is continuous at the interface. Imposing that there is no charge transport,
the spin current density can be expressed as js = −(σ̃/e2)∂µs/∂x [71, 124], with
σ̃ = 2σ↑σ↓/(σ↑ + σ↓) and σ↑,↓ the spin-dependent electrical conductivity. Combin-
ing this with the continuity equations for spin up and spin down electrons [71, 126],
gives that introducing diffusive spin transport in Eq. (3.6) leads to [71]

∂µs

∂t
− 1

ν̃

∂

∂x

[
σ̃

e2
∂µs

∂x

]
= ρsd

∂md
∂t
− µs

τs
, (3.9)

where all variables explicitly depend on the spatial coordinate x and we assumed
that the system is homogeneous in the lateral directions. The interface is at x = 0.
Here, ν̃ = 2ν↑ν↓/(ν↑ + ν↓) with ν↑,↓ the spin-dependent density of states in units
per volume per energy (ν̃ = D/Vat). The N layer (x > 0) is characterised by σ↑ = σ↓
and ν↑ = ν↓, and the absence of the (s-d interaction) source term. Equation (3.9) is
further simplified by imposing that ν̃ is independent of x, where we have assumed
that in the F layer ν↑ ∼ ν↓ and σ↑ ∼ σ↓. These choices are made for convenience and
are consistent with the underlying assumptions of the s-d model, that the d electrons
in the F layer do not contribute to the conductive properties of the material. In that
case, Eq. (3.9) reduces to

∂µs

∂t
= ρsd

∂md
∂t
− µs

τs
+

∂

∂x

[
Ddiff

∂µs

∂x

]
, (3.10)

with the diffusion coefficient Ddiff = σ̃/(ν̃e2) [71, 72]. Finally, we set the spin
currents at the edges equal to zero js(−dF) = js(dN) = 0. Equation (3.10) is solved
numerically, where we discretized the system using a finite difference method. Note
that the spatial derivative of the diffusion coefficient Ddiff is only nonzero at the
interface. In these calculations, the F layer corresponds to pure Cobalt for which
we use the diffusion coefficient Ddiff = 250 nm2ps−1[72]. Furthermore, we use
τsd = 0.3 ps and τs = 0.2 ps. For the N layer we take Ddiff = 9500 nm2ps−1 and
τs = 25 ps, which correspond to the diffusion coefficient and spin-flip relaxation
time for Copper [72].

Figure 3.5(a) shows a calculation of the F/N structure excited with a laser pulse with
energy density P0 = 30 · 108 Jm−3 and pulse duration σ = 50 fs, where we used the
heat capacities and electron-phonon coupling constant of Cobalt [18]. The diagram
shows the maximum demagnetization ∆md = md,0 − md,min (averaged over the F
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layer) as a function of the F layer thickness dF, where md,0 is the initial (equilibrium)
value of md, and md,min is the minimum of md after excitation. The thickness of
the N layer is kept constant and set to dN = 200 nm. It clearly shows that the
demagnetization becomes larger when the F layer thickness decreases. Intuitively,
the injection of spins into the nonmagnetic layers can enhance the demagnetization
significantly as long as the F layer is relatively thin. This conclusion is corroborated
by the results presented in Fig. 3.5(b), which shows the demagnetization ∆md as a
function of P0. The results are plotted for dF = 5 nm and dF = 20 nm. The dashed
line indicates the demagnetization of a bulk ferromagnet in the absence of an N
layer (dF = ∞ and dN = 0). The calculations show that for a relatively thin F layer
spin injection into the N layer can lead up to ∼ 30% more demagnetization.

Now we discuss the dynamics of the injected spin current itself. We do this by
calculating the spin accumulation at the outer edge of the N layer µs(dN). The
results are shown in Fig. 3.6, which displays the spin accumulation as a function
of time for three different values of dN that are given in the figure. The F layer
thickness is kept constant at dF = 10 nm. In agreement with the experimental
investigations [65, 72], the diagram clearly shows that for an increasing dN the
minimum of µs(dN) shifts in time and is reduced. This behavior can be understood
from the diffusive character of the spin transport. Here, the temporal profile of
µs(dN) is highly sensitive to the specific material that composes the F layer and
the corresponding effective parameters, as is expected from the experimental and
numerical investigation using various materials for the F layer [72].

A more quantitative comparison with the experiments would require addressing
spin transport beyond the diffusive regime and implementing a finite penetration
depth of the laser pulse in the modeling. However, we focused our discussion on the
dynamics that stems from the s-d interaction and we specifically investigate the role
of µs independent of the thermal properties of the system. In that case, the model
shows that in the presence of only the s-d interaction, the typical experimental
observations can be explained and show a qualitative agreement [65, 72].

3.6 Conclusion and discussion

In conclusion, we discussed a simplified s-d model that we used to describe laser-
induced magnetization dynamics in magnetic heterostructures and to study the
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Figure 3.6: The diffusive spin current injected in the nonmagnetic (N) layer with thickness
dN , coupled to a ferromagnetic (F) layer with thickness dF. The diagram shows the spin
accumulation at the outer edge of the N layer (position x = dN , indicated by the red dotted
line in the inset) as a function of time. Furthermore, we set P0 = 20 · 108 Jm−3 and σ = 50 fs.
The magnetic parameters are identical to the values used in Fig. 3.5. The line types indicate
the results for three different values of dN . The thickness of the F layer is kept constant and
set to dF = 10 nm.

interplay between local and nonlocal spin dynamics. The presented numerical cal-
culations emphasize the critical role of the spin accumulation. During demagnetiza-
tion a spin accumulation is created, which counteracts the demagnetization process.
Both local spin-flip scatterings and spin transfer to a nonmagnetic layer can reduce
this spin accumulation effectively and, depending on the system, can both play a
dominant role in the characterization of the demagnetization rate. Importantly, the
modeling shows that even in the absence of any other interaction, the s-d interac-
tion could account for the typically observed ultrafast phenomena, such as being a
driving force for laser-induced spin transport in magnetic heterostructures.

The presented analyses show that the simplified s-d model provides a versatile de-
scription of ultrafast magnetization dynamics, which converges to the M3TM for a
strong s-d coupling and possesses the additional feature that spin transport can be
included straightforwardly. However, one needs to keep in mind that the model is
a simplified description of the underlying physics. As was earlier discussed, the d
electrons are not perfectly localized. Moreover, the d electron spins are described
using a Weiss model, i.e., spin-wave excitations are neglected. In a more complete
description, the d electrons are described as a magnonic system and the s-d inter-
action corresponds to electron-magnon scattering [36]. That has the advantage that
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spin transport driven by magnon transport can be included, which is expected to
give a nonnegligible contribution to the spin transport at the interface between a fer-
romagnetic and nonmagnetic metal [126]. In that case, the electronic and magnonic
contribution to the spin transport can be treated on an equal footing by introducing
a magnon chemical potential [118, 126], as will be discussed in Chapter 4. This de-
scription should allow for both chemical potential gradients and thermal gradients.
For instance, thermal gradients can be induced by a finite penetration depth of the
laser pulse and can drive a spin current via the electronic spin-dependent Seebeck
effect [74, 75] and the magnonic spin Seebeck effect [133, 134]. Nevertheless, we
expect that the dominant contributions to the dynamics can be well described by
the simplified s-d model including spin transport and it provides a useful pathway
to investigate the underlying physics.





4
Modeling ultrafast demagnetization and

spin transport: the interplay of

spin-polarized electrons and thermal

magnons

We theoretically investigate laser-induced spin transport in metallic magnetic heterostruc-
tures using an effective spin transport description that treats itinerant electrons and thermal
magnons on an equal footing. Electron-magnon scattering is included and taken as the driv-
ing force for ultrafast demagnetization. We assume that in the low-fluence limit the magnon
system remains in a quasi-equilibrium, allowing a transient nonzero magnon chemical po-
tential. In combination with the diffusive transport equations for the itinerant electrons, the
description is used to chart the full spin dynamics within the heterostructure. In agreement
with recent experiments, we find that in case the spin-current-receiving material includes
an efficient spin dissipation channel, the interfacial spin current becomes directly propor-
tional to the time derivative of the magnetization. Based on an analytical calculation, we
discuss that other relations between the spin current and magnetization may arise in case the
spin-current-receiving material displays inefficient spin-flip scattering. Finally, we discuss
the role of (interfacial) magnon transport and show that, a priori, it cannot be neglected.
However, its significance strongly depends on the system parameters.1

1This chapter has been published in Physical Review B [135].

85



86 Modeling ultrafast demagnetization and spin transport. . .

4.1 Introduction

Rapidly heating magnetic heterostructures generates spin currents on ultrashort
timescales [14, 15]. Their unique transient dynamics lead to fascinating physics
in magnetic multilayers. For example, the spin current gives rise to the emission
of THz electromagnetic radiation in magnetic heterostructures, resulting from the
inverse spin Hall effect [68, 69]. Additionally, in noncollinear magnetic systems
THz standing spin waves are excited by the spin-transfer torque [66, 67]. Moreover,
the spin currents can play an assisting role in deterministic all-optical switching
[100, 101, 103, 105, 130]. In other words, optically induced spin currents provide a
versatile tool to manipulate magnetic systems on ultrashort timescales and pave the
way towards future spintronic technologies.

Since the first experimental proof of subpicosecond demagnetization in laser-excited
magnetic thin films [13], the physical origin of ultrafast spin dynamics remains a
subject of heavy debate. Locally, possible mechanisms that drive ultrafast demagne-
tization are the direct coherent interactions between photons and spins [21, 22], and
local spin dynamics as triggered by laser heating or excitation [13, 18, 23–26, 30–38].
The latter may involve an increased rate of various spin-flip scattering processes that
eventually transfer angular momentum to the lattice degrees of freedom [54, 55].
Furthermore, nonlocal mechanisms can play a role, since spin angular momentum
can be transported away from the ferromagnetic layer via the generated spin cur-
rents [14, 39, 62]. Different mechanisms have been proposed, such as superdiffusive
spin transport [39, 73], and the spin-dependent Seebeck effect [74, 75].

In the last few years, multiple experimental and theoretical studies suggest that the
local demagnetization and spin-current generation have the same physical origin
[36, 65, 71, 72]. The main observation is that the rate at which spin-polarized elec-
trons are generated is determined by the demagnetization rate [65]. This can be
understood as being a result of electron-magnon scattering, which stems from the
s-d interaction that couples local magnetic moments to itinerant spins [31, 36, 56,
58, 131]. Recent experiments support this view and show a direct proportionality
between the spin current injected into a neighboring nonmagnetic layer and the
temporal derivative of the magnetization [70, 136].

In this chapter, we investigate the relation between demagnetization and spin-
current injection in rapidly heated magnetic heterostructures. We specifically ad-
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dress the role of thermal magnons and their interaction with electrons, and use
a diffusive spin transport description that includes both spin-current carriers. It
is assumed that electron-magnon scattering is the main driving force for ultrafast
demagnetization. This scattering channel has been extensively investigated in the-
oretical studies [25, 31, 34, 36], and was phenomenologically introduced as a spin
source in the electronic spin diffusion equation to model laser-induced spin trans-
port [65, 71, 72]. Here, we additionally include magnon transport and it is treated
on an equal footing with spin-dependent electron transport. This is achieved by
allowing the magnon chemical potential to be nonzero [118]. The description has
many similarities with the steady-state magnon transport calculations in magnetic
insulators [118, 137, 138] and metallic heterostructures [126, 139]. Ref. [126] sug-
gested that for thermally injected steady-state spin currents at metallic interfaces the
magnonic contribution cannot be neglected a priori. Here, we develop this insight
for the time-dependent scenario of rapidly heated magnetic heterostructures. Fur-
thermore, we show that the interfacial spin current becomes directly proportional
to the temporal derivative of the magnetization in the case the receiving material
is an efficient spin sink. As we demonstrate analytically, other behavior is found
when the latter displays inefficient spin-flip scattering.

This article starts with an overview of the used model in Section 4.2, specifically
discussing the underlying assumptions. For a number of experimentally relevant
cases, such as a Ni/Pt bilayer, we present numerical calculations for the local de-
magnetization and spin transport in Sections 4.3.1 and 4.3.2. In Section 4.3.3, we
analytically derive the different relations between the interfacial spin current and
the magnetization for the limiting cases of either efficient or inefficient spin dis-
sipation in the spin-current-receiving material. Finally, we investigate the role of
magnon transport and interfacial electron-magnon scattering in more detail.

4.2 Model

This section gives an overview of the diffusive model we use to investigate spin
transport in rapidly heated magnetic heterostructures. Although other authors al-
ready presented the descriptions of spin-dependent electron transport [65, 71, 72,
107, 124, 140] and diffusive magnon transport [118, 137] separately, we here discuss
them in a more integrated fashion. The presented overview strongly overlaps with
the content of Sections 2.5 and 2.6 of the theoretical background chapter. Here,
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some additional details are presented, including the evaluated coupling constants
and transport coefficients (Table 5.1), and the boundary conditions that specify the
investigated magnetic heterostructure (Sec. 4.2.5). Since the later part of this chap-
ter includes clear references to the essential formulas of the model section, readers
familiar with the general description may skip this section and move to Section 4.3.
Below, we start with reviewing the description of the thermal magnon system.

4.2.1 Magnon density and magnon energy density

We define the magnonic system similar to Tveten et al. [36]. The standard Heisen-
berg model for a lattice of local spins, representing the relatively localized 3d elec-
trons, is expressed in terms of bosonic creation and annihilation operators using
the Holstein-Primakoff transformation [115]. Diagonalization by the use of Fourier
transformations yields the magnon dispersion relation, which is approximated as
being quadratic εq = ε0 + Aq2 [36]. Here, q is the magnitude of the magnon wave
vector, ε0 is the magnon gap and A is the spin-wave stiffness. The corresponding
density of states is then given by D(ε) =

√
ε− ε0/(4π2 A3/2) [36, 116].

In contrast to Ref. [36], we assume the magnon system remains internally thermal-
ized. As we only address the low-fluence limit, we argue that after the laser pulse
excites the ferromagnet the magnon distribution function remains very similar to
a Bose-Einstein function. On the ultrashort timescales that we are interested in,
which can potentially be much shorter than the magnon lifetime, we should treat
the magnon number as a (quasi-)conserved quantity. Then, the magnon number
and total magnon energy compose two degrees of freedom. Hence, two parameters
are needed to describe this system, the magnon temperature Tm and the magnon
chemical potential µm. We stress that the chemical potential and temperature used
here correspond to effective parameters, where effective refers to the fact that the
magnon distribution function might slightly deviate from a Bose-Einstein distri-
bution. The description is similar to Ref. [31], with the extension that it allows a
nonzero chemical potential.

The magnon number density nd and magnon energy density Ud are defined by the
integrals [116]
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nd =
∫ ∞

ε0

dεD(ε)nBE(ε, µm, Tm), (4.1)

Ud =
∫ ∞

ε0

dε(εD(ε))nBE(ε, µm, Tm), (4.2)

where nBE(ε, µm, Tm) corresponds to the Bose-Einstein distribution

nBE(ε, µm, Tm) =
1

e(ε−µm)/(kBTm) − 1
. (4.3)

Note that in Eqs. (4.1)-(4.2), we extended the upper boundary of the energy inte-
gration to infinity, which is valid under the condition that the temperature remains
much lower than the Curie temperature Tm � TC. Now nd and Ud can be expressed
in terms of a polylogarithm [117]. We assume that deviations in the magnon tem-
perature are small compared to the ambient temperature T0, i.e., (Tm − T0) � T0.
Furthermore, we assume µm/(kBT0) � 1 and ε0/(kBT0) � 1. The polylogarithm
can be expressed in terms of a series expansion for the given small factors. We
eliminate the factors higher than linear order, and we stress that the mathematical
expressions presented in the remainder of this section are only valid for small per-
turbations. Details about this approximation are given in Appendix 4.A (on page
110). Following this procedure, the temporal derivative of the magnon density and
the magnon energy density are expressed as

∂nd
∂t

= Cn,µµ̇m + Cn,T Ṫm, (4.4)

∂Ud
∂t

= CU,µµ̇m + CU,T Ṫm. (4.5)

The definitions of the prefactors are given in Table 4.1. The prefactor Cn,µ requires
special attention, since it depends on the magnon chemical potential. As explained
in Appendix 4.A, the latter is essential to describe the correct behavior as a function
of chemical potential and is a direct consequence of the bosonic nature of magnons.
As the chemical potential approaches the magnon gap, the magnon density grows
increasingly strong, corresponding to the divergence of Cn,µ. For physically relevant
values of the magnon gap this effect is nonnegligible. Therefore, the model includes
one nonlinear term arising from Cn,µ.
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4.2.2 Spin and energy transfer rate by electron-magnon scat-
tering

Here, we give expressions for the spin transfer and energy transfer between the
magnonic system and the itinerant electron system, which are driven by electron-
magnon scattering. Starting from the s-d Hamiltonian [36], the electron-magnon
scattering rate is calculated using Fermi’s golden rule [31, 36, 117]. It is assumed
that the itinerant electron system is instantaneously thermalized and parametrized
by the spin accumulation µs and electron temperature Te. In the limit that the Fermi
energy is the largest energy scale in the model, the angular momentum transfer
rate Isd (in units of h̄) and energy density transfer rate Usd can be expressed as
[36, 116, 117]

Isd =
∫ ∞

ε0

dε
Γ(ε)

h̄
D(ε)(ε− µs) (4.6)

×(nBE(ε, µF
s , Te)− nBE(ε, µm, Tm)),

Usd =
∫ ∞

ε0

dε
Γ(ε)

h̄
(εD(ε))(ε− µs) (4.7)

×(nBE(ε, µF
s , Te)− nBE(ε, µm, Tm)).

For simplicity, the energy-dependent scattering rate coefficient Γ(ε) is assumed to
be constant and replaced by the dimensionless effective coefficient Γ0. The constant
Γ0 can be directly related to the effective Gilbert damping [116]. We note that the
presented expressions for the scattering rate, such as Eqs. (4.6)-(4.7), require the
electronic density of states to be approximately constant in the vicinity of the Fermi
level. This approximation is not generally valid and may affect the dynamics [141].
However, in the linear regime corrections can be adopted in the effective prefactors,
and therefore do not alter the dynamics discussed in this chapter.

Following the same procedure as simplifying the magnon densities, the transfer
rates can be expressed as

Isd =
gn,µ

h̄
(µs − µm) +

gn,T

h̄
(Te − Tm), (4.8)

Usd =
gU,µ

h̄
(µs − µm) +

gU,T

h̄
(Te − Tm). (4.9)

The coupling constants are summarized again in Table 4.1, which are all expressed
in terms of the scattering rate coefficient Γ0, the spin-wave stiffness A, and the
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ambient temperature T0. The factors ζ(z) and Γ(z) correspond to the Riemann zeta
function and Gamma function, respectively.

4.2.3 Diffusive magnon transport

Here, we discuss the description of diffusive magnon transport. We follow exactly
the same steps as the model for diffusive magnon transport in magnetic insulators
[118, 137]. As discussed below, applying this in ferromagnetic metals requires some
extra comments [126].

To treat the magnons within a local-density approximation it is needed that the
characteristic length scale of the system, which in this case is the thickness of the
ferromagnetic layer, is much larger than the thermal de Broglie wavelength. Up to a
numerical prefactor the latter wavelength is of the order λth ∼ (A/(kBT0))

1/2 [118].
For Ni this estimate gives λth ∼ 0.4 nm at room temperature, using the numerical
values listed in Table 4.2 (on page 110). Secondly, to be able to describe the transport
as diffusive the magnon mean-free path λmfp ∼ (AkBT0)

1/2τtr,m/h̄ should be much
smaller than the thickness of the ferromagnetic system. The magnon momentum
relaxation time τtr,m is discussed below. For Ni we estimate that the mean-free path
is of the order λmfp ∼ 1.5 nm. Despite that these requirements are only weakly sat-
isfied for an ultrathin ferromagnetic layer, we assume that the qualitative behavior
is predicted correctly by the diffusive magnon transport description.

Within these limits, the magnon current density and the magnon heat current den-
sity can be expressed as [118]

jm = −σm

e2
∂µm

∂x
− L

T0

∂Tm

∂x
, (4.10)

jQ,m = −L
∂µm

∂x
− κm

∂Tm

∂x
, (4.11)

where σm is the magnon conductivity, L is the spin Seebeck coefficient [133, 137],
and κm is the magnon heat conductivity. The transport coefficients are given in Table
4.1. To a good approximation, all transport coefficients are linear in the magnon
transport timescale τtr,m, which corresponds to the magnon momentum relaxation
time. This timescale is at least as short as the electron-magnon scattering time,
which is naturally related to the observed demagnetization timescale. Therefore,
the latter is an upper bound for τtr,m. Since other contributing scattering processes
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Table 4.1: Model coefficients expressed in terms of the magnon transport timescale τtr,m,
spin-wave stiffness A, and the bulk electron-magnon scattering rate coefficient Γ0 [118]. The
interfacial scattering rate coefficients can be found by the substitution Γ0 → g↑↓/(πs).

Symbol Expression

Cn,µ
(kBT0)

1/2Γ(3/2)
4π2 A3/2

(
Γ(1/2)

( ε0 − µm

kBT0

)−1/2
+ ζ(1/2)

)
Cn,T

(kBT0)
1/2Γ(3/2)

4π2 A3/2 (3/2)ζ(3/2)kB

CU,µ
(kBT0)

3/2Γ(5/2)
4π2 A3/2 ζ(3/2)

CU,T
(kBT0)

3/2Γ(5/2)
4π2 A3/2 (5/2)ζ(5/2)kB

σm
e2τtr,m(kBT0)

3/2Γ(3/2)ζ(3/2)
2π2h̄2 A1/2

L
τtr,m(kBT0)

5/2(5/2)Γ(5/2)ζ(5/2)
3π2h̄2 A1/2

κm
τtr,m(kBT0)

5/2(7/2)Γ(7/2)ζ(7/2)
3π2h̄2 A1/2

kB

gn,µ
Γ0(kBT0)

3/2Γ(5/2)ζ(3/2)
4π2 A3/2

gn,T
Γ0(kBT0)

3/2Γ(5/2)(5/2)ζ(5/2)
4π2 A3/2 kB

gU,µ
Γ0(kBT0)

5/2Γ(7/2)ζ(5/2)
4π2 A3/2

gU,T
Γ0(kBT0)

5/2Γ(7/2)(7/2)ζ(7/2)
4π2 A3/2 kB

are expected to be less efficient, we assume in the remainder of this article that the
timescale τtr,m is of the same order of magnitude as the demagnetization time. For
instance, we use τtr,m = 0.1 ps, corresponding to the typical order of magnitude of
the demagnetization time in ferromagnetic transition metals.

