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This paper presents a complete analytical framework for obtaining the performance associated with a free-space
optical (FSO) communication system with a spatial diversity and equal gain-combining technique. The system
is affected by gamma–gamma scintillations with different realistic degrees of channel correlation depending only
on the physical parameters of the link. We derive new analytical closed-form expressions for the average bit error
rate (ABER) considering different scenarios to provide very realistic behavior of the system including differ-
ent numbers of FSO receivers in several geometric configurations, with different receiving areas, different path
lengths, and a variety of turbulence conditions. Furthermore, a very accurate approximate closed-form expression
is also derived for the ABER of any generic coding scheme with either a very complex or, directly, no closed-form
expression for its associated conditional BER that is first obtained in the ideal case of absence of turbulence.
Numerical results via Monte Carlo simulation are provided to corroborate the validity of all the derived analytical
expressions. © 2022 Optica Publishing Group

https://doi.org/10.1364/JOCN.452044

1. INTRODUCTION

Free-space optical (FSO) communications have been studied
as a competitive solution for the establishment of wireless
point-to-point links. This technology has become an attractive
cost-effective solution to provide highly secure and broadband
transmissions in areas where fiber infrastructure is deficient
or nonexistent [1–6]. In this respect, FSO communications
benefit from inherent huge unregulated bandwidth availabil-
ity in optical frequencies, supporting the increasing traffic
demand required by today’s society. However, these systems
can be affected by atmospheric turbulence, characterized by a
random space–time redistribution of the refractive index, and
causing a variety of adverse effects on the propagating optical
wave in regard to temporal irradiance fluctuations, commonly
described as scintillation [7]. That scintillation produces
turbulence-induced fading in the received signal intensity,
leading to degradation of overall system performance.

An appropriate solution to mitigate its degrading effects is
to employ a spatial diversity reception [8–12]. In this tech-
nique, by using N apertures at the receiver side, the inherent
redundancy of spatial diversity has the potential to significantly
enhance the performance of FSO communication systems.

A way to evaluate that performance is via knowledge of the
analytical expression for the probability density function (pdf )
of the sum of correlated irradiances seen at the receiver side.
Thus, in [11], the authors proposed an analytical approach
for the correlated gamma–gamma fading channel based on
an α −µ distribution. However, its parameters depend on
nonlinear functions requiring numerical methods to be solved.
To overcome that issue, Djordjevic et al . [12] calculated the
multivariate constant correlated gamma–gamma distribution
assuming that the correlation among small-scale turbulence
eddies is neglected. The result is a pdf involving an infinite
summation that may complicate the evaluation of further ana-
lytical expressions associated with the performance of the FSO
system. Hence, in [13], new analytical closed-form expressions
were derived for the pdf of the sum of identically distributed
correlated gamma–gamma random variables leading to a
mathematically tractable method to characterize the statistical
behavior of the received optical irradiance in a spatial diversity
context. To this aim, and to achieve compact expressions,
it was assumed that the signals reaching the N receivers are
deflected by the same eddies and, therefore, large-scale effects
are common for all of them. Accordingly, the existence of a
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certain degree of correlation between any pair of optical signals
on the receiver side is owed only to their associated small-scale
scintillations. This feature is studied in this paper, evaluating
its impact on overall system performance. To include real-
istic scenarios, the correlation factor is written in terms of
the spatial coherence radius, and so, all results depend only
on the physical parameters of the link. Furthermore, various
physical receiver topologies are considered, analyzing their
performance in terms of error probability and for different
turbulence conditions. Thus, closed expressions are proposed
for the average bit error rate (ABER) as a function of the chan-
nel coding scheme, the channel conditions, and the level of
correlation between detected signals. First, the on–off keying
(OOK) case is analyzed for its simplicity and ease of implemen-
tation, to later compare its performance with the one obtained
from the variable weight multiple pulse-position modulation
(vw-MPPM) scheme, successfully proposed by the authors
in indoor [14] and outdoor [15] wireless communications.
The latter scheme was chosen as an illustrative example of any
generic nonlinear block coding transmission technique whose
conditional BER (CBER) cannot be derived in a closed-form
expression. As a previous step, the hyperexponential curve
fitting method presented in [16] is adopted to obtain a very
accurate analytical expression for the ABER associated with the
vw-MPPM technique. Finally, all analytical results derived here
were numerically validated by Monte Carlo simulations.

It is worth mentioning that a terrestrial FSO link that con-
sists of a single-mode semiconductor laser as the transmitter
and N photodetectors as the receiver is considered, assum-
ing an intensity modulation with direct detection (IM/DD)
scheme and an equal gain-combining (EGC) technique. Point
receivers are supposed for which maximum adverse effects are
observed.

2. SPATIAL DIVERSITY RECEPTION

Intensity fluctuations in the received signal due to channel
fading induced by atmospheric turbulence can result in con-
siderable degradation of system performance. Spatial diversity
techniques provide an attractive alternative approach for fading
compensation with their inherent redundancy. This technol-
ogy can be used over FSO links, which implies the deployment
of multiple small aperture laser transmitters and receivers.
To extract the maximum benefit from the spatial diversity
technique, the spacing between receivers should be greater
than the fading correlation length, which may be difficult to
achieve in practice due to the limited available physical space
or because the receiver spacing required for uncorrelated fading
may exceed the beam diameter in power-limited links with
well-collimated beams. In fact, the degree of correlation among
FSO receivers proved to be one of the main performance
limiting factors of the system. Therefore, we consider in this
work how correlation among the different atmospheric scin-
tillation sequences captured by each photodetector affects the
overall performance when they are forming several geometric
configurations inside the same magnitude of total receiving
area.

Fig. 1. SIMO model for FSO systems with a laser transmitter
and N optical receivers. The model is representative to evaluate the
impact of spatial correlation between scintillation sequences.

A. System Model

Figure 1 describes our single-input–multiple-output (SIMO)
system model with spatial diversity reception considering N
identical photodetectors and the IM/DD technique. Thus,
assuming EGC, the received optical irradiance, I , can be
expressed as a sum of each individual i th received irradiance
by every single receiver aperture, which is a random variable
with gamma–gamma distribution. This variable is the result of
a modulation process that can be written as Ii = X i Yi , where
X i and Yi are random variables of large-scale and small-scale
scintillation components, respectively, corresponding to each
photodetector.

It is assumed that the same large eddies affect the signal
received by the N receiver apertures (see Appendix A for a
complete discussion on this assumption). Hence, the large-
scale scintillation component is a common contribution for
all of them, i.e., X i = X , ∀I = 1, . . . , N, with X following a
gamma distribution with shape parameters αx and βx = 1/αx ,
denoted as G(αx , 1/αx ). Note that with this assumption,
we consider the most unfavorable scenario for large-scale
correlation, useful as a benchmark in optical systems design.
In contrast, the diffractive small-scale turbulence effect Yi

depends on each aperture, although it is assumed that each Yi

is identically gamma distributed and characterized by αYi = α

and βYi = 1/(Nα); thus Yi is denoted as G(α, 1/(Nα)), as
detailed in [13].

Note that αx and α are related to the effective number of
large-scale and small-scale turbulent cells, respectively, and
their ranges vary from values very close to one, for strong tur-
bulence conditions, to values�1, for weak turbulence regimes
[7]. As normalized irradiance is considered, E [I ] = 1, then

I = X
N∑

i=1

Yi = XV, (1)

where V =
∑N

i=1 Yi , with V being a random variable describ-
ing the small-scale atmospheric effect over the combined
received optical irradiance. When taking into account the
correlation factor between any pair of received small-scale
sequences, i.e., the correlation between variables Yi and Y j ,
with i, j = 1, . . . , N, we can build the corresponding real
symmetric N × N correlation matrix, Cy, given as

Cy =


1 p12 · · · p1N

p21 1 · · · p2N
...

...
. . .

...
pN1 pN2 · · · 1


N×N

, (2)
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(a) (b) (c)

Fig. 2. (a) Constant, (b) exponential, and (c) star correlation mod-
els used for the simulations carried out.

with pij being the cross-correlation coefficient associated with
the distance between receivers at positions i and j , respectively.
Futher details can be found in [13].

B. Receiver Distribution Topologies

The space distribution of receivers determines a particular
geometry that may affect the performance of the system.
Namely, we focus on three different spatial geometries of
receivers, as depicted in Fig. 2: constant, exponential, and star
topologies.