To clarify the notation we give the continuity equation for the magnon density and
magnon energy density

∂nd
∂t

+
∂jm
∂x

= Isd, (4.12)

∂Ud
∂t

+
∂jQ,m

∂x
= Usd. (4.13)
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Filling in Eqs. (4.4)-(4.5), Eqs. (4.8)-(4.9), and Eqs. (4.10)-(4.11), gives the full expres-
sions that are used in the calculations presented in the later sections of this article.
Now we move on to the electronic system.

4.2.4 The continuity equations for the electronic system

We assume that the out-of-equilibrium spin density δns in the itinerant electron
system can be parametrized by δns = ν̃FµF

s , where ν̃F = 2ν↑ν↓/(ν↑ + ν↓) is the
spin-averaged density of states evaluated at the Fermi energy 2. Expressed in terms
of the spin accumulation, the continuity equations for the spin and energy in the
ferromagnetic layer are given by [36, 71]

ν̃F
∂µF

s
∂t

+
∂jFs,e

∂x
, = − ν̃FµF

s
τs,F
− 2Isd, (4.14)

Ce
∂TF

e
∂t

+
∂jFQ,e

∂x
= gep(TF

p − TF
e )−Usd + P(t, x). (4.15)

The spin current jFs,e and electronic heat current jFQ,e are given below. The term
proportional to τ−1

s,F , which is introduced phenomenologically [36], represents the
additional spin-flip scattering processes. The latter includes Elliott-Yafet spin-flip
scattering processes and is the main spin dissipation channel for the combined
electronic and magnonic system [36]. Ce corresponds to the electron heat capacity,
gep corresponds to the electron-phonon coupling constant and TF

p corresponds to
the phonon temperature. The function P(t, x) represents the laser-excitation profile,
which will be further specified when the calculations are presented.

Imposing that there is no charge transport, the electronic spin current jFs,e and heat
current jFQ,e can be expressed as [71, 124]

jFs,e = − σ̃

e2
∂µF

s
∂x
− σ̃

e2 Ss
∂TF

e
∂x

, (4.16)

jFQ,e = − σ̃

2e2 Πs
∂µF

s
∂x
− κe

∂TF
e

∂x
, (4.17)

where σ̃ = 2σ↑σ↓/(σ↑ + σ↓) is the spin-averaged electrical conductivity, Ss is the

2For convenience, we neglected the dynamic splitting of the spin up and spin down band due to
changes in the magnon density [36]. As discussed in Ref. [36] and Sec. 2.5, this can be included straight-
forwardly by introducing the constant ρsd in the rate equations.
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spin-dependent Seebeck coefficient [124], Πs is the spin-dependent Peltier coeffi-
cient (Πs = T0Ss), and κe is the electronic heat conductivity. The expressions for the
dynamics of the electronic system within the nonmagnetic layer can be found by
replacing all indices F→ N and removing the spin-dependent quantities (including
Isd and Usd).

Finally, for the phonon system we take a highly simplified approach. For conve-
nience, phonon heat transport is not included. Furthermore, in the description for
the local phonon temperature a heat sink is included that dissipates energy out of
the phonon system within a timescale of 20 ps. The latter is introduced to make
sure the system relaxes to its initial temperature on a reasonable timescale. We
stress that the exact description of the phonon system does not play a direct role in
the discussions presented in this chapter.

4.2.5 Boundary conditions and system specifications

Finally, we have to specify the boundary conditions. We define the ferromagnetic
layer on the domain x ∈ [−dF, 0], where dF is the thickness of the ferromagnetic
layer. At the left end of the system we impose insulating boundary conditions,
setting all currents to zero.

jm(−dF) = jQ,m(−dF) = 0. (4.18)

jFs,e(−dF) = jFQ,e(−dF) = 0. (4.19)

Secondly, at the interface, which is positioned at x = 0, the total spin current and
total heat current should be continuous.

jFs,e(0) + 2jm(0) = jNs,e(0), (4.20)

jFQ,e(0) + jQ,m(0) = jNQ,e(0), (4.21)

where the superscript N indicates the quantities in the nonmagnetic layer. The
factor 2 arises from the fact that a magnon carries twice as much spin angular
momentum as an electron. We write the interfacial electronic spin current and heat
current as
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jFs,e(0) =
g1

h̄
(µF

s − µN
s ) +

g1

h̄
Si

s(T
F
e − TN

e ), (4.22)

jFQ,e(0) =
g1

h̄
T0Si

s
2

(µF
s − µN

s ) + κi
e(T

F
e − TN

e ), (4.23)

where the prefactor g1 is determined by the interfacial electrical conductance [72]
and all variables are evaluated at x = 0. The interfacial electronic heat conductivity
is given by κi

e. The factor Si
s corresponds to the spin-dependent Seebeck coefficient

of the interface.

The interfacial magnon current and magnon heat current are determined by the
interfacial electron-magnon scattering rate [36, 126]. The linearized expressions for
the scattering rate can be found by replacing Γ0 → g↑↓/(πs) in Eqs. (4.8)-(4.9)
[36, 116, 117], where g↑↓ is the real part of the spin-mixing conductance and s is the
saturation spin density. In other words, the interfacial magnon current jm(0) and
magnon heat current jQ,m(0) are expressed as

jm(0) =
gi

n,µ

h̄
(µm − µN

s ) +
gi

n,T

h̄
(Tm − TN

e ), (4.24)

jQ,m(0) =
gi

U,µ

h̄
(µm − µN

s ) +
gi

U,T

h̄
(Tm − TN

e ). (4.25)

The second term in Eq. (4.24), proportional to gi
n,T , corresponds to the interfacial

spin Seebeck effect [134].

Finally, the nonmagnetic layer is defined on the domain x ∈ [0, dN], where dN is the
thickness of the nonmagnetic layer. At the outer interface x = dN we impose the
boundary conditions

jNs,e(dN) =
g2

h̄
µN

s (dN), (4.26)

jNQ,e(dN) = 0. (4.27)

For convenience, we assume that this interface is a heat insulator. In contrast, we
allow the interface to be permeable for spins. The latter is parametrized by the
constant g2. In case g2 6= 0, spins are allowed to leak out of the bilayer. It is
assumed that the interface is connected to an ideal spin sink, which corresponds to
a vanishing µs for x > dN and yields Eq. (4.26). The latter could for example be
realized by a secondary magnetic layer that is perpendicularly oriented to the other
magnetic layer, as is the case in noncollinear magnetic heterostructures [136].
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In the following, we will start with discussing the situation where g2 = 0, corre-
sponding to completely insulating boundary conditions. Later, we will investigate
the situation g2 6= 0 in more detail.

4.3 Results

In this section, we present the numerical solutions to the equations discussed in the
previous sections. Specifically, Eqs. (4.12)-(4.13) are solved for the magnonic system
in the ferromagnetic layer, and Eqs. (4.14)-(4.15) are solved for the electronic system
throughout the complete heterostructure. Furthermore, the boundary conditions
as discussed in Section 4.2.5 are imposed. First, we investigate the dynamics of
the local thermodynamical parameters: temperatures, chemical potentials, and the
magnetization.

4.3.1 Temperature, chemical potential, and magnetization dy-
namics

We start with calculating the laser-induced response of a Ni(5 nm)/Pt(3 nm) bilayer
with insulating boundary conditions at the outer interfaces. Specifically, we first
investigate the dynamics of the local thermodynamical parameters within the Ni
layer. To model laser heating we assume that the spatial and temporal profile of the
laser pulse can be approximated by

P(t, x) =
P0

σ
√

π
exp

[
− x + dF

λ̃

]
exp

[
− t2

σ2

]
, (4.28)

where P0 is the absorbed laser pulse energy density and σ determines the pulse
duration, which is set to 70 fs. The laser pulse penetration depth is given by λ̃

and set to a typical value of λ̃ = 15 nm. For simplicity, we assume that the laser
pulse absorption in the Ni and Pt layer is equally efficient and we use P0 = 0.15×
108 Jm−3. All other system parameters are given in Table 4.2 and 4.3.

Figures 4.1(a)-(c) show the response of the magnetic bilayer to laser heating. All
plotted variables are spatially averaged over the range of the ferromagnetic (Ni)
layer. Figure 4.1(a) shows the rapid increase of the electron temperature TF

e and the
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Figure 4.1: Laser-induced dynamics of the temperatures, chemical potentials, and magne-
tization within the Ni layer of a Ni(5 nm)/Pt(3 nm) bilayer. The quantities are plotted as a
function of t after laser-pulse excitation at t = 0, and are spatially averaged over the ferro-
magnetic (Ni) layer. (a) The electron temperature (blue) and magnon temperature (red). (b)
The spin accumulation (blue) and magnon chemical potential (red). (c) The normalized mag-
netization. The solid green line indicates the changes of the total spin density. The dashed
green line indicates the case that only changes in magnon density are taken into account. The
thin gray line represents the magnetization in the case of an isolated Ni layer, in the absence
of a neighboring Pt layer.

response of the magnon temperature Tm driven by electron-magnon scattering. This
transient behavior of the magnon temperature yields a rapid increase in the magnon
density. Figure 4.1(b) displays the laser-induced dynamics of the spin accumulation
(blue) and magnon chemical potential (red). The spin accumulation shows the
typical bipolar behavior, in analogy with previous calculations and experimental
observations of the generated spin-polarized electrons [65, 71, 72, 131]. The magnon
chemical potential shows different behavior, it can be shown that this is related to
the equilibration of the chemical potentials playing a minor role and the magnon
chemical potential opposes the dynamics of the magnon temperature.
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Finally, Fig. 4.1(c) shows the normalized magnetization as a function of time. The
magnetization requires special attention. In this chapter, it is assumed that the mag-
netic signal measured in the experiments is determined by the total spin density.
The magnetization is defined as

m =
s− 〈nd〉 − 〈δns〉/2

s
=

s− 〈ntot〉
s

, (4.29)

which is normalized with respect to the saturation spin density s = S/a3, where S
is the spin per atom (in units of h̄) and a the lattice constant. The bracket notation
indicates spatial averaging over the ferromagnetic layer.

The solid green curve in Fig. 4.1(c) shows the typical ultrafast demagnetization
behavior and critically depends on the spin-flip scattering rate τs,F. Upon exci-
tation, electron-magnon scattering generates a net change of the magnon density
and spin density in the itinerant spin system. However, electron-magnon scattering
conserves the total spin angular momentum. The Elliott-Yafet spin-flip processes
originating from spin-orbit coupling enable changes of the total spin density and
therefore demagnetization of the combined spin system [19, 34, 36, 43]. In the end,
spin is efficiently transferred to the lattice, as was recently demonstrated experi-
mentally [54, 55].

We stress that this interpretation of the magnetization remains a point of discussion
and its relation to the magnetic signal in the experiments strongly depends on the
probing method. Therefore, we have plotted the dynamics of the magnon density
〈nd〉 separately. The latter is normalized with respect to the saturation spin density
s and indicated by the dashed green line in Fig. 4.1(c), emphasizing the subpicosec-
ond generation of magnons [46]. As will be discussed in the next section, the used
interpretation of the magnetization, as being determined by the sum of the magnon
density and the itinerant electron spin density, is strongly supported by the investi-
gation of the relation between the interfacial spin current and the demagnetization
rate.

Finally, the thin gray line in Fig. 4.1(c) represents the calculation of the magneti-
zation in case the Pt layer is absent and spin can not be transported out of the Ni
layer. The latter emphasizes that the demagnetization is primarily driven by lo-
cal spin dissipation. However, in the presence of a nonmagnetic layer (solid green
curve), interfacial spin transfer significantly contributes to the demagnetization rate.
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Figure 4.2: Laser-induced spin transport in a Ni(5 nm)/Pt(3 nm) bilayer with insulating
boundary conditions. (a) The interfacial spin current (blue) as a function of time t after
laser-pulse excitation at t = 0. The dashed red line indicates the temporal derivative of
the magnetization, scaled by a prefactor that is fitted to the amplitude of the spin current.
(b) Distinct spin current contributions as a function of spatial coordinate x, evaluated at
t = 0.05 ps. Blue indicates the electronic contribution, red the magnonic contribution, and
green the total. (c) Schematic overview of the system.

4.3.2 Spin transport in magnetic heterostructures

In this section, we calculate the spin current that arises from laser exciting the
magnetic heterostructure corresponding to the results of Fig. 4.1. As given by Eq.
(4.20), we define the total interfacial spin current at x = 0 as jint

s = jFs,e(0) + 2jm(0),
where jFs,e(0) is the spin current carried by the conduction electrons and jm(0) is the
interfacial magnon current. We again focus on a Ni(5 nm)/Pt(3 nm) bilayer with
insulating boundary conditions, as schematically depicted in Fig. 4.2(c).

The blue line in Fig. 4.2(a) shows the results from calculating jint
s by numerically

solving the set of equations as presented in Section 4.2. The material parameters
and description of the laser pulse are identical to the previous section. The result
clearly shows the bipolar behavior of the interfacial spin current, yielding a tran-
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sient oscilation within the THz regime. The red dashed curve indicates the temporal
derivative of the magnetization, scaled by a prefactor that is fitted to the amplitude
of the spin current. The comparison indicates a qualitative agreement with the ex-
periments [70, 136], as a close relation is expected between the spin current injected
into the nonmagnetic layer and the temporal derivative of magnetization. The vis-
ible phase shift is interesting in itself, but smaller than the temporal resolution of
40 fs in the experiment in Ref. [70].

Figure 4.2(b) shows the different contributions to the spin current as a function of
position x, calculated at t = 0.05 ps. The figure suggests that for the used parame-
ters magnon transport and spin-polarized electron transport comparably contribute
to the total spin current within the bulk of the ferromagnet. One should keep in
mind that their ratio strongly depends on the specific time instance and system
parameters. The spin transport by electrons is mainly driven by bulk electron-
magnon scattering, which generates negatively polarized spins that are transferred
towards the receiving layer via spin diffusion. The negative magnon current in Fig.
4.2(b) indicates thermal magnons being created at the interface by electron-magnon
scattering. Consequently, a flow of magnons towards the negative x direction is
generated. The magnon current jm(0) is mainly determined by the temperature dif-
ference Tm − TN

e at the interface, which corresponds to the interfacial spin Seebeck
effect [134]. In contrast to our work, the latter is typically neglected in the models
for spin transport in metallic magnetic heterostructures [71, 72].

In the following section, we investigate the relation between the interfacial spin
current and the magnetization analytically and specifically address the role of (in-
terfacial) magnon transport.

4.3.3 Relation between the interfacial spin current and de-
magnetization

In this section, we analytically investigate the relation between the interfacial spin
current and the demagnetization. Integrating Eqs. (4.12) and (4.14) over the thick-
ness of the ferromagnetic layer and adding up the results yields an expression for
the interfacial spin current

jint
s (t) = −2dF

d〈ntot〉
dt

− dF
〈δns〉
τs,F

, (4.30)
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where the brackets indicate spatial averaging over the ferromagnetic layer. Equation
(4.30) simply follows from spin angular momentum conservation, as the total spin
density 〈ntot〉 can only be changed by either spin transport or local spin dissipation.
In the limit where the latter is absent τs,F → ∞, spin transport and demagnetization
couple trivially. For the systems of interest, where we have a subpicosecond τs,F,
a more cumbersome calculation is required to eliminate the local spin dissipation
term from Eq. (4.30).

In order to do this, we solve the spin diffusion equation for the full heterostructure.
In the frequency domain, we write

∂2µF
s (ω, x)
∂x2 = κF(ω)2µF

s (ω, x) +
2τs,F Isd(ω, x)

ν̃Fl2
s,F

, (4.31)

∂2µN
s (ω, x)
∂x2 = κN(ω)2µN

s (ω, x), (4.32)

where we use the parameter κF(ω) = l−1
s,F
√

iωτs,F + 1 for the ferromagnetic layer
and κN(ω) = l−1

s,N
√

iωτs,N + 1 for the nonmagnetic layer [142]. ls,F and ls,N cor-
respond to the spin diffusion length of the ferromagnetic and nonmagnetic layer,
respectively. The boundary conditions are identical to Section 4.2.5, but now ex-
pressed in the frequency domain. For convenience, we neglect the spin-dependent
Seebeck effect (Ss and Si

s) in this analytical calculation. The goal is to express the
Fourier transform of the interfacial spin current

jint
s (ω) =

g1

h̄
(µs,F(ω, 0)− µs,N(ω, 0)) + 2jm(ω, 0), (4.33)

in terms of the electron-magnon scattering rates, specifically, the bulk contribution
Isd(ω, x) and interfacial contribution jm(ω, 0). The resulting expression is given by

jint
s (ω) = 2A(ω)jm(ω, 0)− 2dFB(ω)Isd(ω), (4.34)

where Isd(ω) is

Isd(ω) =
∫ 0

−dF

dx′
κF(ω) cosh[(dF + x′)κF(ω)]

sinh[dFκF(ω)]
Isd(ω, x′). (4.35)

Furthermore, the function A(ω) is given by



102 Modeling ultrafast demagnetization and spin transport. . .

A(ω) =

1 +
h̄ν̃FdF

g1τs,F

( l2
s,FκF(ω)

dF

)
tanh[κF(ω)dF]

1 +
h̄ν̃FdF

g1τs,F

( l2
s,FκF(ω)

dF

)
tanh[κF(ω)dF]GN(ω)

, (4.36)

which can deviate from one (compared to Eq. (4.34)), indicating that the spin current
driven by electron-magnon scattering at the interface is modified by spins flowing
back into the ferromagnetic layer. Secondly, the bulk contribution depends on the
function B(ω)

B(ω) =

(
1

dFκF(ω)

)
tanh[κF(ω)dF]

1 +
h̄ν̃FdF

g1τs,F

( l2
s,FκF(ω)

dF

)
tanh[κF(ω)dF]GN(ω)

. (4.37)

The function GN(ω) includes all the parameters that describe the properties of the
nonmagnetic layer and the interfaces

GN(ω) = 1 +

g1 +
g1g2τs,N

h̄ν̃Nl2
s,NκN(ω)

tanh[κN(ω)dN]

g2 +
h̄ν̃Nl2

s,NκN(ω)

τs,N
tanh[κN(ω)dN]

. (4.38)

What remains is simplifying Eq. (4.34) and expressing it in terms of the total spin
density 〈ntot(ω)〉 and thereby the normalized magnetization m. For convenience,
we first focus on the situation that interfacial electron-magnon scattering is absent.

Bulk electron-magnon scattering

Here, we set jm(ω, 0)→ 0. Hence, the interfacial spin current is given by the second
term in Eq. (4.34). As is discussed in Appendix 4.B (on page 112) , a relevant approx-
imation is that the function Isd(ω) closely resembles the spatial average 〈Isd(ω)〉.
To eliminate 〈Isd(ω)〉 from Eq. (4.34), we make use of the continuity equations for nd

and δns spatially averaged over the ferromagnetic layer. In the absence of interfacial
electron-magnon scattering this yields
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iω〈nd(ω)〉 = 〈Isd(ω)〉, (4.39)

iω〈δns(ω)〉 = −2〈Isd(ω)〉 − 〈δns(ω)〉
τs,F

− jint
s (ω)

dF
. (4.40)

Using these equations the interfacial spin current can be expressed in terms of the
Fourier transform of the total spin density

jint
s (ω) = −2dFB̃(ω)× (iω〈ntot(ω)〉), (4.41)

where the new function B̃(ω) is given by

B̃(ω) =
B(ω)(iωτs,F + 1)
iωτs,FB(ω) + 1

. (4.42)

The function B̃(ω) carries all information about the relation between the temporal
evolution of the magnetization and the interfacial spin current. We investigate the
Taylor expansion

B̃(ω) = B(0) + iτω +O(ω2), (4.43)

where we introduced the timescale τ = −iB̃′(0).

We focus on a Ni(3.4 nm)/Cu(2.5 nm) bilayer, which is similar to the system used
in the experiments of Ref. [136]. When the interface at x = dN is permeable for
spins (g2 6= 0) and connected to an ideal spin sink, we estimate τg2 6=0 ∼ 5.1 ×
10−16 s, when using the constants for Ni/Cu as presented in Table 4.2 and 4.3. For
frequencies up to the THz regime it satisfies τg2 6=0 ω � B(0) ∼ 0.52, implying
that B̃(ω) is approximately independent of frequency and given by B(0). Inverse
Fourier transforming Eq. (4.41) yields

jint
s (t) = −2dFB(0)× d〈ntot〉

dt
. (4.44)

By definition −(1/s)d〈ntot〉/dt = dm/dt. Using this substitution the interfacial spin
current in terms of the normalized magnetization m is

jint
s (t) = ε× (2dFs)

dm
dt

, (4.45)

where we defined the efficiency parameter ε = B(0). This expression is identical to
the relation as reported in Ref. [136]. Contrasting behavior is found when we switch
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Figure 4.3: Laser-induced spin transport in a Ni(3.4 nm)/Cu(2.5 nm) bilayer for two types
of boundary conditions at x = dN. (a) The interfacial spin current (blue) as a function of
time t after laser-pulse excitation at t = 0, for an interface at x = dN that is permeable
for spins (g2 6= 0) and connected to an ideal spin sink. The dashed red line indicates the
temporal derivative of the magnetization, scaled by a prefactor that is fitted to the amplitude
of the spin current. (b) The interfacial spin current (blue) for insulating boundary conditions
(g2 = 0). The dashed red line indicates the second derivative of the magnetization, scaled to
have the same amplitude as the spin current.

to g2 = 0, when all spins are blocked at x = dN. A critical role is played by the
function GN(ω), which under these conditions shows GN(0) � 1 and dominates
the frequency dependence of B̃(ω). Using that the Cu nonmagnetic layer satisfies
dN/ls,N � 1, it follows that

τg2=0 ≈ B(0)2 ν̃FdFτ2
s,N

ν̃NdNτs,F
∼ 7.0 fs. (4.46)

In combination with B(0) ∼ 4× 10−4, it typically satisfies τg2=0 ω � B(0). Hence,
in this specific case the first-order term of B̃(ω) dominates. The spin current is now
given by

jint
s = τg2=0 × (2dFs)

d2m
dt2 . (4.47)
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Rather than being proportional to dm/dt, the interfacial spin current is now ap-
proximately proportional to the second derivative of m. This behavior is a direct
consequence of the large spin-flip scattering time τs,N = 17 ps of Cu [72]. In this
case, an efficient spin dissipation channel is absent, resulting in an altered response
of the spin accumulation in the nonmagnetic layer which affects the temporal be-
havior of the interfacial spin transport.