The first one is the constant correlation model, described
in [17], and associated with a configuration of evenly spaced
receivers where pij = p, ∀i, j = 1, . . . , N, with p represent-
ing the correlation coefficient between the gamma distributed
signals received at adjacent photodetectors. Its most representa-
tive example corresponds to three receivers, N = 3, placed in
an equilateral triangle, whose associated correlation matrix is
described as

Cy =

 1 p p
p 1 p
p p 1


3×3

. (3)

On the other side, the second considered geometry, the
exponential correlation model, corresponds to a linear equidis-
tant photodetector array [17], with the following correlation
matrix:

Cy =


1 p1 p2 p3 . . . pN

p1 1 p1 p2 . . . pN−1

p2 p1 1 p1 . . . pN−2

. . . . . . . . . . . . . . . . . .

pN pN−1 pN−2 pN−3 . . . 1


N×N

. (4)

Finally, we also consider a model of N = 4 receivers placed
in what we call a star topology due to its physical shape, resem-
bling a star [18,19], where there is a central photodetector
surrounded by three others forming an angle of 120◦ between
them with regard to the central photodetector. Its associated
matrix is given by

Cy =

 1 p1 p2 p2

p1 1 p1 p1

p2 p1 1 p2

p2 p1 p2 1


4×4

, (5)

where correlation factors p1 and p2 are associated with separa-
tion distances d and

√
3d , respectively, between adjacent pho-

todetectors, as shown in Fig. 2(c) after using the law of sines.

C. Correlated Channels

As detailed in previous sections, the correlation matrix
describes the degree of dependence among channels in recep-
tion, which is defined in a straightforward manner by the
correlation coefficient. From Eq. (1), such a correlation coeffi-
cient is obtained from the small-scale scintillation component
since the large-scale scintillation component is a common
contribution for all of the N receiver apertures.

Let us define now the correlation length ρc of irradiance
fluctuations as the width of the irradiance covariance func-
tion at 1/e 2 of its peak value. In other words, the correlation
length describes the average speckle size at the receiver. This
parameter is particularly useful in determining the size of the
receiver aperture needed to mitigate the effect of atmospheric
turbulence, mainly in strong turbulence. Note that ρc depends
on both the weather and the link distance. For small-scale
scintillations [those contributing to the correlation matrix,
according to Eq. (1)], and following [20], the correlation
length is determined by (1) the Fresnel zone

√
L/k under weak

turbulence, with k = 2π/λ being the wavenumber of optical
radiation, with λ being the optical wavelength and L denoting
the propagation path length, and (2) by the spatial coherence
radius ρ0 (which is now smaller than the Fresnel zone) under
strong turbulence. Note that at the onset of strong fluctuations,
the coherence radius approaches the size of the Fresnel zone. In
this way, when the refractive index structure parameter C 2

n is
treated as constant, i.e., a horizontal FSO link, the plane wave
spatial coherence radius ρ0 is defined, from [20], as

ρ0 = (1.46C 2
n k2L)−3/5, l0�

√
λL� L0, (6)

where C 2
n represents a measure of the strength of the turbu-

lence at each moment, and L is the propagation path length.
So, summarizing, in this paper, we consider

ρc =

{√
L/k, weak fluctuations

(1.46C 2
n k2L)−3/5

, strong fluctuations
. (7)

Interestingly, Fig. 3 shows the values of ρ0 for different
values of L and for weak (C 2

n = 4× 10−15), moderate
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n
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Fig. 3. Spatial coherence radius value, ρ0, dependent on the length
of the optical channel, L , for C 2

n = 4× 10−15 (blue line), C 2
n = 10−14

(red line), and C 2
n = 10−13 (black line), related to conditions of weak,

moderate, and strong turbulence, respectively.
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(C 2
n = 10−14), and strong (C 2

n = 10−13) turbulence con-
ditions, assuming a wavelength of λ= 1550 nm. The
performance of

√
L/k is also provided. From Fig. 3, we

can observe that the stronger the intensity of turbulence, the
lower the correlation factor among channels when short link
distances are considered. In this respect, separations between
receivers of solely a few centimeters are sufficient enough to
have totally independent channels. On the contrary, when
turbulence strength decreases, either photodetectors must be
placed farther apart from the others or longer propagation path
links are required to obtain the maximum benefit from the
spatial diversity technique.

Moreover, and from [21,22], we adopt a more restrictive
value for the Fresnel zone size:

√
λL . Hence, and with the

aim of obtaining the maximum performance from a spatial
diversity technique, the receivers will have to be separated by a
distance greater than or equal to ρc .

Now the aforementioned spatial correlation length given
in Eq. (7) can be applied to calculate the cross-correlation
coefficients in the correlation matrix by using the covariance
function. In [21,23], a Gaussian spatial covariance function
for log-amplitude fluctuations is employed that approximates
the theoretical one resulting from Rytov theory [22]. This
technique is widely used in line-of-sight (LOS) propagation
problems because it simplifies the procedure of obtaining both
amplitude and phase fluctuations and was extended to any
regime of turbulence via the modified Rytov theory [20].

On another note, a useful property in turbulent media
is the well-known Taylor’s hypothesis of frozen turbulence
[22,24]. Under this hypothesis, the collection of atmospheric
eddies will remain frozen in relation to one another, while
the entire set is transported as a whole along some direction
by the wind. When a narrow beam propagating over a long
distance is assumed, the refractive index fluctuations along the
direction of propagation are well averaged and are weaker than
those along the transverse direction to propagation. Hence,
based on the Taylor’s frozen turbulence hypothesis, spatial
statistics can be converted to temporal statistics by knowl-
edge of the average wind speed transverse to the direction of
propagation, u⊥ [22,24], Thus by using both the Gaussian
spatial covariance function and the space-to-time conversion
of statistics provided by the frozen turbulence hypothesis, the
covariance function B I (ρ, L) for the irradiance fluctuations
can be written as

B I (u⊥τ, L)= B I (ρ, L)= B I (dij, L)= σ 2
I exp

(
−

d2
ij

ρ2
c

)
,

(8)
where dij is the separation distance between positions i and j
in the plane of the receiver, perpendicular to the direction of
propagation. From Eq. (8), the normalized covariance function
is defined as

b I (dij)=
B I (dij)

σ 2
I

= ρIij . (9)

Thus, we can obtain a normalized correlation matrix for irra-
diance fluctuations for N receivers in a plane transverse to the
direction of propagation of the light beam. Hence,

CI =

 1 ρI12 · · · ρI1N

ρI21 1 · · · ρI2N

· · · · · · · · · · · ·

ρIN1 ρIN2 · · · 1


N×N

. (10)

To sum up, the correlation coefficient, ρI , for the irradiance
fluctuation that will be valid for any turbulent condition, and
will depend on both the separation distance between the N
receivers, dij, and on the correlation length ρc is

ρIij = exp

(
−

d2
ij

ρ2
c

)
. (11)

To obtain the corresponding normalized covariance func-
tion for small scales, Cy, we must calculate its correlation
coefficients, ρYi ,Y j = pi, j , following the notation provided in
Eqs. (3)–(5). To this aim, we derive the correlation coefficient
between Ii and I j , both gamma–gamma random variables,
in a straightforward manner due to the independence of the
large- and small-scale fading coefficients, and assuming that the
correlated random variables in Eq. (1) are combined with the
EGC technique. Thus,

ρIij =
B Ii ,I j (dij, L)√

σ 2
Ii
σ 2

I j

=
ρYi ,Y jαx + ρX i ,X jα + ρYi ,Y j ρX i ,X j

αx + α + 1
,

(12)
where

ρX ij =
BX i ,X j (dij, L)√

σ 2
X i
σ 2

X j

; (13)

ρYij =
BYi ,Y j (dij, L)√

σ 2
Yi
σ 2

Y j

. (14)

Since large-scale effects are common for N receivers,
i.e., we assume that X i = X , ∀i = 1, . . . , N, then ρX ij = 1.
Accordingly, as in [11], we can obtain ρYi ,Y j as

ρYij = pi, j =
(αx + α + 1)ρIij − α

αx + 1
, (15)

which now can be inserted into Eq. (2) to finally obtain Cy.
To achieve the maximum benefit of the spatial diversity

technique, the correlation coefficient must be close to zero, so
the separation distance between receivers must be sufficient to
consider channels as independent as possible.

D. Statistical Distribution of the Received
Irradiance I

The channel model assumed here is based on the modified
Rytov theory, defining the normalized irradiance as a prod-
uct of two gamma random processes related to large- and
small-scale turbulent eddies. Therefore, and from Eq. (1), the
irradiance gamma–gamma pdf, f I (I ), assumes that small-scale
irradiance fluctuations are modulated by large-scale irradiance
fluctuations of the propagating wave. Then, the V pdf can be
calculated in the way proposed in [25]. Next, the statistical
distribution of the total received irradiance, I , can be directly
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obtained by averaging the pdf of V over the gamma distribu-
tion characterizing the variable X , obtaining, as shown in [13],
the pdf of the combined received irradiance as

f I (I )= 2
[det(A)]α0(αx )

N′∑
i=1

αi∑
m=1

cmi
0(m)λ

m−αx
2

i α
m+αx

2
x

×I Nα−1−m−αx
2 Km−αx

(
2
√
αx I
λi

)
,

(16)

where {λi }
N
i=1 are the eigenvalues of the matrix A= DC ,

with D being a N × N diagonal matrix with entries β for
i = 1, . . . , N, whereas C=

√
Cy is an N × N positive definite

correlation matrix whose elements are the correlation coeffi-
cients of the underlying Gaussian processes that lead to gamma
distributed fading, and det(A)=

∏N
i=1 λi . Furthermore, 0(·)

corresponds to the gamma function, N′ is the number of the
different eigenvalues of matrix A, and K ν(·) is the modified
Bessel function of the second kind and order ν. On the other
hand, parameter αi is the product of the algebraic multiplic-
ity of the eigenvalue, denoted as µA(λi ), with parameter α,
i.e., αi =µA(λi ) · α. It is obtained using the partial fraction
expansion method described in [26] for performing the con-
version from product to summation of fractions that is applied
in Eq. (22) in [13] to obtain Eq. (23) in [13]. Finally, cmi is a
coefficient depending on I and arising from the partial fraction
expansion procedure written as

cmi =
1

(αi −m)!
dαi−m

dwαi−m

 N′∏
j=1
j 6=i

1

(w− d j )
α j


w=di

=
1

(αi −m)!

∑
k1+···

î
+kN′=αi−m

(
αi −m

k1 . . .
î

kN′

)

×

N′∏
j=i
j 6=i

[
(−1)k j (α j )k j

(di − d j )
−α j−k j

]
, (17)

where î means that ki is omitted in the previous corresponding
sequences. Then (α j )k j represents the Pochhammer symbol
with di =−I/λi ; αi is the product of the algebraic multi-
plicity of the eigenvalue, denoted as µA(λi ); and the set of ki

coefficients arises from the multinomial theorem.
Two particular scenarios can be considered from Eq. (16).

The first one arises when the small-scale scintillation sequences,
Yi , are completely uncorrelated, whereas the second one is
obtained when those received sequences are totally corre-
lated. For the first scenario, small-scale effects are considered
completely independent, and the correlation matrix, Cy,
is reduced to a diagonal matrix. For this case, large- and
small-scale effects are modeled as X ∼ G(αx , βx ) and
V =

∑N
i=1 Yi ∼ G(Nα, 1/(Nα)), respectively. The second

scenario consists of receiving N totally correlated small-scale
irradiance fluctuations. Hence, V =

∑N
i=1 Yi ∼ G(α, 1/(α)).

Then, the irradiance pdf follows a classic gamma–gamma
distribution [27]. In the next section, some analytical BER

expressions will be derived to characterize system performance
under any turbulence regime, any number of photodetectors,
any degree of correlation among their received sequences, and
any coding technique for the three topologies shown in this
section, and representing any possible realistic scenario. Note
that in this paper, weather-induced attenuation has not been
considered for the sake of clarity. Although that effect also
degrades the performance of FSO systems in the way shown
in [28], due to its deterministic nature, such atmospheric
attenuation acts merely as a scaling factor as indicated in [29].

3. AVERAGE BER FOR UNCODING OOK
TRANSMISSION SCHEME

BER is one of the most useful figures of merit to assess the
performance of any communication link. In this section, we
derive the BER expression assuming an IM/DD link using
OOK affected by additive white Gaussian noise (AWGN) with
zero mean and variance σ 2

n , owing to the high intensity shot
noise produced by ambient light. In the next section, we will
generalize this expression to any coded transmission scheme.

As a previous step, the associated CBER is first calculated for
a given electrical signal-to-noise ratio (SNR) when analyzing
an AWGN channel in the ideal case of absence of turbulence
(namely, denoted by γ0), assuming each transmitted sym-
bol equally likely to be sent. Furthermore, the instantaneous
electrical SNR can be defined as SNR= iS/σn =

√
γ , with

iS = R Pr I being the detector signal current, and where σn des-
ignates the root-mean-square (rms) noise current. Accordingly,
the electrical SNR in absence of atmospheric fluctuations is
henceforth SNR0 =

√
γ0, and it is obtained as iS0/σn , with

iS0 = R Pr representing the signal current in the ideal case of

absence of turbulence, with γ0 =
(Pr R)2

σn
, and consequently,

γ = I 2γ0. Hence, and from [30], the CBER associated with an
IM/DD AWGN channel using OOK is expressed as

CBER(I , γ0)= Pb(e |I )=
1

2
erfc

(
Pr R I

σn

√
2

)
=

1

2
erfc

(
I

√
γ0

2

)
,

(18)
where Pr is the average of total received optical power, with R
being the responsivity and σ 2

n denoting the AWGN variance,
whereas erfc(·) is the complementary error function.

Now, as shown in [30], the ABER, Pb(e ), can be obtained
by averaging Pb(e |I ) given in Eq. (18) over f I (I ) given in
Eq. (16):

Pb(e )=
∫
∞

0
Pb(e |I ) f I (I )dI . (19)

To solve Eq. (19), we express both the Bessel function
included in Eq. (16), K a−b(·), and the complementary error
function from Eq. (18), erfc(·), as Meijer-G functions using
Eqs. (07.34.03.0605.01) and (07.34.03.0619.01) in [31],
respectively. Thus,

G2,0
0,2 (z|a , b)= 2z

a+b
2 K a−b

(
2
√

z
)
; (20)

G2,0
1,2

(
z

∣∣∣∣ a
a − 1, a − 1/2

)
=
√
πza−1erfc(

√
z). (21)
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Now we can solve Eq. (19) by applying
Eq. (07.34.21.0013.01) in [31]. Hence,

Pb(e )= 1
4π3/2[det(A)]α0(αx )

N′∑
i=1

αi∑
m=1

1
0(m)

λ

m−αx
2

i α

m+αx
2

x
(αi−m)!

×
∑

k1+···
î
+kN′=αi−m

(
αi −m

k1 . . .
î

kN′

)
22Nα−m+αx

×2

∑N′
j=1
j 6=i

[−2α j−2k j ]

×

N′∏
j=1
j 6=i

[
(−1)k j (α j )k j

(
−1
λi
+

1
λ j

)−α j−k j
]

×

(
αx
λi

)−Nα−m−αx
2 +

∑N′
j=i
j 6=i

[−α j−k j ]



×G2,4
5,2

(
8γ0λ

2
i

α2
x

∣∣∣∣ A, B,C , D, 1
0, 1

2

)
,

(22)

where

A=
1+

∑N′
j=1
j 6=i
[α j + k j ] − Nα

2
,

C =
1+

∑N′
j=1
j 6=i
[α j + k j ] − Nα +m − αx

2

B =
2+

∑N′
j=1
j 6=i
[α j + k j ] − Nα

2
,

D=
2+

∑N′
j=1
j 6=i

[
α j + k j

]
− Nα +m − αx

2
.

From the latter equation, we can distinguish two particu-
lar scenarios associated with the two extreme cases of p = 0
and p = 1, corresponding to non-correlated (nc) and totally
correlated (tc) small-scale scintillations. After some algebraic
manipulations, Eq. (22) can be written, respectively, as

P nc
b (e )=

2Nα+αx−1

4π
√
π0(Nα)0(αx )

× G2,4
5,2

(
8γ0

(αx Nα)2

∣∣∣∣ 1−Nα
2 , 2−Nα

2 , 1−αx
2 , 2−αx

2 , 1
0, 1

2

)
,

(23)

P tc
b (e )=

2α+αx−1

4π
√
π0(α)0(αx )

×G2,4
5,2

(
8γ0

(αxα)
2

∣∣∣∣ 1−α
2 , 2−α

2 , 1−αx
2 , 2−αx

2 , 1
0, 1

2

)
. (24)

4. AVERAGE BER FOR A GENERIC CODING
TRANSMISSION SCHEME

In this section, we want to show how to derive analytical
closed-from expressions for the exact ABER of FSO systems
with spatial diversity and correlated channels employing any

generic coding scheme. As a representative example of the
latter, we analyze the use of vw-MPPM, successfully pro-
posed by the authors in indoor [14] and outdoor [15] wireless
communications due to its high efficiency.