The clear distinction between the dynamics predicted by Eq. (4.45) and Eq. (4.47)
for a Ni(3.4 nm)/Cu(2.5 nm) bilayer is depicted in Figs. 4.3(a)-(b). We here assumed
that the laser pulse is only absorbed by the Ni layer and used P0 = 0.2× 108 Jm−3.
The absorption by the Cu layer is neglected, since Cu has a relatively small imagi-
nary component of the dielectric constant [71]. All remaining parameters are given
in Table 4.2 and 4.3. Figure 4.3(a) shows the correspondence between the spin cur-
rent (blue solid line) and the temporal derivative of the magnetization (red dashed
line) in the case that the bilayer is connected to an ideal spin sink. There is no signif-
icant phase shift present, which is in agreement with the experiments in Ref. [136].
In Fig. 4.3(b) the spin sink is absent, and a close relation between the spin current
(blue solid line) and the second derivative of the magnetization (red dashed line)
is found. Note that the scaling factors given in the figure do not match the values
calculated in the text, as the calculations presented in the figures include magnon
transport, the spin-dependent Seebeck effect, and the full frequency dependence.

We observe that in case the receiving layer is an efficient spin sink, or is connected to
an efficient spin sink, the interfacial spin current is directly proportional to the tem-
poral derivative of m, as described by the relation Eq. (4.45). This is in agreement
with the results of the previous section because Pt has a very short spin-flip scatter-
ing time of τs,N ∼ 0.02 ps [143, 144]. In the opposite case, if the receiving material
displays inefficient spin-flip scattering, other relations may arise. We stress that the
behavior predicted by Eq. (4.47) strongly depends on the exact components of the
heterostructure. As shown by the calculation, a Ni/Cu bilayer is an ideal system to
demonstrate the latter limiting case, mainly because Cu has a very large spin-flip
scattering timescale and a Ni/Cu interface has a relatively large electrical conduc-
tance [72]. To demonstrate this experimentally, two methods can potentially be used
to probe the spin-current generation into the nonmagnetic layer. First, probing the
THz electromagnetic radiation that results from the inverse spin Hall effect yields
the temporal profile of the spin current [70]. However, due to the small spin Hall
angle of Cu the signal is expected to be very small [145]. A second method is using



106 Modeling ultrafast demagnetization and spin transport. . .

the magneto-optical Kerr effect. In that case, the spin accumulation is probed in-
stead of the spin current [65]. For insulating boundary conditions, the spin density
that builds up in the nonmagnetic layer is given by

〈δns(ω)〉N =
1

dN

jint
s (ω)

iω + τ−1
s,N

. (4.48)

Here, the brackets indicate spatial averaging over the nonmagnetic layer. For Cu,
with the large τs,N, the interfacial spin current and the build-up spin density differ
by a factor ∼ iω. Indicating that the optically probed signal will replicate the first
derivative of the magnetization. Despite the difficulty of observing the behavior of
Eq. (4.47), the analysis emphasizes that by modifying the properties of the nonmag-
netic material the bandwidth of the spin current can be tuned [68, 143]. Although
compositions other than Ni/Cu might not yield the ideal comparison as in Figs.
4.3(a)-(b), performing experiments for various nonmagnetic materials and probing
both the magnetization and the spin current simultaneously, will yield valuable
information.

In the analytical calculation presented in this section, we left out the interfacial
electron-magnon scattering. In the following section, we specifically address its
contribution to spin current injection and discuss the role of magnon transport.

Interfacial electron-magnon scattering and magnon transport

Magnon spin transport and magnon heat transport are directly coupled, which
makes them complex to investigate analytically. Hence, this section presents a nu-
merical analysis of the role of interfacial electron-magnon scattering and magnon
transport.

The results are shown in Figs. 4.4(a)-(d), and correspond to a Ni(3.4 nm)/Cu(2.5 nm)
bilayer connected to an ideal spin sink. The calculations include bulk electron-
magnon scattering, interfacial electron-magnon scattering, and the spin-dependent
Seebeck effect. The used system parameters are presented in Table 4.2 and 4.3. The
phase diagram in Fig. 4.4(a) indicates the amplitude of the spin current, determined
by its maximum value, as a function of the spin-mixing conductance g↑↓ and the
magnon transport timescale τtr,m. The spin-mixing conductance, which is made
dimensionless by dividing it by a factor (πsdF), determines the strength of the
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Figure 4.4: Phase diagrams that characterize the interfacial spin current in a
Ni(3.4 nm)/Cu(2.5 nm) bilayer connected to an ideal spin sink. (a) Phase diagram of the
amplitude of the interfacial spin current as a function of the spin-mixing conductance g↑↓
(made dimensionless by dividing it by (πsdF)) and the magnon transport timescale τtr,m. (b)-
(d) Phase diagrams as a function of the spin-mixing conductance g↑↓ and the bulk electron-
magnon scattering rate coefficient Γ0, where τtr,m = 0.1 ps is set constant. (b) The amplitude
of the interfacial spin current. The red star indicates the values used in Fig. 4.3(a). (c) The
amplitude of (−2edFs)dm/dt. (d) The efficiency parameter ε, as defined in Eq. (4.45).

interfacial electron-magnon scattering and thereby the magnon spin current near
the interface. The timescale τtr,m determines the effectiveness of magnon transport
in the bulk. In order to have interfacial electron-magnon scattering significantly
contribute to the total spin current, it is required to have efficient magnon transport



108 Modeling ultrafast demagnetization and spin transport. . .

in the bulk, as indicated by the light region in Fig. 4.4(a).

Figures 4.4(b)-(d) compare the contributions by bulk and interfacial electron-
magnon scattering. These phase diagrams are plotted as a function of the
spin-mixing conductance and the bulk electron-magnon scattering rate coefficient
Γ0. Here, the magnon transport timescale is set to τtr,m = 0.1 ps, similar to the
calculations presented in the previous sections. The color scheme in Fig. 4.4(b)
indicates the amplitude of the interfacial spin current. The figure emphasizes that
including interfacial electron-magnon scattering boosts the amplitude of the spin
current, however, the significance of the increase depends on the efficiency of the
bulk electron-magnon scattering.

Figure 4.4(c) indicates the amplitude of dm/dt, given in the same units as the spin
current. Intuitively, the demagnetization favors a simultaneously large interfacial
and bulk electron-magnon scattering rate, since both contribute to the generation
of thermal magnons. This does not linearly translate to a maximized spin current,
as the relation between the spin current and demagnetization depends on which
contribution dominates. The color scheme in Fig. 4.4(d) indicates the efficiency ε,
as defined in Eq. (4.45). Keeping in mind the analytical calculation, the range of ε

is approximately related to the values of prefactors A(0) and B(0) (see Eqs. (4.36)-
(4.37)). In the case only interfacial electron-magnon scattering is present this yields
ε ∼ A(0) ∼ 0.79, whereas for the pure bulk scenario ε ∼ B(0) ∼ 0.52. A small
deviation compared to Fig. 4.4(d) arises as the numerical calculation includes the
spin-dependent Seebeck effect and the full frequency dependence.

All calculations presented here imply that spin transport by magnons, which is
typically neglected in the calculations of laser-induced spin transport in metallic
magnetic heterostructures [71, 72], is relevant to include in the analyses [36]. Since
magnon transport is driven by electron-magnon scattering at the interface, the ra-
tio of Γ0 and g↑↓/(πsdF) plays a decisive role [36]. Furthermore, constants that
parametrize either bulk magnon transport or spin-polarized electron transport are
essential. Their coupled dynamics complexifies the characterization of bulk spin
transport, including the modification of the diffusion length scales [139]. On top
of that, nonmagnetic system parameters that correspond to the thermal properties
of the system do strongly affect the importance of magnon transport. For instance,
the interfacial magnon current is mainly determined by the temperature difference
Tm− TN

e , which critically depends on the thermal and optical properties of the non-
magnetic layer. Further theoretical work is required to chart the essential dependen-
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cies on the properties of the heterostructure. Hence, we state that the role of interfa-
cial electron-magnon scattering and, consequently, bulk magnon transport can not
be neglected a priori [36]. It may play a significant role depending on the specific
system components and properties. Nevertheless, bulk electron-magnon scattering
always remains essential, as ultrafast demagnetization is observed in magnetic thin
films regardless of the presence of a neighboring nonmagnetic metallic layer [61].

4.4 Conclusion and outlook

In conclusion, we modeled ultrafast demagnetization and spin transport in rapidly
heated magnetic heterostructures, addressing the interplay of thermal magnons and
itinerant spins. Within this model, the magnetization is determined by the total spin
density of the two populations and ultrafast demagnetization is driven by the com-
bination of electron-magnon scattering and additional spin-flip scattering processes
originating from spin-orbit coupling. Secondly, electron-magnon scattering is a
driving force of nonlocal spin transfer, for which we calculated the resulting spin
transport by magnons and spin-polarized electrons within a diffusive description.
It is shown that in the case the receiving material is an efficient spin sink, the inter-
facial spin current becomes directly proportional to the time derivative of the mag-
netization. Furthermore, we have discussed the role of interfacial electron-magnon
scattering and magnon transport, and showed that they cannot be neglected a pri-
ori. However, their significance strongly depends on the material properties of the
full magnetic heterostructure.

In this chapter, we focused on ultrathin magnetic heterostructures. To explore
the role of bulk temperature gradients and identify characteristic length scales, a
quantitative analysis over a larger range of thicknesses is required. Secondly, it
will become interesting to go beyond the assumptions that the phononic system
plays a minor role and behaves as an ideal spin sink. As recent experiments show
that during the ultrafast demagnetization spin is transferred to the lattice [54, 55],
and specifically circularly polarized phonons [55], it becomes obvious that a more
complete description of the phononic system is needed. Moreover, it was already
proposed that a coupling between magnons and phonons should be implemented
within a three-temperature description [59]. Nevertheless, it is expected that the
dominant physical concepts are captured within the assumptions of the presented
model.
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4.A Expansion of the polylogarithm

In this appendix, we present additional details regarding the calculations in the
main sections. The starting point is the evaluation of the polylogarithm function.
To evaluate the integrals that are needed for the description of the magnonic system,
we make use of the following expression for the polylogarithm [117]

Lis(ex) =
1

Γ(s)

∫ ∞

0
dt

ts−1

et/ex − 1
. (4.49)

As mentioned in Sec. 4.2.1, we assume the parameter x remains small. The poly-
logarithm can be written as a series expansion [138]

Lis(ex) = Γ(1− s)(−x)s−1 +
∞

∑
k=0

ζ(s− k)
k!

xk. (4.50)

Since x remains small, we truncate this series for k ≥ 2, which is the basis for the
calculation of all coefficients presented in Table 4.1. As an example, we calculate
the magnon density from Eq. (4.1)

nd =
(kBTm)3/2

4π2 A3/2 Γ(3/2)Li3/2

(
e(µ−ε0)/(kBTm)

)
. (4.51)

Table 4.2: Parameters that characterize the magnonic system in Ni.

symbol meaning estimate

T0 (K) ambient temperature 295
TC (K) [1] Curie temperature 628
τtr,m (ps) a magnon momentum relaxation time 0.1
A (meVÅ2

) b spin-wave stiffness 400
a (nm) [146] lattice constant 0.35
S c Spin per atom (in units h̄) 0.6× (1/2)
Γ0

d e-m scattering rate coefficient 2× 0.038
ε0 (meV) e magnon gap 0.05

aDiscussed in the main text.
bTypical order of magnitude estimated by A ∼ 2kBTCSa2.
cEstimated from atomic magnetic moment given in [18].
dUsing relation Γ0 = 2α [116] and α of Ni [23].
eTypical order of magnitude from FMR frequency of ∼ 10 GHz.
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Applying the expansion up to first order in µm/(kBTm), ε0/(kBTm)� 1 we have

nd =
(kBTm)3/2

4π2 A3/2 Γ(3/2)
[

Γ(−1/2)
(

ε0 − µm

kBTm

)1/2

(4.52)

+ζ(3/2)− ζ(1/2)
(

ε0 − µm

kBTm

)]
.

If we now impose that we only have small changes of the magnon temperature
compared to room temperature, (Tm − T0)/T0 � 1, and only collect the terms up
to first order in small parameters we find

nd =
(kBT0)

3/2

4π2 A3/2 Γ(3/2) (4.53)[
Γ(−1/2)

(
ε0 − µm

kBT0

)1/2

+ ζ(3/2)

−ζ(1/2)
(

ε0 − µm

kBT0

)
+ (3/2)ζ(3/2)

(Tm − T0)

T0

]
.

Evaluatimg this expression at the maximum temperature and chemical potential of
the calculation in Sec. 4.3.1 (Fig. 4.1), it only differs approximately one per cent from
the exact value Eq. (4.51). Taking the temporal derivative of nd yields

∂nd
∂t

=
(kBT0)

3/2

4π2 A3/2 Γ(3/2) (4.54)[(
Γ(1/2)

(
ε0 − µm

kBT0

)−1/2

+ ζ(1/2)
)

µ̇m

kBT0

+(3/2)ζ(3/2)
Ṫm

T0

]
,

which determines the coefficients Cn,µ and Cn,T , as defined in the main text and
given in Table 4.1. When µm approaches the magnon gap ε0, the first term in Cn,µ

diverges, which originates from Bose-Einstein statistics. It is essential to include
this nonlinear term in Cn,µ as otherwise we would find time traces of the magnon
chemical potential that may largely exceed the magnon gap.

For all remaining coefficients in Table 4.1, the first term in the expansion Eq. (4.50)
will only yield higher-order contributions. In that case the coefficients follow
equivalently from the first-order Taylor expansion (the second term in Eq. (4.50)),
where in the prefactors it is used that for sufficiently small ε0 we approximate
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Lis(exp(−ε0/(kBT0))) ∼ ζ(s). We stress that all expansion methods we use here
remain a rough estimate. In order to retrieve valuable quantitative results from the
magnonic calculation, it is essential to implement the full polylogarithm.

4.B Notes on the approximations in the analytical calcula-
tion

In Section 4.3.3 the bulk electron-magnon scattering rate, which is implemented in
the spin diffusion equation as a source of spins, is simplified using the following
considerations. We express the source Isd(ω, x) in terms of a cosine expansion

Isd(ω, x) =
Isd,0(ω)

2
+

∞

∑
n=1

Isd,n(ω) cos
(nπx

dF

)
, (4.55)

where the coefficients Isd,n(ω) are given by

Isd,n =
2
dF

∫ 0

−dF

dxIsd(ω, x) cos
(nπx

dF

)
. (4.56)

Note that the zeroth mode corresponds to twice the spatial average Isd,0(ω) =

2〈Isd(ω)〉. The higher-order modes are a measure of the spatial inhomogeneity
of the source term. We want to express the function Isd(ω), as given in Eq. (4.35),
in terms of the coefficients Isd,n(ω). By performing the spatial integration we find

Isd(ω) = 〈Isd(ω)〉+
∞

∑
n=1

Isd,n(ω)( nπ

dFκF(ω)

)2
+ 1

. (4.57)

Hence, the n ≥ 1 modes of Isd(ω, x) are truncated by the denominator. In combi-
nation with the inhomogeneous modes remaining relatively small compared to the
homogeneous mode, it turns out to be a relevant approximation to neglect all the
terms in the summation in Eq. (4.57).
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Table 4.3: Parameters for the electronic system of Ni, Pt, and Cu. Parameters that character-
ize the interface correspond to Ni/Cu and Ni/Pt.

symbol Ni Pt Cu Ref.

γ (Jm−3K−2) 1077 721 100 [59, 71, 72]
Cp (106 Jm−3K−1) 3.6 2.85 3.45 [59, 71]
gep (106 Jm−3K−1ps−1) 0.855 0.29 0.07 [59, 71]
2ν̃ (eV−1nm−3) a 272 137 b 26 [72, 140, 143]
2σ̃ (106 Sm−1) a 7.1 6.6 39 [71, 72]
κe (Wm−1K−1) 50 50 300 [71, 72]
Ss (10−24 JK−1) c −0.3
g1 (1019 m−2) d 0.3 1.0 [71, 72]
g2 (1019 m−2) 1.0
κi

e (109 Wm−2K−1) e 10 40 [71, 72]
Si

s (10−24 JK−1) f −0.3 −0.3
g↑↓ (1019 m−2) 0.3 1.0 [142, 147]
τs (ps) 0.1 0.02 17 [72, 143, 144]

aWe assume that the spin-averaged quantities ν̃ and σ̃ are approximately given by the
(total) electrical quantity divided by two.

bCalculated from the ratio of the conductivity and diffusion coefficient in [143].
cUsing that the Seebeck coefficient scales as (π2/3)kB(T0/TF), with Fermi temperature
TF ∼ 104 K, the polarization Ps ∼ 0.2, and sign of the spin-dependent Seebeck effect [124].

dEstimated from the electrical conductance given for Ni/Cu in [72] and [Co/Ni]/Pt in [71].
eEstimated from the electrical conductance and the Wiedemann-Franz law [72].
fAssumed to be equal to the bulk value.

4.C System parameters

The system parameters that are used in the calculations presented in the main sec-
tions are summarized in Table 4.2 and Table 4.3. Table 4.2 shows the estimated
parameters that characterize the magnonic system in Ni. Table 4.3 presents the pa-
rameters of the electronic system in Ni, Pt, and Cu. Furthermore, it includes the
parameters that correspond to the interfaces.





5
Spin-polarized hot electron transport

versus spin pumping mediated by local

heating

A ‘toy model’—aimed at capturing the essential physics—is presented that jointly describes
spin-polarized hot electron transport and spin pumping driven by local heating. These two
processes both contribute to spin-current generation in laser-excited magnetic heterostruc-
tures. The model is used to compare the two contributions directly. The spin-polarized
hot electron current is modeled as a first generation of hot electrons with a spin-dependent
excitation and relaxation scheme. Upon decay, the excess energy of the hot electrons is trans-
ferred to a thermalized electron bath. The elevated electron temperature leads to an increased
rate of electron-magnon scattering processes and yields a local accumulation of spin. This
process is dubbed as spin pumping by local heating. The built-up spin accumulation is ef-
fectively driven out of the ferromagnetic system by (interfacial) electron transport. Within
our model, the injected spin current is dominated by the contribution resulting from spin
pumping, while the hot electron spin current remains relatively small. We derive that this
observation is related to the ratio between the Fermi temperature and Curie temperature,
and we show what other fundamental parameters play a role.1

1The work presented in this chapter is related to the research documented in the MSc thesis of K.A.
de Mare [148]. This chapter has not been published in a physics journal yet.
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5.1 Introduction

The generation of spin transport by femtosecond laser-pulse excitation paves the
way towards ultrafast spintronic applications. Similar to subpicosecond quenching
of the magnetization [13, 18, 21–26, 30–39, 54, 149], the physical origin of laser-
induced spin transport is an unsolved quest and remains heavily debated after more
than a decade of experimental and theoretical research [14, 15, 39, 65, 68, 69, 71, 73–
75, 100, 101, 103, 105, 130, 131]. Nevertheless, it is clear that the manipulation of
magnetic materials with femtosecond laser pulses is unique by being ultrafast and
very efficient. Therefore, understanding the underlying physical mechanisms is
interesting from both a fundamental and technological viewpoint.

There are two dominant theories on the physical origin of ultrafast spin currents.
First, the laser pulse generates a population of highly energetic electrons that
through spin-dependent excitation rates and mobilities yield a spin-polarized hot
electron current. Including the generated cascades of secondary hot electrons, it
is an efficient scheme of spin-current generation, as is described by the model for
superdiffusive spin transport [39, 73]. The second theory is based on the notion
that laser heating results in an increased rate of spin-flip scattering processes,
including electron-magnon scattering. The latter generates a local spin accu-
mulation [36, 65, 72], a process referred to as bulk spin pumping [72, 142], that
effectively can be transported towards a neighboring nonmagnetic layer through
spin diffusion. With the two major viewpoints in mind, the essential unanswered
question is whether the generated spin current is a direct result of the excitation of
hot electrons or is indirectly driven by heating and subsequent spin pumping.

In this chapter, we present a simplified phenomenological model—also referred to
as ‘toy model’—that jointly describes the generated hot electron spin currents and
the spin currents driven by spin pumping. Hot electron transport is described by
one generation of optically-excited electrons with spin-dependent excitation and
decay rates. Within our approach, the hot electrons decay into an instantaneously
thermalized electron bath, where the absorbed excess energy results in an increase
of the electron temperature. The latter, and the coupling to a thermal magnon bath,
is calculated explicitly. It gives an expression for the total built-up spin accumula-
tion and the resulting spin current transported by the thermal electrons. The two
contributions to the spin current are calculated equivalently at the interface of a
ferromagnetic metal/nonmagnetic metal heterostructure. We show that the spin
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Figure 5.1: Schematic overview of the toy model. The system of electrons is composed of
hot electrons and a bath of electrons that remains thermalized. (a) Excitation by a laser pulse
yields a population of hot electrons and a reduction of the number of electrons in the ther-
mal system. (b) The spin-dependent excitation and decay rates yield a net spin accumulation
within the thermal system. (c) The decay processes are associated with an energy absorp-
tion of the thermal system, leading to an increased temperature Te. Subsequent interactions
among electrons, magnons, and the lattice, compose the full spin angular momentum flow.
(d) Schematic overview of the modeled heterostructure, excited at position z = 0 by absorp-
tion profile A↑↓(t). The total interfacial spin current jtot

s is the sum of the hot electron spin
current jh,s and the spin current generated within the thermal electron system jt,s.

current driven by spin pumping dominates and we derive that this observation is
related to the ratio between the Fermi temperature and Curie temperature. Finally,
we discuss the presence of spin-polarized screening currents and investigate their
role.

5.2 Toy model for laser-induced hot electron dynamics

We start with defining two categories of electrons for each spin polarization sepa-
rately. First, the electrons far above the Fermi level are defined as ‘hot’ electrons.
Secondly, the electrons close to and far below the Fermi level are assumed to remain
thermalized and are dubbed as ‘thermal’ electrons. We treat the thermal electron
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system as a single population of mobile electrons, representing hybridized 3d and
4s electrons in the transition metal ferromagnets, composed of the subsystems for
majority spins (here defined as ↓) and minority spins (↑). A schematic overview is
given in Figs. 5.1(a)-(b). Upon excitation, a (spin-polarized) population of thermal
electrons is transferred to the higher energetic ‘hot’ state at energy ∆E above the
Fermi level. In combination with the spin-dependent decay rates τ−1

↑↓ , this leads
to a shift of the spin-dependent chemical potential µs = µ↑ − µ↓. In other words,
a spin accumulation is created. During the decay of the hot electrons, the excess
energy ∆E is absorbed by the thermal system and leads effectively to an elevated
electronic temperature Te. The latter gives rise to the creation of thermal magnons
and an additional change of the spin accumulation µs, as will be discussed in Sec.
5.3.