The vw-MPPM scheme is seen as a type of modulation
whose purpose is to increase the peak-to-average optical
power ratio (PAOPR) parameter to provide better perform-
ance in the optical link. This is a desired feature for any FSO
system affected by turbulence, overcoming the imposed dis-
tortion when a system bandwidth constraint is required. The
basic design criterion is to keep the average optical power
transmitted at a constant level.

On another note, rate-adaptive transmission schemes are
usually preferred for keeping the quality of service against
adverse channel conditions. In this respect, and depending on
the available SNR, the bit rate will be adapted (the stronger
the intensity of turbulence, the slower the data rate) until a
sufficiently low error probability is attained. Thus, the rate-
adaptive transmission scheme using block coding of variable
Hamming weight is a very good alternative to maximize link
performance, achieving a high rate adaptability by simply
changing the coding translation matrix. This coding technique
is based on MPPM where codewords with different Hamming
weights are allowed. This fact minimizes the presence of pulses
at the optical signal leading to an increment in the PAOPR
so vw-MPPM can be seen as an improved version of both the
conventional classical scheme based on PPM and MPPM in
terms of link performance.

For the sake of completeness, we briefly describe the vw-
MPPM technique. Thus, the coding process consists of a
translation procedure between the input data alphabet, CK ,
with k-bit codewords, and the coded alphabet, C̃N , a subset of
CN , comprising 2n possible n-bit codewords. For the proper
choice of C̃N , codewords with different Hamming weights are
proposed, leading to a block coding with a variable amount
of pulses. Hence, if Cn,w is the block code consisting of all
possible codewords of length n with a Hamming weight of w,
the code C̃N is defined using the following codes Cn,w:

C̃N =

(
x−1⋃
i=0

Cn,i

)
∪ C̃n,x , (25)

with C̃n,x representing the codewords subset of Cn,x used
in C̃N . Thus, the coding table associated with C̃N con-
sists of all the possible codewords with Hamming weight i ,
0≤ i ≤ (x − 1), together with a subset of x -weighted code-

words given by the expression 2k
−
∑x−1

i=0

(n
i
)
, where

(n
i
)

is the number of codewords of Cn,i . In this sense, the rate
associated with the block code is given by k/n.

Since vw-MPPM is a nonlinear block coding scheme,
the standard methods based on the characteristic functions
of linear block codes are not suitable to obtain closed-form
expressions of CBER. This is another reason that we have
selected this modulation as a representative example of any
generic coding technique. The authors successfully proposed
in [16] a novel alternative based on a hyperexponential fit-
ting technique to achieve a very accurate CBER expression,
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Table 1. Hyperexponential Fitting Parameters a, b,
and c in the Absence of Turbulence

Code Rate a b c

2/3 0.3870 2.7150 0.8890
6/12 0.6364 6.8958 0.8871
9/36 0.7246 42.4424 0.8600

given by

CBER(I , γ0)= Pb(e |I )≈ a exp
[
−b
(
γ0 I 2)c ]

, (26)

with γ0 being, again, the electrical SNR in the absence of tur-
bulence, and where the hyperexponential fitting parameters are
a , b, c ∈<+. In Table 1, we show the hyperexponential fitting
parameters for most relevant vw-MPPM code rates [14].

Thus, the ABER, Pb(e ), is again obtained by averaging
Pb(e |I ) given in Eq. (26) over f I (I ) presented in Eq. (16), in
the form

Pb =

∫
∞

0
a exp

[
−b
(
γ0 I 2)c ]

f I (I )dI . (27)

Following a procedure similar to the one detailed in [16],
the Fox-H [32] function is identified after employing the
Mellin transform along with some of its properties. In a more
straightforward way, we can invoke Eq. (07.34.21.0012.01) in
[31] if, previously, we write not only the modified Bessel func-
tion included in Eq. (16), K a−b(·), as a Meijer-G function,
as shown in Eq. (20), but also the hyperexponential function
from Eq. (26) in the way indicated by Eq. (07.34.03.0228.01)
in [31]:

G1,0
0,1

(
bγ c

0 I 2c
∣∣∣−0

)
= exp[−b(γ0 I 2)c ]. (28)

Now it is possible to use Eq. (07.34.21.0012.01) in [31] to
solve Eq. (27) as

Pb(e ) = a
[det(A)]α0(αx )

∑N′

i=1

∑αi
m=1

1
0(m)

λ
m−αx

2
i α

m+αx
2

x

(αi−m)!

×
∑

k1+···
î
+kN′=αi−m

(
αi −m

k1 . . .
î

kN′

)∏N′
j=1
j 6=i

×

[
(−1)k j (α j )k j

(
−1
λi
+

1
λ j

)−α j−k j
]

×

(
αx
λi

)−(Nα− m−αx
2 +

∑N′
j=1
j 6=i

[−α j−k j ]
)

H1,2
2,1

(
bγ c

0 λ
2c
i

α2c
x

∣∣∣ Â, B̂
(0, 1)

)
,

(29)
where

Â=
(

1+
∑N′

j=1
j 6=i
[α j + k j ] − Nα, 2c

)
,

B̂ =
(

1+
∑N′

j=1
j 6=i
[α j + k j ] − Nα +m − αx , 2c

)
.

In Eq. (29), Hkl
ij (·) represents the Fox-H function, a gen-

eralization of the Meijer-G function introduced in [33] and
defined from the Mellin–Barnes integral. We must remark
that the expression obtained in Eq. (29) is completely generic,
valid for any turbulent regime, any degree of correlation among
channels, any number of receivers and geometric topology, and

whatever coding and modulation technique will be used, as
long as it can be adjusted with this numerical method.

5. RESULTS AND DISCUSSION

In this section, we present some Monte Carlo numerical
results for different turbulence conditions used to corrobo-
rate the validity of the ABER expressions proposed in this
paper. It is worth mentioning that we have used the code given
in Appendix E in [34] to numerically evaluate the special
functions (Meijer-G and Fox-H functions) included in the
equations derived in this work. In addition, we must recall
that we have always considered point detectors in this paper
for which turbulence-induced signal fluctuations can be quite
deleterious to system performance. Accordingly, we implement
a method based on the Cholesky decomposition on covariance
matrix Cy, for generating correlated gamma random variables.
That method is performed by matching their first and second
moments, as detailed in [35]. Finally, we must mention the
way we use Eq. (7). Thus, following Fig. 3, we obtain the
definition of the correlation factor from Eq. (7) by taking into
account that small-scale contributions to scintillation are asso-
ciated with turbulent cells smaller than the first Fresnel zone
or the transverse spatial coherence radius, ρ0, given in Eq. (6),
whichever is smallest [30]. Hence, the smallest value from both
magnitudes will determine the definition of Eq. (7) employed
in the results presented in this paper. As detailed in previous
sections, we suppose that large-scale fluctuations are common
for all receivers, an approximation completely consistent with
the receiving areas considered in this paper (30 and 60 cm2)
where the point photodetectors will be distributed, as detailed
below. Last, the figures of results shown in this section and
involving BER performance represent the OOK transmission
scheme unless noted otherwise. In all those figures, the numeri-
cal results are represented by circles to demonstrate the validity
of the analytical expressions developed in the previous section.

Figure 4 shows the analytical results corresponding to
the two extreme cases represented in Eqs. (23) and (24).
The forward error correction (FEC) technique limit is dis-
played as a reference, indicating an ABER≤ 3.8× 10−3.
The FEC (with only 7% of overhead) with an ABER limit of
ABER≤ 3.8× 10−3 for hard decision [36] is widely adopted
in many communication systems including those operating at
optical frequencies on atmospheric [37–41] or even underwa-
ter turbulence [42]. This ABER limit represents the error-free
transmission regime when FEC is employed. Moreover, for
terrestrial systems, the International Telecommunication
Union (ITU) has also standardized a 7% coding overhead (to
guarantee interoperability of systems) [43]. In this case, the
standard FEC scheme uses the ITU standard Reed Solomon
code RS(255,239). Other options are, for example, to employ
enhanced FEC where several codes are serially concatenated
with a certain interleaving depth, and some iterations of decod-
ing are used to improve the error correction capability, which
adds a 7% data rate overhead and provides more than 8 dB of
gain [38].

Coming back to the aforementioned ABER limit of
3.8× 10−3, for such a reference, a difference of 2.2 and 9 dB
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Fig. 4. BER versus average electrical SNR for extreme small-
scale correlation cases p = 0 and p = 1. N = 3 receivers for
C 2

n = 4× 10−15, C 2
n = 10−14, and C 2

n = 10−13 m−2/3, related to
conditions of weak, moderate, and strong turbulence, respectively.

(a) (b) (c)

Fig. 5. Configuration of receivers and obtained separation among
them considering a fixed circle area of 30 cm2 in reception for three
different correlation models called (a) constant, (b) exponential, and
(c) star models.

in SNR0 is obtained when considering weak and strong turbu-
lence, respectively. As expected, better performance is obtained
when employing non-correlated small-scale scintillations and
weak atmospheric turbulence.

However, in many situations, it is not realistic to consider
totally uncorrelated channels. On the contrary, the separation
between receivers determines the degree of correlation associ-
ated with the sequences of power received by them. Therefore,
the adoption of a particular physical configuration (topology)
of photoreceivers may impact the overall performance of the
link. In this paper, we have analyzed the three different topol-
ogies depicted in Fig. 2 with the purpose of both offering a
realistic scenario and weighting the impact of the separation
distance among receivers. Moreover, the receivers are included
in the same fixed area of 30 cm2, with two different shapes: a
circular surface and a square one. Thus, Figs. 5 and 6 show the
obtained maximum separation distances for both scenarios.
For instance, Fig. 7 shows how to obtain the maximum sep-
aration distance among photodetectors in a square surface of
30 cm2.

In this respect, Fig. 8 shows an analytical simulation for
the BER associated with the constant correlation model, as
indicated in Eq. (3), with the receivers distributed in a fixed
square area, whereas the values obtained from the small-scale
correlation, p , and total correlation, ρI , are shown in Table 2
according to Eqs. (11) and (15). In addition, as in the rest of
the simulations, conditions of weak, moderate, and strong

(a) (b) (c)

Fig. 6. Configuration of receivers and obtained separation among
them considering a fixed square area of 30 cm2 in reception for three
different correlation models called (a) constant, (b) exponential, and
(c) star models.

Fig. 7. Constant correlation model inside a square area of 30 cm2.
Photodetectors are placed on nodes B, D, and F.

turbulence have been considered, with C 2
n = 4× 10−15 m−2/3,

C 2
n = 10−14 m−2/3, and C 2

n = 10−13 m−2/3, respectively, as
well as three different path lengths of L = 700 m, L = 1500 m,
and L = 1800 m. For the sake of clarity, the performance of an
ideal AWGN channel is added as a reference. We can observe
how the longer the propagation path length, the worse the
performance we obtain. For example, for a strong turbulence
regime, and considering a separation between receivers of
d = 5.35 cm [Fig. 5(a)], the results get worse as the length of
the link increases. Such performance can be improved when
the different channels become more uncorrelated.

Since the difference in separation distance between cor-
relative photodetectors when using a circular surface is barely
0.32 cm with respect to the case of employing a square area
(both fixed to 30 cm2), their associated behaviors do not show
a significant difference, and, therefore, Fig. 8 can represent
both cases. Accordingly, and related to that small difference in
separation distance between receivers, the correlation coeffi-
cients present values for a circular area (see Table 3) similar to
those for a square surface.

On the other hand, Fig. 9 depicts the obtained behavior
for the exponential correlation model and a square area of
30 cm2. If Fig. 9 is now compared to Fig. 8, we can appre-
ciate a slight improvement of this latter topology with



532 Vol. 14, No. 7 / July 2022 / Journal of Optical Communications and Networking Research Article

0 5 10 15 20 25 30 35 40
  SNRo

10-6

10-5

10-4

10-3

10-2

10-1

100
  

B
E

R
  

 L=700m
 L=1500m
 L=1800m

               Cn
2=4x10-15m-2/3

               C
n
2=10-14m-2/3

               C
n
2=10-13m-2/3

AWGN

Fig. 8. BER versus average electrical SNR for the constant model
of correlation with a receiving square area of 30 cm2 and N = 3
receivers. Results are shown for weak, moderate, and strong tur-
bulence, C 2

n = 4× 10−15, C 2
n = 10−14, and C 2

n = 10−13 m−2/3,
respectively, and link lengths of 700, 1500, and 1800 m, respectively.

Table 2. Small-Scale Correlation Factors, p, and Total
Correlation Factor, ρI, Using the Constant Correlation
Model with 30 cm2 of Square Area, for the Proposed
Link Lengths Considering Weak, Moderate, and Strong
Turbulence, C2

n = 4× 10−15, C2
n = 10−14, and

C2
n = 10−13 m−2/3, Respectively

Link Lengths
700 m 1500 m 1800 m
p|ρI p|ρI p|ρI

C 2
n = 4× 10−15 0.052|0.507 0.251|0.610 0.316|0.644

C 2
n = 10−14 0.052|0.491 0.251|0.598 0.316|0.633

C 2
n = 10−13

→ 0|0.375 → 0|0.375 → 0|0.375

Table 3. Small-Scale Correlation Factors, p, and Total
Correlation Factor, ρI, Using the Constant Correlation
Model with 30 cm2 of Circular Area, for the Proposed
Link Lengths Considering Weak, Moderate, and Strong
Turbulence, C2

n = 4× 10−15, C2
n = 10−14, and

C2
n = 10−13 m−2/3, Respectively

Link Length
700 m 1500 m 1800 m
p|ρI p|ρI p|ρI

C 2
n = 4× 10−15 0.072|0.517 0.292|0.632 0.359|0.666

C 2
n = 10−14 0.072|0.502 0.292|0.620 0.359|0.656

C 2
n = 10−13

→ 0|0.375 → 0|0.375 → 0|0.375

respect to the exponential one, from 0.75 dB for the case of
C 2

n = 4× 10−15 m−2/3 and L = 700 m for an error prob-
ability of 10−5, to around 3 dB for C 2

n = 10−14 m−2/3 and
L = 1800 m for the same value of error probability. The curves
representing C 2

n = 10−13 m−2/3 remain the same since the cor-
relation factor affecting them in both topologies tends to zero
for a small-scale fluctuation (totally uncorrelated small-scale
scintillations). As in the constant correlation model, the use of
either a circular surface or a square one hardly induces a slight
change in performance (better when a circular area is employed
since the distance between correlative receivers is larger).

Last, the results obtained from the star receiver topology are
shown in Fig. 10, with N = 4 receivers spread in a square area
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Fig. 9. BER versus average electrical SNR for the exponential
model of correlation with a square area of 30 cm2 and N = 3 receiv-
ers. Results are shown for weak, moderate, and strong turbulence,
C 2

n = 4× 10−15, C 2
n = 10−14, and C 2

n = 10−13 m−2/3, respectively,
and link lengths of 700, 1500, and 1800 m, respectively.
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Fig. 10. BER versus average electrical SNR for the star model of
correlation with a square area of 30 cm2 and N = 4 receivers. Results
are shown for conditions of weak, moderate, and strong turbulence,
C 2

n = 4× 10−15, C 2
n = 10−14, and C 2

n = 10−13 m−2/3, respectively,
and link lengths of 700, 1500, and 1800 m, respectively.

of 30 cm2. For this case, we also offer the results of the same
scenario but distributing the photodetectors in a circular area
(Fig. 11) instead of a square one. A slight improvement in per-
formance is observed again when considering a square surface
(corresponding to an increase of barely 0.18 cm in d ; see Figs. 5
and 6), except for the case of C 2

n = 10−13 m−2/3 since, as we
explained above, the channels are totally uncorrelated for that
value of structure parameter.