We first focus on the hot electron transport generated after excitation. We con-
sider a (magnetic) metallic system described by spin-dependent electron distribu-
tion functions that remain homogeneous in the transverse plane but may vary along
the longitudinal (out-of-plane) z direction. Furthermore, we assume that when hot
electrons are excited they move in a random direction with a (spin-dependent) fixed
speed v↑↓ until they decay after time τ↑↓. The distribution function describing this
hot electron system satisfies the Boltzmann equation

∂n↑↓(z, v, t)
∂t

+ v
∂n↑↓(z, v, t)

∂z
= A↑↓(z, t)−

n↑↓(z, v, t)
τ↑↓

, (5.1)

where n↑↓(z, v, t) corresponds to the distribution function for hot electrons with up
(↑) and down (↓) spin at position z with velocity component v along the z axis. The
function A↑↓(z, t) describes the spatiotemporal profile of the laser-pulse absorption
and is spin-dependent due to the different absorption coefficients for up and down
spins. For simplicity, we assume that this source term is a Dirac delta function lo-
cated at z = 0, having A↑↓(z, t) = A0,↑↓(t)δ(z) (see Fig. 5.1(d)), where A0,↑↓(t) is
determined by the temporal profile of the laser pulse. Only focusing on this simpli-
fied example is relevant, since the response to a general spatial-dependent function
can be calculated straightforwardly by performing a convolution [73]. Furthermore,
we define the polarization coefficient PA = (A0,↑(0)− A0,↓(0))/(A0,↑(0) + A0,↓(0))
such that A0,↑↓(t) = A0(t)(1± PA), where A0(t) corresponds to the spin-averaged
excitation profile.

Using Fourier transformation, we switch from the time domain to the frequency



5.2 Toy model for laser-induced hot electron dynamics 119

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

d/λ

f j(
d/
λ)

Figure 5.2: The function f j(d/λ), which describes the spatial decay of the hot electron spin
current, plotted as a function of the normalized thickness d/λ (black solid line). The function
is compared to the exponent of −2d/λ, represented by the dashed black line.

domain, which simplifies the following calculations because convolutions now cor-
respond to a multiplication. We are interested in the dynamics in the region z ≥ 0,
where the solution to Eq. (5.1) is given by

n↑↓(z, v, ω) =
A0(ω)(1± PA)

v
exp

(
− z

vτ↑↓
(1 + iωτ↑↓)

)
θ(v). (5.2)

The Heaviside theta function θ(v) makes sure that the solution does not diverge in
the limit z→ ∞, meaning that only right-moving electrons are present. We assume
that all hot electrons move in a random (positive) direction with a fixed speed v↑↓.
The number density of the electrons can then be written as

n↑↓(z, ω) =
A0(ω)(1± PA)

v↑↓
fn

[ z(1 + iωτ↑↓)

λ↑↓

]
, (5.3)

where the function fn(x) results from a surface integral over a positive hemisphere
with radius v↑↓ and we used λ↑↓ = v↑↓τ↑↓. The proper normalization factors are
defined within A0(ω). Similarly, the current densities can be expressed as

j↑↓(z, ω) = A0(ω)(1± PA) f j

[ z
λ↑↓

(1 + iωτ↑↓)
]
. (5.4)

Since the solutions follow from the Boltzmann equation, the functions fn(x) and
f j(x) satisfy f ′j (x) = − fn(x). The function f j(x) is plotted in Fig. 5.2, showing its
similarity with exponential decay. Keeping the latter in mind, the inverse Fourier
transform of Eq. (5.4) approximately corresponds to an exponential decay with
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length scale λ↑↓/2 and a phase shift 2z/v↑↓ compared to the temporal profile of
the laser pulse.

Although we focus on a magnetic heterostructure in the following paragraphs, we
assume for hot electron transport that the system is homogeneous, since we aim for
a simple toy model. The hot electron current at the interface of the heterostructure
is simply assumed to be equal to Eq. (5.4) being evaluated at z = d, where d is
the thickness of the (imaginary) ferromagnetic layer (see Fig. 5.1(d) for a schematic
overview). Moreover, in the following calculation we need the spatial average of
n↑↓(z, ω) over the domain (0, d], notated simply as n↑↓(ω), which is given by

n↑↓(ω) =
A0(ω)(1± PA)

v↑↓

1
1 + iωτ↑↓

λ↑↓
d

(5.5)

×
(

1− f j

[ z
λ↑↓

(1 + iωτ↑↓)
])

,

using the relation between fn(x) and f j(x). For convenience, we define one more
function that will become relevant in the second part of this chapter

F±(ω) = ±(1 + PA)

1− f j

[ d
λ↑

(1 + iωτ↑)
]

1 + iωτ↑

+(1− PA)

1− f j

[ d
λ↓

(1 + iωτ↓)
]

1 + iωτ↓
, (5.6)

where depending on the sign (±), the factor F±(ω) represents phenomena related
to the charge (+) or spin degree of freedom (−). For instance, F+(ω) determines the
total amount of hot electrons that decay within distance d and appears in the de-
scription for the local heating process (Sec. 5.3). Furthermore, F−(ω) will determine
the contribution to the hot electron spin current resulting from the spin-dependent
decay rates (Sec. 5.4). We now have all ingredients to calculate the distinct contri-
butions to the spin current, and to investigate the response of the thermal system
to the hot electron dynamics.
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5.3 Spin pumping mediated by local heating

In this section, we calculate the spin current that arises in the thermal electron bath
and we express it in terms of the characteristic functions for the hot electron dynam-
ics. The method can be separated into three steps. (i) The interfacial spin current
within the thermal electron system is expressed in terms of the electron-magnon
scattering rate. (ii) The scattering rate is parametrized by an electron temperature
and a magnon temperature. (iii) The magnon temperature is eliminated and the
electron temperature is expressed in terms of the hot electron functions defined in
the previous section (such as F+(ω) from Eq. (5.6)). Combining these three steps
yields a simple expression for the thermal spin current that can directly be com-
pared to the hot electron contribution.

Hence, the starting point is to express the interfacial spin current in terms of the
bulk electron-magnon scattering rate. To find a simple description, we assume that
the ferromagnetic system is much thinner than the spin-diffusion length, having
d � λsf.2 Then by approximation, the spin density in the thermal electron sys-
tem is parametrized by a spatial homogeneous spin accumulation µs. From the
conservation of spin in the combined system, we write down the equation for the
out-of-equilibrium spin density δnt,s of the thermalized electrons. In the frequency
domain it is given by [36, 135]

iωδnt,s(ω) +
jt,s(ω)

d
= −2Isd(ω)− 2PA A0(ω) (5.7)

+
n↑(ω)

τ↑
−

n↓(ω)

τ↓
− δnt,s(ω)

τs
,

where jt,s(ω) is the interfacial spin current generated in the thermal electron system.
On the right-hand side, Isd is determined by the rate of spin transfer per unit volume
driven by electron-magnon scattering [36, 117], and was discussed in Chapter 4. The
term proportional to PA corresponds to the spin-dependent excitation of electrons
which are transferred to the hot electron system. Moreover, the terms proportional
to τ−1

↑↓ result from the decay of the hot electrons. In combination with the previous
term (proportional to PA), the latter will generate an additional spin current that
will partially compensate the hot electron contribution. This ‘backflow’ spin current

2It should be noted that we keep the spin-flip scattering rate τs fixed, meaning that the limit d �
λsf actually corresponds to assuming a very large conductivity. The expressions presented here are
equivalent to the similar calculation in Section 4.3.3 for d� λsf.
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will be discussed below. Finally, the last term on the right-hand side of Eq. (5.7)
corresponds to the additional channels of spin-flip scattering with corresponding
timescale τs [36].

The out-of-equilibrium spin density is proportional to the spin accumulation δnt,s =

ν̃Fµs, where ν̃F is the spin-averaged density of states evaluated at the Fermi energy.
Analogously, the interfacial spin current carried by the thermal electrons is written
as jt,s(ω) = (g/h̄)µs(ω), where g is a conductance for the spin current. Here, it is
assumed that the neighboring nonmagnetic material is a good spin sink. By solving
Eq. (5.7) for µs, and using the expressions for n↑(ω) and n↓(ω) as given in Eq. (5.5),
the interfacial spin current becomes

jt,s(ω) =
(−2d)Isd

1 +
τg

τs
(1 + iωτs)

− 2PA A0(ω) + A0(ω)F−(ω)

1 +
τg

τs
(1 + iωτs)

, (5.8)

where the timescale τg is defined as τ−1
g = g/(h̄ν̃Fd) and determines the efficiency

of the spin transfer into the nonmagnetic layer. This timescale is treated as an
effective parameter to compensate for the fact that (diffusive) spin transport in the
bulk is assumed to be instantaneous, as a result of the condition d� λsf.

The first term in Eq. (5.8) corresponds to the spin current driven by the electron-
magnon scattering in the bulk (spin pumping) [36, 72], and indirectly results from
the local heating process. The second term is generated because the spin-dependent
excitation and decay of hot electrons affect the net spin density in the thermal sys-
tem, and corresponds to the previously mentioned backflow spin current. Although
the latter is directly related to the hot electron dynamics, it should still be consid-
ered as a spin current contribution carried by thermal electrons.

To get an analytical expression for the thermal spin current in terms of the excita-
tion profile A0(ω), we have to find a simplified description for the electron-magnon
scattering rate. In order to do so, we first calculate the dynamics of the electron tem-
perature. In the frequency domain the change of the (spatially-averaged) electron
temperature δTe(ω) satisfies an equation of the form

iωδTe(ω) =
∆E
Ce

(
n↑(ω)

τ↑
+

n↓(ω)

τ↓

)
− δTe(ω)

τe
, (5.9)

where the factor proportional to τ−1
e is introduced phenomenologically and in-
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cludes all processes that drive heat out of the electron system in the ferromagnetic
region (including heat lost at the interface). Furthermore, Ce is the electronic spe-
cific heat and ∆E is the photon energy of the laser pulse. It follows that the elevated
electron temperature δTe(ω) can be expressed as

δTe(ω) =
τe A0(ω)∆E

dCe(1 + iωτe)
F+(ω). (5.10)

To calculate the spin current that results from the increase of the electron tem-
perature, we have to determine the electron-magnon scattering rate Isd. We take
a simplified approach and assume that the density of magnons that is generated
is given by δnd(ω) = Cn,TδTm(ω), where δTm(ω) is the Fourier transform of the
change of the magnon temperature and the coefficient Cn,T is given in Chapter 4
(Table 4.1 on page 92). The rate at which magnons are generated is given by

iωCnδTm(ω) = Isd(ω) =
Cn,T

τm
(δTe(ω)− δTm(ω)), (5.11)

where the electron-magnon scattering rate is expressed in terms of the difference
in magnon temperature and electron temperature, and is proportional to a corre-
sponding (demagnetization) timescale τm. Combining Eq. (5.10) and Eq. (5.11) gives
a closed expression for the electron-magnon scattering rate in terms of the functions
that depend on the hot electron system. This yields

Isd(ω) =
Cn,T∆E

Ce

(iωτe)A0(ω)F+(ω)

d(1 + iωτe)(1 + iωτm)
. (5.12)

Physically, the product describes the consecutive processes of heating the thermal
electrons through the energy retrieved from decaying hot electrons (described by
F+(ω)), and the subsequent generation of thermal magnons by an increase of the
temperature. By substituting the expression for Isd(ω) in Eq. (5.8), the spin current
driven by electron-magnon scattering can be expressed in terms of the functions
that describe the hot electron dynamics.
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5.4 Comparison of the hot and thermal spin currents

In this section, we directly compare the distinct contributions to the interfacial spin
current. First, the total interfacial spin current is written as

jtot
s (ω) = jh,s(ω) + jsd

t,s(ω) + jback
t,s (ω), (5.13)

where jh,s corresponds to the direct spin current carried by hot electrons and jsd
t,s

corresponds to the thermal contribution driven by spin pumping. The spin current
jback
t,s is equal to the second term on the right-hand side of Eq. (5.8), named after that

it drives a backflow that partially compensates the hot electron contribution.

To derive a simple relation that parametrizes the ratio between the different contri-
butions to the spin current, we make the following assumptions. First, we assume
that the ferromagnetic layer is very thin such that τg satisfies τgω � 1. Similarly, we
assume that the decay rate of the hot electrons is very fast τ↑↓ω � 1. This means
that we model a laser pulse that has a duration σ� τg, τ↑↓. In that scenario we find

jh,s(ω) = 2PA A0(ω) + A0(ω)F−(0), (5.14)

jsd
t,s(ω) =

−2Cn,T∆E
Ce
(
1 + τg/τs

) (iωτe)A0(ω)F+(0)
(1 + iωτe)(1 + iωτm)

, (5.15)

jback
t,s (ω) = −2PA A0(ω) + A0(ω)F−(0)

1 + τg/τs
. (5.16)

Importantly, it shows that jback
t,s is directly proportional to the hot electron contribu-

tion and has an opposite sign. To explicitly calculate the spin currents in the time
domain we assume the following temporal profile of the laser pulse

A0(t) =
P0d

∆E(σ
√

π)
exp

(
−t2/σ2

)
, (5.17)

where σ is the pulse duration, P0 plays the role of an absorbed laser pulse energy
density, and ∆E is the photon energy. Inverse Fourier transforming Eqs. (5.14)-
(5.16) (and for Eq. (5.15) performing a convolution in the time domain) yields the
temporal profiles of the distinct spin current contributions. Figure 5.4(a) shows the
resulting interfacial spin current as a function of time after laser-pulse excitation
at t = 0. The used system parameters are presented in Table 5.1, which represent
a typical magnetic heterostructure consisting of transition metal ferromagnet and
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Figure 5.3: The effective polarization function Peff (discussed below Eq. (5.18)) as a function
of the polarization of the decay lengths Pλ and the polarization of the excitation PA.

a nonmagnetic metal that is a good spin sink (such as Pt). In the figure, the gray
line indicates the total spin current and the blue line shows the contribution by spin
pumping. Furthermore, the red line represents the hot electron spin current and
the dashed blue line the backflow spin current. The figure shows that for the used
parameters the total spin current is dominated by the spin pumping contribution.
The amplitude of the latter is approximately a factor ∼ 5 times larger than the hot
electron contribution. Moreover, including the backflow spin current yields that the
hot electron spin current is almost completely compensated.

To further investigate the role of the several contributions to spin transport, it is
convenient to calculate the ratio between jsd

t,s and jh,s from Eq. (5.14) and Eq. (5.15).
We define η as

max(|jsd
t,s |)

max(|jh,s|)
≡ η ∝

Cn,T∆E

Ce

(
1 + τg/τs

)[ −F+(0)
2PA + F−(0)

]
. (5.18)

Note that the exact ratio of the amplitudes also includes an additional prefactor
determined by σ, τe and τm (not included in Eq. (5.18)). As is shown in Appendix
5.A, this additional factor typically scales as σ/τm, which in our example is of the
order of one. The term between square brackets, on the right-hand side of Eq.
(5.18), plays the role of an effective polarization Peff of the hot electron current, and
is determined by PA and Pλ = (λ↑ − λ↓)/(λ↑ + λ↓). This Peff is plotted in Fig. 5.3
as a function of PA and Pλ, for d/λ = 0.3 with λ = (λ↑ + λ↓)/2. Peff is shown to
be a monotonic function of PA and Pλ, which explains why it is interpreted as an
effective polarization.
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To express the ratio η in terms of fundamental parameters, we use that for a free
electron gas the specific heat scales as Ce ∼ kB(T/TF)/a3 [108], where a is the lattice
constant and TF is the Fermi temperature. Furthermore, the magnon density coeffi-
cient Cn,T scales as Cn,T ∼ (kBT)1/2 A−3/2kB [135], where the spin-wave stiffness is
proportional to the Curie temperature A ∼ kBTCa2. By implementing the numerical
prefactors (including multiple factors of π) we estimate the order of magnitude of
η and determine the crucial scaling factors

η ≈
[

2 ∗ 10−2

(−Peff)

1
1 + τg/τs

](
∆E
kBT

)(
TF
TC

)√
T
TC

. (5.19)

Although the factor between square brackets yields a number much smaller than
one, this number is largely compensated by the remaining factors. Specifically,
for a transition metal ferromagnet the Fermi temperature and Curie temperature
typically differ an order of magnitude (TF/TC) ∼ 10. Furthermore, for a ∆E of
the order of electronvolts and a temperature close to room temperature we find the
range ∆E/(kBT) ∼ 102-103. Altogether, this implies that the contribution by spin
pumping is generally large compared to the contribution by hot electron transport.
In case the backflow is taken into account, the partial compensation of the hot
electron spin current would lead to a change in the prefactor (1+ τg/τs)−1 → τs/τg,
resulting in an even larger η for τs > τg.

5.5 The role of spin-polarized screening currents

Finally, we discuss the role of spin-polarized screening. It is generally assumed
that screening of the charge degree of freedom happens on an extremely short
timescale [71]. This corresponds to the approximation in the model that the system
remains locally charge neutral and that the total charge current of the hot and
thermal electrons is zero at all times. In the case of charge transport in the thermal
electron system, the efficient screening approximation was already implemented
throughout the previous sections (and chapters) and was briefly discussed in Sec.
2.6.1 when introducing spin diffusion. Additionally, in this chapter, we have the
excited hot electrons that carry a nonzero charge current for which we analogously
assume it is effectively screened through transport in the thermal electron system.
Within the ferromagnetic region this results in an extra contribution to the spin
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Figure 5.4: The interfacial spin current as a function of time after laser-pulse excitation. The
gray line indicates the total spin current. Furthermore, the blue line indicates the contribution
driven by electron-magnon scattering and the red line shows the hot electron spin current.
Finally, the dashed blue line corresponds to the backflow current, as defined in the main text.
(b) Similar calculation as (a), but now including a spin-polarized screening current indicated
by the yellow line. (c) The contributions (indirectly) related to hot electron dynamics are
multiplied by a factor of four to visually clarify the role of each contribution and to show the
change of the total spin current (gray).

current since the present screening currents are subject to spin-dependent transport
coefficients. Implementing spin-polarized screening currents within the toy model
yields the following extension. First, charge neutrality requires the spin density of
the thermalized system to satisfy

δns = ν̃Fµs − Pν(n↑ + n↓), (5.20)

where Pν = (ν↑ − ν↓)/(ν↑ + ν↓) corresponds to the polarization of the density
of states at the Fermi energy. Secondly, the absence of a net charge current
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requires that

jt,s =
g
h̄

µs − Pg(j↑ + j↓), (5.21)

where we defined Pg = (g↑ − g↓)/(g↑ + g↓). The conductance we used previously
is given by the spin-averaged conductance g = 2g↑g↓/(g↑ + g↓). Implementing
this within the previous scheme for the thermal electron system yields an extra
contribution to the spin current

jscr.
s,t (ω) = −Pg(j↑(ω) + j↓(ω))

(τg/τs)

1 + (τg/τs)
. (5.22)

This is the spin-polarized screening current. Here, the term proportional to Pν van-
ished due to the limit ωτ↑↓ � 1. The spin-polarized screening current is calculated
for Pg = 0.2 and represented by the yellow curve in Fig. 5.4(b). Depending on the
sign of Pg this contribution to the spin current either enhances or partially compen-
sates the hot electron contribution. For illustrative purposes, Fig. 5.4(b) includes all
other contributions to the spin current.

Additionally, we included Fig. 5.4(c). Here, we multiplied all terms (indirectly)
related to the hot electron dynamics by a factor of four to emphasize the role of each
separate contribution and to show the change of the total spin current (in gray). The
figure emphasizes that in the case that the hot electron spin current is enhanced, for
instance when taking into account multiple generations of hot electrons, the total
spin current is significantly modified. Nevertheless, for the parameters used here,
the spin current driven by spin pumping remains the dominant contribution.

5.6 Conclusion and outlook

In conclusion, using a single simplified analytical model, we investigated the role
of spin-polarized hot electron transport and spin transport driven by spin pump-
ing in laser-excited magnetic heterostructures. This toy model yields that the spin
current at the interface of the heterostructure is dominated by the thermal contri-
bution initiated by local heating and subsequent spin pumping. We calculated the
scaling factors that determine the ratio between the two contributions. As the lat-
ter depends on the fundamental parameters that describe the magnon system and
thermal electron system, it could be expressed in terms of the Curie temperature,



5.6 Conclusion and outlook 129

Fermi temperature, and laser-photon energy. This fundamental relation yields that
the spin current driven by spin pumping is generally a significant contribution, and
is dominant for the systems considered here.

An interesting extension to the toy model would be to implement multiple genera-
tions of hot electrons and calculate the resulting enhancement of the spin current.
In that way, one reaches a description similar to the model for superdiffusive spin
transport [39, 73]. Additionally, it would be interesting to implement the conceptual
spin-polarized screening currents within the superdiffusive approach. Moreover,
spin transport by thermal magnons and interfacial electron-magnon scattering pro-
cesses are required to be investigated within this scheme [36, 135]. Nevertheless,
it is expected that those extensions leave the presented scaling factors intact and
spin pumping through local heating remains a dominant channel for spin-current
generation.
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Figure 5.5: (a) Function J(t) (solid black line) corresponds to the convolution of a Gaussian
(dashed gray line) and the function G(t) in the text. (b) The maximum of J(t) plotted as a
function of τm, compared to the function σ/τm.