To better understand the behavior of these systems, Fig. 12
shows a comparison in performance when employing N = 3
receivers with regard to N = 4, when those receivers have
been distributed in a circular area and following an exponen-
tial correlation model. Here we can appreciate an important
feature. Figures 12(a) and 12(b) do not show a difference in
performance when increasing the number of photodetectors
from N = 3 to N = 4, except for the case of considering all
small-scale effects totally uncorrelated (dotted lines). This
fact means that it is not justified to enlarge the complexity
of the system when the available space is reduced (30 cm2
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Fig. 11. BER versus average electrical SNR for the star model of
correlation with a circular area of 30 cm2 and N = 4 receivers. Results
are shown for conditions of weak, moderate, and strong turbulence,
C 2

n = 4× 10−15, C 2
n = 10−14, and C 2

n = 10−13 m−2/3, respectively,
and link lengths of 700, 1500, and 1800 m, respectively.

in the scenario taken as an illustrative example). As seen in
Fig. 5, the separation distance between receivers is reduced
from 3.09 cm (N = 3) to 2.06 cm (N = 4). The reduction in
separation distance implies an increase in the magnitude of the
correlation factor between photodetectors that compensates
for the benefit of increasing the number of photoreceivers.
Nevertheless, when this limitation is overcome and it is feasible
to add a new photodetector while maintaining the separation
distance between correlative receivers, then an improvement
in performance is appreciated as shown in Fig. 12(c), more
remarkable when such separation distance is longer.

On the other hand, the ABER of vw-MPPM coding trans-
mission is discussed from the results obtained from Eq. (29),
numerically validated via Monte Carlo simulation. Thus,
Fig. 13(b) shows the results obtained when using Eq. (29)
with a 2/3 code rate. They are compared to the ones depicted
in Fig. 13(a) and extracted from Eq. (22) for classic OOK
modulation. A constant correlation model considering a cir-
cular area of 30 cm2 was employed, where the photodetectors
are separated d = 5.35 cm according to Fig. 5(a). Succinctly,
an improvement of around 7 dB on average can be measured
between the performance associated with the vw-MPPM case
[Fig. 13(b)] compared to the OOK one [Fig. 13(a)] for an
ABER of 10−5. Evidently, the improvement in performance
associated with the vw-MPPM technique is at the expense of
a reduction in data rate by a factor of 1/3. Last, the numerical
simulation corroborates the validity of Eq. (29) for any condi-
tion (correlation factor, topology, turbulence regime, etc.) and
coding and modulation techniques.

A similar comparison is shown in Fig. 14, including an
exponential correlation model with a 60 cm2 circular area, with
N = 2 and N = 4 receivers, and assuming a strong turbulence
regime. An improvement of around 6 dB on average was reg-
istered in favor of the vw-MPPM scheme in relation to OOK
modulation at the reference BER of 3.8× 10−3.

As a remarkable comment, the areas considered in this work
are aligned to current commercial solutions: for instance, a
30 cm2 aperture is similar to the one implemented by the
SONAbeam Z series (50 mm diameter), whereas a 60 cm2
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Fig. 12. Comparison of BER versus average electrical SNR for
the exponential model of correlation with a receiving circular area
of 30 cm2, using (a) N = 3 receivers and (b) N = 4 receivers. In
addition, the case of N = 4 receivers with each pair of consecutive
receivers separated 3.09 cm is shown in (c).

area is a magnitude closer to the SONAbeam E series (10 cm
diameter) [44].

Finally, we want to recall that our paper is intended to
consider point receivers, where turbulence-induced signal
fluctuations affect system performance with the maximum
adverse effect. Certainly, this would be true if the receiving
aperture in an optical communication system is smaller than
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Fig. 13. BER versus average electrical SNR for the constant model
of correlation with a 30 cm2 circular area and N = 3 receivers, using
(a) OOK and (b) vw-MPPM with a 2/3 code rate.
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Fig. 14. BER versus average electrical SNR for the exponential
correlation model with a receiving circular area of 60 cm2, for N = 2
and 4 receivers. Results are shown for C 2

n = 10−13 m−2/3 (strong
turbulence) and link lengths of 700, 1500, and 1800 m.

the correlation width of irradiance fluctuations, ρc . If a receiv-
ing aperture of diameter D is larger than the latter scale size,
the receiver will average the fluctuations over the aperture,
and the scintillation will be less compared to scintillation
measured with a point receiver [45]. Aperture sizes larger
than ρc will experience some form of “aperture averaging,”
which in effect reduces the scintillation experienced by the

receiver photodetector. Hence, from Eq. (7), it is possible to
distinguish two different situations: first, for the case of weak
conditions, the correlation scale of irradiance fluctuations is
defined by the size of the Fresnel zone (

√
λL in this paper);

thus, significant aperture averaging takes place only when
D> 2

√
λL . Second, for strong turbulence conditions, the

correlation scale is determined first by the spatial coherence
scale ρ0, as we discussed in Section 2.C. The same conclusions
are derived in [46]. In this respect, and for the magnitudes
considered in our paper, the detectors could be considered as
point detectors if (1) for the case of a weak turbulence regime,
the separation between two correlative receivers is D< 2

√
λL ,

i.e., D< 6.5 cm (L = 700 m), 9.6 cm (L = 1500 m), and
10.56 cm (L = 1800 m), and (2) for the case of a strong turbu-
lence regime, the separation between two correlative receivers
must be D<ρ0, i.e., D< 2.32 cm (L = 700 m), 1.48 cm
(L = 1500 m), and 1.32 cm (L = 1800 m).

Thus, from the configuration of receivers employed in our
paper (Figs. 5 and 6), the maximum distance between receiv-
ers is 5.67 cm [corresponding to the constant configuration
with three receivers shown in Fig. 6(a) in our paper]. For that
scale size, we are in the limit of considering point receivers
for all cases of weak (C 2

n = 4× 10−15 m−2/3) and moderate
(C 2

n = 10−14 m−2/3) turbulence and including the three differ-
ent propagation path lengths considered in the paper for these
two values of structure parameters in addition to any of the
spatial configurations of receivers analyzed in our paper for a
receiving area of 30 cm2.

However, for the case of strong turbulence (C 2
n =

10−13 m−2/3), the supposition of point detectors does not
hold. In this case, the assumption of having point receivers
is intended only for showing the maximum adverse effects
from a turbulent atmosphere. This assumption is also taken
into account in many other papers [21,24], especially when
studying systems based on an IM/DD scheme (as in this paper)
for which irradiance fluctuations are primarily concerned.

6. CONCLUSION

In this work, a complete analysis of the performance associated
with a SIMO configuration with spatial diversity has been
performed in realistic scenarios. The derived analytical expres-
sions for the ABER are obtained in terms of the correlation
length of the received irradiance fluctuations, and depending
on the propagation path length, the refractive index structure
parameter or the impact of the correlation matrix of small-scale
scintillations on overall performance, assuming that the large-
scale turbulence-induced fading is a common contribution for
all receivers. Precisely such a correlation matrix also depends
on the separation distance between photodetectors, i.e., the
correlation factors are not fixed to certain values for academic
purposes, but calculated in a realistic way from the configu-
ration of the FSO link, the number of photodetectors, or the
physical available space in reception. Moreover, the correlation
length, in addition, is determined by comparing the magni-
tudes of the spatial correlation value and the first Fresnel zone,
according to Fig. 3.

Furthermore, three illustrative spatial geometries of receiv-
ers were considered [17,19], giving rise to three small-scale
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correlation matrices that characterize the correlation between
fading signals in each of the diversity branches: constant, expo-
nential, and star correlation models. Indeed, a topology will
present better performance if the separation distances among
its photodetectors are larger, as corroborated in this paper. For
instance, the configuration with a constant correlation model
presents better performance than that obtained from an expo-
nential correlation model with N = 3 photodetectors since
their separation distances are shorter than the ones achieved for
the constant model, assuming the same fixed surface (identical
magnitude and identical geometric shape) to distribute the
photodetectors. The same conclusions can be obtained when
comparing the star topology in relation to the exponential one.
Since the received area considered in this work is not very large
(typically 30 cm2, or even 60 cm2), the differences in behavior
among topologies are not remarkable (around 2–3 dBs for an
ABER of 10−5). It is expected to obtain a more remarkable
difference when that area becomes larger.

On another note, and regarding the limited physical avail-
able space on the receiver side for distributing photodetectors,
there may exist situations as the ones shown in Figs. 12(a) and
12(b) where the whole FSO system does not experience any
improvement in performance when adding new photodetec-
tors. The underlying reason resides in the short separation
distances among photodetectors, and, consequently, the corre-
lation factor becomes larger, countering the benefit of having
different diversity branches in the considered EGC spatial
diversity technique. Of course, if totally uncorrelated channels
are supposed, then the addition of new photoreceivers always
improves the performance of the system.