5.A Notes on the spin current driven by spin pumping

In this appendix, we present some details regarding the temporal profile of the spin
current induced by spin pumping. To calculate jsd

t,s , we have to perform an inverse
Fourier transformation of the right-hand side of Eq. (5.15), including the function

G(ω) =
iωτe

(1 + iωτe)(1 + iωτm)
. (5.23)

Disregarding the factors of 2π (which in the end all vanish), the function in the time
domain is given by

G(t) =
τe

τe − τm

(
e−t/τm

τm
− e−t/τe

τe

)
θ(t). (5.24)

The spin current is calculated by performing a convolution between G(t) and the
temporal profile of the laser pulse. To determine the scaling factor arising from this
convolution we calculate

J(t) =
∫

dt′G(t− t′) exp
(
− t′2

σ2

)
. (5.25)

The extra scaling factor that should be added to Eq. (5.19) is given by the maximum
of J(t), as it corresponds to how much the (Gaussian) amplitude decreases after the
convolution with G(t) is performed. J(t) is plotted in Fig. 5.5(a), together with the
temporal profile of the Gaussian pulse. Here we used the values for σ, τm and τe
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Table 5.1: Parameters used in the calculations presented in the main text. The chosen values
represent a typical magnetic heterostructure consisting of transition metal ferromagnet and
a nonmagnetic metal similar to Pt.

symbol value units

γ = Ce/Tamb [59] 1077 Jm−3K−2

Tamb 300 K
∆E 1 eV
P0 0.2 · 108 Jm−3

σ 0.1 ps
A a 400 meVÅ2

d 3 nm
λ b 10 nm
PA

c −0.2
Pλ

c −0.2
τe [23] 0.45 ps
τm [23] 0.15 ps
τs [72] 0.1 ps
τg

d 0.05 ps

aUsed to calculate Cn,T as given in Chapter 4.
bFrom a decay rate of 10 fs and a Fermi velocity of 1 nm fs−1.
cA minus sign is present since we defined the spin down electrons as the majority spin population.
dEstimated using the values for g (Ni/Pt) and ν̃F (Ni) from Chapter 4.

as given in Table 5.1. In the range 0.1 ps < τm ≤ 1 ps, which is the typical order
of magnitude for the demagnetization time of a ferromagnetic transition metal, the
amplitude scales as σ/τm, as was mentioned in the main text. The ratio σ/τm is
indicated by the dashed gray line in Fig. 5.5(b). Finally, we note that Table 5.1
presents the parameters used in the calculations.





6
Comparing all-optical switching in

synthetic-ferrimagnetic multilayers and

alloys

We present an experimental and theoretical investigation of all-optical switching by single
femtosecond laser pulses. Our experimental results demonstrate that, unlike rare earth-
transition metal ferrimagnetic alloys, Pt/Co/[Ni/Co]N/Gd can be switched in the absence
of a magnetization compensation temperature, indicative for strikingly different switching
conditions. In order to understand the underlying mechanism, we model the laser-induced
magnetization dynamics in Co/Gd bilayers and GdCo alloys on an equal footing, using an
extension of the microscopic three-temperature model to multiple magnetic sublattices and
including exchange scattering. In agreement with our experimental observations, the model
shows that Co/Gd bilayers can be switched for a thickness of the Co layer far away from
compensating the total Co and Gd magnetic moment. We identify the switching mechanism
in Co/Gd bilayers as a front of reversed Co magnetization that nucleates near the Co/Gd
interface and propagates through the Co layer driven by exchange scattering.1

1This chapter has been published in Physical Review B [127]. The experiments were performed by
M.L.M. Lalieu [150].
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6.1 Introduction

Femtosecond laser pulses provide a unique tool to manipulate magnetic order on
ultrashort timescales. A prime example of this is all-optical switching (AOS) of
magnetization by a single pulse, as first observed in ferrimagnetic GdFeCo alloys
using circularly polarized laser pulses [10]. Later, AOS was demonstrated in the
same material by using a single linearly polarized laser pulse [11, 12], which indi-
cated that GdFeCo can be switched with ultrafast heating as the only stimulus.

Deterministic AOS has a potential to be used in future magnetic memory devices,
offering an ultrafast and energy-efficient way to write data. Helicity-dependent
AOS by circularly polarized pulses has been demonstrated in a wide variety of
materials [92, 151, 152]. However, in those cases the switch follows from a multiple-
pulse mechanism. Purely thermal single-pulse AOS was only observed in a lim-
ited number of materials systems, all including rare earth (Gd)-transition metal
alloys [11, 12, 93, 153]. Very recently, it was also demonstrated for the synthetic-
ferrimagnetic layered structure [89], which allows for easy spintronic integration
[99]. The fact that single-pulse AOS is observed in both ferrimagnetic alloys and
synthetic-ferrimagnetic multilayers raises the questions to what extent the switch-
ing of these materials systems relies on the same physics, and what the specific
conditions are for switching these materials systems.

In this chapter, we show that the conditions for single-pulse AOS in alloys (GdCo)
and synthetic ferrimagnets (Co/Gd bilayers) are strikingly different. We experi-
mentally demonstrate that single-pulse AOS in synthetic-ferrimagnetic Pt/FM/Gd
is very robust, and can be achieved for a large range of the ferromagnetic (FM) layer
thickness. The experiments indicate that the Pt/FM/Gd stacks can be switched in
the absence of a compensation temperature. In contrast, for alloys it is believed that
it is crucial to have a compensation temperature near ambient temperature, such
that the magnetization of the sublattices is compensated significantly [93, 94].

We performed simulations in order to understand this contrasting behavior and
to identify the underlying mechanisms. The general theoretical framework for
AOS describes the dynamics of multiple magnetic sublattices which are coupled
antiferromagnetically. The intersublattice exchange coupling plays a crucial role,
transferring angular momentum between the sublattices [76]. Different approaches
have been made to describe the spin dynamics of the magnetic sublattices, e.g.,
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the atomistic Landau-Lifshitz-Gilbert equation [79, 81, 83–85] and the microscopic
three-temperature model (M3TM) [18, 78]. Here, we use the latter microscopic de-
scription, in which it is assumed that angular momentum transfer between the sub-
lattices is mediated by exchange scattering [78]. We derive an analytical expression
for the magnetization dynamics resulting from the exchange scattering between (i)
the sublattices in a GdCo alloy and (ii) the atomic monolayers in a Co/Gd bilayer.
The model reproduces the distinct role of the compensation temperature. More-
over, it shows that the robustness of AOS in the Co/Gd bilayers can be explained
by the nonlocal character of the switching mechanism, which we identify as a front
of reversed Co magnetization that propagates away from the interface.

This chapter starts with a brief description of the experimental methods and re-
sults. After that, the theoretical framework will be introduced. For the sake of
direct comparison, we focus our theoretical discussion on the magnetization dy-
namics in GdCo alloys and Co/Gd bilayers. We present phase diagrams that show
qualitatively the switching conditions and point out the differences for both mate-
rials systems. Finally, the typical switching mechanism of the bilayers is explained
explicitly.

6.2 Threshold fluence as a function of layer thickness

The experiments are performed using Si:B(substrate)/Ta(4)/Pt(4)/FM/Gd(3)/Pt(2)
stacks (thickness in nm), which are deposited at room temperature using dc mag-
netron sputtering at 10−8 mbar base pressure. Here, Co(0.2)/[Ni(0.6)/Co(0.2)]N

multilayers are used for the FM layer, with N repeats ranging from N = 2 to 5.
Using polar magneto-optical Kerr effect measurements, a square hysteresis loop
with 100% remanence was obtained for all samples, confirming the presence of a
well-defined perpendicular magnetic anisotropy in the samples.

The response of the magnetization in the Pt/FM/Gd stacks to laser-pulse excitation
was investigated using linearly polarized laser pulses with a central wavelength of
700 nm and a pulse duration of ≈ 100 fs. The measurements are performed at room
temperature, and start by saturating the magnetization using an externally applied
field. Then, the external field is turned off, and the sample is exposed to single
laser pulses with varying pulse energies. The response of the magnetization to the
laser-pulse excitation is measured in the steady state (i.e., long after the excitation)



136 Comparing all-optical switching in. . .

57 nJ 97 nJ 179 nJ

48 nJ 81 nJ 145 nJ

42 nJ 67 nJ 118 nJ

(b)(a)

●

●

●

●

1 2 3 4 5
0

2

4

6

8

10

FM layer thickness (nm)

T
hr

es
ho

ld
flu

en
ce
(m

J/
cm

2
)

Figure 6.1: (a) Threshold fluence as a function of the FM layer thickness in a
Pt/FM/Gd stack. The black dots are measured using an FM layer composed of
Co(0.2)/[Ni(0.6)/Co(0.2)]N multilayers for N = 2, 3, 4, 5. The error margins are small com-
pared to the scale of the figure. (b) A Kerr microscope image of the (initially saturated)
Co/Ni sample with N = 3 after excitation with single linearly polarized laser pulses with
different pulse energies.

using a magneto-optical Kerr microscope.

A typical result of the AOS measurement for the sample with N = 3 is presented
in Fig. 6.1(b). The figure displays the Kerr image of the (initially saturated, dark)
sample after excitation with single linearly polarized laser pulses with different
pulse energies. The figure shows clear homogeneous domains with an opposite
magnetization direction (light) being written by the laser pulses. Moreover, the
domain size increases for increasing pulse energy, as is expected when using a
Gaussian pulse shape. For the highest pulse energies a multidomain state is formed
in the center region of the domain, where the lattice is heated above the Curie
temperature [154].

The AOS-written domain size as a function of the pulse energy can be used to deter-
mine the threshold fluence [89, 155]. Figure 6.1(a) displays the threshold fluence as
a function of the (total) thickness of the Co(0.2)/[Ni(0.6)/Co(0.2)]N multilayer. The
results show that decreasing the thickness of the FM layer leads to a lower threshold
fluence. This behavior is reproduced in the model calculations that are presented
later. It can be partially explained by a decrease in the Curie temperature with film
thickness in the thin-film limit, but it will be shown that also other processes are
involved.

Remarkably, single-pulse AOS is seen for up to 5 repeats, corresponding to an FM
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layer thickness of 4.2 nm. For these relatively thick FM layers, the total magnetic
moment of the FM layer is much larger than the induced magnetic moment in the
Gd layer corresponding to approximately 1-2 atomic monolayers of fully saturated
Gd [89], i.e., the system is far from compensated. Hence, the experiment indicates
that the switching mechanism in the bilayers is independent of a possible com-
pensation temperature. To understand the underlying mechanism, we developed a
simplified model.

6.3 Modeling AOS in alloys and bilayers

In this section, we present the simplified model that is used to analogously describe
AOS in GdCo alloys and Co/Gd bilayers. In the case of alloys, the model was
introduced in Sec. 2.7.1. Here, we give an overview of the model for ferrimagnetic
alloys, and present the extension to synthetic-ferrimagnetic (Co/Gd) bilayers.

Analogous to Schellekens et al. [78], we assume that separate spin subsystems are
coupled to a single electron and phonon subsystem. Like in the basic M3TM [18],
the electrons are treated as a spinless free electron gas and the phonons are de-
scribed within the Debye model. It is assumed that both subsystems are internally
thermalized, and that the electron temperature Te and phonon temperature Tp are
homogeneous. The spin specific heat is neglected. Femtosecond laser heating is
modeled by adding an energy source to the electron subsystem. Heat diffusion to
the substrate is added to the phonon subsystem as an energy dissipation term with
timescale τD. The spin subsystems, labeled with index i, are treated within a Weiss
mean-field approach. At each lattice site Ds,i = µat,i/2Si spins are present, where
µat,i is the atomic magnetic moment (in units of the Bohr magneton µB) and Si is
the spin quantum number.

For the Gd1−xCox alloys, we define a normalized magnetization mi for each of
the two sublattices. As depicted in the inset of Fig. 6.2(a), the exchange field
experienced by each atom depends on the type of atom and the composition of its
nearest neighbors. Hence, the exchange splitting is given by

∆Co = xγCo-ComCo + (1− x)γCo-GdmGd, (6.1)

∆Gd = xγGd-ComCo + (1− x)γGd-GdmGd, (6.2)
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where we defined γij = jijzDs,jSj (i, j ∈ {Co,Gd}) in terms of the (intra- or intersub-
lattice) exchange coupling constant jij and the number of nearest neighbors z. Note
that jCo-Gd is negative and quantifies the strength of the antiferromagnetic coupling
between the Co and Gd sublattices.

For the Co/Gd bilayers, we introduce a normalized magnetization mi for each
atomic monolayer i separately. Each layer only interacts with its adjacent layers.
For simplicity, we assume that the separate layers lie in the (111) plane of an fcc
lattice. This means that each atom has 6 nearest neighbors in the same layer and 3
nearest neighbors in each adjacent layer. Thus, the exchange splitting of layer i is

∆i =
γi,i−1

4
mi−1 +

γi,i

2
mi +

γi,i+1

4
mi+1. (6.3)

Note that the antiferromagnetic coupling, proportional to jCo-Gd, is only experi-
enced by the layers adjacent to the interface (see inset Fig. 6.2(b)).

We include two channels for angular momentum transfer. Elliott-Yafet spin-flip
scattering mediates the transfer of angular momentum between the spin subsys-
tems and the lattice [23]. An extension of the M3TM, which accounts for spin
systems with arbitrary spin S, is derived to describe the resulting magnetization
dynamics [18, 56].2 Here, we take SCo = 1/2 and SGd = 7/2, for which the Weiss
model is well fitted to the experimental data for the magnetization as a function
of temperature [1, 156]. Angular momentum transfer between the different spin
subsystems is mediated by exchange scattering [78]. In this e-e scattering process,
spins originating from different subsystems are flipped in the opposite direction.
We use Fermi’s golden rule to find an analytical expression for the magnetization
dynamics resulting from the exchange scattering (see Chapter 2 Section 2.7.1). For
i 6= j we have

dmi
dt

∣∣∣∣
ex

=
2ηijCj

µat,i
T3

e

[ Si

∑
s=−Si+1

Sj−1

∑
s′=−Sj

W−+ij;ss′(∆i − ∆j) fi,s f j,s′ (6.4)

−
Si−1

∑
s=−Si

Sj

∑
s′=−Sj+1

W+−
ij;ss′(∆i − ∆j) fi,s f j,s′

]
.

The indices s and s′ correspond to the z component of the spin and label the discrete
energy levels. The average occupation of level s in spin subsystem i is given by fi,s,

2Presented in Chapter 2 Section 2.3.4.
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and ∆i −∆j is the energy difference between the initial and final spin configuration.
The dimensionless function W±∓ij;ss′ parametrizes the transition rate from level s to
s± 1 in subsystem i and level s′ to s′ ∓ 1 in subsystem j. The coordination number
Cj counts the relative number of nearest neighbors that are part of spin subsystem
j. For alloys Cj is given by CCo = 12x and CGd = 12(1− x). For bilayers we have
Cj = 3, the number of nearest neighbors in an adjacent layer. The constant ηij

is determined by the matrix element of the exchange scattering Hamiltonian (see
Section 2.7.1), for which we assume that it is proportional to the exchange coupling
constant. Hence, we write ηij ∝ λij j2ij , where λij is a dimensionless parameter. In
the following discussions, we assume that λij = λ = 5, which is chosen in order
to retrieve realistic results from the simulations (e.g., for λ = 1 no switching is
found). Results for different choices of λ and SGd are presented in the Supplemental
Material of Ref. [127](The publication corresponding to this chapter). Note that for
the bilayers, Eq. (6.4) should include terms for the interaction with both adjacent
layers, i.e., j = i + 1 and j = i − 1, and the full expression is given by the sum of
these two terms.

The temporal profile of the laser pulse is modeled by a Gaussian function P(t) =

(P0/(σ
√

π))Exp(−(t− t0)
2/σ2), where P0 is the absorbed laser pulse energy den-

sity and σ is the pulse duration, which is set to 50 fs. We assume that the laser
pulse heats up the system homogeneously, which is a valid approximation for the
systems we model, e.g. Co/Gd bilayers containing up to 20 Co atomic monolayers.
We note that for thicker systems the approximation becomes questionable, and a
finite penetration depth should be incorporated into the modeling.

The laser-induced dynamics of mi(t) is calculated numerically. We assume that
the spin subsystems are not necessarily in internal equilibrium, meaning that after
excitation the ratio between fi,s and fi,s±1 is not given by a Boltzmann distribution,
and we need to solve a set of 2Si + 1 coupled differential equations for each spin
subsystem i. The exact values for the material parameters, including the exchange
coupling constants jij, are listed in Appendix 6.A (on page 143).

Two phase diagrams are constructed that display the occurrence of AOS as a func-
tion of the laser pulse energy P0 and (i) the Co concentration x of a Gd1−xCox alloy,
(ii) the number of Co monolayers for a Co/Gd bilayer (the Co thickness). We as-
sume that the ambient temperature is equal to room temperature (Tamb = 295 K).
The result is shown in Fig. 6.2(a) and Fig. 6.2(b). The color scheme indicates
whether the magnetization of the Co is reversed after relaxation, which is deter-
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Figure 6.2: Phase diagram for AOS as a function of the laser pulse energy P0 and (a) Co
concentration x for a Gd1−xCox alloy, (b) the number of Co monolayers in a Co/Gd bi-
layer. The dark blue regions indicate a switch in the final state (c) and the white regions
indicate no switch (e)-(f). Light blue indicates a transient ferromagnetic state, but no switch
(d). The gray regions indicate that the phonon temperature Tp exceeds the Curie temper-
ature TC. The dashed line in figure (a) indicates the Co concentration xcomp for which the
compensation temperature is equal to room temperature. The insets in (a) and (b) schemat-
ically show the modeled system, including the exchange parameters. Figure (c)-(f) display
the element-specific magnetization dynamics in Gd1−xCox for different values for x and P0,
corresponding to the various regions in (a).

mined by calculating its sign at t = 100 ps. For the bilayers we take the average of
the magnetization of the Co monolayers. Figure 6.2(c)-(f) are presented to clarify the
meaning of the color scheme and show the corresponding element-specific magne-
tization dynamics for the alloys. In the phase diagrams, the dark blue regions
indicate that the Co magnetization is reversed, meaning that AOS has occurred
(Fig. 6.2(c)). The light blue regions indicate that there is a transient ferromagnetic
state created, but after relaxation the magnetization is switched back to its initial
direction (Fig. 6.2(d)). The white regions indicate that the magnetization relaxes
to its initial direction, without a transient ferromagnetic state (Fig. 6.2(e)-(f)). The
gray regions indicate that the maximum of the phonon temperature Tp exceeds the
Curie temperature. In the experiments, this would likely result in the creation of a
multidomain state [154].

The vertical dashed line in Fig. 6.2(a) indicates the compensation point xcomp ∼
0.77, the Co concentration for which the total magnetic moment of the alloy is
zero at room temperature. The dark blue region shows that the alloys can only be
switched in a limited range of the Co concentration, sufficiently close to the com-
pensation point. Furthermore, the minimum threshold fluence is found to be close
to the compensation point. These findings are in agreement with the experiments
[94]. From the phase diagram we can conclude that in order to switch the alloy, a
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Figure 6.3: Laser-induced magnetization dynamics of all atomic monolayers in a Co/Gd
bilayer consisting of 5 Co monolayers and 3 Gd monolayers for P0 = 55 · 108 Jm−3. The inset
shows the time at which the magnetization of each Co monolayer is reversed for a system
of 14 Co layers and 3 Gd layers for P0 = 65 · 108 Jm−3 (index 1 corresponds to the Co layer
adjacent to the interface).

significant magnetization compensation is necessary. Hence, the model yields that
the magnetization compensation temperature plays a crucial role in switching the
alloys.

A clear difference is found when we compare this to the situation for bilayers, Fig.
6.2(b). This phase diagram shows that the bilayers can be switched for a relatively
large number of Co monolayers, even though the threshold fluence increases as a
function of the number of Co monolayers. More specifically, even bilayers with 20
Co monolayers can be switched. For these bilayers, the ratio of the total Co and
Gd magnetic moment is µCo/µGd ∼ 4 (at Tamb = 295 K), which is significantly far
from compensation (µCo/µGd = 1). In contrast, for the alloys switching only occurs
in the range µCo/µGd ∼ 0.9 - 1.3. Note that for convenience we described the FM
layer as pure Co, whereas in the experiments Co/Ni multilayers are used. Including
the Co/Ni multilayers will not change the qualitative properties of the switching
mechanism. Hence, the model agrees well with our experimental observation that
shows single-pulse AOS in Pt/FM/Gd for relatively thick FM layers, and verifies
that the magnetization compensation temperature does not play a crucial role in
switching the synthetic ferrimagnets.

A more detailed analysis of the typical switching mechanism in the bilayers is pre-
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sented in Fig. 6.3, which shows AOS in a system of 5 Co monolayers and 3 Gd
monolayers. We plotted the normalized magnetization of the separate layers as a
function of time after laser pulse excitation (at t = 0). The inset displays the time
at which each Co monolayer reverses its magnetization direction, for a system of 14
Co layers and 3 Gd layers. The inset clearly shows that the Co layers are switched
consecutively, starting with the Co layers near the Co/Gd interface. Triggered by
the laser pulse, the switch is initiated near the interface due to exchange scatter-
ing between the adjacent Co and Gd monolayers. The dynamics of the first Co
monolayer (Index 1 in Fig. 6.3) is strongly modified by the exchange field from
the slowly demagnetizing Gd layer. Hence, the second Co monolayer is switched
first. Subsequently, the switch propagates throughout the Co layer driven by ex-
change scattering between neighboring Co monolayers. This successive switching
mechanism, with a front of reversed Co magnetization propagating away from the
interface, can succeed independently of the number of Co monolayers and explains
why the Co/Gd bilayer can be switched for a relatively large Co thickness.

6.4 Conclusion

To conclude, both the experiment and the theoretical model show that single-pulse
AOS switching in synthetic-ferrimagnetic bilayers is independent of a possible com-
pensation temperature, whereas in ferrimagnetic alloys the compensation tempera-
ture plays a crucial role. We identified the propagation of a switching front as the
characteristic mechanism for AOS in the bilayers. These new insights show that
single-pulse AOS in synthetic ferrimagnets is more robust than in ferrimagnetic al-
loys, and emphasize that Pt/FM/Gd synthetic ferrimagnets are a very promising
candidate for integration of single-pulse AOS in future data storage devices.
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6.A Used system parameters

In this appendix, we discuss some additional details regarding the parameters used
in the presented calculations, starting with the specification of the electron and
phonon system. For simplicity, we assume that the electronic and phononic prop-
erties of the system are fully determined by the majority compound, i.e. Co, and
described by a two-temperature model

γTe(t)
dTe(t)

dt
= gep(Tp(t)− Te(t)) + P(t), (6.5)

Cp
dTp

dt
= gep(Te(t)− Tp(t)) + Cp

Tamb − Tp(t)
τD

. (6.6)

where Tamb is the ambient temperature and τD is the timescale of the heat diffusion.
For the simulations we set Tamb = 295 K and τD = 20 ps. The other parameters for
the electronic and phononic system are listed in Table 6.1.