Finally, we have incorporated the study of the vw-MPPM
as an illustrative example of a generic nonlinear block coding
technique whose CBER cannot be derived in a closed-form
expression. Its analysis was carried out by employing a hyper-
exponential fitting procedure. Here, the improvement in
performance with respect to the OOK scheme is more remark-
able, as vw-MPPM includes a rate-adaptive transmission
scheme using block coding, thus increasing its resulting
PAOPR. These results, and the others included in this paper,
corroborate the validity of the derived analytical expressions.

APPENDIX A

In this appendix, the assumption of common large-scale effects
affecting all receivers is discussed in detail. From the early
works published by Taylor [47], based on some measure-
ments of intensity and scale inside wind tunnels [48], or by
Kolmogorov [49], with a turbulent flow composed of “eddies”
of different sizes, we know some features that can justify this
approach. Thus, for example, near the ground, the value of the
outer scale of turbulence is thought to be comparable with the
height above ground (around 20 or 30 m if we consider a typi-
cal scenario with the transceivers over two different buildings),
much larger than either the beam waist propagating through
the atmosphere or the radius of the receiver. In this respect, it
seems that when the turbulent process begins, the approach
of considering a common large-scale effect for all receivers
becomes real.

Then, the energy is input at small wavenumbers and dissi-
pated at much larger wavenumbers. In this wavenumber range
called the inertial subrange, the Reynolds number is so high for
the large eddies that they are unstable and break apart. Thus,
they transfer energy to smaller scales (higher wavenumbers)
down to the inner scale of turbulence l0, a scale of only a few
millimeters where the Reynolds number approaches unity and
the energy is dissipated into heat. This heat is seen as the start-
ing point to begin a new turbulent process. All these features
in combination with Taylor’s hypothesis (eddies staying in the
same place for a long time compared to the typical data rates,
and moving as a whole) allow us to think of having a varying
number of large-scale eddies in the link affecting all receivers at
the same time, as we will show below.

In addition, Tatarskii [22,50] predicted that the correlation
length of irradiance fluctuations is of the order of the first
Fresnel zone. On the other hand, measurements [51,52] of
the irradiance covariance function under strong-fluctuation
conditions revealed that the correlation length decreases when
increasing the Rytov variance and that a large residual correla-
tion tail emerges at large separation distances. That is, in the
strong-fluctuation regime, the correlation length of irradiance
fluctuations is determined by the spatial coherence radius
ρ0 [see Eq. (6)] of the optical wave, whereas the width of the
residual tail is characterized by the scattering disk calculated
as L/(kρ0), with L denoting the propagation path length
and k being the wavenumber of optical radiation. All these
parameters (size of the Fresnel zone, spatial coherence radius,
scattering disk, and a comparison with the received beam
waist) will be discussed in more detail later.

Furthermore, the sets of observations made about irradi-
ance measurements in [53,54] contributed to understand and
develop expressions for the large-scale and small-scale irradi-
ance covariance functions. The two-scale process associated
with scintillation is described in detail in [55] and discussed
in [56]. Moreover, all these findings help Andrews et al . [20]
to develop a heuristic model of irradiance fluctuations for a
propagating optical wave in a weakly inhomogeneous medium
under the assumption that small-scale irradiance fluctuations
are modulated by large-scale irradiance fluctuations of the
wave. There, the upper bound for small turbulent cells was
defined by the smallest cell size between the Fresnel zone
and the transverse spatial coherence radius, ρ0, of the optical
wave, whereas the lower bound for large turbulent cells was
defined by the largest cell size between the Fresnel zone and the
scattering disk.

To conclude this review of theory of optical scintillation
based on experimental observations, we recently proposed
and developed in [57] a new statistical model for turbulence,
the Málaga model (seen as a generalization of the gamma–
gamma one) whose physical model was presented in [58] after
a deeper interpretation of the Málaga model. In this respect, its
propagation model and the turbulence-induced scintillation
effects can be physically interpreted as the superposition of
several generalized-K sub-channels corresponding each one
to a different physical optical path. It was demonstrated (and
validated with Monte Carlo simulations) that the large-scale
fading characteristic associated with each sub-channel is estab-
lished by αx defined in Section 2 (the same parameter as in a
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gamma–gamma model, and related to the effective number of
large-scale cells of the scattering process, as discussed in [27]),
and, as expected, it is common for every generalized-K term.
In contrast, small-scale fluctuations depend on the specific
subchannel, where the more severe conditions, the lower the
probability of the optical power to be coupled to the LOS
component. Even more, different optical sub-channels may be
associated with a different turbulence condition. An additional
feature comes from the probability that a certain portion of
the optical signal travels through the kth optical path. This
probability was demonstrated to follow a binomial distribution
[58] depending on the parameters of the Málaga distribution
(many of them coincident to their corresponding ones in
gamma–gamma distribution) that configures the probability
for optical power to be coupled to the LOS component. It
means that large-scale fluctuations associated with large-scale
cells of the scattering process will have a higher or lower weight
in the final received fluctuating intensity, depending on either
the probability for the optical signal traveling through a con-
crete subchannel or on the optical power distribution among
the contributing sub-channels.

All the arguments related above support our initial assump-
tion, and now it is possible to evaluate its accuracy. The idea is
not new since Fig. 6 in [59] shows the propagation geometry
of an optical wave through a turbulent atmosphere, where
common eddies inducing correlated deflection into all receivers
are included. In that paper, the authors give a physical recalling
that channel correlation arises mainly from the deflection
effects of large-scale eddies whose sizes are larger than the
scattering disk, consistent with what we have detailed above.
Those common eddies simultaneously deflect light in both
channels considered in [59] and thus generate channel correla-
tion; in contrast, the independent eddies modify light in only
one channel and thus degrade the correlation. With increas-
ing turbulence strength, the spatial coherent radius decreases
[30], and hence, the scattering disk increases. Therefore, the
average size of the large-scale eddies is increased. Accordingly,
the probability of interacting with common eddies increases,
although for this case, we must compare that average size of the
large-scale eddies with the beam waist of the optical transmit-
ted signal, wider as a consequence of the stronger turbulence
regime.

A similar model is applied in [60]. There, it is concluded
that if the propagation path length is much larger than the
laser beam divergence, and if the receivers are sufficiently close,
then the signals received by the photodetectors are likely to be
deflected by the same eddies, implying that large-scale effects
can be assumed to be the same for all receivers. In addition, the
width of the light beam issued by a transmitter laser expands as
the propagation path length increases. This effect is depicted in
Fig. 2(a) in [61], which we include here in Fig. 15 for the sake
of completeness.

If now a horizontal FSO transmission with a Gaussian pro-
file for the beam intensity is considered [62], the radius of that
beam, at a distance z from the laser source, is given by [30]

We (z)=W(z)
√

1+ 1.625σ 12/5
R 3, (A1)

Fig. 15. Propagation model of a partially coherent Gaussian laser
beam: W0 is the initial beam radius, Db = 2We is the beam diameter,
and Dc = 2ρ0 is the transverse coherence diameter, both at z= L .
Figure taken from [61].

where σ 2
R = 1.23C 2

n k7/6L11/6 is the Rytov variance, with C 2
n

being the refraction index structure parameter, which is directly
related to turbulence strength, with k being the wavenumber
and L representing the propagation path length. Moreover,
3= 2z/(kW2), with z being the propagation distance and W
being the beam radius at z= L , whereas the generic expression
for W(z), the beam radius in the absence of turbulence, is
defined by

W(z)=W0

√(
1−

z
F0

)2

+

(
2z

kW2
0

)2

. (A2)

In Eq. (A2), W0 is the beam radius at the 1/e point of
the field (1/e 2 of the irradiance) at the transmitter, F0 is the
phase front radius of curvature at the transmitter output (we
can consider a collimated beam, i.e., F0→∞), k = 2π/λ
is the wavenumber, and λ is the wavelength. In this paper,
we have considered λ= 1550 nm, three different magni-
tudes for the structure parameter, C 2

n = 4× 10−15, 10−14,
and 10−13 m−2/3, and three different propagation lengths,
L = 700, 1500, and 1800 m. Moreover, we can assume
W0 = 2.5 cm, as in [30]. Then, operating, we obtain the
representative values included in Table 4.