For the magnetic parameters of the system, e.g. jij and γij, we take the following
approximations. The intrasublattice exchange coupling should be chosen in such a
way that for pure Co or pure Gd the correct Curie temperature is retrieved from the
Weiss model. Hence, we should have that

γCo-Co =
3kBTC,Co

SCo + 1
, (6.7)

γGd-Gd =
3kBTC,Gd

SGd + 1
. (6.8)

The intrasublattice exchange coupling constants can then be found by using that

Table 6.1: Used parameters for the electron and phonon system [18].

symbol value

DF ( eV−1at−1) 3
Cp ( Jm−3K−1) 4 · 106

gep ( Jm−3K−1ps−1) 4.05 · 106

γ ( Jm−3K−2) 2.0 · 103

τD ( ps) 20
σ ( ps) 0.05



144 Comparing all-optical switching in. . .

γij = zjijDs,jSj . For z = 12 this leads to

jCo-Co =
3kBTC,Co

12(SCo + 1)(µat,Co/2)
, (6.9)

jGd-Gd =
3kBTC,Gd

12(SGd + 1)(µat,Gd/2)
. (6.10)

For the intersublattice exchange coupling constant jCo-Gd, we assume that the ratio
between jCo-Co and jCo-Gd is equal to the ratio used for Fe and Gd reported in [83].
This means that we use jCo-Coµ2

at,Co : jCo-Gdµat,Coµat,Gd ∼ −0.388. Hence, we write

jCo-Gd = −0.388× 3kBTC,Co

12(SCo + 1)(µat,Gd/2)
. (6.11)

From this, γCo-Gd and γGd-Co can be easily calculated by using the definition γij =

zjijDs,jSj. Note that γCo-Gd/γGd-Co = µat,Gd/µat,Co. This asymmetry is found to
be important in how small the concentration range for switching the alloys is. The
used magnetic system parameters are listed in Table 6.2.

6.B Notes on the zero crossing times

Figure 6.4 shows the time at which each separate Co monolayer is switched in a
system of 14 Co monolayers and 3 Gd monolayers after laser pulse excitation at
t = 0. It corresponds to the same system as the inset of Fig. 6.3. In contrast to
the main text, the calculation presented here corresponds to λCo-Co = λCo-Gd =

λGd-Gd = 5. We observe a clearly different behavior of the Co monolayer adjacent
to the interface compared to the results in the main text, which can be understood as
follows. In our theory, we only include nearest-neighbor interactions. Hence, only
the Co monolayer adjacent to the interface experiences an exchange field originating

Table 6.2: Magnetic parameters used in the calculations [1, 18].

symbol Co Gd

R (ps−1) 25.3 0.092
TC (K) 1388 292
µat (µB) 1.72 7.55
S 1/2 7/2
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Figure 6.4: The time at which each Co monolayer is reversed (zero crossings) as a function
of the Co layer index, in a system of 14 Co monolayers and 3 Gd monolayers. The figure
shows the same situation as the inset of Figure 3 in the main text. However, here we used
λCo-Co = λCo-Gd = λGd-Gd = 5.

from the Gd layer. This exchange field opposes the demagnetization of the inner Co
monolayer, eventually leading to a delayed demagnetization and switching of that
Co monolayer. Comparing Fig. 6.4 (λCo-Co = 5) with Fig. 6.3 from the main text
(λCo-Co = 1), clearly shows that increasing the exchange scattering rate ηCo-Co leads
to a faster switching mechanism (∼ 2 times as fast). This again emphasizes that the
exchange scattering between adjacent Co monolayers drives the switch throughout
the Co layer.





7
The role of intermixing in all-optical

switching of synthetic-ferrimagnetic

multilayers

We present a theoretical study of single-pulse all-optical switching (AOS) in synthetic-
ferrimagnetic multilayers. Specifically, we investigate the role of interface intermixing in
switching Co/Gd bilayers. We model the laser-induced magnetization dynamics in Co/Gd
bilayers using the microscopic three-temperature model for layered magnetic systems. Ex-
change scattering is included, which mediates angular momentum transfer between the
magnetic sublattices. In this chapter, each layer is represented by one atomic monolayer
of a GdCo alloy with an arbitrary Co concentration, allowing Co/Gd bilayers with an in-
termixed interface to be modeled. Our results indicate that within the model intermixing
of the Co/Gd interface reduces the threshold fluence for AOS significantly. We show that
intermixing does not qualitatively affect the switching mechanism and leads to an increase
of the propagation speed of the switching front. 1

1This chapter has been published in AIP Advances [157].

147



148 The role of intermixing in all-optical switching of . . .

7.1 Introduction

All-optical switching (AOS) refers to switching magnetization by femtosecond laser
pulses and was first observed in ferrimagnetic GdFeCo alloys [10–12]. Single-pulse
AOS has gained extensive attention due to the intriguing underlying physics and
its potential for ultrafast data-writing technologies. Recently, it was demonstrated
that not only alloys, but also Pt/Co/Gd stacks can be switched by the use of a
single linearly polarized laser pulse [89]. This synthetic-ferrimagnetic multilayer
has proven to be an ideal candidate for the integration of AOS in future magnetic
memory devices [99]. Moreover, it has been shown that AOS in Pt/FM/Gd is very
robust and can be achieved for a relatively large ferromagnetic (FM) layer thickness,
i.e., the switching mechanism in synthetic-ferrimagnetic multilayers is independent
of magnetization compensation (Chapter 6 and Ref. [127]).

The key ingredient of single-pulse AOS is that the material system contains mul-
tiple magnetic sublattices, coupled by an antiferromagnetic exchange interaction.
The exchange coupling drives the magnetization reversal by transferring angular
momentum between the sublattices [76]. This insight was corroborated by sim-
ulations using the atomistic Landau-Lifshitz-Gilbert equation [79, 81, 83–85]. An
alternative approach was derived by extending the microscopic three-temperature
model (M3TM) to multisublattice magnets [78]. The latter includes exchange scat-
tering as the mechanism for angular momentum transfer between the sublattices.
Very recently, we extended this model to describe single-pulse AOS in Co/Gd bilay-
ers (Chapter 6 and Ref. [127]). Based on the simulations, it was concluded that the
robustness of AOS in Pt/FM/Gd is caused by the nonlocal character of the switch-
ing mechanism. For example, the mechanism in Co/Gd bilayers can be understood
as a front of reversed Co magnetization that, after laser-pulse excitation, nucleates
at the Co/Gd interface and propagates through the Co layer driven by exchange
scattering. An important question is to what extent the properties of the Co/Gd
interface, e.g. the amount of intermixing, affect the switching mechanism within
the model.

In this chapter, we show that intermixing reduces the threshold fluence for AOS in
Co/Gd bilayers and leads to faster propagation of the switching front. We perform
simulations of AOS in Co/Gd bilayers including an intermixed interface. In order
to do this, we define each atomic monolayer in the Co/Gd bilayer as a GdCo alloy
with an arbitrary Co concentration. By choosing the appropriate Co concentration
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for each monolayer, a Co/Gd bilayer including an intermixed (alloyed) interface is
modeled. We use the M3TM including exchange scattering to describe the magne-
tization dynamics of the system [78, 127], which was discussed in Section 2.7.1 and
used in Chapter 6. We present phase diagrams that show the reduced threshold
fluence. Finally, we analyze the role of intermixing on the propagating switching
mechanism by calculating the switching times for the individual atomic monolay-
ers.

7.2 Modeling AOS of intermixed Co/Gd bilayers

In the first part of this section, we discuss how the layered M3TM, which was in-
troduced in Chapter 6, can be extended to describe synthetic-ferrimagnetic bilayers
with an intermixed interface. Before discussing the extension, we shortly summa-
rize the basic description.

To describe the system of interest, we introduce multiple spin subsystems that are
all coupled to a single electron and phonon system [78]. We consider the same ap-
proximations as the basic M3TM [18], where the electrons are described as a spinless
free electron gas and the phonons are treated within the Debye model. The electron
and phonon systems are internally thermalized and the electron temperature Te and
phonon temperature Tp are homogeneous. The spin specific heat is neglected. The
electron system contains an energy source term that represents the laser pulse. Heat
diffusion to the substrate is included in the phonon system as an energy dissipation
term. The spin subsystems are treated within a Weiss mean-field approach and all
compose a magnetic sublattice with at each lattice site Ds = µat/2S spins, where
µat is the atomic magnetic moment (in units of the Bohr magneton µB) and S is the
spin quantum number.

We consider a system of N atomic monolayers. Each layer i corresponds to a two-
dimensional Gd1−xi Coxi alloy with Co concentration xi. Hence, all the layers consist
of two magnetic sublattices, one for each compound. We define mCo,i and mGd,i as
the normalized magnetization of a specific magnetic sublattice in layer i (i ∈ [1, N]).
In the following, we only take into account nearest-neighbor interactions. First, we
introduce the bulk exchange splitting for a Gd1−xi Coxi alloy with Co concentration
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xi (see Chapter 6 or Ref. [127])

∆bulk
Co,i = xiγCo-ComCo,i + (1− xi)γCo-GdmGd,i, (7.1)

∆bulk
Gd,i = xiγGd-ComCo + (1− xi)γGd-GdmGd,i, (7.2)

where we defined γkl = jklzDs,lSl (k, l ∈ {Co,Gd}) in terms of the (intra- or inter-
sublattice) exchange coupling constant jkl and the number of nearest neighbors z.

To express the exchange splitting in the N layers of Gd1−xi Coxi , we assume that the
separate layers lie in the (111) plane of an fcc lattice. In that case, each atom has 6
nearest neighbors in the same layer and 3 nearest neighbors in each adjacent layer.
The exchange splitting for a specific compound in layer i is

∆Co,i =
1
4

∆bulk
Co,i−1 +

1
2

∆bulk
Co,i +

1
4

∆bulk
Co,i+1, (7.3)

∆Gd,i =
1
4

∆bulk
Gd,i−1 +

1
2

∆bulk
Gd,i +

1
4

∆bulk
Gd,i+1. (7.4)

Note that for a homogeneous system (i.e., xi = x for all i) the exchange splitting
reduces to the bulk value, Eqs. (7.1) and (7.2). For simplicity, we describe both the
Co and Gd by a S = 1/2 system. Hence, all the spin subsystems correspond to a
two-level system, split by the energy ∆Co,i or ∆Gd,i. We note that the model can be
easily extended to S = 7/2 for Gd, as was shown in Chapter 6.

In our model, the dynamics of the magnetic sublattices is driven by two interac-
tions. First, Elliott-Yafet spin-flip scattering results in angular momentum transfer
between the magnetic sublattices and the phonon system. The basic M3TM is used
to describe the resulting magnetization dynamics [18]. Secondly, we include ex-
change scattering, which corresponds to electron-electron scattering with an oppos-
ing spin flip. Exchange scattering mediates angular momentum transfer between
the different magnetic sublattices. The resulting magnetization dynamics is derived
from Fermi’s golden rule, using the exact same procedure as reported in Chapter 6.

The result is a system of coupled differential equations, which expresses dmk,i/dt
for all compounds k and layers i. Each equation will contain terms for the an-
gular momentum transfer (by exchange scattering) between (i) the two different
compounds in the same layer, (ii) two different compounds in adjacent layers, and
(iii) the same compound in adjacent layers. These terms will implicitly depend on
the Co concentration of each layer via the coordination number, i.e., the number of
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Figure 7.1: Phase diagrams for AOS as a function of the laser pulse energy P0 and the
number of Co monolayers NCo in a Co/Gd bilayer. Figure (a) shows the phase diagram
for an ideal Co/Gd bilayer, without intermixing at the Co/Gd interface (see inset Fig. (a)).
Figure (b) shows the phase diagram for Co/Gd bilayers including intermixing, modeled by
replacing the two layers adjacent to the interface with two layers of Gd0.5Co0.5 (see inset Fig.
(b)). Figure (c) shows a similar phase diagram, but now the intermixing region is extended
to four layers (see inset Fig. (c)). The blue regions indicate a switch in the final state and the
white regions indicate no switch. Gray indicates that the phonon temperature Tp exceeds the
Curie temperature TC. The insets in (a)-(c) schematically show the modeled system. Figures
(d) and (e) show the normalized magnetization of the Co and Gd layer as a function of time,
in the case of switching (d) and no switching (e).

nearest neighbors of a specific compound and layer. The latter involves the same
counting procedure as the derivation of the exchange splitting in Eqs. (7.3) and
(7.4). Furthermore, all the exchange scattering terms depend on the correspond-
ing matrix element of the exchange scattering Hamiltonian and the probability of
an electron-electron scattering event to occur. For the mathematical description of
these terms and a detailed discussion about the system parameters, we refer to
Chapter 6 or Ref. [127].

The normalized magnetization mk,i(t) is calculated by solving the system of coupled
differential equations numerically. In these simulations, the temporal profile of the
laser pulse is given by P(t) = (P0/(π

√
σ))Exp(−(t− t0)

2/σ2), where P0 is the laser
pulse energy density and σ is the pulse duration, which is set to 50 fs. Furthermore,
the ambient temperature Tamb is set to 295 K.

We construct three phase diagrams that display the occurrence of AOS in Co/Gd
bilayers as a function of the laser pulse energy P0 and the number of Co mono-
layers NCo. Figure 7.1(a) shows the phase diagram for an ideal Co/Gd bilayer,
without intermixing of the Co/Gd interface. Figure 7.1(b) displays the phase di-
agram for an intermixed Co/Gd interface, described by replacing the two layers
adjacent to the interface with a Gd0.5Co0.5 alloy. In Fig. 7.1(c), the intermixing re-
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gion is further extended to four layers of Gd0.5Co0.5. Note that the definition of NCo

is unchanged (see insets Figs. 7.1(a)-(c)). The color scheme indicates whether the
average magnetization of the Co layers is reversed after relaxation, which is deter-
mined by calculating its sign at t = 100 ps. Figures 7.1(d)-(e) show the dynamics
of the normalized magnetization for an ideal Co/Gd bilayer, and are presented to
clarify the color scheme of the phase diagrams. The blue regions indicate that AOS
has occurred successfully, i.e., the magnetization is reversed (Fig. 7.1(d)). The white
regions indicate that AOS has not occurred and the magnetization remained in its
initial direction (Fig. 7.1(e)). The gray regions correspond to the situation where the
phonon temperature Tp has exceeded the Curie temperature TC. In the experiments
this would likely result in the creation of a multidomain state [154].

Figure 7.1(a) clearly shows, as was discussed in Chapter 6, that the Co/Gd bilay-
ers can be switched for a relatively large number of Co layers NCo, i.e., for a large
Co layer thickness. Moreover, the threshold fluence increases as a function of NCo.
The qualitative behavior observed in the phase diagram can be understood by the
switching mechanism in the Co/Gd bilayers. First, the Co layers near the interface
are switched, creating a front of reversed Co magnetization. Subsequently, the front
propagates through the system driven by exchange scattering between adjacent lay-
ers. This propagating mechanism will continue until all Co layers are switched.

The phase diagram for the Co/Gd bilayers including intermixing shows the same
qualitative behavior, as is depicted in Fig. 7.1(b). Interestingly, for relatively thin
Co layers (NCo = 3-5), the threshold fluence is reduced by ∼ 25% compared to the
system without intermixing. The reduction of the threshold fluence can be under-
stood by (i) in the case of intermixing there is effectively more angular momentum
transfer between Co and Gd sublattices, and (ii) a decrease of the Curie temperature
TC. Note that the observed value for the threshold fluence is now comparable to
the value found in the simulations for the alloys (see Chapter 6 Fig. 6.2(a) on page
140).

Figure 7.1(c) shows that increasing the size of the intermixing region leads to a
further reduction of the threshold fluence. However, no switching is observed for
NCo = 3. This can be understood from the fact that this particular system is very
similar to a homogeneous Gd0.5Co0.5 alloy, which can not be switched because the
total magnetic moment is not close to compensation.

Following the analysis of the phase diagrams, the question that arises is to what
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extent the intermixing of the Co/Gd interface influences the properties of the prop-
agating switching mechanism. Figure 7.2(a) shows a detailed analysis of the switch-
ing mechanism in a system of 10 Co and 5 Gd layers. It displays the time at which
each individual Co layer is reversed as a function of the layer index. The Co layers
are labeled from 1 to 10, where the index 1 represents the Co layer adjacent to the
Co/Gd interface. We consider the same three systems as in the phase diagrams
(with NCo = 10), which are schematically presented in Figs. 7.2(b)-(d). Note that
the layer indices are unchanged despite the addition of an intermixing region. In
Fig. 7.2(a), the red dots represent an ideal Co/Gd bilayer, without intermixing (see
Fig. 7.2(b)). The blue and yellow dots represent a Co/Gd bilayer with an intermix-
ing region of two and four layers respectively (see Figs. 7.2(c)-(d)). Figure 7.2(a)
shows that in all three systems the layers are switched consecutively starting with
the layers near the interface, which defines the propagating switching mechanism.
However, in the case of an ideal Co/Gd interface, the layer adjacent to the interface
acts differently. As discussed in Chapter 6, in the approximation of only nearest-
neighbor interactions, this is caused by the exchange field resulting from the slowly
demagnetizing Gd layer [127]. This field slows down the demagnetization and re-
versal process of the inner Co layer due to the antiferromagnetic exchange coupling
between Co and Gd. In the presence of intermixing, this effect is shifted to the
unlabeled layers. Importantly, the blue and yellow dots clearly show that the prop-
agating characteristics of the switching mechanism are maintained after including
intermixing within the model.

To analyze the propagation speed of the switching front, we focus on the region
from layer 3 to layer 10, which consists entirely of Co in all three systems (Figs.
7.2(b)-(d)). The propagation speed can be approximated from the interval between
the switching times of layer 3 and 10 and the corresponding distance the switching
front has traveled. Here, we take 0.2 nm for the thickness of one atomic mono-
layer of Co [89]. For the system without intermixing, the propagation speed is then
given by approximately 2.1 km/s. For the systems including intermixing, we find a
propagation speed of 3.9 km/s (Fig. 7.2(c)) and 6.6 km/s (Fig. 7.2(d)) respectively.
Hence, intermixing of the Co/Gd interface increases the propagation speed of the
switching front significantly. As noted before, intermixing leads to effectively more
angular momentum transfer between the Co and Gd sublattices near the interface,
increasing the magnetization gradient in the Co layer. This leads to a larger prop-
agation speed of the switching front because the speed is related to the magnitude
of the magnetization gradient.
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Figure 7.2: (a) The time at which each atomic Co monolayer is reversed for the systems
indicated in Figures (b)-(d) and P0 = 60 · 108Jm−3. Figure (b) displays a system of 10 Co and
5 Gd atomic monolayers. The Co layers are numbered 1-10, where index 1 refers to the layer
adjacent to the interface. Figures (c) and (d) show the systems including intermixing, with
the Co/Gd interface replaced by two (c) and four (d) layers of Gd0.5Co0.5.

7.3 Conclusion

To conclude, within the model we considered in this paper, intermixing leads to a
significant reduction of the threshold fluence for AOS compared to the ideal Co/Gd
interface. Furthermore, intermixing does not affect the qualitative properties of the
switching mechanism in Co/Gd bilayers. Quantitatively, intermixing increases the
speed of propagation. Hence, previously reported statements about the switching
mechanism in ideal Co/Gd bilayers can be generalized to bilayers including an
intermixed Co/Gd interface.



8
Additional research and outlook

In this final chapter, we present preliminary results regarding various applications of the pre-
viously discussed models. The aim of the presented calculations is to substantiate both the
promises and limitations of the used theoretical methods. As a comprehensive example, the
chapter opens with modeling laser-induced spin transport in ferrimagnetic systems. Specif-
ically, we discuss spin-current-assisted all-optical switching in (synthetic-)ferrimagnetic
multilayers. Furthermore, we model the excitation of standing spin waves with optically-
generated spin currents and relate the results to recent experiments. Importantly, the sec-
tions only describe the calculations conceptually and do not specify the precise theoretical
implementations. The latter is partially discussed in Appendix B, or is explained in the given
references. The chapter ends with a general outlook on the field of ultrafast spintronics.

8.1 Introduction

In this final chapter, we present a collection of additional calculations using the
models described in the previous chapters. The aim is to investigate several re-
cently demonstrated phenomena that enlighten the full spectrum of ultrast mag-
netism. Furthermore, the presented preliminary calculations will elucidate both the
utility and limitations of the proposed theoretical methods. The topics are chosen
such that we can shortly address the connection with future applications. For that
reason, the work mainly focuses on the laser-induced spin dynamics in magnetic
heterostructures with a (synthetic-)ferrimagnetic component. Here, the interplay
of all-optical switching and spin transport is of interest in relation to future opto-
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magnetic memory devices.

First, in Sec. 8.2 we show preliminary calculations regarding all-optical switching in
GdFeCo/Cu/[Co/Pt]N stacks, aiming to model the experimental results of Iihama
and coworkers [100, 103, 104, 130]. There, a ferromagnetic layer is effectively re-
versed driven by the interlayer spin current generated by a ferrimagnetic layer. This
is particularly interesting in the context of implementing all-optical switching in
future magnetic random-access memory, since a switchable ferromagnetic layer is
advantageous for achieving the maximal readout capability within magnetic tunnel
junctions [158].

In addition to reaching an efficient readout capability, another essential require-
ment is that all-optical switching should be transformed from a toggle mechanism
to a fully deterministic writing process. Specifically, the magnetization direction of
the written domain should be predetermined regardless of the initial state. Deter-
ministic magnetization writing can be accomplished by introducing an additional
magnetic reference layer. In line with the experiments of van Hees et al. [105]
in rapidly-heated [Gd/Co]/Cu/FM multilayers, Sec. 8.3 presents calculations that
elucidate the dependence of the switching threshold fluence on the magnetic orien-
tation of the ferrimagnetic component and a reference ([Co/Ni]N) layer. As a result
of this mechanism driven by interlayer spin transport, the laser fluence can be tuned
to write a predetermined domain[105] .

In the examples above, the characteristic temporal behavior of the induced interlayer
spin current plays a critical role. Similarly, in noncollinear magnetic heterostruc-
tures, the precise pulse shape of the interlayer spin current determines the ability
and efficiency of exciting perpendicular standing spin waves in the receiving layer.
In Sec. 8.4 we shortly discuss a simple analytical description that characterizes the
excitation mechanism of the standing spin waves. The second part of this section
includes a specific example related to the experiments of Lichtenberg et al. [159].
Here, the investigated noncollinear magnetic heterostructure includes a Co/Gd bi-
layer. The investigated standing spin waves are used to characterize the spin current
that is generated within the ferrimagnetic region.

The abovementioned calculations partially agree with the results from the recent
experimental works and clarify the underlying physical trends. Nevertheless, we
observe clear limitations of the used simplified models in the case they are applied
to a complex magnetic multilayer. The limitations are listed throughout this chapter.
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Examples include the need for using atypical values for specific system parameters
and the insufficiency of a pure diffusive treatment of laser-induced spin transport.
The final section of the chapter, Sec. 8.5, puts the typical theoretical methods into a
general perspective. Furthermore, it provides a brief outlook on the field of ultrafast
magnetism and lists the most promising applications.