From Table 4, the beam waist at the receiver will vary from
2.5 cm (We =W0 since the optical beam is affected by a very
weak turbulence regime) to 31.7 cm (strong turbulence and
the longest path, L = 1800). From Eq. (7), the correlation
lengths (which describe the average speckle size at the receiver)
take the values of 3.3, 4.8, and 5.3 cm (when approaching its
value to

√
λL) for weak turbulence and L = 700, 1500, and

1800 m, respectively; for strong turbulence and the same values
of L , respectively, their values are 1.16, 0.74, and 0.66 cm.
From Fig. 3, we can see how the cases of C 2

n = 4× 10−15 and
C 2

n = 10−14 m−2/3 for all propagation path lengths considered
(700, 1500, and 1800 m) can be considered as weak fluctu-
ations since the value of the Fresnel zone is below the curves
representing the coherence radius for C 2

n = 4× 10−15 and
C 2

n = 10−14 m−2/3. Additionally, it is reasonable to think that
since the average speckle size at the receiver is larger than the
received beam waist, and, moreover, from Figs. 5 and 6, the
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Table 4. Atmospheric Link Parameters

C2
n L We

Correlation Length (
√
λL)

(Average Speckle Size)
First Fresnel Zone

(
√

L/k)
Scattering Disk

(L/(kρ0))
Spatial Coherence

Radius (ρ0)

4× 10−15 m−2/3 700 m 2.5 cm 3.3 cm (3.3 cm) 1.31 cm 0.22 cm 8.01 cm
4× 10−15 m−2/3 1500 m 2.53 cm 4.8 cm (4.8 cm) 1.92 cm 0.73 cm 5.07 cm
4× 10−15 m−2/3 1800 m 2.59 cm 5.3 cm (5.3 cm) 2.11 cm 0.98 cm 4.55 cm
10−14 m−2/3 700 m 2.51 cm 3.3 cm (3.3 cm) 1.31 cm 0.37 cm 4.62 cm
10−14 m−2/3 1500 m 2.78 cm 4.8 cm (4.8 cm) 1.92 cm 1.26 cm 2.93 cm
10−14 m−2/3 1800 m 3.20 cm 5.3 cm (5.3 cm) 2.11 cm 1.69 cm 2.62 cm
10−13 m−2/3 700 m 3.51 cm 3.3 cm (1.16 cm) 1.31 cm 1.49 cm 1.16 cm
10−13 m−2/3 1500 m 19.5 cm 4.8 cm (0.74 cm) 1.92 cm 5.03 cm 0.74 cm
10−13 m−2/3 1800 m 31.7 cm 5.3 cm (0.66 cm) 2.11 cm 6.74 cm 0.66 cm

radius of the receiver is, approximately, 3 cm for each topol-
ogy when considering a 30 cm2 receiving area, then most of
the large-scale fluctuations must be common for all receiv-
ers. However, the probability that signals received in each
photodetector pass through the same eddies (common eddies)
decreases for strong turbulence since the channel correlation
decreases as both L and C 2

n increase. In this case, the average
speckle size (i.e., correlation length) is smaller than the beam
waist and small-scale fluctuations (diffractive effects) are most
noticeable. In this respect, our assumption (common large-
scale fluctuations for all receivers) turns into a worst case of
performance, showing an upper error bound obtained for a
particular FSO link under design.

Following [30], large-scale fluctuations in irradiance are
generated by turbulent cells larger than that of the first
Fresnel zone or the scattering disk L/(kρ0), whichever is
largest. From the values included in Table 4, we can see
how the sizes of cells inducing large-scale fluctuations are
larger than 3.3 cm (L = 700 m), 4.8 cm (L = 1500 m),
and 5.3 cm (L = 1800 m) for C 2

n = 4× 10−15 m−2/3 and
C 2

n = 10−14 m−2/3; for the case of C 2
n = 10−13 m−2/3, large-

scale fluctuations are caused by cells with sizes larger than
3.3 cm (still

√
λL dominating for L = 700 m), 5.03 cm

(L = 1500 m), and 6.74 cm (L = 1800 m), the latter two path
lengths dominated by the scattering disk. Again, we recall that
we have adopted in this paper a more restrictive value for the
Fresnel zone size,

√
λL . This means that if we compare these

eddy sizes (for C 2
n = 4× 10−15 m−2/3 and C 2

n = 10−14 m−2/3)
to those scale sizes characterizing We (L) for the same two
structure parameter values, and considering that the correla-
tion length also indicates the average size of turbulent cells,
then we can extract the following conclusions:

1. Following [56], if ρ0 >
√

L/k, then the coherence length
is greater than the first Fresnel zone, and the magnitude
√
λL is the size of the dominant inhomogeneities pro-

ducing scintillations. Cell sizes involved in large-scale
fluctuations of intensity for C 2

n = 4× 10−15 m−2/3 and
C 2

n = 10−14 m−2/3 are larger than the received beam waist
for all lengths considered in this paper. Their average sizes
imply that the probability of having a cell of that average
size (and even larger) is high. For example, for the case of
C 2

n = 10−14 m−2/3 and L = 1500 m, the average eddy
size is 4.8 cm, almost twice larger than the size of the
beam waist at the receiver, i.e., We = 2.78 cm, being very

likely that the transmitted optical beam can pass through
turbulent cells larger than its beam waist, which is 2.78 cm
at L = 1500 m, but less for any other position between the
transmitter (W0 = 2.5 cm was the supposed transmitted
beam waist) and the receiver. So the approach of hav-
ing a common contribution of a large-scale scintillation
component for all receivers is very accurate.

2. However, and again, from [56], if ρ0 <
√

L/k, then
eddies whose scale sizes are of the order of

√
λL no longer

cause scintillations, and the dominant scale size is ρ0. For
the case of strong turbulence considered in this paper
(C 2

n = 10−13 m−2/3), it is straightforward to check from
Table 4 that cells contributing to large-scale scintillations
are of sizes larger than 1.49 cm (L = 700 m), 5.03 cm
(L = 1500 m), and 6.74 cm (L = 1800 m). If we com-
pare those values with the ones for We (3.51, 19.5, and
31.7 cm, respectively, for the same distances), we see
how the received beam width is larger than the cell sizes
from which a turbulent eddy is considered as a large-scale
eddy (causing large-scale fluctuations). For this case of
strong turbulence, the approach can be seen only as a
mathematically tractable closed-form approximation
to obtain an upper error bound in performance of any
FSO system. Notwithstanding, the average dominant
inhomogeneity scale size for this scenario (ρ0, as indicated
in [56], i.e., 1.16, 0.74, and 0.66 cm for L = 700, 1500,
and 1800 m, respectively) informs that the probability
of meeting an eddy with a size larger than the ones given
by the scattering disk (the minimum size to consider an
eddy as a large-scale one in this scenario) is really low
since the difference in size between both magnitudes is
large. In this respect, the effect for this strong turbulence
scenario is mostly associated with small-scale fluctuations
(the Fresnel zone defines the dominant scale size for scin-
tillation, in this case, associated with diffractive effects)
and not with large-scale fluctuations. For this reason, our
initial assumption (common eddies affecting all receivers),
although being here an upper bound limit, nevertheless,
should not offer a remarkable difference in respect to
the real performance associated with any FSO system
under study. In addition, the presence of large aerosols
(rain, drizzle, fog, etc.) in the atmosphere reduces the
effective size of the largest turbulence scales, making our
assumption even more realistic.
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3. Saying that, from the discussion provided in [11,20,30],
large-scale fluctuations in irradiance are generated by
turbulent cells larger than that of the first Fresnel zone
or the scattering disk L/(kρ0), whichever is largest, and
can be described by the method of geometrical optics.
In our case, large-scale fluctuations are caused by cells
with sizes larger than 1.49 cm (L = 700 m), 5.03 cm
(L = 1500 m), and 6.74 cm (L = 1800 m) for the case of
C 2

n = 10−13 m−2/3, as indicated in the previous item.
4. To support the previous item, in [63], it is also stated that

channel correlation mainly depends on large-scale turbu-
lence eddies rather than small-scale turbulence eddies. For
the strong turbulence regime where scintillations are dom-
inated by eddies whose scale sizes are given by ρ0, shorter
than the width of the first Fresnel zone, those scintillations
become independent of the turbulence intensity and the
path length, which, in essence, explains the saturation
effect, as related in [56].

5. Finally, we have similar conditions as in [59] to ensure
that channel correlation arises mainly from the deflection
effects of large-scale eddies.

Funding. Ministerio de Ciencia, Innovación y Universidades (PID2019-
107792GB-I00).
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