8.2 Switching ferromagnetic layers with laser-induced spin

currents

In this section, we model the laser-induced spin dynamics in GdFeCo/Cu/FM
stacks, and relate the calculations to the experiments of Refs. [100, 104, 130], where
the ultrafast switching of a ferromagnetic (FM) [Co/Pt]N layer was demonstrated.
A schematic overview of the system is given in Figs. 8.1(a)-(b). Here, we defined the
parallel (PA) and antiparallel (AP) configurations of the initial magnetization direc-
tion in the FM layer and the transition-metal component of the GdFeCo alloy. The
theoretical implementation of this complex magnetic structure is built up as follows.
The ferromagnetic [Co/Pt]N layer is approximated by a homogeneous material and
described with the standard s-d model, as was previously used in Chapters 2 and 3.
Furthermore, the ferrimagnetic GdFeCo component is described with the extension
of the s-d model to ferrimagnetic alloys from Ref. [58], as was discussed in Sec. 2.7.
In response to an increase of the electron temperature, this combined s-d model
allows us to calculate the temporal behavior of the element-specific magnetization.
Simultaneously, a spin accumulation will be generated within both magnetic re-
gions and its nonzero gradient will result in interlayer spin transport. The latter is
calculated through solving the spin diffusion equation within the full multilayer, in
analogy with Sec. 3.5. In that way, up to a numerically practical length scale, we
reach a spatially continuous model that jointly describes the local magnetization
and the generated diffusive spin currents throughout the full magnetic stack. All
used system parameters are given in Appendix B. Before presenting the results, we
stress that the preliminary calculations required the use of some atypically valued
system parameters to give a clear qualitative agreement with experiments. This
limitation will be thoroughly discussed at the end of this section.

The presented calculations focus on determining the all-optical switching capabil-
ity as a function of composition and absorbed laser-pulse energy. In that way, we
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Figure 8.1: Modeling the laser-induced spin dynamics in GdFeCo/Cu/[Co/Pt]N multilay-
ers. (a)-(b) Schematic overview of the magnetic multilayer and the generated interlayer spin
current. In comparison, (a) and (b) indicate the parallel (PA) and antiparallel (AP) config-
urations between the FeCo and [Co/Pt]N magnetization direction. (c)-(d) Phase diagrams
of the possible switched states, as a function of the FeCo concentration x and the absorbed
laser-pulse energy density P0. White indicates that none of the magnetic layers is switched.
Furthermore, blue indicates that solely the GdFeCo is switched, whereas light red specifies
a pure [Co/Pt]N switch. Finally, dark red corresponds to a complete switch.

can compare the modeling directly to the experiments of Ref. [130]. The results
are presented in Figs. 8.1(c)-(d), where the two phase diagrams indicate the layer-
specific switching capability as a function of the transition-metal concentration x of
the Gd1−xFeCox layer and the absorbed laser-pulse energy density P0. Figure 8.1(c)
and (d), respectively, indicate the calculations for the initial parallel (c) and antipar-
allel (d) configurations. The color scheme specifies the switching of the distinct
layers. White indicates that the magnetization direction within the full structure
remains unchanged after equilibration. Blue indicates that only the alloy is suc-
cessfully switched, whereas the light red region corresponds to the situation that
only the FM layer magnetization is reversed. Finally, dark red indicates that both
magnetic layers are simultaneously switched with a single pulse.

The phase diagram for the initial parallel configuration, as given in Fig. 8.1(c), is in
a qualitative agreement with the experiments of Remy et al. [104, 130]. Importantly,
it shows that all magnetic states of the multilayer can be reached by toggling the
magnetization direction with a single laser pulse, indicated by the presence of a
colored region for all components of the above-defined scheme. Additionally, the
figure shows that the threshold fluence for a single-layer switch as a function of
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concentration, indicated by the top boundary of the white region, changes from be-
ing minimal for an FM layer switch (light red) to favoring a pure alloy switch (blue).
The latter was quantitatively determined in Ref. [130]. Intuitively, switching of the
FM layer favors a high Gd concentration, as the spin current generated in a Gd-rich
ferrimagnetic alloy has the required polarization to be able to reverse the FM layer
magnetization [102]. It is clear that this concept depends on the initial magnetic
configuration of the multilayer. As it turns out, the modeling for the antiparallel
configuration, as presented in Fig. 8.1(d), is not in full agreement with the exper-
iments. The figure exclusively indicates the all-optical switching of the GdFeCo
alloy, as represented by the blue region. Here, one might expect that at a high
transition-metal concentration the spin current is sufficient to drive the switching
of the FM layer, which was experimentally demonstrated in Ref. [104]. Although
it is possible to observe this in the modeling by tuning the parameters, it does not
appear under physically relevant conditions.

We again note that the shown phase diagrams correspond to preliminary calcula-
tions. A systemic effort to determine the best fitting choices for all system param-
eters has not been employed yet. Additionally, we observe two clear limitations
of the used theoretical description. First, to observe a successful switch of the FM
layer, it is required that its thickness is not much larger than the spin diffusion
length. As the latter is expected to be of the order of ∼ 1 nm for Co/Pt [72], we can
not fully explain the switching of the 5 nm thick layers in the experiments [130].
To clarify, in the modeling we used a 1 nm thin [Co/Pt]N layer. This might be an
indicator that one should implement superdiffusive spin currents to account for a
larger penetration depth [39]. Second, in order to observe AOS in the ferrimagnetic
alloy, it is needed to use a demagnetization time for the Gd that disagrees with the
expected timescale [18], as was already noted in Sec. 2.7.2.

Although the calculations are not in full agreement with the experiments, the theo-
retical implementation using the s-d model provides a clear conceptual view of the
ability to switch ferromagnetic materials through optically-generated spin trans-
port. As noted in Sec. 8.1, the indication that picosecond switching is possible in
ferromagnetic materials is a major step towards implementing all-optical switching
in future opto-magnetic memory devices [153, 158]. It can either be accomplished
through interlayer spin transport, as discussed here, or through a similar mecha-
nism based on an interlayer exchange coupling [153].

In the following section, we investigate how the presence of a ferromagnetic ref-
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erence layer manipulates the original switching mechanism for the ferrimagnetic
component. Connecting it to the calculations above, the blue regions in the phase
diagrams of Figs. 8.1(c)-(d) hardly show a difference in threshold fluence, indicat-
ing that in this system the ferromagnetic layer only weakly influences the AOS pro-
cess of the ferrimagnetic alloy. In an optimized magnetic multilayer, the presence
of an additional ferromagnetic layer has an advantageous effect on the all-optical
switching capability of the ferrimagnetic region. The latter is the main topic of the
following section, where we discuss spin-current-assisted all-optical switching in
synthetic-ferrimagnetic multilayers.

8.3 Spin-current-assisted all-optical switching in synthetic-
ferrimagnetic multilayers

In collinear magnetic heterostructures the demagnetization rates are enhanced if
the magnetization of the individual ferromagnetic layers are aligned antiparallel.
This was experimentally demonstrated by Malinowski et al. [14], and modeled in
Sec. 3.4 of this thesis. A similar effect can be observed in case one of the lay-
ers is replaced by a ferrimagnetic component that allows helicity-independent all-
optical switching. The remaining ferromagnetic layer, which is now dubbed as
the ’reference layer‘, may assist or hinder the reversal of the ferrimagnet due to
the generation of an interlayer spin current. Originally, this property was demon-
strated in Gd/Co/Cu/[Co/Ni]N multilayers [105]. In this section, we model the
time-resolved magnetization and verify that the description based on the s-d model
qualitatively agrees with the experiments.

The magnetic system is modeled in analogy with the calculation presented in the
previous section, where we have to specify two major changes. First, the ferrimag-
netic region is implemented as an intermixed Co/Gd bilayer, where the width of
the intermixed region is of the order of nanometers. Second, the reference layer is
a relatively thick (5 nm) transition-metal ferromagnet. Schematic overviews of the
modeled systems are given in Figs. 8.2(a)-(b), where we specify the parallel (PA)
and antiparallel (AP) configurations between the top Co layer and the magnetiza-
tion direction of the reference layer. Again, the set of system parameters is given
in Appendix B. Additionally, the precise implementation of the intermixing region,
which is modeled by a continuous step function for the concentration, is given in
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Figure 8.2: (a)-(b) Schematic overview of the multilayer system in case of a parallel (a) and
antiparallel (b) configuration of the Co and reference [Co/Ni] layer. The white dots illustrate
the typically used Co concentration profile in the intermixed Co/Gd bilayer. (c)-(e) The Co
magnetization as a function of time after laser-pulse excitation at t = 0, plotted for varying
absorbed laser-pulse energies P0. The blue lines correspond to the parallel configuration (a),
whereas the red lines correspond to the antiparallel configuration (b). Figure (d) illustrates
that the interlayer spin current assists the all-optical switching process in the antiparallel
configuration.

Ref. [159]. We note that the precise qualitative characteristics of the calculations
below do not significantly depend on the implementation of intermixing.

To model the effect of interlayer spin transport on the all-optical switching of the
synthetic-ferrimagnetic bilayer, we calculate the magnetization of the top Co layer
as a function of time after laser-pulse excitation for the two distinct initial config-
urations. For increasing absorbed laser-pulse energy P0, the results are given in
Figs. 8.2(c)-(e), where the blue lines indicate the parallel configuration and the red
lines indicate the antiparallel configuration. At low fluence, Fig. 8.2(c), the magne-
tization of the Co only demagnetizes for both configurations. Interestingly, for an
intermediate magnitude of the absorbed energy, represented by Fig. 8.2(d), the Co
magnetization switches in case the initial configuration with the reference layer is
antiparallel. Finally, Fig. 8.2(e) shows the results for a high fluence and indicates the
case that the Co magnetization switches regardless of the initial magnetic state of
the multilayer. In analogy with the experiments of Ref. [105], the modeling shows
that by tuning the laser fluence all-optical switching of the multilayer can be re-
stricted to the antiparallel configuration. Using this, one can select a (double-)pulse
scheme that writes a predetermined magnetic domain regardless of the initial state
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of the multilayer [105]. In that way, all-optical switching evolves from a toggle mech-
anism to a deterministic magnetization writing technique [105], which is desirable
for applications.

Again, we stress that the presented calculations correspond to preliminary results
and still require a more in-depth analysis. Obviously, the complex magnetic struc-
tures discussed here are tricky to implement on a physically consistent basis, es-
pecially due to a large number of unknown system parameters. Additionally, the
numerical implementation is nontrivial. A technical dilemma arises, since the de-
scription of spin diffusion requires a continuous model, whereas to describe the
local magnetization in the ferrimagnet an atomistic approach seems to be more rel-
evant (as used in Chapters 6 and 7). Such a combined approach is only reliable
in the case that all relevant length scales, including the spin diffusion length and
the width of the intermixing region, are multiple orders of magnitude larger than
the atomic spacing, which is not necessarily the case. Nevertheless, it is expected
that the modeled qualitative behavior is realistic, as all imposed mathematical con-
ditions are at least weakly satisfied.

In the context of the above spin-current-assisted all-optical switching process, one
can imagine that the temporal shape of the interlayer spin current plays a criti-
cal role. Furthermore, in connection to the previous section, optical spin-current
generation in Gd-based (synthetic-)ferrimagnets is an interesting concept from a
technological perspective. Although it is possible to probe the generated spin trans-
port in the two-component GdFeCo/Cu heterostructures, such as the experiments
in Ref. [102], determining the interlayer spin currents in more complex magnetic
multilayers is an unprecedented challenge.

One possibility is to indirectly characterize the optically-generated spin currents
by focusing on noncollinear magnetic structures, and investigating the response of
the transverse magnetization following the ultrafast spin-transfer torque [64–67].
As will be discussed in the following section, by probing the excited precessions
one can partially deduce the pulse shape of the absorbed interlayer spin current
[136, 159]. Before focusing on ferrimagnetic structures, we first present a simple
analytical description of standing spin waves that provides a practical mathematical
tool to investigate the excited magnetization dynamics.
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8.4 THz standing spin waves in noncollinear magnetic het-
erostructures

In this section, we discuss the spin dynamics excited in noncollinear magnetic het-
erostructures by femtosecond laser-pulse excitation. This subject was shortly ad-
dressed in Sec. 1.3 by referring to the experimental demonstration of THz spin
waves in Fig. 1.5(b). A schematic overview of the noncollinear magnetic heterostruc-
ture is given in Fig. 8.3(a), indicating the two perpendicularly magnetized layers
and the interlayer spin current js(t) that exerts the spin-transfer torque. In the fol-
lowing, we refer to the in-plane layer as the absorption layer, since it is our main
interest, and the out-of-plane layer is dubbed as the generation layer. To model this
combined spin system, we separate the theoretical problem into two steps. (i) The
spin current from the generation layer is calculated with the s-d model including
spin diffusion. Here, the (perpendicular) absorption layer is treated as an ideal
spin sink and implemented within the boundary conditions. (ii) To describe the ex-
cited transverse magnetization dynamics in the generation layer, we use a linearized
Landau-Lifshitz-Gilbert-Slonczewski equation with the spin current from (i) as an
input function [7, 142]. As step (i) is already covered in Chapters 3 and 4, we here
only discuss the implementation of step (ii).

The details of the implementation of step (ii) are presented in Appendix B. In sum-
mary, the model includes the effects of an (in-plane) external field, the exchange
interaction, bulk Gilbert damping, interfacial spin pumping (at the FM/NM inter-
face), and the anti-damping spin-transfer torque [7, 142]. Essentially, the latter is
assumed to be driven by the externally generated spin current described by func-
tion js(t) that is perpendicularly polarized. In the linear regime, assuming that the
normalized transverse magnetization remains much smaller than one, this leads to
a simple linear differential equation in terms of the out-of-plane spatial coordinate
x and time t. In anticipation of that we investigate standing spin waves, the solu-
tion is expressed in terms of a cosine expansion, as schematically depicted by the
white lines in Fig. 8.3(a). The amplitude of mode n, represented by dimensionless
function δmx,n(t), can be expressed as a convolution

δmx,n(t) ∝ Re{(Gn ∗ js)(t)}. (8.1)
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Figure 8.3: (a) Schematic overview of the excitation of transverse spin dynamics in a non-
collinear magnetic heterostructure through laser-induced spin currents. The white lines in
the in-plane (absorption) layer indicate the first four standing spin-wave modes. (b) The
spin current js(t) at interface of the (in-plane) absorption layer, plotted as a function of time
after laser-pulse excitation at t = 0. (c) The (normalized) out-of-plane magnetization compo-
nent of the absorption layer as a function of time. The plot includes the first normal mode
(∼ 0.5 THz) and the homogeneous mode (12 GHz).

The function Gn(t) describes the response function of mode n, and is given by

Gn(t) ∝ θ(t)eiωn(1+iαeff,n)t, (8.2)

where it is assumed that the (mode-dependent) effective damping αeff,n is much
smaller than one. Intuitively, the response function describes a damped oscillation
with frequency ωn and effective damping αeff,n . The dispersion relation is given
by ωn = ω0 + A(nπ/L)2, with ω0 the angular FMR frequency, A the spin-wave
stiffness, and L the thickness of the absorption layer.

Typically, in the experiments the out-of-plane magnetization is probed in the region
near the outer edge of the absorption layer. Using the linearized approach discussed
above, it is a straightforward task to model such a typical magnetic response. For
an intuitive example, we use the spin current as given in Fig. 8.3(b), which followed
from the s-d model for a standard transition-metal generation layer. Subsequently,
Eq. (8.1) is used to determine the response of the transverse magnetization. The
result for the zeroth and first normal modes is plotted in Fig. 8.3(c) as a function of
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time. Here, we used that the absorption layer is 5 nm thick and the FMR frequency
is 12 GHz. Furthermore, the spin-wave stiffness is chosen such that the first normal
mode has a frequency of ∼ 0.5 THz. All remaining parameters are set equal to
the values given in Ref. [159]. For convenience, we did not include higher-order
normal modes. The amplitude of these modes remains small and is damped out
very rapidly. Nevertheless, as the exact result requires an infinite sum of modes, the
plotted curve is incomplete near t = 0. With that in mind, the simple calculation
qualitatively agrees with the magneto-optical signal from the experiments in Ref.
[67], as was shown in Fig. 1.5(b).

To connect this approach to the previous sections, we replace the ferromagnetic gen-
eration layer with a synthetic-ferrimagnetic Co/Gd bilayer. A schematic overview
of the system is given in Fig. 8.4(a). The recent experiments in Ref. [159] proposed
that the excited transverse magnetization in the absorption layer, especially the
phase of the excited oscillation, gives information about the interlayer spin current.
To model this, we use the same approach as the previous section to describe the
synthetic-ferrimagnet bilayer. Again, the generated spin current is calculated with
the extended (ferrimagnetic) s-d model including diffusive spin transport, where
the absorption layer is implemented as an ideal spin sink. In analogy to the dis-
cussion above, the absorbed spin current is substituted in Eq. (8.1). In this case,
we only focus on the excited FMR mode (n = 0), and we perform the calculations
for a varying thickness of the Gd layer. The details of the implementation of the
Co/Gd bilayer, including the used definition of an effective Gd thickness tGd in an
intermixed structure, are given in Ref. [159].

The results are presented in Figs. 8.4(b), where we plotted the excited homogeneous
modes for tGd = 0 (Pure Co, in red) and tGd = 2 nm (in blue). The (vertical)
dashed lines indicate a relative phase shift of approximately 120 degrees, which is
in agreement with the experiments [159]. Figure 8.4(c) indicates the corresponding
spin currents as a function of time, which explains the origin of the phase shift.
The critical difference is that in the presence of a significant amount of Gd, the
spin current is nonvanishing on a timescale beyond the picosecond regime. The
latter results from the different magnetic properties of Gd compared to Co. For that
reason, the phase shift corresponds to a minus sign change (180 degrees) due to the
opposite magnetization of the Co and Gd, plus an additional phase shift determined
by the long tail of the spin current. The phase shift as a function of thickness is given
in Fig. 8.4(d), showing that the phase jump already occurs for a very small addition
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Figure 8.4: (a) Schematic overview of the multilayer that is investigated in Ref. [159]. The
generated interlayer spin current excites a homogeneous magnetization precession in the
in-plane absorption layer. (b) The excited FMR modes in the case that the out-of-plane
magnetic region is pure Co (red), or a typical Co/Gd bilayer (Blue). A significant phase
shift is observed, as indicated by the (vertical) dashed lines. (c) The interlayer spin current
for a generation layer that consists of pure Co (red) or a Co/Gd bilayer (blue). The latter is
nonvanishing beyond a few picoseconds. The absolute phase shift of the excited FMR mode
as a function of the effective Gd layer thickness tGd.

of Gd. We note here that the specific horizontal scaling of the figure is strongly
dependent on the precise implementation of the synthetic-ferrimagnetic layer.

In addition to the phase shift, a relatively large change in the amplitude is observed.
This change is related to the Fourier component of the spin current evaluated at
the FMR frequency. In the case of a pure Co generation layer, this low-frequency
component is small, whereas in the presence of Gd the component becomes more
apparent. Again, it is a result of the nonvanishing nature of the spin current at
longer timescales. Here, a discrepancy with the experiments is present, as such a
large amplitude difference is absent in the measured signals [159]. Additionally, in
order to observe the typical absolute phase shift with a significant deviation from
a pure sign change (180 degrees), it was critical to implement a demagnetization
timescale for Gd of the order ∼ 20 ps. This is in contradiction with the previous
sections, where it was required to use a short demagnetization rate for the Gd to
observe all-optical switching. With that in mind, it is clear that a more in-depth
analysis is required, to determine what additional parameters play a critical role.1

1One could give a long list of possible critical parameters in these complex synthetic-ferrimagnetic
structures, including the density of states, the spin-flip scattering rate, the constant ρsd (Chapter 3), and
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A possible critical step would be to investigate the correct implementation of spin
transport within the Gd region. In the calculations above, it was assumed that
within the full Co/Gd bilayer it could be described as diffusive spin transport with
the system parameters of pure Co, which might strongly deviate from the actual
spin transport properties of Gd.

From the calculation above, and the ones presented in the previous sections, we
can make the following observation. On the one hand, the preliminary calculations
were successful in qualitatively describing the observed physical phenomena. On
the other hand, the modeling required making assumptions that could not be fully
justified and needed the use of questionable values for multiple system parameters.
In the following section, we will connect this observation to a general outlook on
the field of femtomagnetism.

8.5 General outlook

With the ever-increasing need for faster and more efficient information technol-
ogy devices, it is evident that it is required to find innovative techniques for the
control and storage of binary data. More than 25 years of research in ultrafast mag-
netism proved that the use of femtosecond laser pulses and the smart engineering
of magnetic materials provide a possible solution. The typical physical concepts in
this context, such as laser-induced spin transport and all-optical switching, are all
promising candidates for future applications. Nevertheless, it is clear that the full
technological potential of ultrafast magnetism has not been completely explored
yet. In this final section, we give a brief and general outlook on the future of fem-
tomagnetism. For a specific outlook on the theoretical models, we refer to the main
chapters.

Although the typical physical phenomena in ultrafast magnetism are not entirely
understood, the experimental and technological possibilities have evolved at a fast
pace. It is obvious that single-pulse all-optical switching (AOS) receives the most
attention due to its evident relevance for future data-storage applications. Hence, a
wide variety of recent studies focus on the optimization of magnetic material sys-
tems that allow single-pulse AOS. In relation to the previous sections, examples
include the picosecond switching of ferromagnetic materials [100, 130, 153], and

much more.
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the method for transforming AOS from a toggle mechanism to deterministic data
writing [105]. Another critical observation is that the mechanism is not restricted
to the use of ultrashort laser pulses, as it was shown that a rapid switching of mag-
netization can analogously be achieved by the use of picosecond electrical pulses
[77, 160, 161]. In combination with the demonstration of AOS of magnetic tunnel
junctions [162, 163], all the above steps pave the way towards the realization of the
next generation of (opto-)magnetic random-access memory devices [158, 164].

Additionally, all-optical switching has clear relevance for the integration of femto-
magnetism with photonics [99]. Using AOS, the information processed within a
novel photonic integrated circuit can be stored indefinitely within a magnetic ma-
terial, for instance, a magnetic racetrack that consists of a (synthetic-)ferrimagnetic
material [9, 98, 99]. In combination with that magneto-optical effects allow deter-
mining the magnetization direction with light [165, 166], this provides a promising
writing and reading scheme for data storage in integrated photonics.

It is needless to say that the technical relevance of femtomagnetism and ultrafast
spintronics goes beyond all-optical switching. One very clear example is laser-
induced spin transport in a magnetic heterostructure. Due to the inverse spin Hall
effect, the transient optically-generated spin current indirectly results in the emis-
sion of THz radiation [68, 69, 167]. Finding new THz emitters is exceptionally
interesting for applications, especially to optimize the bandwidth and efficiency
compared to the traditional THz emitters [167, 168]. The examples go beyond in-
formation technology, as the use of THz radiation is suited for biomedical analysis
tools, security imaging applications, and THz radars [167–170].

From a technological point of view, it is clear that the future of femtomagnetism
and ultrafast spintronics is very bright. Because of the increasing complexity of the
material systems that are optimal for opto-magnetic applications, the models that
are required to interpret the underlying physics increase in difficulty. Although
the work in this thesis exemplifies that a simplified analytical approach elucidates
the various ultrafast phenomena, the calculations in this chapter indicated that the
models start to lose accuracy when multiple concepts are jointly described. In this
scenario, the advantages of a simplified model evaporate, and it becomes more ap-
propriate to create a robust numerical implementation with fewer restrictions, that
possibly includes physical mechanisms from contradicting theories. A relevant ex-
ample could be the modeling of laser-induced spin transport, and the development
of a joint description of the laser-excited superdiffusive spin currents and the spin
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transport driven by a locally generated spin accumulation. The hope is that such an
approach creates a pathway to identify the dominant physics and helps to, at least
partially, end the theoretical debates. Nevertheless, the critical challenge remains
that it is difficult to experimentally distinguish the various contributions. To some
extent, it is a characteristic of theoretical research in femtomagnetism, that there is
surely no lack of theories to explain the observations, but the main challenge is to
disentangle the contradicting interpretations.

To end this thesis with a positive note, we want to emphasize the fascinating phe-
nomena that were explored with femtosecond laser-pulse excitation of magnetic
materials. It remains truly remarkable that the laws of physics allow transferring
magnetic information on the timescale of a trillionth of a second, and that a simple
mechanism as rapid heating enables ultrafast magnetization switching. Although
nobody can foresee the definitive technical relevance of femtomagnetism, or predict
if the promising applications will ever become reality, it is obvious that it remains a
progressive and blooming research field for the upcoming decades.





A
The Boltzmann equation and Fermi’s

golden rule

In this appendix, we discuss the Boltzmann equation and the implementation of Fermi’s
golden rule, which are repeatedly used in the main chapters. To derive this from first princi-
ples, we closely follow the mathematical steps from Ref. [132]. Furthermore, we extensively
make use of the methods discussed in Refs. [35, 56, 111, 171].

A.1 Fermi’s golden rule and transition rates

In the main text, the models require to calculate time derivatives of semiclassical
distribution functions. This is related to calculating the evolution of the diagonal
elements of a density matrix. Before diving into detail, we note that the equations in
this section are directly taken from Ref. [132]. The starting point is the Liouville-von
Neumann equation [132]

dρ̂

dt
=

1
ih̄
[Ĥ, ρ̂], (A.1)

which describes the time evolution of the density matrix and directly follows from
the Schrödinger equation. Here, the Hamiltonian is separated into two parts Ĥ =

Ĥ0 + V̂, where Ĥ0 corresponds to the noninteracting Hamiltonian and V̂ describes
interactions. The goal is to express the dynamics of ρ̂, as driven by perturbation
V̂, in terms of the occupation of the unperturbed eigenstates. In order to do so,
the first step is to switch to the interaction picture, where the time evolution of ρ̂ is
strictly determined by the interaction Hamiltonian [132, 171]

171
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dρ̂i

dt
=

1
ih̄
[V̂i, ρi]. (A.2)

By integration it follows that

ρ̂i(t) = ρ̂i(t0) +
1
ih̄

∫ t

t0

dt′[V̂i(t′), ρ̂i(t′)], (A.3)

where t0 is the initial time. In principle, ρ̂i(t) can now be calculated up to arbitrary
order in the interaction strength through an iterative procedure [132]. A more prac-
tical approach is to substitute Eq. (A.3) in Eq. (A.2), and impose that ρ̂i(t′) changes
relatively slow such that it can be replaced by ρ̂i(t) in the integral. This is equiv-
alent to the Markov approximation since it results in an expression that is local in
time and does not depend on the history of ρ(t). As discussed in the next section,
the arguments for the Markov approximation become more sophisticated when we
discuss the coupling of a spin system to an electron bath. Following Ref. [132], after
imposing the Markov approximation and switching back to the Schrödinger picture
one finds

dρ̂

dt
= Ĉ +

1
(ih̄)2 [V̂, [K̂(t), ρ̂(t)]]. (A.4)

Here, Ĉ indicates the terms that describe the coherent evolution of the density ma-
trix. Since we do not investigate the coherent dynamics in the research chapters
of the thesis Ĉ is omitted in this overview.1 Our main interest is the second term.
Importantly, it includes the function K(t) [132]

K̂(t) =
∫ t−t0

0
dτ Û0(τ)V̂Û†

0 (τ), (A.5)

with Û0(τ) = e−Ĥ0τ/(ih̄) the time evolution operator for the noninteracting Hamilto-
nian. Using Eq. A.4 one can straightforwardly derive an expression for the dynam-
ics of the semiclassical distribution function by substituting the diagonal density
matrix ρ̂ = ∑λ fλ |λ〉 〈λ| [132]. Here, |λ〉 indicate the eigenstates of the noninteract-
ing Hamiltonian and the diagonal elements fλ represent the occupation probabili-
ties. This method results in the Boltzmann equation

d fλ

dt
= ∑

λ′

[
Wλλ′ fλ′ −Wλλ′ fλ

]
, (A.6)

1In Section 8.4 and Appendix B the coherent terms are essential, since they correspond to magnetiza-
tion precession [35].
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where the first term represents transitions into the state |λ〉 and the second term
corresponds to the opposite transitions. The rates Wλλ′ are given by

Wλλ′ =
2π

h̄
|Vλλ′ |2Re{Dt−t0

λλ′ }, (A.7)

where Vλλ′ is the corresponding matrix element of V̂. Furthermore, the time-
dependent function on the right-hand side is given by [132]

Dt−t0
λλ′ =

1
πh̄

∫ t−t0

0
dτe−i(ελ−ελ′ )τ/h̄ (A.8)

The standard way to arrive at Fermi’s golden rule is to take the limit t− t0 → ∞,
such that the Dirac delta function that imposes energy conservation appears

Wλλ′ =
2π

h̄
|Vλλ′ |2δ(ελ − ελ′). (A.9)

This expression for the transition rate is the standard form of Fermi’s golden rule.
In the context of this thesis, it is required to formulate Fermi’s golden rule for
a system that is composed of multiple subsystems. The latter is the topic of the
following section.

A.2 The extension to multiple (many-particle) subsystems

We focus on two coupled many-particle subsystems, labeled as system A and sys-
tem B. The statistical state of the combined system is described by density matrix ρ̂.
The latter represents a mixture of many-particle states |λ〉 = |{nα}〉

∣∣{nβ}
〉
, where

|{nα}〉 is the collection of Fock states in system A. Here, nα is the number of par-
ticles in the single-particle state α. The statistical state of system A is described by
the reduced density matrix ρA = trB{ρ̂}, which results from tracing out system B.
The goal is to determine the dynamics of ρA, in response to an interaction of the
form

V̂ = ∑
α

Â+
α B̂−α + Â−α B̂+

α , (A.10)

where we notated A+
α (A−α ) as a ladder operator that increases (decreases) the num-

ber of particles with state α by one. First, we calculate the transition rates that
determine the occupation of state α. The result follows from simplifying Eq. (A.4)
and tracing out the nonrelevant degrees of freedom. Using this method, one can
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find the temporal derivative of the probability fnα of having nα particles in state α.2

The latter is related to the diagonal elements of the density matrix ρ̂A. The result is
written in the typical form

d fA,nα

dt
= −(W−α;nα−1,nα

+ W+
α;nα+1,nα

) fA,nα
(A.11)

+W+
α;nα ,nα−1 fA,nα−1 + W−α;nα ,nα+1 fA,nα+1.

Here, the transition rate is written as

W±α;nα±1,nα
=

2π

h̄
|(Â±α )nα±1,nα |

2C±∞(εα), (A.12)

where we notated the matrix element (Â±α )nα±1,nα = 〈nα ± 1| Â±α |nα〉. In contrast
to the simple case of Eq. (A.6), where Wλλ′ = Wλ′λ, in the reduced representation
we generally have W±nα±1,nα

6= W∓nα ,nα±1 [132]. Importantly, we defined the function
[111]

C±∞(εα) =
1

2πh̄

∫ ∞

−∞
dτ e∓iεατ/h̄C±B,α(τ), (A.13)

which depends on a correlation function

C±B,α(τ) = trB{B̂±α B̂∓α (τ)ρ̂B} = 〈B̂±α B̂∓α (τ)〉B. (A.14)

The bounds of the integral over τ were set to ±∞ because C±B,α(τ) is assumed
to decay rapidly on a timescale τc [171]. In other words, we have used that t −
t0 � τc. The assumption of a short correlation time is equivalent to the Markov
approximation, as it yields the memorylessness of the bath (system B).

A.3 Notes on the spin-flip impurity scattering rate

In this appendix, we present additional details regarding the calculation of the
spin-flip scattering rate driven by impurity scattering, as was calculated in Sec.
2.3.2. Within the approximations of the microscopic three-temperature model, the
interaction Hamiltonian has the form

2 fnα has a similar meaning to the fms in the main text. Obviously, fnα is not the most practical function
to describe the statistical state of subsystems. A more formal approach is presented in Section A.4.
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Ĥ =
λ

N ∑
j

∑
kk′

Ŝ+
j c†

k′ck + Ŝ−j c†
kck′ . (A.15)

We are interested in the transition rate of spin states from level ms to ms ± 1. The
result can be found by substituting Â± = Ŝ± and B̂− = (λ/N)∑kk′ c†

kck′ (and B̂+

by its hermitian conjugate) in Eqs. (A.12)-(A.14). First, the correlation function in
Eq. (A.14) is written out, which yields a complex exponential that is a function of
εk − εk′ . Second, the result is substituted in Eq. (A.13). Here, the infinite integral
bounds make the expression equivalent to a Dirac delta function that imposes en-
ergy conservation, similar to the standard derivation of Fermi’s golden rule. Finally,
substitution in Eq. (A.12) gives the transition rate [56, 111]

W±ms±1,ms
=

2π

h̄
λ2S±ms

1
N2 ∑

kk′
δ(εk ∓ ∆− εk′)〈c†

kck′c
†
k′ck〉C. (A.16)

Here, the ensemble average 〈. . . 〉C = tr{. . . ρC} is calculated for the carrier system
with density matrix ρ̂C. Furthermore, the prefactor dependent on ms is given by
S±ms = S(S + 1)− ms(ms ± 1). For the calculations in the main text, it is required
to express Eq. (A.16) in terms of distribution functions. The latter is given by fk =

〈c†
kck〉C. Importantly, the term on the right-hand side of Eq. (A.16) can be expressed

in terms of a product of two distribution functions [56]. In that way, we retrieve the
following expression for the transition rate [56]

W±ms±1,ms
=

2π

h̄
λ2S±ms

1
N2 ∑

kk′
δ(εk ∓ ∆− εk′) fk(1− fk′), (A.17)

which was used in Sec. 2.3.2. We note that the extension to the s-d model, where
the spin polarization of the electrons is taken into account, is very straightforward
and not discussed in this appendix.

A.4 Notes on the electron-magnon scattering rate

In this final part of Appendix A, we discuss the background of the formula for
the time derivative of the magnon density, as was given in Eq. (2.69). The formula
follows from calculating the expectation value of the number operator a†

qaq, defined
as the occupation number nq
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nq = 〈a†
qaq〉 = tr{ρ̂ a†

qaq}. (A.18)

Similarly, the distribution function fkσ for electrons with momentum k and spin σ

is
fkσ = 〈c†

kσckσ〉 = tr{ρ̂ c†
kσckσ}. (A.19)

The goal is to derive an expression for the time derivative of nq. This can be found
by using Eq. (A.4). Under the conditions given in the previous sections, it is straight-
forward to show that the result can be written as [112]

dnq

dt
=

2π

h̄ ∑
kk′
|Vkk′q|2δ(εk↑ − εk′↓ − εq)tr{ρ̂ c†

k↑ck′↓c
†
k′↓ck↑aqa†

q} (A.20)

−2π

h̄ ∑
kk′
|Vkk′q|2δ(εk↑ − εk′↓ − εq)tr{ρ̂ c†

k′↓ck↑c†
k↑ck′↓a

†
qaq},

By substituting the definitions of nq and fkσ, one arrives at [36, 112, 117]

dnq

dt
=

2π

h̄ ∑
kk′
|Vkk′q|2δ(εk↑ − εk′↓ − εq) fk↑(1− fk′↓)(1 + nq) (A.21)

−2π

h̄ ∑
kk′
|Vkk′q|2δ(εk↑ − εk′↓ − εq) fk′↓(1− fk↑)nq.

Finally, the expression in Eq. (2.70), in terms of magnon density nd, is found by
summing over the momenta q.
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Details on the additional calculations

In this appendix, we present extra notes regarding the additional research from Chapter
8. The appendix consists of two parts. First, we derive an analytical description of stand-
ing waves, which was used for the calculations presented in Section 8.4. Second, we give
an overview of the material parameters we used for the magnetic multilayers modeled in
Sections 8.2 and 8.3.

B.1 An analytical description of standing spin waves

In this section, we perform an analytical calculation that results in a simple de-
scription of standing spin waves. Specifically, the spin waves that are excited in
a noncollinear magnetic heterostructure as discussed in Sec. 8.4 and schematically
depicted in Fig. 8.3. Within the absorption layer, the magnetization is described by
the Landau-Lifshitz-Gilbert-Slonczewski equation, including an additional damp-
ing torque corresponding to spin pumping [7, 142]. The equation is expressed in
terms of unit vector n, which corresponds to the direction of the local spin density
n = s/s with s the saturation spin density (in units h̄ per volume), and is given by
[116, 142, 172, 173]

∂n
∂t

=
A
h̄

n× ∂2
xn−ω0n× ẑ− α n× ∂n

∂t
+ τSTT + τsp, (B.1)

where A corresponds to the spin-wave stiffness, ω0 is the angular FMR frequency,
and α is the bulk Gilbert damping. The incoming spins are assumed to be absorbed
at the interface (defined as x = 0), giving the following expression for the exerted
spin-transfer torque

177
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τSTT =
δ(x)

s
n× jext

s × n. (B.2)

Here, jext
s corresponds to the spin current that is pumped out of the generation

layer. For simplicity, we assume that the generation mechanism, and thereby jext
s , is

independent of the transverse spin dynamics in the absorption layer. We write

jext
s =

g↑↓
4πh̄

µs,x(t)x̂, (B.3)

where µs,x(t) is the transverse component of the spin accumulation at the interface
and is in this analysis assumed to be a given function. Furthermore, spin pumping
results in an additional (local) contribution to the damping [142]

τsp = −δ(x)
g↑↓
4πs

n× ∂tn. (B.4)

By realizing that Eq. (B.1) can be written in the form of the continuity equation
[172], the first term on the right-hand side corresponds to the divergence of the
spin current

js = − sA
h̄

n× ∂xn. (B.5)

It should be noted that the terms proportional to a Dirac delta function (τsp and
τSTT) then simply fix the boundary conditions at the interfaces x = 0 and x = L

js(0) = −
g↑↓
4π

n× ∂tn
∣∣
x=0 + n× jext

s × n
∣∣
x=0 , (B.6)

js(L) = 0. (B.7)

To calculate the spin waves excited by jext
s , we simplify the problem by linearizing

Eq. (B.1) using n = (δnx, δny,−1) and defining the transverse magnetization pa-
rameter ψ = δnx + iδny. In the bulk, the transverse magnetization dynamics is then
described by the equation

−i(1− iα)∂tψ =
[
− A

h̄
∂2

x + ω0

]
ψ. (B.8)

Similarly, the boundary conditions Eqs. (B.6)-(B.7) can be expressed in terms of ψ.
It is straightforward to solve this problem analytically. The result is written as a
cosine expansion
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ψ(x, t) =
φ0(t)

2
+

∞

∑
n=1

φn(t) cos
(nπx

L

)
, (B.9)

where each function φn(t) describes the temporal behavior of the nth mode of the
standing spin wave. In the end, the function φn(t) is expressed in terms of a convo-
lution

φn(t) =
g↑↓

4πsLh̄

(
µs,x ∗ Gn

)
, (B.10)

where Gn(t) is the Green’s function that determines the dynamics of mode n. As
long as the effective damping is much smaller than one, the Green’s function is
given by

Gn(t) = θ(t) exp(iωn(1 + iαeff,n)t), (B.11)

where ωn corresponds to the frequency of the nth mode

ωn = ω0 +
A
h̄

(
nπ

L

)2

, (B.12)

and the effective damping is given by

αeff,n =


α +

g↑↓
4πsL

, if n = 0

α + 2
g↑↓

4πsL
, if n ≥ 1

(B.13)

To derive Eqs. (B.11)-(B.13), we have implicitly assumed that |αeff,n|2 � 1. The factor
two indicates that the inhomogeneous modes (n ≥ 1) are damped twice as hard by
interfacial spin pumping. The latter is a standard result and can be derived within
various approaches [174, 175]. As a final remark, we note the close connection
between the function φn(t) and the Fourier components of the spin accumulation.
When we assume that µs,x(t) decays on a timescale given by τ, and we impose that
τ � (αeff,nωn)−1 , we have

φn(t) ∝ µs,x(ωn) exp(iωn(1 + iαeff,n)t). (B.14)

In theory, the relation shows that the amplitude of the spin-wave modes can be used
to map the Fourier transform of the absorbed spin accumulation.
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Table B.1: System parameters used for the calculations in Secs. 8.2 and 8.3. The parameters
of Section 8.4 are given in Ref. [159].

symbol meaning value

Tamb ambient temperature 295 K
γ electronic heat capacity parameter 2000 Jm−3K−2

Cp phonon heat capacity 4 · 106 Jm−3K−1

σ pulse duration 0.05 ps
τD heat dissipation timescale 20 ps
a lattice spacing 0.25 nm
TC,TM TM Curie temperature 1000 K
TC,RE RE Curie temperature 292 K
STM TM spin quantum number 1/2
SRE RE spin quantum number 7/2
µat,TM TM atomic magnetic moment 2.0 µB
µat,RE RE atomic magnetic moment 7.0 µB
ρsd s-d coefficient [36, 131] 1.0 eV
τsd,TM TM s-d scattering time 0.1 ps
τsd,RE RE s-d scattering time 1.0 ps
τs spin-flip scattering time (ferrimagnetic region) 0.2 ps
τs,N spin-flip scattering time (nonmagnetic region)[72] 17 ps
σ conductivity (magnetic region) [72] 6.7 · 106 Sm−1

σN conductivity (spacer layer)[72] 39 · 106 Sm−1

D spin diffusion coefficient (magnetic region)[72] 250 nm2ps−1

DN spin diffusion coefficient (spacer layer)[72] 9500 nm2ps−1

g interfacial conductance parameter 0.4 · 1019 m−2

jCo−Gd interatomic exchange constant [76] 2.0 meV
τsd,Co/Pt Co/Pt s-d scattering time 0.1 ps
τs,Co/Pt Co/Pt spin-flip scattering time 0.02 ps
τsd,Co/Ni Co/Ni s-d scattering time 0.1 ps
τs,Co/Ni Co/Ni spin-flip scattering time 0.2 ps

B.2 System parameters used for the preliminary calculations

In this appendix, we present a few details regarding the modeling in Secs. 8.2 and
8.3. Table B.1 includes the list of all system parameters used in the calculations.
As an additional remark, we note that in the calculations of Sec. 8.2 we modeled
the laser-pulse absorption using P0,Co/Pt = (1/2)P0,GdFeCo. This was required as
otherwise the phonon temperature exceeds the Curie temperature and the model
becomes irrelevant. The resulting heat transport, which only has an indirect effect
on the spin dynamics, is not included in the example calculations.



Summary

In this thesis, we study and develop theoretical models that combine concepts from
femtomagnetism and ultrafast spintronics. Femtomagnetism refers to the research
field that focuses on the control of magnetic order with femtosecond laser pulses.
The field emerged in the late nineties when it was discovered that upon laser-pulse
excitation the magnetization of a ferromagnetic thin film is quenched on a subpi-
cosecond timescale. The field gained a boost in 2007, when it was demonstrated
that laser pulses can be used to switch the magnetization direction in ferrimagnetic
materials, a phenomenon dubbed as all-optical switching (AOS). The discovery of
AOS proved that femtomagnetism might lead to the development of innovative
data-writing technologies. Another key observation is that laser-pulse excitation
induces spin transport and provides an efficient tool to inject spin currents into
adjacent metallic layers, paving the way towards ultrafast spintronic applications.

Despite the vast experimental developments in the field, identifying the physical
origin of the observed phenomena remains a subject of heavy debate. In this thesis,
we build on the theoretical fundaments that have been developed over the past
decades and present new insights regarding the mechanisms underlying ultrafast
magnetism.

In the first research chapter of the thesis, Chapter 3, we discuss a joint description
of ultrafast demagnetization and laser-induced spin transport. By connecting the
s-d model for the local spin dynamics to the diffusive description of spin transport,
we were able to model the typical experiments within a single microscopic model.
The calculations emphasize the plausibility that the demagnetization and generated
spin current have the same physical origin. In Chapter 4, we extend this theory by
including magnons, wave-like spin excitations that contribute to spin transport,
and show that the role of magnons is nonnegligible. We put the theory into context
by comparing it with recent experimental observations that the temporal behav-
ior of the generated spin current is directly proportional to the derivative of the
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magnetization. In Chapter 5, we present a toy model that allows us to compare
two competing contributions to laser-induced spin transport. First, it includes the
spin-polarized transport of hot electrons that are directly excited by the laser pulse.
Second, the model describes the spin current driven by local heating. An analyti-
cal investigation is presented which supports the view that the contribution driven
by local heating, specifically, the spin current that originates from the interaction
between magnons and electrons, is expected to be dominant.

In the last two research chapters of the thesis, Chapters 6 and 7, we focus on model-
ing AOS. Motivated by the experimental demonstration of AOS in Co/Gd bilayers,
we developed a model that simulates AOS in those synthetic-ferrimagnetic sys-
tems. Based on the calculations presented in Chapter 6, we identify the switching
mechanism as a front of reversed Co magnetization that nucleates near the Co/Gd
interface and propagates through the bilayer to establish the full switch. The lat-
ter mechanism makes AOS in synthetic ferrimagnets very robust in comparison to
other switchable systems. Finally, in Chapter 7, we discuss the role of intermixing of
the Co/Gd interface and show calculations that predict that intermixing enhances
the AOS process and leads to a lower threshold fluence.
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